Science.gov

Sample records for 2-d r-z geometry

  1. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  2. Transfer of polarized line radiation in 2D cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Milić, I.

    2013-07-01

    Aims: This paper deals with multidimensional NLTE polarized radiative transfer in the case of two level atom in the absence of lower level polarization. We aim to develop an efficient and robust method for 2D cylindrical geometry and to apply it to various axi-symmetrical astrophysical objects such as rings, disks, rotating stars, and solar prominences. Methods: We review the methods of short characteristics and Jacobi iteration applied to axisymmetric geometry. Then we demonstrate how to use a reduced basis for polarized intensity and polarized source function to self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for linearly polarized radiation. We discuss some peculiarities that do not appear in Cartesian geometry, such as angular interpolation in performing the formal solution. We also show how to account for two different types of illuminating radiation. Results: The proposed method is tested on homogeneous, self-emitting cylinders to compare the results with those in 1D geometries. We demonstrate a possible astrophysical application on a very simple model of circumstellar ring illuminated by a host star where we show that such a disk can introduce a significant amount of scattering polarization in the system. Conclusions: This method is found to converge properly and, apparently, to allow for substantial time saving compared to 3D Cartesian geometry. We also discuss the advantages and disadvantages of this approach in multidimensional radiative transfer modeling.

  3. Facial biometrics based on 2D vector geometry

    NASA Astrophysics Data System (ADS)

    Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios

    2014-05-01

    The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.

  4. Collective motion of squirmers in a quasi-2D geometry

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2013-03-01

    Microorganisms like bacteria, algae or spermatozoa typically move in an aqueous environment where they interact via hydrodynamic flow fields. Recent experiments studied the collective motion of dense suspensions of bacteria where swarming and large-scale turbulence emerged. Moreover, spherical artificial microswimmers, so-called squirmers, have been constructed and studied in a quasi-2D geometry. Here we present a numerical study of the collective dynamics of squirmers confined in quasi-2D between two parallel walls. Because of their spherical shape the reorientation of squirmers is solely due to noise and hydrodynamic interactions via induced flow fields. This is in contrast to elongated swimmers like bacteria which locally align due to steric interactions. We study the collective motion of pushers, pullers and potential swimmers at different densities. At small densities the squirmers are oriented parallel to the walls and pairwise collisions determine the reorientation rate. In dense suspensions rotational diffusion is greatly enhanced and pushers, in particular, tend to orient perpendicular to the walls. This effects the dynamics of the emerging clusters. In very dense suspensions we observe active jamming and long-lived crystalline structures.

  5. Boundary treatments for 2D elliptic mesh generation in complex geometries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a boundary treatment method for 2D elliptic mesh generation in complex geometries. Corresponding to Neumann- Dirichlet boundary conditions (sliding boundary conditions), the proposed method aims at achieving orthogonal and smooth nodal distribution along irregular boundaries. In ...

  6. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    PubMed Central

    Westerly, David C.; Mo, Xiaohu; Tomé, Wolfgang A.; Mackie, Thomas R.; DeLuca, Paul M.

    2013-01-01

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke [“Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,” Phys. Med. Biol. 47, 3313–3330 (2002)10.1088/0031-9155/47/18/304] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220 MeV proton beam in homogeneous water. This translates into a 32% dose discrepancy for a 5 mm Gaussian proton beam. Similar trends were observed for calculations made in heterogeneous slab phantoms where it was also noted that errors tend to increase with greater beam penetration. The generalized 2D scaling model performs well in all situations, with a maximum dose error of 0.3% at the Bragg peak in a heterogeneous phantom containing 3 cm of hard bone. Conclusions: The authors have derived a generalized form of 2D pencil beam scaling which is independent of the proton scattering power model and robust to the functional form of the radial kernel width in water used for the calculations. Sample calculations made with this model show excellent agreement with expected values in both homogeneous water and heterogeneous phantoms. PMID:23718585

  7. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    SciTech Connect

    Westerly, David C.; Mo Xiaohu; DeLuca, Paul M. Jr.; Tome, Wolfgang A.; Mackie, Thomas R.

    2013-06-15

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ['Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,' Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Moliere scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220 MeV proton beam in homogeneous water. This translates into a 32% dose discrepancy for a 5 mm Gaussian proton beam. Similar trends were observed for calculations made in heterogeneous slab phantoms where it was also noted that errors tend to increase with greater beam penetration. The generalized 2D scaling model performs well in all situations, with a maximum dose error of 0.3% at the Bragg peak in a heterogeneous phantom containing 3 cm of hard bone. Conclusions: The authors have derived a generalized form of 2D pencil beam scaling which is independent of the proton scattering power model and robust to the functional form of the radial kernel width in water used for the calculations. Sample calculations made with this model show excellent agreement with expected values in both homogeneous water and heterogeneous phantoms.

  8. 2D Laramide geometries and kinematics of the Rocky Mountains, western U.S.A.

    NASA Astrophysics Data System (ADS)

    Erslev, Eric A.

    Kinematic hypotheses for 2D, cross-sectional Laramide deformation in the Rocky Mountains include (1) block-tilting models and (2) basement thrust models with (a) subcrustal shear during low-angle subduction, (b) lithospheric buckling, (c) thickened lower crust under Laramide arches, and (d) crustal buckling during detachment of the upper crust. Vertical tectonic models invoking vertical or normal faults are falsified by major Laramide thrust faults and pervasive minor faults indicating NE-SW to E-W horizontal shortening. Seismic tomography documenting 200-km-thick Rocky Mountain lithosphere contradicts models predicting wholesale removal of North American mantle lithosphere by subcrustal shear during low-angle subduction. Preliminary gravity and deep seismic interpretations indicate a lack of correspondence between the Moho and Laramide arch geometries. This apparent lack of major Laramide faulting and folding of the Moho under the Rockies contradicts block-tilting models invoking reverse faults cutting the Moho and lithospheric buckling models. In addition, the maximum distances between Laramide arch culminations are generally smaller than buckle wavelengths expected for cratonic continental lithosphere. Geophysical evidence for rootless Laramide arches is incompatible with models predicting pure shear thickening of the lower crust under individual arches but is consistent with models invoking distributed lower crustal thickening over the entire Rockies. Rocky Mountain crustal geometries are most consistent with initial crustal buckling followed by upper crustal detachment on subhorizontal thrust faults that root to the west. An originally thick Rocky Mountain crust may have facilitated delamination and detachment folding of the upper crust during both the Laramide and the Ancestral Rocky Mountain orogenies.

  9. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries

    PubMed Central

    Amundsen, Morten; Linder, Jacob

    2016-01-01

    An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921

  10. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries

    NASA Astrophysics Data System (ADS)

    Amundsen, Morten; Linder, Jacob

    2016-03-01

    An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions.

  11. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries.

    PubMed

    Amundsen, Morten; Linder, Jacob

    2016-01-01

    An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921

  12. E2GPR - Edit your geometry, Execute GprMax2D and Plot the Results!

    NASA Astrophysics Data System (ADS)

    Pirrone, Daniele; Pajewski, Lara

    2015-04-01

    In order to predict correctly the Ground Penetrating Radar (GPR) response from a particular scenario, Maxwell's equations have to be solved, subject to the physical and geometrical properties of the considered problem and to its initial conditions. Several techniques have been developed in computational electromagnetics, for the solution of Maxwell's equations. These methods can be classified into two main categories: differential and integral equation solvers, which can be implemented in the time or spectral domain. All of the different methods present compromises between computational efficiency, stability, and the ability to model complex geometries. The Finite-Difference Time-Domain (FDTD) technique has several advantages over alternative approaches: it has inherent simplicity, efficiency and conditional stability; it is suitable to treat impulsive behavior of the electromagnetic field and can provide either ultra-wideband temporal waveforms or the sinusoidal steady-state response at any frequency within the excitation spectrum; it is accurate and highly versatile; and it has become a mature and well-researched technique. Moreover, the FDTD technique is suitable to be executed on parallel-processing CPU-based computers and to exploit the modern computer visualisation capabilities. GprMax [1] is a very well-known and largely validated FDTD software tool, implemented by A. Giannopoulos and available for free public download on www.gprmax.com, together with examples and a detailled user guide. The tool includes two electromagnetic wave simulators, GprMax2D and GprMax3D, for the full-wave simulation of two-dimensional and three-dimensional GPR models. In GprMax, everything can be done with the aid of simple commands that are used to define the model parameters and results to be calculated. These commands need to be entered in a simple ASCII text file. GprMax output files can be stored in ASCII or binary format. The software is provided with MATLAB functions, which can be employed to import synthetic data created by GprMax using the binary-format option into MATLAB, in order to be processed and/or visualized. Further MATLAB procedures for the visualization of GprMax synthetic data have been developed within the COST Action TU1208 [2] and are available for free public download on www.GPRadar.eu. The current version of GprMax3D is compiled with OpenMP, supporting multi-platform shared memory multiprocessing which allows GprMax3D to take advantage of multiple cores/CPUs. GprMax2D, instead, exploits a single core when executed. E2GPR is a new software tool, available free of charge for both academic and commercial use, conceived to: 1) assist in the creation, modification and analysis of GprMax2D models, through a Computer-Aided Design (CAD) system; 2) allow parallel and/or distributed computing with GprMax2D, on a network of computers; 3) automatically plot A-scans and B-scans generated by GprMax2D. The CAD and plotter parts of the tool are implemented in Java and can run on any Java Virtual Machine (JVM) regardless of computer architecture. The part of the tool devoted to supporting parallel and/or distributed computing, instead, requires the set up of a Web-Service (on a server emulator or server); in fact, it is currently configured only for Windows Server and Internet Information Services (IIS). In this work, E2GPR is presented and examples are provided which demonstrate its use. The tool can be currently obtained by contacting the authors. It will soon be possible to download it from www.GPRadar.eu. Acknowledgement This work is a contribution to the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' The authors thank COST for funding the Action TU1208. References [1] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax,' Construction and Building Materials, vol. 19, pp. 755-762, 2005. [2] L. Pajewski, A. Benedetto, X. Dérobert, A. Giannopoulos, A. Loizos, G. Manacorda, M. Marciniak, C. Plati, G. Schettini, I. Trinks, "Applications of Ground Penetrating Radar in Civil Engineering - COST Action TU1208," Proc. 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2-5 July 2013, Nantes, France, pp. 1-6.

  13. Geometry and dynamics of a coupled 4 D-2 D quantum field theory

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Chatterjee, Chandrasekhar; Evslin, Jarah; Konishi, Kenichi; Ohashi, Keisuke; Seveso, Luigi

    2016-01-01

    Geometric and dynamical aspects of a coupled 4 D-2 D interacting quantum field theory — the gauged nonAbelian vortex — are investigated. The fluctuations of the internal 2 D nonAbelian vortex zeromodes excite the massless 4 D Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2 D C{P}^{N-1} zeromodes associated with a nonAbelian vortex become nonnormalizable.

  14. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  15. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory. PMID:26961687

  16. The differences in the development of Rayleigh-Taylor instability in 2D and 3D geometries

    NASA Astrophysics Data System (ADS)

    Kuchugov, P. A.; Rozanov, V. B.; Zmitrenko, N. V.

    2014-06-01

    Results are presented from theoretical analysis and numerical simulations aimed to clarify specific features of Rayleigh-Taylor instability in 2D and 3D geometries. Two series of simulations, one with an isolated single-mode perturbation of the interface and the other with a random density perturbation, were performed. It is shown that the relative evolutions of integral characteristics for the first and the second series are different in 2D and 3D geometries. An attempt is made to interpret this result in the framework of the previously developed evolutionary approach based on the concept of the "critical age" of the perturbation (where, by the age is meant the product of the wavenumber and amplitude). The critical age corresponds to the destruction of the main mushroom-like structure formed during the development of Rayleigh-Taylor instability due to the onset of the secondary Kelvin-Helmholtz instability.

  17. Effects of Training Method and Gender on Learning 2D/3D Geometry

    ERIC Educational Resources Information Center

    Khairulanuar, Samsudin; Nazre, Abd Rashid; Jamilah, H.; Sairabanu, Omar Khan; Norasikin, Fabil

    2010-01-01

    This article reports the findings of an experimental study involving 36 primary school students (16 girls, 20 boys, Mean age = 9.5 years, age range: 8-10 years) in geometrical understanding of 2D and 3D objects. Students were assigned into two experimental groups and one control group based on a stratified random sampling procedure. The first…

  18. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  19. Experimental studies of spin-imbalanced Fermi gases in 2D geometries

    NASA Astrophysics Data System (ADS)

    Thomas, John

    We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.

  20. Fully Determined Fluid Velocity Fields for 2D Materials with Complex Geometries.

    NASA Astrophysics Data System (ADS)

    Cassidy, R.; McCloskey, J.; Morrow, P.

    2001-12-01

    The movement of fluid in geological structures is crucial to many geologic processes, yet we remain unable to accurately model transport in realistically complex media in either 2 or 3 dimensions. The essence of the problem is the scale invariance of natural materials, whose geometry directly governs fluid movement and makes the prediction of fluid velocities in realistic situations difficult. At present, discrete modelling techniques such as the Lattice Boltzmann scheme, offer the greatest potential for numerically simulating fluid flow in such geometries. A lack of accurate empirical data for flow through complex geometries, however, means that existing models can only be tested for simple scenarios and, as a consequence, are reliant on the assumption that the models accurately predict flow in the geometries of interest. In response to this, an experimental technique has been developed to measure high-resolution velocity fields in complex media. The media are created by numerically constructing a fractally correlated porous matrices and superimposing them with fractal fracture sets. A modified Lattice Boltzmann scheme can then be used to simulate the fluid velocity field through this numeric model. The experimental technique is based on the translation of this complex medium geometry into a physical model, or flow cell, capable of conducting fluid. To produce the flow cell, the Boolean digital map of the solid and void space in the medium is rendered in plastic using stereolithography. This technique produces a precise copy of the medium in a layer 200x200x2mm, held between 2 transparent plates. The flow cell is then enclosed in a purpose built rig that permits controlled fluid flow and direct observation of the fluid behaviour. The fluid is seeded with 0.01mm neutrally buoyant particles and the velocity of the fluid in 0.5mm interrogation areas is determined using high-resolution digital particle imaging velocimetry. Systematic analysis of all porous subareas using both cross-correlation and streak analysis techniques allows a complete, high-resolution velocity field to be mapped. This measured velocity field is then compared directly with the predicted velocity field, and the accuracy of the numeric scheme evaluated.

  1. Determining Transition State Geometries in Liquids Using 2D-IR

    SciTech Connect

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  2. 2D Geometry Predicts Perceived Visual Curvature in Context-Free Viewing

    PubMed Central

    Dresp-Langley, Birgitta

    2015-01-01

    Planar geometry was exploited for the computation of symmetric visual curves in the image plane, with consistent variations in local parameters such as sagitta, chordlength, and the curves' height-to-width ratio, an indicator of the visual area covered by the curve, also called aspect ratio. Image representations of single curves (no local image context) were presented to human observers to measure their visual sensation of curvature magnitude elicited by a given curve. Nonlinear regression analysis was performed on both the individual and the average data using two types of model: (1) a power function where y (sensation) tends towards infinity as a function of x (stimulus input), most frequently used to model sensory scaling data for sensory continua, and (2) an “exponential rise to maximum” function, which converges towards an asymptotically stable level of y as a function of x. Both models provide satisfactory fits to subjective curvature magnitude as a function of the height-to-width ratio of single curves. The findings are consistent with an in-built sensitivity of the human visual system to local curve geometry, a potentially essential ground condition for the perception of concave and convex objects in the real world. PMID:26346803

  3. Boundary to Constructive Solid Geometry Mappings: a Focus on 2-D Issues

    NASA Technical Reports Server (NTRS)

    Peterson, D. P.

    1985-01-01

    The problem of converting boundary representation (B-rep) to constructive solid geometry representation (CSG-rep) (and vice versa) is discussed in two phases. The first phase entails finding a CSG-rep that defines the region bounded by a polygonal profile curve. The second phase utilizes the results of the first phase to find a CSG-rep for many non-polygonal profile curves. A mathematically concise representation of a region bounded by a polygonal is presented. Namely, any polygonal region bounded by an n sided polygon may be represented by a binary tree which has at most n planar halfspaces as leaves. A structure for this representation and an algorithm for calculating is discussed.

  4. Terminal velocity and velocity fluctuations of sedimenting suspensions in quasi 2D geometry

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Alvarez, Alejandra; Mena, Francisco

    2008-11-01

    Buoyant suspensions, confined in a quasi two-dimensional geometry, are studied using the Hele-shaw model. In the far field regime, boundary integral methods allow to compute the pressure field and the resulting hydrodynamic interactions. The result is a self-consistent set of equations that include the effect of particle correlations, the effective medium and container walls. Interactions are long-ranged, with effective forces decaying as R-2, leading to undefined values for the terminal velocity. A regularization scheme, modeling the counterflow due to the presence of limiting walls in the sedimentation direction, is derived. The resulting regularized model leads to finite terminal velocity and fluctuations that do not depend on the system size nor its shape.

  5. Vectorization of a 2D-1D Iterative Algorithm for the 3D Neutron Transport Problem in Prismatic Geometries

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Févotte, François; Lathuilière, Bruno; Plagne, Laurent

    2014-06-01

    The past few years have been marked by a noticeable increase in the interest in 3D whole-core heterogeneous deterministic neutron transport solvers for reference calculations. Due to the extremely large problem sizes tackled by such solvers, they need to use adapted numerical methods and need to be efficiently implemented to take advantage of the full computing power of modern systems. As for numerical methods, one possible approach consists in iterating over resolutions of 2D and 1D MOC problems by taking advantage of prismatic geometries. The MICADO solver, developed at EDF R&D, is a parallel implementation of such a method in distributed and shared memory systems. However it is currently unable to use SIMD vectorization to leverage the full computing power of modern CPUs. In this paper, we describe our first effort to support vectorization in MICADO, typically targeting Intel© SSE CPUs. Both the 2D and 1D algorithms are vectorized, allowing for high expected speedups for the whole spatial solver. We present benchmark computations, which show nearly optimal speedups for our vectorized implementation on the TAKEDA case.

  6. Spontaneous wrinkling in azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Lokitz, Bradley S; Messman, Jamie M; Stafford, Christopher M; Kilbey, II, S Michael

    2013-01-01

    We report a simple, one step process for developing wrinkling patterns in azlactone-based polymer thin films and brushes in 2D and 3D surfaces. The polymer used in this work wrinkles spontaneously upon deposition and solidification on a substrate without applying any external strain to the substrate, with the mode of deposition defining the direction of the wrinkles. Wrinkle formation is shown to occur on a variety of substrates over large areas. We also find that a very thin brush-like layer of an azlactone-containing block copolymer also exhibits wrinkled topology. Given the spontaneity and versatility of wrinkle formation, we further demonstrate two proofs-of-concept, i) that these periodic wrinkled structures are not limited to planar surfaces, but are also developed in complex geometries including tubes, cones and other 3D structures; and ii) that this one-step wrinkling process can be used to guide the deposition of metal nanoparticles and quantum dots, creating a periodic, nanopatterned film.

  7. On preservation of symmetry in r-z staggered Lagrangian schemes

    NASA Astrophysics Data System (ADS)

    Váchal, Pavel; Wendroff, Burton

    2016-02-01

    In the focus of this work are symmetry preservation, conservation of energy and volume, and other important properties of staggered Lagrangian hydrodynamic schemes in cylindrical (r-z) geometry. It is well known that on quadrilateral cells in r-z, preservation of spherical symmetry, perfect satisfaction of the Geometrical Conservation Law (GCL), and total energy conservation are incompatible even on conforming grids. This paper suggests a novel staggered grid approach that preserves symmetry, conserves total energy by construction and tries to do its best by diminishing the GCL error to the order of entropy error. In particular, the forces from an existing volume consistent scheme are corrected so that spherical symmetry is preserved. The incorporation of subcell pressure mechanism to reduce spurious grid deformations is described and the relation of the new scheme to popular area-weighted and control volume approaches studied.

  8. Impact of geometry and viewing angle on classification accuracy of 2D based analysis of dysmorphic faces.

    PubMed

    Vollmar, Tobias; Maus, Baerbel; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar; Boehringer, Stefan

    2008-01-01

    Digital image analysis of faces has been demonstrated to be effective in a small number of syndromes. In this paper we investigate several aspects that help bringing these methods closer to clinical application. First, we investigate the impact of increasing the number of syndromes from 10 to 14 as compared to an earlier study. Second, we include a side-view pose into the analysis and third, we scrutinize the effect of geometry information. Picture analysis uses a Gabor wavelet transform, standardization of landmark coordinates and subsequent statistical analysis. We can demonstrate that classification accuracy drops from 76% for 10 syndromes to 70% for 14 syndromes for frontal images. Including side-views achieves an accuracy of 76% again. Geometry performs excellently with 85% for combined poses. Combination of wavelets and geometry for both poses increases accuracy to 93%. In conclusion, a larger number of syndromes can be handled effectively by means of image analysis. PMID:18054308

  9. Specific features of Richtmyer-Meshkov instability growth with 2D and 3D initial perturbation geometry

    NASA Astrophysics Data System (ADS)

    Igonin, V. V.; Krasovsky, G. B.; Kuratov, S. E.; Lebedev, A. I.; Lebedeva, M. O.; Meshkov, E. E.; Myshkina, I. Yu; Ol'khov, O. V.; Polovnikov, A. A.; Polovnikov, E. A.

    2010-12-01

    This paper addresses features of hydrodynamic instability growth on shock arrival at a free surface of condensed matter with deterministic initial perturbations. Richtmyer-Meshkov instability growth processes with initial two-dimensional (2D) and 3D perturbations are considered. Experimental diagnostics included pulsed radiography and a two-piston shock-tube technique. It is shown experimentally that the growth of perturbations strongly depends on material compression in the shock tube. In the hydrodynamic approximation, when the shock Mach number is M>1, the growth rate of initial 2D and 3D perturbations is the same. Under weak shock compression conditions (M~1), it may happen that initial 3D perturbations will not grow at all. Our results conflict with theoretical concepts of perturbation growth associated with Richtmyer-Meshkov instability, according to which the growth rate of initial 3D perturbations at the nonlinear stage should always be higher than the growth rate of 2D perturbations for the same a/? ratios. A computational physics model of the process of interest was developed based on LEGAK simulations.

  10. Edge effect and significant increase of the superconducting transition onset temperature of 2D superconductors in flat and curved geometries

    NASA Astrophysics Data System (ADS)

    Wong, Chi Ho; Lortz, Rolf

    2016-02-01

    In this paper, we present a simple method to model the curvature activated phonon softening in a 2D superconducting layer. The superconducting transition temperature Tc in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is calculated by the quantum mechanical electron-phonon scattering matrix, and a series of collective lattice vibrations in the surface state. We will show that being extremely thin in a flat rectangular shape is not enough to significantly enhance the Tc through phonon softening. However, if a curvature is added, Tc can be strongly enhanced. The increase in Tc with respect to the bulk is greatest in a hollow sphere, intermediate in a hollow cylinder and weakest for the rectangular sheet, when systems of identical length scale are considered. In addition, we find that the edge effect of such a 2D sheet has a strong broadening effect on Tc in addition to the effect of order parameter phase fluctuations.

  11. 2D/3D multi-phase Fresnel volume rays and applications to simultaneously update both velocity model and reflector geometry

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Li, Xing-wang; Huang, Guo-jiao

    2015-04-01

    Theoretically, Fresnel volume ray theory is more suitable for handling real seismic propagation problems because the traveltime depends not only on the velocity distribution along a traditional geometric ray but also on the velocity distribution within a vicinal region (referred to as first Fresnel volume, abbreviated as FFV) which embraces the geometric ray. In this study, we used an exact solution to calculate multi-phase FFV rays for both 2-D and 3-D cases and introduced a normalized coefficient to account for different contributions inside the FFV ray on the traveltimes. Furthermore, we draw a new formula to calculate the partial traveltime derivatives with respective to the velocity variations and depth changes of the reflectors and finally present a simultaneous inversion method for updating both velocity field and reflector geometry by using these multi-phase FFV rays for both in 2-D and 3-D cases. Using synthetic data examples, we compare the reconstructions of the velocity field and the reflector geometry using the FFV ray tomographic methods and the traditional ray tomography approaches. The simulated inversion results for both 2-D and 3-D cases show that the FFV ray tomographic method is advantageous over the traditional ray tomography method, especially when the ray density is relatively low. The other advantage for the FFV ray tomography method is that it can capture the coarse velocity structure and reflector geometry by starting with a low-frequency data set and then map the fine velocity structure and the detailed reflector geometry by using a high-frequency data set.

  12. FACET: a radiation view factor computer code for axisymmetric, 2D planar, and 3D geometries with shadowing

    SciTech Connect

    Shapiro, A.B.

    1983-08-01

    The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.

  13. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution. PMID:26049464

  14. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  15. A Piecewise Linear Discontinuous Finite Element Spatial Discretization of the Transport Equation in 2D Cylindrical Geometry

    SciTech Connect

    Bailey, T S; Adams, M L; Chang, J H

    2008-10-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.

  16. 2-D reconstruction of atmospheric concentration peaks from horizontal long path DOAS tomographic measurements: parametrisation and geometry within a discrete approach

    NASA Astrophysics Data System (ADS)

    Hartl, A.; Song, B. C.; Pundt, I.

    2006-03-01

    In this study, we theoretically investigate the reconstruction of 2-D cross sections through Gaussian concentration distributions, e.g. emission plumes, from long path DOAS measurements along a limited number of light paths. This is done systematically with respect to the extension of the up to four peaks and for six different measurement setups with 2-4 telescopes and 36 light paths each. We distinguish between cases with and without additional background concentrations. Our approach parametrises the unknown distribution by local piecewise constant or linear functions on a regular grid and solves the resulting discrete, linear system by a least squares minimum norm principle. We show that the linear parametrisation not only allows better representation of the distributions in terms of discretisation errors, but also better inversion of the system. We calculate area integrals of the concentration field (i.e. total emissions rates for non-vanishing perpendicular wind speed components) and show that reconstruction errors and reconstructed area integrals within the peaks for narrow distributions crucially depend on the resolution of the reconstruction grid. A recently suggested grid translation method for the piecewise constant basis functions, combining reconstructions from several shifted grids, is modified for the linear basis functions and proven to reduce overall reconstruction errors, but not the uncertainty of concentration integrals. We suggest a procedure to subtract additional background concentration fields before inversion. We find large differences in reconstruction quality between the geometries and conclude that, in general, for a constant number of light paths increasing the number of telescopes leads to better reconstruction results. It appears that geometries that give better results for negligible measurement errors and parts of the geometry that are better resolved are also less sensitive to increasing measurement errors.

  17. 2-D reconstruction of atmospheric concentration peaks from horizontal long path DOAS tomographic measurements: parametrisation and geometry within a discrete approach

    NASA Astrophysics Data System (ADS)

    Hartl, A.; Song, B. C.; Pundt, I.

    2005-11-01

    In this study, we theoretically investigate the reconstruction of 2-D cross sections through Gaussian concentration distributions, e.g. emission plumes, from long path DOAS measurements along a limited number of light paths. This is done systematically with respect to the extension of the up to four peaks and for six different measurement setups with 2-4 telescopes and 36 light paths each. We distinguish between cases with and without additional background concentrations. Our approach parametrises the unknown distribution by local piecewise constant or linear functions on a regular grid and solves the resulting discrete, linear system by a least squares minimum norm principle. We show that the linear parametrisation not only allows better representation of the distributions in terms of discretisation errors, but also better inversion of the system. We calculate area integrals of the concentration field (i.e. total emissions rates for non-vanishing perpendicular wind speed components) and show that reconstruction errors and reconstructed area integrals within the peaks for narrow distributions crucially depend on the resolution of the reconstruction grid. A recently suggested grid translation method for the piecewise constant basis functions, combining reconstructions from several shifted grids, is modified for the linear basis functions and proven to reduce overall reconstruction errors, but not the uncertainty of concentration integrals. We suggest a procedure to subtract additional background concentration fields before inversion. We find large differences in reconstruction quality between the geometries and conclude that, in general, for a constant number of light paths increasing the number of telescopes leads to better reconstruction results. It appears that geometries that give better results for negligible measurement errors and parts of the geometry that are better resolved are also less sensitive to increasing measurement errors.

  18. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison.

    PubMed

    Kolkoori, Sanjeevareddy; Chitti Venkata, Krishnamurthy; Balasubramaniam, Krishnan

    2015-01-01

    This article presents an analytical approach for simulation of ultrasonic diffracted wave signals from cracks in two-dimensional geometries based on a novel Huygens-Fresnel Diffraction Model (HFDM). The model employs the frequency domain far-field displacement expressions derived by Miller and Pursey in 2D for a line source located on the free surface boundary of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summation of displacements due to the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted wave signal amplitudes in a general isotropic solid are obtained by standard Fast Fourier Transform (FFT) procedures. The wedge based finite aperture transducer refracted beam profiles were modelled by treating the finite dimension transducer as an array of line sources. The proposed model is able to evaluate back-wall signal amplitude and lateral wave signal amplitude, quantitatively. The model predicted range-dependent diffracted amplitudes from the edge of a bottom surface-breaking crack in the isotropic steel specimen were compared with Geometrical Theory of Diffraction (GTD) results. The good agreement confirms the validity of the HFDM method. The simulated ultrasonic time-of-flight diffraction (TOFD) A-scan signals for surface-breaking crack lengths 2 mm and 4 mm in a 10 mm thick aluminium specimen were compared quantitatively with the experimental results. Finally, important applications of HFDM method to the ultrasonic quantitative non-destructive evaluation are discussed. PMID:25200698

  19. Huygen-Fresnel Diffraction Model H-Fdm for the Simulation of Ultrasonic Time-Of Diffraction Technique in 2d Geometries

    NASA Astrophysics Data System (ADS)

    Reddy, K. Sanjeeva; Krishnamurthy, C. V.; Balasubramaniam, Krishnan; Balasubramanian, T.

    2010-02-01

    This paper discusses the evaluation of diffracted signals from cracks in 2D based on a new Huygen-Fresnel Diffraction Model (H-FDM). The model employs the frequency-domain far-field displacement expressions derived by Miller & Pursey [1] in 2D for a line source located on the free surface of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summing over the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted signal is obtained using standard FFT procedures. The effect of beam refraction from a wedge-based finite transducer has been modeled by treating the finite transducer as an array of line sources. The model has been used for predicting diffracted signals in time-of-flight from the crack like defect. The model allows the evaluation of back wall signal amplitude and lateral wave amplitude as well. Experiments have been carried out on 10 mm thick aluminum sample with surface breaking crack of lengths 2 mm and 4 mm using shear probe shoe. The simulated A-Scan results for the aluminum sample with 2 mm and 4 mm surface breaking lengths compare very well in relative amplitudes and time of arrivals with experiments. The H-FDM model offers a tool to evaluate diffraction and related phenomena quantitatively with modest computational resources.

  20. A one-loop test for construction of 4D N = 4 SYM from 2D SYM via fuzzy-sphere geometry

    NASA Astrophysics Data System (ADS)

    Matsuura, So; Sugino, Fumihiko

    2016-04-01

    As a perturbative check of the construction of 4D N=4 supersymmetric Yang-Mills theory (SYM) from mass-deformed N=(8,8) SYM on the 2D lattice, the one-loop effective action for scalar kinetic terms is computed in N=4 U(k) SYM on R^2 × (fuzzy S^2), which is obtained by expanding 2D N=(8,8) U(N) SYM with mass deformation around its fuzzy-sphere classical solution. The radius of the fuzzy sphere is proportional to the inverse of the mass. We consider two successive limits: (1) decompactify the fuzzy sphere to a noncommutative (Moyal) plane and (2) turn off the noncommutativity of the Moyal plane. It is straightforward at the classical level to obtain the ordinary N=4 SYM on R^4 in the limits, while it is nontrivial at the quantum level. The one-loop effective action for the SU(k) sector of the gauge group U(k) coincides with that of the ordinary 4D N=4 SYM in the above limits. Although a "noncommutative anomaly" appears in the overall U(1) sector of the U(k) gauge group, this can be expected to be a gauge artifact not affecting gauge-invariant observables.

  1. Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models

    NASA Astrophysics Data System (ADS)

    Centeno, Felipe Roman; Brittes, Rogério; França, Francis. H. R.; Ezekoye, Ofodike A.

    2015-05-01

    The weighted-sum-of-gray-gases (WSGG) model is widely used in engineering computations of radiative heat transfer due to its relative simplicity, robustness and flexibility. This paper presents the computation of radiative heat transfer in a 2D axisymmetric chamber using two WSGG models to compute radiation in H2O and CO2 mixtures. The first model considers a fixed ratio between the molar concentrations of H2O and CO2, while the second allows the solution for arbitrary ratios. The correlations for both models are based on the HITEMP2010 database. The test case considers typical conditions found in turbulent methane flames, with steep variations in the temperature field as well as in the molar concentrations of the participating species. To assess the accuracy of the WSGG model, the results are compared with a solution obtained by line-by-line integration (LBL) of the spectrum.

  2. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-05-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored.

  3. Computation of three-phase capillary entry pressures and arc menisci configurations in pore geometries from 2D rock images: A combinatorial approach

    NASA Astrophysics Data System (ADS)

    Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.

    2014-07-01

    We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.

  4. Translating Basic Psychopathology Research to Preventive Interventions: A Tribute to John R. Z. Abela

    ERIC Educational Resources Information Center

    Garber, Judy; Korelitz, Katherine; Samanez-Larkin, Silvia

    2012-01-01

    This article highlights how the many important contributions of John R. Z. Abela's research program can inform the development and implementation of interventions for preventing depression in youth. Abela provided evidence of multiple vulnerabilities to depression including cognitive (e.g., inferential style, dysfunctional attitudes, ruminative

  5. Translating Basic Psychopathology Research to Preventive Interventions: A Tribute to John R. Z. Abela

    ERIC Educational Resources Information Center

    Garber, Judy; Korelitz, Katherine; Samanez-Larkin, Silvia

    2012-01-01

    This article highlights how the many important contributions of John R. Z. Abela's research program can inform the development and implementation of interventions for preventing depression in youth. Abela provided evidence of multiple vulnerabilities to depression including cognitive (e.g., inferential style, dysfunctional attitudes, ruminative…

  6. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  7. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  8. Implementation of a hybrid particle code with a PIC description in r-z and a gridless description in ϕ into OSIRIS

    NASA Astrophysics Data System (ADS)

    Davidson, A.; Tableman, A.; An, W.; Tsung, F. S.; Lu, W.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-01-01

    For many plasma physics problems, three-dimensional and kinetic effects are very important. However, such simulations are very computationally intensive. Fortunately, there is a class of problems for which there is nearly azimuthal symmetry and the dominant three-dimensional physics is captured by the inclusion of only a few azimuthal harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield acceleration, by expanding the fields and currents in azimuthal harmonics and truncating the expansion. The complex amplitudes of the fundamental and first harmonic for the fields were solved on an r-z grid and a procedure for calculating the complex current amplitudes for each particle based on its motion in Cartesian geometry was presented using a Marder's correction to maintain the validity of Gauss's law. In this paper, we describe an implementation of this algorithm into OSIRIS using a rigorous charge conserving current deposition method to maintain the validity of Gauss's law. We show that this algorithm is a hybrid method which uses a particles-in-cell description in r-z and a gridless description in ϕ. We include the ability to keep an arbitrary number of harmonics and higher order particle shapes. Examples for laser wakefield acceleration, plasma wakefield acceleration, and beam loading are also presented and directions for future work are discussed.

  9. Aniso2D

    Energy Science and Technology Software Center (ESTSC)

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  10. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  11. Mesh2d

    Energy Science and Technology Software Center (ESTSC)

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  12. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  13. Geometry of the inverted Cretaceous Chañarcillo Basin based on 2-D gravity and field data. An approach to the structure of the western Central Andes of northern Chile

    NASA Astrophysics Data System (ADS)

    Martínez, F.; Maksymowicz, A.; Ochoa, H.; Díaz, D.

    2015-08-01

    This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27-28° S). The results obtained from the integration of two transverse (E-W) gravity profiles with previous geological information, show that the architecture of this basin is defined by a large NNE-SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium"), which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault). Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous syn-rift recognized within the basin, suggest that their complete structural geometry could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.

  14. Geometry of the inverted Cretaceous Chañarcillo Basin based on 2-D gravity and field data - an approach to the structure of the western Central Andes of northern Chile

    NASA Astrophysics Data System (ADS)

    Martínez, F.; Maksymowicz, A.; Ochoa, H.; Díaz, D.

    2015-12-01

    This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27-28° S). The results obtained from the integration of two transverse (E-W) gravity profiles with previous geological information show that the architecture of this basin is defined by a large NNE-SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium"), which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault). Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous synextensional deposits recognized within the basin, suggest that its structure could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.

  15. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  16. A Geometric Boolean Library for 2D Objects

    Energy Science and Technology Software Center (ESTSC)

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  17. A transient, quadratic nodal method for triangular-Z geometry

    SciTech Connect

    DeLorey, T.F.

    1993-06-01

    Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.

  18. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  19. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  20. AnisWave 2D

    Energy Science and Technology Software Center (ESTSC)

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  1. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  2. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  3. Disorder in 2D Materials

    NASA Astrophysics Data System (ADS)

    Chhowalla, Manish

    2014-03-01

    Heterogeneity and aperiodicity in materials is typically viewed as undesirable but recent developments have shown that disorder in materials can lead to interesting and unexpected effects and that disorder and defect engineering are fundamental pathways for tailoring material properties. Towards this end, we utilize chemically exfoliated two-dimensional materials as model systems to study disorder. Chemical exfoliation leads to highly modified materials that are structurally and chemically heterogeneous, unlike the structurally pristine material obtained by mechanical exfoliation or chemical vapor deposition. In this talk, I will describe how several different structural phases with disparate properties in transition metal dichalcogenide (TMD) nanosheets such as MoS2 and WS2 are possible and how their concentrations can be controlled. I will also demonstrate metal-semiconductor transition in 2D material by phase transformation and how the metallic phase of 2D TMDs can be used to improve their catalytic activity for making hydrogen.

  4. MOSS2D V1

    Energy Science and Technology Software Center (ESTSC)

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  5. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  6. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  7. Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates

    SciTech Connect

    Shashkov, Mikhail; Wendroff, Burton; Burton, Donald; Barlow, A; Hongbin, Guo

    2009-01-01

    We present a new discretization for 2D Lagrangian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, energy conserving and symmetry preserving. We describe discretization of the basic Lagrangian hydrodynamics equations.

  8. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  9. 2-D axisymmetric line transport

    SciTech Connect

    Castor, J.I.; Dykema, P.G. ); Klein, R.I. California Univ., Berkeley, CA . Dept. of Astronomy)

    1990-11-20

    The methods used in the ALTAIR code for computing the transfer of spectral line radiation in two-dimensional axially-symmetric geometry are described. ALTAIR uses a variable-Eddington-tensor approach, in which the transfer equation of non-coherent line scattering is written in moment form, and the moments are closed with an assumed tensor relating the monochromatic pressure tensor and energy density; this Eddington tensor is obtained self-consistently using an accurate angle-dependent solution of the transfer equation. The finite element method for solving the moment system, and the discontinuous finite element method for solving the S{sub n} equation of transfer are described. Two applications of the method are discussed: line formation in uniform cylinders with different length-diameter ratios, and monochromatic transfer on an irregular x-y mesh (the Mordant test problem). 13 refs., 2 figs.

  10. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  11. The Energy Eigenvalues of V(r)=-(Z/r) + gr + {lambda}r{sup 2} Potential In The Constant Homogeneous Magnetic Field By The Asymptotic Iteration Method

    SciTech Connect

    Aygun, M.; Sahin, Y.; Boztosun, I.

    2007-04-23

    In a homogeneous magnetic field, we present the solution of the radial Schroedinger equation for V(r)=-(Z/r) + gr + {lambda}r{sup 2} potential. Within an alternative approach, the asymptotic iteration method, we obtain the energy eigenvalues for any arbitrary magnetic fields. The results obtained by using different Larmor frequencies, wL = 0.1, 0.5, 1, 3, 5, 10, are compared with wL = 0 which corresponds to the non-magnetic field case. We present that this method works for weak and strong magnetic field cases i.e. any Larmor frequencies as well as it gives the energy eigenvalues for any n, m quantum numbers.

  12. Confinement of nonneutral plasma in unconventional geometries

    SciTech Connect

    Turner, L.

    1990-01-01

    Our interest in efficient storage of cold, nonneutral plasma has been motivated by the elegant studies on cryogenic nonneutral electron plasmas at UCSD and by the remarkable results obtained from the laser-cooled ion plasmas at the NIST, Boulder, Colorado. Also motivating our study is the perceived need to develop the most expedient means of storing antimatter, whether it be antiprotons for gravitational studies or positrons for a variety of physics experiments and diagnostic purposes. One of the most explored technologies of confining nonneutral plasmas is the Penning trap. The maximum number density of cold nonneutral plasma that can be stored in such a trap is B{sup 2}/2{mu}{sub 0}mc{sup 2}, in which B{sup 2}/2{mu}{sub 0} is the (homogeneous) magnetic energy density and mc{sup 2} is the rest energy of the stored charges. In this paper, we shall present a synopsis of the results of our theoretical exploration of the effect on this hydrostatic limit, the so-called Brillouin'' limit, of altering the geometry of the confining vacuum magnetic field while maintaining the field's azimuthal symmetry. In particular, we shall analyze equilibrium confinement by, first, a poloidal magnetic field, B{sub 4}(r,z){cflx r} + B{sub z}(r,z){cflx z}, and second, a toroidal magnetic field, along with the concomitant electrostatic fields.

  13. Modal characteristics of 2D antiguided VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Zhou, Delai; Napartovich, Anatoly P.; Elkin, Nickolai N.; Vysotsky, Dmitri V.; Mawst, Luke J.

    2002-06-01

    Cold-cavity modal behavior of a 2-D (4x4 square lattice geometry) antiguided vertical cavity surface emitting laser (VCSEL) array is studied by the means of an effective-index model and fiber-mode approximation. The calculations show that the 2-D array can operate under a resonant condition, provided that a resonance in both of the 1-D directions is satisfied. Although out-of-phase and adjacent modes will compete with the in-phase mode around its resonant position, our simulation shows that, with the introduction of inter-element loss, the in-phase mode can be favored to lase for a wide range of inter-element width, s, around its resonant position. The effective-index model is shown to be in qualitative agreement with a more comprehensive (exact) 3-D beam-propagation-based simulation, which takes into account the actual layered structure. The 2-D antiguides are constructed from shifting the cavity resonance between the element and inter-element regions and fabricated by chemically selective etching and two-step MOCVD growth. While both diffraction-limited resonant in-phase and out-of-phase modes are observed from top-emitting arrays, a 2-D bottom-emitting structure is adopted to improve heat removal. Preliminary results of 40 mW pulsed and 10 mW CW powers have been obtained from the junction up and down arrays respectively.

  14. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  15. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  16. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (ESTSC)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  17. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  18. 2-D and 3-D computations of curved accelerator magnets

    SciTech Connect

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.

  19. Accurate coronary modeling procedure using 2D calibrated projections based on 2D centerline points on a single projection

    NASA Astrophysics Data System (ADS)

    Movassaghi, Babak; Rasche, Volker; Viergever, Max A.; Niessen, Wiro J.

    2004-05-01

    For the diagnosis of ischemic heart disease, accurate quantitative analysis of the coronary arteries is important. In coronary angiography, a number of projections is acquired from which 3D models of the coronaries can be reconstructed. A signifcant limitation of the current 3D modeling procedures is the required user interaction for defining the centerlines of the vessel structures in the 2D projections. Currently, the 3D centerlines of the coronary tree structure are calculated based on the interactively determined centerlines in two projections. For every interactively selected centerline point in a first projection the corresponding point in a second projection has to be determined interactively by the user. The correspondence is obtained based on the epipolar-geometry. In this paper a method is proposed to retrieve all the information required for the modeling procedure, by the interactive determination of the 2D centerline-points in only one projection. For every determined 2D centerline-point the corresponding 3D centerline-point is calculated by the analysis of the 1D gray value functions of the corresponding epipolarlines in space for all available 2D projections. This information is then used to build a 3D representation of the coronary arteries using coronary modeling techniques. The approach is illustrated on the analysis of calibrated phantom and calibrated coronary projection data.

  20. The 2dF QSO Redshift Survey - XIII. A measurement of Λ from the quasi-stellar object power spectrum, PS(k∥, k⊥)

    NASA Astrophysics Data System (ADS)

    Outram, P. J.; Shanks, T.; Boyle, B. J.; Croom, S. M.; Hoyle, Fiona; Loaring, N. S.; Miller, L.; Smith, R. J.

    2004-03-01

    We report on measurements of the cosmological constant, Λ, and the redshift space distortion parameter β=Ω0.6m/b, based on an analysis of the quasi-stellar object (QSO) power spectrum parallel and perpendicular to the observer's line of sight, PS(k∥, k⊥), from the final catalogue of the Two-Degree Field (2dF) QSO Redshift Survey. We derive a joint Λ-β constraint from the geometric and redshift-space distortions in the power spectrum. By combining this result with a second constraint based on mass clustering evolution, we break this degeneracy and obtain strong constraints on both parameters. Assuming a flat (Ωm+ΩΛ= 1) cosmology and a Λ cosmology r(z) function to convert from redshift into comoving distance, we find best-fitting values of ΩΛ= 0.71+0.09-0.17 and βq(z~ 1.4) = 0.45+0.09-0.11. Assuming instead an Einstein-de Sitter cosmology r(z) we find that the best-fitting model obtained, with ΩΛ= 0.64+0.11-0.16 and βq(z~ 1.4) = 0.40+0.09-0.09, is consistent with the Λr(z) results, and inconsistent with a ΩΛ= 0 flat cosmology at over 95 per cent confidence.

  1. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  2. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  3. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  4. Electromagnetic gauge for measuring the radial particle velocity in 2-D flow

    NASA Astrophysics Data System (ADS)

    Rosenberg, G.; Yaziv, D.; Mayseless, M.

    1982-04-01

    Applications of existing EMV gauges are limited for uniaxial strain configurtions, since the gauge length must remain fixed during the motion. A modification of the electromagnetic technique which provides measurements in 2-D flow is presented. When the problem of a projectile impacting a target is described in cylindrical coordinates (r,z) with z as axis of symmetry, the flow can be defined by the particle velocity components Uz,Ur. A new gauge is made of a thin copper wire having a circular turn shape. The gauge is embedded in the target material in a plane normal to the z axis axisymetrically. Magnetic field is generated by a solenoid wrapped around the target so that the field lines are parallel to the z axis. In a configuration like this, only the radial motion contributes to the EMF, therefore in a uniform filed, B, the measured EMF depends on the radial particle velocity: E=2πBr(t)Ur(t), where the circular turn radius, r(t), is obtained by integrating the velocity Ur(t). This new method hjas been demonstrted by experiment, impacting a rod shaped projectile made of PMMA into a target of the same material. Results are compared with 2-D calculation.

  5. Dark Geometry

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Dobado, A.; Maroto, A. L.

    Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space-time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.

  6. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  7. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  8. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  9. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  10. 2-d Finite Element Code Postprocessor

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  11. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems. PMID:26376707

  12. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  13. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Jiang, Xue; Zhao, Jijun

    2016-01-01

    To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.

  14. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution.

    PubMed

    Wang, Peng; Jiang, Xue; Zhao, Jijun

    2016-01-27

    To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials. PMID:26704386

  15. Geometry Dependence of Stellarator Turbulence

    SciTech Connect

    H.E. Mynick, P. Xanthopoulos and A.H. Boozer

    2009-08-10

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.

  16. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  17. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  18. Decoding 2-D Maps by Autocovariance Function.

    PubMed

    Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco

    2016-01-01

    This chapter describes a mathematical approach based on the study of the 2-D autocovariance function (2-D ACVF) useful for decoding the complex signals resulting from the separation of protein mixtures. The method allows to obtain fundamental analytical information hidden in 2-D PAGE maps by spot overlapping, such as the number of proteins present in the sample and the mean standard deviation of the spots, describing the separation performance. In addition, it is possible to identify ordered patterns potentially present in spot positions, which can be related to the chemical composition of the protein mixture, such as post-translational modifications.The procedure was validated on computer-simulated maps and successfully applied to reference maps obtained from literature sources. PMID:26611407

  19. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  20. The Use of Geometric Properties of 2D Arrays across Development

    ERIC Educational Resources Information Center

    Gibson, Brett M.; Leichtman, Michelle D.; Costa, Rachel; Bemis, Rhyannon

    2009-01-01

    Four- to 10-year-old children (n = 50) participated in a 2D search task that included geometry (with- and without lines) and feature conditions. During each of 27 trials, participants watched as a cartoon character hid behind one of three landmarks arranged in a triangle on a computer screen. During feature condition trials, participants could use…

  1. Toward a 2-D magneto-optical trap for polar molecules

    NASA Astrophysics Data System (ADS)

    Hummon, Matthew; Stuhl, Benjamin; Yeo, Mark; Collopy, Alejandra; Ye, Jun

    2012-06-01

    The additional structure that arises from the rotational degree of freedom in diatomic molecules makes difficult the adaptation of a traditional atomic magneto-optical trap (MOT) for use with molecules. We describe progress toward development of a 2-D MOT for laser cooled yttrium monoxide molecules based on a resonant LC baseball coil geometry.

  2. 2D and 3D Method of Characteristic Tools for Complex Nozzle Development

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2003-01-01

    This report details the development of a 2D and 3D Method of Characteristic (MOC) tool for the design of complex nozzle geometries. These tools are GUI driven and can be run on most Windows-based platforms. The report provides a user's manual for these tools as well as explains the mathematical algorithms used in the MOC solutions.

  3. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    SciTech Connect

    Wei, J.; Yang, S.

    2013-07-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  4. Core geometry in perspective.

    PubMed

    Dillon, Moira R; Spelke, Elizabeth S

    2015-11-01

    Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world. PMID:25441089

  5. A salt-bridge structure in solution revealed by 2D-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Domingos, Sérgio R.; Amirjalayer, Saeed; Woutersen, Sander

    2014-07-01

    Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in solution. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridging the infrared response of Gdm+ and Ac- change significantly, and in the 2D-IR spectrum, salt bridging of the molecules appears as cross peaks. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes involved in the salt bridge, as well as the coupling between them. In this manner we reconstruct the geometry of the solvated salt bridge.

  6. Hopkinson bar simulation using DYNA2D

    SciTech Connect

    Smith, J.A.; Glover, T.A.

    1985-01-08

    A finite-element simulation of a Split Hopkinson's bar (Kolsky apparatus) technique involving mortar specimens is accomplished with DYNA2D, an explicit two-dimensional finite-element code. Calculations are compared with experimental results contained in a University of Florida report Dynamic Response of Concrete and Concrete Structures, and with analytic solutions of the appropriate wave propagation problem.

  7. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE). PMID:22311750

  8. 2D numerical modelling of meandering channel formation

    NASA Astrophysics Data System (ADS)

    XIAO, Y.; ZHOU, G.; YANG, F. S.

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.

  9. Interpretive 2-D treatment of scrape-off-layer plasmas

    SciTech Connect

    Umansky, M.; Allen, A.; Daughton, W.

    1996-12-31

    The width of the scrape-off-layer in a tokamak is determined by cross field transport. In Alcator C-mod the plasma parameters in the scrape-off-layer are measured at upstream and divertor plate locations. We solve a 2-D scrape-off-layer heat conduction equation in the flux geometry (as determined by EFIT) of the C-mod experiment. Bolometric measurements are utilized for the radiative loss term. We use the end wall probe measurements of electron temperature as a boundary condition and the fast scanning probe measurements of upstream temperature are treated as constraints to determine the cross field transport and thermal conductivity. Results are compared with 1-D onion-skin-model predictions.

  10. 2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine

    SciTech Connect

    Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.

    2009-01-21

    Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.

  11. 2D Mesoscale Simulations of Projectile Penetration into Sand

    NASA Astrophysics Data System (ADS)

    Teeter, R. D.; Dwivedi, S. K.; Felice, C. W.; Gupta, Y. M.

    2007-06-01

    Physical Phenomena governing projectile instabilities during penetration of granular media (e.g. sand) are not well understood. To gain insight into projectile -- granular media interactions, 2-D mesoscale simulations were performed to examine projectile penetration into sand targets with explicit representation of sand grains and representative porosities. The computational procedure used to generate a mesoscale representation of a sand target is presented with emphasis on an energy minimization technique for grain placement and modified Voronoi tessellations to enforce desired grain size and geometry. Simulated sand targets are shown to reproduce grain size distributions and porosities as large as 30% in close agreement with input parameters. Further, initial results from 2D mesoscale simulations, using the ISP-TROTP code, of normal impact of ogive shaped impactors at 0.5 km/s, 1.0 km/s, and 1.5 km/s impact velocities show that heterogeneous deformation in a frictionless granular media can cause deviation of projectile motion from normal direction indicating projectile instability during penetration. Efforts to achieve an improved description of granular media are underway. Work supported by DOE and AFOSR.

  12. 3D track initiation in clutter using 2D measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov

    2001-11-01

    In this paper we present an algorithm for initiating 3-D tracks using range and azimuth (bearing) measurements from a 2-D radar on a moving platform. The work is motivated by the need to track possibly low-flying targets, e.g., cruise missiles, using reports from an aircraft-based surveillance radar. Previous work on this problem considered simple linear motion in a flat earth coordinate frame. Our research extends this to a more realistic scenario where the earth"s curvature is also considered. The target is assumed to be moving along a great circle at a constant altitude. After the necessary coordinate transformations, the measurements are nonlinear functions of the target state and the observability of target altitude is severely limited. The observability, quantified by the Cramer-Rao Lower Bound (CRLB), is very sensitive to the sensor-to-target geometry. The paper presents a Maximum Likelihood (ML) estimator for estimating the target motion parameters in the Earth Centered Earth Fixed coordinate frame from 2-D range and angle measurements. In order to handle the possibility of false measurements and missed detections, which was not considered in, we use the Probabilistic Data Association (PDA) algorithm to weight the detections in a frame. The PDA-based modified global likelihood is optimized using a numerical search. The accuracies obtained by the resulting ML-PDA estimator are quantified using the CRLB for different sensor-target configurations. It is shown that the proposed estimator is efficient, that is, it meets the CRLB. Of particular interest is the achievable accuracy for estimating the target altitude, which is not observed directly by the 2-D radar, but can be only inferred from the range and bearing observations.

  13. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  14. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  15. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  16. A comprehensive 2-D divertor data set from DIII-D for edge theory validation

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Hill, D.N.

    1996-02-01

    A comprehensive set of experiments has been carried out on the DIII-D tokamak to measure the 2-D (R,Z) structure of the divertor plasma in a systematic way using new diagnostics. Measurements cover the divertor radially from inside the X-point to the outer target plate and vertically from the target plate to above the X-point. Identical, repeatable shots were made, each having radial sweeps of the X-point and divertor strike points, to allow complete plasma and radiation profile measurements. Data have been obtained in ohmic, L-mode, ELMing H-mode, and reversed B{sub T} operation ({gradient}B drift away from the X-point). In addition, complete measurements were made of radiative divertor plasmas with a Partially Detached Divertor (PDD) induced by D{sub 2} injection and with a Radiating Mantle induced by Impurity injection (RMI) using neon and nitrogen. The data set includes first observations of the radial and poloidal profiles of the X-point, inner and outer leg plasmas in PDD and RMI radiative divertor operation. Preliminary data analysis shows that intrinsic impurities play a critical role in determining the SOL and divertor conditions.

  17. Static & Dynamic Response of 2D Solids

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  18. Statistical distribution functions in 2D foams

    NASA Astrophysics Data System (ADS)

    de Icaza, M.; Jiménez-Ceniceros, A.; Castaño, V. M.

    1994-12-01

    The statistical distribution of bubbles in a 2D foam has been determined according to their area. A 2D foam chamber was designed and constructed, which allows long-term video recordings to be made. The bubbles corresponding to the last six frames, when the so-called scaling state is attained, were digitized at equally spaced time intervals, to measure their surface and count their number of neighbors. From the numerical results the empirical distribution functions are determined. Kolmogorov's compatibility criterion was used to measure the differences between these empirical and three theoretical distribution functions: the normal distribution (bad fit, but a favorite of earlier reports), the power regression (good fit), and the log normal (the best fit).

  19. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  20. Stochastic Inversion of 2D Magnetotelluric Data

    Energy Science and Technology Software Center (ESTSC)

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  1. Perturbation theory of 2D decagonal quasicrystals

    NASA Astrophysics Data System (ADS)

    Peng, Yan-ze; Fan, Tian-you

    2002-02-01

    A perturbation method for solving elastic 3D problems for 2D decagonal quasicrystals with point groups 10 mm, 1022. overline10m2 and 10/mmm is proposed. We obtain a uniformly valid asymptotic solution of the elastic field by regarding phason field as a perturbation to phonon field and introducing a perturbation parameter ε= R/ cll, where cll and R are elastic constants of phonon field and phonon-phason coupling, respectively. A general solution for the equations of order zero is given in terms of five “harmonic” functions. As a simple application of the above theory, considering an infinite 2D decagonal quasicrystal of point group 10 mm weakened by a circular crack, we obtain the uniformly valid asymptotic solutions up to O( ε2) for the mode I loading.

  2. Explicit 2-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (ESTSC)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  3. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  4. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  5. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  6. Raman Spectroscopy Using a Tilted 2D MOT

    NASA Astrophysics Data System (ADS)

    Kwolek, Jonathan M.; Knutson, Erin; Narducci, Frank A.

    2014-05-01

    We demonstrate Raman spectroscopy using a cold and continuous beam of Rubidium atoms from a vapor-loaded, tilted two-dimensional magneto optical trap (2D MOT). The atoms emerge through a pinhole into an ultra-high vacuum chamber, and form a cold and slow moving beam of atoms with flux 109 atoms/sec with a most probable velocity of 10 m/s. The atoms travel across a set of laser beams which include an on-resonant state preparation beam, a beam tuned to drive a stimulated Raman transition, and another on-resonant readout beam. We observed Raman spectra which can include as many as 11 peaks. The width of the clock transition is consistent with the transit time of the atoms through the Raman fields. The width of the magnetic transitions is determined by laboratory magnetic noise. We have measured Rabi cycling on the clock transition using Raman beams in a co-propagating geometry by varying the laser power rather than pulse duration. Further developments will be made by introducing a momentum kick by using Raman beams in a counter-propagating geometry. Office of Naval Research.

  7. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ?11 times increase in Raman signal and a ?30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  8. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  9. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  10. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  11. 3D from arbitrary 2D video

    NASA Astrophysics Data System (ADS)

    Ideses, Ianir A.; Yaroslavsky, Leonid P.

    2006-02-01

    In this paper, we present methods to synthesize 3D video from arbitrary 2D video. The 2D video is analyzed by computing frame-by-frame motion maps. For this computation, several methods were tested, including optical flow, segmentation and correlation based target location. Using the computed motion maps, the video undergoes analysis and the frames are segmented to provide object-wise depth ordering. The frames are then used to synthesize stereo pairs. This is performed by resampling frames on a grid that is governed by a corresponding depth-map. In order to improve the quality of the synthetic video, as well as to enable 2D viewing where 3D visualization is not possible, several techniques for image enhancement are used. In our test case, anaglyph projection was selected as the 3D visualization method, as the method is mostly suited to standard displays. The drawback of this method is ghosting artifacts. In our implementation we minimize these unwanted artifacts by modifying the computed depth-maps using non-linear transformations. Defocusing of one anaglyph color component was also used to counter such artifacts. Our results show that the suggested methods enable synthesis of high quality 3D videos.

  12. 3D from compressed 2D video

    NASA Astrophysics Data System (ADS)

    Ideses, Ianir A.; Yaroslavsky, Leonid P.; Fishbain, Barak; Vistuch, Roni

    2007-02-01

    In this paper, we present an efficient method to synthesize 3D video from compressed 2D video. The 2D video is analyzed by computing frame-by-frame motion maps. For this computation, MPEG motion vectors extraction was performed. Using the extracted motion vector maps, the video undergoes analysis and the frames are segmented to provide object-wise depth ordering. The frames are then used to synthesize stereo pairs. This is performed by resampling the video frames on a grid that is governed by a corresponding depth-map. In order to improve the quality of the synthetic video, as well as to enable 2D viewing where 3D visualization is not possible, several techniques for image enhancement are used. In our test case, anaglyph projection was selected as the 3D visualization method, as the method is mostly suited to standard displays. The drawback of this method is ghosting artifacts. In our implementation we minimize these unwanted artifacts by modifying the computed depth-maps using non-linear transformations. Defocusing of one anaglyph color component was also used to counter such artifacts. Our results show that the suggested methods enable synthesis of high quality 3D videos in real-time.

  13. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially Promoted Research (No. 25000003) from JSPS.

  14. Casimir effects in systems containing 2D layers such as graphene and 2D electron gases.

    PubMed

    Sernelius, B E

    2015-06-01

    We present a variety of methods to derive the Casimir interaction in planar systems containing 2D layers. Examples where this can be of use is graphene, graphene-like layers and 2D electron gases. We present results for two free standing layers and for one layer above a substrate. The results can easily be extended to systems with a larger number of layers. PMID:25965400

  15. Rotating convection in elliptical geometries

    NASA Astrophysics Data System (ADS)

    Evonuk, M.

    2014-12-01

    Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.

  16. Si-based 1D and 2D slot waveguides for magneto-optics

    NASA Astrophysics Data System (ADS)

    Khanna, Amit; Säynätjoki, Antti; Tervonen, Ari; Honkanen, Seppo

    2011-03-01

    Although the new polymer based nano-composite materials that have been proposed for magneto-optic applications provide a high Verdet constant, they also exhibit high losses. These materials present a different challenge for realizing efficient integrated magneto-optic devices compared to traditionally used materials such as garnets. In this paper we study the figure of merit of 1D and 2D slot waveguide geometries and compare their advantages. In 2D slot waveguides the non-reciprocal TE/TM mode conversion, and in asymmetric 1D slot waveguides the non-reciprocal phase shift, respectively, are analyzed.

  17. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  18. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  19. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  20. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  1. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  2. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  3. 2D packing using the Myriad framework

    NASA Astrophysics Data System (ADS)

    Chatburn, Luke T.; Batchelor, Bruce G.

    2004-02-01

    Myriad is a framework for building networked and distributed vision systems and is described in a companion paper in this conference. Myriad allows the components of a multi-camera, multi-user vision system (web-cameras, image processing engines, intelligent device controllers, databases and the user interface terminals) to be interconnected and operated together, even if they are physically separated by many hundreds, or thousands, of kilometres. This is achieved by operating them as Internet services. The principal objective in this article is to illustrate the simplicity of harmonising visual control with an existing system using Myriad. However, packing of 2-dimensional blob-like objects is of considerable commercial importance in some industries and involves robotic handling and/or cutting. The shapes to be packed may be cut from sheet metal, glass, cloth, leather, wood, card, paper, composite board, or flat food materials. In addition, many 3D packing applications can realistically be tackled only by regarding them as multi-layer 2D applications. Using Myriad to perform 2D packing, a set of blob-like input objects ("shapes") can be digitised using a standard camera (e.g. a "webcam"). The resulting digital images are then analysed, using a separate processing engine, perhaps located on a different continent. The packing is planned by another processing system, perhaps on a third continent. Finally, the assembly is performed using a robot, usually but not necessarily, located close to the camera.

  4. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  5. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2-D direct wave-based measures.

  6. Azimuth multipoles versus minimum-bias jets in 2D angular correlations on η and ϕ

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2013-05-01

    Angular correlations measured in p-p and heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) include a same-side (SS) 2D peak. In peripheral A-A and p-p collisions the SS peak properties are consistent with predicted minimum-bias jet correlations. However, in more-central Au-Au collisions the SS peak becomes elongated on pseudorapidity η. Arguments have been proposed to explain the SS peak η elongation in terms of possibly fluctuating initial-state geometry multipoles coupled with radial flow to produce final-state momentum-space multipoles. Such arguments are based on Fourier decomposition of 2D angular correlations projected onto 1D azimuth. In this analysis we show that measured correlation structure on η (large curvatures) establishes a clear distinction between the SS 2D (jet) peak and 1D multipoles. Measured 2D peak systematics can predict inferred 1D Fourier amplitudes interpreted as ‘higher harmonic flows’. However, 1D Fourier amplitudes alone cannot describe 2D angular correlations. The SS 2D peak remains a unique structure that can be interpreted in terms of parton scattering and fragmentation in all cases.

  7. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov. PMID:21405265

  8. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  9. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  10. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  11. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  12. 2-D Finite Element Heat Conduction

    Energy Science and Technology Software Center (ESTSC)

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  13. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  14. Predicting Fracture Using 2D Finite Element Modeling

    PubMed Central

    MacNeil, J.A.M.; Adachi, J.D; Goltzman, D; Josse, R.G; Kovacs, C.S; Prior, J.C; Olszynski, W; Davison, K.S.; Kaiser, S.M

    2013-01-01

    A decrease in bone density at the hip or spine has been shown to increase the risk of fracture. A limitation of the bone mineral density (BMD) measurement is that it provides only a measure of a bone samples average density when projected onto a 2D surface. Effectively, what determines bone fracture is whether an applied load exceeds ultimate strength, with both bone tissue material properties (can be approximated through bone density), and geometry playing a role. The goal of this project was to use bone geometry and BMD obtained from radiographs and DXA measurements respectively to estimate fracture risk, using a two-dimensional finite element model (FEM) of the sagittal plane of lumbar vertebrae. The Canadian Multicenter Osteoporosis Study (CaMos) data was used for this study. There were 4194 men and women over the age of 50 years, with 786 having fractures. Each subject had BMD testing and radiographs of their lumbar vertebrae. A single two dimensional FEM of the first to fourth lumbar vertebra was automatically generated for each subject. Bone tissue stiffness was assigned based on the BMD of the individual vertebrae, and adjusted for patient age. Axial compression boundary conditions were applied with a force proportional to body mass. The resulting overall strain from the applied force was found. Men and women were analyzed separately. At baseline, the sensitivity of BMD to predict fragility fractures in women and men was 3.77 % and 0.86 %, while the sensitivity of FEM to predict fragility fractures for women and men was 10.8 % and 11.3 %. The FEM ROC curve demonstrated better performance compared to BMD. The relative risk of being considered at high fracture risk using FEM at baseline, was a better predictor of 5 year incident fragility fracture risk compared to BMD. PMID:21959170

  15. Takes Electric or Magnetic field data through Inversion process a 2D Distributon

    SciTech Connect

    Newman, Gregory

    2008-05-01

    Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of the inversion iteration.

  16. Interrogating Fiber Formation Kinetics with Automated 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Strasfeld, David B.; Ling, Yun L.; Shim, Sang-Hee; Zanni, Martin T.

    A new method for collecting 2D-IR spectra that utilizes both a pump-probe beam geometry and a mid-IR pulse shaper is used to gain a fuller understanding of fiber formation in the human islet amyloid polypeptide (hIAPP). We extract structural kinetics in order to better understand aggregation in hIAPP, the protein component of the amyloid fibers found to inhibit insulin production in type II diabetes patients.

  17. Fluctuating Pressure Data from 2-D Nozzle Cold Flow Tests (Dual Bell)

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.

    2001-01-01

    Rocket engines nozzle performance changes as a vehicle climbs through the atmosphere. An altitude compensating nozzle, ACN, is intended to improve on a fixed geometry bell nozzle that performs at optimum at only one trajectory point. In addition to nozzle performance, nozzle transient loads are an important consideration. Any nozzle experiences large transient toads when shocks pass through the nozzle at start and shutdown. Additional transient toads will occur at transitional flow conditions. The objectives of cold flow nozzle testing at MSFC are CFD benchmark / calibration and Unsteady flow / sideloads. Initial testing performed with 2-D inserts to 14" transonic wind tunnel. Recent review of 2-D data in preparation for nozzle test facility 3-D testing. This presentation shows fluctuating pressure data and some observations from 2-D dual-bell nozzle cold flow tests.

  18. A salt-bridge structure in solution revealed by 2D-IR spectroscopy.

    PubMed

    Huerta-Viga, Adriana; Domingos, Sérgio R; Amirjalayer, Saeed; Woutersen, Sander

    2014-08-14

    Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them. PMID:24676430

  19. Nanoscale Tunable Strong Carrier Density Modulation of 2D Materials for Metamaterials and Other Tunable Optoelectronics

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Efetov, Dmitri; Shiue, Ren-Jye; Nanot, Sebastien; Hempel, Marek; Kong, Jing; Koppens, Frank; Englund, Dirk

    Strong spatial tunability of the charge carrier density at nanoscale is essential to many 2D-material-based electronic and optoelectronic applications. As an example, plasmonic metamaterials with nanoscale dimensions would make graphene plasmonics at visible and near-infrared wavelengths possible. However, existing gating techniques based on conventional dielectric gating geometries limit the spatial resolution and achievable carrier concentration, strongly restricting the available wavelength, geometry, and quality of the devices. Here, we present a novel spatially selective electrolyte gating approach that allows for in-plane spatial Fermi energy modulation of 2D materials of more than 1 eV (carrier density of n = 1014 cm-2) across a length of 2 nm. We present electrostatic simulations as well as electronic transport, photocurrent, cyclic voltammetry and optical spectroscopy measurements to characterize the performance of the gating technique applied to graphene devices. The high spatial resolution, high doping capacity, full tunability and self-aligned device geometry of the presented technique opens a new venue for nanoscale metamaterial engineering of 2D materials for complete optical absorption, nonlinear optics and sensing, among other applications.

  20. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  1. Local 2D-2D tunneling in high mobility electron systems

    NASA Astrophysics Data System (ADS)

    Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur

    2012-02-01

    Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).

  2. A nodal expansion method for the neutron diffusion equation in cylindrical geometry

    SciTech Connect

    Komlev, O.G.; Suslov, I.R.

    1995-12-31

    A polynomial nodal expansion method (NEM) is applied to solve multigroup diffusion equations in cylindrical R-Z geometry, Fourth-order polynomials are used to approximate one dimensional (1D) transverse integrated fluxes. The special set of the basis functions is used in R-direction. The transverse integrated leakages are approximated by both constant and quadratic polynomials. Preliminary efficiency evaluation of the NEM is carried out for a fast breeder reactor (FBR) model problem. Results indicate computational efficiency of NEM in comparison with finite-difference method (FDM).

  3. Asymptotic Estimates for 2-D Sloshing Modes: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Weidman, Patrick D.

    1999-11-01

    A classic problem in surface gravity waves is that of 2-D sloshing modes in a channel of arbitary shape. Exact solutions are known for vertical walls and for triangular containers with α, the angle subtended at the free surface, equal to 45^circ or 30^circ. At higher frequencies, the wave motion is confined near the free surface and only the shape of the container at the corners is important. The conjectured asymptotic form 1/2[n+1/2(1-μ)], μ=fracπ2α for the dimensionless frequency parameter can be anticipated by simple use of sloping beach potentials. The next corrrection for straight-sided containers is exponentially small in the exact solutions (μ=1,2,3), O(1/n) for the infinite dock with gap (α=π) and is now shown to be O(n-2μ) in general. Modifications for asymmetric containers are included. Experiments designed to verify the theory have been successfully completed for odd values of n up to 13. Five geometries, including angles 60^circ and 135^circ for which μ is not an integer, were used and surface tension in the fluid minimized. The measured data were adjusted to account for the remaining surface tension and good agreement with the theory obtained.

  4. Computing 2D constrained delaunay triangulation using the GPU.

    PubMed

    Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng

    2013-05-01

    We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges. PMID:23492377

  5. Topological phase transition in 2D porous media flows

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Stoop, Norbert; Kantsler, Vasily; Guasto, Jeffrey S.; Dunkel, Jorn; Guasto Team; Dunkel Team; Kantsler Team

    2015-11-01

    Since the establishment of Darcy's law, analysis of porous-media flows has focused primarily on linking macroscopic transport properties, such as mean flow rate and dispersion, to the pore statistics of the material matrix. Despite intense efforts to understand the fluid velocity statistics from the porous-media structure, a qualitative and quantitative connection remains elusive. Here, we combine precisely controlled experiments with theory to quantify how geometric disorder in the matrix affects the flow statistics and transport in a quasi-2D microfluidic channel. Experimentally measured velocity fields for a range of different microstructure configurations are found to be in excellent agreement with large-scale numerical simulations. By successively increasing the matrix disorder, we study the transition from periodic flow structures to transport networks consisting of extended high-velocity channels. Morse-Smale complex analysis of the flow patterns reveals a topological phase transition that is linked to a qualitative change in the physical transport properties. This work demonstrates that topological flow analysis provides a mathematically well-defined, broadly applicable framework for understanding and quantifying fluid transport in complex geometries.

  6. 2D axisymmetric analysis of SRM ignition transient

    NASA Technical Reports Server (NTRS)

    Bai, S. D.; Han, Samuel S.; Pardue, B. A.

    1993-01-01

    To analyze ignition transient of Space Shuttle solid rocket motor, a transient two-dimensional numerical model based on turbulent compressible Navier-Stokes equations in a generalized coordinate system was developed. One-dimensional numerical models (Peretz et al., 1973; Han, 1992; Pardue and Han, 1992) with empirical correlations data obtained from steady turbulent boundary layer flows agrees reasonably well with test rocket data by adjusting a few parameters. However, a 1D model can not provide a physical insight into the complex multidimensional thermal fields and flowfields in the chamber and the converging-diverging rocket nozzle. As an interim step, a 2D model was developed and compared with test data. A modified version of SIMPLE algorithm was used for the numerical model, and the standard k-epsilon model with a wall function was used for turbulence closure. Transient flowfields and thermal fields in the combustion chamber and the attached nozzle were obtained for a selected rocket geometry and propellant. Transient behaviors of the flow and thermal fields were analyzed, and were found to be in good agreement with physical expectations.

  7. 2D axisymmetric analysis of SRM ignition transient

    NASA Astrophysics Data System (ADS)

    Bai, S. D.; Han, Samuel S.; Pardue, B. A.

    1993-06-01

    To analyze ignition transient of Space Shuttle solid rocket motor, a transient two-dimensional numerical model based on turbulent compressible Navier-Stokes equations in a generalized coordinate system was developed. One-dimensional numerical models (Peretz et al., 1973; Han, 1992; Pardue and Han, 1992) with empirical correlations data obtained from steady turbulent boundary layer flows agrees reasonably well with test rocket data by adjusting a few parameters. However, a 1D model can not provide a physical insight into the complex multidimensional thermal fields and flowfields in the chamber and the converging-diverging rocket nozzle. As an interim step, a 2D model was developed and compared with test data. A modified version of SIMPLE algorithm was used for the numerical model, and the standard k-epsilon model with a wall function was used for turbulence closure. Transient flowfields and thermal fields in the combustion chamber and the attached nozzle were obtained for a selected rocket geometry and propellant. Transient behaviors of the flow and thermal fields were analyzed, and were found to be in good agreement with physical expectations.

  8. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-01-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  9. Dynamic Geometry on WWW.

    ERIC Educational Resources Information Center

    Kuntz, Gilles

    The first section of this paper on World Wide Web applications related to dynamic geometry addresses dynamic geometry and teaching, including the relationship between dynamic geometry and direct manipulation, key features of dynamic geometry environments, the importance of direct engagement of the learner using construction software for…

  10. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  11. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  12. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  13. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  14. Multimodal 2D Brain Computer Interface.

    PubMed

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features. PMID:26736449

  15. 2D Depiction of Fragment Hierarchies

    PubMed Central

    2009-01-01

    Drug discovery projects often involve organizing compounds in the form of a hierarchical tree, where each node is a substructure fragment shared by all of its descendent nodes. A method is described for producing 2D depiction layout coordinates for each of the nodes in such a tree, ensuring that common fragments within molecular structures are drawn in an identical way, and arranged with a consistent orientation. This is achieved by first deriving a common numbering scheme for common fragments, then using this scheme to redepict each of the molecules, one fragment at a time, so that common fragments have common depiction motifs. Once complete, the distinct root branches can be overlaid onto each other, after which all of the fragments and whole molecules have a common layout and orientation. Several methods are described for preparing visual representations of molecular structure hierarchies alongside activity information. Combining high level tree display and structure depiction showing common features readily facilitates insight into structure?activity relationships. PMID:20038186

  16. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions. PMID:25585421

  17. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. Generates 2D Input for DYNA NIKE & TOPAZ

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  20. 2d PDE Linear Asymmetric Matrix Solver

    Energy Science and Technology Software Center (ESTSC)

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  1. 2d PDE Linear Symmetric Matrix Solver

    Energy Science and Technology Software Center (ESTSC)

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  2. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    NASA Astrophysics Data System (ADS)

    Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  3. 32 CFR 1639.4 - Exclusion from Class 2-D.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Exclusion from Class 2-D. 1639.4 Section 1639.4... REGISTRANTS PREPARING FOR THE MINISTRY § 1639.4 Exclusion from Class 2-D. A registrant shall be excluded from Class 2-D when: (a) He fails to establish that the theological or divinity school is a recognized...

  4. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  5. Flow past 2-D Hemispherical Rigid Canopies

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel

    2013-11-01

    The flow past a 2-dimensional rigid hemispherical shape is investigated using PIV. Flow field measurements and images were generated with the use of a Thermoflow® apparatus. Results of this study are compared to prior work (APS DFD 2012 Session E9.00003) which employed CFD to investigate the flow in the near wake of hemispherical parachutes. The various sized gaps/open areas were positioned at distinct locations. The work presented here is part of a larger research project to investigate flow fields in deceleration devices and parachutes. Understanding the pitch-stability of parachutes is essential for accurate design and implementation of these deceleration devices but they present a difficult system to analyze. The flexibility of the parachute fabric results in large variations in the parachute geometry leading to complex fluid-structure interactions. Such flow, combined with flow through gaps and open areas, has been postulated to shed alternating vortices causing pitching/oscillations of the canopy. The results presented provide some insight into which geometric features affect vortex shedding and may enable the redesign of the baseline parachute to minimize instabilities.

  6. Fosite: 2D advection problem solver

    NASA Astrophysics Data System (ADS)

    Illenseer, Tobias

    2012-04-01

    Fosite implements a method for the solution of hyperbolic conservation laws in curvilinear orthogonal coordinates. It is written in Fortran 90/95 integrating object-oriented (OO) design patterns, incorporating the flexibility of OO-programming into Fortran 90/95 while preserving the efficiency of the numerical computation. Although mainly intended for CFD simulations, Fosite's modular design allows its application to other advection problems as well. Unlike other two-dimensional implementations of finite volume methods, it accounts for local conservation of specific angular momentum. This feature turns the program into a perfect tool for astrophysical simulations where angular momentum transport is crucial. Angular momentum transport is not only implemented for standard coordinate systems with rotational symmetry (i.e. cylindrical, spherical) but also for a general set of orthogonal coordinate systems allowing the use of exotic curvilinear meshes (e.g. oblate-spheroidal). As in the case of the advection problem, this part of the software is also kept modular, therefore new geometries may be incorporated into the framework in a straightforward manner.

  7. 2D Affine and Projective Shape Analysis.

    PubMed

    Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj

    2014-05-01

    Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition. PMID:26353232

  8. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.

  9. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact the performance of PCR-based genotype assays, including TaqMan. Regardless of the test platform used, it is prudent to confirm rare allele calls by an independent method. PMID:26793106

  10. Spinorial Geometry and Branes

    NASA Astrophysics Data System (ADS)

    Sloane, Peter

    2007-09-01

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, "The spinorial geometry of supersymmetric backgrounds," Class. Quant. Grav. 22 (2005) 1033 [ arXiv:hep-th/0410155

  11. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  12. A large 2D PSD for thermal neutron detection

    SciTech Connect

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-12-31

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  13. Numerical Simulation of Slinger Combustor Using 2-D Axisymmetric Computational Model

    NASA Astrophysics Data System (ADS)

    Lee, Semin; Park, Soo Hyung; Lee, Donghun

    2010-06-01

    Small-size turbojet engines have difficulties in maintaining the chemical reaction due to the limitation of chamber size. The combustion chamber is generally designed to improve the reaction efficiency by the generation of vortices in the chamber and to enhance air-fuel mixing characteristics. In the initial stage of designing the combustor, analysis of the 3-D full configuration is not practical due to the huge time consuming computation and grid generation followed by modifications of the geometry. In the present paper, an axisymmetric model maintaining geometric similarity and flow characteristic of 3-D configuration is developed. Based on numerical results from the full 3-D configuration, model reduction is achieved toward 2-D axisymmetric configuration. In the modeling process, the area and location of each hole in 3-D full configuration are considered reasonably and replaced to the 2-D axisymmetric model. By using the 2-D axisymmetric model, the factor that can affect the performance is investigated with the assumption that the flow is non-reacting and turbulent. Numerical results from the present model show a good agreement with numerical results from 3-D full configuration model such as existence of vortex pair in forward region and total pressure loss. By simplifying the complex 3-D model, computing time can be remarkably reduced and it makes easy to find effects of geometry modification.

  14. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  15. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  16. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  17. Physics modules for transport in 2D and 3D toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Strand, P. I.; Houlberg, W. A.; McCune, D.

    2001-10-01

    Several physics modules for studying transport in 2D and 3D toroidal plasmas using many of the modern features of Fortran 90 are now available through the National Transport Code Modules Library. These include: FRANTIC (neutral transport), NCLASS (neoclassical transport), CYTRAN (cyclotran radiation transport), AJAX (interface to 2D and 3D MHD equilibria), and TRACK (chord mapping through 2D and 3D equilibria). These modules take advantage of many of the efficient computational features of F90, while maintaining the ability to wrap them for calls from other languages. Physics features of each of the modules are illustrated. The TRACK and AJAX modules are fully 3D with essentially no computational penalty for treating axisymmetric plasmas. NCLASS has a comprehensive treatment of tokamak geometry for all neoclassical transport properties, while its electrical resistivity and bootstrap current are reasonable for quasi-axisymetric stellarators. The FRANTIC and CYTRAN modules illustrate cylindrical treatments of physics that have been used as approximations to source and sink terms in both 2D and 3D plasmas.

  18. Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics.

    PubMed

    Vuong, Chau; Xie, Lisa H; Potter, Brittney M J; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Nanayakkara, N P Dhammika; Tekwani, Babu L; Walker, Larry A; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Smith, Bryan; Marcsisin, Sean R

    2015-07-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  19. Ultracold gas of ground-state polar KRb molecules in 2D

    NASA Astrophysics Data System (ADS)

    Neyenhuis, B.; Wang, D.; de Miranda, M. H. G.; Chotia, A.; Ye, J.; Jin, D. S.

    2010-03-01

    We report on our ongoing studies of dipolar interactions in ground-state KRb molecules prepared in the quantum regime. At large dipole moment we see a dramatic increase in the inelastic scattering rate due to attractive head-to-tail interactions between molecules [1]. To suppress this inelastic loss we are preparing a gas of polar molecules in a 2D confined geometry provided by a one-dimensional optical lattice. We will explore the effect of the 2D confinement on the lifetime of the trapped molecule gas. [4pt] [1] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, D. S. Jin, Dipolar collisions of polar molecules in the quantum regime. arXiv:1001.2809.

  20. Spatiotemporal stress/strain correlations in a quasi-2D jammed emulsion

    NASA Astrophysics Data System (ADS)

    Desmond, Kenneth; Weeks, Eric R.

    2012-02-01

    We flow quasi-2D emulsions in a flow geometry analogous to pure shear to better understand the microscopic events within jammed materials during the straining process. Our quasi-2D system serves as an experimental model system of jamming and consists of oil-in-water emulsion droplets confined between two parallel plates. Using a technique we have developed, we can determine the forces between pairs of droplets in contact based on each droplet's deformation. By imaging the motion and deformation of the droplets during the flowing process, we quantify the microscopic events using spatiotemporal correlations in strain and stress. We study these spatiotemporal correlations at various droplet concentrations to understand how the microscopic events change as we approach the jamming point.

  1. A Polyhedral Object's CSG-Rep Reconstruction From a Single 2D Line Drawing

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Grinstein, Georges G.

    1990-03-01

    The interpretation of a 2D line drawing as a 3D scene is an important area of study within the fields of artificial intelligence and machine vision. In the area of CAD/CAM, research has focused on the reconstruction of a 3D solid from its engineering drawings, either with two views or three views, or from its wireframe representation. We have been working on the problem of automatically reconstructing a 3D solid object's Constructive Solid Geometry (CSG) representation from a single 2D line drawing of the object. This paper describes our approach as well as some preliminary results. We validate our approach on a restricted set of objects consisting of simple rectilinear polyhedra. Using the Huffman-Clowes labeling scheme we are able to successfully identify the primitive blocks necessary for the CSG tree generation, as well as the set operations that must be applied to them. Extension to general polyhedra is also discussed.

  2. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  3. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  4. A Comparison of 2D to 3D Hydro Simulations of Asteroid Mitigation by a Strong Surface Explosion

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Dearholdt, W.

    2011-12-01

    Disruption of a potentially hazardous object (PHO) by an energetic surface or subsurface burst is considered as one possible method of impact-hazard mitigation. This technique of employing surface or subsurface explosions has been popularized in the media but is probably one of the lower priority deflection/disruption methods, unless the warning time is short. In all of our current simulation we use realistic RADAR shape models for the initial geometry, not merely spherical objects. The non-sphericity of the geometry is very important in the resultant shock hydrodynamic evolution. This work is a follow-on to previous 2D simulations with the RAGE hydrocode to simulate the imparted momentum as a function of depth-of-burial (DOB) on a non-spherical "rubble pile" composition. Specifically, here, we have started a full 3D simulation of a 1 Mt surface explosion on a porous (~40% porosity) "rubble pile" model in the shape of asteroid 25143 Itokawa. This simulation has progressed far enough to start comparisons between the 2D and 3D runs of this model. There are significant changes in the 3D geometry that reduce the momentum imparted to the asteroid in these RAGE simulations. I will discuss this set of simulations, give some background results from previous 2D simulations and indicate the differences between 2D and 3D simulations.

  5. Functional characterization of CYP2D6 enhancer polymorphisms.

    PubMed

    Wang, Danxin; Papp, Audrey C; Sun, Xiaochun

    2015-03-15

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  6. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  7. 2D Voronoi tessellation generated by lines and belts of dots

    NASA Astrophysics Data System (ADS)

    Fanfoni, M.; Filabozzi, A.; Placidi, E.; Patella, F.; Balzarotti, A.; Arciprete, F.

    2016-01-01

    The application of the Voronoi tessellation for studying the nucleation process at the basis of thin film formation dates back to the end of nineties. In particular, Poissonian and spatial correlated nuclei distributions were investigated. The growth of stressed interfaces, however, has evidenced that elastic strain can modify the spatial distribution of nuclei giving rise to new challenges at the level of stochastic geometry. Here we report a study of a 2D nucleation of dots randomly arranged in lines and/or belts on the surface. The results are compared to the experimental case of multilayer structures of InAs quantum dots grown on GaAs (001).

  8. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  9. Takes Electric or Magnetic field data through Inversion process a 2D Distributon

    Energy Science and Technology Software Center (ESTSC)

    2008-05-01

    Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of themore » inversion iteration.« less

  10. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  11. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  12. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the

  13. Coupling 2-D cylindrical and 3-D x-y-z transport computations

    SciTech Connect

    Abu-Shumays, I.K.; Yehnert, C.E.; Pitcairn, T.N.

    1998-06-30

    This paper describes a new two-dimensional (2-D) cylindrical geometry to three-dimensional (3-D) rectangular x-y-z splice option for multi-dimensional discrete ordinates solutions to the neutron (photon) transport equation. Of particular interest are the simple transformations developed and applied in order to carry out the required spatial and angular interpolations. The spatial interpolations are linear and equivalent to those applied elsewhere. The angular interpolations are based on a high order spherical harmonics representation of the angular flux. Advantages of the current angular interpolations over previous work are discussed. An application to an intricate streaming problem is provided to demonstrate the advantages of the new method for efficient and accurate prediction of particle behavior in complex geometries.

  14. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    Energy Science and Technology Software Center (ESTSC)

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  15. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  16. Recent advances in 2D electrophoresis: an array of possibilities.

    PubMed

    Van den Bergh, Gert; Arckens, Lutgarde

    2005-04-01

    2D electrophoresis is currently the most widespread technique used for performing functional proteomics (i.e., the large-scale analysis of alterations in protein expression levels). Nevertheless, several limitations inherent to this technology have restricted the full potential of this protein differential display methodology for years. This has even led to the abandonment of 2D electrophoresis by several groups that switched to performing gel-free functional proteomics analyses based on liquid chromatography and mass spectrometry. Meanwhile, important recent advances in 2D electrophoresis, such as the introduction of fluorescent 2D difference gel electrophoresis and numerous protein prefractionation techniques, have thoroughly modernized 2D electrophoresis, making it again one of the preferred methods for the analysis of protein expression differences in many laboratories. PMID:15892568

  17. Optical design of wavelength selective CPVT system with 3D/2D hybrid concentration

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Ijiro, T.; Yamada, N.; Kawaguchi, T.; Maemura, T.; Ohashi, H.

    2012-10-01

    Optical design of a concentrating photovoltaic/thermal (CPVT) system is carried out. Using wavelength-selective optics, the system demonstrates 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. Characteristics of the two types of concentrator systems are examined with ray-tracing analysis. The first system is a glazed mirror-based concentrator system mounted on a 2-axis pedestal tracker. The size of the secondary optical element is minimized to decrease the cost of the system, and it has a wavelength-selective function for performing 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. The second system is a non-glazed beamdown concentrator system containing parabolic mirrors in the lower part. The beam-down selective mirror performs 3-D concentration onto a solar cell placed above the beam-down selective mirror, and 2-D concentration down to a thermal receiver placed at the bottom level. The system is mounted on a two-axis carousel tracker. A parametric study is performed for those systems with different geometrical 2-D/3-D concentration ratios. Wavelength-selective optics such as hot/cold mirrors and spectrum-splitting technologies are taken into account in the analysis. Results show reduced heat load on the solar cell and increased total system efficiency compared to a non-selective CPV system. Requirements for the wavelength-selective properties are elucidated. It is also shown that the hybrid concept with 2-D concentration onto a thermal receiver and 3-D concentration onto a solar cell has an advantageous geometry because of the high total system efficiency and compatibility with the piping arrangement of the thermal receiver.

  18. Geometry of multihadron production

    SciTech Connect

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  19. Twistors to twisted geometries

    SciTech Connect

    Freidel, Laurent; Speziale, Simone

    2010-10-15

    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.

  20. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  1. Want to Play Geometry?

    ERIC Educational Resources Information Center

    Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem

    2009-01-01

    Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…

  2. Geometry Professionalized for Teachers.

    ERIC Educational Resources Information Center

    Christofferson, Halbert Carl

    Written in 1933, this book grew out of the author's concern that college matehmatics sequences of the day, although appropriate in algebra preparation, did not adequately prepare teachers of geometry. This book describes a course intended to remedy this by providing for both a comprehensive study of geometry as an axiomatically defined structure…

  3. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  4. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  5. 2D gasdynamic simulation of the kinetics of an oxygen-iodine laser with electric-discharge generation of singlet oxygen

    SciTech Connect

    Chukalovsky, A. A.; Rakhimova, T. V.; Klopovsky, K. S.; Mankelevich, Yu. A.; Proshina, O. V.

    2011-03-15

    The kinetic processes occurring in an electric-discharge oxygen-iodine laser are analyzed with the help of a 2D (r, z) gasdynamic model taking into account transport of excited oxygen, singlet oxygen, and radicals from the electric discharge and their mixing with the iodine-containing gas. The main processes affecting the dynamics of the gas temperature and gain are revealed. The simulation results obtained using the 2D model agree well with the experimental data on the mixture gain. A subsonic oxygen-iodine laser in which singlet oxygen is generated by a 350 W transverse RF discharge excited in an oxygen flow at a pressure P = 10 Torr and the discharge tube wall is covered with mercury oxide is simulated. The simulated mixing system is optimized in terms of the flow rate and the degree of preliminary dissociation of the iodine flow. The optimal regime of continuous operation of a subsonic electric-discharge oxygen-iodine laser is found.

  6. Recent advances in 2D materials for photocatalysis

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-03-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  7. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  8. Cluster algebras in scattering amplitudes with special 2D kinematics

    NASA Astrophysics Data System (ADS)

    Torres, Marcus A. C.

    2014-02-01

    We study the cluster algebra of the kinematic configuration space of an -particle scattering amplitude restricted to the special 2D kinematics. We found that the -point two-loop MHV remainder function in special 2D kinematics depends on a selection of the -coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercube beads in the corresponding Stasheff polytope. Furthermore at , the cluster algebra and the selection of the -coordinates in special 2D kinematics replicates the cluster algebra and the selection of -coordinates of the two-loop MHV amplitude in 4D kinematics.

  9. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-03-24

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed. PMID:26961514

  10. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

  11. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  12. Developing mobile BIM/2D barcode-based automated facility management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  13. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  14. 1D and 2D photonic crystals for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Celanovic, Ivan; O'Sullivan, Francis; Jovanovic, Natalija; Qi, Minghao; Kassakian, John G.

    2004-09-01

    This paper explores the optical characteristics of one-dimensional (1D) and two-dimensional (2D) photonic crystals (PhC) as spectral control components for use in thermophotovoltaic (TPV) systems. 1D PhC are used as optical filters while 2D PhC are used as selective thermal emitters. A Si/SiO2 1D PhC is fabricated using low-pressure chemical vapor deposition (LPCVD). The measurement and characterization of this structure is presented. A 2D hexagonal PhC of periodic holes is fabricated using interference litography and reactive ion etching (RIE) process. Our results predict that a TPV system utilizing a 2D PhC selective emitter and 1D Si/SiO2 PhC optical filter promises significant performance improvements over conventional TPV system architectures.

  15. Low-complexity 2D to 3D video conversion

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Zhang, Rong; Karczewicz, Marta

    2011-03-01

    3D film and 3D TV are becoming reality. More facilities and devices are now 3D capable. Compared to capture 3D video content directly, 2D to 3D video conversion is a low-cost, backward compatible alternate. There also exists a tremendous amount of monoscopic 2D video content that are of high interest to be displayed on 3D devices with noticeable immersiveness. 2D to 3D video conversion, therefore, has drawn lots of attention recently. In this paper, a low complexity 2D to 3D conversion algorithm is presented. The conversion generates stereo video pairs by 3D warping based on estimated per-pixel depth maps. The depth maps are estimated jointly by motion and color cues. Subjective tests show that the proposed algorithm achieves 3D perception with acceptable artifact.

  16. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  17. Recent developments in 2D layered inorganic nanomaterials for sensing.

    PubMed

    Kannan, Padmanathan Karthick; Late, Dattatray J; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-28

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples. PMID:26204797

  18. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  19. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  20. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  1. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  2. Collective excitations in 2D hard-disc fluid.

    PubMed

    Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij

    2015-07-01

    Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625

  3. Computational Design of 2D materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2015-03-01

    Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.

  4. Structure of 2D helium mixture films adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Patel, H.; Casey, A.; Nyéki1, J.; Cowan, B.; Saunders, J.

    2000-07-01

    Heat capacity measurements have been undertaken to study the structure of atomically layered helium mixture films adsorbed on exfoliated graphite. The 3He coverage is fixed and the 4He coverage progressively increased, starting in the second layer. The measured heat capacity is sensitive to solidification of the layers, self-condensation of 2D fluid 4He layers, and 2D phase separation. We report an interesting evolution of the temperature dependence of the heat capacity.

  5. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  6. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  7. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics

    NASA Astrophysics Data System (ADS)

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-01

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  8. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version. PMID:26919007

  9. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  10. Imperfect 2D phosphorus, yet an almost perfect semiconductor

    NASA Astrophysics Data System (ADS)

    Penev, Evgeni; Liu, Yuanyue; Xu, Fangbo; Zhang, Ziang; Yakobson, Boris

    2015-03-01

    The deep gap states created by defects in semiconductors typically deteriorate the performance of (opto)electronic devices. This has limited the applications of two-dimensional (2D) metal dichalcogenides (MX2) and underscored the need for a new 2D semiconductor without defect-induced deep gap states. The talk will discuss why a 2D mono-elemental semiconductor can be a promising candidate. This is exemplified by a first-principles study of 2D phosphorus (``phosphorene''), a recently fabricated high-mobility semiconductor. Most of the defects, including intrinsic point defects and grain boundaries, are electronically inactive, thanks to the homoelemental bonding, which is not preferred in heteroelemental system such as MX2. Unlike MX2, where the edges create deep gap states and cannot be eliminated by passivation, the edge states of 2D P can be removed from the band gap by hydrogen termination. It is further found that both the type and the concentration of charge carriers in 2D P can be tuned by doping with foreign atoms. The work sheds light on the role of defects on the electronic structure of low-dimensional materials in general. Present affiliation: NREL

  11. Noncommutative Geometry and Physics

    NASA Astrophysics Data System (ADS)

    Connes, Alain

    2006-11-01

    In this very short essay we shall describe a "spectral" point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a "sum over geometries" on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of "observables" in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.

  12. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  13. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  14. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  15. Flyby Geometry Optimization Tool

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2007-01-01

    The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.

  16. Optimal calibration marker mesh for 2D X-ray sensors in 3D reconstruction.

    PubMed

    Desbat, Laurent; Mennessier, Catherine; Champleboux, Guillaume

    2002-04-01

    Image intensifiers suffer from distortions due to magnetic fields. In order to use this X-ray projections images for computer-assisted medical interventions, image intensifiers need to be calibrated. Opaque markers are often used for the correction of the image distortion and the estimation of the acquisition geometry parameters. Information under the markers is then lost. In this work, we consider the calibration of image intensifiers in the framework of 3D reconstruction from several 2D X-ray projections. In this context, new schemes of marker distributions are proposed for 2D X-ray sensor calibration. They are based on efficient sampling conditions of the parallel-beam X-ray transform when the detector and source trajectory is restricted to a circle around the measured object. Efficient sampling are essentially subset of standard sampling in this situation. The idea is simply to exploit the data redundancy of standard sampling and to replace some holes of efficient schemes by markers. Optimal location of markers in the sparse efficient sampling geometry can thus be found. In this case, the markers can stay on the sensor during the measurement with--theoretically--no loss of information (when the signal-to-noise ratio is large). Even if the theory is based on the parallel-beam X-ray transform, numerical experiments on both simulated and real data are shown in the case of weakly divergent beam geometry. We show that the 3D reconstruction from simulated data with interlaced markers is essentially the same as those obtained from data with no marker. We show that efficient Fourier interpolation formulas based on optimal sparse sampling schemes can be used to recover the information hidden by the markers. PMID:12161923

  17. Almost but not quite 2D, Non-linear Bayesian Inversion of CSEM Data

    NASA Astrophysics Data System (ADS)

    Ray, A.; Key, K.; Bodin, T.

    2013-12-01

    The geophysical inverse problem can be elegantly stated in a Bayesian framework where a probability distribution can be viewed as a statement of information regarding a random variable. After all, the goal of geophysical inversion is to provide information on the random variables of interest - physical properties of the earth's subsurface. However, though it may be simple to postulate, a practical difficulty of fully non-linear Bayesian inversion is the computer time required to adequately sample the model space and extract the information we seek. As a consequence, in geophysical problems where evaluation of a full 2D/3D forward model is computationally expensive, such as marine controlled source electromagnetic (CSEM) mapping of the resistivity of seafloor oil and gas reservoirs, Bayesian studies have largely been conducted with 1D forward models. While the 1D approximation is indeed appropriate for exploration targets with planar geometry and geological stratification, it only provides a limited, site-specific idea of uncertainty in resistivity with depth. In this work, we extend our fully non-linear 1D Bayesian inversion to a 2D model framework, without requiring the usual regularization of model resistivities in the horizontal or vertical directions used to stabilize quasi-2D inversions. In our approach, we use the reversible jump Markov-chain Monte-Carlo (RJ-MCMC) or trans-dimensional method and parameterize the subsurface in a 2D plane with Voronoi cells. The method is trans-dimensional in that the number of cells required to parameterize the subsurface is variable, and the cells dynamically move around and multiply or combine as demanded by the data being inverted. This approach allows us to expand our uncertainty analysis of resistivity at depth to more than a single site location, allowing for interactions between model resistivities at different horizontal locations along a traverse over an exploration target. While the model is parameterized in 2D, we efficiently evaluate the forward response using 1D profiles extracted from the model at the common-midpoints of the EM source-receiver pairs. Since the 1D approximation is locally valid at different midpoint locations, the computation time is far lower than is required by a full 2D or 3D simulation. We have applied this method to both synthetic and real CSEM survey data from the Scarborough gas field on the Northwest shelf of Australia, resulting in a spatially variable quantification of resistivity and its uncertainty in 2D. This Bayesian approach results in a large database of 2D models that comprise a posterior probability distribution, which we can subset to test various hypotheses about the range of model structures compatible with the data. For example, we can subset the model distributions to examine the hypothesis that a resistive reservoir extends overs a certain spatial extent. Depending on how this conditions other parts of the model space, light can be shed on the geological viability of the hypothesis. Since tackling spatially variable uncertainty and trade-offs in 2D and 3D is a challenging research problem, the insights gained from this work may prove valuable for subsequent full 2D and 3D Bayesian inversions.

  18. SOC and Fractal Geometry

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. J.

    2013-06-01

    When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.

  19. Common Geometry Module

    Energy Science and Technology Software Center (ESTSC)

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less

  20. Software Geometry in Simulations

    NASA Astrophysics Data System (ADS)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  1. Core Geometry in Perspective

    ERIC Educational Resources Information Center

    Dillon, Moira R.; Spelke, Elizabeth S.

    2015-01-01

    Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they…

  2. An automated pipeline to screen membrane protein 2D crystallization

    PubMed Central

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L.; Ubarretxena-Belandia, Iban

    2011-01-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility. PMID:20349145

  3. Continental rifting to seafloor spreading: 2D and 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras

    2014-05-01

    Two topics related with continental extension is studied by using numerical modeling methods: (1) Lithospheric mantle stratification changes dynamics of craton extension (2D modeling) and (2) Initial lithospheric rheological structure influences the incipient geometry of the seafloor spreading (3D modeling). (Topic 1) Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. We use a 2D thermo-mechanical coupled numerical model to study the influence of stratified lithospheric mantle on craton extension. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. (Topic 2) The process from continental rifting to seafloor spreading is an important step in the Wilson Cycle. Since the rifting to spreading is a continuous process, understanding the inheritance of continental rifting in seafloor spreading is crucial to study the incipient geometry (on a map view) of the oceanic ridge and remains a big challenge. Large extension strain is required to simulate the rifting and spreading processes. Oceanic ridge has a 3D geometry on a map view in nature, which requires 3D studies. Therefore, we employ the three-dimensional numerical modeling method to study this problem. The initial lithospheric rheological structure and the perturbation geometry are two key parameters that we investigated. The modeling results show that the continental rifting history affects the incipient geometry of the seafloor spreading, leading to (1) single straight oceanic ridge, (2) overlapping oceanic ridge and (3) curved oceanic ridge.

  4. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  5. Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass W R , Z R bosons

    NASA Astrophysics Data System (ADS)

    Awasthi, Ram Lal; Parida, M. K.; Patra, Sudhanwa

    2013-08-01

    While the detection of W R-boson at the Large Hadron Collider is likely to resolve the mystery of parity violation in weak interaction, observation of neutrinoless double beta decay (0 νββ) is expected to determine whether neutrinos are Majorana fermions. In this work we consider a class of LR models with TeV scale W R , Z R bosons but having parity restoration at high scales where they originate from well known Pati-Salam symmetry or SO(10) grand unified theory minimally extended to accommodate inverse seesaw frame work for neutrino masses. Most dominant new contribution to neutrinoless double beta decay is noted to occur via mediation involving lighter sterile neutrino exchanges. The next dominant contribution is found to be through mediation involving both light and heavy right-handed neutrino or sterile neutrino exchanges. The quark-lepton symmetric origin of the computed value of the Dirac neutrino mass matrix is also found to play a crucial role in determining these and other results on lepton flavor violating branching ratios for τ → e + γ, τ → μ + γ, and μ → e + γ accessible to ongoing search experiments. The underlying non-unitarity matrix is found to manifest in substantial CP-violating effects even when the leptonic Dirac phase δCP ⋍ 0 ,π ,2π. Finally we explore a possible origin of the model in non-supersymmetric SO(10) grand unified theory where, in addition to low mass and Z R bosons accessible to Large Hadron Collider, the model is found to predict observable neutron-antineutron oscillation and lepto-quark gauge boson(mediated rare kaon decay with ⋍ 10-9 - 10-11).

  6. Urinary metabolite quantification employing 2D NMR spectroscopy.

    PubMed

    Gronwald, Wolfram; Klein, Matthias S; Kaspar, Hannelore; Fagerer, Stephan R; Nürnberger, Nadine; Dettmer, Katja; Bertsch, Thomas; Oefner, Peter J

    2008-12-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy is a fairly novel method for the quantification of metabolites in biological fluids and tissue extracts. We show in this contribution that, compared to 1D 1H spectra, superior quantification of human urinary metabolites is obtained from 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra measured at natural abundance. This was accomplished by the generation of separate calibration curves for the different 2D HSQC signals of each metabolite. Lower limits of detection were in the low to mid micromolar range and were generally the lower the greater the number of methyl groups contained in an analyte. The quantitative 2D NMR data obtained for a selected set of 17 urinary metabolites were compared to those obtained independently by means of gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry of amino acids and hippurate as well as enzymatic and colorimetric measurements of creatinine. As a typical application, 2D-NMR was used for the investigation of urine from patients with inborn errors of metabolism. PMID:19551947

  7. New 2D discrete Fourier transforms in image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, the concept of the two-dimensional discrete Fourier transformation (2-D DFT) is defined in the general case, when the form of relation between the spatial-points (x, y) and frequency-points (ω1, ω2) is defined in the exponential kernel of the transformation by a nonlinear form L(x, y; ω1, ω2). The traditional concept of the 2-D DFT uses the Diaphanous form xω1 +yω2 and this 2-D DFT is the particular case of the Fourier transform described by the form L(x, y; ω1, ω2). Properties of the general 2-D discrete Fourier transform are described and examples are given. The special case of the N × N-point 2-D Fourier transforms, when N = 2r, r > 1, is analyzed and effective representation of these transforms is proposed. The proposed concept of nonlinear forms can be also applied for other transformations such as Hartley, Hadamard, and cosine transformations.

  8. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  9. Many-body interactions in atomically thin 2D materials

    NASA Astrophysics Data System (ADS)

    Chernikov, Alexey

    2015-03-01

    Since the discovery of graphene, a single sheet of carbon atoms, research focused on two-dimensional (2D) materials evolved rapidly due the availability of atomically thin, thermally stable, high-quality crystals with intriguing physical properties. The 2D materials naturally inherit major traits associated with systems of reduced dimensionality: strongly enhanced Coulomb interactions, efficient light-matter coupling, and sensitivity to the environment. In particular, the considerable strength of the Coulomb coupling between the charge carriers introduces a rich variety of many-body phenomena. In the class of 2D semiconductors, e.g., this leads to the emergence of strongly bound electron-hole quasi-particles, such as excitons, trions, and biexcitons, with unusually high binding energies and efficient light absorption. In this talk, I will present a study of the excitonic properties of 2D semiconductors, as exemplified in recent works on atomically thin transition metal dichalcogenides [1-4]. The observation of exciton binding energies on the order of 0.5 eV and the marked deviation of the exciton Rydberg series from the hydrogenic model will be discussed. The results reflect both strong carrier confinement and the distinctive nature of dielectric screening in atomically thin materials. I will further describe how carrier doping and strong photo-excitation can profoundly alter the many-body interactions in these 2D systems.

  10. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  11. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  12. Integrable Background Geometries

    NASA Astrophysics Data System (ADS)

    Calderbank, David M. J.

    2014-03-01

    This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ≤4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the {SU}(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the {Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the {SDiff}(Σ^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ! ones. The nondegenerate reductions have a long ancestry. More ! recently , degenerate or null reductions have attracted increased interest. Two of these reductions and their gauge theories (arguably, the two most significant) are also described.

  13. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  14. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  15. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  16. Extension of Gkeyll Discontinuous Galerkin Kinetic Code to 2D

    NASA Astrophysics Data System (ADS)

    Shi, E. L.; Hakim, A.; Hammett, G. W.

    2014-10-01

    Gkeyll is a discontinuous Galerkin (DG) code under development for modeling the edge plasma in fusion devices and basic plasma experiments. High-order accurate, energy-conserving numerical algorithms for general Hamiltonian systems are implemented in Gkeyll. Details of the recent extension of the code dimensionality to 2D2V will be presented. Since DG schemes allow for flexibility in the choice of basis functions, we will discuss how various types of basis functions affect code accuracy and efficiency. Test problems in 2D, such as toroidal ITG instabilities and turbulence in a local limit, will be presented. We will also show initial results from 2D kinetic simulations of transport in a scrape-off layer plasma, using a specified diffusion coefficient to model radial transport. This research was supported by U.S. DOE Contract DE-AC02-09CH11466 and is part of the Max-Planck/Princeton Center for Plasma Physics.

  17. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  18. Adaptive stereoscopic image conversion of 2D image

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Ho; Kim, Jung-Jin; Kim, Eun-Soo

    2001-11-01

    In recent years, there have been many researches being done throughout the world on the 3D image conversion of 2D image. However, 3D image conversion of 2D image has many problems on obtaining the optimal stereopsis. Stereopsis is dominated to relative position of several objects and depth information within image. Accordingly, in this paper, as a new adaptive scheme for stereoscopic image conversion of 2D image is suggested. Two input images acquired by Stereo Camera have different disparity information to each other. Disparity map, based on disparity information, presents mutually different occulusion region in the left/right image. These depend on the left view & right view and front & rear view of the virtual image plane. If arbitrary threshold values are applied to disparity map, we can get segmented objects from the input image. Using the principle of horizontal parallax, segmented objects are shifted with optimal screen disparity. In this case, we can improve stereopsis by differential shifting.

  19. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  20. Static quasi-2D emulsion as a granular system

    NASA Astrophysics Data System (ADS)

    Wu, Rui; Orellana, Carlos; Hong, Xia; Desmond, Kenneth; Weeks, Eric

    2014-03-01

    We study the forces between emulsion droplets and the properties of force chains in a static oil-in-water emulsion system near jamming. The emulsion is confined between two parallel glass plates in order to construct a quasi-2D system. Quasi-2D emulsion systems are somewhat analogous to 2D granular disks, except for the absence of static friction between the droplets. We focus on samples at an area fraction ϕ that is higher than the jamming point, ϕc, and test the robustness of the power law dependence of pressure and the contact numbers on ϕ -ϕc . Specifically, we vary the surface tension by adding surfactants in the water, and examine the power law relationship under such variations. We also compare our result to simulations as well as established experimental results of true granular systems.

  1. Effective viscosity of 2D suspensions - Confinement effects

    NASA Astrophysics Data System (ADS)

    Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad

    2014-11-01

    We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.

  2. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  3. CYP2D44 polymorphisms in cynomolgus and rhesus macaques.

    PubMed

    Uno, Yasuhiro; Uehara, Shotaro; Kohara, Sakae; Osada, Naoki; Murayama, Norie; Yamazaki, Hiroshi

    2015-07-01

    Macaques, including cynomolgus and rhesus macaques, are important animal species used in drug metabolism studies. CYP2D44 is expressed in cynomolgus macaque liver and encodes a functional drug metabolizing enzyme, metabolizing typical human CYP2D substrates such as bufuralol and dextromethorphan. CYP2D44 is highly homologous to human CYP2D6 that is known to be polymorphic with a large inter-individual variation in metabolic activities, however, genetic polymorphisms have not been investigated in macaque CYP2D44. In the present study, screening of 78 cynomolgus and 40 rhesus macaques found a total of 67 variants, including 64 non-synonymous variants, 1 nonsense mutation, and 2 frameshift mutations, and 1 gene conversion, of which 14, 19, and 15 variants were unique to Indochinese cynomolgus macaques, Indonesian cynomolgus macaques, and Chinese rhesus macaques, respectively. Eleven of the 64 non-synonymous variants were located in substrate recognition sites, the regions important for protein function. By site-directed mutagenesis and metabolic assays, S175N, V185L, A235G, R242G, R245K, and N337D showed substantially decreased activity in bufuralol 1'-hydroxylation as compared with wild-type proteins. Moreover, two null alleles (c.128T>del and c.664G>T) were found in Indonesian cynomolgus macaques, but not in Indochinese cynomolgus macaques or Chinese rhesus macaques. These results suggest that genetic polymorphisms might account for the variability of CYP2D44-dependent metabolism in macaques. PMID:25682269

  4. Radiative heat transfer in 2D Dirac materials

    SciTech Connect

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  5. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  6. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  7. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  8. The whereabouts of 2D gels in quantitative proteomics.

    PubMed

    Rabilloud, Thierry

    2012-01-01

    Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using 2D gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of 2D gels is performed. PMID:22665291

  9. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  10. The characterisation of mammalian tissue with 2D relaxation methods.

    PubMed

    Warner, Joshua; Donell, Simon; Wright, Kevin; Venturi, Luca; Hills, Brian

    2010-09-01

    The potential of two-dimensional (2D) relaxometry for characterising mammalian tissue is explored on samples of liver, kidney (cortex, medulla and ureter) as well as cartilage. Significant differences are found between the T(1)-T(2) spectra of healthy and diseased human cartilage which suggests that 2D relaxometry could have potential use in clinical diagnosis. The effect of reducing the recovery delay on the T(1)-T(2) spectrum is explored to try to identify the optimum balance between speed and accuracy. PMID:20691926

  11. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693

  12. Self-dual strings and 2D SYM

    NASA Astrophysics Data System (ADS)

    Hosomichi, Kazuo; Lee, Sungjay

    2015-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  13. Quasilinear theory of the 2D euler equation

    PubMed

    Chavanis

    2000-06-12

    We develop a quasilinear theory of the 2D Euler equation and derive an integrodifferential equation for the evolution of the coarse-grained vorticity omega;(r,t). This equation respects all of the invariance properties of the Euler equation and conserves angular momentum in a circular domain and linear impulse in a channel. We show under which hypothesis we can derive an H theorem for the Fermi-Dirac entropy and make the connection with statistical theories of 2D turbulence. PMID:10990982

  14. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  15. Thermodynamics of an Attractive 2D Fermi Gas.

    PubMed

    Fenech, K; Dyke, P; Peppler, T; Lingham, M G; Hoinka, S; Hu, H; Vale, C J

    2016-01-29

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior. PMID:26871340

  16. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  17. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  18. CH2D+, the Search for the Holy Grail

    NASA Astrophysics Data System (ADS)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  19. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  20. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  1. Localized 2-D filter-based linear coherent noise attenuation.

    PubMed

    Lu, W

    2001-01-01

    A novel localized two-dimensional (2-D) filter is proposed. The proposed filter derived from the frequency-wavenumber filter and Radon transform filter, with the filtering operation applied at the stage of Fourier projection, has good local property and less filtering distortion. An example of the proposed method to attenuate linear coherent noise in a seismic image is given. Comparisons of the results between our method and the conventional 2-D filters (including frequency-wavenumber filter and Radon transform filter) show that the new method outperforms both frequency-wavenumber method and Radon transform method. PMID:18255552

  2. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it improves not only the interpretation, but also the quantification.

  3. Origins of cellular geometry

    PubMed Central

    2011-01-01

    Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160

  4. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  5. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  6. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR.

    PubMed

    Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey

    2016-03-23

    Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979

  7. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  8. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  9. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  10. Relaxation Neural Network For Complete Discrete 2-D Gabor Transforms

    NASA Astrophysics Data System (ADS)

    Daugman, John G.

    1988-10-01

    It is often desirable in image processing to represent image structure in terms of a set of coefficients on a family of expansion functions. For example, familiar approaches to image coding, feature extraction, image segmentation, statistical and spectral analysis, and compression, involve such methods. It has invariably been necessary that the expansion functions employed comprise an orthogonal basis for the image space, because the problem of obtaining the correct coefficients on a non-orthogonal set of expansion functions is usually arduous if not impossible. Oddly enough, image coding in biological visual systems clearly involves non-orthogonal expansion functions. The receptive field profiles of visual neu-rons with linear response properties have large overlaps and large inner products, and are suggestive of a conjoint (spatial and spectral) "2-D Gabor representation" (Daugman 1980, 1985). The 2-D Gabor transform has useful decorrelating properties and provides a conjoint image description resembling a speech spectrogram, in which local 2-D image regions are analyzed for orientation and spatial frequency content, but its expansion functions are non-orthogonal. This paper describes a three-layered relaxation "neural network" that efficiently computes the correct coefficients for this and other, non-orthogonal, image transforms. Examples of applications which are illustrated include: (1) image compression to below 1.0 bit/pixel, and (2) textural image segmentation based upon the statistics of the 2-D Gabor coefficients found by the relaxation network.

  11. Hopkinson bar simulation using DYNA2D. Revision 1

    SciTech Connect

    Smith, J.A.; Glover, T.A.

    1985-05-01

    A finite-element simulation of a Split Hopkinson's bar (Kolsky apparatus) technique involving mortar specimens is accomplished with DYNA2D, an explicit two-dimensional finite-element code. Calculations are compared with experimental results contained in a University of Florida report Dynamic Response of Concrete and Concrete Structures, and with analytic solutions of the appropriate wave propagation problem.

  12. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many

  13. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  14. Detection of N2D+ in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Huang, Jane; Öberg, Karin I.

    2015-08-01

    Observations of deuterium fractionation in the solar system, and in interstellar and circumstellar material, are commonly used to constrain the formation environment of volatiles. Toward protoplanetary disks, this approach has been limited by the small number of detected deuterated molecules, i.e., DCO+ and DCN. Based on ALMA Cycle 2 observations toward the disk around the T Tauri star AS 209, we report the first detection of N2D+ (J = 3-2) in a protoplanetary disk. These data are used together with previous Submillimeter Array observations of N2H+ (J = 3-2) to estimate a disk-averaged D/H ratio of 0.3-0.5, an order of magnitude higher than disk-averaged ratios previously derived for DCN/HCN and DCO+/HCO+ around other young stars. The high fractionation in N2H+ is consistent with model predictions. The presence of abundant N2D+ toward AS 209 also suggests that N2D+ and the N2D+/N2H+ ratio can be developed into effective probes of deuterium chemistry, kinematics, and ionization processes outside the CO snow line of disks.

  15. Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem

    NASA Astrophysics Data System (ADS)

    Natanzon, Sergey M.

    2016-01-01

    We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.

  16. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  17. ADVANCES IN 2-D CORRELATION IN NIR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2-D) vibrational correlation spectroscopy has now advanced to the stage of realizing many of its touted advantages. Those advantages primarily are: elucidation of chemical interactions of functional groups, simplification of complex spectra, enhancement of spectral resolution by sp...

  18. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained. PMID:17281109

  19. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  20. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  1. The NH2D hyperfine structure revealed by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J. E.

    2016-02-01

    Context. The 111-101 lines of ortho- and para-NH2D (o/p-NH2D) at 86 and 110 GHz, respectively, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure that is due to the nitrogen (14N) nucleus is resolved. To date, this splitting is the only one that is taken into account in the NH2D column density estimates. Aims: We investigate how including the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH2D. Methods: We present 30 m IRAM observations of the above mentioned lines and APEX o/p-NH2D observations of the 101-000 lines at 333 GHz. The hyperfine patterns of the observed lines were calculated taking into account the splitting induced by the D nucleus. The analysis then relies on line lists that either neglect or include the splitting induced by the D nucleus. Results: The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting that is due to the 14N nucleus. We find inconsistencies between the line widths of the 101-000 and 111-101 lines, the latter being larger by a factor of ~1.6 ± 0.3. Such a large difference is unexpected because the two sets of lines probably originate from the same region. We next employed a newly computed line list for the o/p-NH2D transitions where the hyperfine structure induced by both nitrogen and deuterium nuclei was included. With this new line list, the analysis of the previous spectra leads to compatible line widths. Conclusions: Neglecting the hyperfine structure caused by D leads to overestimating the line widths of the o/p-NH2D lines at 3 mm. The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. We therefore recommend to take the hyperfine splittings caused by both the 14N and D nuclei into account in any analysis that relies on these lines. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  2. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  3. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  4. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  5. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS

  6. Teaching Geometry with Tangrams.

    ERIC Educational Resources Information Center

    Russell, Dorothy S.; Bologna, Elaine M.

    1982-01-01

    Geometry is viewed as the most neglected area of the elementary school mathematics curriculum. Tangram activities provide numerous worthwhile mathematical experiences for children. A method of constructing tangrams through paper folding is followed by suggested spatial visualization, measurement, and additional activities. (MP)

  7. Sliding vane geometry turbines

    SciTech Connect

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  8. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including

  9. Geoff Giles and Geometry

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".

  10. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  11. Towards relativistic quantum geometry

    NASA Astrophysics Data System (ADS)

    Ridao, Luis Santiago; Bellini, Mauricio

    2015-12-01

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner-Nordström black-hole is studied.

  12. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  13. Conics and Finite Geometries.

    ERIC Educational Resources Information Center

    Shilgalis, Thomas W.

    1985-01-01

    The results of investigations into finite geometries, prompted by questions raised in a course for secondary school mathematics teachers, are presented. The discussion of points, lines, and incidences led to consideration of graphs of second-degree equations in finite projective planes. (MNS)

  14. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  15. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  16. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  17. Study of the mechanical behavior of a 2-D carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1987-01-01

    The out-of-plane fracture of a 2-D carbon-carbon composite was observed and characterized to gain an understanding of the factors influencing the stress distribution in such a laminate. Finite element analyses of a two-ply carbon-carbon composite under in-plane, out-of-plane, and thermal loading were performed. Under in-plane loading all components of stress were strong functions of geometry. Additionally, large thermal stresses were predicted. Out-of-plane tensile tests revealed that failure was interlaminar, and that cracks propagated along the fiber-matrix interface. An elasticity solution was utilized to analyze an orthotropic fiber in an isotropic matrix under uniform thermal load. The analysis reveals that the stress distributions in a transversely orthotropic fiber are radically different than those predicted assuming the fiber to be transversely isotropic.

  18. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  19. Toward an Efficient Icing CFD Process Using an Interactive Software Toolkit: Smagglce 2D

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Schilling, Herbert W.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.

    2001-01-01

    Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.

  20. CYP 2D6 Binding Affinity Predictions Using Multiple Ligand and Protein Conformations

    PubMed Central

    Peri?-Hassler, Lovorka; Stjernschantz, Eva; Oostenbrink, Chris; Geerke, Daan P.

    2013-01-01

    Because of the large flexibility and malleability of Cytochrome P450 enzymes (CYPs), in silico prediction of CYP binding affinities to drugs and other xenobiotic compounds is a true challenge. In the current work, we use an iterative linear interaction energy (LIE) approach to compute CYP binding affinities from molecular dynamics (MD) simulation. In order to improve sampling of conformational space, we combine results from simulations starting with different relevant protein-ligand geometries. For calculated binding free energies of a set of thiourea compounds binding to the flexible CYP 2D6 isoform, improved correlation with experiment was obtained by combining results ofMDruns starting from distinct protein conformations and ligand-binding orientations. This accuracy was obtained from relatively short MD simulations, which makes our approach computationally attractive for automated calculations of ligand-binding affinities to flexible proteins such as CYPs. PMID:24351831

  1. Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals.

    PubMed

    Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola

    2016-01-01

    This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features. PMID:26911336

  2. Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals

    NASA Astrophysics Data System (ADS)

    Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola

    2016-02-01

    This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features.

  3. The transition matrix method for a 2D eddy current interaction problem

    NASA Astrophysics Data System (ADS)

    Larsson, Lars; Rosell, Anders

    2012-05-01

    A 2D model of the eddy current interaction problem that consists of an inhomogeneity in a conductive half space is presented. The applied analytical method of solution is the transition (T) matrix method. This involves use of the free space Green's function to generate a system of boundary integral relations. In this way, it is easy to identify the contributions to the total solution from each different scattering surface. The different parts are separated also in the computation of the impedance. This leads to low cost simulations in terms of computation time and qualify the method to be used to obtain probability of detection (POD) curves. The T matrix method is a building block method and the possibility to extend the geometry with several inhomogeneities and extra layers will be discussed. The model is compared with a Finite Element (FE) model and numerical examples for the case with a cylindrical inhomogeneity are given.

  4. Optical fiber poling by induction: analysis by 2D numerical modeling.

    PubMed

    De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A

    2016-04-15

    Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ(2)-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323

  5. Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals

    PubMed Central

    Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola

    2016-01-01

    This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features. PMID:26911336

  6. Hall MHD modeling of 2D reconnection: application to Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Lukin, V. S.; Jardin, S. C.; Yamada, M.

    2002-11-01

    Intrinsic parity asymmetry of the Hall current mediated reconnection is studied with 2D axisymmetric resistive Hall magnetohydrodynamics code. Implications for the Magnetic Reconnection Experiment (MRX) are investigated by matching the model with the experimental initial and boundary conditions. The simulation is shown to reproduce the detailed evolution of driven collisionless reconnection in MRX. Both co- and counter- helicity results are discussed. Based on simple symmetry considerations and supported by the simulation results, evidence of the Hall currents during driven reconnection in MRX is suggested. Strong dependence of the localy-observed phenomena on the global dynamics, guided by the particulars of MRX geometry, is demonstrated. The code has been previously used to successfully model the Swarthmore Spheromak Experiment[1]. [1] V.S. Lukin, et. al., Phys. of Plasmas, 8, 1600 (2001).

  7. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks.

    PubMed

    Bosi, Susanna; Rauti, Rossana; Laishram, Jummi; Turco, Antonio; Lonardoni, Davide; Nieus, Thierry; Prato, Maurizio; Scaini, Denis; Ballerini, Laura

    2015-01-01

    To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models. PMID:25910072

  8. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  9. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics

    PubMed Central

    Chung, Hoi Sung; Ganim, Ziad; Jones, Kevin C.; Tokmakoff, Andrei

    2007-01-01

    Transient two-dimensional infrared (2D IR) spectroscopy is used as a probe of protein unfolding dynamics in a direct comparison of fast unfolding experiments with molecular dynamics simulations. In the experiments, the unfolding of ubiquitin is initiated by a laser temperature jump, and protein structural evolution from nanoseconds to milliseconds is probed using amide I 2D IR spectroscopy. The temperature jump prepares a subensemble near the unfolding transition state, leading to quasi-barrierless unfolding (the “burst phase”) before the millisecond activated unfolding kinetics. The burst phase unfolding of ubiquitin is characterized by a loss of the coupling between vibrations of the β-sheet, a process that manifests itself in the 2D IR spectrum as a frequency blue-shift and intensity decrease of the diagonal and cross-peaks of the sheet's two IR active modes. As the sheet unfolds, increased fluctuations and solvent exposure of the β-sheet amide groups are also characterized by increases in homogeneous linewidth. Experimental spectra are compared with 2D IR spectra calculated from the time-evolving structures in a molecular dynamics simulation of ubiquitin unfolding. Unfolding is described as a sequential unfolding of strands in ubiquitin's β-sheet, using two collective coordinates of the sheet: (i) the native interstrand contacts between adjacent β-strands I and II and (ii) the remaining β-strand contacts within the sheet. The methods used illustrate the general principles by which 2D IR spectroscopy can be used for detailed dynamical comparisons of experiment and simulation. PMID:17551015

  10. Experimental results for film cooling in 2-D supersonic flow including coolant delivery pressure, geometry, and incident shock effects

    NASA Technical Reports Server (NTRS)

    Olsen, George C.; Nowak, Robert J.; Holden, Michael S.; Baker, N. R.

    1990-01-01

    An experimental program was conducted to establish some design parameters important to a supersonic film cooling system in a scramjet engine. A simple non-combusting two-dimensional flow configuration was used to isolate the film cooling phenomena. Parameters investigated include coolant delivery pressure, slot height and lip thickness, and incident shock location and strength. Design guidelines for use in engineering and trade studies are presented.

  11. COMPARISON OF THE ACCURACY OF VARIOUS SPATIAL DISCRETIZATION SCHEMES OF THE DISCRETE ORDINATES EQUATIONS IN 2D CARTESIAN GEOMETRY

    SciTech Connect

    Sebastian Schunert; Yousry Y. Azmy; Damien Fournier

    2011-05-01

    We present a comprehensive error estimation of four spatial discretization schemes of the two-dimensional Discrete Ordinates (SN) equations on Cartesian grids utilizing a Method of Manufactured Solution (MMS) benchmark suite based on variants of Larsen’s benchmark featuring different orders of smoothness of the underlying exact solution. The considered spatial discretization schemes include the arbitrarily high order transport methods of the nodal (AHOTN) and characteristic (AHOTC) types, the discontinuous Galerkin Finite Element method (DGFEM) and the recently proposed higher order diamond difference method (HODD) of spatial expansion orders 0 through 3. While AHOTN and AHOTC rely on approximate analytical solutions of the transport equation within a mesh cell, DGFEM and HODD utilize a polynomial expansion to mimick the angular flux profile across each mesh cell. Intuitively, due to the higher degree of analyticity, we expect AHOTN and AHOTC to feature superior accuracy compared with DGFEM and HODD, but at the price of potentially longer grind times and numerical instabilities. The latter disadvantages can result from the presence of exponential terms evaluated at the cell optical thickness that arise from the semianalytical solution process. This work quantifies the order of accuracy and the magnitude of the error of all four discretization methods for different optical thicknesses, scattering ratios and degrees of smoothness of the underlying exact solutions in order to verify or contradict the aforementioned intuitive expectation.

  12. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.

  13. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    Biyabani, S. R.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX computers to emulate Cray system time calls, which should be easy to modify for other machines as well. The standard distribution media for this version is a 9-track 1600 BPI ASCII Card Image format magnetic tape. The Cray version was developed in 1987. The IBM ES/3090 version is an IBM port of the Cray version. It is written in IBM VS FORTRAN and has the capability of executing in both vector and parallel modes on the MVS/XA operating system and in vector mode on the VM/XA operating system. Various options of the IBM VS FORTRAN compiler provide new features for the ES/3090 version, including 64-bit arithmetic and up to 2 GB of virtual addressability. The IBM ES/3090 version is available only as a 9-track, 1600 BPI IBM IEBCOPY format magnetic tape. The IBM ES/3090 version was developed in 1989. The DEC RISC ULTRIX version is a DEC port of the Cray version. It is written in FORTRAN 77 for RISC-based Digital Equipment platforms. The memory requirement is approximately 7Mb of main memory. It is available in UNIX tar format on TK50 tape cartridge. The port to DEC RISC ULTRIX was done in 1990. COS and UNICOS are trademarks and Cray is a registered trademark of Cray Research, Inc. IBM, ES/3090, VS FORTRAN, MVS/XA, and VM/XA are registered trademarks of International Business Machines. DEC and ULTRIX are registered trademarks of Digital Equipment Corporation.

  14. Acoustic Receptivity of a Blasius Boundary Layer with 2-D and Oblique Surface Waviness

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Breuer, Kenneth S.

    2000-01-01

    An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional (2-D) and oblique (3-D) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well defined wavenumber spectrum with fundamental wavenumber k (sub w). A planar downstream traveling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to k (sub ts) = k (sub w). The range of acoustic forcing levels, epsilon, and roughness heights, DELTA h, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination epsilon dot DELTA h resulted in subsequent nonlinear development of the Tollmien-Schlichting (T-S) wave. This study provided the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the 2-D and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber a,, and measuring the T-S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.

  15. Dynamics of 2D Dust Clusters with a Perpendicular Magnetic Field

    SciTech Connect

    Greiner, Franko; Carstensen, Jan; Hou Lujing; Piel, Alexander

    2008-09-07

    The physics of two-dimensional (2D) dust clusters in an unmagnetized plasma sheath has been understood in dept. However, introduction of a perpendicular magnetic field into the dusty plasma sheath leads to some new effects, such as rotation and compression of dust clusters, whose mechanism is still unclear. It is found that even for a magnetic field as low as the earth magnetic field ({approx_equal}40 {mu}T), clusters rotate as rigid about their centers. It was proposed [U. Konopka, PRE 61, 1890 (2000)] that the ExB-induced ion flow drives the dust clusters into rotation. Simulations [L.-J. Hou, PoP 12, 042104 (2005)] based on the same hypothesis also reproduced the rotation of 2D clusters in a qualitative manner. However, this model cannot fully explain the experimental observations. We present detailed experimental investigations, which show that the rotation of a dust cluster critically depends on the detailed discharge geometry. In particular, the co-rotation of the background neutral gas and its role in driving dust-cluster rotation is proposed as a mechanism to set the dust cluster in rotation.

  16. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. PMID:25773968

  17. Lasing of pyrromethene 597 in 2D holographic polymer dispersed liquid crystals: influence of columnar conformation

    NASA Astrophysics Data System (ADS)

    Jakubiak, Rachel; Tondiglia, Vincent P.; Natarajan, Lalgudi V.; Lloyd, Pamela F.; Sutherland, Richard; Vaia, Richard A.; Bunning, Timothy J.

    2009-02-01

    Holographic photopolymerization, such as used to form holographic polymer dispersed liquid crystals (HPDLCs), has the advantage of combining the desirable processing properties of polymers with a periodic distribution of an electrically tunable medium (LC). Herein we describe laser oscillations resulting from distributed feedback in fieldmodulated, 2-D H-PDLC photonic crystals. Compared to results of lasing from pyrromethene 597 in 1-D H-PDLCs, the linewidth of the laser action decreases by at least a factor of four and the lasing wavelength is electrically tunable over 5 nm. The 2-D H-PDLCs consist of LC columns within a polymer matrix that were created by interference of four writing beams on the sample cell. Two configurations were studied; one comprising a reflection grating orthogonal to a transmission grating (in-plane) and the other from two orthogonal transmission gratings (out-of-plane). Given that the lattice spacing was the same for both samples, the lasing wavelengths were similar; however the polarization dependence on lasing threshold varied by a factor of three for the in-plane configuration and electrical switching resulted in bimodal lasing. The out-of-plane geometry showed no polarization dependence on lasing threshold and the lasing blue-shifted with applied electric field.

  18. Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion

    NASA Astrophysics Data System (ADS)

    Kashid, Vikas; Shah, Vaishali; Salunke, H. G.; Mokrousov, Yuriy; Blügel, Stefan

    2015-08-01

    We have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires.

  19. Routing of 2-D switching networks by their embedding into cubes

    NASA Astrophysics Data System (ADS)

    Giglmayr, Josef

    2000-09-01

    The proposed all-optical 2-D switching networks are (i) M× N-gon prism switches ( M⩾2, N⩾3 ) and (ii) 3-D grids of any geometry N⩾3. For the routing we assume (1) the projection of the spatial architectures onto plane graphs (2) the embedding of the latter guest graphs into (in)complete host hypercubes ( N=4) and generally, into N-cube networks ( N⩾3) and (3) routing by means of the cube algorithms of the host. By the embedding mainly faulty cubes (synonyms: injured cubes, incomplete cubes) arise which complicate the routing and analysis. The application of N-cube networks (i) extend the hypercube principles to any N⩾3 (ii) increase the number of plane host graphs and (iii) reduce the incompleteness of the host cubes. Several different embeddings of the intersection graphs (IGs) of 2-D switching networks and several different routings are explained for N=4 and 6 by various examples. By the expansion of the grids (enlargement) internal waveguides (WGs) and internal switches are introduced which interact with the switches of the original 3-D grid without increasing the number of stages (NS). The embeddings by expansion apply to interconnection networks whereas dilation-2 embeddings (dilation ≡ distance of the nearest-neighbour nodes of the guest graph at the host) are rather suitable for the emulation of algorithms. Concepts for fault-tolerant routing and algorithm mapping are briefly explained.

  20. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animals environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation systems engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  1. 3D vessel axis extraction using 2D calibrated x-ray projections for coronary modeling

    NASA Astrophysics Data System (ADS)

    Young, Stewart; Movassaghi, Babak; Weese, Juergen; Rasche, Volker

    2003-05-01

    A new approach for 3D vessel centreline extraction using multiple, ECG-gated, calibrated X-ray angiographic projections of the coronary arteries is described. The proposed method performs direct extraction of 3D vessel centrelines, without the requirement to either first compute prior 2D centreline estimates, or perform a complete volume reconstruction. A front propagation-based algorithm, initialised with one or more 3D seed points, is used to explore a volume of interest centred on the projection geometry's isocentre. The expansion of a 3D region is controlled by forward projecting boundary points into all projection images to compute vessel response measurements, which are combined into a 3D propagation speed so that the front expands rapidly when all projection images yield high vessel responses. Vessel centrelines are obtained by reconstructing the paths of fastest propagation. Based on these axes, a volume model of the coronaries can be constructed by forward projecting axis points into the 2D images where the borders are detected. The accuracy of the method was demonstrated via a comparison of automatically extracted centrelines with 3D centrelines derived from manually segmented projection data.

  2. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.

    PubMed

    Gay, C; Rognon, P; Reinelt, D; Molino, F

    2011-01-01

    Up to a global scaling, the geometry of foams squeezed between two solid plates (2D GG foams) essentially depends on two independent parameters: the liquid volume fraction and the degree of squeezing (bubble thickness to diameter ratio). We describe it in two main asymptotic regimes: fully dry floor tiles, where the Plateau border radius is smaller than the distance between the solid plates, and dry pancakes, where it is larger. We predict a rapid variation of the Plateau border radius in one part of the pancake regime, namely when the Plateau border radius is larger than the inter-plate distance but smaller than the geometric mean of that distance and the bubble perimeter. This rapid variation is not related to any topological change in the foam: in all the regimes we consider, the bubbles remain in mutual lateral contact through films located at mid-height between both plates. We provide asymptotic predictions in different types of experiments on such 2D GG foams: when foam is being progressively dried or wetted, when it is being squeezed further or stretched, when it coarsens through film breakage or through inter-bubble gas diffusion. Our analysis is restricted to configurations close to equilibrium, as we do not include stresses resulting from bulk viscous flow or from non-homogeneous surfactant concentrations. We also assume that the inter-plate distance is sufficiently small for gravity to be negligible. The present work does not provide a method for measuring small Plateau border radii experimentally, but it indicates that large (and easily observable) Plateau borders should appear or disappear rather suddenly in some types of experiments with small inter-plate gaps. It also gives expected orders of magnitude that should be helpful for designing experiments on 2D GG foams. PMID:21253804

  3. Quantitative microvascular corrosion casting by 2D- and 3D-morphometry.

    PubMed

    Minnich, B; Bartel, H; Lametschwandtner, A

    2001-01-01

    As a system of tubes (blood vessels) the cardiovascular system changes actively and passively diameters to adapt its transport capacities for respiratory gases, nutrients, heat, metabolites and waste products to and off the body's organs, tissues and cells. In most healthy organs blood vessels form a hierarchically arranged three-dimensional network with the geometry defined by vessel diameters, interbranching distances (defining branching frequencies and number of branching sites, i.e. nodes), intervascular distances, and branching angles. In the present study 2D- and 3D-morphometry is applied to quantify these parameters and their changes as they occur in resin casts during metamorphosis of the tadpole lung (2D-morphometry) and filter apparatus vasculature (3D-morphometry). It is shown that 2D-morphometry should be limited to the analysis of high powered images of flat two-dimensional vascular networks (example: tadpole lung alveolar vascular bed) to prevent underestimation of parameters. In contrast, 3D-morphometry can be applied over a wide range of magnifications whereby accuracy of measurements increases with the portion the structure to be measured occupies within the field of view. Together with a careful control of precasting conditions (application of vasoactive drugs, anaesthetics), casting conditions (pressure during rinsing and casting, amount of final shrinkage of casting media), and postcasting conditions (thermal burdening during maceration, sputtering, evaporation, and SEM inspection; thickness of conductive metal layers) 3D-morphometry enables to gain reliable data from resin casts of highly complex real vascular networks in healthy and diseased organs in the developing, juvenile, adult and aged state, as well as in different physiological states. PMID:11729958

  4. Modeling and Control of 2-D Grasping of an Object with Arbitrary Shape under Rolling Contact

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru; Yoshida, Morio; Sekimoto, Masahiro; Tahara, Kenji

    Modeling, control, and stabilization of dynamics of two-dimensional object grasping by using a pair of multi-joint robot fingers are investigated under rolling contact constraints and an arbitrary geometry of the object and fingertips. First, a fundamental testbed problem of modeling and control of rolling motion between 2-D rigid bodies with an arbitrary shape is treated under the assumption that the two contour curves coincide at the contact point and share the same tangent. The rolling constraint induces the Euler equation of motion that is parameterized by a common arclength parameter and constrained onto the kernel space orthogonally complemented to the image space spanned from the constraint gradient. By extending the analysis to the problem of stable grasp of a 2-D object with an arbitrary shape by a pair of robot fingers, the Euler-Lagrange equation of motion of the overall fingers/object system parametrized by arclength parameters is derived, together with a couple of first-order differential equations that express evolutions of contact points in terms of the second fundamental form. It is shown that 2-D rolling constraints are integrable in the sense of Frobonius even if their Pfaffian forms are characterized by arclength parameters. A control signal called “blind grasping” is introduced and shown to be effective in stabilization of grasping without using the details of the object shape and parameters or external sensing. An extension of the Dirichlet-Lagrange stability theorem to a class of systems with DOF-redundancy under constraints is suggested by using a Morse-Bott-Lyapunov function.

  5. 2D and 3D active Tomography of Kos - Nisyros volcanic Area (East Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Makris, J.; Nikolova, S. B.; Ilinski, D.; Chonia, T.

    2003-04-01

    Since June 2000, active and passive seismic observations have been carried out by IfG and GeoPro GmbH, Hamburg within the frame of the project GEOWARN (Geo-Spacial Warning Systems Nisyros Volcano, Greece: An Emergency Case Study of the Volcanic Area of Nisyros) supported by the European Community. In the active experiment 48 recording seismic units were deployed and recorded more than 7000 shots in 3D array. The Nisyros volcano has been identified as an apophytic intrusion of much larger volcanic structure with a caldera of 35 km diameter, extending between the southern coasts of the islands of Kos and Nisyros. To obtain velocity structure of the area a 3-D tomographic inversion and 2D evaluation of seismic profiles was done. The quality of the recorded data permitted to probe the area with high density. The inversion method applied and the high accuracy of active tomographic data allowed for resolving the true dimensions of the caldera and the high velocity bodies within it. Comparison of the results from evaluation of 2D lines on their cross-sections and with the results from 3D tomographic inversion was made. Finally, inversion of 3D data with fixing of the velocities along 2D seismic lines for obtaining better constrained 3D velocity model was done. To understand better the complex geometry of the ray penetration and to compare inversion results with data in an independent manner, obtained velocity model was used as an input for forward modeling using a different 3D ray-tracing code of SW3D.

  6. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  7. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  8. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately 600 m{sup 2}, the Wall Walker would cost less than the baseline. Using the Wall Walker 2-D LMS, ALARA exposure and worker safety is improved, and there is potential for increased productivity. This innovative technology performed better than the baseline by providing real-time monitoring of the tool or instrument position. Also, the Wall Walker 2-D LMS can traverse any two-dimensional path at constant speeds of up to 18.3 linear meters per minute (60 linear feet per minute). The survey production rate for the innovative technology was about 0.6 m{sup 2}/min (6 ft{sup 2}/min); the baseline production rate was approximately 0.3 m{sup 2}/min (3 ft{sup 2}/min), using the same surveying instrument and maximum scanning rate.

  9. Supergravity geometry in superspace

    NASA Astrophysics Data System (ADS)

    Nath, Pran; Arnowitt, R.

    1980-04-01

    Some aspects of the superspace geometry of supergravity are discussed. It is shown that all the relevant geometrical objects, i.e., connections, torsions and curvatures of the supergravity geometry can be deduced by a reduction procedure from the riemannian theory. This procedure allows one to obtain closed-form expressions for the superspace connections of supergravity in terms of the vierbein. The supergravity and the Yang-Mills connections, which are unconnected in the usual superspace formulations of supergravity, arise in a unified way in this picture. The non-vanishing supergravity torsion arises naturally as the O(3,1) × O(N) subgroup piece of the larger OSp(3,1/4N) riemannian tangent-space group in the -->0 limit. The spontaneous breaking of the riemannian theory is shown to predict precisely the vacuum values of the supergravity torsions which are assumed in the usual superspace formulations of supergravity.

  10. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  11. State Sums and Geometry

    NASA Astrophysics Data System (ADS)

    Hellmann, Frank

    2011-02-01

    In this thesis I review the definition of topological quantum field theories through state sums on triangulated manifolds. I describe the construction of state sum invariants of 3-manifolds from a graphical calculus and show how to evaluate the invariants as boundary amplitudes. I review how to define such a graphical calculus through SU(2) representation theory. I then review various geometricity results for the representation theory of SU(2), Spin(4) and SL(2,C), and define coherent boundary manifolds for state sums based on these representations. I derive the asymptotic geometry of the SU(2) based Ponzano-Regge invariant in three dimensions, and the SU(2) based Ooguri models amplitude in four dimensions. As a corollary to the latter results I derive the asymptotic behaviour of various recently proposed spin foam models motivated from the Plebanski formulation of general relativity. Finally the asymptotic geometry of the SL(2,C) based model is derived.

  12. Puzzle geometry and rigidity

    NASA Astrophysics Data System (ADS)

    Smania, Daniel

    2007-07-01

    We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.

  13. Brane Universe: Global Geometry

    SciTech Connect

    Berezin, Victor

    2010-06-23

    The global geometries of bulk vacuum space-times in the brane-universe models are investigated and classified in terms of geometrical invariants. The corresponding Carter-Penrose diagrams and embedding diagrams are constructed. It is shown that for a given energy-momentum induced on the brane there can be different types of global geometries depending on the signs of a bulk cosmological term and surface energy density of the brane (the sign of the latter does not influence the internal cosmological evolution). It is shown that in the Randall-Sundrum scenario it is possible to have an asymmetric hierarchy splitting even with a Z{sub 2}-symmetric matching of 'our' brane to the bulk.

  14. Geometry of thermodynamic control.

    PubMed

    Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R

    2012-10-01

    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory. PMID:23214570

  15. E 8 geometry

    NASA Astrophysics Data System (ADS)

    Cederwall, Martin; Rosabal, J. A.

    2015-07-01

    We investigate exceptional generalised diffeomorphisms based on E 8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL( n + 1) is sketched. Some related issues are discussed.

  16. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  17. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  18. Leber congenital amaurosis caused by mutations in GUCY2D.

    PubMed

    Boye, Shannon E

    2015-01-01

    Leber congenital amaurosis (LCA) is a clinically and genetically heterogeneous group of diseases that account for the most severe form of early-onset retinal dystrophy. Mutations in retinal guanylate cyclase-1 (GUCY2D) are associated with LCA1, a prevalent form. GUCY2D encodes guanylate cyclase-1 (GC1), a protein expressed in rod and cone photoreceptors that regulates cGMP and Ca(2+) levels within these cells. LCA1 patients present with severely impaired vision, reduced, or ablated electroretinogram and nystagmus. Despite a high degree of visual disturbance, LCA1 patients retain normal photoreceptor laminar architecture, except for foveal cone outer segment abnormalities and, in some patients, foveal cone loss. This article will summarize clinical characterization of patients and proof of concept gene replacement studies in several animal models of GC1 deficiency, both of which have laid the groundwork for clinical application of a gene therapy for treatment of LCA1. PMID:25256176

  19. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  20. Visualization of 2-D and 3-D Tensor Fields

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1995-01-01

    In previous work we have developed a novel approach to visualizing second order symmetric 2-D tensor fields based on degenerate point analysis. At degenerate points the eigenvalues are either zero or equal to each other, and the hyperstreamlines about these points give rise to trisector or wedge points. These singularities and their connecting hyperstreamlines determine the topology of the tensor field. In this study we are developing new methods for analyzing and displaying 3-D tensor fields. This problem is considerably more difficult than the 2-D one, as the richness of the data set is much larger. Here we report on our progress and a novel method to find, analyze and display 3-D degenerate points. First we discuss the theory, then an application involving a 3-D tensor field, the Boussinesq problem with two forces.

  1. Visualization of 2-D and 3-D Tensor Fields

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1997-01-01

    In previous work we have developed a novel approach to visualizing second order symmetric 2-D tensor fields based on degenerate point analysis. At degenerate points the eigenvalues are either zero or equal to each other, and the hyper-streamlines about these points give rise to tri-sector or wedge points. These singularities and their connecting hyper-streamlines determine the topology of the tensor field. In this study we are developing new methods for analyzing and displaying 3-D tensor fields. This problem is considerably more difficult than the 2-D one, as the richness of the data set is much larger. Here we report on our progress and a novel method to find , analyze and display 3-D degenerate points. First we discuss the theory, then an application involving a 3-D tensor field, the Boussinesq problem with two forces.

  2. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  3. Exactly solvable models of 2D dilaton quantum gravity

    NASA Astrophysics Data System (ADS)

    Miković, Aleksandar

    1992-09-01

    We study canonical quantization of a class of 2D dilaton gravity models, which contains the model proposed by Callan, Giddings, Harvey and Strominger. A set of non-canonical phase space variables is found, forming an SL(2,R)×U(1) current algebra, such that the constraints become quadratic in these new variables. In the case when the spatial manifold is compact, the corresponding quantum theory can be solved exactly, since it reduces to a problem of finding the cohomology of a free-field Virasoro algebra. In the non-compact case, which is relevant for 2D black holes, this construction is likely to break down, since the most general field configuration cannot be expanded into Fourier modes. Strategy for circumventing this problem is discussed. Work supported by the UK Science and Engineering Research Council.

  4. Defect Dynamics in Active 2D Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Hagan, Michael; Dogic, Zvonimir

    2014-03-01

    Active materials are assemblies of animate, energy-consuming objects that exhibit continuous dynamics. As such, they have properties that are dramatically different from those found in conventional materials made of inanimate objects. We present a 2D active nematic liquid crystal composed of bundled microtubules and kinesin motor proteins that exists in a dynamic steady-state far from equilibrium. The active nematic exhibits spontaneous binding and unbinding of charge +1/2 and -1/2 disclination defects as well as streaming of +1/2 defects. By tuning ATP concentration, we precisely control the amount of activity, a key parameter of the system. We characterize the dynamics of streaming defects on a large, flat, 2D interface using quantitative polarization light microscopy. We report fundamental characteristics of the active nematics such as defect velocities, defect creation and annihilation rates, and emergent length scales in the system.

  5. MasterChem: cooking 2D-polymers.

    PubMed

    Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F

    2016-03-01

    2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817

  6. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  7. Hard and Soft Physics with 2D Materials

    NASA Astrophysics Data System (ADS)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  8. 2D Imaging of ELM Structures Using Microwave Imaging Reflectometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, Hannah; Tobias, B. J.

    2015-11-01

    2D images of density perturbations due to plasma edge instabilities have been obtained using microwave imaging reflectometry (MIR). Edge-localized modes (ELMs) are fast-growing instabilities that can locally deposit heat and particles, which can be very detrimental to plasma-facing components. The mitigation and suppression of these instabilities on ITER is therefore an area of active research. Prior attempts to image temperature perturbations of ELMs with the electron-cyclotron emission imaging (ECEI) diagnostic were confounded by unexplained ``bursts'' of intense millimeter wave emission. However, MIR is not sensitive to these bursts, and provides long-sought 2D density fluctuation data. Using this data, changes in mode structure have been correlated with changes in ELM behavior, providing important insights into possible methods of ELM control. Additionally, by simultaneously using ECEI we can explore the relationship between mode structure and the bursts. Supported in part by US DOE under DE-FC02-04ER54698.

  9. Resonant tunneling in 2D-photonic superlattices

    NASA Astrophysics Data System (ADS)

    Kanouni, F.; Brezini, A.; Graine, R.; Arab, F.; Assali, A.

    2015-10-01

    Transmissions and resonant tunneling of two-dimensional (2D) photonic superlattices (PhSLs) are discussed. We consider PhSL composed of two alternating 2D-photonic crystals. The structure is denoted as A/B/A/B……A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The transmission coefficient is calculated using the Transfer Matrix Method (TMM) in combination with Bloch theorem. The transmission spectra of the PhSLs indicate that the formation of photonic miniband and minigap inside the wells. The positions and number of the minibands can be artificially tuned by varying the well width. By appropriately choosing the structure parameters, these interesting results can be used to develop new photonic devices.

  10. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  11. Electrical Spin Injection into High Mobility 2D Systems

    NASA Astrophysics Data System (ADS)

    Oltscher, M.; Ciorga, M.; Utz, M.; Schuh, D.; Bougeard, D.; Weiss, D.

    2014-12-01

    We report on spin injection into a high mobility 2D electron system confined at an (Al ,Ga )As /GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  12. Alignment-free characterization of 2D gratings.

    PubMed

    Madsen, Morten Hannibal; Boher, Pierre; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2016-01-10

    Fast characterization of 2D gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that the grating-specific parameters such as the basis vectors and the angle between them, along with the alignment of the sample, such as the rotation of the sample around the x, y, and z axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement and, hence, reduce the measurement uncertainty. Alignment-free characterization is demonstrated on a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method also can be used for automatic alignment and in-line characterization of gratings. PMID:26835768

  13. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  14. Phase-locking of the 2D structures.

    PubMed

    Apollonov, V V; Derzhavin, S; Kislov, V; Kuzminov, V; Mashkovskiy, D; Prokhorov, A M

    1999-01-01

    Experimental results on 1D and 2D phase-locking of laser diode arrays are presented. Attention is paid to the employment of the arrays consisting of wide aperture lasers diodes. Selection of the "in-phase" supermode, preferable for most of the cases, is attained in the external quarter Talbot (Lc=ZT/4=d 2 /2l) cavity due to the output mirror tilt at the angle jm=l/2d. Analysis of the parameters that influence on the phase-locking is given. Our experiments confirm theoretical predictions of the system stability and adequate selectivity for the laser diode array fill factor (FF) FF=0.6. PMID:19396252

  15. Integral geometry and holography

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  16. Emergent Complex Network Geometry

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  17. Integral geometry and holography

    NASA Astrophysics Data System (ADS)

    Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-01

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts — points, distances and angles — are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  18. Integral geometry and holography

    DOE PAGESBeta

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less

  19. Emergent complex network geometry.

    PubMed

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  20. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  1. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  2. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  3. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052

  4. Crystal structure of human cytochrome P450 2D6.

    PubMed

    Rowland, Paul; Blaney, Frank E; Smyth, Martin G; Jones, Jo J; Leydon, Vaughan R; Oxbrow, Amanda K; Lewis, Ceri J; Tennant, Mike G; Modi, Sandeep; Eggleston, Drake S; Chenery, Richard J; Bridges, Angela M

    2006-03-17

    Cytochrome P450 2D6 is a heme-containing enzyme that is responsible for the metabolism of at least 20% of known drugs. Substrates of 2D6 typically contain a basic nitrogen and a planar aromatic ring. The crystal structure of human 2D6 has been solved and refined to 3.0A resolution. The structure shows the characteristic P450 fold as seen in other members of the family, with the lengths and orientations of the individual secondary structural elements being very similar to those seen in 2C9. There are, however, several important differences, the most notable involving the F helix, the F-G loop, the B'helix, beta sheet 4, and part of beta sheet 1, all of which are situated on the distal face of the protein. The 2D6 structure has a well defined active site cavity above the heme group, containing many important residues that have been implicated in substrate recognition and binding, including Asp-301, Glu-216, Phe-483, and Phe-120. The crystal structure helps to explain how Asp-301, Glu-216, and Phe-483 can act as substrate binding residues and suggests that the role of Phe-120 is to control the orientation of the aromatic ring found in most substrates with respect to the heme. The structure has been compared with published homology models and has been used to explain much of the reported site-directed mutagenesis data and help understand the metabolism of several compounds. PMID:16352597

  5. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  6. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  7. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  8. The Kubo-Greenwood expression and 2d MIT transport

    NASA Astrophysics Data System (ADS)

    Castner, Theodore

    2010-03-01

    The 2d MIT in GaAs heterostructures (p- and n-type)features a mobility that drops continuously as the reduced density x= n/nc-1 is decreased. The Kubo-Greenwood result [1] predicts μ = (eɛh/hnc)α^2(x) where α is a normalized DOS. α(x)is obtained from the data [p-type, Gao et al. [2]; n-type Lilly et al. [3

  9. Analyses of the 2dF Deep Field

    NASA Astrophysics Data System (ADS)

    Fulton, Chris; Arp, Halton; Hartnett, John G.

    2010-06-01

    We briefly discuss the observational motivation for and then present statistical analyses performed by a computer algorithm on the 2dF deep field. The results show that high redshift extragalactic objects can be and in many cases are physically associated with low redshift extragalactic objects and that consequently these high redshifts are at least partly intrinsic and therefore not entirely due to Doppler shift.

  10. Nonlinear susceptibility of 2D spin glass films

    NASA Astrophysics Data System (ADS)

    Mattsson, J.; Granberg, P.; Lundgren, L.; Nordblad, P.; Kenning, G.; Cowen, J. A.

    1992-02-01

    A careful study of the nonlinear susceptibility of multilayered two-dimensional Cu(14 at% Mn) spin glass layers separated by thick interlayers of Cu is reported. The experiments were performed in SQUID magnetometers using an ac susceptibility technique in the field range 0-0.5 kG and dc magnetization measurements in the field range 0-10 kG. The static 2D critical exponents have been determined from scaling analysis.

  11. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  12. 3D structures by 2D vibrational spectroscopy

    PubMed Central

    Remorino, Amanda; Hochstrasser, Robin M.

    2012-01-01

    Conspectus The development of experiments that can generate molecular movies of changing chemical structures is a major challenge for physical chemistry. But to realize this dream, we not only need to significantly improve existing approaches, but we also must invent new technologies .. Most of the known protein structures have been determined by X-ray diffraction and to lesser extent by NMR. Though powerful, X-ray diffraction presents limitations for acquiring time dependent structures. In the case of NMR, ultrafast equilibrium dynamics might be inferred from lineshapes, but the structures of conformations interconverting on such time scales are not realizable. This Account highlights two dimensional infrared spectroscopy (2D IR), in particular the 2D vibrational echo, as an approach to time resolved structure determination. We outline the use of the 2D IR method to completely determine the structure of a protein of the integrin family in a time window of few picoseconds. As a transmembrane protein, this class of structures has proved particularly challenging for the established structural methodologies of x-ray crystallography and NMR. We describe the challenges facing multidimensional spectroscopy and compare it with some other methods of structural biology. Then we succinctly discuss the basic principles of 2D IR methods as they relate to time domain and frequency domain experimental and theoretical properties required for protein structure determination. By means of the example of the transmembrane protein, we describe the essential aspects of combined carbon-13 oxygen-18 isotope labels to create vibrational resonance pairs that allow the determination of protein and peptide structures in motion. Finally, we propose a three dimensional structure of the αIIb transmembrane homodimer that includes optimum locations of all side chains and backbone atoms of the protein. Delocalization among 13C=18O residues on different helices. The vibrational excitation is transferred between modes on different helices on the coherent energy transfer time π/2β. PMID:22458539

  13. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  14. SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2005-01-01

    SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.

  15. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Key, Kerry; Bodin, Thomas; Myer, David; Constable, Steven

    2014-12-01

    We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian posterior model probability density function of 2-D seafloor resistivity as constrained by marine controlled source electromagnetic data. This density function of earth models conveys information on which parts of the model space are illuminated by the data. Whereas conventional gradient-based inversion approaches require subjective regularization choices to stabilize this highly non-linear and non-unique inverse problem and provide only a single solution with no model uncertainty information, the method we use entirely avoids model regularization. The result of our approach is an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolution of model parameters. We represent models in 2-D using a Voronoi cell parametrization. To make the 2-D problem practical, we use a source-receiver common midpoint approximation with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where the number of resistivity cells within a 2-D depth section is variable, as are their positions and geometries. Two synthetic studies demonstrate the algorithm's use in the appraisal of a thin, segmented, resistive reservoir which makes for a challenging exploration target. As a demonstration example, we apply our method to survey data collected over the Scarborough gas field on the Northwest Australian shelf.

  16. A community benchmark for viscoplastic thermal convection in a 2-D square box

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Stein, C.; Noack, L.; Hüttig, C.; Maierová, P.; Samuel, H.; Davies, D. R.; Wilson, C. R.; Kramer, S. C.; Thieulot, C.; Glerum, A.; Fraters, M.; Spakman, W.; Rozel, A.; Tackley, P. J.

    2015-07-01

    Numerical simulations of thermal convection in the Earth's mantle often employ a pseudoplastic rheology in order to mimic the plate-like behavior of the lithosphere. Yet the benchmark tests available in the literature are largely based on simple linear rheologies in which the viscosity is either assumed to be constant or weakly dependent on temperature. Here we present a suite of simple tests based on nonlinear rheologies featuring temperature, pressure, and strain rate-dependent viscosity. Eleven different codes based on the finite volume, finite element, or spectral methods have been used to run five benchmark cases leading to stagnant lid, mobile lid, and periodic convection in a 2-D square box. For two of these cases, we also show resolution tests from all contributing codes. In addition, we present a bifurcation analysis, describing the transition from a mobile lid regime to a periodic regime, and from a periodic regime to a stagnant lid regime, as a function of the yield stress. At a resolution of around 100 cells or elements in both vertical and horizontal directions, all codes reproduce the required diagnostic quantities with a discrepancy of at most ˜3% in the presence of both linear and nonlinear rheologies. Furthermore, they consistently predict the critical value of the yield stress at which the transition between different regimes occurs. As the most recent mantle convection codes can handle a number of different geometries within a single solution framework, this benchmark will also prove useful when validating viscoplastic thermal convection simulations in such geometries.

  17. Role of defects in frictional properties of 2-D materials

    NASA Astrophysics Data System (ADS)

    Kavalur, Aditya; Kim, Woo Kyun

    Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.

  18. Continuous Doping of a Metallic Surface State in 2D.

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; McChesney, J. L.; Himpsel, F. J.; Gallagher, M. C.

    2004-03-01

    Metallic surface states on semiconductors are the electronic equivalent of a two-dimensional (2D) electron gas in free space. These states at the Fermi energy are purely 2D since they cannot couple to bulk states. Compared with bulk bands, these surface states provide an opportunity to investigate much higher doping levels and explore the breakdown of low-density approximations. Metallic surfaces are uncommon on semiconductors, but several structures of noble metals on Si(111) have been discovered that are clearly metallic. Here we focus on the 2D Si(111)?3x?3-Ag structure. We have used angle-resolved photoemission with angular multi-detection to cover k-space with a very fine grid. The Si(111)?3x?3-Ag Fermi surface consists of small electron pockets populated by electrons from excess Ag at the surface. Excess Ag acts as an electron donor and thus Ag coverage controls band filling. We have measured the band structure of the electron pockets as a function of doping (0.0015 to 0.086 electrons per atom). At higher doping levels we find the rigid-band model breaks down. The effective mass of the bands change, and the bottom of the bands shift to lower energy and crosses the valence band maximum.

  19. High precision calibration for 2D optical standard

    NASA Astrophysics Data System (ADS)

    Sun, Shuanghua; Gan, Xiaochuan; Xue, Zi; Ye, Xiaoyou; Wang, Heyan; Gao, Hongtang

    2012-10-01

    Photomask is a kind of 2-D optical standard with etched orthogonal coordinates made of a glass substrate chrominged or filmed with other metal. In order to solve the problems of measurement and traceability of ultra precision photomasks used in advanced manufacturing industry, 2-D photomask optical standard was calibrated in high precision laser two coordinate standard device. A high precision differential laser interferometer system was used for a length standard, a high magnification optical micro vision system was used for precision optical positioning feedback. In this paper, a image measurement model was purposed; A sampling window auto identification algorithm was designed. Grid stripe image could be identified and aimed at automatically by this algorithm. An edge detection method based on bidirection progressive scanning and 3-sigma rule for eliminating outliers in sampling window was found. Dirty point could be removed with effect. Edge detection error could be lowered. By this means, the measurement uncertainty of 2-D optical standard's ruling span was less than 0.3 micrometer (k=2).

  20. 2D luminescence imaging of pH in vivo

    PubMed Central

    Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp

    2011-01-01

    Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842

  1. 2D luminescence imaging of pH in vivo.

    PubMed

    Schreml, Stephan; Meier, Robert J; Wolfbeis, Otto S; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp

    2011-02-01

    Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842

  2. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  3. 2D Cocrystallization from H-Bonded Organic Ferroelectrics.

    PubMed

    Kunkel, Donna A; Hooper, James; Bradley, Benjamin; Schlueter, Lisa; Rasmussen, Tom; Costa, Paulo; Beniwal, Sumit; Ducharme, Stephen; Zurek, Eva; Enders, Axel

    2016-02-01

    The synthesis of 2D H-bonded cocrystals from the room-temperature ferroelectric organics croconic acid (CA) and 3-hydroxyphenalenone (3-HPLN) is demonstrated through self-assembly on a substrate under ultrahigh vacuum. 2D cocrystal polymorphs of varied stoichiometry were identified with scanning tunneling microscopy, and one of the observed structural building blocks consists of two CA and two 3-HPLN molecules. Computational analysis with density functional theory confirmed that the experimental (CA)2(3-HPLN)2 tetramers are lower in energy than single-component structures due to the ability of the tetramers to pack efficiently in two dimensions, the promotion of favorable electrostatic interactions between tetramers, and the optimal number of intermolecular hydrogen bonds. The structures investigated, especially the experimentally found tetrameric building blocks, are not polar. However, it is demonstrated computationally that cocrystallization can, in principle, result in heterogeneous structures with dipole moments that exceed those of homogeneous structures and that 2D structures with select stoichiometries could favor metastable polar structures. PMID:26750982

  4. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  5. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  6. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2015-12-09

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  7. Investigations of flowfields found in typical combustor geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1982-01-01

    Experimental and theoretical research undertaken on 2-D axisymmetric geometries under low speed, nonreacting, turbulent, swirling flow conditions is reported. The flow enters the test section and proceeds into a larger chamber (the expansion ratio D/d = 2) via a sudden or gradual expansion (sidewall angle alpha = 90 and 45 degrees). Inlet swirl vanes are adjustable to a variety of vane angles with values of phi = 0, 38, 45, 60 and 70 degrees being emphasized.

  8. Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process.

    PubMed

    Lovicar, Luděk; Komrska, Jiří; Chmelík, Radim

    2010-09-27

    The paper deals with quantitative phase imaging of two-height-level surface reliefs. The imaging is considered to be a linear system and, consequently, the Fourier transform of the image is the product of the Fourier transform of a 2D function characterizing the surface and a specific 2D coherent transfer function. The Fourier transform of functions specifying periodic surface reliefs is factorized into two functions similar to lattice and structure amplitudes in crystal structure analysis. The approach to the imaging process described in the paper enables us to examine the dependence of the phase image on the surface geometry. Theoretical results are verified experimentally by means of a digital holographic microscope. PMID:20940953

  9. Application of collocation spectral domain decomposition method to solve radiative heat transfer in 2D partitioned domains

    NASA Astrophysics Data System (ADS)

    Chen, Shang-Shang; Li, Ben-Wen

    2014-12-01

    A collocation spectral domain decomposition method (CSDDM) based on the influence matrix technique is developed to solve radiative transfer problems within a participating medium of 2D partitioned domains. In this numerical approach, the spatial domains of interest are decomposed into rectangular sub-domains. The radiative transfer equation (RTE) in each sub-domain is angularly discretized by the discrete ordinates method (DOM) with the SRAPN quadrature scheme and then is solved by the CSDDM directly. Three test geometries that include square enclosure and two enclosures with one baffle and one centered obstruction are used to validate the accuracy of the developed method and their numerical results are compared to the data obtained by other researchers. These comparisons indicate that the CSDDM has a good accuracy for all solutions. Therefore this method can be considered as a useful approach for the solution of radiative heat transfer problems in 2D partitioned domains.

  10. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    SciTech Connect

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presented with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)

  11. Graphene, other 2D atomic crystals and their heterostructures

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya S.

    2014-03-01

    Probably the most important ``property'' of graphene is that it has opened a floodgate of experiments on many other 2D atomic crystals: BN, NbSe2, TaS2, MoS2, etc. One can use similar strategies to those applied to graphene and obtain new materials by mechanical or liquid phase exfoliation of layered materials or CVD growth. An alternative strategy to create new 2D crystals is to start with an existing one (like graphene) and use it as an atomic scaffolding to modify it by chemical means (graphane and fluorographene are good examples). The resulting pool of 2D crystals is huge, and they cover a massive range of properties: from the most insulating to the most conductive, from the strongest to the softest. If 2D materials provide a large range of different properties, sandwich structures made up of 2, 3, 4 ...different layers of such materials can offer even greater scope. Since these 2D-based heterostructures can be tailored with atomic precision and individual layers of very different character can be combined together, - the properties of these structures can be tuned to study novel physical phenomena (Coulomb drag, Hostadter butterfly, metal-insulator transition, etc) or to fit an enormous range of possible applications, with the functionality of heterostructure stacks is ``embedded'' in their design (tunnelling or hot-electron transistors, photovoltaic devices). Of particular interest are the tunnelling structures. Being able to control the thickness with atomic precision and having a variety of different material in disposal allows us to modify both the height and the width of the tunnelling barrier in the wide range. The use of graphene as electrodes and utilising insulating (BN) or semiconducting (MoS2, WS2) materials as the tunnelling barrier led to the creation of tunnelling transistors and tunnelling photovoltaic devices and the observation of the resonance tunnelling associated with momentum conservation. We will also consider tunnelling in magnetic field and phonon-assisted tunnelling.

  12. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with 28-electrode arrays with electrodes 2-5 meters apart, and the deep arrays buried at 4-8 meters depth. Ground penetrating radar surveys, SPT borings and coring data provide selected 'ground truthing'. The case studies show that inclusion of the deep electrode array permits karst features such as undulations at the top of limestone and raveling zones within surficial sediments to be imaged. These features are not accessible from surface arrays with equivalent surface footprints. The method also has better resolution at depth at the ends of the lines, where surface arrays are typically plotted with a trapezoidal truncation due to poor resolution at the lower corners of the profile.

  13. Infrared spectra of ethylene clusters: (C2D4)2 and (C2D4)3.

    PubMed

    Rezaei, M; Michaelian, K H; McKellar, A R W; Moazzen-Ahmadi, N

    2012-06-21

    Spectra of ethylene dimers and trimers are studied in the ν(11) fundamental band region of C(2)D(4) (≈2200 cm(-1)) using a tuneable quantum cascade laser to probe a pulsed supersonic slit jet expansion. The dimer spectrum is that of a prolate symmetric top perpendicular band, with a distinctive appearance because the A rotational constant is almost exactly equal to six times the B constant. The analysis supports the previously determined cross-shaped dimer structure with D(2d) symmetry. An ethylene trimer has not previously been observed with rotational resolution. The spectrum is that of an oblate symmetric top parallel band. It leads to a proposed trimer structure which is barrel shaped and has C(3h) or C(3) symmetry, with the ethylene monomer C-C axes approximately aligned along the trimer symmetry axis. PMID:22588171

  14. Altered Expression of Small Heterodimer Partner Governs Cytochrome P450 (CYP) 2D6 Induction during Pregnancy in CYP2D6-humanized Mice*

    PubMed Central

    Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L. M.; Yu, Ai-Ming; Gonzalez, Frank J.; Isoherranen, Nina; Jeong, Hyunyoung

    2014-01-01

    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women. PMID:24318876

  15. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  16. 2D or Not 2D: The Effect of Dimensionality on the Dynamics of Fingering Convection at Low Prandtl Number

    NASA Astrophysics Data System (ADS)

    Garaud, Pascale; Brummell, Nicholas

    2015-12-01

    Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.

  17. Geometry for the Secondary School

    ERIC Educational Resources Information Center

    Moalem, D.

    1977-01-01

    A sequential but non-axiomatic high school geometry course which includes Euclidean, transformation, and analytic geometry and vectors and matrices, and emphasizes the invariance property of transformations, is outlined. Sample problems, solutions, and comments are included. (MN)

  18. Imaging-based amplitude laser beam shaping for material processing by 2D reflectivity tuning of a spatial light modulator.

    PubMed

    Li, Jiangning; Kuang, Zheng; Edwardson, Stuart; Perrie, Walter; Liu, Dun; Dearden, Geoff

    2016-02-10

    We have demonstrated an imaging-based amplitude laser-beam-shaping technique for material processing by 2D reflectivity tuning of a spatial light modulator. Intensity masks with 256 gray levels were designed to shape the input laser beam in the outline profile and inside intensity distribution. Squared and circular flattop beam shapes were obtained at the diffractive near-field and then reconstructed at an image plane of an f-theta lens (f∼100  mm). The observed intensity distribution inside the beam-shaping geometry was much more even than using binary masks. The ablation footprint well matches the desired beam shape. PMID:26906382

  19. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    SciTech Connect

    Kraloua, B.; Hennad, A.

    2008-09-23

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  20. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976

  1. Supercoset space geometry

    SciTech Connect

    Kleppe, A. F.; Wainwright, Chris

    2007-05-15

    Supercoset spaces play an important role in the formulation of supersymmetric theories. The aim of this paper is to review and discuss the geometry of supercoset spaces with particular focus on the way the geometrical structures of the supercoset space G/H are inherited from the super-Lie group G. The isometries of the supercoset space are discussed and a definition of Killing supervectors--the supervectors associated with infinitesimal isometries--is given that can be easily extended to spaces other than coset spaces.

  2. Computational analysis of two-fluid edge plasma stability in tokamak geometries

    NASA Astrophysics Data System (ADS)

    Neiser, Tom; Baver, Derek; Carter, Troy; Myra, Jim; Snyder, Phil; Umansky, Maxim

    2013-10-01

    In H-mode, the edge pressure gradient is disrupted quasi-periodically by Edge Localized Modes (ELMs), which leads to confinement loss and places large heat loads on the divertor. This poster gives an overview of the peeling-ballooning model for ELM formation and presents recent results of 2DX, a fast eigenvalue code capable of solving equations of any fluid model. We use 2DX to solve reduced ideal MHD equations of two-fluid plasma in the R-Z plane, with toroidal mode number resolving the third dimension. Previously, 2DX has been successfully benchmarked against ELITE and BOUT + + for ballooning dominated cases in simple shifted circle geometries. We present follow-up work in simple geometry as well as similar benchmarks for full X-point geometry of DIII-D. We demonstrate 2DX's capability as computational tool that supports nonlinear codes with linear verification and as experimental tool to identify density limits, map the spatial distribution of eigenmodes and investigate marginal stability of the edge region.

  3. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made interpretation of the Mt. Simon and Knox sections difficult. The data quality also gradually decreased moving westward across the state. To meet evolving project objectives, in 2012 the seismic data was re-processed using different techniques to enhance the signal quality thereby rendering a more coherent seismic profile for interpreters. It is believed that the seismic degradation could be caused by shallow natural gas deposits and Quaternary sediments (which include abandoned river and stream channels, former ponds, and swamps with peat deposits) that may have complicated or changed the seismic wavelet. Where previously limited by seismic coverage, the seismic profiles have provided valuable subsurface information across central Illinois. Some of the interpretations based on this survey included, but are not limited to: - Stratigraphy generally gently dips to the east from Morgan to Douglas County. - The Knox Supergroup roughly maintains its thickness. There is little evidence for faulting in the Knox. However, at least one resolvable fault penetrates the entire Knox section. - The Eau Claire Formation, the primary seal for the Mt. Simon Sandstone, appears to be continuous across the entire seismic profile. - The Mt. Simon Sandstone thins towards the western edge of the basin. As a result, the highly porous lowermost Mt. Simon section is absent in the western part of the state. - Overall basement dip is from west to east. - Basement topography shows evidence of basement highs with on-lapping patterns by Mt. Simon sediments. - There is evidence of faults within the lower Mt. Simon Sandstone and basement rock that are contemporaneous with Mt. Simon Sandstone deposition. These faults are not active and do not penetrate the Eau Claire Shale. It is believed that these faults are associated with a possible failed rifting event 750 to 560 million years ago during the breakup of the supercontinent Rodinia.

  4. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  5. Twistor Geometry and Field Theory

    NASA Astrophysics Data System (ADS)

    Ward, R. S.; Wells, Raymond O., Jr.

    1991-08-01

    Part I. Geometry: 1. Klein correspondence; 2. Fibre bundles; 3. Differential geometry; 4. Integral geometry; Part II. Field Theory: 5. Linear field theory; 6. Gauge theory; 7. General relativity; Part III. The Penrose Transform: 8. Massless free fields; 9. Self-dual gauge fields; 10. Self-dual space-times; 11. General gauge fields; 12. Stationary axisymmetric space-times; Special topics.

  6. Geometry: Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    Behavioral objectives, each accompanied by six sample test items, for secondary school geometry are presented. Objectives were determined by surveying the most widely used secondary school geometry textbooks, and cover 14 major categories of geometry, with sections on set theory and introductory trigonometry. Answers are provided. Categories…

  7. Graded geometry and Poisson reduction

    SciTech Connect

    Cattaneo, A. S.; Zambon, M.

    2009-02-02

    The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.

  8. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  9. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wese?ucha-Birczy?ska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; ?abanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczy?ska, Malwina; Biesiada, Gra?yna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin wrapping, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  10. Progress in 2D photonic crystal Fano resonance photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat optics, and flexible optoelectronics, with lasting impact in areas ranging from computing, communications, to sensing and imaging systems.

  11. Integer characterization of 2D topological insulators at finite temperature

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Arovas, Daniel

    2014-03-01

    2D band topological insulators (TI) are characterized by the TKNN number and its variants. However, this only works for zero temperature as the TKNN number is no longer quantized for T > 0 . We show that using Uhlmann's parallel transport for density matrices, TI at finite temperature can still be characterized by an integer, which (1) reduces to the corresponding TKNN number at T = 0 , and (2) exhibits a phase transition, i.e. drops to zero, at a critical temperature. Prototypical models such as Haldane's honeycomb lattice model and the Bernevig-Hughs-Zhang model will be discussed.

  12. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  13. Beam-Plasma Instabilities in a 2D Yukawa Lattice

    SciTech Connect

    Kyrkos, S.; Kalman, G. J.; Rosenberg, M.

    2009-06-05

    We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.

  14. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  15. Interplay between Anderson and Stark Localization in 2D Lattices

    SciTech Connect

    Kolovsky, A. R.

    2008-11-07

    This Letter studies the dynamics of a quantum particle in 2D lattices with on-site disorder in the presence of a static field. It is shown that the particle is localized along the field direction, while in the orthogonal direction to the field it shows diffusive dynamics for algebraically large times. For weak disorder an analytical expression for the diffusion coefficient is obtained by mapping the problem to a band random matrix. This expression is confirmed by numerical simulations of the particle's dynamics, which also indicate the existence of a universal equation for the diffusion coefficient, valid for an arbitrary disorder strength.

  16. Ultrathin 2D Metal-Organic Framework Nanosheets.

    PubMed

    Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua

    2015-12-01

    A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets. PMID:26468970

  17. 2-D energy analyzer for low energy electrons.

    PubMed

    Karkare, Siddharth; Cultrera, Luca; Hwang, Yoon-Woo; Merluzzi, Richard; Bazarov, Ivan

    2015-03-01

    A 2-D electron energy analyzer is designed and constructed to measure the transverse and longitudinal energy distribution of low energy (<1 eV) electrons. The analyzer operates on the principle of adiabatic invariance and motion of low energy electrons in a strong longitudinal magnetic field. The operation of the analyzer is studied in detail and a design to optimize the energy resolution, signal to noise ratio, and physical size is presented. An energy resolution better than 6 meV has been demonstrated. Such an analyzer is a powerful tool to study the process of photoemission which limits the beam quality in modern accelerators. PMID:25832217

  18. 2-D energy analyzer for low energy electrons

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Cultrera, Luca; Hwang, Yoon-Woo; Merluzzi, Richard; Bazarov, Ivan

    2015-03-01

    A 2-D electron energy analyzer is designed and constructed to measure the transverse and longitudinal energy distribution of low energy (<1 eV) electrons. The analyzer operates on the principle of adiabatic invariance and motion of low energy electrons in a strong longitudinal magnetic field. The operation of the analyzer is studied in detail and a design to optimize the energy resolution, signal to noise ratio, and physical size is presented. An energy resolution better than 6 meV has been demonstrated. Such an analyzer is a powerful tool to study the process of photoemission which limits the beam quality in modern accelerators.

  19. Recent update of the RPLUS2D/3D codes

    NASA Technical Reports Server (NTRS)

    Tsai, Y.-L. Peter

    1991-01-01

    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

  20. 2D reconstruction of terahertz Gabor inline digital holography

    NASA Astrophysics Data System (ADS)

    Li, Yun-Da; Li, Qi; Hu, Jia-Qi; Zhao, Yongpeng

    2014-11-01

    Terahertz imaging can make up the defect of imaging opaque samples in visible light domain. Digital holography is a new technology for extracting full information of the original object. In the paper, the improved angular spectrum (AS) algorithm is coulping the original AS algorithm with direct current (DC) suppression method, apodization and piecewise-nonlinear transformation. The reconstruction characteristics of the algorithm have been studied by numerical analysis and experimental researches. The experimental results validate the application value of the algorithms in improving 2D reconstructed image quality in terahertz Gabor inline digital holography.

  1. PARCEQ2D heat transfer grid sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Saladino, Anthony J.; Praharaj, Sarat C.; Collins, Frank G.

    1991-01-01

    The material presented in this paper is an extension of two-dimensional Aeroassist Flight Experiment (AFE) results shown previously. This study has focused on the heating rate calculations to the AFE obtained from an equilibrium real gas code, with attention placed on the sensitivity of grid dependence and wall temperature. Heat transfer results calculated by the PARCEQ2D code compare well with those computed by other researchers. Temperature convergence in the case of kinetic transport has been accomplished by increasing the wall temperature gradually from 300 K to the wall temperature of 1700 K.

  2. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  3. 2D Neutron Diffraction Imaging on an Ammonite

    NASA Astrophysics Data System (ADS)

    Shamoto, Shin-ichi; Kodama, Katsuaki; Imaki, Tadashi; Nakatani, Takeshi; Oshita, Hidetoshi; Kaneko, Naokatsu; Masuko, Kenji; Sakamoto, Kensaku; Yamaguchi, Kenji; Suzuya, Kentaro; Otomo, Toshiya

    2D neutron diffraction imaging of an ammonite fossil was carried out at high-intensity total diffractometer NOVA in J-PARC. Observed diffraction profiles consist of calcite, siderite and amorphous structures. Most of part in the ammonite is calcite. The calcite image shows air chambers divided by septa in the spiral shell. Siderite is observed only in the body chamber. Amorphous structure is observed in both the protoconch and the inner whorls. Based on the crystal structures, their chemical compositions are discussed.

  4. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  5. 2-D energy analyzer for low energy electrons

    SciTech Connect

    Karkare, Siddharth Cultrera, Luca; Hwang, Yoon-Woo; Merluzzi, Richard; Bazarov, Ivan

    2015-03-15

    A 2-D electron energy analyzer is designed and constructed to measure the transverse and longitudinal energy distribution of low energy (<1 eV) electrons. The analyzer operates on the principle of adiabatic invariance and motion of low energy electrons in a strong longitudinal magnetic field. The operation of the analyzer is studied in detail and a design to optimize the energy resolution, signal to noise ratio, and physical size is presented. An energy resolution better than 6 meV has been demonstrated. Such an analyzer is a powerful tool to study the process of photoemission which limits the beam quality in modern accelerators.

  6. Electromagnetic absorption of semiconductor 2D Majorana nanowires.

    PubMed

    Ruiz, Daniel; Osca, Javier; Serra, Llorenç

    2015-04-01

    We calculate the cross section for the electromagnetic absorption of planar 2D Majorana nanowires. The electromagnetic field is described in the dipole approximation. We discuss the signatures on the cross section of a near-zero-energy mode. A low energy peak for transverse polarization, absent in the longitudinal one, reveals the presence of the Majorana-like state. This peak is relatively robust against the thermal smearing of the level occupations. We consider the influence of optical masks hiding parts of the nanowire from the radiation. PMID:25756993

  7. Algorithms for Warping of 2-D PAGE Maps.

    PubMed

    Manfredi, Marcello; Robotti, Elisa; Marengo, Emilio

    2016-01-01

    Software-based image analysis of 2-D PAGE maps is an important step for the investigation of proteome. Warping algorithms, which are employed to register spots among gels, are able to overcome the difficulties due to the low reproducibility of this analytical technique. Over the years, the research of new matching and warping mathematical methods has allowed the development of several routine applications of easy-to-use software. This chapter describes common and basic spatial transformations used for the alignment of protein spots present in different gel maps; some recently new approaches are also presented. PMID:26611413

  8. Physics as Spacetime Geometry

    NASA Astrophysics Data System (ADS)

    Petkov, Vesselin

    As there have been no major advancements in fundamental physics in the past decades it seems reasonable to reexamine the major explicit and especially implicit assumptions in fundamental physics to ensure that all logically possible research directions are identified. The purpose of this chapter is to outline such a direction. Minkowski's program of regarding four-dimensional physics as spacetime geometry is rigorously and consistently employed to the already geometrized general relativity with the most stunning implication that gravitational phenomena are fully explained in the theory without the need to assume that they are caused by gravitational interaction. Then the real open question in gravitational physics seems to be how matter curves spacetime, not how to quantize the apparent gravitational interaction. In view of the difficulties encountered by quantum gravity, even the radical option that gravity is not a physical interaction deserves careful scrutiny due to its potential impact on fundamental physics as a whole. The chapter discusses the possible implications of this option for the physics of gravitational waves and for quantum gravity and ends with an example where regarding physics as spacetime geometry provides a straightforward explanation of a rather subtle issue in relativity - propagation of light in noninertial reference frames.

  9. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping

    PubMed Central

    Shim, Sang-Hee; Zanni, Martin T.

    2010-01-01

    We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame. PMID:19290321

  10. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.

  11. Preconditioning 2D Integer Data for Fast Convex Hull Computations

    PubMed Central

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221

  12. Dynamic sector processing using 2D assignment for rotating radars

    NASA Astrophysics Data System (ADS)

    Habtemariam, Biruk K.; Tharmarasa, R.; Pelletier, M.; Kirubarajan, T.

    2011-09-01

    Electronically scanned array radars as well as mechanically steered rotating antennas return measurements with different time stamps during the same scan while sweeping form one region to another. Data association algorithms process the measurements at the end of the scan in order to satisfy the common one measurement per track assumption. Data processing at the end of a full scan resulted in delayed target state update. This issue becomes more apparent while tracking fast moving targets with low scan rate sensors. In this paper, we present new dynamic sector processing algorithm using 2D assignment for continuously scanning radars. A complete scan can be divided into sectors, which could be as small as a single detection, depending on the scanning rate and sparsity of targets. Data association followed by filtering and target state update is done dynamically while sweeping from one end to another. Along with the benefit of immediate track updates, continuous tracking results in challenges such as multiple targets spanning multiple sectors and targets crossing consecutive sectors. Also, associations performed in the current sector may require changes in association done in previous sectors. Such difficulties are resolved by the proposed 2D assignment algorithm that implements an incremental Hungarian assignment technique. The algorithm offers flexibility with respect to assignment variables for fusing of measurements received in consecutive sectors. Furthermore the proposed technique can be extended to multiframe assignment for jointly processing data from multiple scanning radars. Experimental results based on rotating radars are presented.

  13. The unitary conformal field theory behind 2D Asymptotic Safety

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2016-02-01

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.

  14. PBG properties of three-component 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Glushko, Alexander; Karachevtseva, Lyudmila

    2006-08-01

    In this paper we analyze theoretically how the introduction of the third component into the two-dimensional photonic crystal influences the photonic band structure and the density-of-states of the system. We consider the periodic array of cylindrical air rods in a dielectric, and the third medium is introduced as a ring-shaped intermediate layer of thickness d and dielectric constant ɛi between the air pores and the dielectric background. Using the plane wave method, we have obtained the band structures for the 2D triangular lattice photonic crystals. The dependencies of TE and TM band gaps’ widths and gaps’ edges position on the interlayer dielectric constant and interlayer thickness were analyzed. In the framework of this approach, we have estimated the influence of the surface oxide layer on the band structure of macroporous silicon. We observed the shift of the gaps’ edges to the higher or lower frequencies, depending on the interlayer thickness and dielectric constant. We have shown that the existence of a native oxide surface layer should be taken into consideration to understand the optical properties of 2D photonic crystals, particularly in macroporous silicon structures.

  15. Analysis of hydrodynamic instability growth in a 2D flow

    NASA Astrophysics Data System (ADS)

    Bazarov, Y. B.; Kuratov, S. E.; Meshkov, D. E.; Meshkov, E. E.; Ol'khov, O. V.; Sedov, S. Y.; Sivolgin, V. S.

    2010-12-01

    Experiments with gas bubbles rising in water are presented. The experiments are found to be useful to explore effects related to the joint action and development of gravitational and shear instabilities in a 2D flow. This paper describes an experimental setup to look at the development of hydrodynamics instabilities on the dome of an air bubble rising in liquid. The processes observed during the development of such instabilities are extremely important as they provide better insight into the nonlinear stage of gravitational instability in a 2D case with a curvilinear unstable interface with initial perturbations. The practical relevance of such effects is associated with their occurrence in inertial confinement fusion systems. It is shown that initial short-wavelength perturbations on the dome of a rising bubble quickly decay. Such decay is not attributed to dissipative mechanisms (viscosity or surface tension). Instead, it is a manifestation of general hydrodynamic laws that result in a so-called sub-harmonic instability. The experimental technique used in the experiments could also be developed to check the hypothesis of scale factor in the problem of turbulent mixing. The possibility of a large-scale experiment is discussed.

  16. Flatbands in 2D boroxine-linked covalent organic frameworks.

    PubMed

    Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2015-12-23

    Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics. PMID:26662215

  17. SAR imaging via modern 2-D spectral estimation methods.

    PubMed

    DeGraaf, S R

    1998-01-01

    This paper discusses the use of modern 2D spectral estimation algorithms for synthetic aperture radar (SAR) imaging. The motivation for applying power spectrum estimation methods to SAR imaging is to improve resolution, remove sidelobe artifacts, and reduce speckle compared to what is possible with conventional Fourier transform SAR imaging techniques. This paper makes two principal contributions to the field of adaptive SAR imaging. First, it is a comprehensive comparison of 2D spectral estimation methods for SAR imaging. It provides a synopsis of the algorithms available, discusses their relative merits for SAR imaging, and illustrates their performance on simulated and collected SAR imagery. Some of the algorithms presented or their derivations are new, as are some of the insights into or analyses of the algorithms. Second, this work develops multichannel variants of four related algorithms, minimum variance method (MVM), reduced-rank MVM (RRMVM), adaptive sidelobe reduction (ASR) and space variant apodization (SVA) to estimate both reflectivity intensity and interferometric height from polarimetric displaced-aperture interferometric data. All of these interferometric variants are new. In the interferometric contest, adaptive spectral estimation can improve the height estimates through a combination of adaptive nulling and averaging. Examples illustrate that MVM, ASR, and SVA offer significant advantages over Fourier methods for estimating both scattering intensity and interferometric height, and allow empirical comparison of the accuracies of Fourier, MVM, ASR, and SVA interferometric height estimates. PMID:18276288

  18. Extraction of 2D groupings for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Arseneault, Jean-Luc; Bergevin, Robert; Laurendeau, Denis

    1994-06-01

    An approach for the recognition of 3D objects from single 2D views is presented. Using perceptual organization, hierarchies of features based on parallelism, co-linearity, and intersection are generated. Our local grouping algorithm is particularly inspired by the formalism defined by Etamadi et al., which is concerned with the formation of self-consistent groupings of straight lines from which all higher level groupings may be derived. Our approach extends this formalism to circular arcs. Surfaces in the scene are then extracted based on perceptual laws of symmetry and closure. The recognition process uses relational graphs of surfaces constructed by establishing the proximity, adjacency, and inclusion relations that exist between the surfaces. We identify closures which can be interpreted as the borders of the visible surfaces of objects and can also be used to describe the 2D shape of the surfaces. We show that a graph can be constructed from the relations between these closures and that similarities can be extracted from two different graphs obtained by analyzing two views of the same scene. Typical results obtained for complex indoor scenes are presented.

  19. Predicting abnormal pressure from 2-D seismic velocity modeling

    SciTech Connect

    Grauls, D.; Dunand, J.P.; Beaufort, D.

    1995-12-01

    Seismic velocities are the only data available, before drilling, on which to base a quantitative, present-day estimate of abnormal pressure. Recent advances in seismic velocity processing have enabled them to obtain, using an in-house approach, an optimized 2-D interval velocity field and consequently to better define the lateral extension of pressure regimes. The methodology, interpretation and quantification of overpressure-related anomalies are supported by case studies, selected in sand-shale dominated Tertiary basins, offshore West Africa. Another advantage of this approach is that it can also account for the presence of reservoir-potential intervals at great depth and thus provide significant insight, from a prospective standpoint, into very poorly explored areas. Although at the outset the 2-D seismic tool legitimately merits being favored, optimization of the final predictive pressure model, prior to drilling, will depend upon the success of its combined use with other concepts and approaches, pertaining to structural geology, sedimentology, rock mechanics and fluid dynamics.

  20. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  1. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  2. 2D Gridded Surface Data Value-Added Product

    SciTech Connect

    Tang, Q; Xie, S

    2015-08-30

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  3. 2D and 3D Simulations of Exploding Pusher Capsules

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Smith, Andrew; Miles, Aaron

    2011-10-01

    A research campaign is underway at the National Ignition Facility (NIF) at LLNL to study rapidly evolving, non-LTE, inertial fusion plasmas. The goal is to field thin-shelled, gas filled ``Exploding Pusher'' capsules in a Polar Direct Drive (PDD) configuration. Ion temperatures of > 15 keV and electron temperatures of > 5 keV are reached. A small convergence ratio and rapidly ablated shell reduce susceptibility to hydrodynamic instabilities. Using 1D simulations, most favorable configurations were found to be thin SiO2 or Be shells containing 10 atm of D2-He3 in a 2:1 ratio. This poster describes the 2D and 3D ARES Radiation Hydrodynamics simulations of these capsules. 2D simulations are essential because the PDD configuration requires that each of the beams be ``repointed'' away from their nominal angles. Each beam can also have a separate power profile and focal length. Large ensembles of simulations were run to probe the parameter space and find the optimal pointing resulting in the most spherical implosions. Response surfaces were constructed to ascertain the susceptibility to shot-time fluctuations. We also discuss resolution convergence and present preliminary results of 3D modeling. This work performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Frictional drag between two dilute 2D hole layers

    NASA Astrophysics Data System (ADS)

    Pillarisetty, R.; Noh, H.; Tsui, D. C.; de Poortere, E. P.; Tutuc, E.; Shayegan, M.

    2002-03-01

    We present results of drag measurements on 2D hole systems in the low density limit (rs ranging from 19 to 39), close to their apparent B=0 metal to insulator transitions at p ~ 8.5×10^9 cm-2. The drag resistivity(ρ_D) of our sample, with a 300 Å center to center quantum well separation, is 1.5 kΩ/ Box for 1.5×10^10 cm-2 at 1 K. This is sufficiently large to allow measurements at dilution fridge temperatures to study whether the 2D hole systems show non-Fermi liquid behavior. We find that for Talt0.5T_F, the data exhibit a slightly stronger than T^2 dependence. As the temperature is further increased we find a crossover to a linear dependence, and ρ_D/T^2 vs T exhibits a peak similar to that observed in previous experiments involving phonon mediated electron-electron scattering and plasmon enhancement. Unlike these previous reports, which exhibited a local maxima in ρD around matched densities, our samples show a clearly monotonic dependence upon either layer density. These results will be discussed in light of interaction effects expected in such a large rs regime.

  5. A Hierarchical Control Strategy For 2-D Object Recognition

    NASA Astrophysics Data System (ADS)

    Cullen, Mark F.; Kuszmaul, Christopher L.; Ramsey, Timothy S.

    1988-02-01

    A control strategy for 2-D object recognition has been implemented on a hardware configuration which includes a Symbolics Lisp Machine (TM) as a front-end processor to a 16,384 processor Connection Machine (TM). The goal of this ongoing research program is to develop an image analysis system as an aid to human image interpretation experts. Our efforts have concentrated on 2-D object recognition in aerial imagery specifically, the detection and identification of aircraft near the Danbury, CT airport. Image processing functions to label and extract image features are implemented on the Connection Machine for robust computation. A model matching function was also designed and implemented on the CM for object recognition. In this paper we report on the integration of these algorithms on the CM, with a hierarchical control strategy to focus and guide the object recognition task to particular objects and regions of interest in imagery. It will be shown that these tech-nigues may be used to manipulate imagery on the order of 2k x 2k pixels in near-real-time.

  6. The effects of aging on haptic 2D shape recognition.

    PubMed

    Overvliet, Krista E; Wagemans, J; Krampe, Ralf T

    2013-12-01

    We use the image-mediation model (Klatzky & Lederman, 1987) as a framework to investigate potential sources of adult age differences in the haptic recognition of two-dimensional (2D) shapes. This model states that the low-resolution, temporally sequential, haptic input is translated into a visual image, which is then reperceived through the visual processors, before it is matched against a long-term memory representation and named. In three experiments we tested groups of 12 older (mean age 73.11) and three groups of 12 young adults (mean age 22.80) each. In Experiment 1 we confirm age-related differences in haptic 2D shape recognition, and we show the typical age × complexity interaction. In Experiment 2 we show that if we facilitate the visual translation process, age differences become smaller, but only with simple shapes and not with the more complex everyday objects. In Experiment 3 we target the last step in the model (matching and naming) for complex stimuli. We found that age differences in exploration time were considerably reduced when this component process was facilitated by providing a category name. We conclude that the image-mediation model can explain adult-age differences in haptic recognition, particularly if the role of working memory in forming the transient visual image is considered. Our findings suggest that sensorimotor skills thought to rely on peripheral processes for the most part are critically constrained by age-related changes in central processing capacity in later adulthood. PMID:23978010

  7. Ramsey Spectroscopy Using a Tilted 2D MOT

    NASA Astrophysics Data System (ADS)

    Knutson, Erin; Simha, Raghav; Kwolek, Jonathan M.; Narducci, Frank A.

    2015-05-01

    We study Ramsey spectroscopy using a 2D tilted MOT. We use a tilted two-dimensional magneto-optical trap (2D MOT) to form a cold and continuous beam of Rubidium 85 atoms. The beam emerges from a pinhole where it passes through an on-resonance state preparation laser beam and then through a pair of co-propagating laser beams tuned to drive stimulated Raman transitions in the atoms. Finally, the beam passes through an on-resonance readout beam. We show that, by controlling the intensity of the Raman beams, we can make the product of the Rabi frequency and the transit time of the atoms through the laser beam equal to π or π / 2 as desired. We find a multi-peak Raman spectrum. We compare the width of the clock transition to the reciprocal of the atoms' transit time through the Raman fields. Finally, we study Ramsey spectroscopy using our system. Supported by a NavAir Section 219 grant.

  8. Using dispersive medium to control excitons in 2D materials

    NASA Astrophysics Data System (ADS)

    Klots, Andrey; Bolotin, Kirill I.

    Excitons in 2D materials (2DMs) are known to be sensitive to the surrounding environment. This makes it possible to modify 2D excitons by depositing materials with controlled dielectric constant on top of 2DMs. This possibility becomes especially interesting if we consider materials with dielectric permittivity ɛ that depends both on wavevector k (this happens if the medium is spatially non-uniform) and frequency ω. Here, we develop platforms to control ɛ (k , ω) and explore resulting changes in light-matter interactions of 2DMs. To examine the effect of wavevector-dependent permittivity of the medium, we study absorption/photoluminescence of graphene and MoS2 in the vicinity of highly non-uniform medium - an array of metal nanoparticles, 3-5 nm in diameter. In this case absorption of light can lead to creation of excitons with non-zero momentum. These dark states are not accessible via regular absorption spectroscopy. We study the case of frequency-dependent permittivity by surrounding MoS2 by a highly-dispersive media (e.g. dielectric liquids, graphene and VO2) . We demonstrate non-trivial frequency-dependent renormalization of the quasiparticle bandgap and exciton binding energies.

  9. New Approach for 2D Readout of GEM Detectors

    SciTech Connect

    Hasell, Douglas K

    2011-10-29

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to {approx}50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  10. Predicting non-square 2D dice probabilities

    NASA Astrophysics Data System (ADS)

    Pender, G. A. T.; Uhrin, M.

    2014-07-01

    The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.

  11. Large Eddy Simulations of 2D Lattice Boltzmann MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Flint, Christopher; Vahala, George; Vahala, Linda; Soe, Min

    2014-10-01

    Dellar's LBM of 2D incompressible MHD introduced both a velocity and magnetic distribution functions. As a result div B = 0 is automatically enforced through the trace of an antisymmetric perturbed tensor. We have extended this algorithm to 3D MHD turbulence, with excellent parallelization to many thousands of cores. In LES of MHD turbulence, only the subgrid modes are modeled for using some ad hoc closure scheme. In the Smagorinsky model, the filtered Reynolds stresses are modeled by mean field gradient terms. Recently, Ansumali et al. have developed an LES for Navier-Stokes turbulence by filtering the underlying mesoscopic LB. The filtered LB equations are then subjected to the Chapman-Enskog expansion. A Smagorinsky LES is recovered with no ad hoc assumptions other than the subgrid terms contribute at the transport time scales. This forces a relationship between the filter width and the Knudsen number. Here we extend these ideas to MHD turbulence and achieve closures under the simple assumption that the subgrid terms affect the evolution on the transport time scale. These ideas will first be tested on the flow of 2D jets in a magnetic field. The DNS data base is being generated from a multiple relaxation time (MRT) model for both the velocity and magnetic fields.

  12. Controlling cell growth with tailorable 2D nanoholes arrays.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma Sley P; Fragal, Elizângela H; Pereira, Guilherme M; Garcia, Francielle P; Nakamura, Celso V; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-03-15

    A facile and reproducible route that can lead to two-dimensional arrays of nanopores in thin polymer films is demonstrated. The formation of the pores in the polymer films involves breath figure phenomenon and occurs during the film deposition by spin coating. The formation of nanoporous thin films takes only few seconds, and the method does not require complex equipment or expensive chemicals. This method also constitutes a straightforward approach to control the size of the pores formed in thin films. Besides allowing control over the average pore size of the porous films, the use of dynamic deposition with the breath figure phenomenon causes the reduction in the pore size to nanometer scale. The nanoporous arrays obtained by the breath figure are applied as substrates for cell growth, and the effect of their nanopore size on cell growth was evaluated. Notably, it is found that cell viability is related to pore size, where 2D nanoporous structure is more beneficial for cell culture than 2D microporous structures. The change in the average pore size of the polymer films from 1.22μm to 346nm results in a threefold increase in cell viability. PMID:26722796

  13. MESH2D GRID GENERATOR DESIGN AND USE

    SciTech Connect

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  14. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  15. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  16. Suspended 2-D photonic crystal aluminum nitride membrane reflector.

    PubMed

    Ho, Chong Pei; Pitchappa, Prakash; Soon, Bo Woon; Lee, Chengkuo

    2015-04-20

    We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics. PMID:25969099

  17. Hamiltonian Operators of Dubrovin-Novikov Type in 2D

    NASA Astrophysics Data System (ADS)

    Ferapontov, Evgeny V.; Lorenzoni, Paolo; Savoldi, Andrea

    2015-03-01

    First order Hamiltonian operators of differential-geometric type were introduced by Dubrovin and Novikov in 1983, and thoroughly investigated by Mokhov. In 2D, they are generated by a pair of compatible flat metrics and which satisfy a set of additional constraints coming from the skew-symmetry condition and the Jacobi identity. We demonstrate that these constraints are equivalent to the requirement that is a linear Killing tensor of g with zero Nijenhuis torsion. This allowed us to obtain a complete classification of n-component operators with n ≤ 4 (for n = 1, 2 this was done before). For 2D operators the Darboux theorem does not hold: the operator may not be reducible to constant coefficient form. All interesting (non-constant) examples correspond to the case when the flat pencil is not semisimple, that is, the affinor has non-trivial Jordan block structure. In the case of a direct sum of Jordan blocks with distinct eigenvalues, we obtain a complete classification of Hamiltonian operators for any number of components n, revealing a remarkable correspondence with the class of trivial Frobenius manifolds modelled on H *( CP n-1).

  18. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    PubMed

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221

  19. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    PubMed Central

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  20. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Species Codes-Non-FMP Species 2d Table 2d to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 2d Table 2d to Part 679—Species Codes—Non-FMP Species General use...