Science.gov

Sample records for 2-d flash sequences

  1. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  2. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  3. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  4. A novel 2-D graphical representation of DNA sequences of low degeneracy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Randic, Milan; Basak, Subhash C.

    2001-12-01

    Some 2-D and 3-D graphical representations of DNA sequences have been given by Nandy, Leong and Mogenthaler, and Randic et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a novel graphical representation of DNA sequences by taking four special vectors in 2-D space to represent the four nucleic acid bases in DNA sequences, so that a DNA sequence is denoted on a plane by a successive vector sequence, which is also a directed walk on the plane. It is showed that the novel graphical representation of DNA sequences has lower degeneracy and less overlapping.

  5. Numerical characterization of DNA sequences in a 2-D graphical representation scheme of low degeneracy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Nandy, Ashesh

    2003-02-01

    Some 2-D and 3-D graphical representations of DNA sequences have been given by Gate, Nandy, Leong, Randic, and Guo et al. Based on 2-D graphical representation of DNA sequences, Raychaudhury and Nandy introduced the first-order moments of the x and y coordinates and the radius of the plot of a DNA sequence for indexing scheme and similarity measures of DNA sequences. In this Letter, based on Guo's novel 2-D graphical representation of DNA sequences of low degeneracy, we introduce the improved first-order moments of the x and y coordinates and the radius of DNA sequences, and the distance of two DNA sequences. The new descriptors of DNA sequences give a good numerical characterization of DNA sequences, which have lower degeneracy.

  6. Flash!

    NASA Astrophysics Data System (ADS)

    Schilling, Govert

    2002-04-01

    About three times a day our sky flashes with a powerful pulse of gamma ray bursts (GRB), invisible to human eyes but not to astronomers' instruments. The sources of this intense radiation are likely to be emitting, within the span of seconds or minutes, more energy than the sun will in its entire 10 billion years of life. Where these bursts originate, and how they come to have such incredible energies, is a mystery scientists have been trying to solve for three decades. The phenomenon has resisted study -- the flashes come from random directions in space and vanish without trace -- until very recently. In what could be called a cinematic conflation of Flash Gordon and The Hunt for Red October, Govert Schilling's Flash!: The Hunt for the Biggest Explosions in the Universe describes the exciting and ever-changing field of GRB research. Based on interviews with leading scientists, Flash! provides an insider's account of the scientific challenges involved in unravelling the enigmatic nature of GRBs. A science writer who has followed the drama from the very start, Schilling describes the ambition and jealousy, collegiality and competition, triumph and tragedy, that exists among those who have embarked on this recherche. Govert Schilling is a Dutch science writer and astronomy publicist. He is a contributing editor of Sky and Telescope magazine, and regularly writes for the news sections of Science and New Scientist. Schilling is the astronomy writer for de Volkskrant, one of the largest national daily newspapers in The Netherlands, and frequently talks about the Universe on Dutch radio broadcasts. He is the author of more than twenty popular astronomy books, and hundreds of newspaper and magazine articles on astronomy.

  7. Localization and tracking of aortic valve prosthesis in 2D fluoroscopic image sequences

    NASA Astrophysics Data System (ADS)

    Karar, M.; Chalopin, C.; Merk, D. R.; Jacobs, S.; Walther, T.; Burgert, O.; Falk, V.

    2009-02-01

    This paper presents a new method for localization and tracking of the aortic valve prosthesis (AVP) in 2D fluoroscopic image sequences to assist the surgeon to reach the safe zone of implantation during transapical aortic valve implantation. The proposed method includes four main steps: First, the fluoroscopic images are preprocessed using a morphological reconstruction and an adaptive Wiener filter to enhance the AVP edges. Second, a target window, defined by a user on the first image of the sequences which includes the AVP, is tracked in all images using a template matching algorithm. In a third step the corners of the AVP are extracted based on the AVP dimensions and orientation in the target window. Finally, the AVP model is generated in the fluoroscopic image sequences. Although the proposed method is not yet validated intraoperatively, it has been applied to different fluoroscopic image sequences with promising results.

  8. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    NASA Astrophysics Data System (ADS)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  9. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour

  10. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour

  11. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6.

    PubMed

    Qiao, Wanqiong; Yang, Yao; Sebra, Robert; Mendiratta, Geetu; Gaedigk, Andrea; Desnick, Robert J; Scott, Stuart A

    2016-03-01

    The cytochrome P450-2D6 (CYP2D6) enzyme metabolizes ∼25% of common medications, yet homologous pseudogenes and copy number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant-calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run nonreference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement. Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis, and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications. PMID:26602992

  12. Asymmetrical Retention Functions for Sequences of Light Flashes or Tone Bursts in the Rat

    ERIC Educational Resources Information Center

    Van Rooyen, Patrick; Santi, Angelo

    2008-01-01

    In Experiment 1, rats were trained in a symbolic delayed matching-to-sample task to discriminate sample stimuli that consisted of sequences of magazine light flashes. The intertrial interval was illuminated by the houselight for Group Light, and it was dark for Group Dark. Retention functions exhibited a choose-many response bias when the delay…

  13. Localized 2D COSY sequences: Method and experimental evaluation for a whole metabolite quantification approach

    NASA Astrophysics Data System (ADS)

    Martel, Dimitri; Tse Ve Koon, K.; Le Fur, Yann; Ratiney, Hélène

    2015-11-01

    Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance - generally known as the Cramér Rao bounds (CRBs), a standard of precision - on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.

  14. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

    PubMed

    Juhlin, C Christofer; Stenman, Adam; Haglund, Felix; Clark, Victoria E; Brown, Taylor C; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L; Korah, Reju; Lifton, Richard P; Carling, Tobias

    2015-09-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole-exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis-related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well-established cancer gene lysine (K)-specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome-sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D-mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. PMID:26032282

  15. Whole‐exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene

    PubMed Central

    Stenman, Adam; Haglund, Felix; Clark, Victoria E.; Brown, Taylor C.; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C.; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L.; Korah, Reju; Lifton, Richard P.

    2015-01-01

    As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole‐exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis‐related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well‐established cancer gene lysine (K)‐specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome‐sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D‐mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:26032282

  16. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.

    PubMed

    Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S

    2015-10-01

    The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light. PMID:26479664

  17. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission.

    PubMed

    Waxmann, Patrick; Mekle, Ralf; Schubert, Florian; Brühl, Rüdiger; Kuehne, Andre; Lindel, Tomasz D; Seifert, Frank; Speck, Oliver; Ittermann, Bernd

    2016-08-01

    Spatially selective excitation in two dimensions (2D-SSE) utilizing parallel transmission was applied as a means to acquire signal from voxels adapted to the anatomy of interest for in vivo (1) H MR spectroscopy. A novel method to select spectroscopy voxels with arbitrary shapes in two dimensions was investigated. An on-off scheme with an adiabatic slice selective inversion pulse preceding a 2D-SSE pulse together with a segmented inward spiral excitation k-space trajectory enabled rapid free induction decay acquisitions. Performance of the sequence was evaluated in simulations, phantom experiments, and in vivo measurements at 3 T. High spatial fidelity of the excitation profile was achieved for different target shapes and with little off-resonance deterioration. Metabolite concentrations in human brain determined with the new sequence were quantified with Cramér-Rao lower bounds less than 20%. They were in the physiological range and did not deviate systematically from results acquired with a conventional SPECIAL sequence. In conclusion, a new approach for shaped voxel MRS in the human brain is presented, which complements existing sequences. Simulations show that 2D-SSE pulses yield reduced chemical shift artifact when compared with conventional localization methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27254102

  18. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials - A general bond polarizability model

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Ying Quek, Su

    2015-10-01

    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.

  19. Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes.

    PubMed

    Laure, Chloé; Karamessini, Denise; Milenkovic, Olgica; Charles, Laurence; Lutz, Jean-François

    2016-08-26

    A 2D approach was studied for the design of polymer-based molecular barcodes. Uniform oligo(alkoxyamine amide)s, containing a monomer-coded binary message, were synthesized by orthogonal solid-phase chemistry. Sets of oligomers with different chain-lengths were prepared. The physical mixture of these uniform oligomers leads to an intentional dispersity (1st dimension fingerprint), which is measured by electrospray mass spectrometry. Furthermore, the monomer sequence of each component of the mass distribution can be analyzed by tandem mass spectrometry (2nd dimension sequencing). By summing the sequence information of all components, a binary message can be read. A 4-bytes extended ASCII-coded message was written on a set of six uniform oligomers. Alternatively, a 3-bytes sequence was written on a set of five oligomers. In both cases, the coded binary information was recovered. PMID:27484303

  20. Sequencing CYP2D6 for the detection of poor-metabolizers in post-mortem blood samples with tramadol.

    PubMed

    Fonseca, Suzana; Amorim, António; Costa, Heloísa Afonso; Franco, João; Porto, Maria João; Santos, Jorge Costa; Dias, Mário

    2016-08-01

    Tramadol concentrations and analgesic effect are dependent on the CYP2D6 enzymatic activity. It is well known that some genetic polymorphisms are responsible for the variability in the expression of this enzyme and in the individual drug response. The detection of allelic variants described as non-functional can be useful to explain some circumstances of death in the study of post-mortem cases with tramadol. A Sanger sequencing methodology was developed for the detection of genetic variants that cause absent or reduced CYP2D6 activity, such as *3, *4, *6, *8, *10 and *12 alleles. This methodology, as well as the GC/MS method for the detection and quantification of tramadol and its main metabolites in blood samples was fully validated in accordance with international guidelines. Both methodologies were successfully applied to 100 post-mortem blood samples and the relation between toxicological and genetic results evaluated. Tramadol metabolism, expressed as its metabolites concentration ratio (N-desmethyltramadol/O-desmethyltramadol), has been shown to be correlated with the poor-metabolizer phenotype based on genetic characterization. It was also demonstrated the importance of enzyme inhibitors identification in toxicological analysis. According to our knowledge, this is the first study where a CYP2D6 sequencing methodology is validated and applied to post-mortem samples, in Portugal. The developed methodology allows the data collection of post-mortem cases, which is of primordial importance to enhance the application of these genetic tools to forensic toxicology and pathology. PMID:26926096

  1. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  2. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials – A general bond polarizability model

    PubMed Central

    Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Ying Quek, Su

    2015-01-01

    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials. PMID:26469313

  3. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials--A general bond polarizability model.

    PubMed

    Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Quek, Su Ying

    2015-01-01

    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical z(xx)z configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials. PMID:26469313

  4. A New 2D-Based Method for Carotid Intima-Media Thickness Quantification From Ultrasound Sequences

    PubMed Central

    Rafati, Mehravar; Rafati Rahimzadeh, Mehrdad; Raygan, Fariba; Nikseresht, Vahid; Moladoust, Hassan

    2015-01-01

    Background: Ultrasound measurement of carotid Intima-Media Thickness (IMT) is a suitable method to evaluate subclinical arteriosclerosis. Objectives: The current study aimed to present a new computerized algorithm to detect instantaneous changes of the IMT to Common Carotid Artery (CCA) of IMT in sequential ultrasound images by applying the maximum gradient and the dynamic programming. Patients and Methods: In a cross-sectional design, an examination was performed on thirty healthy human subjects with the mean age of 44 ± 6 years from April 2013 to June 2013 in Beheshti Hospital, Kashan, Iran. In all individuals, the instantaneous changes of the far wall IMT on the CCA were extracted. Local measurements of vessel intensity, intensity gradient, and boundary continuity were extracted for all of the sequential ultrasonic 2D-frames throughout three cardiac cycles. The Pearson correlation coefficients and Bland-Altman analysis were performed to assess the relationship and agreement between IMT measured by the proposed and conventional manual methods. Results: There was no significant difference between the proposed and manual methods with paired t-test analysis (in systole: 0.57 ± 0.10 vs. 0.56 ± 0.10 mm; P = 0.188 and in diastole: 0.63 ± 0.16 vs. 0.62 ± 0.10 mm; P = 0.122 for the manual and proposed methods, respectively). The Pearson correlation coefficients were r = 0.94 and r = 0.93 for IMTs and IMTd, respectively (both P < 0.001). Limit of agreements were narrow and considerable agreement was found between the two methods. Conclusions: The present study demonstrated that the proposed computerized analyzing method can provide accurate measurements of the IMT of the CCA in sequential 2D ultrasonic images. PMID:26019906

  5. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  6. A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences.

    PubMed

    Zhao, Hai-Qing; Yang, Shui-Ping; Ding, Ni-Ni; Qin, Liang; Qiu, Gui-Hua; Chen, Jin-Xiang; Zhang, Wen-Hua; Chen, Wen-Hua; Hor, T S Andy

    2016-03-15

    Polymorphic compounds {[Cu(dcbb)2(H2O)2]·10H2O}n (, 1D chain), [Cu(dcbb)2]n (, 2D layer) and their co-crystal {[Cu(dcbb)2(H2O)][Cu(dcbb)2]2}n () have been prepared from the coordination reaction of a 2D polymer [Na(dcbb)(H2O)]n (, H2dcbbBr = 1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide) with Cu(NO3)2·3H2O at different temperatures in water. Compounds have an identical metal-to-ligand stoichiometric ratio of 1 : 2, but absolutely differ in structure. Compound features a 2D layer structure with aromatic rings, positively charged pyridinium and free carboxylates on its surface, promoting electrostatic, π-stacking and/or hydrogen-bonding interactions with the carboxyfluorescein (FAM) labeled probe single-stranded DNA (probe ss-DNA, delineates as P-DNA). The resultant P-DNA@ system facilitated fluorescence quenching of FAM via a photoinduced electron transfer process. The P-DNA@ system functions as an efficient fluorescent sensor selective for HIV double-stranded DNA (HIV ds-DNA) due to the formation of a rigid triplex structure with the recovery of FAM fluorescence. The system reported herein also distinguishes complementary HIV ds-DNA from mismatched target DNA sequences with the detection limit of 1.42 nM. PMID:26883749

  7. Construction and Analysis of a Novel 2-D Optical Orthogonal Codes Based on Modified One-coincidence Sequence

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; Wang, Yanfen; Wang, Ke; Xu, Ming; Zhang, Zhipeng; Yang, Shuwen

    2013-09-01

    A new two-dimensional OOC (optical orthogonal codes) named PC/MOCS is constructed, using PC (prime code) for time spreading and MOCS (modified one-coincidence sequence) for wavelength hopping. Compared with PC/PC, the number of wavelengths for PC/MOCS is not limited to a prime number. Compared with PC/OCS, the length of MOCS need not be expanded to the same length of PC. PC/MOCS can be constructed flexibly, and also can use available wavelengths effectively. Theoretical analysis shows that PC/MOCS can reduce the bit error rate (BER) of OCDMA system, and can support more users than PC/PC and PC/OCS.

  8. Whole Exome Sequencing Reveals GUCY2D as a Major Gene Associated With Cone and Cone–Rod Dystrophy in Israel

    PubMed Central

    Lazar, Csilla H.; Mutsuddi, Mousumi; Kimchi, Adva; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Marks-Ohana, Devorah; Boleda, Alexis; Ratnapriya, Rinki; Sharon, Dror; Swaroop, Anand; Banin, Eyal

    2015-01-01

    Purpose. The Israeli population has a unique genetic make-up, with a high prevalence of consanguineous marriages and autosomal recessive diseases. In rod-dominated phenotypes, disease-causing genes and mutations that differ from those identified in other populations often are incurred. We used whole exome sequencing (WES) to identify genetic defects in Israeli families with cone-dominated retinal phenotypes. Methods. Clinical analysis included family history, detailed ocular examination, visual function testing, and retinal imaging. Whole exome sequencing, followed by segregation analysis, was performed in 6 cone-dominated retinopathy families in which prior mutation analysis did not reveal the causative gene. Based on the WES findings, we screened 106 additional families with cone-dominated phenotypes. Results. The WES analysis revealed mutations in known retinopathy genes in five of the six families: two pathogenic mutations in the GUCY2D gene in three families, and one each in CDHR1 and C8orf37. Targeted screening of additional cone-dominated families led to identification of GUCY2D mutations in four other families, which included two highly probable novel disease-causing variants. Conclusions. Our study suggested that GUCY2D is a major cause of autosomal dominant cone and cone–rod dystrophies in Israel; this is similar to other Caucasian populations and is in contrast with retinitis pigmentosa (primary rod disease), where the genetic make-up of the Israeli population is distinct from other ethnic groups. We also conclude that WES permits more comprehensive and rapid analyses that can be followed by targeted screens of larger samples to delineate the genetic structure of retinal disease in unique population cohorts. PMID:25515582

  9. Evaluation of high-pitch flash scan for pulmonary venous CTA on a 128-slice dual source CT: compared with prospective ECG-triggered sequence scan.

    PubMed

    Cao, Li Xiu; Zhang, Huan; Liu, Bo; Yang, Wen Jie; Zhang, Yan Yan; Pan, Zi Lai; Yan, Fu Hua; Chen, Ke Min

    2013-10-01

    To compare the image quality (IQ) and radiation dose of high-pitch scan and prospective ECG-triggered sequence scan on a 128-slice DSCT system for patients with atrial fibrillation (AF). Pulmonary venous (PV) CTA was performed with two protocols, including high-pitch scan and prospective ECG-triggered sequence scan. For each protocol, 20 sex, age and body-mass-index (mean 24.2 kg/m(2)) matched patients were identified. Two experienced radiologists, who were blinded to the scan protocols, independently graded the CT images of the two groups by a 5-point scale for subjective IQ assessment. Measured CT attenuation (Hounsfield units ± standard deviation), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at various anatomic locations were also recorded for objective IQ evaluation. Radiation exposure parameters [dose length product (DLP) and effective radiation dose (ERD)] were compared. Twenty-three patients (57.5 %) showed an ECG pattern of AF in total. Subjective IQ was rated excellent in 100 % for the high-pitch scan group, while minor step artifacts were observed in two patients (10 %) with arrhythmia for the prospective ECG-triggered sequence group. There was no significant difference on IQ, neither by subjective, nor by objective measures (SNR, CNR) between the two groups. The ERD of high-pitch flash scan and prospective ECG-triggered sequence scan were 0.9 (± 0.25) and 2.9 (± 0.69) mSv, respectively. Significantly lower radiation was achieved by using high-pitch flash scan (P < 0.05). High-pitch flash scan can provide similar subjective and objective IQ compared with prospective ECG-triggered sequence scan for PV CTA, while radiation exposure was significantly reduced. PMID:23645131

  10. HP-Lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence.

    PubMed

    Dea-Ayuela, María Auxiliadora; Pérez-Castillo, Yunierkis; Meneses-Marcel, Alfredo; Ubeira, Florencio M; Bolas-Fernández, Francisco; Chou, Kuo-Chen; González-Díaz, Humberto

    2008-08-15

    The toxicity and inefficacy of actual organic drugs against Leishmaniosis justify research projects to find new molecular targets in Leishmania species including Leishmania infantum (L. infantum) and Leishmaniamajor (L. major), both important pathogens. In this sense, quantitative structure-activity relationship (QSAR) methods, which are very useful in Bioorganic and Medicinal Chemistry to discover small-sized drugs, may help to identify not only new drugs but also new drug targets, if we apply them to proteins. Dyneins are important proteins of these parasites governing fundamental processes such as cilia and flagella motion, nuclear migration, organization of the mitotic splinde, and chromosome separation during mitosis. However, despite the interest for them as potential drug targets, so far there has been no report whatsoever on dyneins with QSAR techniques. To the best of our knowledge, we report here the first QSAR for dynein proteins. We used as input the Spectral Moments of a Markov matrix associated to the HP-Lattice Network of the protein sequence. The data contain 411 protein sequences of different species selected by ClustalX to develop a QSAR that correctly discriminates on average between 92.75% and 92.51% of dyneins and other proteins in four different train and cross-validation datasets. We also report a combined experimental and theoretic study of a new dynein sequence in order to illustrate the utility of the model to search for potential drug targets with a practical example. First, we carried out a 2D-electrophoresis analysis of L. infantum biological samples. Next, we excised from 2D-E gels one spot of interest belonging to an unknown protein or protein fragment in the region M<20,200 and pI<4. We used MASCOT search engine to find proteins in the L. major data base with the highest similarity score to the MS of the protein isolated from L. infantum. We used the QSAR model to predict the new sequence as dynein with probability of 99.99% without

  11. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d.

    PubMed

    Xiao, Chao-Ting; Halbur, Patrick G; Opriessnig, Tanja

    2015-07-01

    The oldest porcine circovirus type 2 (PCV2) sequence dates back to 1962 and is among several hundreds of publicly available PCV2 sequences. Despite this resource, few studies have investigated the global genetic diversity of PCV2. To evaluate the phylogenetic relationship of PCV2 strains, 1680 PCV2 open reading frame 2 (ORF2) sequences were compared and analysed by methods of neighbour-joining, maximum-likelihood, Bayesian inference and network analysis. Four distinct clades were consistently identified and included PCV2a, PCV2b, PCV2c and PCV2d; the p-distance between PCV2d and PCV2b was 0.055±0.008, larger than the PCV2 genotype-definition cut-off of 0.035, supporting PCV2d as an independent genotype. Among the 1680 sequences, 278-285 (16.5-17 %) were classified as PCV2a, 1007-1058 (59.9-63 %) as PCV2b, three (0.2 %) as PCV2c and 322-323 (19.2 %) as PCV2d, with the remaining 12-78 sequences (0.7-4.6 %) classified as intermediate clades or strains by the various methods. Classification of strains to genotypes differed based on the number of sequences used for the analysis, indicating that sample size is important when determining classification and assessing PCV2 trends and shifts. PCV2d was initially identified in 1999 in samples collected in Switzerland, now appears to be widespread in China and has been present in North America since 2012. During 2012-2013, 37 % of all investigated PCV2 sequences from US pigs were classified as PCV2d and overall data analysis suggests an ongoing genotype shift from PCV2b towards PCV2d. The present analyses indicate that PCV2d emerged approximately 20 years ago. PMID:25711965

  12. The sequence of events in a lightning stroke: terrestrial gamma ray flash, radio signal and optical lightning.

    NASA Astrophysics Data System (ADS)

    Ostgaard, N.; Gjesteland, T.; Christian, H. J., Jr.; Albrechtsen, K.; Carlson, B. E.; Collier, A.; Cummer, S.; Lu, G.

    2015-12-01

    Two observations of simultaneous terrestrial gamma ray flashes (RHESSI) and optical lightning (LIS) from space and radio signals on ground (WWLLN and Duke) will be presented. Both events indicate that radio waves come from the TGF itself, while the optical signal is slightly delayed. These observations are consistent with the TGF being produced in one of the last leader steps in an IC+ lightning stroke, and that the optical signal is produced when the leader reaches the positive charge layer.We will also present results showing that there are even more weak TGFs, than currently reported, in the RHESSI data set.

  13. A Group of Novel Serum Diagnostic Biomarkers for Multidrug-Resistant Tuberculosis by iTRAQ-2D LC-MS/MS and Solexa Sequencing

    PubMed Central

    Wang, Chong; Liu, Chang-Ming; Wei, Li-Liang; Shi, Li-Ying; Pan, Zhi-Fen; Mao, Lian-Gen; Wan, Xiao-Chen; Ping, Ze-Peng; Jiang, Ting-Ting; Chen, Zhong-Liang; Li, Zhong-Jie; Li, Ji-Cheng

    2016-01-01

    The epidemic of pulmonary tuberculosis (TB), especially multidrug-resistance tuberculosis (MDR-TB) presented a major challenge for TB treatment today. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) and Solexa sequencing among MDR-TB patients, drug-sensitive tuberculosis (DS-TB) patients, and healthy controls. A total of 50 differentially expressed proteins and 43 differentially expressed miRNAs (fold change >1.50 or <0.60, P<0.05) were identified in the MDR-TB patients compared to both DS-TB patients and healthy controls. We found that 22.00% of differentially expressed proteins and 32.56% of differentially expressed miRNAs were related, and could construct a network mainly in complement and coagulation cascades. Significant differences in CD44 antigen (CD44), coagulation factor XI (F11), kininogen-1 (KNG1), miR-4433b-5p, miR-424-5p, and miR-199b-5p were found among MDR-TB patients, DS-TB patients and healthy controls (P<0.05) by enzyme-linked immunosorbent assay (ELISA) and SYBR green qRT-PCR validation. A strong negative correlation, consistent with the target gene prediction, was found between miR-199b-5p and KNG1 (r=-0.232, P=0.017). Moreover, we established the MDR-TB diagnostic model based on five biomarkers (CD44, KNG1, miR-4433b-5p, miR-424-5p, and miR-199b-5p). Our study proposes potential biomarkers for MDR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of MDR-TB. PMID:26884721

  14. Superoxide Flashes

    PubMed Central

    Ma, Qi; Fang, Huaqiang; Shang, Wei; Liu, Lei; Xu, Zhengshuang; Ye, Tao; Wang, Xianhua; Zheng, Ming; Chen, Quan; Cheng, Heping

    2011-01-01

    Irreversible mitochondrial permeability transition and the resultant cytochrome c release signify the commitment of a cell to apoptotic death. However, the role of transient MPT (tMPT) because of flickering opening of the mitochondrial permeability transition pore remains elusive. Here we show that tMPT and the associated superoxide flashes (i.e. tMPT/superoxide flashes) constitute early mitochondrial signals during oxidative stress-induced apoptosis. Selenite (a ROS-dependent insult) but not staurosporine (a ROS-independent insult) stimulated an early and persistent increase in tMPT/superoxide flash activity prior to mitochondrial fragmentation and a global ROS rise, independently of Bax translocation and cytochrome c release. Selectively targeting tMPT/superoxide flash activity by manipulating cyclophilin D expression or scavenging mitochondrial ROS markedly impacted the progression of selenite-induced apoptosis while exerting little effect on the global ROS response. Furthermore, the tMPT/superoxide flash served as a convergence point for pro- and anti-apoptotic regulation mediated by cyclophilin D and Bcl-2 proteins. These results indicate that tMPT/superoxide flashes act as early mitochondrial signals mediating the apoptotic response during oxidative stress, and provide the first demonstration of highly efficacious local mitochondrial ROS signaling in deciding cell fate. PMID:21659534

  15. Comparison between in-phase and opposed-phase T1-weighted breath-hold FLASH sequences for hepatic imaging

    SciTech Connect

    Rofsky, N.M.; Weinreb, J.C.; Ambrosino, M.M.; Safir, J.; Krinsky, G.

    1996-03-01

    Our goal was to compare in-phase (IP) and opposed-phase (OP) sequences for GRE breath-hold hepatic imaging. Non-contrast-enhanced IP and OP GRE breath-hold images were obtained in 104 consecutive patients referred for abdominal MRI at 1.0 T. For both sequences, the TR, FA, matrix, FOV, slice thickness, interslice gap, and measurements were kept constant. Images were compared quantitatively [liver/spleen and liver/lesion signal difference/noise ratio, (SD/N)] and qualitatively (artifacts, lesion detection and conspicuity, and intrahepatic anatomy). There was no statistically significant difference when comparing IP and OP sequences for liver/spleen and liver/lesion SD/N or for the qualitative parameters. In patients with fatty infiltration, the OP sequences yielded substantially lower values for liver/spleen and liver/lesion SD/N (0.9 and - 1.2, respectively) than the IP sequences (20 and 17, respectively). Furthermore, in several cases with fatty infiltration, many more lesions were identified using IP images. The use of IP and OP GRE sequences provides complementary diagnostic information. Focal liver lesions may be obscured in the setting of fatty infiltration if only OP sequences are employed. A complete assessment of the liver with MR should include both IP and OP imaging. 11 refs., 3 figs., 1 tab.

  16. Complete genome sequence of Peptoniphilus sp. strain ING2-D1G isolated from a mesophilic lab-scale completely stirred tank reactor utilizing maize silage in co-digestion with pig and cattle manure for biomethanation.

    PubMed

    Tomazetto, Geizecler; Hahnke, Sarah; Maus, Irena; Wibberg, Daniel; Pühler, Alfred; Schlüter, Andreas; Klocke, Michael

    2014-12-20

    The bacterium Peptoniphilus sp. strain ING2-D1G (DSM 28672), a mesophilic and obligate anaerobic bacterium belonging to the order Clostridiales was isolated from a biogas-producing lab-scale completely stirred tank reactor (CSTR) optimized for anaerobic digestion of maize silage in co-fermentation with pig and cattle manure. In this study, the whole genome sequence of Peptoniphilus sp. strain ING2-D1G, a new isolate potentially involved in protein breakdown and acidogenesis during biomass degradation, is reported. The chromosome of this strain is 1.6Mb in size and encodes genes predicted to be involved in the production of acetate, lactate and butyrate specifying the acidogenic metabolism of the isolate. PMID:25242663

  17. Summary of MELCOR 1.8.2 calculations for three LOCA sequences (AG, S2D, and S3D) at the Surry Plant

    SciTech Connect

    Kmetyk, L.; Smith, L.

    1994-03-01

    Activities involving regulatory implementation of updated source term information were pursued. These activities include the identification of the source term, the identification of the chemical form of iodine in the source term, and the timing of the source term`s entrance into containment. These activities are intended to support a more realistic source term for licensing nuclear power plants than the current TID-14844 source term and current licensing assumptions. MELCOR calculations were performed to support the technical basis for the updated source term. This report presents the results from three MELCOR calculations of nuclear power plant accident sequences and presents comparisons with Source Term code Package (STCP) calculations for the same sequences. The three low-pressure sequences were analyzed to identify the materials which enter containment (source terms) and are available for release to the environment, and to obtain timing of sequence events. The source terms include fission products and other materials such as those generated by core-concrete interactions. All three calculations, for both MELCOR and STCP, analyzed the Surry plant, a pressurized water reactor (PWR) with a subatmospheric containment design.

  18. What quenches the helium shell flashes. [thermonuclear reactions in stars

    NASA Technical Reports Server (NTRS)

    Sackmann, I.-J.

    1977-01-01

    An analysis is conducted of a typical stellar helium shell flash cycle. A sequence of 12 flashes for a population I star is considered. The changes taking place at a constant mass layer in the helium-burning shell are studied as the flash develops. A highly simplified mathematical description is presented, taking into account the three necessary conditions for the occurrence of the flash and the pressure-density and temperature-density relationships. Quantities which are helpful in explaining what triggers the flash are found to be useful in explaining what quenches the flash.

  19. Lunar Impact Flash Locations

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    A bright impact flash detected by the NASA Lunar Impact Monitoring Program in March 2013 brought into focus the importance of determining the impact flash location. A process for locating the impact flash, and presumably its associated crater, was developed using commercially available software tools. The process was successfully applied to the March 2013 impact flash and put into production on an additional 300 impact flashes. The goal today: provide a description of the geolocation technique developed.

  20. SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI.

    PubMed

    Fischer, André; Weick, Stefan; Ritter, Christian O; Beer, Meinrad; Wirth, Clemens; Hebestreit, Helge; Jakob, Peter M; Hahn, Dietbert; Bley, Thorsten; Köstler, Herbert

    2014-08-01

    Obtaining functional information on the human lung is of tremendous interest in the characterization of lung defects and pathologies. However, pulmonary ventilation and perfusion maps usually require contrast agents and the application of electrocardiogram (ECG) triggering and breath holds to generate datasets free of motion artifacts. This work demonstrates the possibility of obtaining highly resolved perfusion-weighted and ventilation-weighted images of the human lung using proton MRI and the SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) technique. The SENCEFUL technique utilizes a two-dimensional fast low-angle shot (FLASH) sequence with quasi-random sampling of phase-encoding (PE) steps for data acquisition. After every readout, a short additional acquisition of the non-phase-encoded direct current (DC) signal necessary for self-gating was added. By sorting the quasi-randomly acquired data according to respiratory and cardiac phase derived from the DC signal, datasets of representative respiratory and cardiac cycles could be accurately reconstructed. By application of the Fourier transform along the temporal dimension, functional maps (perfusion and ventilation) were obtained. These maps were compared with dynamic contrast-enhanced (DCE, perfusion) as well as standard Fourier decomposition (FD, ventilation) reference datasets. All datasets were additionally scored by two experienced radiologists to quantify image quality. In addition, one initial patient examination using SENCEFUL was performed. Functional images of healthy volunteers and a patient diagnosed with hypoplasia of the left pulmonary artery and left-sided pulmonary fibrosis were successfully obtained. Perfusion-weighted images corresponded well to DCE-MRI data; ventilation-weighted images offered a significantly better depiction of the lung periphery compared with standard FD. Furthermore, the SENCEFUL technique hints at a potential clinical relevance by successfully detecting

  1. Stereospecific Formation of the (R)-γ-Hydroxytrimethylene Interstrand N2-dG:N2-dG Cross-Link Arising from the γ-OH-1,N2-Propano-2'-deoxyguanosine Adduct in the 5′-CpG-3′ DNA Sequence

    PubMed Central

    Huang, Hai; Kim, Hye-Young; Kozekov, Ivan D.; Cho, Young-Jin; Wang, Hao; Kozekova, Albena; Harris, Thomas H.; Rizzo, Carmelo J.; Stone, Michael P.

    2009-01-01

    Acrolein reacts with dG to form hydroxylated 1,N2-propanodeoxyguanosine (OH-PdG) adducts. Most abundant are the epimeric 3-(2-deoxy-β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2a] purin-10(3H)-ones, commonly referred to as the γ-OH-PdG adduct. When placed complementary to deoxycytosine in duplex DNA, these undergo rearrangment to the N2-(3-oxopropyl)-dG aldehyde. The latter forms diastereomeric interstrand N2-dG:N2-dG cross-links in the 5'-CpG-3' sequence. Here we report the structure of the stereochemically favored (R)-γ-hydroxytrimethylene N2-dG:N2-dG interstrand DNA cross-link in 5'-d(G1C2T3A4G5C6X7A8G9T10C11C12)-3'•5'-d(G13G14A15C16T17C18Y19C20T21A22G23C24)-3' (X7 is the dG adjacent to the α-carbon of the carbinolamine linkage and Y19 is the dG adjacent to the γ-carbon of the carbinolamine linkage; the cross-link is in the 5'-CpG-3' sequence). The structure was characterized using isotope-edited 15N NOESY-HSQC NMR, in which the exocyclic amines at X7 or Y19 were 15N-labeled. Analyses of NOE intensities involving Y19 N2H indicated that the (R)-γ-hydroxytrimethylene linkage was the major cross-link species, constituting 80–90% of the cross-link. The X7 and Y19 imino resonances were observed at 65 °C. Additionally, for the 5'-neighbor base pair G5•C20, the G5 imino resonance remained sharp at 55 °C, but broadened at 65 °C. In contrast, for the 3'-neighbor A8•T17 base pair, the T17 imino resonance was severely broadened at 55 °C. Structural refinement using NOE distance restraints obtained from isotope-edited 15N NOESY HSQC data indicated that the (R)-γ-hydroxytrimethylene linkage maintained the C6•Y19 and X7•C18 base pairs with minimal structural perturbations. The (R)-γ-hydroxytrimethylene linkage was located in the minor groove. The X7 N2 and Y19 N2 atoms were in the gauche-conformation with respect to the linkage, which maintained Watson-Crick hydrogen bonding of the cross-linked base pairs. The anti conformation

  2. Aniso2D

    Energy Science and Technology Software Center (ESTSC)

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  3. Preemptive Pharmacogenomic Testing for Precision Medicine: A Comprehensive Analysis of Five Actionable Pharmacogenomic Genes Using Next-Generation DNA Sequencing and a Customized CYP2D6 Genotyping Cascade.

    PubMed

    Ji, Yuan; Skierka, Jennifer M; Blommel, Joseph H; Moore, Brenda E; VanCuyk, Douglas L; Bruflat, Jamie K; Peterson, Lisa M; Veldhuizen, Tamra L; Fadra, Numrah; Peterson, Sandra E; Lagerstedt, Susan A; Train, Laura J; Baudhuin, Linnea M; Klee, Eric W; Ferber, Matthew J; Bielinski, Suzette J; Caraballo, Pedro J; Weinshilboum, Richard M; Black, John L

    2016-05-01

    Significant barriers, such as lack of professional guidelines, specialized training for interpretation of pharmacogenomics (PGx) data, and insufficient evidence to support clinical utility, prevent preemptive PGx testing from being widely clinically implemented. The current study, as a pilot project for the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment Protocol, was designed to evaluate the impact of preemptive PGx and to optimize the workflow in the clinic setting. We used an 84-gene next-generation sequencing panel that included SLCO1B1, CYP2C19, CYP2C9, and VKORC1 together with a custom-designed CYP2D6 testing cascade to genotype the 1013 subjects in laboratories approved by the Clinical Laboratory Improvement Act. Actionable PGx variants were placed in patient's electronic medical records where integrated clinical decision support rules alert providers when a relevant medication is ordered. The fraction of this cohort carrying actionable PGx variant(s) in individual genes ranged from 30% (SLCO1B1) to 79% (CYP2D6). When considering all five genes together, 99% of the subjects carried an actionable PGx variant(s) in at least one gene. Our study provides evidence in favor of preemptive PGx testing by identifying the risk of a variant being present in the population we studied. PMID:26947514

  4. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  5. Mesh2d

    Energy Science and Technology Software Center (ESTSC)

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  6. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  7. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  8. Apollo light flash investigations

    NASA Technical Reports Server (NTRS)

    Osborne, W. Z.; Pinsky, L. S.; Bailey, J. V.

    1975-01-01

    The visual phenomenon of light flashes resulting from high energy, heavy cosmic rays penetrating the command module structure and crewmembers' eyes is investigated. Light flash events observed during dedicated sessions on Apollo 15, 16, 17 are described along with a Monte Carlo simulation of the exposure of an astronaut to cosmic radiation during a mission. Results of the Apollo Light Flash Moving Emulsion Detector experiment developed for Apollo 16 and 17 to obtain a direct record of incident cosmic ray particles are correlated with crewmembers' reports of light flashes.

  9. Flash protection controller

    DOEpatents

    Galbraith, Lee K.

    1981-01-01

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  10. Flash protection controller

    DOEpatents

    Galbraith, L.K.

    1979-12-07

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  11. Flash-Type Discrimination

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  12. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  13. Understanding Green Flashes

    NASA Astrophysics Data System (ADS)

    Young, Andrew T.

    1998-05-01

    Most astronomers learn about green flashes from either Minnaert's old book (Dover, 1954) or O'Connell's ``The Green Flash....'' Both have defects. Minnaert's account mostly represents what was known in the 1920s; it repeats Mulder's 3-fold classification, which omits Joule's second type of flash --- the one most commonly seen from mountain observatories. O'Connell searched only the astronomical literature, missing Dietze's crucially important paper (Z.f.Met. 9, 169 (1955)) showing that the ``textbook'' mechanism cannot produce flashes visible to the naked eye. He also erred in thinking that distortions of the setting Sun arise in the upper atmosphere (they are due to the marine boundary layer), and copied an error from Feenstra Kuiper's thesis that misidentified a common mirage-like phenomenon as Wegener's ``blank strip'' (Young et al., Appl. Opt. 36, 2689 (1997).) Most phenomena shown in O'Connell's book are caused by inversion layers below eye level, not above as in Wegener's phenomenon. The two commonest forms of green flash are associated with the inferior mirage and the mock mirage, corresponding to Fisher's Type A and Type B sunsets, respectively. Superrefraction, advocated by Wood and by Rayleigh as the cause of large flashes, actually suppress them: the airmass is proportional to the refraction (by Laplace's extinction theorem), so no green is transmitted when refraction is much larger than average. Although there is a physical green flash that can be photographed, the colors seen at sunset are strongly modified by bleaching of the L cones. Most ``green'' sunset flashes are actually yellow. Writers should stop representing Jules Verne's ``ancient legend'' as fact, as it was invented by Verne as a plot device for his novel ``Le Rayon Vert.'' Green-flash photos and simulations will be shown. This material is based upon work supported by the NSF under Award No. ATM-9714357.

  14. Flash Bulletin: Fireflies

    ERIC Educational Resources Information Center

    Brown, Debbie

    1984-01-01

    Explains the flashes of light emitted by fireflies as competition, species-specific code, species identification and mating behavior and ecology. Suggests activities to conduct to study the insects and their behavior. (ERB)

  15. Flashes and Floaters

    MedlinePlus

    ... either in the form of lightening bolts, shooting stars, sparks, or an arc of light to the ... against it that causes the sparks and shooting stars phenomenon. But flashes and floaters may have more ...

  16. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  17. Assessment of flash flood warning procedures

    NASA Astrophysics Data System (ADS)

    Johnson, Lynn E.

    2000-01-01

    Assessment of four alternate flash flood warning procedures was conducted to ascertain their suitability for forecast operations using radar-rainfall imagery. The procedures include (1) areal mean basin effective rainfall, (2) unit hydrograph, (3) time-area, and (4) 2-D numerical modeling. The Buffalo Creek flash flood of July 12, 1996, was used as a case study for application of each of the procedures. A significant feature of the Buffalo Creek event was a forest fire that occurred a few months before the flood and significantly affected watershed runoff characteristics. Objectives were to assess the applicability of the procedures for watersheds having spatial and temporal scale similarities to Buffalo Creek, to compare their technical characteristics, and to consider forecaster usability. Geographic information system techniques for hydrologic database development and flash flood potential computations are illustrated. Generalizations of the case study results are offered relative to their suitability for flash flood forecasting operations. Although all four methods have relative advantages, their application to the Buffalo Creek event resulted in mixed performance. Failure of any method was due primarily to uncertainties of the land surface response (i.e., burn area imperviousness). Results underscore the need for model calibration; a difficult requirement for real-time forecasting.

  18. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2012-12-01

    We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.

  19. AnisWave 2D

    Energy Science and Technology Software Center (ESTSC)

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  20. Flash fire propensity of materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.

  1. 14. INTERIOR VIEW, DETAIL OF TRIMMED FLASH; FLASH IS EXCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW, DETAIL OF TRIMMED FLASH; FLASH IS EXCESS METAL EXTRUDED BETWEEN THE DIES USED TO FORGE THE BLADE END OF THE POST HOLE DIGGER - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  2. Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation

    NASA Astrophysics Data System (ADS)

    Sun, Zhuling; Qie, Xiushu; Jiang, Rubin; Liu, Mingyuan; Wu, Xueke; Wang, Zhichao; Lu, Gaopeng; Zhang, Hongbo

    2014-12-01

    A negative lightning flash with 16 leader-return stroke sequences, triggered in the summer of 2013 using the classical rocket-and-wire triggering technique, was examined with simultaneous two-dimensional (2D) imaging of very high-frequency (VHF) radiation sources, channel-base current measurement, broadband electric field waveforms and high-speed video images. A total of 28.0 C negative charge was transferred to ground during the whole flash, and the charge transferred during the initial stage was 4.9 C, which is the weakest among the triggered lightning flashes at the SHandong Artificially Triggering Lightning Experiment (SHATLE). The peak current of 16 return strokes ranged from 5.8 to 32.5 kA with a geometric mean of 14.1 kA. The progression of upward positive leader and downward negative (dart or dart-stepped) leaders was reproduced visually by using an improved short-baseline VHF lightning location system with continuous data recording capability. The upward positive leader was mapped immediately from the tip of the metal wire during the initial stage, developing at a speed of about 104 m/s without branches. The upward positive leader and all the 14 negative leaders captured by the 2D imaging system propagated along the same channel with few branches inside the cloud, which might be the reason for the relatively small charge transfer. The 2D imaging results also show that dart leaders may transform into dart-stepped leaders after a long time interval between successive strokes.

  3. Theory of optical flashes

    SciTech Connect

    London, R.A.

    1983-09-30

    The theory of optical flashes created by x- and ..gamma..-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and ..gamma..-ray bursters. Finally, I review predictions of flashes from ..gamma..-ray bursters detectable by a state of the art all-sky optical monitor.

  4. Flashing anomalous color contrast.

    PubMed

    Pinna, Baingio; Spillmann, Lothar; Werner, John S

    2004-01-01

    A new visual phenomenon that we call flashing anomalous color contrast is described. This phenomenon arises from the interaction between a gray central disk and a chromatic annulus surrounded by black radial lines. In an array of such figures, the central gray disk no longer appears gray, but assumes a color complementary to that of the surrounding annulus. The induced color appears: (1) vivid and saturated; (2) self-luminous, not a surface property; (3) flashing with eye or stimulus movement; (4) floating out of its confines; and (5) stronger in extrafoveal than in foveal vision. The strength of the effect depends on the number, length, width, and luminance contrast of the radial lines. The results suggest that the chromatic ring bounding the inner tips of the black radial lines induces simultaneous color contrast, whereas the radial lines elicit, in conjunction with the gray disk and the ring, the flashing, vividness, and high saturation of the effect. The stimulus properties inducing the illusion suggest that flashing anomalous color contrast may be based on asynchronous interactions among multiple visual pathways. PMID:15518215

  5. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  6. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  7. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  8. MOSS2D V1

    Energy Science and Technology Software Center (ESTSC)

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  9. Flash Lidar Data Processing

    NASA Astrophysics Data System (ADS)

    Bergkoetter, M. D.; Ruppert, L.; Weimer, C. S.; Ramond, T.; Lefsky, M. A.; Burke, I. C.; Hu, Y.

    2009-12-01

    Late last year, a prototype Flash LIDAR instrument flew on a series of airborne tests to demonstrate its potential for improved vegetation measurements. The prototype is a precursor to the Electronically Steerable Flash LIDAR (ESFL) currently under development at Ball Aerospace and Technology Corp. with funding from the NASA Earth Science Technology Office. ESFL may soon significantly expand our ability to measure vegetation and forests and better understand the extent of their role in global climate change and the carbon cycle - all critical science questions relating to the upcoming NASA DESDynI and ESA BIOMASS missions. In order to more efficiently exploit data returned from the experimental Flash Lidar system and plan for data exploitation from future flights, Ball funded a graduate student project (through the Ball Summer Intern Program, summer 2009) to develop and implement algorithms for post-processing of the 3-Dimensional Flash Lidar data. This effort included developing autonomous algorithms to resample the data to a uniform rectangular grid, geolocation of the data, and visual display of large swaths of data. The resampling, geolocation, surface hit detection, and aggregation of frame data are implemented with new MATLAB code, and the efficient visual display is achieved with free commercial viewing software. These efforts directly support additional tests flights planned as early as October 2009, including possible flights over Niwot Ridge, CO, for which there is ICESat data, and a sea-level coastal area in California to test the effect of higher altitude (above ground level) on the divergence of the beams and the beam spot sizes.

  10. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  11. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  12. Optimal flash rate and duty cycle for flashing visual indicators.

    NASA Technical Reports Server (NTRS)

    Markowitz, J.

    1971-01-01

    This experiment examined the ability of observers to determine, as quickly as possible, whether a visual indicator was steadily on or flashing. Six flash rates (periods) were combined factorially with three duty cycles (on-off ratios) to define 18 ?types' of intermittent signals. Experimental sessions were divided into six runs of 100 trials, each run utilizing one of the six flash rates. On any given trial in a run, the probability of a steady signal occurring was 0.5 and the probability of a flashing signal occurring was 0.5. A different duty cycle was employed daily for each experimental session. In all, 400 trials were devoted to each of the flash rates at each duty cycle. Accuracy and latency of response were the dependent variables of interest. The results show that the observers view the light for an interval of time appropriate to the expected flash rate and duty cycle; whether they judge the light to be steady or intermittent depends upon whether the light is extinguished during the predetermined waiting period. Adoption of this temporal criterion delays responding in comparison to those tasks involving responses to light onset. The decision or response criteria held by the observers are also sensitive to the parameters of the flashing light: observers become increasingly willing to call a flashing light ?steady' as flash duration increases.

  13. Gun muzzle blast and flash

    NASA Astrophysics Data System (ADS)

    Klingenberg, Guenter; Heimerl, Joseph M.

    A repository of fundamental experimental and analytical data concerning the complex phenomena associated with gun-muzzle blast and flash effects is presented, proceeding from gun muzzle signatures to modern gun-propulsion concepts, interior and transitional ballistics, and characterizations of blast-wave research and muzzle flash. Data are presented in support of a novel hypothesis which explains the ignition of secondary flash and elucidates the means for its suppression. Both chemical and mechanical (often competing) methods of flash suppression are treated. The historical work of Kesslau and Ladenburg is noted, together with French, British, Japanese and American research efforts and current techniques of experimental characterization for gun muzzle phenomena.

  14. Flash Proton Radiography

    NASA Astrophysics Data System (ADS)

    Merrill, Frank E.

    Protons were first investigated as radiographic probes as high energy proton accelerators became accessible to the scientific community in the 1960s. Like the initial use of X-rays in the 1800s, protons were shown to be a useful tool for studying the contents of opaque materials, but the electromagnetic charge of the protons opened up a new set of interaction processes which complicated their use. These complications in combination with the high expense of generating protons with energies high enough to penetrate typical objects resulted in proton radiography becoming a novelty, demonstrated at accelerator facilities, but not utilized to their full potential until the 1990s at Los Alamos. During this time Los Alamos National Laboratory was investigating a wide range of options, including X-rays and neutrons, as the next generation of probes to be used for thick object flash radiography. During this process it was realized that the charge nature of the protons, which was the source of the initial difficulty with this idea, could be used to recover this technique. By introducing a magnetic imaging lens downstream of the object to be radiographed, the blur resulting from scattering within the object could be focused out of the measurements, dramatically improving the resolution of proton radiography of thick systems. Imaging systems were quickly developed and combined with the temporal structure of a proton beam generated by a linear accelerator, providing a unique flash radiography capability for measurements at Los Alamos National Laboratory. This technique has now been employed at LANSCE for two decades and has been adopted around the world as the premier flash radiography technique for the study of dynamic material properties.

  15. Methods of flash sintering

    DOEpatents

    Raj, Rishi; Cologna, Marco; Francis, John S.

    2016-05-10

    This disclosure provides methods of flash sintering and compositions created by these methods. Methods for sintering multilayered bodies are provided in which a sintered body is produced in less than one minute. In one aspect, each layer is of a different composition, and may be constituted wholly from a ceramic or from a combination of ceramic and metallic particles. When the body includes a layer of an anode composition, a layer of an electrolyte composition and a layer of a cathode composition, the sintered body can be used to produce a solid oxide fuel cell.

  16. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  17. Laboratory prototype flash evaporator

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

  18. NAND FLASH Radiation Tolerant Intelligent Memory Stack (RTIMS FLASH)

    NASA Astrophysics Data System (ADS)

    Sellier, Charles; Wang, Pierre

    2014-08-01

    The NAND Flash Radiation Tolerant and Intelligent Memory Stack (RTIMS FLASH) is a User's Friendly, Plug-and- Play and Radiation Protected high density NAND Flash Memory. It provides a very high density, radiation hardened by design and non-volatile memory module suitable for all space applications such as commercial or scientific geo-stationary missions, earth observation, navigation, manned space vehicles and deep space scientific exploration. The Intelligent Memory Module embeds a very high density of non-volatile NAND Flash memory and one Intelligent Flash Memory Controller (FMC). The FMC provides the module with a full protection against the radiation effects such as SEL, SEFI and SEU. It's also granting the module with bad block immunity as well as high level service functions that will benefit to the user's applications.

  19. Graphical representations of DNA as 2-D map

    NASA Astrophysics Data System (ADS)

    Randić, Milan

    2004-03-01

    We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.

  20. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  1. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  2. Evaluating Letter Recognition, Flicker Fusion, and the Talbot-Plateau Law using Microsecond-Duration Flashes

    PubMed Central

    Greene, Ernest

    2015-01-01

    Four experiments examined the ability of respondents to identify letters that were displayed on an LED array with flashes lasting little more than a microsecond. The first experiment displayed each letter with a single, simultaneous flash of all the dots forming the letter and established the relation of flash intensity to the probability of letter identification. The second experiment displayed the letters with multiple flashes at different frequencies to determine the probability that the sequence of flashes would be perceived as fused. The third experiment displayed the letters at a frequency that was above the flicker-fusion frequency, varying flash intensity to establish the amount needed to elicit a given probability of letter identification. The fourth experiment displayed each letter twice, once at a frequency where no flicker was perceived and also with steady light emission. The intensity of each flash was fixed and the steady intensity was varied; respondents were asked to judge whether the fused-flicker display and the steady display appeared to be the same brightness. Steady intensity was about double the average flash intensity where the two conditions were perceived as being equal in brightness. This is at odds with Talbot-Plateau law, which predicts that these two values should be equal. The law was formulated relative to a flash lasting half of each period, so it is surprising that it comes this close to being correct where the flash occupies only a millionth of the total period. PMID:25875652

  3. FLASH is required for histone transcription and S-phase progression

    PubMed Central

    Barcaroli, D.; Bongiorno-Borbone, L.; Terrinoni, A.; Hofmann, T. G.; Rossi, M.; Knight, R. A.; Matera, A. G.; Melino, G.; De Laurenzi, V.

    2006-01-01

    Cajal bodies are nuclear subdomains that are involved in maturation of small ribonucleoproteins and frequently associate with small nuclear RNA and histone gene clusters in interphase cells. We have recently identified FADD-like IL-1β-converting enzyme (FLICE) associated huge protein (FLASH) as an essential component of Cajal bodies. Here we show that FLASH associates with nuclear protein, ataxia-telangiectasia, a component of the cell-cycle-dependent histone gene transcription machinery. Reduction of FLASH expression by RNA interference results in disruption of the normal Cajal body architecture and relocalization of nuclear protein, ataxia-telangiectasia. Furthermore, FLASH down-regulation results in a clear reduction of histone transcription and a dramatic S-phase arrest of the cell cycle. Chromatin immunoprecipitation reveals that FLASH interacts with histone gene promoter sequences. These results identify FLASH as an important component of the machinery required for histone precursor mRNA expression and cell-cycle progression. PMID:17003125

  4. The yield of N/2D/ atoms in the dissociative recombination of NO/+/

    NASA Technical Reports Server (NTRS)

    Kley, D.; Lawrence, G. M.; Stone, E. J.

    1977-01-01

    The quantum yield or branching ratio of N(2D) atoms formed in the reaction e + NO(+) yields N + O was measured to be 76% plus or minus 6%. Photoionization of buffered nitric oxide by a flash lamp was studied using time-resolved atomic absorption. Atoms were produced both by direct photodissociation and by dissociative recombination, and these two effects were separated by means of SF6 as an electron scavenger.

  5. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  6. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976

  7. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  8. New stimulation pattern design to improve P300-based matrix speller performance at high flash rate

    NASA Astrophysics Data System (ADS)

    Polprasert, Chantri; Kukieattikool, Pratana; Demeechai, Tanee; Ritcey, James A.; Siwamogsatham, Siwaruk

    2013-06-01

    Objective. We propose a new stimulation pattern design for the P300-based matrix speller aimed at increasing the minimum target-to-target interval (TTI). Approach. Inspired by the simplicity and strong performance of the conventional row-column (RC) stimulation, the proposed stimulation is obtained by modifying the RC stimulation through alternating row and column flashes which are selected based on the proposed design rules. The second flash of the double-flash components is then delayed for a number of flashing instants to increase the minimum TTI. The trade-off inherited in this approach is the reduced randomness within the stimulation pattern. Main results. We test the proposed stimulation pattern and compare its performance in terms of selection accuracy, raw and practical bit rates with the conventional RC flashing paradigm over several flash rates. By increasing the minimum TTI within the stimulation sequence, the proposed stimulation has more event-related potentials that can be identified compared to that of the conventional RC stimulations, as the flash rate increases. This leads to significant performance improvement in terms of the letter selection accuracy, the raw and practical bit rates over the conventional RC stimulation. Significance. These studies demonstrate that significant performance improvement over the RC stimulation is obtained without additional testing or training samples to compensate for low P300 amplitude at high flash rate. We show that our proposed stimulation is more robust to reduced signal strength due to the increased flash rate than the RC stimulation.

  9. Corrosion testing in flash tanks

    SciTech Connect

    Clarke, S.J.; Stead, N.J.

    1999-07-01

    As kraft pulp mills adopt modified cooking processes, an increasing amount of corrosion of carbon steel digester systems is being encountered. Many mills have had severe corrosion in the flash tanks, in particular, the first ({number{underscore}sign}1) flash tank. The work described in this report was aimed at characterizing the corrosion. Coupons of carbon steel, several stainless steels and titanium were exposed at two mills. At mill A, identical sets of coupons were exposed in the {number{underscore}sign}1 and {number{underscore}sign}2 flash tank. At mill B, three identical sets of coupons were placed in flash tank {number{underscore}sign}1. The results of the exposures showed that both carbon steel and titanium suffered high rates of general corrosion, while the stainless steels suffered varying degrees of localized attack. The ranking of the resistance of corrosion in the flash tank was the same ranking as would be expected in a reducing acid environment. In the light of the coupon results, organic acids is concluded to be the most likely cause of corrosion of the flash tanks.

  10. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism. PMID:27463140

  11. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  12. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR.

    PubMed

    Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey

    2016-04-01

    Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979

  13. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  14. Evolution of the CYP2D gene cluster in humans and four non-human primates.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2011-01-01

    The human cytochrome P450 2D6 (CYP2D6) is a primary enzyme involved in the metabolism of about 25% of commonly used therapeutic drugs. CYP2D6 belongs to the CYP2D subfamily, a gene cluster located on chromosome 22, which comprises the CYP2D6 gene and pseudogenes CYP2D7P and CYP2D8P. Although the chemical and physiological properties of CYP2D6 have been extensively studied, there has been no study to date on molecular evolution of the CYP2D subfamily in the human genome. Such knowledge could greatly contribute to the understanding of drug metabolism in humans because it makes us to know when and how the current metabolic system has been constructed. The knowledge moreover can be useful to find differences in exogenous substrates in a particular metabolism between human and other animals such as experimental animals. Here, we conducted a preliminary study to investigate the evolution and gene organization of the CYP2D subfamily, focused on humans and four non-human primates (chimpanzees, orangutans, rhesus monkeys, and common marmosets). Our results indicate that CYP2D7P has been duplicated from CYP2D6 before the divergence between humans and great apes, whereas CYP2D6 and CYP2D8P have been already present in the stem lineages of New World monkeys and Catarrhini. Furthermore, the origin of the CYP2D subfamily in the human genome can be traced back to before the divergence between amniotes and amphibians. Our analyses also show that reported chimeric sequences of the CYP2D6 and CYP2D7 genes in the chimpanzee genome appear to be exchanged in its genome database. PMID:21670550

  15. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  16. Electronic Flash In Data Acquisition

    NASA Astrophysics Data System (ADS)

    Miller, C. E.

    1982-02-01

    Photographic acquisition of data often may be simplified, or the data quality improved upon by employing electronic flash sources with traditional equipment or techniques. The relatively short flash duration compared to movie camera shutters, or to the long integration time of video camera provides improved spatial resolution through blur reduction, particularly important as image movement becomes a significant fraction of film format dimension. Greater accuracy typically is achieved in velocity and acceleration determinations by using a stroboscopic light source rather than a movie camera frame-rate control as a time standard. Electrical efficiency often is an important advantage of electronic flash sources since almost any necessary light level for exposure may be produced, yet the source typically is "off" most of the time. Various synchronization techniques greatly expand the precise control of exposure. Biomechanical and sports equipment studies may involve velocities up to 200 feet-per-second, and often will have associated very rapid actions of interest. The need for brief exposures increases H.s one "ZOOMS in on the action." In golf, for example, the swing may be examined using 100 microsecond (Us) flashes at rates of 60 or 120 flashes-per-second (FPS). Accurate determination of linear and rotational velocity of the ball requires 10 Us flashes at 500-1,000 FPS, while sub-Us flashes at 20,000-50,000 FPS are required to resolve the interaction of the ball and the club, head. Some seldom. used techniques involving streak photography are described, with enhanced results obtained by combining strobe with the usual continuous light source. The combination of strobe and a fast electro-mechanical shutter is considered for Us photography under daylight conditions.

  17. Tamoxifen-associated hot flash severity is inversely correlated with endoxifen concentration and CYP3A4*22.

    PubMed

    Baxter, Simon D; Teft, Wendy A; Choi, Yun-Hee; Winquist, Eric; Kim, Richard B

    2014-06-01

    Tamoxifen use is often limited in some patients due to adverse effects including severe hot flash symptoms. Tamoxifen undergoes hepatic bioactivation by CYP2D6 and CYP3A4 to form the active metabolite endoxifen. It remains unclear whether the extent of attained endoxifen level or genetic polymorphisms in drug metabolizing enzymes is associated with the frequency and severity of hot flashes. We conducted a prospective study using self-reported surveys to assess tamoxifen side effects experienced during the week prior to clinic visits of 132 female breast cancer patients on tamoxifen therapy, and hot flash severity scores were tabulated. At the time of clinic visit, blood samples were obtained to determine tamoxifen and its metabolite levels and to determine CYP2D6 and CYP3A4 genotypes. The majority of participants (77 %) experienced hot flashes, with 11 % experiencing severe or very severe symptoms. We observed an inverse correlation between endoxifen concentration and hot flash severity score following adjustment for age, BMI, and menopausal status in patients with non-zero scores (p < 0.001). Interestingly, CYP2D6 genotype was not significantly associated with hot flash scores in patients on no known inhibitory medications. However, CYP3A4*22 carriers were less likely to have hot flashes with an odds ratio of 8.87 (p < 0.01) even when compared to a cohort with similar endoxifen levels. Our data demonstrate that patients with higher endoxifen levels tended to predict lower hot flash severity scores. Importantly, this is the first study to show CYP3A4*22 genotype as an independent predictor of hot flash severity during tamoxifen therapy. PMID:24744093

  18. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  19. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  20. Flashing light in microalgae biotechnology.

    PubMed

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. PMID:26747205

  1. New developments in flash radiography

    NASA Astrophysics Data System (ADS)

    Mattsson, Arne

    2007-01-01

    The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.

  2. Cancer treatment: dealing with hot flashes and night sweats

    MedlinePlus

    ... cancer treatments can cause hot flashes and night sweats. Hot flashes are when your body suddenly feels ... In some cases, hot flashes can make you sweat. Night sweats are hot flashes with sweating at ...

  3. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  4. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  5. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  6. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  7. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  8. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  9. Visual light flash observations on Skylab 4

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1977-01-01

    Evaluation of light flashes observed in earth orbit establishes: (1) a strong correlation of very high flash rates with passage through the South Atlantic anomaly; (2) evidence for a predicted latitude effect; and (3) an increased flash rate outside the anomaly during a second observation period. Event rates and flash descriptions during South Atlantic anomaly passes indicate that there may be particles heavier than protons in the inner belt of trapped radiation.

  10. Potential role of CYP2D6 in the central nervous system

    PubMed Central

    Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.

    2013-01-01

    Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566

  11. Temporal integration of light flashes by the human circadian system

    PubMed Central

    Najjar, Raymond P.; Zeitzer, Jamie M.

    2016-01-01

    BACKGROUND. Beyond image formation, the light that is detected by retinal photoreceptors influences subcortical functions, including circadian timing, sleep, and arousal. The physiology of nonimage-forming (NIF) photoresponses in humans is not well understood; therefore, the development of therapeutic interventions based on this physiology, such as bright light therapy to treat chronobiological disorders, remains challenging. METHODS. Thirty-nine participants were exposed to 60 minutes of either continuous light (n = 8) or sequences of 2-millisecond light flashes (n = 31) with different interstimulus intervals (ISIs; ranging from 2.5 to 240 seconds). Melatonin phase shift and suppression, along with changes in alertness and sleepiness, were assessed. RESULTS. We determined that the human circadian system integrates flash sequences in a nonlinear fashion with a linear rise to a peak response (ISI = 7.6 ± 0.53 seconds) and a power function decrease following the peak of responsivity. At peak ISI, flashes were at least 2-fold more effective in phase delaying the circadian system as compared with exposure to equiluminous continuous light 3,800 times the duration. Flashes did not change melatonin concentrations or alertness in an ISI-dependent manner. CONCLUSION. We have demonstrated that intermittent light is more effective than continuous light at eliciting circadian changes. These findings cast light on the phenomenology of photic integration and suggest a dichotomous retinohypothalamic network leading to circadian phase shifting and other NIF photoresponses. Further clinical trials are required to judge the practicality of light flash protocols. TRIAL REGISTRATION. Clinicaltrials.gov NCT01119365. FUNDING. National Heart, Lung, and Blood Institute (1R01HL108441-01A1) and Department of Veterans Affairs Sierra Pacific Mental Illness Research, Education, and Clinical Center. PMID:26854928

  12. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  13. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  14. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  16. 2-d Finite Element Code Postprocessor

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  17. Undergraduate Separations Utilizing Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Horowitz, G.

    2000-02-01

    This article describes the procedures used to carry out four flash chromatography experiments: the isolation of the carotenes, chlorophylls and xanthophylls from a spinach extract; the separation of ß-carotene from tetraphenyl cyclopentadienone; the isolation of (+) and (-) carvone from caraway and spearmint oil; and the purification of benzil from benzoin. Apparatus used is nonbreakable, easy to use, and inexpensive.

  18. Multi-stage flash degaser

    DOEpatents

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  19. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  20. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  1. Optical and electrical characteristics of in-cloud discharge activity and downward leaders in positive cloud-to-ground lightning flashes

    NASA Astrophysics Data System (ADS)

    Kong, Xiangzhen; Zhao, Yang; Zhang, Tong; Wang, Huaibin

    2015-06-01

    The characteristics of five downward positive cloud-to-ground (CG) flashes were analyzed based on images from a high-speed video camera and electric field (E-field) changes from slow antenna and fast antenna systems. The flashes persisted for 740 ms to 1250 ms. The luminous durations of the leaders ranged from 4 ms to 24 ms. The average 2-D development speeds of the positive leaders ranged from 0.3 × 105 m/s to 2.0 × 105 m/s. The propagation speeds of the positive leaders increased as they approached the ground. Approximately 53.9% of the 89 observed positive CG flashes exhibited isolated monopolar pulses during the leader propagation and immediately prior to the return stroke. The average time interval between adjacent leader pulses was 15 μs according to the E-field changes. Most leaders of positive CG flashes (approximately 67.4%) began in the presence of prolonged and intense in-cloud discharge (IC) activity that ranged from 100 ms to 973 ms. A cloud discharge may be conducive to the formation of positive CG flashes. Generally, a higher occurrence of positive CG flashes corresponded to a higher occurrence of cloud flash, which suggests that positive CG flash can be initiated by a cloud discharge. Four positive CG flashes exhibited one return stroke, and only one flash had two strokes.

  2. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  3. Recognizing Words and Reading Sentences with Microsecond Flash Displays

    PubMed Central

    Greene, Ernest

    2016-01-01

    Strings of dots can be used to construct easily identifiable letters, and these in turn can be used to write words and sentences. Prior work found that respondents could identify individual letters when all the dots were simultaneously flashed for an ultra-brief duration. Four of the experiments reported here constructed five-letter words with these dot-letters and a fifth experiment used them to write complete sentences. Respondents were able to recognize individual words that were displayed with a single, simultaneous ultra-brief flash of all the letters. Further, sentences could be efficiently read with a sequence of simultaneous flashes at a frequency that produced perceptual fusion. One experiment determined the frequency range that would produce flicker-fusion. Two experiments established the relation of intensity to probability of recognition with single flashes and with fused-flicker frequencies. Another established the intensities at which flicker-fused and steady displays were judged to be equal in brightness. The final experiment used those flicker-fused and steady intensities to display sentences. The two display conditions were read with equal efficiency, even though the flicker-fused displays provided light stimulation only 0.003% of the time. PMID:26800027

  4. Crystal structure of the cowpox virus-encoded NKG2D ligand OMCP.

    PubMed

    Lazear, Eric; Peterson, Lance W; Nelson, Chris A; Fremont, Daved H

    2013-01-01

    The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket. PMID:23115291

  5. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  6. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    NASA Astrophysics Data System (ADS)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  7. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  8. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  9. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  10. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  11. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  12. 2D-Crystal-Based Functional Inks.

    PubMed

    Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia

    2016-08-01

    The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554

  13. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  14. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  15. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  16. Multi-stage flash degaser

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  17. Flash photography-induced maculopathy

    PubMed Central

    Veugelen, Tim; Coutteel, Carine; Leys, Anita

    2011-01-01

    Objective: To report a flash photography-induced maculopathy. Methods: A professional photographer blinded himself accidentally and he consulted 3 days after the event with a scotoma in his dominant left eye. A unilateral acute light-induced maculopathy with hemorrhage was observed. The lesion was studied with colour photography, fluorescein and indocyanin angiography, autofluorescence imaging and repeated optical coherence tomography (OCT) imaging. Results: At age 43, this professional photographer was blinded by the flash light of his camera and subsequently realized he had a scotoma in his dominant eye. Three days after the event visual acuity (VA) was 20/70 and an acute light-induced maculopathy was noted. Another three days later, VA was 20/50 and the lesions were less prominent. After one month, the photographer still had problems making sharp pictures, VA was 20/25 and a macular scar was observed. During further follow-up, he regained full vision and experienced no professional problems. Conclusions: This case illustrates that the light of flash photography can accidentally hit an eye and induce a light-induced maculopathy.

  18. Characterization of Porous Medium Properties Using 2D NMR

    NASA Astrophysics Data System (ADS)

    Sun, Boqin; Dunn, Keh-Jim

    2003-03-01

    We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.

  19. Parallel stitching of 2D materials

    DOE PAGESBeta

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  20. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-01

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882

  1. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  2. Visual light flash phenomenon. [Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1973-01-01

    Light flash phenomenon observed by crewmen on Apollo 14, 15, 16, and 17 are analyzed. The passage of cosmic rays through the crewman's head and eyes was recorded by the Apollo light flash moving emulsion detector. Events of all the light flash observations are tabulated. It is suggested that the most probable explanation of the phenomenon is that it is caused by cosmic rays penetrating the eyes and retinas of the observers.

  3. Efficient Wear Leveling in NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Hao; Chang, Li-Pin

    In the recent years, flash storage devices such as solid-state drives (SSDs) and flash cards have become a popular choice for the replacement of hard disk drives, especially in the applications of mobile computing devices and consumer electronics. However, the physical constraints of flash memory pose a lifetime limitation on these storage devices. New technologies for ultra-high density flash memory such as multilevel-cell (MLC) flash further degrade flash endurance and worsen this lifetime concern. As a result, flash storage devices may experience a unexpectedly short lifespan, especially when accessing these devices with high frequencies. In order to enhance the endurance of flash storage device, various wear leveling algorithms are proposed to evenly erase blocks of the flash memory so as to prevent wearing out any block excessively. In this chapter, various existing wear leveling algorithms are investigated to point out their design issues and potential problems. Based on this investigation, two efficient wear leveling algorithms (i.e., the evenness-aware algorithm and dual-pool algorithm) are presented to solve the problems of the existing algorithms with the considerations of the limited computing power and memory space in flash storage devices. The evenness-aware algorithm maintains a bit array to keep track of the distribution of block erases to prevent any cold data from staying in any block for a long period of time. The dual-pool algorithm maintains one hot pool and one cold pool to maintain the blocks that store hot data and cold data, respectively, and the excessively erased blocks in the hot pool are exchanged with the rarely erased blocks in the cold pool to prevent any block from being erased excessively. In this chapter, a series of explanations and analyses shows that these two wear leveling algorithms could evenly distribute block erases to the whole flash memory to enhance the endurance of flash memory.

  4. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  5. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  6. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  7. Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain

    NASA Astrophysics Data System (ADS)

    van der Velde, Oscar A.; Montanyà, Joan; Soula, Serge; Pineda, Nicolau; Bech, Joan

    2010-09-01

    During the evening of 6 August 2008, a small mesoscale convective system (MCS) entered the area of radar and 2-D interferometric lightning detection system coverage in northeastern Spain and produced 17 sprites recorded by a camera at only 95-180 km distance. This study presents an analysis of the in-cloud component of the sprite-associated lightning flashes and those of other flashes. The analysis focuses on the horizontal development of sprite-producing lightning by discussing three examples, divided into the periods before the positive cloud-to-ground flash (+CG), between +CG and the end of the sprite, and the period after the sprite. Location and horizontal size of sprites appear to be well explained by the temporal and spatial development of the lightning path. The majority of sprite-producing discharges started directly at the rear side of developing and mature convective cores within the decaying MCS, either with the +CG or with preceding negative leaders. The +CG started a burst of VHF sources during which the sprite developed. Delayed carrot sprites developed after a secondary, smaller burst and were well collocated with the burst toward the rear of the MCS. The order of development of elements in a grouped sprite followed the direction of lightning propagation during the burst stage. The second part of the analysis concentrates on the metrics of sequences of VHF sources and shows that sprites are indeed produced by the largest, longest lasting discharges with particularly large line-perpendicular dimensions (37 km median compared with 11 km for +CG >25 kA).

  8. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  9. Static & Dynamic Response of 2D Solids

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  10. Stochastic Inversion of 2D Magnetotelluric Data

    Energy Science and Technology Software Center (ESTSC)

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  11. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  12. Explicit 2-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (ESTSC)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  13. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  14. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  15. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  16. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  17. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  18. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  19. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  20. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  1. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  2. Cancer treatment: dealing with hot flashes and night sweats

    MedlinePlus

    ... ency/patientinstructions/000826.htm Cancer treatment: dealing with hot flashes and night sweats To use the sharing ... JavaScript. Certain types of cancer treatments can cause hot flashes and night sweats. Hot flashes are when ...

  3. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  4. Flash Expansion Threshold in Whirligig Swarms

    PubMed Central

    Romey, William L.; Lamb, Alicia R.

    2015-01-01

    In the selfish herd hypothesis, prey animals move toward each other to avoid the likelihood of being selected by a predator. However, many grouped animals move away from each other the moment before a predator attacks. Very little is known about this phenomenon, called flash expansion, such as whether it is triggered by one individual or a threshold and how information is transferred between group members. We performed a controlled experiment with whirligig beetles in which the ratio of sighted to unsighted individuals was systematically varied and emergent flash expansion was measured. Specifically, we examined: the percentage of individuals in a group that startled, the resulting group area, and the longevity of the flash expansion. We found that one or two sighted beetles in a group of 24 was not enough to cause a flash expansion after a predator stimulus, but four sighted beetles usually initiated a flash expansion. Also, the more beetles that were sighted the larger the resulting group area and the longer duration of the flash expansion. We conclude that flash expansion is best described as a threshold event whose adaptive value is to prevent energetically costly false alarms while quickly mobilizing an emergent predator avoidance response. This is one of the first controlled experiments of flash expansion, an important emergent property that has applications to understanding collective motion in swarms, schools, flocks, and human crowds. Also, our study is a convincing demonstration of social contagion, how the actions of one individual can pass through a group. PMID:26301958

  5. Sun characteristics of flashed photochromic glass

    SciTech Connect

    Zyabnev, A.M.; Mashir, Yu.I.; Kraevskii, S.L.

    1995-07-01

    The energy coefficients of attenuation of solar radiation were calculated for several types of windows, including for flashed photochromic heat-absorbing glass, which has the highest efficiency of protection from intense solar radiation. The dynamics of the change in the characteristics of flashed photochromic glass in different conditions of use were calculated with specially developed programs.

  6. Au Contraire: Gifted in a Flash (Mob)

    ERIC Educational Resources Information Center

    Delisle, James R.

    2012-01-01

    A "flash mob" is defined by Wikipedia as "a large group of people who assemble suddenly in a public place, perform an unusual and pointless act for a brief time, then disperse." Fueled by social media and Smartphones, flash mobs have been used, primarily, as entertaining diversions by addicted techies with (apparently) tons of time on their hands.…

  7. A Super-Resolution Algorithm for Enhancement of FLASH LIDAR data

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Vanek, Michael; Amzajerdian, Farzin; Pierrottet, Diego; Hines, Glen; Reisse, Robert

    2011-01-01

    A novel method for enhancement of the spatial resolution of 3-dimensional Flash Lidar images is being proposed for generation of elevation maps of terrain from a moving platform. NASA recognizes the Flash LIDAR technology as an important tool for enabling safe and precision landing in future unmanned and crewed lunar and planetary missions. The ability of the Flash LIDAR to generate 3-dimensional maps of the landing site area during the final stages of the descent phase for detection of hazardous terrain features such as craters, rocks, and steep slopes is under study in the frame of the Autonomous Landing and Hazard Avoidance (ALHAT) project. Since single frames of existing FLASH LIDAR systems are not sufficient to build a map of entire landing site with acceptable spatial resolution and precision, a super-resolution approach utilizing multiple frames has been developed to overcome the instrument s limitations. Performance of the super-resolution algorithm has been analyzed through a series of simulation runs obtained from a high fidelity Flash LIDAR model and a high resolution synthetic lunar elevation map. For each simulation run, a sequence of FLASH LIDAR frames are recorded and processed as the spacecraft descends toward the landing site. Simulations runs having different trajectory profiles and varying LIDAR look angles of the terrain are also analyzed. The results show that adequate levels of accuracy and precision are achieved for detecting hazardous terrain features and identifying safe areas of the landing site.

  8. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  9. Organic flash cycles for efficient power production

    DOEpatents

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  10. Necessary Clearance to Prevent Side Flashes

    NASA Astrophysics Data System (ADS)

    Shindo, Takatoshi; Asakawa, Akira; Honda, Hideki; Sakae, Maki; Tanaka, Shuusaku

    Side flashes often occur when lightning strikes a tree and cause injury or death of human beings staying nearby the tree. Necessary clearance to prevent the side flash has been said to be 2 m, but the physical meaning of the value is unclear. In this paper, we have proposed a model of side flashes based on the physics of discharges and necessary clearance has been calculated. Furthermore, we have carried out model experiments of the side flash using real trees of a heights of 3.5 m and a naturally growing tree of a height of more than 10 m. The results of the model experiments have verified the proposed theory and it is concluded that clearance of more than 3 m from a tree is necessary to prevent side flashes from the tree.

  11. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  12. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  13. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  14. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  15. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  16. Evidence for polymorphism in the cytochrome P450 2D50 gene in horses.

    PubMed

    Corado, C R; McKemie, D S; Young, A; Knych, H K

    2016-06-01

    Metabolism is an essential factor in the clearance of many drugs and as such plays a major role in the establishment of dosage regimens and withdrawal times. CYP2D6, the human orthologue to equine CYP2D50, is a drug-metabolizing enzyme that is highly polymorphic in humans leading to widely differing levels of metabolic activity. As CYP2D6 is highly polymorphic, in this study it was hypothesized that the gene coding for the equine orthologue, CYP2D50, may also be prone to polymorphism. Blood samples were collected from 150 horses, the CYP2D50 gene was cloned and sequenced; and full-length sequences were analyzed for single nucleotide polymorphisms (SNPs), deletions, or insertions. Pharmacokinetic data were collected from a subset of horses following the administration of a single oral dose of tramadol and probit analysis used to calculate metabolic ratios. Prior to drug administration, the ability of recombinant CYP2D50 to metabolize tramadol to O-desmethyltramadol was confirmed. Sequencing of CYP2D50 identified 126 exonic SNPs, with 31 of those appearing in multiple horses. Oral administration of tramadol to a subset of these horses revealed variable metabolic ratios (tramadol: O-desmethyltramadol) in individual horses and separation into three metabolic groups. While a limited number of horses of primarily a single breed were studied, the variability in tramadol metabolism to O-desmethyltramadol between horses and preliminary evidence of what appears to be poor, extensive, and ultra-rapid metabolizers supports further study of the potential for genetic polymorphisms in the CYP2D50 gene in horses. PMID:26441153

  17. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  18. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  19. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  20. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  1. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  2. Statistical Evolution of the Lightning Flash

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.

    2012-12-01

    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  3. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  4. [Nikola Tesla: flashes of inspiration].

    PubMed

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

  5. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  6. Focal Cortical Lesion Detection in Multiple Sclerosis: 3T DIR versus 7T FLASH-T2*

    PubMed Central

    Nielsen, A. Scott; Kinkel, R. Philip; Tinelli, Emanuele; Benner, Thomas; Cohen-Adad, Julien; Mainero, Caterina

    2014-01-01

    Purpose To evaluate the inter-rater agreement of cortical lesion detection using 7T FLASH-T2* and 3T DIR sequences. Materials and Methods Twenty-six patients with multiple sclerosis were scanned on a human 7T (Sidemen’s) and 3T MRI (TIM Trio, Sidemen’s) to acquire 3T DIR/MEMPR and 7T FLASH-T2* sequences. Four independent reviewers scored and categorized cortical lesions in the bilateral pre-central gyri (motor strips) as leukocortical, intracortical, or subpial. Inter-rater agreement was assessed according to lesion category using the kappa statistic. The sensitivity of recent MAGNIMS consensus guidelines for cortical lesion detection using 3T DIR was assessed with 7T FLASH-T2* as the reference gold standard. Results Inter-rater agreement at 7T was excellent compared to 3T (k=0.97 vs. 0.12). FLASH-T2* at 7T detected subpial lesions while 3T DIR did not. The predicted sensitivity of 3T DIR sequence for cortical lesions in vivo is modest (range of 13.6 to 18.3%). Conclusion 7T FLASH-T2* detects more cortical—particularly subpial—lesions compared to 3T DIR. In the absence of DIR/post-mortem data, 7T FLASH-T2* is a suitable gold-standard instrument and should be incorporated into future consensus guidelines. PMID:22045554

  7. Flash Droughts over the United States

    NASA Astrophysics Data System (ADS)

    Lettenmaier, D. P.; Mo, K. C.

    2015-12-01

    Flash drought refers to relatively short periods of warm surface temperature and anomalously low and rapid decreasing soil moisture (SM). Based on the physical mechanisms associated with flash droughts, we classify them into two categories: heat wave and precipitation (P) deficit flash droughts. We analyze the flash droughts based on the observations and the land surface model reconstructed soil moisture (SM) and evaporation (ET) from 1916 to 2013. Heat wave flash droughts are most likely to occur over the Midwest and the Pacific Northwest during the growing season. They do not occur often. The maximum frequency of occurrence is only 4%. Heat wave flash drought is temperature driven. High temperatures increase the transpiration and drive down soil moisture and cause drought to occur. The P deficit flash droughts are more common than the heat wave droughts and the maximum frequency of occurrence is about 8- 10 %. They are most likely to occur over the southern United States with a maximum over the Southern Plains. They are P driven. Heat waves are caused by P deficits. P deficits drive down SM and cause ET to decreases and temperature to increase.

  8. Discovery, Characterization, and Functional Study of a Novel MEF2D CAG Repeat in Duck (Anas platyrhynchos).

    PubMed

    Wang, Yushi; Wang, Jiwen; Liu, Hehe; Zhang, Rongping; Zhang, Tao; Gan, Xiang; Huang, Huilan; Chen, Da; Li, Liang

    2016-08-01

    Myocyte enhancer transcription factor 2D (MEF2D) is an important transcription factor for promoting the growth and development of muscle. CAG repeats have been found in the coding sequence (CDS) of avian MEF2D; however, their functions remain unknown and require further investigation. Here, we examined the characteristics and functional role of MEF2D CAG repeat in duck. The full-length CDS of duck MEF2D was cloned for the first time, and a novel CAG repeat was identified and located in exon 9. Sequence analysis indicated that the protein domains of duck MEF2D are highly conserved relative to other vertebrates, whereas MEF2D CAG repeats with variable repeat numbers are specific to avian species. Furthermore, sequencing has revealed polymorphisms in MEF2D CAG repeat at both DNA and mRNA levels. Four MEF2D CAG repeat genotypes and 10 MEF2D cDNA variants with different CAG repeat numbers were detected in two duck populations. A t-test showed that the expanded CAG repeat generated significantly longer transcription products (p < 0.05). Association analysis demonstrated positive correlations between the expansion of the CAG repeat and five muscle-related traits. By using protein structure prediction, we suggested that the polymorphisms of the CAG repeat affect protein structures within protein domains. Taken together, these findings reveal that duck MEF2D CAG repeat is a potential functional element with polymorphisms and may cause differences in MEF2D function between duck and other vertebrate species. PMID:27064738

  9. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  10. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  11. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  12. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  13. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  14. Extended Word-Line NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Yun, Jang-Gn; Park, Il Han; Kim, Wandong; Lee, Jong Duk; Park, Byung-Gook

    2009-08-01

    A NAND flash memory array having extended word-lines is proposed. Without scarifying areal density, both physical gate length and charge storage node size are increased through the word-line extension process. Simple fabrication flow is delivered and device performances in a viewpoint of the short channel effect are simulated. The effect of gate length variation on the cell threshold voltage (VTH) distribution is addressed. Programming characteristics in the inversion-type source/drain NAND flash memory are also described. Some side effects concerned with the program disturbance and cell-to-cell interference are investigated in comparison with the conventional NAND flash memory.

  15. Non Volatile Flash Memory Radiation Tests

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  16. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  17. Millisecond flashes of light phase delay the human circadian clock during sleep.

    PubMed

    Zeitzer, Jamie M; Fisicaro, Ryan A; Ruby, Norman F; Heller, H Craig

    2014-10-01

    The human circadian timing system is most sensitive to the phase-shifting effects of light during the biological nighttime, a time at which humans are most typically asleep. The overlap of sleep with peak sensitivity to the phase-shifting effects of light minimizes the effectiveness of using light as a countermeasure to circadian misalignment in humans. Most current light exposure treatments for such misalignment are mostly ineffective due to poor compliance and secondary changes that cause sleep deprivation. Using a 16-day, parallel group design, we examined whether a novel sequence of light flashes delivered during sleep could evoke phase changes in the circadian system without disrupting sleep. Healthy volunteers participated in a 2-week circadian stabilization protocol followed by a 2-night laboratory stay. During the laboratory session, they were exposed during sleep to either darkness (n = 7) or a sequence of 2-msec light flashes given every 30 sec (n = 6) from hours 2 to 3 after habitual bedtime. Changes in circadian timing (phase) and micro- and macroarchitecture of sleep were assessed. Subjects exposed to the flash sequence during sleep exhibited a delay in the timing of their circadian salivary melatonin rhythm compared with the control dark condition (p < 0.05). Confirmation that the flashes penetrated the eyelids is presented by the occurrence of an evoked response in the EEG. Despite the robust effect on circadian timing, there were no large changes in either the amount or spectral content of sleep (p values > 0.30) during the flash stimulus. Exposing sleeping individuals to 0.24 sec of light spread over an hour shifted the timing of the circadian clock and did so without major alterations to sleep itself. While a greater number of matched subjects and more research will be necessary to ascertain whether these light flashes affect sleep, our data suggest that this type of passive phototherapy might be developed as a useful treatment for circadian

  18. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  19. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    PubMed Central

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  20. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Flashing light units. 234.217 Section 234.217..., Inspection, and Testing Maintenance Standards § 234.217 Flashing light units. (a) Each flashing light unit.... (b) Each flashing light unit shall be maintained to prevent dust and moisture from entering...

  1. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flashing light units. 234.217 Section 234.217..., Inspection, and Testing Maintenance Standards § 234.217 Flashing light units. (a) Each flashing light unit.... (b) Each flashing light unit shall be maintained to prevent dust and moisture from entering...

  2. Utilizing Lifetimes to Suppress Random Coil Features in 2D IR Spectra of Peptides

    PubMed Central

    Middleton, Chris T.; Buchanan, Lauren E.; Dunkelberger, Emily B.

    2011-01-01

    We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril β-sheets. Isotope labeling with 13C18O reveals that structurally disordered residues decay faster than residues protected from solvent. Since structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues is due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra. PMID:21966585

  3. TMRPres2D: high quality visual representation of transmembrane protein models.

    PubMed

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  4. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  5. An Inexpensive, Foolproof Apparatus for Flash Chromatography.

    ERIC Educational Resources Information Center

    Thompson, Wayne J.; Hanson, Bryan A.

    1984-01-01

    Describes a new, modified "flash chromatography" apparatus which overcomes difficulties found in conventional apparatus. For example, an expensive teflon pressure valve is not necessary in the modified version. The apparatus is suitable as an instructional tool in undergraduate courses. (JN)

  6. Quality control in the "flash" process.

    PubMed

    1985-03-01

    This article has briefly discussed the three basic types of sterilization monitoring systems--mechanical, chemical, and biological. Mechanical indicators help tell you that the sterilizer is working. Chemical indicators provide you with immediate information in each "flash" load that the conditions necessary for steam sterilization were present. Biological indicators tell you that microorganisms were killed. For maximum assurance that the conditions necessary for steam sterilization are present and that non-sterile instruments are not inadvertently used, each "flash" sterilizer should be monitored daily with biological indicators and each "flash" load with chemical indicators. This quality control monitoring program should give the O.R. staff confidence that their "flash" sterilization process is working. PMID:10271096

  7. A Simple Lightning Flash Polarity Discriminating Counter.

    ERIC Educational Resources Information Center

    Devan, K. R. S.; Jayaratne, E. R.

    1990-01-01

    Described are the apparatus and procedures needed for a demonstration of a determination of the polarity of charges carried by individual ground flashes of lightning. Discussed are materials, apparatus construction, and experimental results. (CW)

  8. Layout decomposition of self-aligned double patterning for 2D random logic patterning

    NASA Astrophysics Data System (ADS)

    Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.

    2011-04-01

    Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.

  9. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  10. Method for programming a flash memory

    DOEpatents

    Brosky, Alexander R.; Locke, William N.; Maher, Conrado M.

    2016-08-23

    A method of programming a flash memory is described. The method includes partitioning a flash memory into a first group having a first level of write-protection, a second group having a second level of write-protection, and a third group having a third level of write-protection. The write-protection of the second and third groups is disabled using an installation adapter. The third group is programmed using a Software Installation Device.

  11. Super Resolution Image Enhancement for a Flash Lidar: Back Projection Method

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Hines, Glenn; Vanek, Michael; Amzajerdian, Farzin; Reisse, Robert; Pierrottet, Diego

    2010-01-01

    In this paper a new image processing technique for flash LIDAR data is presented as a potential tool to enable safe and precise spacecraft landings in future robotic or crewed lunar and planetary missions. Flash LIDARs can generate, in real-time, range data that can be interpreted as a 3-dimensional (3-D) image and transformed into a corresponding digital elevation map (DEM). The NASA Autonomous Landing and Hazard Avoidance (ALHAT) project is capitalizing on this new technology by developing, testing and analyzing flash LIDARs to detect hazardous terrain features such as craters, rocks, and slopes during the descent phase of spacecraft landings. Using a flash LIDAR for this application looks very promising, however through theoretical and simulation analysis the ALHAT team has determined that a single frame, or mosaic, of flash LIDAR data may not be sufficient to build a landing site DEM with acceptable spatial resolution, precision, size, or for a mosaic, in time, to meet current system requirements. One way to overcome this potential limitation is by enhancing the flash LIDAR output images. We propose a new super-resolution algorithm applicable to flash LIDAR range data that will create a DEM with sufficient accuracy, precision and size to meet current ALHAT requirements. The performance of our super-resolution algorithm is analyzed by processing data generated during a series of simulation runs by a high fidelity model of a flash LIDAR imaging a high resolution synthetic lunar elevation map. The flash LIDAR model is attached to a simulated spacecraft by a gimbal that points the LIDAR to a target landing site. For each simulation run, a sequence of flash LIDAR frames is recorded and processed as the spacecraft descends toward the landing site. Each run has a different trajectory profile with varying LIDAR look angles of the terrain. We process the output LIDAR frames using our SR algorithm and the results show that the achieved level of accuracy and precision of

  12. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  13. Super-resolution for flash LADAR data

    NASA Astrophysics Data System (ADS)

    Hu, Shuowen; Young, S. Susan; Hong, Tsai; Reynolds, Joseph P.; Krapels, Keith; Miller, Brian; Thomas, Jim; Nguyen, Oanh

    2009-05-01

    Flash laser detection and ranging (LADAR) systems are increasingly used in robotics applications for autonomous navigation and obstacle avoidance. Their compact size, high frame rate, wide field of view, and low cost are key advantages over traditional scanning LADAR devices. However, these benefits are achieved at the cost of spatial resolution. Super-resolution enhancement can be applied to improve the resolution of flash LADAR devices, making them ideal for small robotics applications. Previous work by Rosenbush et al. applied the super-resolution algorithm of Vandewalle et al. to flash LADAR data, and observed quantitative improvement in image quality in terms of number of edges detected. This study uses the super-resolution algorithm of Young et al. to enhance the resolution of range data acquired with a SwissRanger SR-3000 flash LADAR camera. To improve the accuracy of sub-pixel shift estimation, a wavelet preprocessing stage was developed and applied to flash LADAR imagery. The authors used the triangle orientation discrimination (TOD) methodology for a subjective evaluation of the performance improvement (measured in terms of probability of target discrimination and subject response times) achieved with super-resolution. Super-resolution of flash LADAR imagery resulted in superior probabilities of target discrimination at the all investigated ranges while reducing subject response times.

  14. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  15. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  16. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  17. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  18. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  19. Parallel map analysis on 2-D grids

    SciTech Connect

    Berry, M.; Comiskey, J.; Minser, K.

    1993-12-31

    In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.

  20. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  1. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  2. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  3. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  4. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  5. Analysis of lightning flash videos from the Space Shuttle using blob and morphological techniques

    NASA Technical Reports Server (NTRS)

    Pitts, David E.; Vaughan, Otha H., Jr.; Sapp, Clyde A.; Helms, David; Chambers, Mark; Jaklitch, Pat; Duncan, Mike

    1992-01-01

    Flash rates measured from the Space Shuttle range from 27.8 flashes per minute to 77 flashes per minute. The cloud is an optically thick medium which effectively scatters the energy from a lightning discharge and thereby broadens the risetime and duration of each lightning pulse. Because of the small size, spacecraft sensors with resolutions of 1 km or more are unlikely to detect the individual lightning channels. Instead, the energy from the lightning channel is scattered within the cloud, thereby broadening the apparent area. All of these measurements of lightning flash area and flash rate have involved manual manipulation and analysis of the video or film data. Only a small percentage of the Space Shuttle lightning video has been analyzed. An attempt is made to combine the use of real-time digital disk system and an automated analysis routine in order to overcome this limitation and make processing of a sequence of video frames a much less labor-intensive task.

  6. LaAlO 3 as tunnel dielectric for low-voltage and low-power p-channel flash memory free of drain disturb

    NASA Astrophysics Data System (ADS)

    Cai, Yimao; Huang, Ru; Shan, Xiaonan; Zhou, Falong; Li, Yan; Wang, Yangyuan

    2006-02-01

    In this paper, high- k LaAlO 3 is proposed as tunnel dielectric for p-channel flash memory device application. The program/erase (P/E) injection current characteristic of p-channel flash memory cells with LaAlO 3 tunnel dielectric is investigated compared to the cells with SiO 2 tunnel dielectric by two-dimensional (2-D) device simulation, which shows that the bit line bias can be lowered from -5 V to -3 V during both P/E operations of flash memory cells with LaAlO 3 tunnel dielectric, meanwhile retains the fast P/E speed and high injection efficiency. Our work also shows that drain disturb, one of the main issues for p-channel flash memory, is alleviated dramatically due to the lower P/E voltage.

  7. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. Generates 2D Input for DYNA NIKE & TOPAZ

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  9. 2d PDE Linear Symmetric Matrix Solver

    Energy Science and Technology Software Center (ESTSC)

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  10. 2d PDE Linear Asymmetric Matrix Solver

    Energy Science and Technology Software Center (ESTSC)

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  11. Ultrasonic 2D matrix PVDF transducer

    NASA Astrophysics Data System (ADS)

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  12. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Lee, S.; Shiroto, T.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Sunahara, A.; Ohnishi, N.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.; Fujioka, S.

    2016-06-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  13. Cytochrome P450 CYP2D6 gene polymorphism and lung cancer susceptibility in Caucasians.

    PubMed

    Legrand-Andréoletti, M; Stücker, I; Marez, D; Galais, P; Cosme, J; Sabbagh, N; Spire, C; Cenée, S; Lafitte, J J; Beaune, P; Broly, F

    1998-02-01

    Many studies have been performed in an attempt to establish a link between the polymorphism of the cytochrome P450 CYP2D6 gene and the incidence of lung cancer. Nevertheless, whether or not this genetic polymorphism has a role in the development of the disease remains unclear. Recently, new advances in our knowledge of the CYP2D6 gene and its locus (CYP2D) have been achieved. In particular, CYP2D6 was found to be highly polymorphic and multiple novel mutations and allelic variants of the gene have been identified. In addition, a number of CYP2D rearrangements, including those with amplification of the gene, have been demonstrated. Taking this new information into account, we have reconsidered the potential influence of CYP2D6 polymorphism in lung cancer susceptibility by performing a comparative analysis of the overall mutational spectrum of CYP2D6 and of the rearrangements of CYP2D in 249 patients with lung cancer and in 265 control individuals matched on age, sex, hospital and residence area. For this purpose, a strategy based on SSCP analysis of the entire coding sequence of CYP2D6 and on RFLP analysis of the gene locus was carried out in DNA samples from each individual. Forty mutations occurring in various combinations on 42 alleles of the gene and 82 different genotypes were identified. No significant difference in the distribution of the mutations, alleles or genotypes was observed between the two groups, except a particular genotype (CYP2D6*1A/*2), which was more common in the sub-group of moderate smokers (< 30 pack-years) suffering from small cell carcinoma (Odds Ratio (OR) 3.6, 95% CI 1.1-11.9). When the phenotype was predicted according to genotype, only a trend toward a higher frequency of ultrarapid metabolizers in patients was obtained. In spite of a complete analysis of the CYP2D6 gene and its locus, this case-control study provides elements against an influence of the CYP2D6 polymorphism on lung cancer susceptibility. PMID:9511176

  14. Lightning channel length and flash energy determined from moments of the flash area distribution

    NASA Astrophysics Data System (ADS)

    Bruning, Eric C.; Thomas, Ronald J.

    2015-09-01

    A widely used approach in observational and modeling studies of NOx produced by lightning is to relate NOx production to the number of flashes, without regard for the distribution of lightning flash sizes. Recent studies have begun to consider channel length and flash size, which is now observable with VHF Lightning Mapping Array data. This study uses a capacitor model for flash energy based on the flash coverage area, which defines a size scale. This flash area is then filled with channel using a fractal method and compared to other methods that estimate length directly from the VHF source locations. In the presence of instrument measurement errors, area- and fractal-based estimates are shown to be more stable estimators of flash length than connect-the-dots approaches and therefore are better suited for comparison to NOx production. A geometric interpretation of using vertical profiles of VHF source density to weight the altitude distribution of total channel length is developed. An example of the time series of moments of the lightning flash size distribution is shown for an example case, and some meteorological interpretation is given.

  15. Establishment of CYP2D6 reference samples by multiple validated genotyping platforms.

    PubMed

    Fang, H; Liu, X; Ramírez, J; Choudhury, N; Kubo, M; Im, H K; Konkashbaev, A; Cox, N J; Ratain, M J; Nakamura, Y; O'Donnell, P H

    2014-12-01

    Cytochrome P450 2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6)), a highly polymorphic drug-metabolizing enzyme, is involved in the metabolism of one-quarter of the most commonly prescribed medications. Here we have applied multiple genotyping methods and Sanger sequencing to assign precise and reproducible CYP2D6 genotypes, including copy numbers, for 48 HapMap samples. Furthermore, by analyzing a set of 50 human liver microsomes using endoxifen formation from N-desmethyl-tamoxifen as the phenotype of interest, we observed a significant positive correlation between CYP2D6 genotype-assigned activity score and endoxifen formation rate (rs = 0.68 by rank correlation test, P = 5.3 × 10(-8)), which corroborated the genotype-phenotype prediction derived from our genotyping methodologies. In the future, these 48 publicly available HapMap samples characterized by multiple substantiated CYP2D6 genotyping platforms could serve as a reference resource for assay development, validation, quality control and proficiency testing for other CYP2D6 genotyping projects and for programs pursuing clinical pharmacogenomic testing implementation. PMID:24980783

  16. Establishment of CYP2D6 Reference Samples by Multiple Validated Genotyping Platforms

    PubMed Central

    Fang, Hua; Liu, Xiao; Ramírez, Jacqueline; Choudhury, Noura; Kubo, Michiaki; Im, Hae Kyung; Konkashbaev, Anuar; Cox, Nancy J.; Ratain, Mark J.; Nakamura, Yusuke; O’Donnell, Peter H.

    2014-01-01

    Cytochrome P450 2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6, or CYP2D6), a highly polymorphic drug metabolizing enzyme, is involved in the metabolism of one quarter of the most commonly prescribed medications. Here, we have applied multiple genotyping methods and Sanger sequencing to assign precise and reproducible CYP2D6 genotypes, including copy numbers, for 48 HapMap samples. Furthermore, by analyzing a set of 50 human liver microsomes using endoxifen formation from N-desmethyl-tamoxifen as the phenotype of interest, we observed a significant positive correlation between CYP2D6 genotype-assigned activity score and endoxifen formation rate (rs = 0.68 by Rank correlation test, P = 5.3 ×10−8), which corroborated the genotype-phenotype prediction derived from our genotyping methodologies. In the future, these 48 publicly available HapMap samples characterized by multiple substantiated CYP2D6 genotyping platforms could serve as a reference resource for assay development, validation, quality control, and proficiency testing for other CYP2D6 genotyping projects, and for programs pursuing clinical pharmacogenomic testing implementation. PMID:24980783

  17. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  18. FPGA Flash Memory High Speed Data Acquisition

    NASA Technical Reports Server (NTRS)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  19. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  20. Personalized medicine in breast cancer: tamoxifen, endoxifen, and CYP2D6 in clinical practice.

    PubMed

    Ruddy, Kathryn J; Desantis, Stephen D; Gelman, Rebecca S; Wu, Alan H B; Punglia, Rinaa S; Mayer, Erica L; Tolaney, Sara M; Winer, Eric P; Partridge, Ann H; Burstein, Harold J

    2013-10-01

    Tamoxifen is metabolized into endoxifen, a potent antagonist of the estrogen receptor, in part through cytochrome p450 (CYP) 2D6. Genotypic variation in CYP2D6 affects endoxifen levels, and some have argued that patients who do not efficiently metabolize tamoxifen might wish to consider alternative hormonal treatments. This study evaluated an algorithm in which endoxifen levels and CYP2D6 genotypes were used to make hormonal therapy recommendations for patients on adjuvant tamoxifen for breast cancer. Patients with stage I-III breast cancer who had been taking adjuvant tamoxifen for 8-56 weeks were eligible. At enrollment, baseline whole blood and serum were sent for genotyping by Amplichip and endoxifen measurement, respectively, and endoxifen levels were also measured 3 weeks later. Results were returned to oncologists along with an algorithm-generated treatment recommendation. The algorithm recommended that participants with poor metabolizer genotype and/or baseline endoxifen level <6 ng/mL consider alternative endocrine therapy. A medical record review evaluated actual treatment decisions. Of 99 patients on study, 18 (18 %) had findings that triggered algorithm-based recommendations to consider a change in endocrine therapy due to endoxifen <6 ng/mL (all 18 patients) and/or poor metabolizer CYP2D6 genotype (2 of the 18). Endoxifen levels were ≥6 ng/mL in four of them 3 weeks later. Seven (39 % of 18) switched to a different treatment (one based on toxicity, not the algorithm). Hot flash burden was not found to be significantly associated with endoxifen <6 ng/mL or genotype. Prospective testing of tamoxifen metabolism as gauged by CYP2D6 genotype and serum endoxifen levels is feasible. Future studies of tamoxifen metabolism and efficacy should consider including measurement of serial endoxifen levels. Although clinical evidence at present is insufficient to warrant routine CYP2D6 or endoxifen testing, some clinicians and patients did utilize this

  1. Daily Physical Activity and Hot Flashes in the Study of Women's Health Across the Nation FLASHES Study

    PubMed Central

    Gibson, Carolyn; Matthews, Karen; Thurston, Rebecca

    2014-01-01

    Objective To examine the role of physical activity in menopausal hot flashes. Competing models conceptualize physical activity as a risk or protective factor for hot flashes. Few studies have examined this relationship prospectively using physiologic measures of hot flashes and physical activity. Design Over two 48 hour-periods, 51 participants wore a physiologic hot flash monitor and activity monitor, and reported their hot flashes in an electronic diary. Physiologic hot flashes, reported hot flashes and reported hot flashes without physiological corroboration were related to activity changes using hierarchical generalized linear modeling, adjusting for potential confounders. Setting Community. Patients Midlife women. Interventions None. Main Outcome Measures Physiologically-detected hot flashes and reported hot flashes with and without physiologic corroboration. Results Hot flash reports without physiologic corroboration were more likely after activity increases (OR 1.04, 95% CI: 1.00-1.10, p=.01), particularly among women with higher levels of depressive symptoms (interaction p=.02). No other types of hot flashes were related to physical activity. Conclusion Acute increases in physical activity were associated with increased reporting of hot flashes lacking physiologic corroboration, particularly among women with depressive symptoms. Clinicians should consider the role of symptom perception and reporting in relations between physical activity and hot flashes. PMID:24491454

  2. High-power multi-beam diode laser transmitter for a flash imaging lidar

    NASA Astrophysics Data System (ADS)

    Holmlund, Christer; Aitta, Petteri; Kivi, Sini; Mitikka, Risto; Tyni, Lauri; Heikkinen, Veli

    2013-10-01

    VTT Technical Research Centre of Finland is developing the transmitter for the "Flash Optical Sensor for TErrain Relative NAVigation" (FOSTERNAV) multi-beam flash imaging lidar. FOSTERNAV is a concept demonstrator for new guidance, navigation and control (GNC) technologies to fulfil the requirements for landing and docking of spacecraft as well as for navigation of rovers. This paper presents the design, realisation and testing of the multi-beam continuous-wave (CW) laser transmitter to be used in a 256x256 pixel flash imaging lidar. Depending on the target distance, the lidar has three operation modes using either several beams with low divergence or one single beam with a large divergence. This paper describes the transmitter part of the flash imaging lidar with focus on the electronics and especially the laser diode drivers. The transmitter contains eight fibre coupled commercial diode laser modules with a total peak optical power of 32 W at 808 nm. The main requirement for the laser diode drivers was linear modulation up to a frequency of 20 MHz allowing, for example, low distortion chirps or pseudorandom binary sequences. The laser modules contain the laser diode, a monitoring photodiode, a thermo-electric cooler, and a thermistor. The modules, designed for non-modulated and low-frequency operation, set challenging demands on the design of the drivers. Measurement results are presented on frequency response, and eye diagrams for pseudo-random binary sequences.

  3. Comparative analysis of the initial stage in two artificially-triggered lightning flashes

    NASA Astrophysics Data System (ADS)

    Yang, J.; Qie, X.; Zhang, Q.; Zhao, Y.; Feng, G.; Zhang, T.; Zhang, G.

    2009-02-01

    The initial discharge stages of two flashes during the Shandong Artificially Triggering Lightning Experiment (SHATLE) are analyzed based on the synchronous data of the current and close electromagnetic field. For a lightning flash, named 0503, the wire was connected, not electrically, but via a 5 m length of nylon, with the lightning rod; while for another, named 0602, the wire was connected with the rod directly. Results show that the discharge processes of the initial stage (IS) in flash 0503 are quite different from that of the usual classical-triggered flash 0602 and altitude-triggered flashes. A large pulse with a current of about 720 A resulted from the breakdown of the 5 m air gap during flash 0503, and the corresponding electric field at 60 m from the lightning rod was 0.38 kV/m. The upward positive leaders (UPLs) propagated continuously from the tip of the rocket after this breakdown. The geometric mean (GM) of the UPL peak current was 23.0 A. Vaporization of the wire occurred during the initial continuous current (ICC) stage and the largest current pulse was about 400 A. Compared with triggered flash 0503, the discharge processes of IS in flash 0602 were simple, only two large pulses similar to each other occurred before dart leader/return stroke sequences. The peak current of the first pulse was 2.1 kA and its corresponding electric field and magnetic field at a distance of 60 m from the lightning rod were 0.98 kV/m and 7.03 μT, respectively. During the second pulse, the wire disintegrated. The current decreased to the background level at the moment of the wire disintegration. The current of the second pulse in triggered flash 0602 was 2.8 kA, and the corresponding electric field and magnetic field at 60 m from the lightning rod were 1.22 kV/m and 9.01 μT, respectively.

  4. FLASH simulations of 120MJ target explosions in LIFE reactor chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan; Moses, Gregory; Fatenejad, Milad

    2012-10-01

    The LIFE conceptual reactor designfootnotetextMoses, E.I., Ignition on the National Ignition Facility: a path towards inertial fusion energy, Nucl. Fusion 49 104022 is a 12 m diameter reaction chamber with a steel first wall. The chamber is filled with 6 μg/cm^3 Xenon gas to protect the wall from fusion burn products. Indirect drive 120 MJ fusion targets are shot at 13 Hz repetition rate. For purposes of simulating the target explosion the target is approximated as a 1 g lead hohlraum. Fusion burn product energy is added to the Pb in a 100 ps flattop source at a rate of 12 MJ / 100 ps. The additional 13 MJ of fusion energy is assumed to be radiated as prompt x-rays. The resulting spherical micro-explosion of the heated Pb target into the surrounding Xe is simulated in 2D using the FLASH radiation hydrodynamics code. The FLASH codefootnotetextFryxell, B., Olson, K. et al.,FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes, Astro. Journal Sup. Series., 131, 273 is an AMR block-structured, parallel scalable radiation hydrodynamics code. FLASH has separate electron and ion temperatures and single group or multi-group radiation diffusion. Shock generation in the Xe and mixing of the Pb and Xe behind the shock due to Rayleigh-Taylor instability is investigated. Comparison with results from the 1D BUCKY radiation hydrodynamics code will be presented. This work was supported by Lawrence Livermore National Laboratory under contract number B587835.

  5. Flash flood characterisation of the Haor area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  6. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  7. Firefly Light Flashing: Oxygen Supply Mechanism

    NASA Astrophysics Data System (ADS)

    Tsai, Yueh-Lin; Li, Chia-Wei; Hong, Tzay-Ming; Ho, Jen-Zon; Yang, En-Cheng; Wu, Wen-Yen; Margaritondo, G.; Hsu, Su-Ting; Ong, Edwin B. L.; Hwu, Y.

    2014-12-01

    Firefly luminescence is an intriguing phenomenon with potential technological applications, whose biochemistry background was only recently established. The physics side of this phenomenon, however, was still unclear, specifically as far as the oxygen supply mechanism for light flashing is concerned. This uncertainty is due to the complex microscopic structure of the tracheal system: without fully knowing its geometry, one cannot reliably test the proposed mechanisms. We solved this problem using synchrotron phase contrast microtomography and transmission x-ray microscopy, finding that the oxygen consumption corresponding to mitochondria functions exceeds the maximum rate of oxygen diffusion from the tracheal system to the photocytes. Furthermore, the flashing mechanism uses a large portion of this maximum rate. Thus, the flashing control requires passivation of the mitochondria functions, e.g., by nitric oxide, and switching of the oxygen supply from them to photoluminescence.

  8. Process for energy reduction with flash fusing

    SciTech Connect

    Berkes, J.S.

    1987-10-06

    This patent describes a process for affecting a reduction in the energy needed for accomplishing the flash fusing of a developed image which comprises (1) providing a toner composition with resin particles, pigment articles, and wax. The wax possesses a lower melting temperature than the resin particles and is selected from the group consisting of polyethylene and polypropylene with a molecular weight of less than about 6,000; (2) introducing the aforementioned toner composition into a xerographic imaging apparatus having incorporated therein a flash fusing device; (3) generating an electrostatic latent image in the imaging apparatus, and subsequently developing this image with the toner composition; (4) transferring the image to a supporting substrate; and (5) permanently attaching the image to the substrate with energy emitted from a flash fusing device, and wherein there is formed between the supporting substrate and the toner composition during fusing a wax layer.

  9. Multidimensional flash diffusivity measurements of orthotropic materials

    SciTech Connect

    Graham, S.; McDowell, D.L.; Dinwiddie, R.B.

    1999-03-01

    A generalization of the radial flash technique is presented whereby the thermal diffusivity of an orthotropic solid is measured in directions parallel and perpendicular to the flash source. The theoretical formulation is based on a Green`s function approach which assumes a general orthotropic solid with three mutually orthogonal thermal diffusivities (or conductivities). Using this approach, a solution to this problem is presented which can be used to develop solutions for arbitrary pulse waveforms and incident geometries. Analytical and numerical results are presented for two-dimensional and three-dimensional cases of finite and semiinfinite solids. Characteristic equations which describe the ratio of the temperatures at two points along a principal axis are given. The equations show excellent agreement with numerical predictions as well as experimental results. A parameter estimation approach is given which improves on the accuracy of the radial flash technique in the determination of thermal diffusivity from experimental data.

  10. A void distribution model-flashing flow

    SciTech Connect

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A new model for flashing flow based on wall nucleations is proposed here and the model predictions are compared with some experimental data. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites was used. Thus it was possible to avoid the usual assumption of a constant bubble number density. Comparisons of the model with the data shows that the model based on the nucleation site density correlation appears to be acceptable to describe the vapor generation in the flashing flow. For the limited data examined, the comparisons show rather satisfactory agreement without using a floating parameter to adjust the model. This result indicated that, at least for the experimental conditions considered here, the mechanistic predictions of the flashing phenomenon is possible on the present wall nucleation based model.

  11. Cooperative dynamics in ultrasoft 2D crystals

    NASA Astrophysics Data System (ADS)

    Sprakel, Joris; van der Meer, Berend; Dijkstra, Marjolein; van der Gucht, Jasper

    2015-03-01

    The creation, annihilation, and diffusion of defects in crystal lattices play an important role during crystal melting and deformation. Although it is well understood how defects form and react when crystals are subjected to external stresses, it remains unclear how crystals cope with internal stresses. We report a study in which we create a highly localized internal stress, by means of optical tweezing, in a crystal formed from micrometer-sized colloidal spheres and directly observe how the solid reacts using microscopy. We find that, even though the excitation is highly localized, a collective dance of colloidal particles results; these collective modes take the form of closed rings or open-ended strings, depending on the sequence of events which nucleate the rearrangements. Surprisingly, we find from Brownian Dynamics simulations that these cooperative dynamics are thermally-activated modes inherent to the crystal, and can even occur through a single, sufficiently large thermal fluctuation, resulting in the irreversible displacement of 100s of particles from their lattice sites.

  12. Dynamics and Control of a Reduced Order System of the 2-d Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Zribi, Mohamed

    2014-11-01

    The dynamics and control problem of a reduced order system of the 2-d Navier-Stokes (N-S) equations is analyzed. First, a seventh order system of nonlinear ordinary differential equations (ODE) which approximates the dynamical behavior of the 2-d N-S equations is obtained by using the Fourier Galerkin method. We show that the dynamics of this ODE system transforms from periodic solutions to chaotic attractors through a sequence of bifurcations including a period doubling scenarios. Then three Lyapunov based controllers are designed to either control the system of ODEs to a desired fixed point or to synchronize two ODE systems obtained from the truncation of the 2-d N-S equations under different conditions. Numerical simulations are presented to show the effectiveness of the proposed controllers. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM02/14.

  13. VizieR Online Data Catalog: c2d Spitzer final data release (DR4) (Evans+, 2003)

    NASA Astrophysics Data System (ADS)

    Evans, N. J., II; Allen, L. E.; Blake, G. A.; Boogert, A. C. A.; Bourke, T.; Harvey, P. M.; Kessler, J. E.; Koerner, D. W.; Lee, C. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Pontoppidan, K.; Sargent, A. I.; Stapelfeldt, K. R.; van Dishoeck, E. F.; Young, C. H.; Young, K. E.

    2014-05-01

    This is the final delivery (DR4, Fall 2006 and Fall 2007) of the Spitzer Space Telescope "From Molecular Cores to Planet-Forming Disks" (c2d) Legacy Project. The data are also available as Enhanced Products from the Spitzer Science Center (SSC). c2d has delivered 867 catalogs. IRSA has merged these delivered catalogs into four groups - Clouds, Off-Cloud, Cores, Stars - and serves them through the general catalog search engine Gator. Many of the delivered catalogs, images and spectra are accessible through IRSA's general search service, Atlas. As a service to its users, the CDS has downloaded a dataset containing most of the c2d data (but not all columns) from the IRSA archive. The individual catalogs are listed below: C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 High Reliability (HREL) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full CORES Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) CORES Catalog C2D Fall '07 Full STARS Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) STARS Catalog These tables have been merged into a single table at CDS. All three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) were used to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star-forming environments. (1 data file).

  14. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  15. ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH

    SciTech Connect

    Bildsten, Lars; Paxton, Bill; Moore, Kevin; Macias, Phillip J.

    2012-01-15

    All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled by space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.

  16. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  17. Robust elastic 2D/3D geometric graph matching

    NASA Astrophysics Data System (ADS)

    Serradell, Eduard; Kybic, Jan; Moreno-Noguer, Francesc; Fua, Pascal

    2012-02-01

    We present an algorithm for geometric matching of graphs embedded in 2D or 3D space. It is applicable for registering any graph-like structures appearing in biomedical images, such as blood vessels, pulmonary bronchi, nerve fibers, or dendritic arbors. Our approach does not rely on the similarity of local appearance features, so it is suitable for multimodal registration with a large difference in appearance. Unlike earlier methods, the algorithm uses edge shape, does not require an initial pose estimate, can handle partial matches, and can cope with nonlinear deformations and topological differences. The matching consists of two steps. First, we find an affine transform that roughly aligns the graphs by exploring the set of all consistent correspondences between the nodes. This can be done at an acceptably low computational expense by using parameter uncertainties for pruning, backtracking as needed. Parameter uncertainties are updated in a Kalman-like scheme with each match. In the second step we allow for a nonlinear part of the deformation, modeled as a Gaussian Process. Short sequences of edges are grouped into superedges, which are then matched between graphs. This allows for topological differences. A maximum consistent set of superedge matches is found using a dedicated branch-and-bound solver, which is over 100 times faster than a standard linear programming approach. Geometrical and topological consistency of candidate matches is determined in a fast hierarchical manner. We demonstrate the effectiveness of our technique at registering angiography and retinal fundus images, as well as neural image stacks.

  18. 2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2003-03-01

    With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.

  19. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  20. Longitudinal Diagnostics of Short Bunches at FLASH

    SciTech Connect

    Khan, Shaukat

    2009-01-22

    Novel acceleration concepts such as laser- or beam-driven plasma acceleration require advanced diagnostic techniques to characterize and monitor the beam. A particular challenge is to measure bunch lengths of the order of 10 femtoseconds. Several methods are currently explored at the free-electron laser FLASH at DESY/Hamburg and will be discussed it this paper, such as electro-optical sampling, streaking bunches with a transversely deflecting cavity, and -most recently implemented at FLASH--the optical-replica synthesizer, a laser-based technique promising a time resolution of a few femtoseconds.

  1. Probabilistic Flash Flood Forecasting using Stormscale Ensembles

    NASA Astrophysics Data System (ADS)

    Hardy, J.; Gourley, J. J.; Kain, J. S.; Clark, A.; Novak, D.; Hong, Y.

    2013-12-01

    Flash flooding is one of the most costly and deadly natural hazards in the US and across the globe. The loss of life and property from flash floods could be mitigated with better guidance from hydrological models, but these models have limitations. For example, they are commonly initialized using rainfall estimates derived from weather radars, but the time interval between observations of heavy rainfall and a flash flood can be on the order of minutes, particularly for small basins in urban settings. Increasing the lead time for these events is critical for protecting life and property. Therefore, this study advances the use of quantitative precipitation forecasts (QPFs) from a stormscale NWP ensemble system into a distributed hydrological model setting to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Rainfall error characteristics of the individual members are first diagnosed and quantified in terms of structure, amplitude, and location (SAL; Wernli et al., 2008). Amplitude and structure errors are readily correctable due to their diurnal nature, and the fine scales represented by the CAPS QPF members are consistent with radar-observed rainfall, mainly showing larger errors with afternoon convection. To account for the spatial uncertainty of the QPFs, we use an elliptic smoother, as in Marsh et al. (2012), to produce probabilistic QPFs (PQPFs). The elliptic smoother takes into consideration underdispersion, which is notoriously associated with stormscale ensembles, and thus, is good for targeting the approximate regions that may receive heavy rainfall. However, stormscale details contained in individual members are still needed to yield reasonable flash flood simulations. Therefore, on a case study basis, QPFs from individual members are then run through the hydrological model with their predicted structure and corrected amplitudes, but the locations of individual rainfall elements are perturbed within the PQPF elliptical regions using Monte

  2. Visualization of cavitating and flashing flows within a high aspect ratio injector

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew S.

    Thermal management issues necessitate the use of fuel as a heat sink for gas turbine and liquid rocket engines. There are certain benefits to using heated fuels, namely, increased sensible enthalpy, increased combustion efficiency, a decrease in certain emissions, and enhanced vaporization characteristics. However, the thermal and pressure enviornment inside an injector can result in the fuel flashing to vapor. Depending on the injector design, this can have deleterious effects on engine performance. As interest in heated fuels inreases, it is important to understand what occurs in the flow path of an injector under flashing conditions. At the High Pressure Laboratory at Purdue University's Maurice J. Zucrow Laboritories, a test rig was designed and built to give visual access into the flow path of a 2-D slot injector. The rig is capable of pressurizing and heating a liquid to superheated conditions and utilizes a pneumatically actuated piston to pusth the liquid through the slot injector. Methanol was chosen as a surrogate fuel to allow for high levels of superheat at relatively low temperatures. Testing was completed with acrylic and quartz injectors of varying L/DH. Flashing conditions inside the injector flow path were induced via a combination of heating and back pressure adjustments. Volume flow rate, pressure measurements, and temperature measurements were made which allowed the discharge characteristics, the level of superheat, and other parameters to be calculated and compared. To give a basis for comparison the flashing results are compared to the flow through the injector under cavitating conditions. Cavitation and flashing appear to be related phenomena and this relationship is shown. Bubble formation under cavitating or flashing conditions is observed to attenuate the injector's discharge characteristics. High speed videos of the flow field were also collected. Several flow regimes and flow structures, unique to these regimes, were observed. A

  3. OTD Observations of Continental US Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2007-01-01

    Lightning optical flash parameters (e.g., radiance, area, duration, number of optical groups, and number of optical events) derived from almost five years of Optical Transient Detector (OTD) data are analyzed. Hundreds of thousands of OTD flashes occurring over the continental US are categorized according to flash type (ground or cloud flash) using US National Lightning Detection Network TM (NLDN) data. The statistics of the optical characteristics of the ground and cloud flashes are inter-compared on an overall basis, and as a function of ground flash polarity. A standard two-distribution hypothesis test is used to inter-compare the population means of a given lightning parameter for the two flash types. Given the differences in the statistics of the optical characteristics, it is suggested that statistical analyses (e.g., Bayesian Inference) of the space-based optical measurements might make it possible to successfully discriminate ground and cloud flashes a reasonable percentage of the time.

  4. Acupuncture May Ease Hot Flashes for Breast Cancer Patients

    MedlinePlus

    ... medlineplus/news/fullstory_157996.html Acupuncture May Ease Hot Flashes for Breast Cancer Patients Italian trial finds ... News) -- Acupuncture can help alleviate the often-debilitating hot flashes that afflict many breast cancer patients, new ...

  5. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  6. Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-07-01

    The "reverse methanogenesis" hypothesis as the metabolic pathway of AOM has recently been supported in the novel ANME lineage ANME-2d in denitrifying anaerobic methane oxidation (DAMO). However, no previous studies have experimentally evaluated the reversal of methane oxidation and methane production in this archaea. In the present study, the metabolic reversibility of ANME-2d from AOM to methanogenesis was evaluated using H2/CO2 and acetate as substrates. The results showed that the system produced methane from H2/CO2 but not from acetate. However, the clone library and real-time PCR analysis of the culture showed that both the percentage and quantity of ANME-2d decreased significantly under this condition, while methanogen abundance increased. Further high-throughput sequencing results showed that the archaea community did not change at the fourth day after H2/CO2 was supplied, but changed profoundly after methanogenesis took place for 3 days. The percentage of DAMO archaea in the total archaea decreased obviously, while more methanogens grew up during this period. Comparatively, the bacteria community changed profoundly at the fourth day. These results indicated that ANME-2d might not reverse its metabolism to produce methane from H2/CO2 or acetate. After archaea were returned to DAMO conditions, DAMO activity decreased and the amount of ANME-2d continued to fall, implying that the lineage had suffered from severe injury and required a long recovery time. PMID:27026178

  7. Photorealistic rendering application to the design of LED flash lens

    NASA Astrophysics Data System (ADS)

    Chern, Jyh-Long

    2012-10-01

    LED flash module becomes popular in current mobile communication devices, such as for the smart phones and tablet. As a lighting apparatus for image taking, photo rendering performance is crucial. We explore the LED flash lens design with a stress of photorealistic rendering application toward a high-performance LED flash illumination.

  8. 49 CFR 234.217 - Flashing light units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Flashing light units. 234.217 Section 234.217... light units. (a) Each flashing light unit shall be properly positioned and aligned and shall be visible to a highway user approaching the crossing. (b) Each flashing light unit shall be maintained...

  9. A Geometric Boolean Library for 2D Objects

    Energy Science and Technology Software Center (ESTSC)

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  10. A Geometric Boolean Library for 2D Objects

    SciTech Connect

    McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.

  11. Use of Linear Induction Accelerators for Flash Radiography

    NASA Astrophysics Data System (ADS)

    Caporaso, George

    1998-04-01

    Induction accelerators have been used for over a decade as flash x-ray sources for radiography. A new machine is presently under construction at Los Alamos National Laboratory and a second machine is under design for installation adjacent to the first one to form the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. This second accelerator will provide a 2 microsecond pulse which will be subdivided by a fast kicker system to provide a sequence of four or more 70 ns pulses along a single line of sight. An advanced system to provide multiple pulses over a longer time interval and over many lines of sight will be discussed along with the technological advances in solid-state pulsed power, fast kickers and target systems necessary to make the concept a reality. *This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No.W-7405-Eng-48.

  12. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  13. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  14. Flash threshold of shocked aluminum silicofluoride

    SciTech Connect

    Bloom, G.H.

    1987-11-01

    For a 0.5-mm polycarbonate flier striking a 0.5-mm polycarbonate target, we found that a velocity of 1.42 km/s was necessary to cause aluminum silicofluoride sprayed on the far surface to flash. We calculated that the pressure in the polycarbonate was 2.93 GPa. 5 refs., 2 figs.

  15. Flash Cards and Animation Software for Education.

    ERIC Educational Resources Information Center

    Byers, John A.

    1999-01-01

    Describes how a software program for DOS/Windows manages a collection of pictures such as photographic slides, overheads, or computer images in one or more databases. Explains how it transforms image files to raw binary files that can then be displayed like flash cards, or as an animated series of images. (Author/LRW)

  16. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  17. Sight-Word Practice in a Flash!

    ERIC Educational Resources Information Center

    Erwin, Robin W., Jr.

    2016-01-01

    For learners who need sight-word practice, including young students and struggling readers, digital flash cards may promote automatic word recognition when used as a supplemental activity to regular reading instruction. A novel use of common presentation software efficiently supports this practice strategy.

  18. A polychromatic flash photolysis apparatus (PFPA).

    PubMed

    Uhl, R; Meyer, B; Desel, H

    1984-11-01

    A wide variety of biologically relevant chemical intermediates have been identified and characterised by their spectral properties. When rapid kinetics, i.e. rapid changes in these spectral properties are studied, the equipment designed for these studies (flash photolysis-, T-jump apparatus) usually allows only the registration of intensity changes of the monitoring light beam at one particular wavelength. Quite frequently, however, particularly in biological systems, the reactions of interest are too complex to be fully understood using single wavelength techniques. We have therefore designed and built a flash photolysis apparatus which permits the simultaneous recording of absorbance changes at 32 wavelengths, freely selectable between 300 and 1000 nm, as well as changes in fluorescence, luminescence, birefringence and light scattering. The apparatus, which we have called Polychromatic Flash Photolysis Apparatus (PFPA), acquires up to 8000 difference spectra per second with an amplitude resolution of better than 0.0001 absorbance unit. Data acquisition and activation of an actinic xenon flash unit occurs under computer control. The same computer is responsible for data storage, handling and graphic display. This communication describes the PFPA, its performance, and, as a demonstration of its potential usefulness, its application to the measurement of the light driven photocycle of bacterial rhodopsin, the proton pumping protein of Halobacterium halobium. PMID:6520324

  19. High-fidelity flash lidar model development

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-06-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  20. Flash Cards: Common Chinese-Cantonese Characters.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    This set of flash cards is designed to accompany the Defense Language Institute's instructional programs in Cantonese Chinese. Each card displays six Chinese characters, for a total of 1500 characters. Each character is printed two inches tall. Above each character are transcriptions of the Chinese words represented by the character (marked for…

  1. Flash Diffusivity Technique Applied to Individual Fibers

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Yowell, Leonard; Wang, Hsin

    2007-01-01

    A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.

  2. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  3. Novel GUCY2D Gene Mutations in Japanese Male Twins with Leber Congenital Amaurosis

    PubMed Central

    Hosono, Katsuhiro; Harada, Yuko; Kurata, Kentaro; Hikoya, Akiko; Sato, Miho; Minoshima, Shinsei; Hotta, Yoshihiro

    2015-01-01

    Purpose. Leber congenital amaurosis (LCA), a genetically and clinically heterogeneous disease, is the earliest onset retinitis pigmentosa (RP) and is the most severe of hereditary retinal dystrophies. This study was conducted to investigate genetic and clinical features of LCA in a set of Japanese male twins with LCA. Methods. To identify causative mutations, 74 genes known to cause RP or LCA were examined by targeted-next generation sequencing (NGS). Targeted-NGS was performed using a custom designed Agilent HaloPlex target enrichment kit with Illumina Miseq sequencer. Identified potential pathogenic mutations were confirmed using Sanger sequencing. Clinical analyses were based on ophthalmic examination, fundus photography, and electroretinography (ERG). Results. Compound heterozygous GUCY2D mutations of novel splicing mutation c.2113+2_2113+3insT and novel missense mutation p.L905P were detected in both twins. Their father and mother were heterozygous for c.2113+2_2113+3insT and p.L905P, respectively. The twins had phenotypic features similar to those previously reported in patients with GUCY2D mutations. This included early childhood onset of visual loss, nystagmus, unrecordable ERG, photophobia, and hyperopia. Conclusions. To the best of our knowledge, this is the first report of genetic and clinical features of Japanese LCA twins with GUCY2D mutation, which were detected using targeted-NGS. PMID:26097748

  4. FLASH MHD simulations of experiments that study shock-generated magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2015-12-01

    We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.

  5. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  6. Global optical lightning flash rates determined with the Forte satellite

    SciTech Connect

    Light, T.; Davis, S. M.; Boeck, W. L.; Jacobson, A. R.; Suszcynsky, D. M.

    2003-01-01

    Using FORTE photodiode detector (PDD) observations of lightning, we have determined the geographic distribution of nighttime flash rate density. We estimate the PDD flash detection efficiency to be 62% for total lightning through comparison to lightning observations by the TRMM satellite's Lightning Imaging Sensor (LIS), using cases in which FORTE and TRMM viewed the same storm. We present here both seasonal and l,ot,al flash rate maps. We examine some characteristics of the optical emissions of lightning in both high and low flash rate environments, and find that while lightning occurs less frequently over ocean, oceanic lightning flashes are somewhat more powerful, on average, than those over land.

  7. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  8. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  9. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  10. The structure of lightning flashes HF-UHF: 12 September 1975, Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Jenkins, H. H.; Wilson, B. J.; Wilson, C. S.

    1976-01-01

    Simultaneous measurement of sferics at 3, 30, 139, and 295 MHz were made during thunderstorms. Wideband electronics and an analogue tape recorder continuously recorded the radiation from lightning with about 300 kHz of bandwidth. The data were obtained during the passage of a cold front. Flashing rate, burst rate and the structure of individual flashes were recorded. The record of a typical flash begins with a sudden burst of closely spaced pulses whose temporal structure is typical of the stepped leader, and ends in a large pulse suggestive of a first return stroke. The remainder of the flash consists of a sequence of pulses of varying amplitude separated by quiet periods of the order of milliseconds. The shape of these pulses and the temporal structure suggest that the first few large pulses are return strokes. Other discharges begin with widely spaced discrete pulses and resemble the preceding discharge less the leader and return stroke phase. The radiation exhibits a similar structure, at each of the frequencies monitored.

  11. Unitary quantum lattice gas representation of 2D quantum turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min

    2011-05-01

    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.

  12. CYP2D6 polymorphism in patients with eating disorders.

    PubMed

    Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A

    2012-04-01

    CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302

  13. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306

  14. Resistivity inversion in 2-D anisotropic media: numerical experiments

    NASA Astrophysics Data System (ADS)

    Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent

    2015-04-01

    Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.

  15. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  16. Matter Flashed at Ultra Speed

    NASA Astrophysics Data System (ADS)

    2007-06-01

    "REM observations of GRB060418 and GRB060607A: the onset of the afterglow and the initial fireball Lorentz factor determination", by E. Molinari, S. D. Vergani, D. Malesani, S. Covino, et al. The paper is available at http://dx.doi.org/10.1051/0004-6361:20077388 (A&A, 469, L13-L16, 2007). The REM team is formed by G. Chincarini, E. Molinari, F.M. Zerbi, L.A. Antonelli, S. Covino, P. Conconi, L. Nicastro, E. Palazzi, M. Stefanon, V. Testa, G. Tosti, F. Vitali, A. Monfardini, F. D'Alessio, P. D'Avanzo, D. Fugazza, G. Malaspina, S. Piranomonte, S.D. Vergani, P.A. Ward, S. Campana, P. Goldoni, D. Guetta, D. Malesani, N. Masetti, E.J.A. Meurs, L. Norci, E. Pian, A. Fernandez-Soto, L. Stella, G. Tagliaferri, G. Ihle, L. Gonzalez, A. Pizarro, P. Sinclair, and J. Valenzuela. Notes Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. They come in two different flavours, long and short ones. Over the past few years, international efforts have convincingly shown that long gamma-ray bursts are linked with the ultimate explosion of massive stars (hypernovae; see e.g. ESO PR 16/03) while the short ones most likely originate from the violent collision of neutron stars and/or black holes (see e.g. ESO PR 26/05 and 32/05). Irrespective of the original source of the GRB energy, the injection of so much energy into a confined volume will cause a fireball to form. Gamma-ray photons have nearly a million times more energy than the 'visual' photons the eye can see. Strictly speaking, the Lorentz factor is the ratio between the total and rest-mass energy of the fireball. REM (Rapid Eye Mount) is a small (60 cm mirror diameter) rapid reaction automatic telescope dedicated to monitor the prompt afterglow of Gamma Ray Burst events. It is located at the ESO La Silla Observatory in Chile. For more information, see

  17. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  18. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  19. R2d2 Drives Selfish Sweeps in the House Mouse

    PubMed Central

    Didion, John P.; Morgan, Andrew P.; Yadgary, Liran; Bell, Timothy A.; McMullan, Rachel C.; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J.; Campbell, Karl J.; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J.; Crowley, James J.; Chesler, Elissa J.; Förster, Daniel W.; French, John E.; Gabriel, Sofia I.; Gatti, Daniel M.; Garland, Theodore; Giagia-Athanasopoulou, Eva B.; Giménez, Mabel D.; Grize, Sofia A.; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C.; Herman, Jeremy S.; Holt, James M.; Hua, Kunjie; Jolley, Wesley J.; Lindholm, Anna K.; López-Fuster, María J.; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P.; Searle, Jeremy B.; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L.; Thomas-Laemont, Patricia; Threadgill, David W.; Ventura, Jacint; Weinstock, George M.; Pomp, Daniel; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2016-01-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether “selfish” genes are capable of fixation—thereby leaving signatures identical to classical selective sweeps—despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. PMID:26882987

  20. Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T

    PubMed Central

    Haas, Martin; Darji, Niravkumar; Speck, Oliver

    2015-01-01

    Background In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. Materials and methods A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. Results Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). Conclusions Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra. PMID:26029637

  1. R2d2 Drives Selfish Sweeps in the House Mouse.

    PubMed

    Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2016-06-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. PMID:26882987

  2. CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.

  3. Active Flash: Out-of-core Data Analytics on Flash Storage

    SciTech Connect

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S; Desnoyers, Peter; Shipman, Galen M

    2012-01-01

    Next generation science will increasingly come to rely on the ability to perform efficient, on-the-fly analytics of data generated by high-performance computing (HPC) simulations, modeling complex physical phenomena. Scientific computing workflows are stymied by the traditional chaining of simulation and data analysis, creating multiple rounds of redundant reads and writes to the storage system, which grows in cost with the ever-increasing gap between compute and storage speeds in HPC clusters. Recent HPC acquisitions have introduced compute node-local flash storage as a means to alleviate this I/O bottleneck. We propose a novel approach, Active Flash, to expedite data analysis pipelines by migrating to the location of the data, the flash device itself. We argue that Active Flash has the potential to enable true out-of-core data analytics by freeing up both the compute core and the associated main memory. By performing analysis locally, dependence on limited bandwidth to a central storage system is reduced, while allowing this analysis to proceed in parallel with the main application. In addition, offloading work from the host to the more power-efficient controller reduces peak system power usage, which is already in the megawatt range and poses a major barrier to HPC system scalability. We propose an architecture for Active Flash, explore energy and performance trade-offs in moving computation from host to storage, demonstrate the ability of appropriate embedded controllers to perform data analysis and reduction tasks at speeds sufficient for this application, and present a simulation study of Active Flash scheduling policies. These results show the viability of the Active Flash model, and its capability to potentially have a transformative impact on scientific data analysis.

  4. Independent verification and validation testing of the FLASH computer code, Versiion 3.0

    SciTech Connect

    Martian, P.; Chung, J.N.

    1992-06-01

    Independent testing of the FLASH computer code, Version 3.0, was conducted to determine if the code is ready for use in hydrological and environmental studies at various Department of Energy sites. This report describes the technical basis, approach, and results of this testing. Verification tests, and validation tests, were used to determine the operational status of the FLASH computer code. These tests were specifically designed to test: correctness of the FORTRAN coding, computational accuracy, and suitability to simulating actual hydrologic conditions. This testing was performed using a structured evaluation protocol which consisted of: blind testing, independent applications, and graduated difficulty of test cases. Both quantitative and qualitative testing was performed through evaluating relative root mean square values and graphical comparisons of the numerical, analytical, and experimental data. Four verification test were used to check the computational accuracy and correctness of the FORTRAN coding, and three validation tests were used to check the suitability to simulating actual conditions. These tests cases ranged in complexity from simple 1-D saturated flow to 2-D variably saturated problems. The verification tests showed excellent quantitative agreement between the FLASH results and analytical solutions. The validation tests showed good qualitative agreement with the experimental data. Based on the results of this testing, it was concluded that the FLASH code is a versatile and powerful two-dimensional analysis tool for fluid flow. In conclusion, all aspects of the code that were tested, except for the unit gradient bottom boundary condition, were found to be fully operational and ready for use in hydrological and environmental studies.

  5. Independent verification and validation testing of the FLASH computer code, Versiion 3. 0

    SciTech Connect

    Martian, P.; Chung, J.N. . Dept. of Mechanical and Materials Engineering)

    1992-06-01

    Independent testing of the FLASH computer code, Version 3.0, was conducted to determine if the code is ready for use in hydrological and environmental studies at various Department of Energy sites. This report describes the technical basis, approach, and results of this testing. Verification tests, and validation tests, were used to determine the operational status of the FLASH computer code. These tests were specifically designed to test: correctness of the FORTRAN coding, computational accuracy, and suitability to simulating actual hydrologic conditions. This testing was performed using a structured evaluation protocol which consisted of: blind testing, independent applications, and graduated difficulty of test cases. Both quantitative and qualitative testing was performed through evaluating relative root mean square values and graphical comparisons of the numerical, analytical, and experimental data. Four verification test were used to check the computational accuracy and correctness of the FORTRAN coding, and three validation tests were used to check the suitability to simulating actual conditions. These tests cases ranged in complexity from simple 1-D saturated flow to 2-D variably saturated problems. The verification tests showed excellent quantitative agreement between the FLASH results and analytical solutions. The validation tests showed good qualitative agreement with the experimental data. Based on the results of this testing, it was concluded that the FLASH code is a versatile and powerful two-dimensional analysis tool for fluid flow. In conclusion, all aspects of the code that were tested, except for the unit gradient bottom boundary condition, were found to be fully operational and ready for use in hydrological and environmental studies.

  6. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  7. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  8. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.

    PubMed

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206

  9. A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy

    PubMed Central

    Pippucci, Tommaso; Parmeggiani, Antonia; Palombo, Flavia; Maresca, Alessandra; Angius, Andrea; Crisponi, Laura; Cucca, Francesco; Liguori, Rocco; Valentino, Maria Lucia; Seri, Marco; Carelli, Valerio

    2013-01-01

    Contribution to epileptic encephalopathy (EE) of mutations in CACNA2D2, encoding α2δ-2 subunit of Voltage Dependent Calcium Channels, is unclear. To date only one CACNA2D2 mutation altering channel functionality has been identified in a single family. In the same family, a rare CELSR3 polymorphism also segregated with disease. Involvement of CACNA2D2 in EE is therefore not confirmed, while that of CELSR3 is questionable. In a patient with epilepsy, dyskinesia, cerebellar atrophy, psychomotor delay and dysmorphic features, offspring to consanguineous parents, we performed whole exome sequencing (WES) for homozygosity mapping and mutation detection. WES identified extended autozygosity on chromosome 3, containing two novel homozygous candidate mutations: c.1295delA (p.Asn432fs) in CACNA2D2 and c.G6407A (p.Gly2136Asp) in CELSR3. Gene prioritization pointed to CACNA2D2 as the most prominent candidate gene. The WES finding in CACNA2D2 resulted to be statistically significant (p = 0.032), unlike that in CELSR3. CACNA2D2 homozygous c.1295delA essentially abolished α2δ-2 expression. In summary, we identified a novel null CACNA2D2 mutation associated to a clinical phenotype strikingly similar to the Cacna2d2 null mouse model. Molecular and statistical analyses together argued in favor of a causal contribution of CACNA2D2 mutations to EE, while suggested that finding in CELSR3, although potentially damaging, is likely incidental. PMID:24358150

  10. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  11. Risperidone-associated adverse drug reactions and CYP2D6 polymorphisms in a South African cohort

    PubMed Central

    Dodgen, Tyren M.; Eloff, Arinda; Mataboge, Connie; Roos, Louw (.J.L.).; van Staden, Werdie (.C.W.).; Pepper, Michael S.

    2015-01-01

    Background Contradictory information exists regarding the influence of CYP2D6 polymorphisms on adverse drug reactions (ADRs) (extrapyramidal symptoms (EPS) and weight gain) related to risperidone treatment. This prompted us to evaluate the influence of CYP2D6 genetic variation in a cohort of South African patients who presented with marked movement disorders and/or weight gain while on risperidone treatment. Methods Patients who were experiencing marked risperidone ADRs were recruited from Weskoppies Public Psychiatric Hospital. As poor or intermediate metabolism was expected, comprehensive CYP2D6 sequence variations were evaluated using XL-PCR + Sequencing. Results No statistically significant association was found between CYP2D6 poor metabolism and risperidone ADRs. An inverse relationship between EPS and weight gain was however identified. A novel CYP2D6 allele was identified which is unlikely to affect metabolism based on in silico evaluation. Conclusion CYP2D6 variation appeared not to be a good pharmacogenetic marker for predicting risperidone-related ADRs in this naturalistic South African cohort. Evaluation of a larger cohort would be needed to confirm these observations, including an examination of the role of potential intermediaries between the hypothesised genetic and clinical phenotypes. PMID:26937359

  12. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  13. Recent advances in 2D materials for photocatalysis

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-03-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  14. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  15. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  16. Characterizing flash-radiography source spots.

    PubMed

    Ekdahl, Carl

    2011-12-01

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. The size of the radiographic source spot is often quoted as an indication of the resolving power of a particular flash-radiography machine. A variety of techniques for measuring spot size have evolved at the different laboratories, as well as different definitions of spot size. Some definitions are highly dependent on the source spot intensity distributions, and not necessarily well correlated with resolution. The concept of limiting resolution based on bar target measurements is introduced, and shown to be equivalent to the spatial wavenumber at a modulation transfer function value of 5%. This resolution is shown to be better correlated with the full width at half-maximum of the spot intensity distribution than it is with other definitions of spot size. PMID:22193263

  17. Electrical Safety and Arc Flash Protections

    SciTech Connect

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  18. Continuous flash suppression reduces negative afterimages.

    PubMed

    Tsuchiya, Naotsugu; Koch, Christof

    2005-08-01

    Illusions that produce perceptual suppression despite constant retinal input are used to manipulate visual consciousness. Here we report on a powerful variant of existing techniques, continuous flash suppression. Distinct images flashed successively at approximately 10 Hz into one eye reliably suppress an image presented to the other eye. The duration of perceptual suppression is at least ten times greater than that produced by binocular rivalry. Using this tool we show that the strength of the negative afterimage of an adaptor was reduced by half when it was perceptually suppressed by input from the other eye. The more completely the adaptor was suppressed, the more strongly the afterimage intensity was reduced. Paradoxically, trial-to-trial visibility of the adaptor did not correlate with the degree of reduction. Our results imply that formation of afterimages involves neuronal structures that access input from both eyes but that do not correspond directly to the neuronal correlates of perceptual awareness. PMID:15995700

  19. TsunaFLASH Benchmark and Its Verifications

    NASA Astrophysics Data System (ADS)

    Pranowo, Widodo; Behrens, Joern

    2010-05-01

    In the end of year 2008 TsunAWI (Tsunami unstructured mesh finite element model developed at Alfred Wegener Institute) by Behrens et al. (2006 - 2008) [Behrens, 2008], had been launched as an operational model in the German - Indonesian Tsunami EarlyWarning System (GITEWS) framework. This model has been benchmarked and verified with 2004 Sumatra-Andaman mega tsunami event [Harig et al., 2008]. A new development uses adaptive mesh refinement to improve computational efficiency and accuracy, this approach is called TsunaFLASH [Pranowo et al., 2008]. After the initial development and verification phase with stabilization efforts, and study of refinement criteria, the code is now mature enough to be validated with data. This presentation will demonstrate results of TsunaFLASH for the experiments with diverse mesh refinement criteria, and benchmarks; in particular the problem set-1 of IWLRM, and field data of the Sumatra-Andaman 2004 event.

  20. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  1. Optical spectra of FLASH generated plasmas

    NASA Astrophysics Data System (ADS)

    Stránský, M.; Rohlena, Karel

    2014-05-01

    Time integrated measurements of optical spectra of the plasma generated by pulses of the free electron laser facility FLASH on a solid target at DESY Hamburg are interpreted in terms of plasma hydrodynamics. It is shown that the main contribution to the optical range comes from the expanding stage of the plasma evolution on a ns scale, whereas the UV part is partially obscured by the optically dense outstreaming plasma near the ablated hole.

  2. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  3. Advances in flash flood monitoring using UAVs

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Russell, Andrew; Large, Andrew

    2016-04-01

    UAVs have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomenon may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilising the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 - 0.13m. The application of this approach to assess the hydraulic conditions present in Alyth Burn, Scotland during a 1:200 year flash flood resulted in the generation of an average 4.2 measurements/m2 at a rate of 508 measurements/s. Analysis of these vectors provide a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low with a spatial average across the area of ± 0.15m/s. Little difference is observed in the uncertainty attached to out-of-bank velocities (± 0.15m/s), and within-channel velocities (± 0.16m/s), illustrating the consistency of the approach.

  4. Thermonuclear flashes on accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1979-01-01

    Observations of X-ray bursts from binary pulsars and globular clusters are reviewed. The previously proposed hypothesis is considered that such X-ray bursts result from thermonuclear flashes on accreting neutron stars. A general scenario for this mechanism is outlined, and numerical computations of the evolution of the surface layers of an accreting neutron star are discussed. The relation of these calculations to X-ray bursts and other phenomena is examined. Possible improvements in the numerical calculations are suggested.

  5. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  6. The Mars Rover Spirit FLASH anomaly

    NASA Technical Reports Server (NTRS)

    Reeves, Glenn E.; Neilson, Tracy C.

    2005-01-01

    The Mars Exploration Rover 'Spirit' suffered a debilitating anomaly that prevented communication with Earth for several anxious days. With the eyes of the world upon us, the anomaly team used each scrap of information, our knowledge of the system, and sheer determination to analyze and fix the problem, then return the vehicle to normal operation. This paper will discuss the Spirit FLASH anomaly, including the drama of the investigation, the root cause and the lessons learned from the experience.

  7. Gated cardiac NMR imaging and 2D echocardiography in the detection of intracardial neoplasm

    SciTech Connect

    Go, R.T.; O'Donnell, J.K.; Salcedo, E.E.; Feiglin, D.H.; Underwood, D.A.; MacIntyre, W.J.; Meaney, T.F.

    1985-05-01

    Noninvasive 2D echocardiography has replaced contrast angiography as the procedure of choice in the diagnosis of intracardiac neoplasm. The purpose of this study was to determine whether intracardiac neoplasm can be detected as well by gated cardiac NMR. Four patients with known intracardiac neoplasm previously diagnosed by 2D echocardiography had gated cardiac NMR imaging using a superconductive 0.6 Tesla magnet. All patients were performed using a Tl weighted spin echo pulse sequence with a TE of 30 msec and TR of one R-R interval. Two-dimensional planar single or multiple slice techniques were used. In one patient, imaging at different times along the R-R interval were performed for cine display. The results of the present study show detection of the intracardiac neoplasm in all four cases by gated cardiac NMR imaging and the results were comparable to 2D echocardiography. The former imaging technique showed superior spatial resolution. Despite its early stage of development, gated cardiac NMR imaging appears at least equal to 2D echocardiography in the detection of intracardiac neoplasm. The availability of multislice coupled with multiframe acquisition techniques now being developed will provide a cinematic display that will be more effective in the display of the tumor in motion within the cardiac chamber involved and facilitate visualization of the relationship of the tumor to adjacent cardiac structures.

  8. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces. PMID:19947603

  9. Priority depth fusion for the 2D to 3D conversion system

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Chen, Wei-Yin; Chang, Jing-Ying; Tsai, Yi-Min; Lee, Chia-Lin; Chen, Liang-Gee

    2008-02-01

    For the sake of providing 3D contents for up-coming 3D display devices, a real-time automatic depth fusion 2D-to-3D conversion system is needed on the home multimedia platform. We proposed a priority depth fusion algorithm with a 2D-to-3D conversion system which generates the depth map from most of the commercial video sequences. The results from different kinds of depth reconstruction methods are integrated into one depth map by the proposed priority depth fusion algorithm. Then the depth map and the original 2D image are converted to stereo images for showing on the 3D display devices. In this paper, a 2D-to-3D conversion algorithm set is combined with the proposed depth fusion algorithm to show the improved results. With the converted 3D contents, the needs for 3D display devices will also increase. As long as the two technologies evolve, the 3D-TV era will come as soon as possible.

  10. Clustering and synchronization of lightning flashes in adjacent thunderstorm cells from lightning location networks data

    NASA Astrophysics Data System (ADS)

    Yair, Yoav Y.; Aviv, Reuven; Ravid, Gilad

    2009-05-01

    We analyzed sequences of lightning flashes in several thunderstorms on the basis of data from various ground-based lightning location systems. We identified patterns of clustering and synchronicity of flashes in separate thunderstorm cells, distanced by tens to hundreds of kilometers from each other. This is in-line with our early findings of lightning synchronicity based on space shuttle images (Yair et al., 2006), hinting at a possible mutual electromagnetic coupling of remote thunderstorms. We developed a theoretical model that is based on the leaky integrate-and-fire concept commonly used in models of neural activity, in order to simulate the flashing behavior of a coupled network of thunderstorm cells. In this type of network, the intensity of the electric field Ei within a specific region of thunderstorm (i) grows with time until it reaches the critical breakdown value and generates a lightning flash while its electric field drops to zero, simultaneously adding a delta E to the intensity of the internal electric field in all thundercloud cells (Ej,k,l…) that are linked to it. The value of ΔE is inversely proportional to the distance between the "firing" cell i and its neighbors j, k, l; we assumed that thunderstorm cells are not identical and occupy a grid with random spacing and organization. Several topologies of the thunderstorm network were tested with varying degrees of coupling, assuming a predetermined probability of links between active cells. The results suggest that when the group coupling in the network is higher than a certain threshold value, all thunderstorm cells will flash in a synchronized manner.

  11. FILTR: Flash Isotope Library and Training Resource

    SciTech Connect

    Campbell, D; Trombino, D

    2007-07-26

    The subject of radiation detection is replete with complex concepts and challenging nomenclature. Furthermore, a daunting variety of radioactive isotopes may be encountered during the routine operation of a radiation detector. Individuals tasked with searching for illicit sources of radiation must remain vigilant while navigating through more frequently encountered mundane and legitimate radioactive sources. The Flash Isotope Library and Training Resource (FILTR) is being developed as an easily accessible and intuitive reference tool to manage the high volume of complex information required for this task. FILTR is an extended version of the Primary Utility for Nuclear Terminology (PUNT) software developed by the Counter Measures Test Beds group at Lawrence Livermore National Laboratory for the United States Secret Service. Authored in the Flash multimedia development environment, FILTR contains detailed information on potentially encountered isotopes as well as training on radiation and operational procedures. Reference material is organized to present critical information quickly while facilitating more in-depth investigation through an intuitive interface and engaging content. FILTR is being developed for a diverse audience of law enforcement organizations and government agencies and a wide range of skill sets from expert analysts to officers whose primary role is not radiation detection. Additionally, the wide compatibility of Flash content will allow FILTR to be readily accessible through the growing number of multi-media enabled electronic devices, including PDAs and cellular phones.

  12. Versatile LLRF platform for FLASH laser

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Paweł; Koprek, Waldemar; Poźniak, Krzysztof T.; Romaniuk, Ryszard S.

    2008-01-01

    Research in physics, biology, chemistry, pharmacology, material research and in other branches more and more frequently use free electron lasers as a source of very intense, pulsed and coherent radiation spanning from optical, via UV to X-ray EM beams. The paper presents FLASH laser, which now generates VUV radiation in the range of 10-50nm. The role of low level radio frequency (LLRF) control system is shown in a superconductive linear accelerator. The electron beam from accelerator is injected to the undulator, where it is "converted" to a photon beam. The used LLRF system is based on FPGA circuits integrated directly with a number of analog RF channels. Main part of the work describes an original authors' solution of a universal LLRF control module for superconductive, resonant cavities of FLASH accelerator and laser. A modular construction of the module was debated. The module consists of a digital part residing on the base platform and exchangeable analog part positioned on a number of daughter-boards. The functional structure of the module was presented and in particular the FPGA implementation with configuration and extension block for RF mezzanine boards. The construction and chosen technological details of the backbone PCB were presented. The paper concludes with a number of application examples of the constructed and debugged module in the LLRF system of FLASH accelerator and laser. There are presented exemplary results of quality assessment measurements of the new system board.

  13. Flash floods in Catalonia: a recurrent situation

    NASA Astrophysics Data System (ADS)

    Llasat, M. C.; Llasat-Botija, M.; Rodriguez, A.; Lindbergh, S.

    2010-09-01

    This work focuses on the analysis and characterization of the flash flood events occurring during summer in Catalonia. To this aim, a database with information about the social impact produced by all flood events recorded in Catalonia between 1982 and 2007 has been built. The social impact was obtained systematically on the basis of news press data and, occasionally, on the basis of insurance data. Flood events have been classified into ordinary, extraordinary and catastrophic floods, following the proposal of Llasat et al.~(2005). However, bearing in mind flash flood effects, some new categories concerning casualties and car damage have also been introduced. The spatial and temporal distribution of these flood events has been analyzed and, in an effort to better estimate the social impact and vulnerability, some indicators have been defined and analyzed for a specific region. These indicators allow an analysis of spacial and temporal trends as well as characterization of the events. Results show a flash-flood increase in summer and early autumn, mainly due to inter-annual and intra-annual changes in population density.

  14. Natural lightning flashes: from observation to modeling

    NASA Astrophysics Data System (ADS)

    Defer, E.; Farges, T.; Barthe, C.; Bovalo, C.; Pinty, J.-P.; Chong, M.; Soula, S.; Ortéga, P.

    2011-12-01

    Different ground-based and space-based sensors are currently used to characterize and locate Earth lightning flashes like VHF mappers, VLF systems with short or long baseline, optical CCD camera and more recently microphone arrays. Concurrent observations with such equipments offer a unique description of the different processes occurring during the life of a lightning flash (triggering phase, leader development and junction phase). While the detection of lightning flashes becomes mature, more challenging investigations are still needed on i{)} Lightning Nitrogen Oxide (LINOx) production and on ii{)} the modeling of natural lightning discharges, even if ''engineer'' lightning schemes combined with electrification schemes are already implemented in numerical cloud resolving models. The PEACH project, the Atmospheric Electricity component of the upcoming field experiment HyMeX, will offer a unique opportunity for the European community to document and characterize the Mediterranean lightning activity with observations and modeling from the lightning scale to the regional scale and to gather the French community in preparation for the validation of future space-based missions like TARANIS and MTG-LI and for the interpretation of their lightning observations.

  15. The 20 February 2010 Madeira flash flood

    NASA Astrophysics Data System (ADS)

    Miranda, P. M. A.; Tomé, R.; Azevedo, E. B.; Cardoso, R. M.

    2010-09-01

    On February 20, 2010, Madeira Island was struck by a violent rain storm, which led to a major flash flood leading to more than 50 casualties and an estimated property loss above 1G€. The storm was not well forecasted by the Institute of Meteorology, based on the global ECMWF forecast. However, the operational forecasts made by our group at the University of Lisbon, with MM5 and WRF at 2 km resolution, consistently indicated heavy precipitation for that day, starting on the 72h from 18 February at 00 UTC, and including all intermediate forecasts, issued every 12h, until the day of the event. At the same time, many important details of the forecasts, concerning in particular the timing of precipitation in low level stations, have discrepancies with observations. In the present study we analyze not only the quality of the high resolution forecasts of the rain storm, with the two models at different resolutions, but also review the MM5 model performance in all forecasts from 2006 to 2010, where other important orographic precipitation events have occurred, but no flash flood was triggered. The analysis emphasizes the relative importance of the state of the terrain, due to accumulated precipitation in days and weeks before a major rain storm, in the occurrence of flash floods.

  16. Flash LIDAR Emulator for HIL Simulation

    NASA Technical Reports Server (NTRS)

    Brewster, Paul F.

    2010-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.

  17. Space Radiation Effects in Advanced Flash Memories

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2001-01-01

    Memory storage requirements in space systems have steadily increased, much like storage requirements in terrestrial systems. Large arrays of dynamic memories (DRAMs) have been used in solid-state recorders, relying on a combination of shielding and error-detection-and correction (EDAC) to overcome the extreme sensitivity of DRAMs to space radiation. For example, a 2-Gbit memory (with 4-Mb DRAMs) used on the Clementine mission functioned perfectly during its moon mapping mission, in spite of an average of 71 memory bit flips per day from heavy ions. Although EDAC worked well with older types of memory circuits, newer DRAMs use extremely complex internal architectures which has made it increasingly difficult to implement EDAC. Some newer DRAMs have also exhibited catastrophic latchup. Flash memories are an intriguing alternative to DRAMs because of their nonvolatile storage and extremely high storage density, particularly for applications where writing is done relatively infrequently. This paper discusses radiation effects in advanced flash memories, including general observations on scaling and architecture as well as the specific experience obtained at the Jet Propulsion Laboratory in evaluating high-density flash memories for use on the NASA mission to Europa, one of Jupiter's moons. This particular mission must pass through the Jovian radiation belts, which imposes a very demanding radiation requirement.

  18. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  19. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  20. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  1. Collective excitations in 2D hard-disc fluid.

    PubMed

    Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij

    2015-07-01

    Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625

  2. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  3. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  4. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  5. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  6. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  7. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  8. Efficient framework for deformable 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Fluck, Oliver; Aharon, Shmuel; Khamene, Ali

    2008-03-01

    Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.

  9. Computational Design of 2D materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2015-03-01

    Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.

  10. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  11. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  12. A Quantitative Approach to Flash Flood Prediction in Southern Utah

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Gibson, C. V.; Jackson, M.; McInerney, B.

    2005-05-01

    Flash flood monitoring and prediction is considered to be a critical part of National Weather Service (NWS) severe weather operations in the semi-arid western United States. The complex terrain and steep slopes in this area, combined with impervious rock and soils, can induce flash flooding with relatively light rainfall. This reduces the value of using the more common conceptual flash flood models developed for the central and eastern United States. Thus, forecasters at the NWS Weather Forecast Office in Salt Lake City, Utah, have relied on a locally developed conceptual model to predict the likelihood of flash flooding on a given day. Until this study, common practice was to assume that humid and unstable air combined with low wind speeds in the lower troposphere would yield rainfall conductive to flash flooding. A new approach to flash flood prediction, exploring the connection between atmospheric variables and flash flood reports, will increase situational awareness and provide forecasters with quantitative flash flood guidance. A record of historical flash floods in southern Utah was compiled to determine the frequency of events from 1959 to 2003. A complete data set, consisting of both historical flash flooding days and non-event days, was assembled. A trial of the 2003 three-month flash flood season assessed which variables and which dataset to use in studying the eight flash flood seasons from 1996 to 2003; the trial concluded that the best source of atmospheric data was a set of soundings from Flagstaff, Arizona, a location close to and generally upstream of southern Utah. Neural networks were used to determine the relationship between the atmospheric state and a particular day's flash flood severity. The final neural network used six input variables and a discretized output variable. Precipitable water, low-level relative humidity, convective available potential energy, the 500hPa height change between 12Z and 0Z the following day, and the previous day

  13. Flashing characters with famous faces improves ERP-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.

  14. Flashing characters with famous faces improves ERP-based brain-computer interface performance.

    PubMed

    Kaufmann, T; Schulz, S M; Grünzinger, C; Kübler, A

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller. PMID:21934188

  15. Effect of motion smoothness on the flash-lag illusion.

    PubMed

    Rizk, Jacques K; Chappell, Mark; Hine, Trevor J

    2009-08-01

    Two flash-lag experiments were performed in which the moving object was flashed in a succession of locations creating apparent motion and the inter-stimulus distance (ISD) between those locations was varied. In the first (n=10), the size of the flash-lag illusion was a declining non-linear function of the ISD and the largest reduction in its magnitude corresponded closely to the value where observers judged the continuity of optimal apparent motion to be lost. In the second (n=11) with large ISDs, we found the largest illusions when the flash initiated the movement, and no effect was observed when the flash terminated the movement. The data support motion position biasing or temporal integration accounts of the illusion with processing predominantly based on motion after the flash. PMID:19531367

  16. Arc Flash Boundary Calculations Using Computer Software Tools

    SciTech Connect

    Gibbs, M.D.

    2005-01-07

    Arc Flash Protection boundary calculations have become easier to perform with the availability of personal computer software. These programs incorporate arc flash protection boundary formulas for different voltage and current levels, calculate the bolted fault current at each bus, and use built in time-current coordination curves to determine the clearing time of protective devices in the system. Results of the arc flash protection boundary calculations can be presented in several different forms--as an annotation to the one-line diagram, as a table of arc flash protection boundary distances, and as printed placards to be attached to the appropriate equipment. Basic arc flash protection boundary principles are presented in this paper along with several helpful suggestions for performing arc flash protection boundary calculations.

  17. Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms

    PubMed Central

    Hetling, John R; Pepperberg, David R

    1999-01-01

    Electroretinograms (ERGs) were recorded corneally from C57BL/6J mice using a paired-flash procedure in which a brief test flash at time zero was followed at time tprobe by a bright probe flash of fixed strength, and in which the probe response amplitude was determined at time t=tprobe+ 6 ms. Probe responses obtained in a series of paired-flash trials were analysed to derive A(t), a family of amplitudes that putatively represents the massed response of the rod photoreceptors to the test flash. A central aim was to obtain a mathematical description of the normalized derived response A(t)/Amo as a function of Itest, the test flash strength. With fixed tprobe (80 ≤tprobe≤ 1200 ms), A(t)/Amo was described by the saturating exponential function [1 - exp(-ktItest)], where kt is a time-dependent sensitivity parameter. For t= 86 ms, a time near the peak of A(t), k86 was 7·0 ± 1·2 (scotopic cd s m−2)−1 (mean ± s.d.; n= 4). A(t)/Amo data were analysed in relation to the equation below, a time-generalized form of the above exponential function in which (k86Itest) is replaced by the product [k86Itestu(t)], and where u(t) is independent of the test flash strength. The function u(t) was modelled as the product of a scaling factor γ, an activation term 1 - exp[-α(t - td)2]}, and a decay term exp(-t/τω):where td is a brief delay, τω is an exponential time constant, and α characterizes the acceleration of the activation term. For Itest up to ∼2·57 scotopic cd s m−2, the overall time course of A(t) was well described by the above equation with γ= 2·21, td= 3·1 ms, τω= 132 ms and α= 2·32 × 10−4 ms−2. An approximate halving of α improved the fit of the above equation to ERG a-wave and A(t)/Amo data obtained at t about 0-20 ms. Kinetic and sensitivity properties of A(t) suggest that it approximates the in vivo massed photocurrent response of the rods to a test flash, and imply that u(t) in the above equation is the approximate kinetic description of

  18. Susceptibility to the Flash-Beep Illusion Is Increased in Children Compared to Adults

    ERIC Educational Resources Information Center

    Innes-Brown, Hamish; Barutchu, Ayla; Shivdasani, Mohit N.; Crewther, David P.; Grayden, David B.; Paolini, Antonio

    2011-01-01

    Audio-visual integration was studied in children aged 8-17 (N = 30) and adults (N = 22) using the "flash-beep illusion" paradigm, where the presentation of two beeps causes a single flash to be perceived as two flashes ("fission" illusion), and a single beep causes two flashes to be perceived as one flash ("fusion" illusion). Children reported…

  19. A self-calibrated angularly continuous 2D GRAPPA kernel for propeller trajectories

    PubMed Central

    Skare, Stefan; Newbould, Rexford D; Nordell, Anders; Holdsworth, Samantha J; Bammer, Roland

    2008-01-01

    The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging (PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the angular variation of the weights is parameterized. This new angularly continuous kernel formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing the generation of fully sampled diagnostic quality images using only the undersampled propeller data. PMID:19025911

  20. Simple flash evaporator for making thin films of compounds

    SciTech Connect

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C.

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  1. Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo

    PubMed Central

    2013-01-01

    Background Cardiovascular-MR (CMR) is the gold standard for quantifying myocardial infarction using late gadolinium enhancement (LGE) technique. Both 2D- and 3D-LGE-sequences are used in clinical practise and in clinical and experimental studies for infarct quantification. Therefore the aim of this study was to investigate if image acquisitions with 2D- and 3D-LGE show the same infarct size in patients and ex vivo. Methods Twenty-six patients with previous myocardial infarction who underwent a CMR scan were included. Images were acquired 10-20 minutes after an injection of 0.2 mmol/kg gadolinium-based contrast agent. Two LGE-sequences, 3D-inversion recovery (IR) and 2D-phase-sensitive (PS) IR, were used in all patients to quantify infarction size. Furthermore, six pigs with reperfused infarction in the left anterior descending artery (40 minutes occlusion and 4 hours of reperfusion) were scanned with 2D- and 3D-LGE ex vivo. A high resolution T1-sequence was used as reference for the infarct quantification ex vivo. Spearman’s rank-order correlation, Wilcoxon matched pairs test and bias according to Bland-Altman was used for comparison of infarct size with different LGE-sequences. Results There was no significant difference between the 2D- and 3D-LGE sequence in left ventricular mass (LVM) (2D: 115 ± 25 g; 3D: 117 ± 24 g: p = 0.35). Infarct size in vivo using 2D- and 3D-LGE showed high correlation and low bias for both LGE-sequences both in absolute volume of infarct (r = 0.97, bias 0.47 ± 2.1 ml) and infarct size as part of LVM (r = 0.94, bias 0.16 ± 2.0%). The 2D- and 3D-LGE-sequences ex vivo correlated well (r = 0.93, bias 0.67 ± 2.4%) for infarct size as part of the LVM. The IR LGE-sequences overestimated infarct size as part of the LVM ex vivo compared to the high resolution T1-sequence (bias 6.7 ± 3.0%, 7.3 ± 2.7% for 2D-PSIR and 3D-IR respectively, p < 0.05 for both). Conclusions Infarct quantification with

  2. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE

    PubMed Central

    Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh

    2014-01-01

    AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923

  3. A study of falling-jet flash evaporators

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Olson, D. A.; Bharathan, D.; Green, H. J.

    1982-11-01

    Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which increased with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

  4. An Improved B+ Tree for Flash File Systems

    NASA Astrophysics Data System (ADS)

    Havasi, Ferenc

    Nowadays mobile devices such as mobile phones, mp3 players and PDAs are becoming evermore common. Most of them use flash chips as storage. To store data efficiently on flash, it is necessary to adapt ordinary file systems because they are designed for use on hard disks. Most of the file systems use some kind of search tree to store index information, which is very important from a performance aspect. Here we improved the B+ search tree algorithm so as to make flash devices more efficient. Our implementation of this solution saves 98%-99% of the flash operations, and is now the part of the Linux kernel.

  5. Hold-up power supply for flash memory

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A hold-up power supply for flash memory systems is provided. The hold-up power supply provides the flash memory with the power needed to temporarily operate when a power loss exists. This allows the flash memory system to complete any erasures and writes, and thus allows it to shut down gracefully. The hold-up power supply detects when a power loss on a power supply bus is occurring and supplies the power needed for the flash memory system to temporally operate. The hold-up power supply stores power in at least one capacitor. During normal operation, power from a high voltage supply bus is used to charge the storage capacitors. When a power supply loss is detected, the power supply bus is disconnected from the flash memory system. A hold-up controller controls the power flow from the storage capacitors to the flash memory system. The hold-up controller uses feedback to assure that the proper voltage is provided from the storage capacitors to the flash memory system. This power supplied by the storage capacitors allows the flash memory system to complete any erasures and writes, and thus allows the flash memory system to shut down gracefully.

  6. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    NASA Astrophysics Data System (ADS)

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    Terrestrial sediments are an important global reservoir for methane. Microorganisms in the deep subsurface play a critical role in the methane cycle, yet much remains to be learned about their diversity and metabolisms. To provide more comprehensive insight into the microbiology of the methane cycle in the deep subsurface, we conducted a genome-resolved study of samples collected from the Horonobe Underground Research Laboratory (HURL), Japan. Groundwater samples were obtained from three boreholes from a depth range of between 140 m and 250 m in two consecutive years. Groundwater was filtered and metagenomic DNA extracted and sequenced, and the sequence data assembled. Based on the sequences of phylogenetically informative genes on the assembled fragments, we detected a high degree of overlap in community composition across a vertical transect within one borehole at the two sampling times. However, there was comparatively little similarity observed among communities across boreholes. Spatial and temporal abundance patterns were used in combination with tetranucleotide signatures of assembled genome fragments to bin the data and reconstruct over 200 unique draft genomes, of which 137 are considered to be of high quality (>90% complete). The deepest samples from one borehole were highly dominated by an archaeon identified as ANME-2D; this organism was also present at lower abundance in all other samples from that borehole. Also abundant in these microbial communities were novel members of the Gammaproteobacteria, Saccharibacteria (TM7) and Tenericute phyla. Notably, a ~2 Mbp draft genome for the ANME-2D archaeon was reconstructed. As expected, the genome encodes all of the genes predicted to be involved in the reverse methanogenesis pathway. In contrast with the previously reported ANME2-D genome, the HURL ANME-2D genome lacks the capacity to reduce nitrate. However, we identified many multiheme cytochromes with closest similarity to those of the known Fe

  7. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  8. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  9. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  10. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  11. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  12. Phosphorene: A New High-Mobility 2D Semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide

    2014-03-01

    The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.

  13. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  14. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  15. Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations.

    PubMed

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-04-11

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future. PMID:16956721

  16. Flash pyrolysis of coal with reactive and non-reactive gases. [Methanolysis and flash pyrolysis

    SciTech Connect

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1985-06-01

    The purpose of this research is to perform a systematic study of the yield and distribution of products on the flash or rapid pyrolysis of various ranks of coal with non-reactive (N/sub 2/, Ar, He) and with reactive gases (H/sub 2/, CH/sub 4/, CO, CO/sub 2/, and H/sub 2/O) in an entrained flow reactor. A body of information has been obtained on the flash hydropyrolysis of coals with the use of H/sub 2/ gas. Data is in the process of being obtained with the other gases. The use of methane as a pyrolyzing gas has indicated a reaction with coal and has led to developing the process of flash methanolysis of coal. The addition of steam leads to the flash hydrolysis of coal. In addition to obtaining a better understanding of the gasification of coal, the developed process chemistry data can be used to design and evaluate advanced gasification processes. 7 figs.

  17. RAT FLASH EVOKED POTENTIAL PEAK N160 AMPLITUDE: MODULATION BY RELATIVE FLASH INTENSITY

    EPA Science Inventory

    The flash evoked potential (FEP) of rats has a large negative (N160) approximately 160 msec following stimulation. his peak has been reported to be modulated by the subject's state of behavioral arousal and influenced by several test parameters. hese experiments bind the influenc...

  18. Sn whiskers removed by energy photo flashing

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-10-01

    Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  19. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  20. Flash floods in Catalonia: a recurrent situation

    NASA Astrophysics Data System (ADS)

    Llasat, M. C.; Lindbergh, S.; Llasat-Botija, M.; Rodríguez, A.; Zaragoza, A.

    2009-09-01

    A database with information about the social impact produced by all the flood events recorded in Catalonia between 1982 and 2007 has been built. Original information comes from the INUNGAMA database (1900-2000) presented by Barnolas and Llasat (2007), the PRESSGAMA database (1982-2007) (Llasat et al., in rev.) and information from different published works (Barriendos et al, 2003; Barriendos and Pomés, 1993). Social impact has been obtained systematically in basis to news press data and, occasionally, in basis to insurance data. Flood events have been classified in ordinary floods, extraordinary floods and catastrophic ones, following the proposal of Llasat et al (2005). However, having in mind the flash floods effects, some new categories concerning casualties and car damages have also been introduced. The spatial and temporal distribution of these flood events has been analysed. Results have been compared with those obtained for the period 1900-2000 (Barnolas and Llasat, 2007) and 1350-2000 (Barrera et al, 2006). In order to better estimate the social impact and vulnerability some indicators have been defined and analyzed for some specific cases and a specific region. Besides the indicators applied in the INUNCAT Plan to obtain a cartography of flood risk in Catalonia, other ones like the number of cars affected or the number of request received by the meteorological service, has been also taken into account. These indicators allow analyzing global and temporal trends as well as characterizing the events. The selected region has been the Maresme, which is a flood prone region with a great density of population and that experiences every year one or more flash floods. The annual number of floods shows a positive trend that cannot be justified by the rainfall trend. Both vulnerability and hazard components have been considered and a discussion about the flood prevention measures is presented. The third part of this work has been centred in the analysis and

  1. Apollo-Soyuz light-flash observations.

    PubMed

    Budinger, T F; Tobias, C A; Huesman, R H; Upham, F T; Wieskamp, T F; Hoffman, R A

    1977-01-01

    While dark adapted, two Apollo-Soyuz astronauts saw eighty-two light flash events during a complete 51 degrees orbit which passed near the north magnetic pole and through the South Atlantic Anomaly. The frequency of events at the polar parts of the orbit is 25 times that noted in equatorial latitudes and no increased frequency was noted in the South Atlantic Anomaly at the 225-km altitude. The expected flux of heavy particles at the northern and southern points is 1-2 min-1 per eye, and the efficiency for seeing HZE particles which were below the Cerenkov threshold is 50%. PMID:11958208

  2. Flash evaporation from turbulent water jets

    NASA Astrophysics Data System (ADS)

    Bharathan, D.; Penney, T.

    1983-02-01

    Results of an experimental investigation of flash evaporation from turbulent planar and axisymmetric water jets are reported. In the range of jet thicknesses tested, for planar jets, due to shattering, evaporation is found to be nearly independent of the jet thickness. Evaporation from the planar jets was found to be dependent on the initial level of turbulence in the water supply manifold. An approximate analysis to model the evaporation process based on the physical phenomena and experimental observations is outlined. Comparisons between the experimental data and analytical predictions of the liquid temperature variation along the jet are included. Use of screens in the water jet are shown to be effective for enhancing evaporation.

  3. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  4. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  5. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  6. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  7. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    PubMed Central

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  8. Simultaneous 2D strain sensing using polymer planar Bragg gratings.

    PubMed

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  9. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  10. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  11. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  12. What Can You Do for Hot Flashes and Other Menopausal Symptoms

    MedlinePlus

    ... for a Change What Can You Do for Hot Flashes and Other Menopausal Symptoms Check with your ... you still need to treat your menopausal symptoms. HOT FLASHES AND NIGHT SWEATS If hot flashes and/ ...

  13. Characteristics of flash initiations in a supercell cluster with tornadoes

    NASA Astrophysics Data System (ADS)

    Zheng, Dong; MacGorman, Donald R.

    2016-01-01

    Flash initiations within a supercell cluster during 10-11 May 2010 in Oklahoma were investigated based on observations from the Oklahoma Lightning Mapping Array and the Norman, Oklahoma, polarimetric radar (KOUN). The flash initiations at positions dominated by graupel, dry snow, small hail and crystals accounted for 44.3%, 44.1%, 8.0% and 3.0% of the total flashes, respectively. During the tornadic stage of the southern supercell in the cluster, flash initiations associated with graupel occupied the main body, the right flank and the forward flank of the supercell, while those associated with dry snow dominated the outskirts of the adjacent forward anvil, right anvil and rear anvil. The flash initiations associated with small hail were concentrated around the main updraft, particularly toward its front side. Highly dense flash initiations were located in the regions overlying the differential reflectivity (ZDR) arc and right anvil. The average initial height of the flashes decreased gradually from the rear to the front and from the right to the left flanks, while the height range over which initiations occurred reached a maximum at the front of the updraft. The flashes that were initiated in the adjacent forward anvils were largest on average, followed by those in the regions ahead of the updraft and near the ZDR arc. This study supports the concept of charge pockets and further deduces that the pockets in the right anvil are the most abundant and compact due to the frequent flash initiations, small-sized flashes and thin layers including flash initiations.

  14. Physics and 3D in Flash Simulations: Open Source Reality

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Dusenbery, P.

    2009-12-01

    Over the last decade our ability to deliver simulations over the web has steadily advanced. The improvements in speed of the Adobe Flash engine, and the development of open source tools to expand it, allow us to deliver increasingly sophisticated simulation based games through the browser, with no additional downloads required. In this paper we will present activities we are developing as part of two asteroids education projects: Finding NEO (funded through NSF and NASA SMD), and Asteroids! (funded through NSF). The first activity is Rubble!, an asteroids deflection game built on the open source Box2D physics engine. This game challenges players to push asteroids in to safe orbits before they crash in to the Earth. The Box2D engine allows us to go well beyond simple 2-body orbital calculations and incorporate “rubble piles”. These objects, which are representative of many asteroids, are composed of 50 or more individual rocks which gravitationally bind and separate in realistic ways. Even bombs can be modeled with sufficient physical accuracy to convince players of the hazards of trying to “blow up” incoming asteroids. The ability to easily build games based on underlying physical models allows us to address physical misconceptions in a natural way: by having the player operate in a world that directly collides with those misconceptions. Rubble! provides a particularly compelling example of this due to the variety of well documented misconceptions regarding gravity. The second activity is a Light Curve challenge, which uses the open source PaperVision3D tools to analyze 3D asteroid models. The goal of this activity is to introduce the player to the concept of “light curves”, measurements of asteroid brightness over time which are used to calculate the asteroid’s period. These measurements can even be inverted to generate three dimensional models of asteroids that are otherwise too small and distant to directly image. Through the use of the Paper

  15. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  16. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  17. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  18. Radiative heat transfer in 2D Dirac materials

    DOE PAGESBeta

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  19. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  20. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  1. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  2. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  3. CH2D+, the Search for the Holy Grail

    NASA Astrophysics Data System (ADS)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  4. EM 2dV1.0.F

    Energy Science and Technology Software Center (ESTSC)

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  5. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  6. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  7. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  8. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  9. Flash Infrared Thermography Contrast Data Analysis Technique

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.

  10. Case studies of selected Project "Flash" events

    NASA Astrophysics Data System (ADS)

    Nicolaides, K. A.; Michaelides, S. C.; Savvidou, K.; Orphanou, A.; Constantinides, P.; Charalambous, M.; Michaelides, M.

    2009-03-01

    Flooding is a consequence of the prevailing meteorological situation, the intensity and duration of precipitation, geomorphology, human activities over a geographical region and other factors. Floods result in damage and destruction of infrastructure and private property and, in some cases, in fatalities. Flash floods are sudden and quite localized in extend, characterized by excessive amounts of rainfall within a short period of time and are distinguished from other floods by their degree of severity. The broader knowledge concerning flash floods is useful for the better understanding of the underlying thermodynamic and dynamic mechanisms, as well as the associated physical processes. The wider understanding of flashfloods can form part of an integrated system for short and very short forecasting of these events. In the present study, the synoptic, dynamic and thermodynamic conditions during the development of a baroclinic depression which affected the area of Cyprus on 6 November 2005 are studied. The depression was associated with extreme weather phenomena, such as thunderstorms, a water spout and high precipitation accumulations. The results indicate the importance of the dynamic parameters in the system's development and the thermodynamic analysis has shown the convective potential of the atmosphere.

  11. Ultrafast Spectroscopy on Solids at FLASH

    NASA Astrophysics Data System (ADS)

    Bernstein, David; Acremann, Yves; Scherz, Andreas; Beye, Martin; Föhlisch, Alexander; Schlotter, William; Beeck, Torbin; Sorgenfrei, Florian; Pietzsch, Annette; Wurth, Wilfried; Stöhr, Joachim

    2009-03-01

    X-ray/VUV free electron laser (FEL) facilities such as FLASH, LCLS, and the European X-FEL open the door to a wide variety of exciting experiments in x-ray physics. Due to the random stochastic processes governing FEL radiation and the difficulties in tuning an FEL, it has not been clear whether spectroscopy could be done using such sources. Here we demonstrate the feasibility of doing near edge x-ray absorption fine structure (NEXAFS) spectroscopy on solids. Samples consisting of LaMnO and Al films, respectively, were lithographically fabricated on thin silicon nitride membranes. Ultrafast femtosecond pulses of radiation from the FLASH FEL were dispersed by the monochromator grating at beamline PG2 and impinged upon the samples. Absorption was measured in transmission using a Ce:YAG crystal and imaged by an intensified CCD. The incident intensity was measured through a blank nitride membrane next to the sample. By tuning the FEL to the La N-edge (˜102eV) and the Al L-edge (˜72eV), respectively, we take an entire NEXAFS absorption spectrum in each shot. Spectra are calculated using many shots in order to reduce statistical uncertainties.

  12. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  13. Macromedia Flash as a Tool for Mathematics Teaching and Learning

    ERIC Educational Resources Information Center

    Garofalo, Joe; Summers, Tim

    2004-01-01

    Macromedia Flash is a powerful and robust development tool. Because of its graphical, sound, and animation capabilities (and ubiquitous browser plug-in), major companies employ it in their website development (see www.nike.com or www.espn.com). These same features also make Flash a valuable environment for building multi-representational "movies"…

  14. Treatment of Menopausal Hot Flashes with 5-Hydroxytryptophan

    PubMed Central

    Freedman, Robert R.

    2010-01-01

    Objective Much recent research has focused on nonhormonal treatments for menopausal hot flashes. The purpose of the present study was to determine the effects of 5-Hydroxytroptophan (5-HTP), the immediate precursor of serotonin, upon menopausal hot flashes. Selective, serotonergic, reuptake inhibitors (SSRI’s), which increase the amount of serotonin in the synaptic gap, have shown some promise in the amelioration of hot flashes. Methods We administered 5-HTP or placebo, in double-blind fashion, to 24 postmenopausal women reporting frequent hot flashes. Treatment outcome was measured using a miniature, electronic, hot flash recorder. Results No significant effects of 150 mg/day 5-HTP upon hot flash frequency were found. The 5-HTP group had 23.8 ± 5.7 (SD) hot flashes/24 hours prior to treatment and 18.5 ± 9.6 at the end of treatment. The placebo group had 18.5 ± 9.6 before treatment and 22.6 ± 12.4 at treatment completion. Conclusions At the dose given, 5-HTP does not significantly ameliorate frequency of menopausal hot flashes, as measured objectively with an electronic recorder. Given the small size, this study must be considered preliminary in nature. PMID:20031347

  15. On the proportion of upward flashes to lightning research towers

    NASA Astrophysics Data System (ADS)

    Smorgonskiy, Alexander; Rachidi, Farhad; Rubinstein, Marcos; Diendorfer, Gerhard; Schulz, Wolfgang

    2013-07-01

    We compare in this paper direct measurements obtained on the towers on San Salvatore Mountain (Switzerland) and on the Gaisberg Mountain (Austria). They are situated in similar topographical environments but in different lightning activity zones. Direct measurements of lightning currents on these towers have revealed a major difference in terms of the number of downward flashes. While measurements made by Berger and co-workers revealed a significant number of downward flashes on the two towers on San Salvatore Mountain, more recent observations on the Gaisberg and Peissenberg towers were essentially composed of upward flashes. We use in this paper a new method to estimate the proportion of upward/downward flashes to a given tower, based on the data from lightning location systems. The analysis using the proposed method explains the discrepancy in terms of the measured number of downward flashes in the Gaisberg and San Salvatore towers. The analysis presented reveals also that in the evaluation of the percentage of upward flashes initiated from a tall structure, different parameters should be carefully examined, namely (i) the value of the ground flash density, (ii) the topographical conditions, and (iii) the presence of other tall structures in the region from which upward flashes might be initiated.

  16. Algorithms for Lunar Flash Video Search, Measurement, and Archiving

    NASA Technical Reports Server (NTRS)

    Swift, Wesley; Suggs, Robert; Cooke, Bill

    2007-01-01

    Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, Z and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.

  17. Assessment of vulnerability to extreme flash floods in design storms.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165

  18. Two probable optical flashes from gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Bradt, H. V.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Cline, T. L.; Desai, U.; Teegarden, B. J.; Evans, W. D.

    1984-01-01

    Two images on archival photographic plates which are most likely records of optical flashes from gamma-ray bursters (GRBs) were examined. One of these images appears on a 1901 plate in the field of the Nov. 5, 1979 GRB, while the other is in the field of the Jan. 13, 1979 GRB on a plate exposed in 1944. The 1901 optical transient image is circular in shape, while all normal star images are trailed by 8 in. No optical transients are found in a control region which is 34.3 times larger than the GRB error regions examined. Independent limits on the optical flash rate from the sky yield a probability of less than 0.0001 that any one of the optical transients is due to a background flash. A total exposure of 2.7 years was examined for GRB flashes at known GRB locations on the Harvard plates and a total of three GRB flashes were seen, that the average recurrence time scale for optical flashes is roughly one year. The optical fluence of these optical flashes was measured. For the three currently known GRB optical flashes, the ratio of gamma-ray fluence (from a modern burst) to the optical fluence (from a archival burst) were measured to be 800, 900, and 900.

  19. Two probable optical flashes from gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Bradt, H. V.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Evans, W. D.

    1984-01-01

    Two images on archival photographic plates which are most likely records of optical flashes from gamma-ray bursters (GRBs) were examined. One of these images appears on a 1901 plate in the field of the 5 Nov. 1979 GRB, while the other is in the field of the 13 Jan. 1979 GRB on a plate exposed in 1944. The 1901 optical transient image is circular in shape, while all normal star images are trailed by 8 in. No optical transients are found in a control region which is 34.3 times larger than the GRB error regions examined. Independent limits on the optical flash rate from the sky yield a probability of less than 0.0001 that any one of the optical transients is due to a background flash. A total exposure of 2.7 years was examined for GRB flashes at known GRB locations on the Harvard plates and a total of three GRB flashes were seen, that the average recurrence time scale for optical flashes is roughly one year. The optical fluence of these optical flashes was measured. For the three currently known GRB optical flashes, the ratio of gamma-ray fluence (from a modern burst) to the optical fluence (from a archival burst) were measured to be 800, 900, and 900.

  20. Algorithms for Lunar Flash Video Search, Measurement, and Archiving

    NASA Technical Reports Server (NTRS)

    Swift, Wesley; Suggs, Robert; Cooke, William

    2007-01-01

    Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching Lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detections and retaining the brief portions of the raw video necessary for in depth analysis of the flashes detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of Lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.

  1. Behavioral Treatment of Menopausal Hot Flashes: Evaluation by Objective Methods.

    ERIC Educational Resources Information Center

    Germaine, Leonard M.; Freedman, Robert R.

    1984-01-01

    Used latency to hot flash onset under heat stress to evaluate the effects of relaxation treatment or a control procedure in 14 menopausal women. Following treatment, the latency to hot flash onset during heat stress was increased in relaxation subjects. Reported symptom frequency was significantly reduced in relaxation subjects. (BH)

  2. Kinetics of Reactions of Monomeric Nitrosomethane Induced by Flash Photolysis.

    ERIC Educational Resources Information Center

    Kozubek, H.; And Others

    1984-01-01

    Describes an experiment in which the kinetics of dimerization of nitrosamine induced by a flash of light is measured. The experiment can be performed with a commercial ultraviolet-VIS spetrophotometer with easy to make modifications. The experiment demonstrates a flash photolysis system not always available in university chemistry laboratories.…

  3. Acceleration of electrons during the flash phase of solar flares

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1974-01-01

    The characteristics of the electron acceleration process operating during the flash phase of solar flares are deduced from the high time resolution observations of impulsive solar X rays greater than or equal to 10 keV and other flash phase emissions from small solar flares, and the implications of these findings are discussed.

  4. Negative cloud-to-ground lightning flashes in Malaysia

    NASA Astrophysics Data System (ADS)

    Baharudin, Z. A.; Ahmad, Noor Azlinda; Mäkelä, J. S.; Fernando, Mahendra; Cooray, Vernon

    2014-02-01

    The characteristics of the negative cloud-to-ground lightning flashes in Malaysia are studied by analyzing the electric fields generated by the whole flash in nanosecond resolution. A total of 405 strokes obtained from 100 successive negative cloud-to-ground lightning flashes were analyzed, which were recorded from seven convective thunderstorms during the southwest monsoon period, i.e. from April to June 2009. It was found that the total number of interstroke intervals has an arithmetic mean value of 86 ms, a geometric mean value of 67 ms and does not depend on the return stroke order. Of the 100 negative ground flashes, 38 flashes (38%) have at least one subsequent return-stroke (SRS) whose electric field peak was greater than that of the first return-stroke (RS). Furthermore, 58 (19%) out of 305 SRS have electric field peak larger than those of the first RS. The arithmetic and geometric mean ratio between the peak electric field of the SRS and the peak electric field of the first RS are 0.7 and 0.6, respectively. The percentage of single-stroke flashes was 16% while the mean number of strokes per flash and maximum number of stroke per flash were 4 and 14, respectively.

  5. A new gold-standard dataset for 2D/3D image registration evaluation

    NASA Astrophysics Data System (ADS)

    Pawiro, Supriyanto; Markelj, Primoz; Gendrin, Christelle; Figl, Michael; Stock, Markus; Bloch, Christoph; Weber, Christoph; Unger, Ewald; Nöbauer, Iris; Kainberger, Franz; Bergmeister, Helga; Georg, Dietmar; Bergmann, Helmar; Birkfellner, Wolfgang

    2010-02-01

    In this paper, we propose a new gold standard data set for the validation of 2D/3D image registration algorithms for image guided radiotherapy. A gold standard data set was calculated using a pig head with attached fiducial markers. We used several imaging modalities common in diagnostic imaging or radiotherapy which include 64-slice computed tomography (CT), magnetic resonance imaging (MRI) using T1, T2 and proton density (PD) sequences, and cone beam CT (CBCT) imaging data. Radiographic data were acquired using kilovoltage (kV) and megavoltage (MV) imaging techniques. The image information reflects both anatomy and reliable fiducial marker information, and improves over existing data sets by the level of anatomical detail and image data quality. The markers of three dimensional (3D) and two dimensional (2D) images were segmented using Analyze 9.0 (AnalyzeDirect, Inc) and an in-house software. The projection distance errors (PDE) and the expected target registration errors (TRE) over all the image data sets were found to be less than 1.7 mm and 1.3 mm, respectively. The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D registration algorithms for image guided therapy.

  6. Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking.

    PubMed

    Lee, Jehoon; Sandhu, Romeil; Tannenbaum, Allen

    2013-08-01

    In this paper, we address the problem of 2D-3D pose estimation. Specifically, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose (position and orientation) in 3D space. We revisit a joint 2D segmentation/3D pose estimation technique, and then extend the framework by incorporating a particle filter to robustly track the object in a challenging environment, and by developing an occlusion detection and handling scheme to continuously track the object in the presence of occlusions. In particular, we focus on partial occlusions that prevent the tracker from extracting an exact region properties of the object, which plays a pivotal role for region-based tracking methods in maintaining the track. To this end, a dynamical choice of how to invoke the objective functional is performed online based on the degree of dependencies between predictions and measurements of the system in accordance with the degree of occlusion and the variation of the object's pose. This scheme provides the robustness to deal with occlusions of an obstacle with different statistical properties from that of the object of interest. Experimental results demonstrate the practical applicability and robustness of the proposed method in several challenging scenarios. PMID:24058277

  7. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  8. Validation for 2D/3D registration I: A new gold standard data set

    PubMed Central

    Pawiro, S. A.; Markelj, P.; Pernuš, F.; Gendrin, C.; Figl, M.; Weber, C.; Kainberger, F.; Nöbauer-Huhmann, I.; Bergmeister, H.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W.

    2011-01-01

    Purpose In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. Methods A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using Tl, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using analyze 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. Results The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. Conclusions The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy. PMID:21520860

  9. Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Zenghui; X-L Feng, Philip

    2015-06-01

    Black phosphorus (P), a layered material that can be isolated down to individual 2D crystalline sheets, exhibits highly anisotropic mechanical properties due to its corrugated crystal structure in each atomic layer, which are intriguing for two-dimensional (2D) nanomechanical devices. Here we lay the framework for describing the mechanical resonant responses in free-standing black P structures, by using a combination of analytical modeling and numerical simulation. We find that thicker devices (>100 nm) operating in the elastic plate regime exhibit pronounced signatures of mechanical anisotropy, and can lead to new multimode resonant characteristics in terms of mode sequences, shapes, and orientational preferences that are unavailable in nanomechanical resonators made of isotropic materials. In addition, through investigating devices with different geometries, we identify the resonant responses’ dependence on crystal orientation in asymmetric devices, and evaluate the effects from the degree of anisotropy. The results suggest a pathway towards harnessing the mechanical anisotropy in black P for building novel 2D nanomechanical devices and resonant transducers with engineerable multimode functions.

  10. Validation for 2D/3D registration I: A new gold standard data set

    SciTech Connect

    Pawiro, S. A.; Markelj, P.; Pernus, F.; Gendrin, C.; Figl, M.; Weber, C.; Kainberger, F.; Noebauer-Huhmann, I.; Bergmeister, H.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W.

    2011-03-15

    Purpose: In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. Methods: A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using Tl, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using ANALYZE 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. Results: The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. Conclusions: The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy.

  11. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  12. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  13. Creation of a scalar potential in 2D dilaton gravity

    SciTech Connect

    Behrndt, K.

    1994-09-01

    The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.

  14. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  15. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  16. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  17. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  18. Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem

    NASA Astrophysics Data System (ADS)

    Natanzon, Sergey M.

    2016-01-01

    We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.

  19. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  20. RADMC: A 2-D Continuum Radiative Transfer Tool

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    2011-08-01

    RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.

  1. Kinematics of segregating granular mixtures in quasi-2D heaps

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2012-11-01

    Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.

  2. On the phase diagram of 2d Lorentzian Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.

    The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.

  3. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  4. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  5. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  6. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  7. Corrosion testing in flash tanks of kraft pulp mills

    SciTech Connect

    Clarke, S.J.; Stead, N.J.

    1999-11-01

    The corrosion observed in the first flash tanks in kraft pulp mills with modified cooking practices was characterized. Coupons of carbon steel (CS), several stainless steels (SS), and Ti were exposed at two mills. At one mill, identical sets of coupons were exposed in the No. 1 and No. 2 flash tank. At the other mill, three identical sets of coupons were placed in flash tank No. 1. The results of the exposures showed that both CS and Ti suffered high rates of general corrosion, while the SS suffered varying degrees of localized attack. The ranking of the corrosion resistance in the flash tank was the same that would be expected in a reducing acid environment. Attack by organic acids was concluded to be the most likely cause of corrosion of the flash tanks.

  8. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  9. Resonances of piezoelectric plate with embedded 2D electron system

    NASA Astrophysics Data System (ADS)

    Suslov, A. V.

    2009-02-01

    A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.

  10. The physics of 2D microfluidic droplet ensembles

    NASA Astrophysics Data System (ADS)

    Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi

    2012-07-01

    We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.

  11. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  12. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  13. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  14. Mapping Flash Flood Severity in the United States

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2015-12-01

    Flash floods have been a major natural hazard in terms of both fatalities and property damage. In the United States, flash floods have only been characterized on a case study basis due to the lack of a comprehensive database matching flood characteristics with geospatial and geomorphologic information. To characterize the ability of a basin to produce flash floods, a new variable called "Flashiness" is derived from the slope of the rising limb in hydrograph time series. It is the basis to document and predict the flash flood potential and severity over the U.S. First a representative and long archive of flood events spanning 78 years is used to analyze the spatial and temporal variability of observed flashiness. The areas and seasons prone to flash floods are documented, highlighting the flash flood alley in Texas, Appalachians, West Coast, and North American monsoon in Arizona etc. Then the flashiness is linked to geomorphologic and climatologic attributes to identify the basin characteristics driving the ability to produce flash floods. The significant impact of characteristics such as slope, precipitation, and basin area are quantified. Next the model is used to predict flashiness all over the continental U.S., specifically over regions poorly covered by hydrological observations. It highlights ungauged areas prone to flash floods such as parts of Florida, Southern Wisconsin, Montana and South Dakota etc. Finally these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  15. Features of positive ground flashes observed in Kathmandu Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath

    2016-07-01

    Lightning vertical electric fields pertinent to the subtropical thunderstorms occurring over the rugged terrain have been measured and recorded at a hilly station Kathmandu, Nepal. In the present work, waveforms of the positive ground flashes have been selected from all the records and were analyzed. To the best of our knowledge, this is the first time that fine structure of electric field signature pertinent to the positive return stroke; have been analyzed and presented from Nepal. One hundred and thirty three (133) of the total of four hundred twenty-five (425) flashes were selected from seven thunderstorm days and analyzed. Of the data recorded for seven days, 133 flashes (31.3%) were positive flashes and 276 flashes (64.9%) were cloud flashes. Majority of the positive ground flashes were found to be single stroke ones, whereas, the average number of strokes per flash is found to be 1.1 with a maximum value of 4. Majority of the positive ground flashes were found either lacking the initial breakdown process and the leader stage or these processes could not be detected. The return strokes are found to be succeeded by large in cloud activity in the continuing current portion of the flash. The average zero-crossing time of the positive return strokes was found to be 60.45 μs with a range of 447.81 μs and the average rise time was found to be 9.44 μs with a range of 42.56 μs.

  16. Structure-approximating inverse protein folding problem in the 2D HP model.

    PubMed

    Gupta, Arvind; Manuch, Ján; Stacho, Ladislav

    2005-12-01

    The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538

  17. Microphase formation at a 2D solid-gas phase transition.

    PubMed

    Schuman, Adam W; Bsaibes, Thomas S; Schlossman, Mark L

    2014-10-01

    Density modulated micro-separated phases (microphases) occur at 2D liquid interfaces in the form of alternating regions of high and low density domains. Brewster angle microscopy (BAM) images demonstrate the existence of microphases in cluster, stripe, and mosaic morphologies at the buried interface between hexane and water with fluoro-alkanol surfactant dissolved in the bulk hexane. At high temperature, the surfactant assembles at the interface in a 2D gaseous state. As the system is cooled additional surfactants condense onto the interface, which undergoes a 2D gas-solid phase transition. Microphase structure is observed within a few degrees of this transition in the form of clusters and labyrinthine stripes. Microphases have been observed previously in a number of other systems; nevertheless, we demonstrate that adsorption transitions at the liquid-liquid interface provide a convenient way to observe a full sequence of temperature-dependent 2D phases, from gas to cluster to stripe to mosaic to inverted stripe phases, as well as coexistence between some of these microphases. Cracking and fracture of the clusters reveal that they are a solid microphase. Theories of microphases often predict a single length scale for cluster and stripe phases as a result of the competition between an attractive and a repulsive interaction. Our observation that two characteristic length scales are required to describe clusters whose diameter is much larger than the stripe period, combined with the solid nature of the clusters, suggests that a long-range elastic interaction is relevant. These results complement earlier X-ray measurements on the same system. PMID:25088351

  18. Tongue Motion Averaging from Contour Sequences

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a method to get the best representation of a speech motion from several repetitions is presented. Each repetition is a representation of the same speech captured at different times by sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D contours in different repetitions are time aligned…

  19. Flash Memory Device with ‘I’ Shape Floating Gate for Sub-70 nm NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Goo; Lee, Jong-Ho

    2006-11-01

    In this article, we proposed a novel ‘I’ shape floating gate applicable to the sub-70 nm flash memory cell with high performance and scalability. It has modified floating gate of conventional flash memory to have high coupling-ratio (\\mathit{CR}), low effect of interference or cross-talk. Specifically, it has ˜13% higher \\mathit{CR} and ˜33/46% lower effect of cross-talk of the bit-line/word-line state than those of conventional flash memory cell with scale-downed geometry. In addition, ‘I’ shape flash memory cell shows improved characteristics about programming time, drain disturbance, read current, sub-threshold swing, and drain induced barrier lowering than conventional flash memory cell.

  20. Flashing superluminal components in the jet of the radio galaxy 3C120

    PubMed

    Gomez; Marscher; Alberdi; Jorstad; Garcia-Miro

    2000-09-29

    A 16-month sequence of radio images of the active galaxy 3C120 with the Very Long Baseline Array reveals a region in the relativistic jet where superluminal components flash on and off over time scales of months, while the polarization angle rotates. This can be explained by interaction between the jet and an interstellar cloud located about 8 parsecs from the center of the galaxy. The cloud, which rotates the polarization direction and possibly eclipses a section of the jet, represents a "missing link" between the ultradense broad-emission-line clouds closer to the center and the lower density narrow-emission-line clouds seen on kiloparsec scales. PMID:11009410

  1. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  2. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  3. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  4. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  5. An M component with a concurrent dart leader traveling along different paths during a lightning flash

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Orville, R. E.

    2015-10-01

    Utilizing time-correlated high-speed video and electric field change data, a seven-stroke lightning flash is described in which the fifth return stroke (RS) occurs 0.80 ms after the fourth RS connects to a different ground location 3.3 km away. The fifth RS is 0.34 ms after an M component starts down the different channel. The fifth stroke involves a dart leader traveling concurrently, though slower than the M component, in a prior channel to ground. There was no indication of leader advance along this path earlier during the fourth RS. The fourth stroke involves a stepped leader that started from the end of an observed prior dart leader branch which did not previously propagate to ground. The concurrent M component and dart leader are preceded by an in-cloud event evidenced by a large-amplitude, fast electric field change pulse, at 6.1 km estimated altitude, inferred as the connection to the channel for the M component. The M component current apparently initiates the dart leader about 40 µs later. A visible channel length of 10,400 m allows for the 2-D propagation speed of the M component luminosity to be estimated in the range of 1.0 to 1.2 × 108 m s-1. The concurrent dart leader travels a visible length of 3445 m with 2-D speed of 1.7 × 107 m s-1, similar to other dart leaders in this flash. Luminosity evolution along the channel through the RS and M component is also described. Estimated optical risetimes of three separate M components are 80-200 µs at 520 m above ground.

  6. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V.; Pitts, Todd Alan

    2008-09-02

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  7. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V.; Pitts, Todd Alan

    2009-02-24

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  8. Flash photolysis-shock tube studies

    SciTech Connect

    Michael, J.V.

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  9. Correlated observations of three triggered lightning flashes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.; Hubert, P.; Barret, L.; Eybert-Berard, A.

    1984-01-01

    Three triggered lightning flashes, initiated during the Thunderstorm Research International Program (1981) at Langmuir Laboratory, New Mexico, are examined on the basis of three-dimensional return stroke propagation speeds and peak currents. Nonlinear relationships result between return stroke propagation speed and stroke peak current for 56 strokes, and between return stroke propagation speed and dart leader propagation speed for 32 strokes. Calculated linear correlation coefficients include dart leader propagation speed and ensuing return stroke peak current (32 strokes; r = 0.84); and stroke peak current and interstroke interval (69 strokes; r = 0.57). Earlier natural lightning data do not concur with the weak positive correlation between dart leader propagation speed and interstroke interval. Therefore, application of triggered lightning results to natural lightning phenomena must be made with certain caveats. Mean values are included for the three-dimensional return stroke propagation speed and for the three-dimensional dart leader propagation speed.

  10. Article coated with flash bonded superhydrophobic particles

    DOEpatents

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  11. EUV resist processing with flash-lamp

    NASA Astrophysics Data System (ADS)

    Santillan, Julius Joseph; Kaneyama, Koji; Morita, Akihiko; Fuse, Kazuhiko; Kiyama, Hiroki; Asai, Masaya; Itani, Toshiro

    2012-03-01

    The reduction of line width roughness (LWR) remains a difficult issue for very fine patterns obtained with extreme ultraviolet (EUV) lithography. Thus, the investigation of LWR-reduction from the viewpoint of resist processing has become necessary. Alternative bake processes, such as the flash-lamp (FL) has been proven feasible as for application in EUV resists. This work focuses on initial investigations for its use in post-development bake (post bake or PB). A polyhydroxystyrene-acryl hybrid EUV model resist was utilized and comparisons with 'no bake' and conventional hot-plate PB conditions were made. As a result, relatively improved LWR was obtained with FL PB with minimal effect on lithographic performance. Moreover, in the course of these experiments, two types of resist reflow mechanisms assumed to be the primary basis for the LWR improvement achieved, are discussed.

  12. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  13. Dual analyte detection using tandem flash luminescence.

    PubMed

    Adamczyk, Maciej; Moore, Jeffrey A; Shreder, Kevin

    2002-02-11

    A heterogeneous, dual analyte-binding assay which makes use of the flash luminescence from both aequorin and an acridinium-9-carboxamide label is presented. The signal generating species were triggered both differentially and sequentially using Ca(2+) followed by basic peroxide. Both signals were resolved readily using a single photomultiplier tube without the need for multiwavelength detection. To demonstrate the tandem luminescence concept in a model assay system, dose-response curves for two analytes, biotinylated BSA and myoglobin, were generated using a competitive binding format. Because of the relatively short assay time and the well-resolved signals, this format will be useful in the development of dual analyte high-throughput assays. PMID:11814805

  14. An 'Anomalous' Triggered Lightning Flash in Florida

    NASA Astrophysics Data System (ADS)

    Gamerota, W. R.; Uman, M. A.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Jordan, D. M.; Mata, C.; Mata, A.

    2012-12-01

    Classical (grounded wire) rocket-and-wire triggered lightning flashes whose leaders do not traverse the path of the wire remnants are sometimes referred to as 'anomalous'. We present high-speed video images captured at 10 kilo-frames per second (kfps), with supporting data, to characterize an 'anomalous' rocket-triggered lightning flash that occurred on 15 May 2012 at the International Center for Lightning Research and Testing (ICLRT) in north-central Florida. The event begins as a classical rocket-triggered lightning flash with an upward positive leader (UPL) initiating from the tip of the wire at a height of about 280 m above ground level. The top 259 m of the trailing wire explodes 2.7 s after the rocket exits the launch tube, while the bottom 17 m of the wire does not explode (does not become luminous). Approximately 1.4 ms after wire explosion, a stepped leader initiates a few meters above the top of the wire remnants and propagates downward, attaching to the top of a grounded utility pole 2.1 ms after initiation and 117 m southwest of the launching facility. Beginning 600 μs prior to this sustained stepped leader development, attempted stepped leaders (luminous steps emanating from the UPL channel above the wire remnants) are observed in three locations: 20 m and 5 m above the top of the wire remnants and at the top of the wire remnants. Correlated electric field derivative (dE/dt), channel-base current, and high-speed video captured at 300 kfps reveal an electrical discharge of peak current 365 A initiating from about 17 m above the launching facility, apparently the top of the unexploded triggering wire, when the stepped leader is no more than 60 m above ground level. There are significant differences between the 'anomalous' triggered lightning flash described here and those observed in New Mexico and in France in the late 1970s and early 1980s: First, the time duration between explosion of our wire and the sustained stepped leader development a few meters

  15. MENOPAUSAL HOT FLASHES: MECHANISMS, ENDOCRINOLOGY, TREATMENT

    PubMed Central

    Freedman, Robert R.

    2015-01-01

    Hot flashes (HFs) are a rapid and exaggerated heat dissipation response, consisting of profuse sweating, peripheral vasodilation, and feelings of intense, internal heat. They are triggered by small elevations in core body temperature (Tc) acting within a greatly reduced thermoneutral zone, i.e., the Tc region between the upper (sweating) and lower (shivering) thresholds. This is due in part, but not entirely, to estrogen depletion at menopause. Elevated central sympathetic activation, mediated through α2-adrenergic receptors, is one factor responsible for narrowing of the thermoneutral zone. Procedures which reduce this activation, such as paced respiration and clonidine administration, ameliorate HFs as will peripheral cooling. HFs are responsible for some, but not all, of the sleep disturbance reported during menopause. Recent work calls into question the role of serotonin in HFs. PMID:24012626

  16. Measurement of g Using a Flashing LED

    NASA Astrophysics Data System (ADS)

    Terzella, T.; Sundermier, J.; Sinacore, J.; Owen, C.; Takai, H.

    2008-10-01

    In one of the classic free-fall experiments, a small mass is attached to a strip of paper tape and both are allowed to fall through a spark timer, where sparks are generated at regular time intervals. Students analyze marks (dots) left on the tape by the timer, thereby generating distance-versus-time data, which they analyze to extract the acceleration due to gravity g with good results. The apparatus, however, is cumbersome and often frustrating for students. High-tech versions of this experiment are done with an object dropped and followed by a motion sensor connected to a computer. The sensor relies on ultrasonic ranging to record distance and time data, which may then be displayed graphically. Students inspect the graphs to determine the value of g. Although the results are excellent, the emphasis on the computer's ability to collect and analyze data leaves little analysis for the students to perform.2 Furthermore, neither technique gives an intuitive display of what is happening. The motivation for our work was to overcome these issues by developing an innovative method for measuring g. In our version of the experiment, students drop a flashing LED at a known frequency and record its trajectory using long exposure photography with a digital camera. Proper choice of flashing LED timing parameters produces an image that allows for an accurate measurement of g and at the same time helps to explain what happens during free fall. The experiment remains high-tech in the sense that students learn to use updated equipment to record data and to carry out the analysis.

  17. MPEG-4-based 2D facial animation for mobile devices

    NASA Astrophysics Data System (ADS)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  18. In search of a 2-dB coding gain

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Vo, Q. D.

    1985-01-01

    A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.

  19. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  20. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  1. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  2. FPCAS2D user's guide, version 1.0

    NASA Astrophysics Data System (ADS)

    Bakhle, Milind A.

    1994-12-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  3. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  4. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (ESTSC)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  5. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  6. 2-D and 3-D computations of curved accelerator magnets

    SciTech Connect

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.

  7. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  8. MasterChem: cooking 2D-polymers.

    PubMed

    Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F

    2016-03-18

    2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817

  9. Controlling avalanche criticality in 2D nano arrays

    NASA Astrophysics Data System (ADS)

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-05-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  10. A 2D MEMS stage for optical applications

    NASA Astrophysics Data System (ADS)

    Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.

    2006-04-01

    A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.

  11. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  12. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  13. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  14. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052

  15. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  16. An inverse design method for 2D airfoil

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  17. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  18. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  19. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  20. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.