Science.gov

Sample records for 2-d temperature imaging

  1. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  2. Comparison Study of 2D Images of Temperature Fluctuations during Sawtooth Oscillation with Theoretical Models

    SciTech Connect

    Park, H.K.; Mazzucato, E.; Donne, A.J.H.; Classen, I.G.J.; Pol, M.J. van de; Xia, Z.; Luhmann, N.C. Jr.; Domier, C.W.; Munsat, T.

    2006-05-19

    High temporal and spatial resolution two-dimensional (2D) images of electron temperature fluctuations were employed to study the sawtooth oscillation in the Toroidal Experiment for Technically Oriented Research tokamak plasmas. The 2D images are directly compared with the expected 2D patterns of the plasma pressure (or electron temperature) from various theoretical models. The observed experimental 2D images are only partially in agreement with the expected patterns from each model: The image of the initial reconnection process is similar to that of the ballooning mode model. The intermediate and final stages of the reconnection process resemble those of the full reconnection model. The time evolution of the images of the hot spot or island is partially consistent to those from the full reconnection model but is not consistent with those from the quasi-interchange model.

  3. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  4. Simultaneous 2D single-shot imaging of OH concentrations and temperature fields in an SI engine simulator

    SciTech Connect

    Orth, A.; Sick, V.; Wolfrum, J.; Maly, R.R.; Zahn, M.

    1994-12-31

    Two-dimensional (2D) temperature measurements in engines are required for the detailed understanding of the combustion process. Because of the unsteady and turbulent nature of engine combustion, these measurements must be performed on a single-shot basis to obtain cycle-resolved results. Details of the flame front structure are also important to know for the numerical modeling of internal combustion processes. Simultaneous measurements of temperature and hydroxyl radical distributions provide such data sets. The combustion of methane in a fully transparent square piston engine was studied with a combination of 2D laser-induced fluorescence of hydroxyl radicals and 2D Rayleigh scattering. A tunable KrF excimer laser at 248 nm was used for the measurements. The wavelength of the laser was tuned to excite the P{sub 2}(8) transition in the OH (3,0) band of the A-X system. Spectral filtering of the resulting fluorescence to detect solely the fluorescence from the (3,2) band significantly reduces the effect of collisional quenching imposed to the fluorescence of the predissociating v{prime} = 3 level by vibrational energy transfer (VET) to lower vibrational levels. Using a second camera, which only records the Rayleigh signals after appropriate filtering, allows the simultaneous measurement of temperature fields with a single laser. The analysis of corresponding OH and temperature images allowed the decision that the combustion conditions are in a regime where the flamelet approach for modeling is appropriate. Good agreement with model predictions has been achieved for the peak temperatures.

  5. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  6. Automated registration of 3D-range with 2D-color images: an overview

    E-print Network

    Stamos, Ioannis

    Stamos)) Input: Range ImagesInput: Range Images 3D Line Extraction3D Line Extraction Input: 2D ImagesInput: 2D Images 2D Line Extraction2D Line Extraction 3D Line Clustering3D Line Clustering 2D Feature2D Feature Line Extraction3D Line Extraction Input: 2D ImagesInput: 2D Images 2D Line Extraction2D Line Extraction

  7. Ultralow Electron Temperatures in 2D Electron Gases

    E-print Network

    Zumbühl, Dominik

    Ultralow Electron Temperatures in 2D Electron Gases by efficient silver sinter heat exchangers 3.1 Cold Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Kapitza . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Thermal Conduction in Metals . . . . . . . . . . . . . . . . . . . . . 9 3.5 Electron

  8. Recovering 3D tumor locations from 2D bioluminescence images

    E-print Network

    Huang, Xiaolei

    Recovering 3D tumor locations from 2D bioluminescence images Xiaolei Huang1 , Dimitris Metaxas1 Bioluminescence imaging (BLI) is an emerging technique for sensitive and nonin- vasive imaging, which can be used bioluminescence images, then register and visualize the reconstructed tumor with detailed animal geometry

  9. 2D and 3D Elasticity Imaging Using Freehand Ultrasound

    E-print Network

    Drummond, Tom

    2D and 3D Elasticity Imaging Using Freehand Ultrasound Joel Edward Lindop Pembroke College March property (e.g., density). Various new scanning techniques are aimed at producing elasticity images related for almost two decades. Elasticity images are produced by estimating and analysing quasistatic deformations

  10. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  11. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature.

    PubMed

    Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G

    2013-12-01

    Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping. PMID:24145962

  12. 3D Tumor Shape Reconstruction from 2D Bioluminescence Images and Registration with CT Images

    E-print Network

    Huang, Junzhou

    1 3D Tumor Shape Reconstruction from 2D Bioluminescence Images and Registration with CT Images and efficient algo- rithm for reconstructing the 3D shapes of tumors from a set of 2D bioluminescence images of bioluminescence images. Second, the images are registered according to the projection of the animal rotating axis

  13. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  14. Volumetric elasticity imaging with a 2-D CMUT array.

    PubMed

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188

  15. Volumetric Elasticity Imaging with a 2D CMUT Array

    PubMed Central

    Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-01-01

    This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188

  16. Alignment of multimodality, 2D and 3D breast images

    NASA Astrophysics Data System (ADS)

    Grevera, George J.; Udupa, Jayaram K.

    2003-05-01

    In a larger effort, we are studying methods to improve the specificity of the diagnosis of breast cancer by combining the complementary information available from multiple imaging modalities. Merging information is important for a number of reasons. For example, contrast uptake curves are an indication of malignancy. The determination of anatomical locations in corresponding images from various modalities is necessary to ascertain the extent of regions of tissue. To facilitate this fusion, registration becomes necessary. We describe in this paper a framework in which 2D and 3D breast images from MRI, PET, Ultrasound, and Digital Mammography can be registered to facilitate this goal. Briefly, prior to image acquisition, an alignment grid is drawn on the breast skin. Modality-specific markers are then placed at the indicated grid points. Images are then acquired by a specific modality with the modality specific external markers in place causing the markers to appear in the images. This is the first study that we are aware of that has undertaken the difficult task of registering 2D and 3D images of such a highly deformable (the breast) across such a wide variety of modalities. This paper reports some very preliminary results from this project.

  17. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan

    E-print Network

    Frydman, Lucio

    Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan Yoav acquisition schemes toward the collection of two-dimen- sional magnetic resonance imaging (2D MRI) data resonance imaging (MRI). In spite of the dissimilar information being sought in 2D NMR and 2D MRI

  18. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  19. Tracking of deformable target in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre

    2015-03-01

    In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.

  20. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  1. Screening and transport in 2D semiconductor systems at low temperatures

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.

    2015-11-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover.

  2. Screening and transport in 2D semiconductor systems at low temperatures.

    PubMed

    Das Sarma, S; Hwang, E H

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  3. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  4. CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS HAIZHAO YANG, JIANFENG LU, AND LEXING YING

    E-print Network

    Ying, Lexing

    CRYSTAL IMAGE ANALYSIS USING 2D SYNCHROSQUEEZED TRANSFORMS HAIZHAO YANG, JIANFENG LU, AND LEXING transforms to extract mesoscopic and microscopic information from atomic crystal images. The methods analyze atomic crystal images as an assemblage of non-overlapping segments of 2D general intrinsic mode type

  5. Temperature dependence of microwave photoresistance in 2D electron systems.

    PubMed

    Hatke, A T; Zudov, M A; Pfeiffer, L N; West, K W

    2009-02-13

    We report on the temperature dependence of microwave-induced resistance oscillations in high-mobility two-dimensional electron systems. We find that the oscillation amplitude decays exponentially with increasing temperature, as exp(-alphaT;{2}), where alpha scales with the inverse magnetic field. This observation indicates that the temperature dependence originates primarily from the modification of the single particle lifetime, which we attribute to electron-electron interaction effects. PMID:19257620

  6. Vessel Segmentation in 2D-Projection Images Using a Supervised Linear Hysteresis Classifier

    E-print Network

    Lübeck, Universität zu

    Vessel Segmentation in 2D-Projection Images Using a Supervised Linear Hysteresis Classifier, Germany Abstract 2D projection imaging is a widely used procedure for vessel visualization. For the subsequent analysis of the vasculature, precise measurements of e.g. vessel area, ves- sel length

  7. Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR

    E-print Network

    Nicodemus, Rebecca A.

    We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

  8. Temperature-jump 2D IR spectroscopy to study protein conformational dynamics

    E-print Network

    Jones, Kevin C. (Kevin Chapman)

    2012-01-01

    Temperature-jump (T-jump) two-dimensional infrared spectroscopy (2D IR) is developed, characterized, and applied to the study of protein folding and association. In solution, protein conformational changes span a wide range ...

  9. 3D TUMOR SHAPE RECONSTRUCTION FROM 2D BIOLUMINESCENCE IMAGES Junzhou Huang, Xiaolei Huang, Dimitris Metaxas

    E-print Network

    Huang, Junzhou

    3D TUMOR SHAPE RECONSTRUCTION FROM 2D BIOLUMINESCENCE IMAGES Junzhou Huang, Xiaolei Huang, Dimitris spots (corresponding to tumors) are segmented in the set of bioluminescence images. Second, the images of our recon- struction method. 1. INTRODUCTION Bioluminescence imaging (BLI) is an emerging technique

  10. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Meilhan, J.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Ouvrier-Buffet, J. L.; Pocas, S.; Rabaud, W.; Guellec, F.; Dupont, B.; Martin, S.; Simon, A. C.

    2013-09-01

    CEA-Leti has developed a monolithic large focal plane array bolometric technology optimized for 2D real-time imaging in the terahertz range. Each pixel consists in a silicon microbolometer coupled to specific antennas and a resonant quarter-wavelength cavity. First prototypes of imaging arrays have been designed and manufactured for optimized sensing in the 1-3.5THz range where THz quantum cascade lasers are delivering high optical power. NEP in the order of 1 pW/sqrt(Hz) has been assessed at 2.5 THz. This paper reports the steps of this development, starting from the pixel level, to an array associated monolithically to its CMOS ROIC and finally a stand-alone camera. For each step, modeling, technological prototyping and experimental characterizations are presented.

  11. 3-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.

    PubMed

    Ma, Te-Jen; Kothapalli, Sri Rajasekhar; Vaithilingam, Srikant; Oralkan, Omer; Kamaya, Aya; Wygant, Ira O; Zhuang, Xuefeng; Gambhir, Sanjiv S; Jeffrey, R Brooke; Khuri-Yakub, Butrus T

    2010-10-11

    In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging. PMID:22977296

  12. 3-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array

    PubMed Central

    Ma, Te-Jen; Kothapalli, Sri Rajasekhar; Vaithilingam, Srikant; Oralkan, Ömer; Kamaya, Aya; Wygant, Ira O.; Zhuang, Xuefeng; Gambhir, Sanjiv S.; Jeffrey, R. Brooke; Khuri-Yakub, Butrus T.

    2010-01-01

    In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging. PMID:22977296

  13. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  14. Temperature Dependence of IP3-Mediated Local and Global Ca2D George D. Dickinson

    E-print Network

    Parker, Ian

    Temperature Dependence of IP3-Mediated Local and Global Ca2D Signals George D. Dickinson * and Ian of California, Irvine, California ABSTRACT We examined the effect of temperature (12­40 C) on local and global) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (dura- tions

  15. SAR Image Superresolution via 2-D Adaptive Extrapolation$

    E-print Network

    Fisher III, John

    from the Texas Instruments Foundation. #12;to suppress sidelobe artifacts, and to reduce speckle to column. To assess the performance of AWNE in enhancing prominent scatterers, reducing speckle, and suppressing clutter, we compare the superresolved images to the images formed with the traditional Fourier

  16. Volumetric ultrasound image-forming using fully controllable 2-D CMUT-on-ASIC arrays

    NASA Astrophysics Data System (ADS)

    Kim, Bae-Hyung; Song, Jongkeun; Lee, Seunghun; Cho, Kyungil; Kim, Youngil; Jeon, Taeho

    2013-03-01

    In real-time 3-D ultrasound imaging using 2-D array transducers, a large number of the 2-D array elements pose challenges in fabricating and transferring signals from/into the system. This fabrication problem has been solved by using a silicon micromachining process for capacitive micromachined ultrasonic transducer (CMUT) arrays. For realtime 3-D ultrasound imaging, manipulating massive ultrasound data acquired from a large number of system channels is a challenge as is fabricating and interconnecting hundreds or thousands of elements of 2-D array with the imaging system's front-end (FE) electronics. Minimizing the number of transmitting and receiving elements and the firing events without degrading the image quality is one of the solutions to reduce the overall system complexity and improve the frame rate. We have been developing a real-time 3-D volumetric ultrasound imaging system using 2-D CMUT arrays by integrating FE electronics with a large number of 2-D array elements. Here, we explore a configuration method to design a scalable 2-D CMUT array and a new volumetric image-formation method to provide higher information rate of a volume image. In this paper, we present the 2-D CMUT-on-ASIC arrays designed to reduce the overall system complexity, and a new volume scanning and image-forming method for real-time 3-D volumetric ultrasonic imaging using 2-D CMUT-on-ASIC arrays. To evaluate our works, we performed from theoretical studies for point spread functions of the array configuration to phantom experiments with off-the-line images.

  17. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (?) and f(?) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 ?m pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D Soil Images. Nonlinear Process in Geophysics, 15, 881-891, 2008. Tarquis, A.M., R.J. Heck, D. Andina, A. Alvarez and J.M. Antón. Multifractal analysis and thresholding of 3D soil images. Ecological Complexity, 6, 230-239, 2009. Tarquis, A.M.; D. Giménez, A. Saa, M.C. Díaz. and J.M. Gascó. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. Scaling Methods in Soil Systems. Pachepsky, Radcliffe and Selim Eds., 19-33, 2003. CRC Press, Boca Ratón, Florida. Acknowledgements First author acknowledges the financial support obtained from Soil Imaging Laboratory (University of Gueplh, Canada) in 2014.

  18. An image-based shading pipeline for 2D animation Hedlena Bezerra1

    E-print Network

    de Figueiredo, Luiz Henrique

    An image-based shading pipeline for 2D animation Hedlena Bezerra1 Bruno Feij´o1 Luiz Velho2 1 PUC 110 22460-320 Rio de Janeiro, RJ, Brazil lvelho@impa.br Abstract Shading for cel animation based on images is a recent research topic in computer-assisted animation. This paper proposes an image

  19. 2-D image segmentation using minimum spanning trees

    SciTech Connect

    Xu, Y.; Uberbacher, E.C.

    1995-09-01

    This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.

  20. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  1. Quantum noise suppression in X-ray images using fuzzy 2-D Wiener filter.

    PubMed

    Toprak, Abdullah

    2007-10-01

    The noisy images are caused by decreasing quantity of the produced X-ray due to the deformation of the X-ray tube's anode. While obtaining the image from low quantity X-ray, shot noise or quantum noise occurs, and this decreases the quality of the image. The aim of this study is to define the novel method called as Fuzzy 2-D Weiner filter (FWF-2D), which suppresses the shot noise from noisy image by avoiding any harm to the image details. With this filtering technique, it is possible to preserve the sharp-edge and the details of the image without any damage during suppressing the noise from images. FWF-2D is one of the best techniques to suppress the corrupted quantum noises due to damaged X-ray tube. The fuzzy rules used in this filter are aimed to distinguish noise pixels from image ones, and the Wiener Filter is working to remove noise pixels distinguished by these fuzzy rules. It is then possible to obtain clean images from damaged X-ray tubes by using FWF-2D technique. PMID:17918688

  2. 2D Simulation of the Harmonic Motion Imaging (HMI) With Experimental Validation

    E-print Network

    Konofagou, Elisa E.

    2D Simulation of the Harmonic Motion Imaging (HMI) With Experimental Validation Caroline Maleke, USA Abstract-- Amplitude-modulated (AM) harmonic motion imaging (HMI) is one of the radiation and has a harmonic response from AM beam, the motion characteristics can be directly related

  3. NONLINEAR FILTERING FOR EXTRACTING ORIENTATION AND TRACING TUBULAR STRUCTURES IN 2-D MEDICAL IMAGES

    E-print Network

    Vidal, René

    NONLINEAR FILTERING FOR EXTRACTING ORIENTATION AND TRACING TUBULAR STRUCTURES IN 2-D MEDICAL IMAGES filter that avoids the computation of image derivatives. We extract overlaid orientations at a pixel from,rvidal,gernot.plank,ntrayanova}@jhu.edu ABSTRACT We consider the problems of extracting local fiber orientation and tracing tubular structures in 2

  4. IEEE TRANSACTIONS ON MEDICAL IMAGES, MARCH 2014 1 Learning Structured Models for Segmentation of 2D

    E-print Network

    Fua, Pascal

    IEEE TRANSACTIONS ON MEDICAL IMAGES, MARCH 2014 1 Learning Structured Models for Segmentation of 2D vision, electron microscopy, image segmentation, kernel methods, mitochondria, statistical machine approximation that can lead to reduced quality of learning. In this article, we propose three novel techniques

  5. Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications

    E-print Network

    Witte, Russell S.

    Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications, University of Arizona, 1609 N Warren, Bldg 211, Tucson, AZ USA 85724 ABSTRACT Photoacoustic (PA) imaging for coronary artery disease. Keywords: photoacoustic, optoacoustic, ultrasound, coronary heart disease

  6. SPR Imaging Measurements of 1-D and 2-D DNA Microarrays Created from Microfluidic Channels on

    E-print Network

    SPR Imaging Measurements of 1-D and 2-D DNA Microarrays Created from Microfluidic Channels on Gold have recently demon- strated that SPR imaging measurements of DNA microarrays fabricated on gold concentrations.1-3 In those initial sets of measurements, the DNA microarrays consisted of 60 500 µm × 500 µm

  7. Low-temperature dynamics of 2D Ising Fabio Toninelli (CNRS, ENS Lyon)

    E-print Network

    Mörters, Peter

    Low-temperature dynamics of 2D Ising interfaces Fabio Toninelli (CNRS, ENS Lyon) Coworkers: P settembre 2011 #12;Physical Motivation General problem: study motion of interface separating two coexisting a phase (e.g. ) one expects the Gibbs sampler to mix more rapidly (poly(L)) since the multimodal structure

  8. 3D surface reconstruction of apples from 2D NIR images

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Jiang, Lu; Cheng, Xuemei; Tao, Yang

    2005-11-01

    Machine vision methods are widely used in apple defect detection and quality grading applications. Currently, 2D near-infrared (NIR) imaging of apples is often used to detect apple defects because the image intensity of defects is different from normal apple parts. However, a drawback of this method is that the apple calyx also exhibits similar image intensity to the apple defects. Since an apple calyx often appears in the NIR image, the false alarm rate is high with the 2D NIR imaging method. In this paper, a 2D NIR imaging method is extended to a 3D reconstruction so that the apple calyx can be differentiated from apple defects according to their different 3D depth information. The Lambertian model is used to evaluate the reflectance map of the apple surface, and then Pentland's Shape-From-Shading (SFS) method is applied to reconstruct the 3D surface information of the apple based on Fast Fourier Transform (FFT). Pentland's method is directly derived from human perception properties, making it close to the way human eyes recover 3D information from a 2D scene. In addition, the FFT reduces the computation time significantly. The reconstructed 3D apple surface maps are shown in the results, and different depths of apple calyx and defects are obtained correctly.

  9. A 2-D dynamical model of mesospheric temperature inversions in winter

    SciTech Connect

    Hauchecorne, A.; Maillard, A. )

    1990-11-01

    A 2-D stratospheric and mesospheric dynamical model including drag and diffusion due to gravity wave breaking is used to simulate winter mesospheric temperature inversions similar to those observed by Rayleigh lidar. It is shown that adiabatic heating associated to descending velocities in the mesosphere is the main mechanism involved in the formation of such inversions. Sensitivity tests are performed with the model and confirm this assumption. It is also explained why other previous similar studies with 2-D models did not show mesospheric inversion layers.

  10. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion

    NASA Astrophysics Data System (ADS)

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J.

    2007-07-01

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a fraction.

  11. Speckle suppression in SAR images using the 2-D GARCH model.

    PubMed

    Amirmazlaghani, Maryam; Amindavar, Hamidreza; Moghaddamjoo, Alireza

    2009-02-01

    A novel Bayesian-based speckle suppression method for Synthetic Aperture Radar ( SAR) images is presented that preserves the structural features and textural information of the scene. First, the logarithmic transform of the original image is analyzed into the multiscale wavelet domain. We show that the wavelet coefficients of SAR images have significantly non-Gaussian statistics that are best described by the 2-D GARCH model. By using the 2-D GARCH model on the wavelet coefficients, we are capable of taking into account important characteristics of wavelet coefficients, such as heavy tailed marginal distribution and the dependencies between the coefficients. Furthermore, we use a maximum a posteriori (MAP) estimator for estimating the clean image wavelet coefficients. Finally, we compare our proposed method with various speckle suppression methods applied on synthetic and actual SAR images and we verify the performance improvement in utilizing the new strategy. PMID:19126469

  12. Nanohole-array-based device for 2D snapshot multispectral imaging.

    PubMed

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J L

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065

  13. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    NASA Astrophysics Data System (ADS)

    Catapano, F.; Artemyev, A. V.; Zimbardo, G.; Vasko, I. Y.

    2015-09-01

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  14. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary images by a closing and a thinning step. Then, a weighted graph is produced from this skeleton, where root tips and branch points are the nodes of the graph. For each connecting edge, the pixel coordinates are stored in a list. Finally, a root system growth model is used to determine individual roots within the graph. In this way, the sequential appearance of each sub-branch is maintained. We demonstrate the use of this algorithm to determine parameters for the root system growth model of Leitner et al. (2010). We use 2D radiography images of Lupine plants. Parameters that are gained from the images include the length of the apical and basal zones, the internodal distances, the number of branches per root, the branching angels, the root radii, and the root growth rate. Computed parameter values are means of four replicates, i.e. the means over four root systems grown under the same conditions. The root systems were classified according to their branching order, and average parameter values were determined for each root order. Based on these parameters, the dynamics of root system growth can be recaptured and analysed.

  15. Fiducial-less 2D-3D spine image registration using spine region segmented in CT image

    NASA Astrophysics Data System (ADS)

    Fu, Dongshan; Wang, Hongwu; Maurer, Calvin R., Jr.; Kuduvalli, Gopinath

    2007-03-01

    The target pose (position and orientation) of a spinal lesion can be determined using image registration of a pair of two-dimensional (2D) x-ray projection images and a pre-treatment three-dimensional (3D) CT image. This is useful for detecting, tracking and correcting for patient movement during image-guided spinal radiotherapy and radiosurgery. We recently developed a fiducial-less 2D-3D spine image registration that localizes spinal targets by directly tracking adjacent skeletal structures and thereby eliminates the need for implanted fiducials. Experience has shown this method to be robust under a wide range of clinical circumstances. However, image artifacts in digitally reconstructed radiographs (DRRs) that can be introduced by breathing during CT scanning or by other surrounding structures such as ribs have the negative effects on image registration performance. Therefore, we present an approach to eliminate the image artifacts in DRRs for a more robust registration. The spinal structures in the CT volume are approximately segmented in a semi-automatic way and saved as a volume of interest (VOI). The DRRs are then generated within the spine VOI for two orthogonal projections. During radiation treatment delivery, two X-ray images are acquired simultaneously in near real time. Then each X-ray image is registered with the DRR image to obtain 2D local displacements of skeletal structures. The 3D tumor position is calculated from the 2D displacements by 2D-to-3D back-projection and geometric transformation. Experiments on clinical data were conducted to evaluate the performance of the improved registration. The results showed that spine segmentation substantially improves image registration performance.

  16. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D repository. While far from perfect, the presented results demonstrate that on-line repositories of 3D content can be used for effective 2D-to-3D image conversion. With the continuously increasing amount of 3D data on-line and with the rapidly growing computing power in the cloud, the proposed framework seems a promising alternative to operator-assisted 2D-to-3D conversion.

  17. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  18. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  19. SBART 2.4 : Breeding 2D CG Images and Movies

    E-print Network

    Fernandez, Thomas

    SBART 2.4 : Breeding 2D CG Images and Movies and Creating a type of Collage Abstract This paper Evolutionary Computing for artistic CG design named SBART. It is an application of Simulated Breeding method-236, Hachioji, Tokyo 192-8577, Japan Keywords: Interactive Evolutionary Computing, Simulated Breeding, CG Art

  20. Incremental 3D Ultrasound Imaging from a 2D scanner Ryutarou Ohbuchi

    E-print Network

    Pollefeys, Marc

    Incremental 3D Ultrasound Imaging from a 2D scanner Ryutarou Ohbuchi Henry Fuchs Department (128 x 128 x 128or more) in real-time (30 3D-frames/s) requires parallel processing. The new scanner-3175 Abstract W e have been developing an interactive system that wil! display 3D structures from a series

  1. Creating the Illusion of Motion in 2D Images Reynold Bailey

    E-print Network

    Bailey, Reynold J.

    Creating the Illusion of Motion in 2D Images Reynold Bailey Washington University in St. Louis the illusion of motion. Claude Monet, Rue Montorgueil - Paris, Festival of June 30, 1878 (1878). Center: Input for creating the illusion of motion in paintings. One common approach involves the use of spatial imprecision

  2. Facial Muscle Parameter Decision from 2D Frontal Image Shigeo MORISHIMA*, Takahiro ISHIKAWA*, Demetri TERZOPOULOS**

    E-print Network

    Terzopoulos, Demetri

    Facial Muscle Parameter Decision from 2D Frontal Image Shigeo MORISHIMA*, Takahiro ISHIKAWA Road Toronto Ontario Canada Phone: +1-416-978-7777 E-mail: dt@vis.toronto.edu Abstract Muscle based. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces

  3. Snapshot 2D tomography via coded aperture x-ray scatter imaging.

    PubMed

    MacCabe, Kenneth P; Holmgren, Andrew D; Tornai, Martin P; Brady, David J

    2013-07-01

    This paper describes a fan beam coded aperture x-ray scatter imaging system that acquires a tomographic image from each snapshot. This technique exploits the cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range and a shift code to determine cross range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

  4. Snapshot 2D tomography via coded aperture x-ray scatter imaging

    PubMed Central

    MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.

    2015-01-01

    This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

  5. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  6. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581

  7. Intra-Cardiac 2D US to 3D CT Image Registration

    NASA Astrophysics Data System (ADS)

    Huang, Xishi; Hill, Nicholas A.; Ren, Jing; Guiraudon, Gerard; Peters, Terry M.

    2007-03-01

    Intra-cardiac echocardiography (ICE) is commonly used to guide intra-cardiac procedures, such as the treatment of atrial fibrillation (AF). However, effective surgical navigation based on ICE images is not trivial, due to the low signal-to-noise ratio (SNR) and limited field of view of ultrasound (US) images. The interpretation of ICE can be significantly improved if correctly placed in the context of three-dimensional magnetic resonance (MR) or computed tomography (CT) images by simultaneously presenting the complementary anatomical information from the two modalities. The purpose of this research is to demonstrate the feasibility of multimodality image registration of 2D intra-cardiac US images with 3D computed tomography (CT) images. In our previous work, a two-step registration procedure has been proposed to register US images with MR images and was validated on a patient dataset. In this work, we extend the two-step method to intra-cardiac procedures and provide a detailed assessment of registration accuracy by determining the target registration errors (TRE) on a heart phantom, which had fiducial markers affixed to the surface to facilitate evaluation of registration accuracy. The resultant TRE on the heart phantom was 3.7 mm. This result is considered to be acceptable for guiding a probe in the heart during ablative therapy for atrial fibrillation. To our knowledge, there is no previous report describing multimodality registration of 2D intra-cardiac US to high-resolution 3D CT.

  8. Solid H2/D2 Particle Seeding and Injection System for Particle Image Velocimetry (PIV) Measurement of He II

    SciTech Connect

    Xu, T.; Van Sciver, S. W.

    2006-04-27

    Solid particles of the mixture of hydrogen and deuterium have certain advantages for use in Particle Image Velocimetry (PIV) of He II flow. The H2/D2 particles are near neutrally buoyant in He II and will vaporize with the helium as the experimental apparatus is warmed to room temperature. Progress of the construction of a H2/D2 particle seeding and injection system is reported in this paper. A cryogenic pulse valve is used to inject the mixture of helium, hydrogen and deuterium gas directly into a He II bath. Experiments show that the seeding quality is dependent on the back pressure, the mix ratio of the deuterium and helium gases and valve open duration. The effects of these parameters on the solid deuterium particle distribution are also discussed.

  9. Folding of a heterogeneous ?-hairpin peptide from temperature-jump 2D IR spectroscopy

    PubMed Central

    Jones, Kevin C.; Peng, Chunte Sam; Tokmakoff, Andrei

    2013-01-01

    We provide a time- and structure-resolved characterization of the folding of the heterogeneous ?-hairpin peptide Tryptophan Zipper 2 (Trpzip2) using 2D IR spectroscopy. The amide I? vibrations of three Trpzip2 isotopologues are used as a local probe of the midstrand contacts, ?-turn, and overall ?-sheet content. Our experiments distinguish between a folded state with a type I? ?-turn and a misfolded state with a bulged turn, providing evidence for distinct conformations of the peptide backbone. Transient 2D IR spectroscopy at 45 °C following a laser temperature jump tracks the nanosecond and microsecond kinetics of unfolding and the exchange between conformers. Hydrogen bonds to the peptide backbone are loosened rapidly compared with the 5-ns temperature jump. Subsequently, all relaxation kinetics are characterized by an observed 1.2 ± 0.2-?s exponential. Our time-dependent 2D IR spectra are explained in terms of folding of either native or nonnative contacts from a common compact disordered state. Conversion from the disordered state to the folded state is consistent with a zip-out folding mechanism. PMID:23382249

  10. Occluded target viewing and identification high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Dippel, George F.; Cecchetti, Kristen D.; Wikman, John C.; Drouin, David P.; Egbert, Paul I.

    2007-09-01

    BAE SYSTEMS has developed a high-resolution 2D imaging laser radar (LADAR) system that has proven its ability to detect and identify hard targets in occluded environments, through battlefield obscurants, and through naturally occurring image-degrading atmospheres. Limitations of passive infrared imaging for target identification using medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) atmospheric windows are well known. Of particular concern is that as wavelength is increased the aperture must be increased to maintain resolution, hence, driving apertures to be very larger for long-range identification; impractical because of size, weight, and optics cost. Conversely, at smaller apertures and with large f-numbers images may become photon starved with long integration times. Here, images are most susceptible to distortion from atmospheric turbulence, platform vibration, or both. Additionally, long-range identification using passive thermal imaging is clutter limited arising from objects in close proximity to the target object.

  11. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation.

    PubMed

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-10-01

    Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37?±?0.14?mm, with a similar performance being observed in patient experiments. PMID:26448009

  12. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation

    PubMed Central

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-01-01

    Abstract Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37?±?0.14?mm, with a similar performance being observed in patient experiments. PMID:26448009

  13. Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image

    NASA Astrophysics Data System (ADS)

    Song, Jongkeun; Jung, Sungjin; Kim, Youngil; Cho, Kyungil; Kim, Baehyung; Lee, Seunghun; Na, Junseok; Yang, Ikseok; Kwon, Oh-kyong; Kim, Dongwook

    2012-03-01

    This paper describes the design and implementations of the complete 2D capacitive micromachined ultrasound transducer electronics and its analog front-end module for transmitting high voltage ultrasound pulses and receiving its echo signals to realize 3D ultrasound image. In order to minimize parasitic capacitances and ultimately improve signal-to- noise ratio (SNR), cMUT has to be integrate with Tx/Rx electronics. Additionally, in order to integrate 2D cMUT array module, significant optimized high voltage pulser circuitry, low voltage analog/digital circuit design and packaging challenges are required due to high density of elements and small pitch of each element. We designed 256(16x16)- element cMUT and reconfigurable driving ASIC composed of 120V high voltage pulser, T/R switch, low noise preamplifier and digital control block to set Tx frequency of ultrasound and pulse train in each element. Designed high voltage analog ASIC was successfully bonded with 2D cMUT array by flip-chip bonding process and it connected with analog front-end board to transmit pulse-echo signals. This implementation of reconfigurable cMUT-ASIC-AFE board enables us to produce large aperture 2D transducer array and acquire high quality of 3D ultrasound image.

  14. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers.Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps. PMID:26611411

  15. Filters in 2D and 3D Cardiac SPECT Image Processing.

    PubMed

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

  16. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Li, Haolin; Wang, Di; Pan, Shumin; Zhou, Zhihong

    2015-05-01

    Most of the existing image encryption techniques bear security risks for taking linear transform or suffer encryption data expansion for adopting nonlinear transformation directly. To overcome these difficulties, a novel image compression-encryption scheme is proposed by combining 2D compressive sensing with nonlinear fractional Mellin transform. In this scheme, the original image is measured by measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the nonlinear fractional Mellin transform. The measurement matrices are controlled by chaos map. The Newton Smoothed l0 Norm (NSL0) algorithm is adopted to obtain the decryption image. Simulation results verify the validity and the reliability of this scheme.

  17. Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.

    PubMed

    Rhoby, Michael R; Blunck, David L; Gross, Kevin C

    2014-09-01

    This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 ?m to 5.5 ?m) obtained 256 × 128pixel hyperspectral flame images at high spectral (??? = 0.75cm(?1)) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, ?, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 ?m to 5.1 ?m. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the ? = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 ± 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 ± 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 ± 1.7) %, (10.1 ± 1.0) %, and (3.8 ± 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the ?-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo approach. Systematic errors could warrant a factor of two increase in reported uncertainties. This work helps to establish IFTS as a valuable combustion diagnostic tool. PMID:25321539

  18. Effective Temperature of 2D Dusty Plasma Liquids at the Discrete Level

    SciTech Connect

    Io, C.-W.; Chan, C.-L.; I Lin

    2007-07-13

    Fluctuation-dissipation theory has been used to measure the effective temperature of non-equilibrium system. In this work, using a 2D dusty plasma liquid formed by the negatively charged fine particles suspending in weakly ionized discharges and sheared by two CW counter parallel laser beams, we measure the micro-transport at the kinetic level. The effective temperatures Teff at different time scales are obtained through the Stokes-Einstein relation which relates the diffusion coefficient (D) and the viscosity ({eta}). The external energy is cascaded from the slow hopping modes to the fast caging modes through mutual coupling, which leads to the higher effective temperature of the slow hopping modes.

  19. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  20. The application of high permittivity piezoelectric ceramics to 2D array transducers for medical imaging.

    PubMed

    Felix, N; Tran-Huu-Hue, L P; Walker, L; Millar, C; Lethiecq, M

    2000-03-01

    Two-dimensional (2D) array transducers have become of great interest in the last few years, in view of real-time volumetric ultrasonic imaging. The electrical matching between the high electrical impedance of elements and the standard cables and electronics is one of the key issues in 2D array design. The use of high-permittivity ceramics such as PNNZT either in bulk configuration or in 1-3 piezocomposites decreases the electrical impedance. In this paper, bulk samples of PNNZT and PZT ceramics are characterised, and results are compared. 2D array elements are then manufactured and their electrical impedances measured. Theoretical predictions of homogenisation models for 1-3 piezocomposites allow the simulation of the electroacoustic behaviour of 2D array elements. Results for both piezocomposite and bulk materials can be obtained. Calculations of the input impedance, the sensitivity and the bandwidth of the different configurations are compared and discussed. These results demonstrate the advantages of the PNNZT compositions over standard PZT. PMID:10829643

  1. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  2. Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array.

    PubMed

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Omer; Khuri-Yakub, Butrus T; Gambhir, Sanjiv Sam

    2012-05-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 ?m), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 ?m. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  3. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  4. Room- and low-temperature magnetic properties of 2-D magnetite particle arrays

    NASA Astrophysics Data System (ADS)

    Krása, David; Muxworthy, Adrian R.; Williams, Wyn

    2011-04-01

    Palaeomagnetic observations are being used in increasingly sophisticated geological and geophysical interpretations. It is therefore important to test the theories behind palaeomagnetic recording by rocks, and this can only be achieved using samples containing precisely controlled magnetic mineralogy, grain size and interparticle spacing, the last of which controls the degree of magnetostatic interactions within the samples. Here we report the room- and low temperature magnetic behaviour of a set of samples produced by the nano-scale patterning technique electron beam lithography. The samples consist of 2-D arrays of near-identical magnetite dots of various sizes, geometries and spatial configurations, with dot sizes from ranging from near the single domain threshold of 74-333 nm. We have made a series of magnetic measurements including hysteresis, first-order-reversal curve measurements and remanence acquisition, many as a function of temperature between 20 and 300 K, to quantify the samples’ behaviour to routine palaeomagnetic measurement procedures. We have also examined the behaviour of saturation isothermal remanences (SIRM) to cooling and warming cycling of the sample below room temperature. In addition, we investigated the samples’ responses to alternating-field demagnetization of room temperature induced SIRM, anhysteretic remanent magnetization (ARM) and partial ARM. ARM was used as a non-heating analogue for natural thermoremanence. Given the 2-D spatial distribution of the samples, in all the experiments we conducted both in-plane and out-of-plane measurements. Generally, the samples were found to display pseudo-single-domain hysteresis characteristics, but were found to be reliable recorders of weak-field remanences like ARM. For the closely packed samples, the samples’ magnetic response was highly dependent on measurement orientation.

  5. Design Optimization for a 2-D Sparse Transducer Array for 3-D Ultrasound Imaging

    PubMed Central

    Choe, Jung Woo; Oralkan, Ömer; Khuri-Yakub, Pierre T.

    2010-01-01

    In 3-D ultrasound imaging where 2-D transducer arrays with more than hundreds of elements are used, sparse arrays can be used to reduce the number of active ultrasound channels. Under a restriction of desired number of active channels, we can maximize the image quality by optimally choosing the positions of active elements. Here we use the method of simulated annealing to find the optimal configuration of a 2-D sparse array. This algorithm tries to minimize the value of an objective function defined as the energy ratio between the nonfocal and focal regions in the point spread function (PSF). Optimal configurations were found for the cases of choosing 16, 20, 24, 28, and 32 transmit and receive elements from a 16×16-element rectangular transducer array. With only 32 transmit and 32 receive elements, we could achieve an energy ratio of 16%, compared to 6% of the full array, which is the gold standard utilizing all the 256 elements for both transmit and receive. Using Field II, we simulated imaging with the optimal sparse arrays, for off-axis targets as well as on-axis targets, and the resulting images were compared with those from some other configurations, such as full-transmit full-receive, full-transmit x-receive, x-transmit boundary-receive, and so on. PMID:21822365

  6. 3D/2D image registration using weighted histogram of gradient directions

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2015-03-01

    Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.

  7. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  8. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    SciTech Connect

    Ambrozi?ski, ?ukasz Stepinski, Tadeusz Uhl, Tadeusz

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  9. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambrozi?ski, ?ukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  10. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and ?0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and ?0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and ?0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with 3D/3D registration in 6DOF: the discrepancy increases in superior to inferior direction. PMID:25223323

  11. Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy

    E-print Network

    Peng, Chunte Sam

    We provide a systematic characterization of the nanosecond ground-state lactam-lactim tautomerization of pyridine derivatives in aqueous solution under ambient conditions using temperature-jump transient 2D IR spectroscopy. ...

  12. Large area selective emitters/absorbers based on 2D tantalum photonic crystals for high-temperature energy applications

    E-print Network

    Rinnerbauer, V.

    We report highly selective emitters based on high-aspect ratio 2D photonic crystals (PhCs) fabricated on large area (2 inch diameter) polycrystalline tantalum substrates, suitable for high-temperature operation. As an ...

  13. Jet impingement modeling of cryogen spray cooling: analysis of 2D cryogen temperature distribution

    NASA Astrophysics Data System (ADS)

    Choi, Bernard; Welch, Ashley J.

    2001-05-01

    The main goal of this study was to demonstrate the feasibility of using backside infrared imaging to estimate the spatial cryogen temperature distribution during a cryogen spurt. Calculations from numerical models showed that the frontside temperature distribution could be identified at the back side of a thin aluminum sheet. Infrared images were obtained at various timepoints during a cryogen spurt from the back side of an 800-micrometers aluminum sheet and the temperature distribution estimated. The temperature distribution was approximately gaussian in shape. A secondary goal was to calculate the temperature distribution in skin for two cases: 1) uniform cryogen temperature distribution, essentially representative of a 1D geometry assumption; and 2) nonuniform distribution. At the end of a 100-ms spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micrometers depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider spatial cryogen temperature gradients during cryogen spray cooling of tissue.

  14. Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

    2011-03-01

    A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

  15. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    SciTech Connect

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (? ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (? ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  16. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    NASA Astrophysics Data System (ADS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Le Niliot, C.; Rigollet, F.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (? ˜ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (? ˜ 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  17. Temperature dependence of the rate coefficient for charge exchange of metastable O/+//2D/ with N2. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Torr, D. G.

    1980-01-01

    Using a data base of aeronomical parameters measured on board the Atmosphere Explorer-C satellite, temperature dependence of the reaction rate coefficient is deduced for the charge exchange of O(+)(2D) with N2. The results indicate the Explorer values determined over the temperature range from 700 to 1900 K are not in conflict with laboratory measurements made at higher temperatures.

  18. Application of Enhanced-2D-CWT in Topographic Images for Mapping Landslide Risk Areas

    E-print Network

    Valenzuela, V V Vermehren; de Oliveira, H M

    2015-01-01

    There has been lately a number of catastrophic events of landslides and mudslides in the mountainous region of Rio de Janeiro, Brazil. Those were caused by intense rain in localities where there was unplanned occupation of slopes of hills and mountains. Thus, it became imperative creating an inventory of landslide risk areas in densely populated cities. This work presents a way of demarcating risk areas by using the bidimensional Continuous Wavelet Transform (2D-CWT) applied to high resolution topographic images of the mountainous region of Rio de Janeiro.

  19. 2D aperture synthesis for Lamb wave imaging using co-arrays

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  20. Display and analysis of 2D and 3D images obtained on semiconductor devices using a laser scanner

    NASA Astrophysics Data System (ADS)

    Stanciu, George A.; Miu, Catalin; Stejar, Sergiu

    1994-09-01

    A scanning laser computer assisted microscope in which the sample is scanned electromagnetic is used to produce images from semiconductor devices using photo induced current. We obtained 2D and 3D images which were analyzed in connection with current-reverse voltage (I-VR) characteristics of the semiconductor devices. Images are stored in digital memories in real time and then processed with the different programs in order to obtain the required information. Our scanner offers the possibility 2D or 3D images ('map' or graphs) and pixelated images too. The localization of the different defects of the semiconductor devices was made.

  1. Top orthogonal to bottom electrode (TOBE) 2-D CMUT arrays for 3-D photoacoustic imaging.

    PubMed

    Chee, Ryan; Sampaleanu, Alexander; Rishi, Deepak; Zemp, Roger

    2014-08-01

    Top orthogonal to bottom electrode (TOBE) capacitive micromachined ultrasound transducers (CMUTs) are a new transducer architecture that permits large 2-D arrays to be addressed using row-column addressing. Here, we demonstrate the feasibility of 3-D photoacoustic imaging using N laser pulses and N receive channels. We used a synthetic aperture approach to simulate a large 2 X 2 cm array using a smaller die. A hair phantom in an oil immersion medium was excited by a laser, and the received signal was dynamically focused to obtain high-resolution images. We found the TOBE CMUT to have a center frequency of 3.7 MHz with a bandwidth of 3.9 MHz. Lateral and axial resolutions were 866 ¿m and 296 ?m, respectively. PMID:25073146

  2. DATA FUSION IN 2D AND 3D IMAGE PROCESSING: AN OVERVIEW Isabelle BLOCH, Henri MA^ITRE

    E-print Network

    de Figueiredo, Luiz Henrique

    DATA FUSION IN 2D AND 3D IMAGE PROCESSING: AN OVERVIEW Isabelle BLOCH, Henri MA^ITRE Ecole of the art in image fusion, with an emphasis on the emergence of new techniques, often issued from other the aim of data fusion and its speci city when image informationhas to be combined, with emphasis

  3. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    PubMed

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented. PMID:26670852

  4. Groundwater exploration using 2D Resistivity Imaging in Pagoh, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Kadri, Muhammad; Nawawi, M. N. M.

    2010-12-01

    Groundwater is a very important component of water resources in nature. Since the demand of groundwater increases with population growth, it is necessary to explore groundwater more intensively. In Malaysia only less than 2% of the present water used is developed from groundwater. In order to determine the existence of usable groundwater for irrigation and drinking purposes in Pagoh, 2D resistivity imaging technique was utilized. The 2-D resistivity imaging technique utilized the Wenner—Schlumberger electrode array configuration because this array is moderately sensitive to both horizontal and vertical structures. Three lines were surveyed for groundwater delineation purpose The length for each survey lines are 400 meters. At Pagoh, the survey site shows the existence of groundwater. It is indicated by the resistivity values about 10-100 ohm-m. The maximum depth of investigation survey is 77 meters. In general the results show that the subsurface is made up of alluvium and clay and the high resistivity values of more than 1000 ohm-m near the surface is due laterite and the end of the depth can be interpreted as mixture of weathered material or bedrock.

  5. 2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques

    PubMed Central

    Daher, Nadim M.; Yen, Jesse T.

    2010-01-01

    A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving ?6 dB and ?20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with ?6dB and ?20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

  6. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Protasov, M. I.

    2015-12-01

    An approach for true-amplitude seismic beam imaging of multicomponent seismic data in 2-D anisotropic elastic media is presented and discussed. Here, the recovered true-amplitude function is a scattering potential. This approach is a migration procedure based on the weighted summation of pre-stack data. The true-amplitude weights are computed by applying Gaussian beams (GBs). We shoot a pair of properly chosen GBs with a fixed dip and opening angles from the current imaging point towards an acquisition system. This pair of beams is used to compute a true-amplitude selective image of a rapid velocity variation. The total true-amplitude image is constructed by superimposing selective images computed for a range of available dip angles. The global regularity of the GBs allows one to disregard whether a ray field is regular or irregular. P- and S-wave GBs can be used to handle raw multicomponent data without separating the waves. The use of anisotropic GBs allows one to take into account the anisotropy of the background model.

  7. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  8. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The scattered LED light is transmitted by the before mentioned bandpath filter and is captured by the imaging lens. A simultaneous mode, in which the ring for distance measurement is superimposed to the image of the object, and a time multiplexing mode were implemented thus demonstrating the flexibility and performance options of this approach.

  9. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  10. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 ?J within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  11. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2011-11-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 ?J within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  12. Acoustical cross-talk in row-column addressed 2-D transducer arrays for ultrasound imaging.

    PubMed

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-12-01

    The acoustical cross-talk in row-column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, ?/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the frequency-wavenumber domain. The sources of cross-talk are identified and predicted theoretically. The nearest neighbor cross-talk is -23.9±3.7 dB when the array is used as a 1-D array with the rows functioning as both transmitters and receivers. In the row-column configuration, with the columns transmitting and the rows receiving, the cross-talk is reduced to -40.2±3.5 dB. PMID:26216122

  13. A new method of diaphragm apex motion detection from 2D projection images of mega-voltage cone beam CT.

    PubMed

    Chen, Mingqing; Bai, Junjie; Siochi, R Alfredo C

    2013-02-01

    To present a new method of estimating 3D positions of the ipsi-lateral hemi-diaphragm apex (IHDA) from 2D projection images of mega-voltage cone beam CT (MVCBCT). The detection framework reconstructs a 3D volume from all the 2D projection images. An initial estimated 3D IHDA position is determined in this volume based on an imaging processing pipeline, including Otsu thresholding, connected component labeling and template matching. This initial position is then projected onto each 2D projection image to create a region of interest (ROI). To accurately detect the IHDA position in 2D projection space, two methods, dynamic Hough transform (DHT) and a tracking approach based on a joint probability density function (PDF) are developed. Both methods utilize a double-parabola model to fit the 2D diaphragm boundary. The 3D IHDA motion in the superior-inferior (SI) direction is estimated from the initial static 3D position and the detected 2D positions in projection space. The two Hough-based detection methods are tested on 35 MVCBCT scans from 15 patients. The detection is compared to manually identified IHDA positions in 2D projection space by three clinicians. An average and standard deviation of 4.252 ± 3.354 and 2.485 ± 1.750 mm was achieved for DHT and tracking-based approaches respectively, compared with the inter-expert variance among three experts of 1.822 ± 1.106 mm. Based on the results of the scans, the PDF tracking-based approach appears more robust than the DHT. The combination of the automatic ROI localization and the tracking-based approach is a quicker and more accurate method of extracting 3D IHDA motion from 2D projection images. PMID:23321998

  14. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  15. Imaging spectrophotometer for 2D spatially resolved measurements of spectral reflectance of materials

    NASA Astrophysics Data System (ADS)

    Mahmoud, Khaled; Park, Seongchong; Park, Seung-Nam; Lee, Dong-Hoon

    2015-07-01

    We introduce a new prototype instrument for measuring the 2D spatially resolved distribution of spectral reflectance based on new spectral imaging technique. The instrument captures digital spectral images of a test sample using a pulsed LED-based monochromatic source and a scientific grade CCD array and special data acquisition algorithm is used to extract the useful image data corresponding to the target application. In earlier version of this instrument, we used a commercial CCD camera with 8-bit ADC without any cooling stages which has many drawbacks. In this work, we have modified our setup by introducing a new scientific grade CCD; deep-cooled interline transfer sensor with 16-bit ADC and electronic shutter. With this new instrument we could achieve a higher accuracy, higher spatially resolved measurements, higher dynamic range, mush better sensitivity and lower uncertainty and we could avoid many sources of errors in the old setup. With one wavelength scan, one can get the full reflectance data of the sample under test which saves a lot of time in comparison with conventional methods. This new instrument is promising with a potential of applications in the field of optical material testing.

  16. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  17. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  18. New float equivalent calibration method for 2D image measuring system

    NASA Astrophysics Data System (ADS)

    Gou, Jiansong; Wang, Zhong; Lu, Ruijun; Shen, Xinlan

    2015-08-01

    Pixel equivalent is an important parameter to describe the relationship between pixels of digital images and actual size of measured piece in a 2D image measuring system. It is mainly calibrated with the standard component method, which is traditionally off-line and requires measuring conditions and attitude of devices to remain constant while measuring and calibrating. To overcome above limitations, a new calibration method is proposed in this paper which is defined as the float equivalent method. This method requires the standard component and measured piece be placed in image measuring system simultaneously. Everytime before measuring, no matter aiming at the same measuring point or not, the pixel equivalent is calibrated for this specific time, specific condition, specific measuring point, and specific object distance. This method has the advantage of reducing the influence of conditions changing on the accuracy without additional calibration equipment or operations. The steel tape verification system is taken as an example to testify the effectiveness of the method.

  19. Extending Ripley’s K-Function to Quantify Aggregation in 2-D Grayscale Images

    PubMed Central

    Amgad, Mohamed; Itoh, Anri; Tsui, Marco Man Kin

    2015-01-01

    In this work, we describe the extension of Ripley’s K-function to allow for overlapping events at very high event densities. We show that problematic edge effects introduce significant bias to the function at very high densities and small radii, and propose a simple correction method that successfully restores the function’s centralization. Using simulations of homogeneous Poisson distributions of events, as well as simulations of event clustering under different conditions, we investigate various aspects of the function, including its shape-dependence and correspondence between true cluster radius and radius at which the K-function is maximized. Furthermore, we validate the utility of the function in quantifying clustering in 2-D grayscale images using three modalities: (i) Simulations of particle clustering; (ii) Experimental co-expression of soluble and diffuse protein at varying ratios; (iii) Quantifying chromatin clustering in the nuclei of wt and crwn1 crwn2 mutant Arabidopsis plant cells, using a previously-published image dataset. Overall, our work shows that Ripley’s K-function is a valid abstract statistical measure whose utility extends beyond the quantification of clustering of non-overlapping events. Potential benefits of this work include the quantification of protein and chromatin aggregation in fluorescent microscopic images. Furthermore, this function has the potential to become one of various abstract texture descriptors that are utilized in computer-assisted diagnostics in anatomic pathology and diagnostic radiology. PMID:26636680

  20. Estimating Camera Pose from a Single Urban Ground-View Omnidirectional Image and a 2D Building Outline Map

    E-print Network

    Cham, Tat Jen

    for humans, the system returned a top-30 rank- ing for correct matches out of 3600 camera pose hypotheses (0Estimating Camera Pose from a Single Urban Ground-View Omnidirectional Image and a 2D Building, England Abstract A framework is presented for estimating the pose of a camera based on images extracted

  1. Measuring significant inhomogeneity and anisotropy in indoor convective air turbulence in the presence of 2D temperature gradient

    NASA Astrophysics Data System (ADS)

    Mohammady Razi, E.; Rasouli, Saifollah

    2014-04-01

    Using a novel set up, experimental study of the statistical properties of a light beam propagating horizontally through indoor convective air turbulence in the presence of a 2D temperature gradient (TG) is presented. A laser beam enters a telescope from its back focal point by virtue of an optical fiber and is expanded and recollimated by it and then passes through the turbulent area. Then the beam enters another telescope’s aperture. A mask consisting of four similar widely separated small subapertures was installed in front of the second telescope’s aperture. The subapertures were equidistant from the optical axis of the telescope and located at the corners of a square. A flat plane heater is used to produce a vertical TG in the medium. Due to the limited width of the heater, a horizontal component for the TG appeared. Near the focal plane of the second telescope, four distinct images of the source are formed and recorded by a CCD camera. Due to the turbulence all the images (spots) in the successive frames fluctuate. Using the four spot displacements we have calculated the fluctuations of the angle of arrival (AA) over the subapertures. The statistical properties of the optical turbulence are investigated using variance analysis of the AA component fluctuations at horizontal and vertical directions over the subapertures for different temperatures of the heater at different heights of the beam path from the heater. Experimental results show that when the heater is turned off, the variances of horizontal and vertical components of the AA fluctuations are approximately equal to zero over all the subapertures. When it is turned on, the variance of the horizontal component of the AA fluctuations over all of the subapertures are larger than those from the vertical one. In addition, in this case, we find a significant dependence of the variance of the AA components on the height from the heater.

  2. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation.

    PubMed

    Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E

    2014-11-01

    Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528

  3. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  4. Sparse matrix beamforming and image reconstruction for real-time 2D HIFU monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with in vitro validation

    PubMed Central

    Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a consistent average focal displacement decrease of 46.7±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15 %/ °C, and 2.03± 0.93%/ °C, respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528

  5. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  6. Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic-Inorganic Perovskite Pseudobinary Alloys.

    PubMed

    Lanty, Gaëtan; Jemli, Khaoula; Wei, Yi; Leymarie, Joël; Even, Jacky; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2014-11-20

    We focus here our attention on a particular family of 2D-layered and 3D hybrid perovskite molecular crystals, the mixed perovskites (C6H5-C2H4-NH3)2PbZ4(1-x)Y4x and (CH3-NH3)PbZ3(1-x)Y3x, where Z and Y are halogen ions such as I, Br, and Cl. Studying experimentally the disorder-induced effects on the optical properties of the 2D mixed layered materials, we demonstrate that they can be considered as pseudobinary alloys, exactly like Ga1-xAlxAs, Cd1-xHgxTe inorganic semiconductors, or previously reported 3D mixed hybrid perovskite compounds. 2D-layered and 3D hybrid perovskites afford similar continuous optical tunability at room temperature. Our theoretical analysis allows one to describe the influence of alloying on the excitonic properties of 2D-layered perovskite molecular crystals. This model is further refined by considering different Bohr radii for pure compounds. This study confirms that despite a large binding energy of several 100 meV, the 2D excitons present a Wannier character rather than a Frenkel character. The small inhomogeneous broadening previously reported in 3D hybrid compounds at low temperature is similarly consistent with the Wannier character of free excitons. PMID:26276477

  7. Thermal electron quenching of N(2D) - Consequences for the ionospheric photoelectron flux and the thermal electron temperature

    NASA Technical Reports Server (NTRS)

    Richards, P. G.

    1986-01-01

    This paper examines the effects of quenching of N(2D) by thermal electrons on the ionospheric photoelectron flux and on the thermal electron heating rate. It is shown that the 2.5 eV electrons produced by electron quenching of N(2D) can account for the differences between theoretical and experimental 0-3 eV photoelectron fluxes above 200 km altitude. In addition, the heat transferred to the thermal electron gas amounts to 70 percent of the photoelectron local heating rate at 250 km altitude. The effect of the extra heating is to increase the electron temperature by approximately 200 K at 250 km.

  8. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    PubMed

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging. PMID:24569253

  9. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  10. Feasibility of proximal right coronary artery imaging by 2D and 3D echocardiography in comparison to coronary angiography

    PubMed Central

    Lange, Katharina; Pfeiffer, Dietrich; Hagendorff, Andreas

    2015-01-01

    The present study was carried out to test the feasibility of proximal right coronary artery (RCA) imaging and to detect proximal RCA narrowing and occlusion by 2D and 3D transthoracic echocardiography in comparison to coronary angiography (CA). Standardised 2D and 3D echocardiography were performed prior to CA in 97 patients with sinus rhythm. The following parameters were determined: the longest longitudinal detectable RCA segment, the minimum and maximum width of the RCA, the area and number of detectable narrowing >50% of the proximal RCA and the correlation between the echocardiographic and angiographic findings. The visualisation of the proximal RCA and the detection of coronary artery narrowing in the proximal RCA are generally possible. Differences in width and area were not statistically significant between 2D and 3D echocardiography, but showed significant differences between echocardiography and CA. For the detection of proximal RCA narrowing, higher sensitivity and specificity values were obtained by 2D than by 3D echocardiography. However, in patients with sufficient image quality 3D echocardiography permits a more detailed visualisation of the anatomical proportions and an en-face view into the RCA ostium. The visualisation of the proximal RCA is feasible and narrowing can be detected by 2D and 3D echocardiography if image quality is sufficient. CA is the gold standard for the detection of coronary artery stenoses. However, the potential of this new approach is clinically important because crucial findings of the proximal RCA can be presumably detected non-invasively prior to CA.

  11. Image Outlier Detection and Feature Extraction via L1-Norm-Based 2D Probabilistic PCA.

    PubMed

    Ju, Fujiao; Sun, Yanfeng; Gao, Junbin; Hu, Yongli; Yin, Baocai

    2015-12-01

    This paper introduces an L1-norm-based probabilistic principal component analysis model on 2D data (L1-2DPPCA) based on the assumption of the Laplacian noise model. The Laplacian or L1 density function can be expressed as a superposition of an infinite number of Gaussian distributions. Under this expression, a Bayesian inference can be established based on the variational expectation maximization approach. All the key parameters in the probabilistic model can be learned by the proposed variational algorithm. It has experimentally been demonstrated that the newly introduced hidden variables in the superposition can serve as an effective indicator for data outliers. Experiments on some publicly available databases show that the performance of L1-2DPPCA has largely been improved after identifying and removing sample outliers, resulting in more accurate image reconstruction than the existing PCA-based methods. The performance of feature extraction of the proposed method generally outperforms other existing algorithms in terms of reconstruction errors and classification accuracy. PMID:26292341

  12. Measurements of Thermal Conductivity of Superfluid Helium Near its Transition Temperature T(sub lambda) in a 2D Confinement

    NASA Technical Reports Server (NTRS)

    Jerebets, Sergei

    2004-01-01

    We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.

  13. Spectroscopic-tomography of biological membrane with high-spatial resolution by the imaging-type 2D Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Inui, Asuka; Tsutsumi, Ryosuke; Qi, Wei; Takuma, Takashi; Ishimaru, Ichirou

    2011-07-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is the phase-shift interferometry between the objective lights. The proposed method can measure the 2D spectral image at the limited depth. Because of the imaging optical system, the 2D spectral images can be measured in high spatial resolution. And in the depth direction, we can get the spectral distribution only in the focal plane. In this report, we mention about the principle of the proposed wide field imaging-type 2D Fourier spectroscopy. And, we obtained the spectroscopic tomography of biological tissue of mouse's ear. In the visible region, we confirmed the difference of spectral characteristics between blood vessel region and other region. In the near infrared region (?=900nm~1700nm), we can obtain the high-contrast blood vessel image of mouse's ear in the deeper part by InGaAs camera. Furthermore, in the middle infrared region(?=8?~14?m), we have successfully measured the radiation spectroscopic-imaging with wild field of view by the infrared module, such as the house plants. Additionally, we propose correction geometrical model that can convert the mechanical phase-shift value into the substantial phase difference in each oblique optical axes. We successfully verified the effectiveness of the proposed correction geometrical model and can reduce the spectral error into the error range into +/-3nm using the He-Ne laser whose wavelength 632.8nm.

  14. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    NASA Astrophysics Data System (ADS)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  15. Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate

    NASA Astrophysics Data System (ADS)

    zinsmeister, Louis; Dautriat, Jérémie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

    2013-04-01

    In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At the macroscale and for the intact samples, a diffuse accommodation of the deformation is observed during the pseudo elastic regime, followed by sudden failure propagation after the peak stress. Conversely, the altered samples exhibit much more localized and pronounced deformation levels. At the SEM scale for the intact samples, but closure of the porosity, failure precursors and localized deformation were not observed. In opposition, the altered samples showed early opening of microcracks at the grain junctions. Finally, at the µ-tomograph resolution (5µm/voxel) and in triaxial conditions, we observed for intact samples at macro and micro scales similar behaviour as for optical and SEM characterization. At 5 MPa of confining pressure the altered samples avoid brittle failure and a few shear bands are visible. As previously inferred from 2D-DIC, we observed strong and early localization of deformation, but the limited resolution of the µ-tomograph did not allow to clearly evidence microcracks. The DIC results suggest that besides the overall increase of porosity, the dissolution processes enhance the local heterogeneities of the porous network, which phenomenon further increases the weakening of the materials.

  16. 2D Non-Separable Block-Lifting Structure and Its Application to M -Channel Perfect Reconstruction Filter Banks for Lossy-to-Lossless Image Coding.

    PubMed

    Suzuki, Taizo; Kudo, Hiroyuki

    2015-12-01

    We propose a 2D non-separable block-lifting structure (2D-NSBL) that is easily formulated from the 1D separable block-lifting structure (1D-SBL) and 2D non-separable lifting structure (2D-NSL). The 2D-NSBL can be regarded as an extension of the 2D-NSL, because a two-channel 2D-NSBL is completely equivalent to a 2D-NSL. We apply the 2D-NSBL to M -channel ( M=2(n) , [Formula: see text]) perfect reconstruction filter banks (PRFBs). The 2D-NSBL-based PRFBs outperform 1D-SBL-based PRFBs at lossy-to-lossless coding, whose image quality is scalable from lossless data to high compressed lossy data, because their rounding errors are reduced by merging many rounding operations. PMID:26316127

  17. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    E-print Network

    Leow, Wee Kheng

    Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images Hao Li1 , Wee of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling

  18. The sawtooth illusion It is well known that a given 2-D image could be the projection of countless object

    E-print Network

    Bucci, David J.

    The sawtooth illusion It is well known that a given 2-D image could be the projection of countless to report a simple but compelling illusion that makes obvious the existence of the `ground plane assumption' by the visual system. I first noticed this illusion on the back of a wooden watchcase. Unfortunately, I have

  19. Watershed and Random Walks based Depth Estimation for Semi-Automatic 2D to 3D Image Conversion

    E-print Network

    Po, Lai-Man

    Watershed and Random Walks based Depth Estimation for Semi-Automatic 2D to 3D Image Conversion in the Graph Cuts. In this paper, a fast Watershed segmentation based on the priority queue, which indicates constraints in the objects boundaries regions and fine detail inside objects. The Watershed and Random Walks

  20. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  1. Assessment of landmark measurements of craniofacial images from 2D and 3D reconstructions of spiral CT

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Marcelo G.; Haller, John W.; Vannier, Michael W.

    1998-06-01

    Purpose: The purpose of this study is to compare the accuracy of facial linear measurements obtained from volumetric spiral CT using 2D versus 3D reconstruction, and test the repeatability of these measurements. Material and Methods: The population consisted of 5 cadaver heads that were scanned to a Spiral CT scanner (120 Kvp and 200 mA, Toshiba Xpress S/X Toshiba-America, Medical System Inc., Tustin, CA) with high- resolution contiguous slices. Heads were scanned with 3 mm thick axial slices and a 2 mm/sec table feed. The CT data were archived on optical disks, and then transferred to a networked computer workstation (Sun Microsystems with Cemax version 1.4 software, Fremont, CA), to generate 2D and 3D images for manipulation and analyses. Repeated measurements were done on 2D and 3D images reconstructed from spiral CT scans on the workstation. Linear measurements were done by 2 observers with 2 sessions each, using several unique and conventional craniometric anatomic landmarks. The soft tissues were then partially removed and physical measurements of the same landmarks were repeated by an electromagnetic (3 space) digitizer (Polhemus Navigation Sciences Division, Mc Donnell Douglas Electronic Company, Colchester, VE). Analyses of variance were done to compare 2D versus 3D methods, and the accuracy of measurements between both imaging techniques. Results: The results showed statistically significant differences between 2D and 3D images for the majority of measurements. The 3D image measurements were not statistically different from the physical measurements. However, some of the 2D image landmarks differed from physical measurements. The repeatability of measurements was high by spiral CT-based craniofacial imaging. Conclusion: New computer graphics technology combined with 3D volumetric imaging by spiral CT can distinguish the craniofacial anatomy with greater accuracy than previously reported measurements and with greater accuracy than measurements from 2DCT images. These 3D measurements are essential to diagnostic and treatment planning of craniofacial injuries, anomalies and for craniofacial identification.

  2. 2D x-ray imaging spectroscopic diagnostics using convex bent crystal

    NASA Astrophysics Data System (ADS)

    Papp, Daniel; Presura, Radu; Wallace, Matt; Largent, Billy; Haque, Showera; Arias, Angel; Khanal, Vijay; Ivanov, Vladimir

    2013-10-01

    A new 2-dimensional time-integrated x-ray spectroscopic diagnostics technique was developed to create multi-monochromatic images of high-energy density Al plasmas. 2-dimensional is an advanced spectroscopic tool, providing a way to determine the spatial dependence of plasma temperature and density (Te and ne) in hot plasmas. The new technique uses the strong source broadening of convex cylindrically bent KAP crystal spectrometers, which contains spatial information along the dispersive direction. The perpendicular direction is imaged using a slit. The spatial resolution of the method is improved by the deconvolution of the source broadened line profiles from the lineshapes (recorded by the convex crystal spectrometer) with lineshapes of minimum instrumental broadening. The latter spectra were recorded with a concave cylindrically bent KAP crystal spectrometer, based on the Johann geometry. Spectroscopic model of the plasma x-ray emission was developed using the PrismSPECT code. The identification of suitable spectral features allows deriving Te and ne from line intensities. We applied this model to get temperature and density distribution maps for wire array z-pinch plasmas. Work supported by the DOE/NNSA under grant DE-NA0001834 and Cooperative Agreement DE-FC52-06NA27616.

  3. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods.

    PubMed

    Cesbron, Florian; Metzger, Edouard; Launeau, Patrick; Deflandre, Bruno; Delgard, Marie-Lise; Thibault de Chanvalon, Aubin; Geslin, Emmanuelle; Anschutz, Pierre; Jézéquel, Didier

    2014-01-01

    This study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively. Spatial distribution of the resulting colors is obtained using a hyperspectral camera. Reflectance spectra analysis enables deconvolution of specific colorations by the unmixing method applied to the logarithmic reflectance, leading to an accurate quantification of iron and DRP. This method was applied in the Arcachon lagoon (France) on muddy sediments colonized by eelgrass (Zostera noltei) meadows. The 2D gel probes highlighted microstructures in the spatial distribution of dissolved iron and phosphorus, which are most likely associated with the occurrence of benthic fauna burrows and seagrass roots. PMID:24502458

  4. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects.

    PubMed

    Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute

    2015-04-01

    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe? resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects. PMID:25458188

  5. Use of 2D/3D data for peak cladding temperature uncertainty studies

    SciTech Connect

    Boyack, B.E.

    1988-01-01

    In August 1988, the Nuclear Regulatory Commission (NRC) approved the final version of a revised rule on the acceptance of emergency core cooling systems. The revised rule allows emergency core cooling system analysis based on best-estimate methods, provided uncertainties in the prediction of prescribed acceptance limits are quantified and reported. To support the revised rule, the NRC developed the Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology. Data from the 2D/3D program have been used in a demonstration of the CSAU methodology in two ways. First, the data were used to identify and quantify biases that are related to the implementation of selected correlations and models in the thermal-hydraulic systems code TRAC-PF1/MOD1 as it is used to calculate the demonstration transient, a large-break loss-of-coolant accident. Second, the data were used in a supportive role to provide insight into the accuracy of code calculations and to confirm conclusions that are drawn regarding specific CSAU studies. Examples are provided illustrating each of these two uses of 2D/3D data. 9 refs., 7 figs.

  6. Early detection of cardiotoxicity by 2D and 3D deformation imaging in patients receiving chemotherapy

    PubMed Central

    Stoebe, Stephan; Tuennemann, Jan; Baka, Zsuzsanna; Pfeiffer, Dietrich; Varga, Albert; Hagendorff, Andreas

    2015-01-01

    The aim of the present study was to find out whether early cardiac changes in patients receiving chemotherapy can be detected by the conventional and deformation parameters of 2D and 3D echocardiography. Twenty-five healthy subjects with normal regional left ventricular function (group 1) and 25 patients receiving chemotherapy (group 2) underwent 2D and 3D transthoracic echocardiography (Toshiba Artida Medical System). All patients (group 2) were examined before and during cardiotoxic chemotherapy at a 3-month follow-up. Left ventricular volumes, ejection fraction, muscle mass, global longitudinal, global radial, global circumferential strain, and rotation were analyzed with 2D and 3D echocardiography, while twist and time-to-peak-intervals were analyzed with 3D echocardiography. For left ventricular volumes and muscle mass, no significant differences were seen between the two study groups (P<0.05). According to our results, myocardial dysfunction induced by cardiotoxic chemotherapy can be detected by 2D global radial strain. Detecting myocardial dysfunction by global longitudinal and circumferential strain requires more than 3 months follow-up. Changes in rotation, twist or time-to-peak intervals could not be verified at the 3-month follow-up in the present study. 2D global radial strain seems to be the most sensitive and robust parameter to detect early myocardial damage during chemotherapy. 3D echocardiography is not yet an established method to detect myocardial damage in clinical practice due to lower spatial and temporal resolution.

  7. Parallel computation of optimized arrays for 2-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Chambers, J. E.

    2010-12-01

    Modern automatic multi-electrode survey instruments have made it possible to use non-traditional arrays to maximize the subsurface resolution from electrical imaging surveys. Previous studies have shown that one of the best methods for generating optimized arrays is to select the set of array configurations that maximizes the model resolution for a homogeneous earth model. The Sherman-Morrison Rank-1 update is used to calculate the change in the model resolution when a new array is added to a selected set of array configurations. This method had the disadvantage that it required several hours of computer time even for short 2-D survey lines. The algorithm was modified to calculate the change in the model resolution rather than the entire resolution matrix. This reduces the computer time and memory required as well as the computational round-off errors. The matrix-vector multiplications for a single add-on array were replaced with matrix-matrix multiplications for 28 add-on arrays to further reduce the computer time. The temporary variables were stored in the double-precision Single Instruction Multiple Data (SIMD) registers within the CPU to minimize computer memory access. A further reduction in the computer time is achieved by using the computer graphics card Graphics Processor Unit (GPU) as a highly parallel mathematical coprocessor. This makes it possible to carry out the calculations for 512 add-on arrays in parallel using the GPU. The changes reduce the computer time by more than two orders of magnitude. The algorithm used to generate an optimized data set adds a specified number of new array configurations after each iteration to the existing set. The resolution of the optimized data set can be increased by adding a smaller number of new array configurations after each iteration. Although this increases the computer time required to generate an optimized data set with the same number of data points, the new fast numerical routines has made this practical on commonly available microcomputers.

  8. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with 28-electrode arrays with electrodes 2-5 meters apart, and the deep arrays buried at 4-8 meters depth. Ground penetrating radar surveys, SPT borings and coring data provide selected 'ground truthing'. The case studies show that inclusion of the deep electrode array permits karst features such as undulations at the top of limestone and raveling zones within surficial sediments to be imaged. These features are not accessible from surface arrays with equivalent surface footprints. The method also has better resolution at depth at the ends of the lines, where surface arrays are typically plotted with a trapezoidal truncation due to poor resolution at the lower corners of the profile.

  9. Integration of 3D and 2D imaging data for assured navigation in unknown environments: initial steps

    NASA Astrophysics Data System (ADS)

    Dill, Evan; Uijt de Haag, Maarten

    2009-05-01

    This paper discusses the initial steps of the development of a novel navigation method that integrates three-dimensional (3D) point cloud data, two-dimensional (2D) gray-level (intensity), and data from an Inertial Measurement Unit (IMU). A time-of-flight camera such as MESA's Swissranger will output both the 3D and 2D data. The target application is position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. The proposed algorithm extracts key features such as planar surfaces, lines and corner-points from both the 3D (point-cloud) and 2D (intensity) imagery. Consecutive observations of corresponding features in the 3D and 2D image frames are then used to compute estimates of position and orientation changes. Since the use of 3D image features for positioning suffers from limited feature observability resulting in deteriorated position accuracies, and the 2D imagery suffers from an unknown depth when estimating the pose from consecutive image frames, it is expected that the integration of both data sets will alleviate the problems with the individual methods resulting in an position and attitude determination method with a high level of assurance. An Inertial Measurement Unit (IMU) is used to set up the tracking gates necessary to perform data association of the features in consecutive frames. Finally, the position and orientation change estimates can be used to correct for the IMU drift errors.

  10. 2-D Precise Radiation Mapping of Sedimentary Core Using Imaging Plate

    NASA Astrophysics Data System (ADS)

    Sugihara, M.; Tsuchiya, N.

    2006-12-01

    The imaging plate (IP) is a storage film coated with photostimulated phosphor (BaFBr: Eu2+), and the latent images produced by irradiation of the imaging plate are read by superficial scanning with stimulation light and are reconstructed as two-dimensional dot images on a computer display. It has an excellent performance for radiation detection, and its advantages include an ease of use, a high position resolution (up to 25ƒÊm), a large detection area (up to 35'43cm2), a high detection sensitivity with high signal-to- noise ratio, an extremely wide dynamic range of dose, a sensitivity to several kinds of radiation, and an erasing capability for reuse (Hareyama et al., 2000). In this study, in order to develop a nondestructive, precise and large area evaluation method of sedimentary structure, an application of autoradiography using IP is attempted to marine sediments. Imaging plate (BAS-MS2040 Fujifilm Co. Ltd., 20'~40 cm2) was cut into rectangular five pieces (4'~40 cm2). Whole round marine sedimentary cores were divided into two half for duplicate and they were covered with a plastic wrap. The rectangular IP were put along the center line of plane side of half round. The exposure in the low temperature was for 48 hours in a shield box. The latent images produced by irradiation of the IP were read out by using the BAS-2500 imaging analyzer (Fujifilm Co. Ltd.). Radiation dose of IP is output as PSL value, that is unique dose units and quantities of IP system. Position resolution was set to 50ƒÊm. Marine sedimentary cores including volcanic ash layer were measured using IP and Natural Gamma Logger (NGL), which is measuring instrument for marine sediments in practice use, to compare their measuring ability. As a result of experiment, it becomes clear that high dose distribution is found at volcanic ash layer with IP, meanwhile it can't be found with NGL. The content of radiation source in volcanic ash layer is supposed to be high compared with other layers because minerals tend to have more potassium, uranium and other radioactive elements than other layer components, for example, organic materials and biotic shells. It can be said that IP has high position resolution and detection sensitivity to figure out the dose distribution from volcanic ash layer. In order to understand relationships between dose and physical properties of marine sedimentary cores, several cores were measured using IP, Multi Sensor Core Logger (MSCL), and X-ray CT scanner. Density, p- wave velocity, resistivity, and magnetic susceptibility were measured by using MSCL, and density showed a good relation with PSL value. Although X-ray CT Scanner is used for visualization of cores, in order to compare the result of CT with the result of IP numerically, CT value that depends on density of materials is used. As a result of it, CT value showed a good relation with PSL value and taken into the dependence of CT value on density and the result of MSCL, it can be said that there is a strong dependence of dose on density in marine sediments.

  11. Quantification and geometric analysis of coiling patterns in gastropod shells based on 3D and 2D image data.

    PubMed

    Noshita, Koji

    2014-12-21

    The morphology of gastropod shells has been a focus of analyses in ecology and evolution. It has recently emerged as an important issue in developmental biology, thanks to recent advancements in molecular biological techniques. The growing tube model is a theoretical morphological model for describing various coiling patterns of molluscan shells, and it is a useful theoretical tool to relate local tissue growth with global shell morphology. However, the growing tube model has rarely been adopted in empirical research owing to the difficulty in estimating the parameters of the model from morphological data. In this article, I solve this problem by developing methods of parameter estimation when (1) 3D Computed Tomography (CT) data are available and (2) only 2D image data (such as photographs) are available. When 3D CT data are available, the parameters can be estimated by fitting an analytical solution of the growing tube model to the data. When only 2D image data are available, we first fit Raup?s model to the 2D image data and then convert the parameters of Raup?s model to those of the growing tube model. To illustrate the use of these methods, I apply them to data generated by a computer simulation of the model. Both methods work well, except when shells grow without coiling. I also demonstrate the effectiveness of the methods by applying the model to actual 3D CT data and 2D image data of land snails. I conclude that the method proposed in this article can reconstruct the coiling pattern from observed data. PMID:25128738

  12. Research on reconstruction algorithms for 2D temperature field based on TDLAS

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Jin, Yi; Zhai, Chao

    2015-10-01

    Tunable Diode Laser Absorption Tomography(TDLAT), as a promising technique which combines Tunable Diode Laser Absorption Spectroscopy(TDLAS) and computer tomography, has shown the advantages of high spatial resolution for temperature measurement. Given the large number of tomography algorithms, it is necessary to understand the feature of tomography algorithms and find suitable ones for the specific experiment. This paper illustrates two different algorithms including algebraic reconstruction technique (ART) and simulated annealing (SA) which are implemented using Matlab. The reconstruction simulations of unimodal and bimodal temperature phantom were done under different conditions, and the results of the simulation were analyzed. It shows that for the unimodal temperature phantom, the both algorithms work well, the reconstruction quality is acceptable under suitable conditions and the result of ART is better. But for the bimodal temperature phantom, the result of SA is much better. More specifically, the reconstruction quality of ART is mainly affected by the ray coverage, the maximum deviation for the unimodal temperature phantom is 5.9%, while for the bimodal temperature field, it is up to 25%. The reconstruction quality of SA is mainly affected by the number of the transitions, the maximum deviation for the unimodal temperature phantom is 9.2% when 6 transitions are used which is a little worse than the result of ART; however, the maximum deviation for the bimodal temperature phantom is much better than ART's, which is about 5.2% when 6 transitions are used.

  13. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors.

    PubMed

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  14. Estimation of the Lateral Ventricles Volumes from a 2D Image and Its Relationship with Cerebrospinal Fluid Flow

    PubMed Central

    Bader, Chaarani; Cyrille, Capel; Jadwiga, Zmudka; Joel, Daouk; Fichten, Anthony; Catherine, Gondry-Jouet; Roger, Bouzerar; Olivier, Balédent

    2013-01-01

    Purpose. This work suggests a fast estimation method of the lateral ventricles volume from a 2D image and then determines if this volume is correlated with the cerebrospinal fluid flow at the aqueductal and cerebral levels in neurodegenerative diseases. Materials and Methods. FForty-five elderly patients suffering from Alzheimer's disease (19), normal pressure hydrocephalus (13), and vascular dementia (13) were involved and underwent anatomical and phase contrast MRI scans. Lateral ventricles and stroke volumes were assessed on anatomical and phase contrast scans, respectively. A common reference plane was used to calculate the lateral ventricles' area on 2D images. Results. The largest volumes were observed in hydrocephalus patients. The linear regression between volumes and areas was computed, and a strong positive correlation was detected (R2 = 0.9). A derived equation was determined to represent the volumes for any given area. On the other hand, no significant correlations were detected between ventricles and stroke volumes (R2 ? 0.15). Conclusion. Lateral ventricles volumes are significantly proportional to the 2D reference section area and could be used for patients' follow-up even if 3D images are unavailable. The cerebrospinal fluid fluctuations in brain disorders may depend on many physiological parameters other than the ventricular morphology. PMID:24151585

  15. Direct observation of ground-state lactam–lactim tautomerization using temperature-jump transient 2D IR spectroscopy

    PubMed Central

    Peng, Chunte Sam; Baiz, Carlos R.; Tokmakoff, Andrei

    2013-01-01

    We provide a systematic characterization of the nanosecond ground-state lactam–lactim tautomerization of pyridone derivatives in aqueous solution under ambient conditions using temperature-jump transient 2D IR spectroscopy. Although electronic excited-state tautomerization has been widely studied, experimental work on the ground electronic state, most relevant to chemistry and biology, is lacking. Using 2D IR spectroscopy, lactam and lactim tautomers of 6-chloro-2-pyridone and 2-chloro-4-pyridone are unambiguously identified by their unique cross-peak patterns. Monitoring the correlated exponential relaxation of these signals in response to a laser temperature jump provides a direct measurement of the nanosecond tautomerization kinetics. By studying the temperature, concentration, solvent, and pH dependence, we extract a thermodynamic and kinetic characterization and conclude that the tautomerization proceeds through a two-state concerted mechanism. We find that the intramolecular proton transfer is mediated by bridging water molecules and the reaction barrier is dictated by the release of a proton from pyridone, as would be expected for an efficient Grothuss-type proton transfer mechanism. PMID:23690588

  16. ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging.

    PubMed

    Wadhwa, Vibhor; Omar, Hythem; Coyner, Katherine; Khazzam, Michael; Robertson, William; Chhabra, Avneesh

    2016-01-01

    Magnetic Resonance Imaging is modality of choice for the non-invasive evaluation of meniscal tears. Accurate and uniform documentation of meniscal pathology is necessary for optimal multi-disciplinary communication, to guide treatment options and for validation of patient outcomes studies. The increasingly used ISAKOS arthroscopic meniscus tear classification system has been shown to provide sufficient interobserver reliability among the surgeons. However, the terminology is not in common use in the radiology world. In this article, the authors discuss the MR imaging appearances of meniscal tears based on ISAKOS classification on 2D and multiplanar 3D isotropic spin echo imaging techniques and illustrate the correlations of various meniscal pathologies with relevant arthroscopic images. PMID:26724644

  17. Nonrigid Registration of 2-D and 3-D Dynamic Cell Nuclei Images for Improved Classification of Subcellular Particle Motion

    PubMed Central

    Kim, Il-Han; Chen, Yi-Chun M.; Spector, David L.; Eils, Roland; Rohr, Karl

    2012-01-01

    The observed motion of subcellular particles in fluorescence microscopy image sequences of live cells is generally a superposition of the motion and deformation of the cell and the motion of the particles. Decoupling the two types of movements to enable accurate classification of the particle motion requires the application of registration algorithms. We have developed an intensity-based approach for nonrigid registration of multi-channel microscopy image sequences of cell nuclei. First, based on 3-D synthetic images we demonstrate that cell nucleus deformations change the observed motion types of particles and that our approach allows to recover the original motion. Second, we have successfully applied our approach to register 2-D and 3-D real microscopy image sequences. A quantitative experimental comparison with previous approaches for nonrigid registration of cell microscopy has also been performed. PMID:20840894

  18. 2D photochemical modeling of Saturn's stratosphere. Part II: Feedback between composition and temperature

    E-print Network

    Hue, V; Cavalié, T; Dobrijevic, M; Hersant, F

    2015-01-01

    Saturn's axial tilt produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along the seasons. The thermal structure is controlled and regulated by the amount of hydrocarbons in the stratosphere, which act as absorbers and coolants from the UV to the far-IR spectral range, and this structure influences the amount of hydrocarbons. We study here the feedback between the chemical composition and the thermal structure by coupling a latitudinal and seasonal photochemical model with a radiative seasonal model. Our results show that the seasonal temperature peak in the higher stratosphere, associated with the seasonal increase of insolation, is shifted earlier than the maximum insolation peak. This shift is increased with increasing latitudes and is caused by the low amount of stratospheric coolants in the spring season. At 80$^{\\circ}$ in both hemispheres, the temperature peak at 1d-2mbar is seen to occur half a season e...

  19. New Insights to the Sawtooth Oscillation (m/n=1/1 mode) in Hot Plasmas based on High Resolution 2-D Images of Te Fluctuations

    SciTech Connect

    H.K. Park, N.C. Luhmann, Jr, A.J.H. Donné, C.W. Domier, T. Munsat, M.J. Van de Pol, and the TEXTOR Team

    2007-11-26

    Two dimensional (2-D) images of electron temperature fluctuations with high temporal and spatial resolution have been employed to study the sawtooth oscillation (m/n=1/1 mode) in Toroidal EXperiment for Technology Oriented Research (TEXTOR) tokamak plasmas. 2-D imaging data revealed new physics which were not available in previous studies based on the 1-D electron temperature measurement and X-ray tomography. Review of the physics of the sawtooth oscillation is given by comparative studies with prominent theoretical models suggest that a new physics paradigm is needed to describe the reconnection physics of the sawtooth oscillation. The new insights are: A pressure driven instability (not a ballooning mode) leads to the X-point reconnection process. The reconnection process is identified as a random 3-D local reconnection process with a helical structure. The reconnection time scale is similar for different types of sawtooth oscillation ("kink" and tearing type) and is significantly faster than the resistive time scale. Heat flow from the core to the outside of the inversion radius during the reconnection process is highly collective rather than stochastic.

  20. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

  1. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Peters, C. A.; Um, W.; Jones, K. W.; Lindquist, W. B.

    2013-12-01

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability estimates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 ?m predicted permeabilities differing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-resolution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability predictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 ?m resolution. To reduce permeability underestimation from analyses of high-resolution images, a resolution threshold between 3 and 15 ?m was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

  2. Integration of Local Image Cues for Probabilistic 2D Pose , Dimitrios Makris1

    E-print Network

    Nebel, Jean-Christophe

    of antisocial behaviours from images captured from CCTV cameras. A robust system should be able to deal of 10 body parts which is consistent with the segmentation resolution expected from CCTV images. Our

  3. Phase structure of QC2D at high temperature and density

    E-print Network

    Seamus Cotter; Jon-Ivar Skullerud; Pietro Giudice; Simon Hands; Seyong Kim; Dhagash Mehta

    2012-10-25

    We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical potential mu and temperature T. We find evidence of a superfluid phase at intermediate mu and low T where the quark number density and diquark condensate are both very well described by a Fermi sphere of nearly-free quarks disrupted by a BCS condensate. This gives way to a region of deconfined quark matter at higher T and mu, with the deconfinement temperature decreasing only very slowly with increasing chemical potential. We find that heavy quarkonium bound states persist in the S-wave channels at all T and mu, with an energy reflecting the phase structure. P-wave states appear not to survive in the quarkyonic region.

  4. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  5. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TRE?) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TRE? <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  6. Known-Component 3D-2D Registration for Image Guidance and Quality Assurance in Spine Surgery Pedicle Screw Placement

    PubMed Central

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-01-01

    Purpose To extend the functionality of radiographic/fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TRE?) from planned trajectory. Results Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx <2 mm and TRE?<0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx <1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries. PMID:26028805

  7. A Detector for 2-D Neutron Imaging for the Spallation Neutron Source

    SciTech Connect

    Britton Jr, Charles L; Bryan, W. L.; Wintenberg, Alan Lee; Clonts, Lloyd G; Warmack, Robert J Bruce; McKnight, Timothy E; Frank, Steven Shane; Cooper, Ronald G; Dudney, Nancy J; Veith, Gabriel M

    2006-01-01

    Abstract - We have designed, built, and tested a 2-D pixellated thermal neutron detector. The detector is modeled after the MicroMegas-type structure previously published for collider-type experiments. The detector consists of a 4X4 square array of 1 cm 2 pixels each of which is connected to an individual preamplifier-shaper-data acquisition system. The neutron converter is a 10B film on an aluminum substrate. We describe the construction of the detector and the test results utilizing 252Cf sources in Lucite to thermalize the neutrons.Drift electrode (Aluminum) Converter (10B) 3 mm Conversion gap neutron (-900 V)

  8. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  9. Study of the electrical conductivity at finite temperature in 2D Si- MOSFETs

    SciTech Connect

    Limouny, L. Kaaouachi, A. El Tata, O.; Daoudi, E.; Errai, M.; Dlimi, S.; Idrissi, H. El; Zatni, A.

    2014-01-27

    We investigate the low temperature density dependent conductivity of two dimensional electron systems in zero magnetic field for sample Si-15 MOSFETs. The first purpose of this paper is to establish that the knee of the conductivity ?{sub 0} (?{sub 0} is the T = 0.3 conductivity obtained by linear extrapolation of the curves of ? (T) for different values of electron density, n{sub s}) as a function of the carrier densities n{sub s} for T = 0.3 K, observed by Lai et al. and Limouny et al. in previous work for two different samples, is independent of temperature. The second aim is the determination of the critical density, n{sub c}, of the metal-insulator transition. Many methods are used in this investigation of n{sub c} which have been already used for other samples. The motivation behind this last study is the observation of many values of n{sub c} that have been obtained from different methods and that are slightly different. We will use in this study three methods with the intention to infer which one is more appropriate to obtain n{sub c}.

  10. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  11. Optoacoustic temperature monitoring during HIFU impact on biological tissues: ex vivo study and numerical simulations of 2D temperature reconstruction

    NASA Astrophysics Data System (ADS)

    Nikitin, Sergey; Khokhlova, Tatiana; Pelivanov, Ivan

    2012-02-01

    Dependencies of the optoacoustic (OA) transformation efficiency on tissue temperature were obtained for the application in OA temperature monitoring during thermal therapies. Accurate measurement of the OA signal amplitude versus temperature was performed in different ex-vivo tissues in the temperature range 25°C - 80°C. The investigated tissues were selected to represent different structural components: chicken breast (skeletal muscle), porcine lard (fatty tissue) and porcine liver (richly perfused tissue). Backward mode of the OA signal detection and a narrow probe laser beam were used in the experiments to avoid the influence of changes in light scattering with tissue coagulation on the OA signal amplitude. Measurements were performed in heating and cooling regimes. Characteristic behavior of the OA signal amplitude temperature dependences in different temperature ranges were described in terms of changes in different structural components of the tissue samples. Finally, numerical simulation of the OA temperature monitoring with a linear transducers array was performed to demonstrate the possibility of real-time temperature mapping.

  12. Low-Temperature Transport in AlGaN/GaN 2D Electron Systems

    NASA Astrophysics Data System (ADS)

    Vitusevich, S. A.; Kurakin, A. M.; Danylyuk, S. V.; Klein, N.; Lüth, H.; Belyaev, A. E.

    2005-06-01

    In this work results of magnetotransport investigation in a two-dimensional electron gas (2DEG) formed at the interface of an undoped GaN/AlGaN heterostructure are reported. The measurements were performed in wide temperature (from 300 mK to 10 K), and magnetic field (up to 10 T) range. The effective mass of investigated 2DEG were estimated from Shubnikov-de-Haas oscillation measurements and found to be as high as 0.265 me. The experimental data are analyzed within the framework of weak localization and interference corrections to conductivity together with alternative mechanisms specific for polar semiconductors taking into account a strong electron-optical phonon interaction.

  13. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  14. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  15. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    E-print Network

    Li, Guangwei; Bai, Zhongrui

    2015-01-01

    Bolton and Schlegel presented a promising deconvolution method to extract 1D spectra from a 2D optical fiber spectral CCD image. The method could eliminate the PSF difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus cannot be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4k multi 4k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic illposed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. Compared with the results of tra...

  16. Improving object detection in 2D images using a 3D world model

    NASA Astrophysics Data System (ADS)

    Viggh, Herbert E. M.; Cho, Peter L.; Armstrong-Crews, Nicholas; Nam, Myra; Shah, Danelle C.; Brown, Geoffrey E.

    2014-05-01

    A mobile robot operating in a netcentric environment can utilize offboard resources on the network to improve its local perception. One such offboard resource is a world model built and maintained by other sensor systems. In this paper we present results from research into improving the performance of Deformable Parts Model object detection algorithms by using an offboard 3D world model. Experiments were run for detecting both people and cars in 2D photographs taken in an urban environment. After generating candidate object detections, a 3D world model built from airborne Light Detection and Ranging (LIDAR) and aerial photographs was used to filter out false alarm using several types of geometric reasoning. Comparison of the baseline detection performance to the performance after false alarm filtering showed a significant decrease in false alarms for a given probability of detection.

  17. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront distortion.

  18. Single grating method for low dose 1-D and 2-D phase contrast X-ray imaging

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Jakubek, J.; Kroupa, M.

    2011-01-01

    X-ray phase contrast imaging (XPCI) using a single absorption grating and a hybrid semiconductor pixel detector is a newly introduced approach with great potential for application in medicine, biology and material research. In comparison with a conventional grating interferometer technique, which requires a multiple-exposure (phase-stepping) procedure, our method is greatly simplified, because both phase gradient and absorption images are obtained from just one exposure. Consequently, the approach can significantly reduce the time-consuming scanning and also possibly the unnecessary dose. Examples of application of the single-grating approach as an imaging tool for investigations in biology are presented. Particularly, we present the extension of our 1-D single grating method to a two-direction sensitive technique. The novel 2-D sensitive XPCI method is based on precise sub-pixel position determination of the X-ray pattern projected by the two-dimensional transmission grating directly from the pattern image. In a single exposure, phase gradient images in two perpendicular directions together with the conventional attenuation image are produced. Results of the proof-of-concept experiment are presented.

  19. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. PMID:24529782

  20. Magnetic resonance spectroscopic imaging with 2D spectroscopy for the detection of brain metabolites

    E-print Network

    Kok, Trina

    2012-01-01

    While magnetic resonance imaging (MRI) derives its signal from protons in water, additional biochemical compounds are detectable in vivo within the proton spectrum. The detection and mapping of these much weaker signals ...

  1. Ultra-Shallow Imaging Using 2D & 3D Seismic Reflection Methods

    E-print Network

    Sloan, Steven D.

    2008-01-01

    The research presented in this dissertation focuses on the survey design, acquisition, processing, and interpretation of ultra-shallow seismic reflection (USR) data in two and three dimensions. The application of 3D USR methods to image multiple...

  2. 2D-3D Rigid-Body Registration of X-Ray Fluoroscopy and CT Images

    E-print Network

    Zollei, Lilla

    2001-08-01

    The registration of pre-operative volumetric datasets to intra- operative two-dimensional images provides an improved way of verifying patient position and medical instrument loca- tion. In applications from orthopedics ...

  3. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 ?m. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper. PMID:24473544

  4. Automatic deployment of a 2-D geophone array for efficient ultra-shallow seismic imaging

    E-print Network

    Tsoflias, Georgios P.; Steeples, Don W.; Czarnecki, Gerard P.; Sloan, Steven D.; Eslick, Robert C.

    2006-01-01

    attached geo- 70phones to rigid linear media successfully imaged the shal- 71low subsurface [Schmeissner et al., 2001; Spikes et al., 722005]. Interfering modes introduced by the rigid platform, 73although not significantly detrimental to the quality... human hand during emplacement. Despite 84the need for manual handling of each geophone, Bachrach 85and Mukerji?s design improved significantly the efficiency 86of 3-D ultra-shallow seismic imaging by enabling planting 87of 72 geophones in about five...

  5. View-based methods for relative reconstruction of 3D scenes from several 2D images

    NASA Astrophysics Data System (ADS)

    Barrett, Eamon B.; Payton, Paul M.; Marra, Peter J.; Brill, Michael H.

    1998-07-01

    Suppose we have two or more images of a 3D scene. From these views alone, we would like to infer the (x,y,z) coordinates of the object-points in the scene (to reconstruct the scene). The most general standard methods require either prior knowledge of the camera models (intersection methods) or prior knowledge of the (x,y,z) coordinates of some of the object points, from which the camera models can be inferred (resection, followed by intersection). When neither alternative is available, a special technique called relative orientation enables a scale model of a scene to be reconstructed from two images, but only when the internal parameters of both cameras are identical. In this paper, we discuss alternatives to relative orientation that does not require knowledge of the internal parameters of the imaging systems. These techniques, which we call view- based relative reconstruction, determine the object-space coordinates up to a 3D projective transformation. The reconstructed points are then exemplars of a projective orbit of representations that are chosen to reside in a particular representation called a canonical frame. Two strategies will be described to choose this canonical frame: (1) projectively simplify the object model and the imaging equations; and (2) projectively simplify the camera model and the imaging equations. In each case, we solve the resulting simplified system of imaging equations to retrieve exemplar points. Both strategies are successful in synthetic imagery, but may be differently suited to various real-world applications.

  6. lEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 50, NO. 11, NOVEMBER 2003 1581 Volumetric Ultrasound Imaging Using 2-D

    E-print Network

    Khuri-Yakub, Butrus T. "Pierre"

    Abstract--Recently, capacitive micromachined ultra- sonic transducers (CMUTs) have emerged as a candidate 2003 1581 Volumetric Ultrasound Imaging Using 2-D CMUT Arrays Omer Oralkan, Student Member, IEEE, A

  7. Velocity imaging of triangulate cells in Marmousi Model based on 2-D inverse rays

    NASA Astrophysics Data System (ADS)

    Tai, F.; Wang, T.

    2006-12-01

    Inverse-ray method is implemented to calculate the ray directions shooting from a source and a receiver by considering the slopes of refracted times, respectively, from common-receiver and common-source gathers. If the upper model is assumed to be known, then refracted rays propagating in triangulate cells of the upper model are calculated according to the Hamiltonian eikonal equation for which the square of the slowness is linearly varied. By layer-stripping imaging from shallow to deep layers, we determine the velocities in three triangulate cells in the lowest layer from the intersection of this inverse ray and triangulate boundaries. A smooth Marmousi Model is used to test the capability of inverse-ray imaging. We find five inverse refracted rays propagating through three triangles in the lowest layers. Two inverse rays through the region with strong velocity variation and the other inverse rays through deep area. Errors of velocity imaging based on five inverse refracted rays in the lowest layer are less than 5%. Inverse-ray method is superior to the travel-time inversion due to its rapid computation and no initial velocity model required. However, since velocity imaging is restricted within three triangulated cells in our research. We shall expand the imaging region greater than three triangulated cells from inverse refracted rays propagating through multiple cells.

  8. EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative

    PubMed Central

    Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; Macdonald, J. E.

    2013-01-01

    We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications. PMID:24284731

  9. Hardware support for shape decoding from 2D-region-based image representations

    NASA Astrophysics Data System (ADS)

    Privat, Gilles; Le Hin, Ivan

    1997-01-01

    Graphics systems have long been using standard libraries or APIs to insulate applications from implementation specifics. The same approach is applicable to natural image representations based on object primitives, such as proposed for MPEG4 standardization. The rendering of these image objects can be hidden behind APIs and supported either in hardware or software, depending on the level of representation they address, so that higher-level manipulation of these objects is made independent of the pixel level. We evaluate the trade-offs involved in the choice of these primitives to be used as pivotal intermediate representations. The example addressed is shape coding for image regions obtained from segmentation. Shape coding primitives based on either contour (chain codes), union of elementary patterns and alphaplane are evaluated with regard to both the possibility to support them on different architecture models and the level of functionalities they make available.

  10. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  11. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  12. Influence of piezoceramic composition, pitch, and layout on the performances of sparse 2D array transducers for medical imaging

    NASA Astrophysics Data System (ADS)

    Felix, Nicolas; Lethiecq, Marc; Millar, Caroline; Tran-Huu-Hue, Louis P.

    2000-04-01

    Two dimensinal (2D) array transducers have become of great interest in the last few years, in view of the possibility of real time volumetric ultrasonic imaging. However, due to low signal to noise ratio and to the limited number of channels on available imaging systems, both sensitivity and resolution of such array are lower than those of 1D arrays. First, new high dielectric permittivity PNNZT piezoceramics are characterized and compared to classical PZT. 2D array elements are then manufactured and their experimental performances are compared. PNNZT allows an increase in element pulse echo sensitivity around 6 dB as compared to PZT array elements. The effects of the pitch and layout on the sparse array radiation pattern for several steering angles are investigated. Pseudo-random layouts are shown to have satisfactory acoustic noise level as compared to periodic layouts (vernier). Moreover, such configurations allow the pitch to be increased slightly over the classical half wavelength phased-array value, thus increasing the active area (i.e. sensitivity). Optimized array configuration leads to an increase in acoustic sensitivity of at least 6 dB and a decrease of acoustic noise level around 10 dB.

  13. A new computational approach to cracks quantification from 2D image analysis: Application to micro-cracks description in rocks

    NASA Astrophysics Data System (ADS)

    Arena, Alessio; Delle Piane, Claudio; Sarout, Joel

    2014-05-01

    In this paper we propose a crack quantification method based on 2D image analysis. This technique is applied to a gray level Scanning Electron Microscope (SEM) images, segmented and converted in Black and White (B/W) images using the Trainable Segmentation plugin of Fiji. Resulting images are processed using a novel Matlab script composed of three different algorithms: the separation algorithm, the filtering and quantification algorithm and the orientation one. Initially the input image is enhanced via 5 morphological processes. The resulting lattice is “cut” into single cracks using 1 pixel-wide bisector lines originated from every node. Cracks are labeled using the connected-component method, then the script computes geometrical parameters, such as width, length, area, aspect ratio and orientation. A filtering is performed using a user-defined value of aspect ratio, followed by a statistical analysis of remaining cracks. In the last part of this paper we discuss about the efficiency of this script, introducing an example of analysis of two datasets with different dimension and resolution; these analyses are performed using a notebook and a high-end professional desktop solution, in order to simulate different working environments.

  14. REGRESSION LEARNING FOR 2D/3D IMAGE REGISTRATION Chen-Rui Chou

    E-print Network

    North Carolina at Chapel Hill, University of

    -Guided Radiation Therapy (IGRT). The goal of lung IGRT is to lay the radiation beam on the ever-changing tumor centroid but avoid organs at risk under the patient's continuous respiratory motion during the therapeutic from the patients Respiratory-Correlated CT (RCCT) images. At treatment time, the learned regressions

  15. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  16. Application and further development of diffusion based 2D chemical imaging techniques in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus

    2015-04-01

    Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal contaminated and agricultural soils.

  17. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  18. Segmentation And Classification Of Textured Images Using 2-D Stochastic Models

    NASA Astrophysics Data System (ADS)

    Khotanzad, Alireza

    1988-02-01

    In this paper, methods for supervised classification and unsupervised segmentation of textured images are presented. A class of two-dimensional, stochastic, non-causal, linear models known as Simultaneous Autoregressive (SAR) random field models is used to characterize texture in a local neighborhood N. The maximum likelihood esti-mates of the model parameters denoted by fN, are selected as textural features. An efficient method for selection of a N (i.e. order of the model) which produces powerful features is presented. It relies on visual examination and comparison of images synthesized using fN. A 08% correct classification rate is obtained in supervised experiments involving nine different types of natural textures and utiliz-ing features selected by this technique. These features are also used for unsupervised texture segmentation, i.e. divid-ing an image into regions of similar texture when no apriori knowledge about the types and number of textures in the underlying image is available. Textural edges (borders between differently textured regions) are located where sud-den changes in local textural features happen. The image is scanned by a small size window and SAR features are extracted from the region encompassed by each window. Abrupt changes in the features of neighboring windows are detected and mapped back to the spatial domain to yield the sought after textural edges. A method for automatic selection of the size of the scanning window is presented. Instead of one window, two windows whose sizes differ by a few pixels are utilized and the common resulting edges are used. Parallel implementation of the segmentation algo-rithm is discussed. The goodness of the technique is demonstrated through experimental studies.

  19. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    PubMed Central

    Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael

    2015-01-01

    Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0.001) or similar (MPA: P=0.98) peak velocities relative to echo. Conclusion Excellent flow parameter agreement between 2-D phase-contrast MRI and 4-D flow and the improved volumetric 4-D flow velocity analysis relative to echo suggests that 4-D flow has the potential to become a clinical alternative to 2-D phase-contrast MRI. PMID:25487721

  20. Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry

    PubMed Central

    Fletcher, John S.; Vickerman, John C.; Winograd, Nicholas

    2011-01-01

    Time-of-flight Secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C60, ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique. PMID:21664172

  1. A novel scheme for image encryption based on 2D piecewise chaotic maps

    NASA Astrophysics Data System (ADS)

    Akhshani, A.; Behnia, S.; Akhavan, A.; Hassan, H. Abu; Hassan, Z.

    2010-09-01

    In this paper, a hierarchy of two-dimensional piecewise nonlinear chaotic maps with an invariant measure is introduced. These maps have interesting features such as invariant measure, ergodicity and the possibility of K-S entropy calculation. Then by using significant properties of these chaotic maps such as ergodicity, sensitivity to initial condition and control parameter, one-way computation and random like behavior, we present a new scheme for image encryption. Based on all analysis and experimental results, it can be concluded that, this scheme is efficient, practicable and reliable, with high potential to be adopted for network security and secure communications. Although the two-dimensional piecewise nonlinear chaotic maps presented in this paper aims at image encryption, it is not just limited to this area and can be widely applied in other information security fields.

  2. Multiscaling analysis in a structured clay soil using 2D images

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; McInnes, K. J.; Key, J. R.; Saa, A.; García, M. R.; Díaz, M. C.

    2006-05-01

    The spatial variability of preferential pathways for water and chemical transport in a field soil, as visualized through dye infiltration experiments, was studied by applying configuration entropy and multifractal analysis. After dye infiltration into a 4 m plot located on a Vertisol soil near College Station, TX, horizontal planes in the subsoil were exposed at 5-cm intervals, and dye stain patterns were photographed. Each of the digitized high-resolution dye images obtained were analysed calculating the maximum configuration entropy ( H( L)), the characteristic length ( L), and the generalized dimensions ( Dq). The results indicate that H( L) and L are two useful descriptors that give an optimal scale of discrimination in the spatial arrangement of the dye tracer at each horizontal section. In addition, L can be used to choose the scale range at which the multifractal analysis should be applied. It has been showed that Dq, being q>0, depend much more on the percentage of black pixels than on the image structure when a box-counting method is used. Finally, a multifractal analysis was applied to maximum dye infiltration depth and amount of dye pixels bellow the area studied, obtained by merging images from the 16 exposed planes. The results show a multiscaling structure and a consistent Dq for both measures. This could be useful for statistically describing preferential flow path geometry and flow processes under field conditions.

  3. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  4. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  5. Ceria–Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Low-Temperature Oxygen Transfer and Oxidation Activity

    PubMed Central

    Aneggi, Eleonora; Rico-Perez, Veronica; de Leitenburg, Carla; Maschio, Stefano; Soler, Lluís; Llorca, Jordi; Trovarelli, Alessandro

    2015-01-01

    Engineering the interface between different components of heterogeneous catalysts at nanometer level can radically alter their performances. This is particularly true for ceria-based catalysts where the interactions are critical for obtaining materials with enhanced properties. Here we show that mechanical contact achieved by high-energy milling of CeO2–ZrO2 powders and carbon soot results in the formation of a core of oxide particles wrapped in a thin carbon envelope. This 2D nanoscale carbon arrangement greatly increases the number and quality of contact points between the oxide and carbon. Consequently, the temperatures of activation and transfer of the oxygen in ceria are shifted to exceptionally low temperatures and the soot combustion rate is boosted. The study confirms the importance of the redox behavior of ceria-zirconia particles in the mechanism of soot oxidation and shows that the organization of contact points at the nanoscale can significantly modify the reactivity resulting in unexpected properties and functionalities. PMID:26448053

  6. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    NASA Astrophysics Data System (ADS)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for investigating with rapidity and high resolution, thin as well as very thick ceilings, in a non-destructive manner. Ceilings may be made up as masonry vaults or timber/metal/concrete beams and elements laid down in one or two directions or, again, can be made as a combination of the above. A number of cases are here presented reporting on typical features to be recognised in radargrams in order to distinguish the material and possible shape of the relevant objects with the aim of providing a first small catalogue useful to the radar user and to professionals. This abstract is of interest for COST Action TU1208.

  7. 2-D tomographic imaging of continental crust and relic slab beneath Baja California

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Harding, A. J.; Kent, G.; Driscoll, N.

    2009-12-01

    Rifting of Baja California from the margin of North America began as, or sometime before, subduction of the Farallon plate ceased (~12 Ma). Many have speculated that increased coupling between the subducted Farallon slab and overriding plate caused the young upper part of the subducted plate to detach from the older, colder, sinking slab. Then as the fragments of the Farallon plate took on Pacific plate motion, traction forces between the relic slab and Baja influenced rift localization in the Gulf of California. To better understand the processes that led to rifting of the Baja peninsula a 350 km seismic refraction/reflection profile was collected in 2002 in an effort to constrain the crustal thickness, the extent of relic slab beneath Baja California and the upper mantle P-wave velocities. The line spans the Baja Peninsula from the paleo-trench to the central Gulf of California, between the Farallon and Pescadero basins. 13 Ocean-Bottom Seismometers and 8 onshore Ref-Tek portable seismometers recorded 35,504 airgun shots from the R/V Ewing. Multichannel seismic (MCS) reflection profiles were collected on either side of the peninsula, providing information on the upper crustal structure and style of post-subduction deformation, particularly along the Tosco-Abreojos and Santa Margarita-San Lazaro fault systems. Here we present the integrated results of the MCS profiles and 2-D travel time tomography. Ray tracing was performed on 13,388 arrival picks, including Pg, Pn and PmP arrivals. Initial tomographic inversions reveal a crustal root beneath Baja California with an average velocity of 6.0 km/s. Continental crust thins to the east into the Gulf of California and has a velocity structure consistent with that of the Alarcon segment of the PESCADOR experiment. Perhaps the most significant observation is an ~6 km thick, 8° east-dipping high velocity zone (mean of 6.7 km/s) that underplates the western Baja margin and extends at least 60 km from the former trench (~40 km west of the shoreline). We interpret this to be relic oceanic crust. We are investigating the extent of the relic slab beneath Baja and its relationship with high-Mg adakitic volcanics exposed on Isla Margarita, ~20 km north of the seismic transect. The existence of a stalled slab beneath the Baja margin suggests frictional and/or viscous coupling along the paleo-subduction interface is an important process in for the geodynamical development of the Gulf of California rift system.

  8. Visualization of aerocolloidal biological particles using 2D particle image velocimetry (PIV)

    NASA Astrophysics Data System (ADS)

    Hall, Carsie A., III; Masabattula, Sree; Akyuzlu, Kazim M.; Russo, Edwin P.; Klich, Maren A.

    2003-11-01

    Recent concerns over the possible use of airborne biological particles as weapons of mass destruction have significantly increased the attention that researchers are giving to this threat. The size of these particles, ranging from a fraction of a micrometer to several tens of micrometers, allows them to travel over long distances before settling out of the airstreams carrying these particles. Furthermore, the odd shapes of many of these particles along with uncertainties about their light scattering characteristics make detection and tracking quite a challenge. In the present paper, results are reported on the visualization of airborne biological particles using two-dimensional particle image velocimetry (PIV). These initial results show the utility of PIV in illuminating and tracking airborne biological particles. A compressed air nebulizer is used to aerosolize the biological particles inside a Plexiglas test section. The biological particles prepared for the nebulizer are first inoculated and cultured onto agar media, gypsum board, and acoustic ceiling tile to achieve an abundant growth of spores. A colloidal suspension of biological particles is then made using sterilized, de-ionized water and a mild surfactant to de-agglomerate the biological particles in the suspension. The concentration of biological particles in the colloidal suspension is determined using a hemacytometer. In the visualization experiments, images are captured for polystyrene latex (PSL) test particles, liquid water droplets, and spores of the fungal species Aspergillus versicolor. During the PIV system operation, two successive images are captured with a time delay of 50 ?m to develop flow field velocities of the PSL test particles, liquid water droplets, and the A. versicolor spores.

  9. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to reduce the number of required measurement locations, reduce the time to make measurements, reduce the memory required to store the measurements, and possibly reduce the computational burden to classify the measurements. This work considers the appropriate selection of the signal dictionary used for signal reconstruction, and performs an evaluation of compressed sensing technique's ability to reconstruct ultrasonic images using fewer measurements than would be needed using traditional Nyquist-limited data collection techniques.

  10. An image-space Morse decomposition for 2D vector fields

    NASA Astrophysics Data System (ADS)

    Chen, Guoning; Xu, Shuyu

    2015-01-01

    Morse decompositions have been proposed to compute and represent the topological structure of steady vector fields. Compared to the conventional differential topology, Morse decomposition and the resulting Morse Connection Graph (MCG) is numerically stable. However, the granularity of the original Morse decomposition is constrained by the resolution of the underlying spatial discretization, which typically results in non-smooth representation. In this work, an Image-Space Morse decomposition (ISMD) framework is proposed to address this issue. Compared to the original method, ISMD first projects the original vector field onto an image plane, then computes the Morse decomposition based on the projected field with pixels as the smallest elements. Thus, pixel-level accuracy can be achieved. This ISMD framework has been applied to a number of synthetic and real-world steady vector fields to demonstrate its utility. The performance of the ISMD is carefully studied and reported. Finally, with ISMD an ensemble Morse decomposition can be studied and visualized, which is shown useful for visualizing the stability of the Morse sets with respect to the error introduced in the numerical computation and the perturbation to the input vector fields.

  11. SIMS of organics—Advances in 2D and 3D imaging and future outlook

    SciTech Connect

    Gilmore, Ian S.

    2013-09-15

    Secondary ion mass spectrometry (SIMS) has become a powerful technique for the label-free analysis of organics from cells to electronic devices. The development of cluster ion sources has revolutionized the field, increasing the sensitivity for organics by two or three orders of magnitude and for large clusters, such as C{sub 60} and argon clusters, allowing depth profiling of organics. The latter has provided the capability to generate stunning three dimensional images with depth resolutions of around 5 nm, simply unavailable by other techniques. Current state-of-the-art allows molecular images with a spatial resolution of around 500 nm to be achieved and future developments are likely to progress into the sub-100 nm regime. This review is intended to bring those with some familiarity with SIMS up-to-date with the latest developments for organics, the fundamental principles that underpin this and define the future progress. State-of-the-art examples are showcased and signposts to more in-depth reviews about specific topics given for the specialist.

  12. A Gaseous Compton Camera using a 2D-sensitive gaseous photomultiplier for Nuclear Medical Imaging

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; Pereira, F. A.; Lopes, T.; Correia, P. M. M.; Silva, A. L. M.; Carramate, L. F. N. D.; Covita, D. S.; Veloso, J. F. C. A.

    2013-12-01

    A new Compton Camera (CC) concept based on a High Pressure Scintillation Chamber coupled to a position-sensitive Gaseous PhotoMultiplier for Nuclear Medical Imaging applications is proposed. The main goal of this work is to describe the development of a ?25×12 cm3 cylindrical prototype, which will be suitable for scintimammography and for small-animal imaging applications. The possibility to scale it to an useful human size device is also in study. The idea is to develop a device capable to compete with the standard Anger Camera. Despite the large success of the Anger Camera, it still presents some limitations, such as: low position resolution and fair energy resolutions for 140 keV. The CC arises a different solution as it provides information about the incoming photon direction, avoiding the use of a collimator, which is responsible for a huge reduction (10-4) of the sensitivity. The main problem of the CC's is related with the Doppler Broadening which is responsible for the loss of angular resolution. In this work, calculations for the Doppler Broadening in Xe, Ar, Ne and their mixtures are presented. Simulations of the detector performance together with discussion about the gas choice are also included .

  13. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    SciTech Connect

    Dr. Ricardo Maqueda; Dr. Fred M. Levinton

    2011-12-23

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  14. Registration of dynamic multiview 2D ultrasound and late gadolinium enhanced images of the heart: Application to hypertrophic cardiomyopathy characterization.

    PubMed

    Betancur, Julián; Simon, Antoine; Halbert, Edgar; Tavard, François; Carré, François; Hernández, Alfredo; Donal, Erwan; Schnell, Frédéric; Garreau, Mireille

    2016-02-01

    Describing and analyzing heart multiphysics requires the acquisition and fusion of multisensor cardiac images. Multisensor image fusion enables a combined analysis of these heterogeneous modalities. We propose to register intra-patient multiview 2D+t ultrasound (US) images with multiview late gadolinium-enhanced (LGE) images acquired during cardiac magnetic resonance imaging (MRI), in order to fuse mechanical and tissue state information. The proposed procedure registers both US and LGE to cine MRI. The correction of slice misalignment and the rigid registration of multiview LGE and cine MRI are studied, to select the most appropriate similarity measure. It showed that mutual information performs the best for LGE slice misalignment correction and for LGE and cine registration. Concerning US registration, dynamic endocardial contours resulting from speckle tracking echocardiography were exploited in a geometry-based dynamic registration. We propose the use of an adapted dynamic time warping procedure to synchronize cardiac dynamics in multiview US and cine MRI. The registration of US and LGE MRI was evaluated on a dataset of patients with hypertrophic cardiomyopathy. A visual assessment of 330 left ventricular regions from US images of 28 patients resulted in 92.7% of regions successfully aligned with cardiac structures in LGE. Successfully-aligned regions were then used to evaluate the abilities of strain indicators to predict the presence of fibrosis. Longitudinal peak-strain and peak-delay of aligned left ventricular regions were computed from corresponding regional strain curves from US. The Mann-Withney test proved that the expected values of these indicators change between the populations of regions with and without fibrosis (p < 0.01). ROC curves otherwise proved that the presence of fibrosis is one factor amongst others which modifies longitudinal peak-strain and peak-delay. PMID:26619189

  15. Development of fast patient position verification software using 2D-3D image registration and its clinical experience.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-09-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  16. Development of fast patient position verification software using 2D-3D image registration and its clinical experience

    PubMed Central

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-01-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  17. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  18. [EOS imaging acquisition system : 2D/3D diagnostics of the skeleton].

    PubMed

    Tarhan, T; Froemel, D; Meurer, A

    2015-12-01

    The application spectrum of the EOS imaging acquisition system is versatile. It is especially useful in the diagnostics and planning of corrective surgical procedures in complex orthopedic cases. The application is indicated when assessing deformities and malpositions of the spine, pelvis and lower extremities. It can also be used in the assessment and planning of hip and knee arthroplasty. For the first time physicians have the opportunity to conduct examinations of the whole body under weight-bearing conditions in order to anticipate the effects of a planned surgical procedure on the skeletal system as a whole and therefore on the posture of the patient. Compared to conventional radiographic examination techniques, such as x-ray or computed tomography, the patient is exposed to much less radiation. Therefore, the pediatric application of this technique can be described as reasonable. PMID:26564207

  19. 2D real-time arithmetic operations using optical coherence properties: image processing applications

    NASA Astrophysics Data System (ADS)

    Benkelfat, B.-E.; El Wardi, S.; Zghal, M.; Alfalou, A.

    2012-06-01

    We report for the first time the use of the well-known coherence modulation of light in two-dimensional arithmetic operations. This method, which allows several signals to be multiplexed on a single light beam, permits parallel real-time all optical subtractions and additions. In the context of an increased need of security, a major application of our multiplexed approach could be the optical encryption of images and multi-modalities techniques in biometric domain. The single-channel optical architecture, which allows carrying out single and multiple arithmetic operations, is described and more results are presented to show the effectiveness of our technique. We have evaluated the performance of the processor in terms of noise level as a function of the continuous optical path-difference ratio.

  20. A 2-D anatomic breast ductal computer phantom for ultrasonic imaging.

    PubMed

    Franceschini, Emilie; Mensah, Serge; Amy, Dominique; Lefebvre, Jean-Pierre

    2006-07-01

    Most breast cancers (85%) originate from the epithelium and develop first in the ductolobular structures. In screening procedures, the mammary epithelium should therefore be investigated first by the performing of an anatomically guided examination. For this purpose (mass screening, surgical guidance), we developed a two-dimensional anatomic phantom corresponding to an axial cross section of the ductolobular structures, which makes it possible to better understand the interactions between the breast composition and ultrasound. The various constitutive tissues were modeled as a random inhomogeneous continuum with density and sound speed fluctuations. Ultrasonic pulse propagation through the breast computer phantom was simulated using a finite element time domain method (the phantom can be used with other propagation codes). The simulated ductal echographic image is compared with the ductal tomographic (DT) reconstruction. The preliminary results obtained show that the DT method is more satisfactory in terms of both the contrast and the resolution. PMID:16889335

  1. 3D shape from silhouette points in registered 2D images using conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Szymczak, Andrzej; Hoff, William; Mahfouz, Mohamed

    2010-03-01

    We describe a simple and robust algorithm for estimating 3D shape given a number of silhouette points obtained from two or more viewpoints and a parametric model of the shape. Our algorithm minimizes (in the least squares sense) the distances from the lines obtained by unprojecting the silhouette points to 3D to their closest silhouette points on the 3D shape. The solution is found using an iterative approach. In each iteration, we locally approximate the least squares problem with a degree-4 polynomial function. The approximate problem is solved using a nonlinear conjugate gradient solver that takes advantage of its structure to perform exact and global line searches. We tested our algorithm by applying it to reconstruct patient-specific femur shapes from simulated biplanar X-ray images.

  2. 3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    E-print Network

    Fallavollita, Pascal

    2009-01-01

    Radiofrequency (RF) catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours). Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.

  3. Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Lee, Byung-Geun; Sheridan, John T

    2015-06-15

    We present a method of securing multispectral 3D photon-counted integral imaging (PCII) using classical Hartley Transform (HT) based encryption by employing optical interferometry. This method has the simultaneous advantages of minimizing complexity by eliminating the need for holography recording and addresses the phase sensitivity problem encountered when using digital cameras. These together with single-channel multispectral 3D data compactness, the inherent properties of the classical photon counting detection model, i.e. sparse sensing and the capability for nonlinear transformation, permits better authentication of the retrieved 3D scene at various depth cues. Furthermore, the proposed technique works for both spatially and temporally incoherent illumination. To validate the proposed technique simulations were carried out for both the 2D and 3D cases. Experimental data is processed and the results support the feasibility of the encryption method. PMID:26193568

  4. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    SciTech Connect

    Lin, L. Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (?1 ?s) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ?0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  5. Parameters Affecting the Resolution and Accuracy of 2D Quantitative Shear Wave Images

    PubMed Central

    Rouze, Ned C.; Wang, Michael H.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2012-01-01

    Time-of-flight methods allow quantitative measurement of shear wave speed (SWS) from ultra-sonically tracked displacements following impulsive, acoustic radiation force excitation in tissue. In heterogeneous materials, reflections at boundaries can distort the wave shape and confound determination of the wave arrival time. The magnitude of these effects depends on the shear wavelength of the excitation, the kernel size used to calculate the SWS, and the method used to determine the wave arrival time. In this study, we perform a parametric analysis of these factors using finite element modeling of the tissue response, and simulated ultrasonic tracking. Two geometries are used, a stiff, vertical layer, and a stiff spherical inclusion, each in a uniform background. Wave arrival times are estimated using the peak displacement, peak slope of the leading edge, and cross correlation methods. Results are evaluated in terms of reconstruction accuracy, resolution, contrast, and contrast-to-noise ratio of reconstructed SWS images. Superior results are obtained using narrower excitation widths and arrival time estimators which identify the leading edge of the propagating wave. The optimal kernel size is determined by a tradeoff between improved accuracy for larger kernels at the expense of spatial resolution. PMID:22899119

  6. 2D imaging in a 3D world: Observing sub-grain scale variations and secondary mineral precipitates in reacted pore networks

    NASA Astrophysics Data System (ADS)

    Crandell, L. E.; Peters, C. A.; Um, W.; Jones, K. W.; Lindquist, W. B.

    2012-12-01

    Advancements in 3D imaging techniques and analysis methods, and easier access to benchtop 3D X-ray microscopes, have led to a proliferation of 3D imaging studies of chemical alterations within porous media. However, 2D imaging methods continue to offer complementary insights into processes controlling sub-grain scale variations in mineralogy and intragranular porosity that are often difficult to observe with 3D methods. For example, 2D imaging studies of mineral precipitation-induced changes in the pore network structure including detailed observations of distributions of secondary mineral precipitates can be coupled with 3D image analysis of a pore network to determine the pore properties required to infer permeability. In this work, the combined advantages of 2D and 3D imaging methods are highlighted through 3D X-ray Computed Microtomography (X-ray CT) and 2D Scanning Electron Microscopy (SEM) imaging of a reacted column experiment in the context of the Hanford, WA site and a sedimentary rock sample from the Alberta basin. Both samples were imaged using 3D X-ray CT imaging at a voxel resolution of 4 ?m and analyzed using 3DMA Rock to determine pore and throat size distributions as well as pore coordination numbers. Polished sections were then created from each sample and imaged using 2D SEM imaging with resolutions of 0.4 ?m for the reacted column and an order of magnitude larger for the sedimentary rock. 2D images were analyzed using an erosion dilation method to determine pore and throat size distributions that were then corrected using sample-specific bias correction factors. The permeability of each sample was predicted from pore network models informed with the 2D or 3D pore and throat size distributions and the coordination numbers determined from the 3D analysis. Differences in 2D and 3D image resolutions resulted in over- or under- estimating small pore throats and led to predicted permeabilities that differed by orders of magnitude. For both samples, higher resolution images resulted in over-estimating small pore throats and under-estimating expected permeability. While higher resolution images are generally favored, they may not improve predictions of permeability as they require additional processing to distinguish small flow-conducting pore throats from surface roughness features. While 3D imaging is required to determine the network coordination, 2D imaging is necessary to understand where secondary minerals precipitate within the pore network and to quantify sub-grain scale variations. These advantages are demonstrated through SEM imaging of polished sections from the reacted column experiment. 2D images revealed that secondary mineral precipitates occurred as a relatively uniform coating on grain surfaces, unrelated to mineralogy, pore size, or other factors. SEM images also revealed new observations of sub-grain scale variations that showed that Hanford sand grains have a high amount of intragranular porosity and mineral precipitates formed in intragranular regions. These observations, which are important to understanding the reactive system, could not have been made if 3D imaging was used exclusively.

  7. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guangwei, Li; Haotong, Zhang; Zhongrui, Bai

    2015-06-01

    Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our method has both higher signal-to-noise ratio and resolution than the traditional methods, but there are still some suspicious weak features, possibly caused by the method around the strong emission lines. As we have demonstrated, our deconvolution method has solved the computation problem and progressed in dealing with the noise influence. Multifiber spectra extracted by our method will have higher resolution and signal-to-noise ratio, and thus will provide more accurate information (such as higher radial velocity and metallicity measurement accuracy in stellar physics) to astronomers than traditional methods.

  8. Large area selective emitters/absorbers based on 2D tantalum photonic crystals for high-temperature energy applications

    NASA Astrophysics Data System (ADS)

    Rinnerbauer, V.; Yeng, Y. X.; Senkevich, J. J.; Joannopoulos, J. D.; Solja?i?, M.; Celanovic, I.

    2013-02-01

    We report highly selective emitters based on high-aspect ratio 2D photonic crystals (PhCs) fabricated on large area (2 inch diameter) polycrystalline tantalum substrates, suitable for high-temperature operation. As an example we present an optimized design for a selective emitter with a cut-off wavelength of 2?m, matched to the bandgap of an InGaAs PV cell, achieving a predicted spectral selectivity of 56.6% at 1200K. We present a fabrication route for these tantalum PhCs, based on standard microfabrication processes including deep reactive ion etch of tantalum by an SF6 based Bosch process, achieving high-aspect ratio cavities (< 8:1). Interference lithography was used to facilitate large area fabrication, maintaining both fabrication precision and uniformity, with a cavity diameter variation of less than 2% across the substrate. The fabricated tantalum PhCs exhibit strong enhancement of the emittance at wavelengths below cut-off wavelength, approaching that of blackbody, and a steep cut-off between high and low emittance spectral regions. Moreover, detailed simulations and numerical modeling show excellent agreement with experimental results. In addition, we propose a surface protective coating, which acts as a thermal barrier coating and diffusion inhibitor, and its conformal fabrication by atomic layer deposition.

  9. A systematic approach for 2D-image to 3D-range registration in urban environments

    E-print Network

    Stamos, Ioannis

    commercial systems, such as Google earth or Microsoft virtual earth, make 2D-to-3D registration algorithms-mapping of vast 2D im- age collections onto their corresponding models. This paper presents a system that enables (i.e. registration of individual 2D im- ages onto 3D range models). Our method can work in con

  10. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  11. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy.

    PubMed

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-10-30

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). PMID:26436905

  12. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging.

    PubMed

    Afik, Eldad

    2015-01-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection. PMID:26329642

  13. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    NASA Astrophysics Data System (ADS)

    Afik, Eldad

    2015-09-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

  14. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    E-print Network

    Eldad Afik

    2015-09-06

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

  15. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    PubMed Central

    Afik, Eldad

    2015-01-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection. PMID:26329642

  16. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14?400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with ‘success’ defined as PDE <5 mm) using 1,718?664 ± 96?582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the same registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery.

  17. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds

    PubMed Central

    Coulon, Marjorie; Deputte, Bertrand L.; Heyman, Yvan; Baudoin, Claude

    2009-01-01

    Background In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. Methodology/Principal Findings We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, ¾ views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1±0.7 vs. Exp 2: 5.2±1.2 sessions; Z?=?1.99, N?=?8, P?=?0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. Conclusions/Significance Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was the most difficult task. These results call for studies exploring the mechanisms involved in face recognition allowing interspecies comparisons, including humans. PMID:19212439

  18. Effects of x-ray and CT image enhancements on the robustness and accuracy of a rigid 3D/2D image registration

    SciTech Connect

    Kim, Jinkoo; Yin Fangfang; Zhao Yang; Kim, Jae Ho

    2005-04-01

    A rigid body three-dimensional/two-dimensional (3D/2D) registration method has been implemented using mutual information, gradient ascent, and 3D texturemap-based digitally reconstructed radiographs. Nine combinations of commonly used x-ray and computed tomography (CT) image enhancement methods, including window leveling, histogram equalization, and adaptive histogram equalization, were examined to assess their effects on accuracy and robustness of the registration method. From a set of experiments using an anthropomorphic chest phantom, we were able to draw several conclusions. First, the CT and x-ray preprocessing combination with the widest attraction range was the one that linearly stretched the histograms onto the entire display range on both CT and x-ray images. The average attraction ranges of this combination were 71.3 mm and 61.3 deg in the translation and rotation dimensions, respectively, and the average errors were 0.12 deg and 0.47 mm. Second, the combination of the CT image with tissue and bone information and the x-ray images with adaptive histogram equalization also showed subvoxel accuracy, especially the best in the translation dimensions. However, its attraction ranges were the smallest among the examined combinations (on average 36 mm and 19 deg). Last the bone-only information on the CT image did not show convergency property to the correct registration.

  19. Watching Silica's Dance: Imaging the Structure and Dynamics of the Atomic (Re-) Arrangements in 2D Glass

    NASA Astrophysics Data System (ADS)

    Muller, David

    2014-03-01

    Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov, A. Srivastava, V. Skakalova, J. C. Meyer, and J.H. Smet. This work was supported by the NSF through the Cornell Center for Materials Research (NSF DMR-1120296).

  20. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  1. Room temperature mid-IR single photon spectral imaging

    E-print Network

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. While modern Quantum cascade lasers have evolved as ideal coherent mid-IR excitation sources, simple, low noise, room temperature detectors and imaging systems still lag behind. We address this need presenting a novel, field-deployable, upconversion system for sensitive, 2-D, mid-IR spectral imaging. Measured room temperature dark noise is 0.2 photons/spatial element/second, which is a billion times below the dark noise level of cryogenically cooled InSb cameras. Single photon imaging and up to 200 x 100 spatial elements resolution is obtained reaching record high continuous wave quantum efficiency of about 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applicat...

  2. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a gradient-based similarity measure. Finally, if needed, they obtain the position information of the liver lesion using the 3D preoperative image to which the registered 2D preoperative slice belongs. Results: The proposed method was applied to 23 clinical datasets and quantitative evaluations were conducted. With the exception of one clinical dataset that included US images of extremely low quality, 22 datasets of various liver status were successfully applied in the evaluation. Experimental results showed that the registration error between the anatomical features of US and preoperative MR images is less than 3 mm on average. The lesion tracking error was also found to be less than 5 mm at maximum. Conclusions: A new system has been proposed for real-time registration between 2D US and successive multiple 3D preoperative MR/CT images of the liver and was applied for indirect lesion tracking for image-guided intervention. The system is fully automatic and robust even with images that had low quality due to patient status. Through visual examinations and quantitative evaluations, it was verified that the proposed system can provide high lesion tracking accuracy as well as high registration accuracy, at performance levels which were acceptable for various clinical applications.

  3. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography

    PubMed Central

    Chan, Kenneth H.; Chan, Andrew C.; Fried, William A.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2015-01-01

    Several studies have demonstrated the potential of cross-polarization optical coherence tomography (CP-OCT) to quantify the severity of early caries lesions (tooth decay) on tooth surfaces. The purpose of this study is to show that 2D images of the lesion depth and the integrated reflectivity can be used to accurately represent the severity of early lesions. Simulated early lesions of varying severity were produced on tooth samples using simulated lesion models. Methods were developed to convert the 3D CP-OCT images of the samples to 2D images of the lesion depth and lesion integrated reflectivity. Calculated lesion depths from OCT were compared with lesion depths measured from histological sections examined using polarized light microscopy. The 2D images of the lesion depth and integrated reflectivity are well suited for visualization of early demineralization. Polarized light micrographs (PLM) of one of the histological sections from a tooth exposed to demineralization for 48 hrs. (A) PLM image of entire thin section (B) magnified PLM image of region of interest. PMID:24307350

  4. Computer-aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software.

    PubMed

    Piltti, Katja M; Haus, Daniel L; Do, Eileen; Perez, Harvey; Anderson, A J; Cummings, B J

    2011-11-01

    Accurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity® to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i® confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ?94.4% correspondence with human recognized objects. PMID:21775237

  5. ECE imaging of electron temperature and electron temperature fluctuations (invited)

    SciTech Connect

    Deng, B. H.; Domier, C. W.; Luhmann, N. C.; Brower, D. L.; Cima, G.; Donne, A. J. H.; Oyevaar, T.; van de Pol, M. J.

    2001-01-01

    Electron cyclotron emission imaging (ECE imaging or ECEI) is a novel plasma diagnostic technique for the study of electron temperature profiles and fluctuations in magnetic fusion plasma devices. Instead of a single receiver located in the tokamak midplane as in conventional ECE radiometers, ECEI systems utilize large diameter imaging optics coupled with planar millimeter-wave imaging arrays to form multichannel ECE diagnostics with excellent spatial resolution. Combined with specially designed imaging optics, the use of these compact, low cost arrays has resulted in the excellent spatial resolution of the ECEI systems, the unique capability of two-dimensional measurements, and flexibility in the measurement of plasma fluctuations. Technical details and principles of this emerging diagnostic technique are described in this article. Illustrative experimental results are presented, together with a discussion of the further development of the diagnostic.

  6. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  7. Chronicle of Bukit Bunuh for possible complex impact crater by 2-D resistivity imaging (2-DERI) with geotechnical borehole records

    NASA Astrophysics Data System (ADS)

    Jinmin, M.; Saad, R.; Saidin, M.; Ismail, N. A.

    2015-03-01

    A 2-D resistivity imaging (2-DERI) study was conducted at Bukit Bunuh, Lenggong, Perak. Archaeological Global Research Centre, Universiti Sains Malaysia shows the field evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh. A regional 2-DERI study focusing at Bukit Bunuh to identify the features of subsurface and detail study was then executed to verify boundary of the crater with the rebound effects at Bukit Bunuh which covered approximately 132.25 km2. 2-DERI survey used resistivity equipment by ABEM SAS4000 Terrameter and ES10-64C electrode slector with pole-dipole array. The survey lines were carried out using `roll-along' technique. The data were processed and analysed using RES2DINV, Excel and Surfer software to obtain resistivity results for qualitative interpretations. Bedrock depths were digitized from section by sections obtained. 2-DERI results gives both regional and detail study shows that the study area was divided into two main zones, overburden consists of alluvium mix with boulders embedded with resistivity value of 10-800 ?m and granitic bedrock with resistivity value of >1500 ?m and depth 5-50 m. The low level bedrock was circulated by high level bedrock (crater rim) was formed at the same area with few spots of high level bedrock which appeared at the centre of the rim which suspected as rebound zones (R). Assimilations of 2-DERI with boreholes are successful give valid and reliable results. The results of the study indicates geophysical method are capable to retrieve evidence of meteorite impact subsurface of the studied area.

  8. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    SciTech Connect

    H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-05-07

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

  9. Simultaneous microwave imaging system for density and temperature fluctuation measurements on TEXTOR (invited)

    SciTech Connect

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-10-01

    Diagnostic systems for fluctuation measurements in plasmas are, of necessity, evolving from simple one-dimensional (1D) systems to multidimensional systems due to the complexity of the magnetohydrodynamics (MHD) and turbulence physics of plasmas as illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, microwave imaging reflectometry (MIR) and electron cyclotron emission imaging (ECEI), simultaneously measuring density and temperature fluctuations, have been developed for Toroidal EXperiment for Technology Oriented Research (TEXTOR). The MIR system was installed on Textor and the experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The 2D ECE imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured the first true 2D images of T{sub e} fluctuations of m=1 oscillations ('sawteeth') near the q{approx}1 surface.

  10. Textural analyses of carbon fiber materials by 2D-FFT of complex images obtained by high frequency eddy current imaging (HF-ECI)

    NASA Astrophysics Data System (ADS)

    Schulze, Martin H.; Heuer, Henning

    2012-04-01

    Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.

  11. Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism

    NASA Astrophysics Data System (ADS)

    Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

    2014-10-01

    Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3.

  12. Tuning the growth pattern in 2D confinement regime of Sm2O3 and the emerging room temperature unusual superparamagnetism.

    PubMed

    Guria, Amit K; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K; Giri, Saurav; Pradhan, Narayan

    2014-01-01

    Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458

  13. Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism

    PubMed Central

    Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

    2014-01-01

    Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458

  14. High temperature immersion type ultrasonic imaging probes

    NASA Astrophysics Data System (ADS)

    Rehman, A.-U.; Jen, C.-K.; Ihara, I.

    2001-04-01

    Ultrasonic probes for high temperature measurements in immersion are presented. These probes consist of piezoelectric transducers and buffer rods, are operated in the pulse-echo mode. The operating temperature is up to 215 °C and there is no need for a cooling system. For imaging purposes, one end of the clad buffer rod is attached with a piezoelectric transducer and the other end is machined into a semi-spherical concave shape that provides the focus. The operating frequency is 5 MHz. Ultrasonic images produced using mechanical raster scan and the measurements, when the probes are fully immersed in silicone oil at elevated temperatures, are presented. The importance of the signal-to-noise ratio in the pulse-echo measurement is discussed.

  15. Dynamics of non-planar vortices in the classical 2D anisotropic heisenberg model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kamppeter, T.; Mertens, F. G.; Sánchez, Angel; Gronbech-Jensen, N.; Bishop, A. R.; Dominguez-Adame, F.

    The 2-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry bears non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. In order to study the dynamics of these vortices under thermal fluctuations we use the Landau-Lifshitz equation and add white noise and Gilbert damping. Using a collective variable theory we derive an equation of motion with stochastic forces which are shown to represent white noise with an effective diffusion constant. We compare the results with Langevin dynamics simulations for the Landau-Lifshitz equation and find three temperature regimes: For low temperatures the dynamics is described by a 3rd-order equation of motion, for intermediate temperatures by a 1st-order equation. For higher temperatures, but still below the Kosterlitz-Thouless transition temperature, the spontaneous appearance of vortex-antivortex pairs does not allow a single-particle description.

  16. 2D perovskite nanosheets with thermally-stable high-? response: a new platform for high-temperature capacitors.

    PubMed

    Kim, Yoon-Hyun; Kim, Hyung-Jun; Osada, Minoru; Li, Bao-Wen; Ebina, Yasuo; Sasaki, Takayoshi

    2014-11-26

    We investigated high-temperature dielectric responses of high-? perovskite nanosheet (Ca2Nb3O10), an important material platform for postgraphene technology and ultrascale electronic devices. Through in situ characterizations using conducting atomic force microscopy, we found a robust high-temperature property of Ca2Nb3O10 nanosheet even in a monolayer form (?2 nm). Furthermore, layer-by-layer assembled nanocapacitors retained both size-free high-?r characteristic (?200) and high insulation resistance (?1×10(-7) A/cm2) at high temperatures up to 250 °C. The simultaneous improvement of ?r and thermal stability in high-? nanodielectrics is of critical technological importance, and perovskite nanosheet has great potential for a rational design and construction of high-temperature capacitors. PMID:25372940

  17. A robust cell counting approach based on a normalized 2D cross-correlation scheme for in-line holographic images.

    PubMed

    Ra, Ho-Kyeong; Kim, Hyungseok; Yoon, Hee Jung; Son, Sang Hyuk; Park, Taejoon; Moon, Sangjun

    2013-09-01

    To achieve the important aims of identifying and marking disease progression, cell counting is crucial for various biological and medical procedures, especially in a Point-Of-Care (POC) setting. In contrast to the conventional manual method of counting cells, a software-based approach provides improved reliability, faster speeds, and greater ease of use. We present a novel software-based approach to count in-line holographic cell images using the calculation of a normalized 2D cross-correlation. This enables fast, computationally-efficient pattern matching between a set of cell library images and the test image. Our evaluation results show that the proposed system is capable of quickly counting cells whilst reliably and accurately following human counting capability. Our novel approach is 5760 times faster than manual counting and provides at least 68% improved accuracy compared to other image processing algorithms. PMID:23839256

  18. 2D–3D radiograph to cone-beam computed tomography (CBCT) registration for C-arm image-guided robotic surgery

    PubMed Central

    Liu, Wen Pei; Otake, Yoshito; Azizian, Mahdi; Wagner, Oliver J.; Sorger, Jonathan M.; Armand, Mehran; Taylor, Russell H.

    2015-01-01

    Purpose C-arm radiographs are commonly used for intraoperative image guidance in surgical interventions. Fluoroscopy is a cost-effective real-time modality, although image quality can vary greatly depending on the target anatomy. Cone-beam computed tomography (CBCT) scans are sometimes available, so 2D–3D registration is needed for intra-procedural guidance. C-arm radiographs were registered to CBCT scans and used for 3D localization of peritumor fiducials during a minimally invasive thoracic intervention with a da Vinci Si robot. Methods Intensity-based 2D–3D registration of intraoperative radiographs to CBCT was performed. The feasible range of X-ray projections achievable by a C-arm positioned around a da Vinci Si surgical robot, configured for robotic wedge resection, was determined using phantom models. Experiments were conducted on synthetic phantoms and animals imaged with an OEC 9600 and a Siemens Artis zeego, representing the spectrum of different C-arm systems currently available for clinical use. Results The image guidance workflow was feasible using either an optically tracked OEC 9600 or a Siemens Artis zeego C-arm, resulting in an angular difference of ?? : ~ 30°. The two C-arm systems provided TREmean ? 2.5 mm and TREmean ? 2.0 mm, respectively (i.e., comparable to standard clinical intraoperative navigation systems). Conclusions C-arm 3D localization from dual 2D–3D registered radiographs was feasible and applicable for intraoperative image guidance during da Vinci robotic thoracic interventions using the proposed workflow. Tissue deformation and in vivo experiments are required before clinical evaluation of this system. PMID:25503592

  19. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  20. Few networks offer sufficient bandwidth for the transmission of high resolution 2D and 3D medical image

    E-print Network

    Pycock, David

    ­D medical image sets without incurring significant latency. Traditional compression methods do to managing image transmission in which spatial regions are selected and prioritised for transmission so that data is received in a timely manner. This is a lossless form of progressive image transmission in which

  1. Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.

    PubMed

    Hopp, T; Duric, N; Ruiter, N V

    2015-03-01

    Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

  2. Magnetic resonance tomography using elongated transmitter and in-loop receiver arrays for time-efficient 2-D imaging of subsurface aquifer structures

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Müller-Petke, M.; Lin, J.; Yaramanci, U.

    2015-02-01

    Surface nuclear magnetic resonance (surface-NMR) is a promising technique for exploring shallow subsurface aquifer structures. Surface-NMR can be applied in environments that are characterized as a 1-D layered Earth. The technique utilizes a single loop and is referred to as magnetic resonance sounding. The technique referred to as magnetic resonance tomography (MRT) allows complex 2-D aquifer structures to be explored. Currently, MRT requires multiple loops and a roll along measurement scheme, which causes long survey time. We propose a loop layout using an elongated transmitter and an in-loop receiver arrays (ETRA) to conduct a 2-D survey with just one measurement. We present a comprehensive comparison between the new layout and the common approaches based on sensitivity and resolution analyses and show synthetic and field data. The results show that ETRA generates subsurface images at sufficient resolution with significantly lower survey times than other loop layouts.

  3. Block-based spatial prediction and transforms based on 2D Markov processes for image and video compression.

    PubMed

    Kamisli, Fatih

    2015-04-01

    Conventional intraframe coding is performed in two steps. First, a block of pixels are predicted by copying previously reconstructed neighbor pixels of the block along an angular direction inside the block. Then, the prediction residual block is transform coded with the well-known 2D discrete cosine transform (DCT). Recently, it has been shown that transforming the intraprediction residuals with the odd type-3 discrete sine transform along the prediction direction and the DCT along the perpendicular direction improves the compression performance. More recently, a recursive prediction approach has been proposed to improve intra prediction performance. Both of these recent approaches utilize Markov processes to develop improvements in either the transform or the prediction step but not in both. In this paper, both the intraprediction and the transform steps are obtained based on 2D Markov processes. The derived overall intraframe coding approaches can generalize the mentioned two approaches, provide improved coding gains and produce less blocking effects at low bitrates. PMID:25675456

  4. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    PubMed Central

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-01-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399

  5. Sensor fusion of 2D and 3D data for the processing of images of dental imprints

    NASA Astrophysics Data System (ADS)

    Methot, Jean-Francois; Mokhtari, Marielle; Laurendeau, Denis; Poussart, Denis

    1993-08-01

    This paper presents a computer vision system for the acquisition and processing of 3-D images of wax dental imprints. The ultimate goal of the system is to measure a set of 10 orthodontic parameters that will be fed to an expert system for automatic diagnosis of occlusion problems. An approach for the acquisition of range images of both sides of the imprint is presented. Range is obtained from a shape-from-absorption technique applied to a pair of grey-level images obtained at two different wavelengths. The accuracy of the range values is improved using sensor fusion between the initial range image and a reflectance image from the pair of grey-level images. The improved range image is segmented in order to find the interstices between teeth and, following further processing, the type of each tooth on the profile. Once each tooth has been identified, its accurate location on the imprint is found using a region- growing approach and its shape is reconstructed with third degree polynomial functions. The reconstructed shape will be later used by the system to find specific features that are needed to estimate the orthodontic parameters.

  6. A 2-D basin-scale methane hydrate model: equilibrium and transient sensitivity to ocean temperature. (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, D. E.; McGuire, P. C.; Buffett, B. A.

    2010-12-01

    Carbon and oxygen isotopic variations through the Paleocene-Eocene thermal maximum event suggest that biogenic methane was not the source of the perturbing carbon, but this does not guarantee that the hydrates on Earth today will not eventually respond to the unique provocation of the global warming climate event. The SpongeBOB ocean methane hydrate model is used to simulate the accumulation of sediment along a passive continental margin over geologic time scales. Fluid motions within the sediment column are driven by compaction and variations in sediment permeability, and they impact the efficiency of methane trapping within hydrate deposits. The equilibrium and transient sensitivity of the methane inventory in the sediments to the temperature of the ocean will be assessed.

  7. In-vivo imaging of skin under stress: potential of high-frequency (20 MHz) static 2-D elastography.

    PubMed

    Mofid, Yassine; Ossant, Frédéric; Imberdis, Claude; Josse, Gwendal; Patat, Frédéric

    2006-05-01

    The aim of this study was to evaluate the potential of high-frequency static two-dimensional (2-D) elastography for in vivo exploration of the mechanical behavior of skin. Our device was based on the combination of a 20 MHz sonographer and a patented extensiometer device able to apply calibrated uniaxial stretching of the skin. We used a new algorithm to compute elastograms that improve elastographic signal-to-noise ratio (SNRe) without sacrificing resolution. Mechanical behavior was described according to the axial strain and lateral displacements induced in the tissue. The efficacy of the strain anpolyvinyl alcohol first evaluated in polyvinyl alcohol (PVA)-cryogel phantoms. Several in vivo experiments then were conducted, mainly with the multistretching averaging method, and demonstrated the potential of this technique in the evaluation of mechanical behavior of the dermis and the hypodermis under stress. PMID:16764447

  8. Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization

    PubMed Central

    Mattson, Eric C.; Aboualizadeh, Ebrahim; Barabas, Marie E.; Stucky, Cheryl L.; Hirschmugl, Carol J.

    2013-01-01

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells. PMID:24256815

  9. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  10. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-01-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image. PMID:24223474

  11. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-10-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographic image of food contained on a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image-based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.

  12. Geological Processes Affecting the Shallow Seafloor Temperature Fields: Results from 2D and 3D Seismic Reflection Data Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, W. C.; Chen, L.; Liu, C. S.; Wang, Y.; Berndt, C.; Han, W. C.; Lin, S.

    2014-12-01

    Seafloor heat flow measurements provide fundamental geophysical information that can be used to better understand tectonic processes. Regional heat flow patterns have been successfully used to study the cooling of the oceanic lithosphere, exhumation of deep crustal materials, strength of the faults, and other geological processes. However, sometimes there are variations of heat flows within a small area, making the interpretation of the heat flows difficult. Here we study the geological processes that can cause such variations. Over the last two decades, we have collected many dense 2D and 3D seismic reflection data offshore SW Taiwan and there is a wide-spread bottom-simulating reflector (BSR) found in the seismic profiles. The BSR is interpreted as associated with the base of the gas hydrate stability zone, and can be used to infer the temperature fields at shallow oceanic crust using a hydrate phase diagram. Such a dense and wide-spread dataset provides an unprecedented opportunity to study processes that can affect temperature fields in scales less than a kilometer. Here we show evidence of bathymetry-induced temperature perturbations at shallow oceanic crust by comparing the BSR-based temperature data with the temperature derived from steady-state 3D finite element modeling. We have also documented focused fluid flow migration along faults and fissures based on elevated temperature fields near those geological features. We also found seismic evidence of abnormal high heat flows caused by rapid erosion. Our results demonstrate that sometimes it is necessary to correct those effects before the heat flow data can be used for regional studies. Our study is among the first to provide observational data to study small-scale geological processes affecting seafloor temperature fields. Such information might also be important for gas and oil reservoir studies.

  13. Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.

    1994-01-01

    A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

  14. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation

    SciTech Connect

    Lou, C.; Zhou, H.C.

    2005-10-01

    This paper presents a novel instrumentation system for deducing the two-dimensional (2-D) distribution of temperature across a cross section of a furnace fired with pulverized coal. The system consisted of four flame image detectors, a frame-maker, and a microcomputer with a frame-grabber. Four colored images were captured by the four detectors, which were mounted in the four corners of a tangentially fired furnace. A radiation model was established to relate the flame images with the 2-D temperature distribution. A revised Tikhonov regularization method was used to reconstruct the 2-D temperature distribution from the flame radiation images. The experiment was done in a 1025 t/h boiler furnace of a 300-MW power generation unit. The 2-D temperature distribution in 100 discrete meshes in the cross section above the burner zone was deduced continuously using this instrumentation. The experimental results show that the 2-D temperature distribution appears typically to have single-peak shape with temperatures higher in the center and lower near the wall. Results obtained over a range of combustion conditions demonstrated that the average temperature of the cross section changed in direct proportion to the load of the furnace. The method is practically suitable for the on-line monitoring of combustion in a furnace.

  15. This work introduces a novel active contour-based scheme for unsupervised segmentation of protein spots in two-dimensional gel electrophoresis (2D-GE) images. The proposed segmentation scheme is the first to

    E-print Network

    Athens, University of

    of manual editing, which is required in state-of-the-art 2D-GE image analysis software packages. It is based as of dust particles, fingerprints and cracks on the gel surface. In addition, illumination may result

  16. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    NASA Astrophysics Data System (ADS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2015-10-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run.

  17. How isopolyanions self-assemble and condense into a 2D tungsten oxide crystal: HRTEM imaging of atomic arrangement in an intermediate new hexagonal phase

    SciTech Connect

    Chemseddine, A. Bloeck, U.

    2008-10-15

    The structure and structural evolution of tungstic acid solutions, sols and gels are investigated by high-resolution electron microscopy (HRTEM). Acidification of sodium tungstate solutions, through a proton exchange resin, is achieved in a way that ensures homogeneity in size and shape of intermediate polytungstic species. Gelation is shown to involve polycondensation followed by a self-assembling process of polytungstic building blocks leading to sheets with a layered hexagonal structure. Single layers of this new metastable phase are composed of three-, four- and six-membered rings of WO{sub 6} octahedra located in the same plane. This is the first time that a 2D oxide crystal is isolated and observed by direct atomic resolution. Further ageing and structural evolution leading to single sheets of 2D ReO{sub 3}-type structure is directly observed by HRTEM. Based on this atomic level imaging, a model for the formation of the oxide network structure involving a self-assembling process of tritungstic based polymeric chain is proposed. The presence of tritungstic groups and their packing in electrochromic WO{sub 3} films made by different techniques is discussed. - Graphical abstract: From the isopolyanion to the extended bulk tungsten oxide: HRTEM imaging.

  18. A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion

    SciTech Connect

    Labate, L.; Koester, P.; Levato, T.; Gizzi, L. A.

    2012-10-15

    A novel x-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any x-ray photon energy range, over a large domain, on a single-shot basis. The device (named energy-encoded pinhole camera) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available x-ray spectral domain is only limited by the quantum efficiency of scientific-grade x-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any x-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent inertial confinement fusion related experiments will be reported in order to detail the new diagnostic.

  19. Digital breast tomosynthesis: application of 2D digital mammography CAD to detection of microcalcification clusters on planar projection image

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Computer-aided detection (CAD) has the potential to aid radiologists in detection of microcalcification clusters (MCs). CAD for digital breast tomosynthesis (DBT) can be developed by using the reconstructed volume, the projection views or other derivatives as input. We have developed a novel method of generating a single planar projection (PPJ) image from a regularized DBT volume to emphasize the high contrast objects such as microcalcifications while removing the anatomical background and noise. In this work, we adapted a CAD system developed for digital mammography (CADDM) to the PPJ image and compared its performance with our CAD system developed for DBT volumes (CADDBT) in the same set of cases. For microcalcification detection in the PPJ image using the CADDM system, the background removal preprocessing step designed for DM was not needed. The other methods and processing steps in the CADDM system were kept without modification while the parameters were optimized with a training set. The linear discriminant analysis classifier using cluster based features was retrained to generate a discriminant score to be used as decision variable. For view-based FROC analysis, at 80% sensitivity, an FP rate of 1.95/volume and 1.54/image were achieved, respectively, for CADDBT and CADDM in an independent test set. At a threshold of 1.2 FPs per image or per DBT volume, the nonparametric analysis of the area under the FROC curve shows that the optimized CADDM for PPJ is significantly better than CADDBT. However, the performance of CADDM drops at higher sensitivity or FP rate, resulting in similar overall performance between the two CAD systems. The higher sensitivity of the CADDM in the low FP rate region and vice versa for the CADDBT indicate that a joint CAD system combining detection in the DBT volume and the PPJ image has the potential to increase the sensitivity and reduce the FP rate.

  20. 124I-Epidepride: A PET Radiotracer for Extended Imaging of Dopamine D2/D3 Receptors

    PubMed Central

    Pandey, Suresh; Venugopal, Archana; Kant, Ritu; Coleman, Robert; Mukherjee, Jogeshwar

    2014-01-01

    Objectives A new radiotracer, 124I-epidepride, has been developed for the imaging of dopamine D2/3 receptors (D2/3Rs). 124I-epidepride (half-life of 124I = 4.2days) allows imaging over extended periods compared to 18F-fallypride (half-life of 18F = 0.076days) and may maximize visualization of D2/3Rs in the brain and pancreas (allowing clearance from adjacent organs). D2/3Rs are also present in pancreatic islets where they co-localize with insulin to produce granules and may serve as a surrogate marker for imaging diabetes. Methods 124I-Epidepride was synthesized using N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-tributyltin-2,3-dimethoxybenzamide and 124I-iodide under no carrier added condition. Rats were used for in vitro and in vivo imaging. Brain slices were incubated with 124I-epidepride (0.75?Ci/cc) and nonspecific binding measured with 10 ?M haloperidol. Autoradiograms were analyzed by OptiQuant. 124I-Epidepride (0.2 to 0.3 mCi, iv) was administered to rats and brain uptake at 3 hours, 24 hours, and 48 hours post injection was evaluated. Results 124I-Epidepride was synthesized with 50% radiochemical yield and high radiochemical purity (>95%). 124I-Epidepride localized in the striatum with a striatum to cerebellum ratio of 10. Binding was displaced by dopamine and haloperidol. Brain slices demonstrated localization of 124I-epidepride up until 48 hr in the striatum. However, the extent of binding was reduced significantly. Conclusions 124I-Epidepride is a new radiotracer suitable for extended imaging of dopamine D2/3 receptors and may have applications in imaging of receptors in the brain and monitoring pancreatic islet cell grafting. PMID:24602412

  1. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images

    SciTech Connect

    Leong, Andrew F. T.; Islam, M. Sirajul; Kitchen, Marcus J.; Fouras, Andreas; Wallace, Megan J.; Hooper, Stuart B.

    2013-04-15

    Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions {approx}16.2 {mu}m). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure changes in regional lung volume at high spatial and temporal resolution during breathing at much lower x-ray dose than would be required using computed tomography.

  2. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  3. 2D and 3D soil moisture imaging using a sensor-based platform moving inside a subsurface network of pipes

    NASA Astrophysics Data System (ADS)

    Gravalos, I.; Moshou, D.; Loutridis, S.; Gialamas, Th.; Kateris, D.; Bompolas, E.; Tsiropoulos, Z.; Xyradakis, P.; Fountas, S.

    2013-08-01

    In this study a prototype sensor-based platform moving inside a subsurface network of pipes with the task of monitoring the soil moisture content is presented. It comprises of a mobile platform, a modified commercial soil moisture sensor (Diviner 2000), a network of subsurface polyvinylchloride (PVC) access pipes, driving hardware and image processing software. The software allows the composition of two-dimensional (2D) or three-dimensional (3D) images with high accuracy and at a large scale. The 3D soil moisture images are created by using 2D slices for better illustration of the soil moisture variability. Three case studies of varying soil moisture content using an experimental soil tank were examined. In the first case study, the irrigation water was applied uniformly on the entire tank surface. In second and third case studies, the irrigation water was applied uniformly only on the surface of the intermediate and last part of the soil tank respectively. The processed images give a detailed description of the soil moisture distribution of a layer at 15 cm depth under the soil surface in the tank. In all case studies that have been investigated, the distribution of soil moisture was characterized by a significant variability (difference between poorly and well-drained regions) of the soil tank. A very poorly-drained region was located in the middle of the soil tank, while well-drained soil areas were located southwest and northeast. The knowledge of the spatial and temporal distribution of soil moisture is a valuable tool for proper management of crop irrigation.

  4. Ultrafast 2D IR microscopy.

    PubMed

    Baiz, Carlos R; Schach, Denise; Tokmakoff, Andrei

    2014-07-28

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with ?m-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear "one beam" geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  5. Simultaneous image segmentation and medial structure estimation: application to 2D and 3D vessel tree extraction

    NASA Astrophysics Data System (ADS)

    Makram-Ebeid, Sherif; Stawiaski, Jean; Pizaine, Guillaume

    2011-03-01

    We propose a variational approach which combines automatic segmentation and medial structure extraction in a single computationally efficient algorithm. In this paper, we apply our approach to the analysis of vessels in 2D X-ray angiography and 3D X-ray rotational angiography of the brain. Other variational methods proposed in the literature encode the medial structure of vessel trees as a skeleton with associated vessel radii. In contrast, our method provides a dense smooth level set map which sign provides the segmentation. The ridges of this map define the segmented regions skeleton. The differential structure of the smooth map (in particular the Hessian) allows the discrimination between tubular and other structures. In 3D, both circular and non-circular tubular cross-sections and tubular branching can be handled conveniently. This algorithm allows accurate segmentation of complex vessel structures. It also provides key tools for extracting anatomically labeled vessel tree graphs and for dealing with challenging issues like kissing vessel discrimination and separation of entangled 3D vessel trees.

  6. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  7. Detecting Shapes in 2D Point Clouds Generated from Images Jingyong Su, Anuj Srivastava, Zhiqiang Zhu, and Fred Huffer

    E-print Network

    Srivastava, Anuj

    , recognition, and understanding - rely on analysis, statis- tical or otherwise, of certain features of objects present in images. An important feature of many objects is their shape. One way to use shape analysis because the process of estimat- ing boundaries uses low-level techniques that extract a set of primitives

  8. Revealing high room and low temperatures mobilities of 2D holes in a strained Ge quantum well heterostructures grown on a standard Si(0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Myronov, Maksym; Morrison, Christopher; Halpin, John; Rhead, Stephen; Foronda, Jamie; Leadley, David

    2015-08-01

    Carrier mobility is one of the most important parameters of any semiconductor material, determining its suitability for applications in a large variety of electronic devices including field effect transistors (FETs). Today the capabilities of modern planar Si FET devices are almost exhausted and researchers are seeking either new device architectures or new materials. Here we report an extremely high room temperature (at 293 K) 2D hole gas (2DHG) drift mobility of 4500 cm2 V-1 s-1 at a carrier density of 1.2 × 1011 cm-2 obtained in a compressively strained Ge quantum well (QW) heterostructure, grown by an industrial type chemical vapor deposition system on a standard Si(0 0 1) substrate. The low-temperature Hall mobility and carrier density of this structure, measured at 333 mK, are 777,000 cm2 V-1 s-1 and 1.9 × 1011 cm-2, respectively. These hole mobilities are the highest not only among the group-IV Si and Ge based semiconductors, but also among p-type III-V and II-VI materials. The obtained room temperature mobility is substantially higher than those reported so far in strained Ge QW heterostructures and reveals a huge potential for further applications of this material in a wide variety of electronic devices.

  9. In vivo and in vitro characterization of R(+)-FIDA2, a novel dopamine D2/D3 receptor imaging agent

    SciTech Connect

    Vessotskie, J.; Kung, M.P.; Ramaniello, G.

    1994-05-01

    FIDA2, (R)-(+)-2,3-dimethoxy-5-iodo-N-[1-(4`-fluorobenzyl)-2-pyrrolidinyl)-methyl]benzamide, is a new dopamine D2/D3 receptor imaging agent that can be labeled with either I-123 or F-18 for SPECT or PET imaging. In vitro binding studies of I-125 FIDA2 using dopamine D2 or D3 receptors expressed in Sf9 cells showed Kd values of 0.04 and 0.05 nM, respectively. In rat striatal homogenates, which contain a high density of dopamine D2 receptors, the ligand displayed a Kd of 0.04-0.06 nM. A series of in vivo SPECT images (transaxial sections, 2 mm) showed the radioactivity was localized in the area of the basal ganglia and reached peak concentrations in 11.2 {plus_minus} 5.9 min. The activity cleared at a rate of 33.5 {plus_minus} 9.4 %/hr. The target to nontarget ratios (basal ganglia to cerebellum) at time of peak, 1 hr, 2 hr and 3 hr p.i., were 1.1 {plus_minus} 0.4 (n=21), 3.5 {plus_minus} 1.0 (n=20), 6.3 {plus_minus} 2.9 (n=9, and 8.14 {plus_minus} 4.7 (n=9), respectively. At 90 min an injection of haloperidol or raclopride, dopamine D2/D3 receptor antagonists, displaced target activity but an injection of SCH23390, a dopamine D1 receptor antagonist, had little effect on activity in the basal ganglia. In addition, an injection of R-(+)-7-OH-PIPAT, a new ligand that is selective for the dopamine D3 receptor and the high affinity state of the dopamine D2 receptor, showed partial displacement ({approximately}15%) of I-123 FIDA2 binding in the basal ganglia. These studies indicate that FIDA2 may be a useful ligand for in vivo imaging of dopamine D2/D3 receptors.

  10. Primary mineral connectivity of polyphasic igneous rocks by high-quality digitisation and 2D image analysis

    NASA Astrophysics Data System (ADS)

    Sardini, Paul; Moreau, Eric; Sammartino, Stéphane; Touchard, Gérard

    1999-06-01

    In order to produce accurate images for geological studies, a Canon colour laser copier CLC 300 was connected to a Silicon Graphic workstation. This connection turns the copier into a high-quality colour scanner and printer, while keeping its copier abilities. The digitised images can be processed and analysed with specific programs, written using the C language under the X-Window standard graphic environment. The basic versions of these programs can be easily modified for further developments. These tools were applied to the analyses of primary mineral connectivities in two igneous rocks: a medium-grained granite from Soultz-sous-Forêts and a fine-grained tonalite from Charroux-Civray. Results are presented and discussed in terms of fluid pathway location.

  11. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    SciTech Connect

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-11-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

  12. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    PubMed

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dB? and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/?Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system. PMID:24109634

  13. 2D/3D Image fusion for accurate target localization and evaluation of a mask based stereotactic system in fractionated stereotactic radiotherapy of cranial lesions

    SciTech Connect

    Jin, J.-Y.; Ryu, Samuel; Faber, Kathleen; Mikkelsen, Tom; Chen Qing; Li Shidong; Movsas, Benjamin

    2006-12-15

    The purpose of this study was to evaluate the accuracy of a two-dimensional (2D) to three-dimensional (3D) image-fusion-guided target localization system and a mask based stereotactic system for fractionated stereotactic radiotherapy (FSRT) of cranial lesions. A commercial x-ray image guidance system originally developed for extracranial radiosurgery was used for FSRT of cranial lesions. The localization accuracy was quantitatively evaluated with an anthropomorphic head phantom implanted with eight small radiopaque markers (BBs) in different locations. The accuracy and its clinical reliability were also qualitatively evaluated for a total of 127 fractions in 12 patients with both kV x-ray images and MV portal films. The image-guided system was then used as a standard to evaluate the overall uncertainty and reproducibility of the head mask based stereotactic system in these patients. The phantom study demonstrated that the maximal random error of the image-guided target localization was {+-}0.6 mm in each direction in terms of the 95% confidence interval (CI). The systematic error varied with measurement methods. It was approximately 0.4 mm, mainly in the longitudinal direction, for the kV x-ray method. There was a 0.5 mm systematic difference, primarily in the lateral direction, between the kV x-ray and the MV portal methods. The patient study suggested that the accuracy of the image-guided system in patients was comparable to that in the phantom. The overall uncertainty of the mask system was {+-}4 mm, and the reproducibility was {+-}2.9 mm in terms of 95% CI. The study demonstrated that the image guidance system provides accurate and precise target positioning.

  14. A novel low-cost targeting system (LCTS) based upon a high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Wikman, John C.; Skaluba, Fred W.; Dippel, George F.; McDaniel, Robert V.; Ferrell, David S.; Seibel, William

    2005-10-01

    BAE SYSTEMS has developed a Low Cost Targeting System (LCTS) consisting of a FLIR for target detection, laser-illuminated, gated imaging for target identification, laser rangefinder and designator, GPS positioning, and auto-tracking capability within a small compact system size. This system has proven its ability to acquire targets, range and identify these targets, and designate or provide precise geo-location coordinates to these targets. The system is based upon BAE Systems proven micro-bolometer passive LWIR camera coupled with Intevac's new EBAPS camera. A dual wavelength diode pumped laser provides eyesafe ranging and target illumination, as well as designation; a custom detector module senses the return pulse for target ranging and to set the range gates for the gated camera. Intevac's camera is a CMOS based device with used selectable gate widths and can read at up to 28 frames/second when operated in VGA mode. The Transferred Electron photocathode enables high performance imaging in the SWIR band by enabling single photon detection at high quantum efficiency. Trials show that the current detectors offer complete extinction of signals outside of the gated range, thus, providing high resolution within the gated region. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. Imagery has been collected in both the laboratory and the field to verify system performance during a variety of operating conditions.

  15. Infrared absorption imaging of 2D supersonic jet expansions: Free expansion, cluster formation, and shock wave patterns

    NASA Astrophysics Data System (ADS)

    Zischang, Julia; Suhm, Martin A.

    2013-07-01

    N2O/He gas mixtures are expanded through a 10 × 0.5 mm2 slit nozzle and imaged by direct absorption vibrational spectroscopy, employing a HgCdTe focal plane array detector after interferometric modulation. N2O cluster formation in the free supersonic expansion is visualized. The expansion structure behind the frontal shock is investigated as a function of background pressure. At high pressures, a sequence of stationary density peaks along a narrow directed flow channel is characterized. The potential of the technique for the elucidation of aggregation mechanisms is emphasized.

  16. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating—phantom results

    NASA Astrophysics Data System (ADS)

    Daniels, M. J.; Varghese, T.; Madsen, E. L.; Zagzebski, J. A.

    2007-08-01

    Minimally invasive therapies (such as radiofrequency ablation) are becoming more commonly used in the United States for the treatment of hepatocellular carcinomas and liver metastases. Unfortunately, these procedures suffer from high recurrence rates of hepatocellular carcinoma (~34-55%) or metastases following ablation therapy. The ability to perform real-time temperature imaging while a patient is undergoing radiofrequency ablation could provide a significant reduction in these recurrence rates. In this paper, we demonstrate the feasibility of ultrasound-based temperature imaging on a tissue-mimicking phantom undergoing radiofrequency heating. Ultrasound echo signals undergo time shifts with increasing temperature, which are tracked using 2D correlation-based speckle tracking methods. Time shifts or displacements in the echo signal are accumulated, and the gradient of these time shifts are related to changes in the temperature of the tissue-mimicking phantom material using a calibration curve generated from experimental data. A tissue-mimicking phantom was developed that can undergo repeated radiofrequency heating procedures. Both sound speed and thermal expansion changes of the tissue-mimicking material were measured experimentally and utilized to generate the calibration curve relating temperature to the displacement gradient. Temperature maps were obtained, and specific regions-of-interest on the temperature maps were compared to invasive temperatures obtained using fiber-optic temperature probes at the same location. Temperature elevation during a radiofrequency ablation procedure on the phantom was successfully tracked to within ±0.5 °C.

  17. Phase-rotation based receive-beamformer for miniaturized volumetric ultrasound imaging scanners using 2-D CMUT-on-ASIC arrays

    NASA Astrophysics Data System (ADS)

    Kim, Bae-Hyung; Lee, Seunghun; Song, Jongkeun; Kim, Youngil; Jeon, Taeho; Cho, Kyungil

    2013-03-01

    Up-to-date capacitive micromachined ultrasonic transducer (CMUT) technologies provide us unique opportunities to minimize the size and cost of ultrasound scanners by integrating front-end circuits into CMUT arrays. We describe a design prototype of a portable ultrasound scan-head probe using 2-D phased CMUT-on-ASIC arrays of 3-MHz 250 micrometer-pitch by fabricating and integrating front-end electronics with 2-D CMUT array elements. One of the objectives of our work is to design a receive beamformer architecture for the smart probe with compact size and comparable performance. In this work, a phase-rotation based receive beamformer using the sampling frequency of 4 times the center frequency and a hybrid beamforming to reduce the channel counts of the system-side are introduced. Parallel beamforming is considered for the purpose of saving power consumption of battery (by firing fewer times per image frame). This architecture has the advantage of directly obtaining I and Q components. By using the architecture, the interleaved I/Q data from the storage is acquired and I/Q demodulation for baseband processing is directly achieved without demodulators including sin and cosine lookup tables and mixers. Currently, we are extending the presented architecture to develop a true smart probe by including lower power devices and cooling systems, and bringing wireless data transmission into consideration.

  18. Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.

  19. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    NASA Astrophysics Data System (ADS)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  20. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 ?m mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 ?W. In acquisition mode, the total power consumption of every pixel is 200 ?W. An equivalent noise charge (ENC) of 160 e?RMS at maximum gain and negative polarity conditions has been measured at room temperature.

  1. Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through...

  2. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    PubMed Central

    Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

    2014-01-01

    Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3?mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056

  3. Implications of respiratory motion for the quantification of 2D MR spectroscopic imaging data in the abdomen

    NASA Astrophysics Data System (ADS)

    Schwarz, A. J.; Leach, M. O.

    2000-08-01

    Magnetic resonance spectroscopic imaging (MRSI) studies in the abdomen or breast are acquired in the presence of respiratory motion. This modifies the point spread function (PSF) and hence the reconstructed spectra. We evaluated the quantitative effects of both periodic and aperiodic motion on spectra localized by MRSI. Artefactual signal changes, both the modification of native to a voxel and spurious signals arising elsewhere, depend primarily upon the motion amplitude relative to the voxel dimension. A similar dependence on motion amplitude was observed for simple harmonic motion (SHM), quasi-periodic motion and random displacements. No systematic dependence upon the period or initial phase of SHM or on the array size was found. There was also no significant variation with motion direction relative to the internal and external phase-encoding directions. In measured excursion ranges of 20 breast and abdominal tumours, 70% moved ? 5 mm, while 30% moved 6-23 mm. The diaphragm and fatty tissues in the gut typically moved ~ 15-20 mm. While tumour/organ excursions less than half the voxel dimension do not substantially affect native signals, the bleeding in of strong lipid signals will be problematic in 1H studies. MRSI studies in the abdomen, even of relatively well-anchored tumours, are thus likely to benefit from the addition of respiratory triggering or other motion compensation strategies.

  4. 2D-1H proton magnetic resonance spectroscopic imaging study on brain metabolite alterations in patients with diabetic hypertension.

    PubMed

    Cao, Zhen; Ye, Bi-Di; Shen, Zhi-Wei; Cheng, Xiao-Fang; Yang, Zhong-Xian; Liu, Yan-Yan; Wu, Ren-Hua; Geng, Kuan; Xiao, Ye-Yu

    2015-06-01

    The aim of the present study was to investigate the possible metabolic alterations in the frontal cortex and parietal white matter in patients with diabetic hypertension (DHT) using proton magnetic resonance (MR) spectroscopic imaging. A total of 33 DHT patients and 30 healthy control subjects aged between 45 and 75 were included in the present study. All subjects were right?handed. The spectroscopy data were collected using a GE Healthcare 1.5T MR scanner. The multi?voxels were located in the semioval center (repetition time/echo time=1,500 ms/35 ms). The area of interest was 8x10x2 cm in volume and contained the two sides of the frontal cortex and the parietal white matter. The spectra data were processed using SAGE software. The ratios of brain metabolite concentrations, particularly for N?acetylaspartate (NAA)/creatine (Cr) and Choline (Cho)/Cr were calculated and analyzed. Statistical analyses were performed using SPSS 17.0. The NAA/Cr ratio of the bilateral prefrontal cortex of the DHT group was significantly lower than that of the control group (left t=?7.854, P=0.000 and right t=?5.787, P=0.000), The Cho/Cr ratio was also much lower than the control group (left t=2.422, P=0.024 and right t=2.920, P=0.007). NAA/Cr ratio of the left parietal white matter of the DHT group was extremely lower than that of the control group (t=?4.199, P=0.000). Therefore, DHT may result in metabolic disorders in the frontal cortex and parietal white matter but the metabolic alterations are different in various regions of the brain. The alteration in cerebral metabolism is associated with diabetes and hypertension. The ratios of NAA/Cr and Cho/Cr are potential metabolic markers for the brain damage induced by DHT. PMID:25652580

  5. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  6. (2D)2PCA+(2D)2LDA: a new feature extraction for face recognition

    NASA Astrophysics Data System (ADS)

    Huang, Guohong

    2011-06-01

    In this paper, we combine the advantages of (2D)2PCA and (2D)2LDA, and propose a two-stage framework: "(2D)2PCA+(2D)2LDA". In the first stage, a two-directional 2D feature extraction technique, (2D)2PCA, is employed to condense the dimension of image matrix; in the second stage, the two-directional 2D linear discriminant analysis (2D)2LDA is performed in the (2D)2PCA subspace to find the optimal discriminant feature vectors. In addition, the proposed method can take full advantage of the descriptive information and discriminant information of the image. Experiments conducted on ORL and Yale face databases demonstrate the effectiveness and robustness of the proposed method.

  7. Temperature sensitivity of Cu K(alpha) imaging efficiency using a spherical Bragg reflecting crystal

    SciTech Connect

    Akli, K U; Key, M H; Chung, H K; Hansen, S B; Freeman, R R; Chen, M H; Gregori, G; Hatchett, S; Hey, D; Izumi, N; King, J A; Kuba, J; Norreys, P; Mackinnon, A J; Murphy, C D; Snavely, R; Stepehens, R; Stoeckel, C; Theobald, W; Zhang, B

    2006-08-07

    The Vulcan laser facility at the Rutherford Appleton Laboratory was used to study the interaction of a 75 J 10 ps, high intensity laser beam with low-mass solid, Cu targets. Two instruments were fielded as diagnostics of the Cu K-shell emission from the targets: A single photon counting CCD spectrometer provided the absolute K{sub {alpha}} yield and a spherically bent Bragg crystal recorded 2D monochromatic images with a spatial resolution of 10 {micro}m. Due to the shifting and broadening of the K{sub {alpha}} spectral lines with increasing temperature, there is a temperature dependence of the crystal collection efficiency. This provides a temperature diagnostic when cross calibrated against a single hit CCD spectrometer, and it affects measurements of the spatial pattern of electron transport. The experimental data showing changing collection efficiency are presented. The results are discussed in light of modeling of the temperature-dependent spectrum of Cu K-shell emission.

  8. Self-Calibration of Cone-Beam CT Geometry Using 3D-2D Image Registration: Development and Application to Task-Based Imaging with a Robotic C-Arm

    PubMed Central

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-01-01

    Purpose Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting “self-calibration” was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard (“true”) calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the “self” and “true” calibration methods were on the order of 10?3 mm?1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion The proposed geometric “self” calibration provides a means for 3D imaging on general non-circular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced “task-based” 3D imaging methods now in development for robotic C-arms. PMID:26388661

  9. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  10. Imaging the Ferron Member of the Mancos Shale formation using reprocessed high-resolution 2-D seismic reflection data: Emery County, Utah

    USGS Publications Warehouse

    Taylor, D.J.

    2003-01-01

    Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional exploration target along with the coal-bed methane production already proven in the area. ?? 2003 Elsevier B.V. All rights reserved.

  11. An analog-digital hybrid RX beamformer chip with non-uniform sampling for ultrasound medical imaging with 2D CMUT array.

    PubMed

    Um, Ji-Yong; Kim, Yoon-Jee; Cho, Seong-Eun; Chae, Min-Kyun; Song, Jongkeun; Kim, Baehyung; Lee, Seunghun; Bang, Jihoon; Kim, Youngil; Cho, Kyungil; Kim, Byungsub; Sim, Jae-Yoon; Park, Hong-June

    2014-12-01

    To reduce the memory area, a two-stage RX beamformer (BF) chip with 64 channels is proposed for the ultrasound medical imaging with a 2D CMUT array. The chip retrieved successfully two B-mode phantom images with a steering angle from -45 (°) to +45 (°), the maximum delay range of 8 ?s, and the delay resolution of 6.25 ns. An analog-digital hybrid BF (HBF) is chosen for the proposed chip to utilize the easy beamforming operation in the digital domain and also to reduce chip area by minimizing the number of ADCs. The chip consists of eight analog beamformers (ABF) for the 1st-stage and a digital beamformer (DBF) for the 2nd-stage. The two-stage architecture reduces the memory area of both ABF and DBF by around four times. The DBF circuit is divided into three steps to further reduce the digital FIFO memory area by around twice. Coupled with the non-uniform sampling scheme, the proposed two-stage HBF chip reduces the total memory area by around 40 times compared to the uniform-sampling single-stage BF chip. The chip fabricated in a 0.13- ?m CMOS process occupies the area of 19.4 mm(2), and dissipates 1.14 W with the analog supply of 3.3 V and the digital supply of 1.2 V. PMID:25532209

  12. Description and demonstration of the new Middle and Upper atmosphere Radar imaging system: 1-D, 2-D, and 3-D imaging of troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Hassenpflug, G.; Yamamoto, M.; Luce, H.; Fukao, S.

    2008-04-01

    The Middle and Upper atmosphere Radar (MUR) was upgraded in March 2004 for radar imaging capability with 5 frequencies across a 1 MHz bandwidth and 25 digital receivers. Although digitization introduces problems of its own, the uniformity of digitization is a great benefit over the analogue system in place before. This increased reliability will help make the new system an important component of long-term atmospheric science programs. We demonstrate 3-D imaging with Capon's method, which can provide information about structure morphology. In addition, we demonstrate an experimental 0.5 ?s pulse mode and compare this to Capon method imaging results.

  13. HIGH TIME-RESOLVED, 2-D IMAGING OF TYPE-1 ELMs IN DIII-D USING A IMAGE-INTENSIFIED CID CAMERA

    SciTech Connect

    GROTH, M.; FENSTERMACHER, M.E.; BOEDO, J.A.; BROOKS,N.H.; GRAY, D.S.; LASNIER, C.J.; LEONARD, A.W.; PORTER, G.D.; WATKINS, J.G.

    2002-06-01

    The evolution of 2-D emission profiles of D{sub {alpha}} and C III during type-I ELMs has been investigated in DIII-D using a tangentially viewing gated, intensified charge-injected device (CID) camera. The measured CIII emission profiles indicate transient inner leg attachment with the arrival of the ELM heat pulse. The measured D{sub {alpha}} emission profiles during an ELM cycle show enhanced deuterium recycling during the deposition of the ELM particle pulse at the target, which suggests the detachment of the divertor plasma from the target plates. Measurements taken in ELMy H-mode discharges at densities of 50% and 90% of the Greenwald density limit are compared utilizing the CID camera system and a comprehensive set of other divertor diagnostics. An ELM model based on fluid and PIC simulations is used to discuss the observation on the response of the divertor plasma to the ELM heat and particle pulse.

  14. Imaging in 2D media

    NASA Astrophysics Data System (ADS)

    Medvedev, S. N.

    2015-10-01

    Stacking by CDP technique is inapplicable for processing of data from bottom seismic stations or acoustic sonobuoys. In addition, big amount of unknown velocity and structural parameters of the real layered medium do not allow these parameters to be defined by standard processing methods. Local sloped stacking is proposed for simultaneous obtaining the stacked tracks, travel time curve of a chosen wave, and the first derivative of this travel time curve. The additionally defined parameters are second derivative of this travel time curve and integrated average of squared travel time curve. These data are sufficient to reduce the amount of unknown parameters (down to one-two for each boundary) when layer-by-layer top-to-bottom processing. As a result, the stable estimates of velocity parameters of the layered (isotropic or anisotropic) medium can be obtained and stacked tracks obtained by local sloped staking can be transformed into boundaries in the time and depth sections.

  15. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution. PMID:26372473

  16. Development of a soft-X ray detector for energy resolved 2D imaging by means of a Gas Pixel Detector with highly integrated microelectronics

    SciTech Connect

    Pacella, D.; Pizzicaroli, G.; Romano, A.; Gabellieri, L.; Bellazzini, R.; Brez, A.

    2008-03-12

    Soft-X ray 2-D imaging on ITER is not considered yet. We propose a new approach, based on a gas detector with a gas electron multiplier (GEM) as amplifying structure and with a two-dimensional readout fully integrated with the front end electronics, through an ASIC developed on purpose. The concept has been already tested by means of a prototype, with 128 pixels, carried out in Frascati in collaboration with INFN-Pisa and tested on FTU in 2001 and NSTX in 2002-2004. Thanks to the photon counting mode, it provides 2-D imaging with high time resolution (sub millisecond), high sensitivity and signal to noise ratio. Its capability of energy discrimination allows the acquisition of pictures in X-ray energy bands or to perform a spectral scan in the full energy interval. We propose the realisation of such kind a detector with a readout microchip (ASIC) equipped with 105600 hexagonal pixels arranged at 70 {mu}m pitch in a 300x352 honeycomb matrix, corresponding to an active area of 2.1x2.1 cm{sup 2}, with a pixel density of 240 pixels/ mm{sup 2}. Each pixel is connected to a charge sensitive amplifier followed by a discriminator of pulse amplitude and counter. The chip integrates more than 16.5 million transistors and it is subdivided in 64 identical clusters, to be read independently each other. An important part of the work will be also the design of the whole detector to fulfil all the constraints and requirements as plasma diagnostic in a tokamak machine. Since the detector has high and controllable intrinsic gain, it works well even at very low photon energy, ranging from 0.2 keV to 10 keV (X-VUV region). This range appears therefore particularly suitable for ITER to monitor the outer part of the plasma. In particular pedestal physics, edge modes, localization and effects of additional heating, boundary plasma control etc. The capability of this proposed detector to work in this energy range is further valuable because solid state detectors are not favorite at low energy because of the lack of intrinsic gain.

  17. A novel material detection algorithm based on 2D GMM-based power density function and image detail addition scheme in dual energy X-ray images.

    PubMed

    Pourghassem, Hossein

    2012-01-01

    Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy. PMID:22635176

  18. Spectrally edited 2D 13C-13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials.

    PubMed

    Johnson, Robert L; Anderson, Jason M; Shanks, Brent H; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D (13)C-(13)C NMR have been developed for characterizing the aromatic components of (13)C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by (13)C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, C-H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and C=O carbons, which is particularly useful for identifying furan and arene rings. The C=O carbons, whose chemical shifts vary strongly (between 212 and 165 ppm) and systematically depend on their two bonding partners, show particularly informative cross peaks, given that one bonding partner is defined by the other frequency coordinate of the cross peak. The new techniques and the information content of the resulting spectra are validated on sulfuric-acid treated low-temperature carbon materials and on products of the Maillard reaction. The crucial need for spectral editing for correct peak assignment is demonstrated in an example. PMID:23871898

  19. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  20. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    PubMed

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  1. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2-D time-lapse surface electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Wallin, E. L.; Johnson, T. C.; Greenwood, W. J.; Zachara, J. M.

    2013-03-01

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper, we use 2-D surface-based time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river water during high stage conditions. We inverted approximately 1200 data sets (400 per line over three lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. To invert the data, we use an image differencing approach that does not require regularization in the time dimension, enabling the inversion to accommodate the sharp, time varying contrasts in conductivity imposed by the moving water table. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal nonuniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity "break through" curves and longer river water residence times.

  2. Digital autoradiography using room temperature CCD and CMOS imaging technology

    NASA Astrophysics Data System (ADS)

    Cabello, Jorge; Bailey, Alexis; Kitchen, Ian; Prydderch, Mark; Clark, Andy; Turchetta, Renato; Wells, Kevin

    2007-08-01

    CCD (charged coupled device) and CMOS imaging technologies can be applied to thin tissue autoradiography as potential imaging alternatives to using conventional film. In this work, we compare two particular devices: a CCD operating in slow scan mode and a CMOS-based active pixel sensor, operating at near video rates. Both imaging sensors have been operated at room temperature using direct irradiation with images produced from calibrated microscales and radiolabelled tissue samples. We also compare these digital image sensor technologies with the use of conventional film. We show comparative results obtained with 14C calibrated microscales and 35S radiolabelled tissue sections. We also present the first results of 3H images produced under direct irradiation of a CCD sensor operating at room temperature. Compared to film, silicon-based imaging technologies exhibit enhanced sensitivity, dynamic range and linearity.

  3. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  4. Detection of ash fusion temperatures based on the image processing

    NASA Astrophysics Data System (ADS)

    Li, Peisheng; Yue, Yanan; Hu, Yi; Li, Jie; Yu, Wan; Yang, Jun; Hu, Niansu; Yang, Guolu

    2007-11-01

    The detection of ash fusion temperatures is important in the research of coal characteristics. The prevalent method is to build up ash cone with some dimension and detect the characteristic temperatures according to the morphological change. However, conditional detection work is not accurate and brings high intensity of labor as a result of both visualization and real-time observation. According to the insufficiency of conventional method, a new method to determine ash fusion temperatures with image processing techniques is introduced in this paper. Seven techniques (image cutting, image sharpening, edge picking, open operation, dilate operation, close operation, geometrical property extraction) are used in image processing program. The processing results show that image sharpening can intensify the outline of ash cone; Prewitt operator may extract the edge well among many operators; mathematical morphology of image can filter noise effectively while filling up the crack brought by filtration, which is useful for further disposal; characteristic temperatures of ash fusion temperatures can be measured by depth-to-width ratio. Ash fusion temperatures derived from this method match normal values well, which proves that this method is feasible in detection of ash fusion temperatures.

  5. A comparative study of DIGNET, average, complete, single hierarchical and k-means clustering algorithms in 2D face image recognition

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2014-06-01

    The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test ? coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.

  6. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  7. Imaging the earth's magnetosphere - Effects of plasma flow and temperature

    NASA Technical Reports Server (NTRS)

    Garrido, D. E.; Smith, R. W.; Swift, D. S.; Akasofu, S.-I.

    1991-01-01

    The effects of Doppler shifting on the line centers of the magnetospheric O(+) cross section are investigated, and the resulting structure of the scattering rate as a function of bulk density is explained. Whereas the Doppler shifting frequently results in a decrease of the scattering rate, it is demonstrated that for certain drift speeds the overlap of the cross section and the solar intensity profile can lead to an increased rate, thus enhancing the relative brightness of the image above that obtained when v(p) is zero. Simulated images of the magnetosphere are obtained which are used to show quantitively how the magnetospheric image responds to variations in plasma drift speed and temperature. Changes in the brightness of the magnetospheric images also depend on the variability of the solar flux at 83.4 nm. In regions where there are plasma drifts, the brightness in the image is governed by the structure of the scattering rate, assuming a fixed temperature.

  8. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  9. Imaging high-temperature superconducting films

    SciTech Connect

    Batalla, E.; Zwartz, E.G.; Wright, L.S. ); Raider, S.I.; Gupta, A. )

    1991-05-15

    A magneto-optically active glass, Ce(PO{sub 3}){sub 3}, was used to image field penetration into three superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7} that were laser ablated on (100)-oriented SrTiO{sub 3} substrates. The magnetic-field profile in these films was mapped using the Faraday effect in an external field of 92 mT for two of the films and 181 mT for the third film. These contours show regions where flux had easily penetrated, indicating weak pinning, and other regions that were strongly pinning. From the measured field gradients, it was determined that {ital J}{sub {ital c}} varies by at least an order of magnitude across the surface of the films.

  10. A Method to Convert MRI Images of Temperature Change Into Images of Absolute Temperature in Solid Tumors

    PubMed Central

    Davis, Ryan M.; Viglianti, Benjamin L.; Yarmolenko, Pavel; Park, Ji-Young; Stauffer, Paul; Needham, David; Dewhirst, Mark W.

    2013-01-01

    Purpose During hyperthermia (HT), the therapeutic response of tumors varies substantially within the target temperature range (39–43°C). Current thermometry methods are either invasive or measure only temperature change, which limits the ability to study tissue responses to HT. This study combines manganese-containing low-temperature sensitive liposomes (Mn-LTSL) with proton resonance frequency shift (PRFS) thermometry to measure absolute temperature in tumors with high spatial and temporal resolution using MRI. Methods Liposomes were loaded with 300mM MnSO4. The phase transition temperature (Tm) of Mn-LTSL samples was measured by differential scanning calorimetry (DSC). The release of manganese from Mn-LTSL in saline was characterized with inductively-coupled plasma atomic emission spectroscopy. A 2T GE small animal scanner was used to acquire dynamic T1-weighted images and temperature change images of Mn-LTSL in saline phantoms and fibrosarcoma-bearing Fisher 344 rats receiving hyperthermia after Mn-LTSL injection. Results The Tm of Mn-LTSL in rat blood was 42.9 ± 0.2 °C (DSC). For Mn-LTSL samples (0.06mM – 0.5mM Mn2+ in saline) heated monotonically from 30°C to 50°C, a peak in the rate of MRI signal enhancement occurred at 43.1 ± 0.3 °C. The same peak in signal enhancement rate was observed during heating of fibrosarcoma tumors (N=3) after injection of Mn-LTSL, and the peak was used to convert temperature change images into absolute temperature. Accuracies of calibrated temperature measurements were in the range 0.9 – 1.8°C. Conclusion The release of Mn2+ from Mn-LTSL affects the rate of MR signal enhancement which enables conversion of MRI-based temperature change images to absolute temperature. PMID:23957326

  11. Rate coefficients for the endothermic reactions C+(^2P)+H2(D2)?CH^+(CD^+)+H(D) as functions of temperature from 400–1300 K

    E-print Network

    Hierl, Peter M.; Morris, Robert A.; Viggiano, A. A.

    1997-03-20

    We have measured the bimolecular rate coefficients for the reactions of C+(2P) with H2 and D2 as functions of temperature from 400 to 1300 K using a high temperatureflowing afterglow apparatus. The temperature dependences ...

  12. Insights into Structure and Stratigraphy of the Northern Gulf of Mexico from 2D Pre-Stack Depth Migration Imaging of

    E-print Network

    Connors, Christopher D.

    Insights into Structure and Stratigraphy of the Northern Gulf of Mexico from 2D Pre-Stack Depth water of the northwestern Gulf of Mexico and displays distinct, large-scale structural styles and salt established in the northern Gulf of Mexico that substantial deformation in the form of linked proxi- mal

  13. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  14. GelScape: a web-based server for interactively annotating, manipulating, comparing and archiving 1D and 2D gel images.

    PubMed

    Young, Nelson; Chang, Zhan; Wishart, David S

    2004-04-12

    GelScape is a web-based tool that permits facile, interactive annotation, comparison, manipulation and storage of protein gel images. It uses Java applet-servlet technology to allow rapid, remote image handling and image processing in a platform-independent manner. It supports many of the features found in commercial, stand-alone gel analysis software including spot annotation, spot integration, gel warping, image resizing, HTML image mapping, image overlaying as well as the storage of gel image and gel annotation data in compliance with Federated Gel Database requirements. PMID:14764570

  15. Aniso2D

    Energy Science and Technology Software Center (ESTSC)

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  16. Three?Dimensional Echocardiography and 2D?3D Speckle?Tracking Imaging in Chronic Pulmonary Hypertension: Diagnostic Accuracy in Detecting Hemodynamic Signs of Right Ventricular (RV) Failure

    PubMed Central

    Vitarelli, Antonio; Mangieri, Enrico; Terzano, Claudio; Gaudio, Carlo; Salsano, Felice; Rosato, Edoardo; Capotosto, Lidia; D'Orazio, Simona; Azzano, Alessia; Truscelli, Giovanni; Cocco, Nino; Ashurov, Rasul

    2015-01-01

    Background Our aim was to compare three?dimensional (3D) and 2D and 3D speckle?tracking (2D?STE, 3D?STE) echocardiographic parameters with conventional right ventricular (RV) indexes in patients with chronic pulmonary hypertension (PH), and investigate whether these techniques could result in better correlation with hemodynamic variables indicative of heart failure. Methods and Results Seventy?three adult patients (mean age, 53±13 years; 44% male) with chronic PH of different etiologies were studied by echocardiography and cardiac catheterization (25 precapillary PH from pulmonary arterial hypertension, 23 obstructive pulmonary heart disease, and 23 postcapillary PH from mitral regurgitation). Thirty healthy subjects (mean age, 54±15 years; 43% male) served as controls. Standard 2D measurements (RV–fractional area change–tricuspid annular plane systolic excursion) and mitral and tricuspid tissue Doppler annular velocities were obtained. RV 3D volumes and global and regional ejection fraction (3D?RVEF) were determined. RV strains were calculated by 2D?STE and 3D?STE. RV 3D global?free?wall longitudinal strain (3DGFW?RVLS), 2D global?free?wall longitudinal strain (GFW?RVLS), apical?free?wall longitudinal strain, basal?free?wall longitudinal strain, and 3D?RVEF were lower in patients with precapillary PH (P<0.0001) and postcapillary PH (P<0.01) compared to controls. 3DGFW?RVLS (hazard ratio 4.6, 95% CI 2.79 to 8.38, P=0.004) and 3D?RVEF (hazard ratio 5.3, 95% CI 2.85 to 9.89, P=0.002) were independent predictors of mortality. Receiver operating characteristic curves showed that the thresholds offering an adequate compromise between sensitivity and specificity for detecting hemodynamic signs of RV failure were 39% for 3D?RVEF (AUC 0.89), ?17% for 3DGFW?RVLS (AUC 0.88), ?18% for GFW?RVLS (AUC 0.88), ?16% for apical?free?wall longitudinal strain (AUC 0.85), 16 mm for tricuspid annular plane systolic excursion (AUC 0.67), and 38% for RV?FAC (AUC 0.62). Conclusions In chronic PH, 3D, 2D?STE and 3D?STE parameters indicate global and regional RV dysfunction that is associated with RV failure hemodynamics better than conventional echo indices. PMID:25792128

  17. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH+ + H2/D2 ? H2O+/HDO+ + H/D reactions

    NASA Astrophysics Data System (ADS)

    Martinez, Oscar; Ard, Shaun G.; Li, Anyang; Shuman, Nicholas S.; Guo, Hua; Viggiano, Albert A.

    2015-09-01

    We have measured the temperature-dependent kinetics for the reactions of OH+ with H2 and D2 using a selected ion flow tube apparatus. Reaction occurs via atom abstraction to result in H2O+/HDO+ + H/D. Room temperature rate coefficients are in agreement with prior measurements and resulting temperature dependences are T0.11 for the hydrogen and T0.25 for the deuterated reactions. This work is prompted in part by recent theoretical work that mapped a full-dimensional global potential energy surface of H3O+ for the OH+ + H2 ? H + H2O+ reaction [A. Li and H. Guo, J. Phys. Chem. A 118, 11168 (2014)], and reported results of quasi-classical trajectory calculations, which are extended to a wider temperature range and initial rotational state specification here. Our experimental results are in excellent agreement with these calculations which accurately predict the isotope effect in addition to an enhancement of the reaction rate constant due to the molecular rotation of OH+. The title reaction is of high importance to astrophysical models, and the temperature dependence of the rate coefficients determined here should now allow for better understanding of this reaction at temperatures more relevant to the interstellar medium.

  18. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH(+) + H2/D2 ? H2O(+)/HDO(+) + H/D reactions.

    PubMed

    Martinez, Oscar; Ard, Shaun G; Li, Anyang; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2015-09-21

    We have measured the temperature-dependent kinetics for the reactions of OH(+) with H2 and D2 using a selected ion flow tube apparatus. Reaction occurs via atom abstraction to result in H2O(+)/HDO(+) + H/D. Room temperature rate coefficients are in agreement with prior measurements and resulting temperature dependences are T(0.11) for the hydrogen and T(0.25) for the deuterated reactions. This work is prompted in part by recent theoretical work that mapped a full-dimensional global potential energy surface of H3O(+) for the OH(+) + H2 ? H + H2O(+) reaction [A. Li and H. Guo, J. Phys. Chem. A 118, 11168 (2014)], and reported results of quasi-classical trajectory calculations, which are extended to a wider temperature range and initial rotational state specification here. Our experimental results are in excellent agreement with these calculations which accurately predict the isotope effect in addition to an enhancement of the reaction rate constant due to the molecular rotation of OH(+). The title reaction is of high importance to astrophysical models, and the temperature dependence of the rate coefficients determined here should now allow for better understanding of this reaction at temperatures more relevant to the interstellar medium. PMID:26395708

  19. Three-dimensional mapping of soil chemical characteristics at micrometric scale: Statistical prediction by combining 2D SEM-EDX data and 3D X-ray computed micro-tomographic images

    NASA Astrophysics Data System (ADS)

    Hapca, Simona

    2015-04-01

    Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.

  20. Mesh2d

    Energy Science and Technology Software Center (ESTSC)

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore »an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  1. Imaging of the surface resistance of an SRF cavity by low-temperature laser scanning microscopy

    SciTech Connect

    G. Ciovati, S.M. Anlage, A.V. Gurevich

    2013-06-01

    Temperature mapping of the outer surface of a superconducting radio-frequency cavity is a technique that is often used to identify lossy areas on the cavity surface. In this contribution, we present 2-D images of the superconducting state surface resistance R{sub s} of the inner surface of a superconducting radio-frequency (SRF) cavity obtained by low-temperature laser scanning microscopy. This technique, which is applied for the first time to study lossy regions in an operating SRF cavity, allows identifying 'hotspots' with about one order of magnitude better spatial resolution ( ~2 mm) than by thermometry. The R{sub s}-resolution is of the order of 1 {micro}{Ohm} at 3.3 GHz. Surface resistance maps with different laser power and optical images of the cavity surface are discussed in this contribution. It is also shown that the thermal gradient on the niobium surface created by the laser beam can move some of the hotspots, which are identified as locations of trapped bundle of fluxoids. The prospects for this microscope to identify defects that limit the performance of SRF cavities will also be discussed.

  2. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  3. Finite Heat conduction in 2D Lattices

    E-print Network

    Lei Yang; Yang Kongqing

    2001-07-30

    This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.

  4. Revisiting 2D Lattice Based Spin Flip-Flop Ising Model: Magnetic Properties of a Thin Film and Its Temperature Dependence

    ERIC Educational Resources Information Center

    Singh, Satya Pal

    2014-01-01

    This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…

  5. Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents.

    PubMed

    Delabie, A; Caymax, M; Groven, B; Heyne, M; Haesevoets, K; Meersschaut, J; Nuytten, T; Bender, H; Conard, T; Verdonck, P; Van Elshocht, S; De Gendt, S; Heyns, M; Barla, K; Radu, I; Thean, A

    2015-11-01

    We demonstrate the impact of reducing agents for Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD) of WS2 from WF6 and H2S precursors. Nanocrystalline WS2 layers with a two-dimensional structure can be obtained at low deposition temperatures (300-450 °C) without using a template or anneal. PMID:26365629

  6. Visualizing Central Vessels of Hepatic Angiomyolipoma Devoid of Fat Using a 2D Multi-Breath-Hold Susceptibility-Weighted Imaging

    PubMed Central

    Li, Ruo-Kun; Zeng, Meng-Su; Qiang, Jin-Wei

    2015-01-01

    Epithelioid hepatic angiomyolipoma (Epi-HAML) is a rare benign mesenchymal tumor with malignant potential. Most of Epi-HAML contains no or only a minimal amount of adipose tissue and poses a diagnostic challenge. Central vessels are characteristic imaging finding of Epi-HAML, which usually were displayed by dynamic contrast imaging. In this paper, we displayed the central vessels of Epi-HAML invisible on conventional MR images using a new developed abdominal susceptibility-weighted imaging (SWI). To the best of our knowledge, this is the first description for the role of SWI in characterization of Epi-HAML. PMID:26114004

  7. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake which might last as long as two weeks. Forecasters can quantify the difference in surface temperatures between this footprint and the surrounding temperatures and use that information to better predict storm intensity. If another storm intersects with this cold water trail, it is likely to lose significant strength due to the fact that the colder water does not contain as much potential energy as warm water. TRMM Fact Sheet Predicting Hurricane Intensity Far from Land Remote Sensing Systems Image courtesy TRMM Project, Remote Sensing Systems, and Scientific Visualization Studio, NASA Goddard Space Flight Center

  8. Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature.

    PubMed

    Sargoytchev, Stoyan I; Brown, Stephen; Solheim, Brian H; Cho, Young-Min; Shepherd, Gordon G; López-González, Maria Jose

    2004-10-20

    The spectral airglow temperature imager is a two-channel, Fabry-Perot spectrometer with an annular field of view and a cooled CCD detector. The detected fringe pattern contains spectral information in the radial direction and azimuthal spatial information from the annular field of view. The instrument measures the rotational temperature from the O2 atmospheric (0,1) nightglow emission layer at 94 km and from the Q branch of the OH Meinel (6,2) band emission layer at 87 km. The method for temperature derivation is based on the temperature dependence of the line-emission rates. This dependence allows a determination of the temperature by a least-squares fit of the measured spectrum to a set of synthetic spectra, an approach that minimizes the effect of noise from the sky background and the detector. The spectral airglow temperature imager was developed to meet a need for monitoring the role of the mesosphere in climate variability through long-term observation of the mean temperature and the gravity waves from a single station, as well as large-scale wave perturbations through the use of multiple stations. PMID:15535003

  9. Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application

    PubMed Central

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu2O/SnO2 p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu2O and SnO2 selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H2S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing. PMID:23409241

  10. Some advances/results in monitoring road cracks from 2D pavement images within the scope of the collaborative FP7 TRIMM project

    NASA Astrophysics Data System (ADS)

    Baltazart, Vincent; Moliard, Jean-Marc; Amhaz, Rabih; Wright, Dean; Jethwa, Manish

    2015-04-01

    Monitoring road surface conditions is an important issue in many countries. Several projects have looked into this issue in recent years, including TRIMM 2011-2014. The objective of such projects has been to detect surface distresses, like cracking, raveling and water ponding, in order to plan effective road maintenance and to afford a better sustainability of the pavement. The monitoring of cracking conventionally focuses on open cracks on the surface of the pavement, as opposed to reflexive cracks embedded in the pavement materials. For monitoring surface condition, in situ human visual inspection has been gradually replaced by automatic image data collection at traffic speed. Off-line image processing techniques have been developed for monitoring surface condition in support of human visual control. Full automation of crack monitoring has been approached with caution, and depends on a proper manual assessment of the performance. This work firstly presents some aspects of the current state of monitoring that have been reported so far in the literature and in previous projects: imaging technology and image processing techniques. Then, the work presents the two image processing techniques that have been developed within the scope of the TRIMM project to automatically detect pavement cracking from images. The first technique is a heuristic approach (HA) based on the search for gradient within the image. It was originally developed to process pavement images from the French imaging device, Aigle-RN. The second technique, the Minimal Path Selection (MPS) method, has been developed within an ongoing PhD work at IFSTTAR. The proposed new technique provides a fine and accurate segmentation of the crack pattern along with the estimation of the crack width. HA has been assessed against the field data collection provided by Yotta and TRL with the imaging device Tempest 2. The performance assessment has been threefold: first it was performed against the reference data set including 130 km of pavement images over UK roads, second over a few selected short sections of contiguous pavement images, and finally over a few sample images as a case study. The performance of MPS has been assessed against an older image data base. Pixel-based PGT was available to provide the most sensitive performance assessment. MPS has shown its ability to provide a very accurate cracking pattern without reducing the image resolution on the segmented images. Thus, it allows measurement of the crack width; it is found to behave more robustly against the image texture and better matched for dealing with low contrast pavement images. The benchmarking of seven automatic segmentation techniques has been provided at both the pixel and the grid levels. The performance assessment includes three minimal path selection algorithms, namely MPS, Free Form Anisotropy (FFA), one geodesic contour with automatic selection of points of interests (GC-POI), HA, and two Markov-based methods. Among others, MPS approach reached the best performance at the pixel level while it is matched to the FFA approach at the grid level. Finally, the project has emphasized the need for a reliable ground truth data collection. Owing to its accuracy, MPS may serve as a reference benchmark for other methods to provide the automatic segmentation of pavement images at the pixel level and beyond. As a counterpart, MPS requires a reduction in the computing time. Keywords: cracking, automatic segmentation, image processing, pavement, surface distress, monitoring, DICE, performance

  11. Dimensionality changes in the solid phase at room temperature: 2D ? 1D ? 3D evolution induced by ammonia sorption-desorption on zinc phosphates.

    PubMed

    Amghouz, Zakariae; Ramajo, Beatriz; Khainakov, Sergei A; da Silva, Iván; Castro, Germán R; García, José R; García-Granda, Santiago

    2014-06-28

    Two-dimensional zinc phosphate NH4Zn2(PO4)(HPO4) (), via ammonia vapor interaction at room temperature, transforms to a one-dimensional novel compound NH4Zn(NH3)PO4 (). By ammonia desorption (in air at room temperature) transforms to NH4ZnPO4 () with a well-known ABW-zeolitic topology. The crystal structure of was solved ab initio using synchrotron powder X-ray diffraction data (monoclinic, P21/a, a = 16.5227(2) Å, b = 6.21780(8) Å, c = 5.24317(6) Å, ? = 91.000(2)°, Z = 4). The structures of three compounds include extra-framework ammonium cations to the 4-fold coordinated zinc (ZnO4 tetrahedra for and , and ZnO3N tetrahedra for ) and phosphorus (PO4 tetrahedra) with bi-, mono- or three-dimensional linkages, respectively for , or . To our knowledge, the process described here constitutes the first example of dimensionality change in the solid phase promoted by a solid-gas interaction at room temperature in metal phosphates. PMID:24829098

  12. Terahertz imaging of excised oral cancer at frozen temperature

    PubMed Central

    Sim, Yookyeong Carolyn; Park, Jae Yeon; Ahn, Kang-Min; Park, Chansik; Son, Joo-Hiuk

    2013-01-01

    The feasibility of terahertz (THz) imaging at frozen temperature for the clinical application of oral cancer detection was investigated by analyzing seven oral tissues resected from four patients. The size, shape, and internal position of the oral cancers were mapped by THz radiation in the frequency range of 0.2–1.2 THz at ?20 °C and 20 °C, and compared with those identified in the histological examination. THz imaging of frozen tissue was found to offer greater sensitivity in distinguishing cancerous areas from surrounding tissue and a larger THz-frequency spectral difference between the oral cancer and normal mucosa than room-temperature THz imaging. A cancerous tumor hidden inside tissue was also detected using this method by observing the THz temporal domain waveform. The histological analysis showed that these findings resulted from cell structure deformations involving the invasion of oral tumor and neoplastic transformations of mucous cells. Therefore, a cytological approach using THz radiation at a frozen temperature might be applied to detect oral cancer. PMID:24010003

  13. Direct observation of melting in a 2-D superconducting vortex lattice

    E-print Network

    I. Guillamon; H. Suderow; A. Fernandez-Pacheco; J. Sese; R. Cordoba; J. M. De Teresa; M. R. Ibarra; S. Vieira

    2009-08-14

    Topological defects such as dislocations and disclinations are predicted to determine the twodimensional (2-D) melting transition. In 2-D superconducting vortex lattices, macroscopic measurements evidence melting close to the transition to the normal state. However, the direct observation at the scale of individual vortices of the melting sequence has never been performed. Here we provide step by step imaging through scanning tunneling spectroscopy of a 2-D system of vortices up to the melting transition in a focused-ion-beam nanodeposited W-based superconducting thin film. We show directly the transition into an isotropic liquid below the superconducting critical temperature. Before that, we find a hexatic phase, characterized by the appearance of free dislocations, and a smectic-like phase, possibly originated through partial disclination unbinding. These results represent a significant step in the understanding of melting of 2-D systems, with impact across several research fields, such as liquid crystal molecules, or lipids in membranes.

  14. Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect

    Russo, James K.; Armeson, Kent E.; Richardson, Susan

    2012-05-01

    Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.

  15. Temperature rise and safety considerations for radiation force ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Herman, Bruce A.; Harris, Gerald R.

    2002-11-01

    Current models for estimating temperature increase during ultrasound exposure calculate the steady-state rise, using time-averaged acoustic output, as the worst case for safety consideration. While valid for the typically very short (microsecond) pulses used by conventional diagnostic techniques, this analysis does not necessarily correspond to a worst case scenario for the longer pulses or pulse bursts used by a new method, radiation force imaging. Radiation force imaging, employing ultrasound pulse durations up to hundreds of milliseconds, produces and detects motion in solid tissue or acoustic streaming in fluids via a high intensity beam. Models that calculate the transient temperature rise from these pulses are developed for both the bone at focus and soft tissue cases. Based on accepted time-temperature dose criteria, it is shown that for pulse lengths and intensities utilized by this technique, temperature may increase to levels that raise safety concerns for bone at the focus of the ultrasound beam. Also, the impact on this modality of the current U.S. Food and Drug Administration output limits for diagnostic ultrasound devices is discussed.

  16. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.

    PubMed

    Voigt, Jens-Uwe; Pedrizzetti, Gianni; Lysyansky, Peter; Marwick, Tom H; Houle, Hélène; Baumann, Rolf; Pedri, Stefano; Ito, Yasuhiro; Abe, Yasuhiko; Metz, Stephen; Song, Joo Hyun; Hamilton, Jamie; Sengupta, Partho P; Kolias, Theodore J; d'Hooge, Jan; Aurigemma, Gerard P; Thomas, James D; Badano, Luigi Paolo

    2015-02-01

    Recognizing the critical need for standardization in strain imaging, in 2010, the European Association of Echocardiography (now the European Association of Cardiovascular Imaging, EACVI) and the American Society of Echocardiography (ASE) invited technical representatives from all interested vendors to participate in a concerted effort to reduce intervendor variability of strain measurement. As an initial product of the work of the EACVI/ASE/Industry initiative to standardize deformation imaging, we prepared this technical document which is intended to provide definitions, names, abbreviations, formulas, and procedures for calculation of physical quantities derived from speckle tracking echocardiography and thus create a common standard. PMID:25623220

  17. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.

    PubMed

    Voigt, Jens-Uwe; Pedrizzetti, Gianni; Lysyansky, Peter; Marwick, Tom H; Houle, Helen; Baumann, Rolf; Pedri, Stefano; Ito, Yasuhiro; Abe, Yasuhiko; Metz, Stephen; Song, Joo Hyun; Hamilton, Jamie; Sengupta, Partho P; Kolias, Theodore J; d'Hooge, Jan; Aurigemma, Gerard P; Thomas, James D; Badano, Luigi Paolo

    2015-01-01

    Recognizing the critical need for standardization in strain imaging, in 2010, the European Association of Echocardiography (now the European Association of Cardiovascular Imaging, EACVI) and the American Society of Echocardiography (ASE) invited technical representatives from all interested vendors to participate in a concerted effort to reduce intervendor variability of strain measurement. As an initial product of the work of the EACVI/ASE/Industry initiative to standardize deformation imaging, we prepared this technical document which is intended to provide definitions, names, abbreviations, formulas, and procedures for calculation of physical quantities derived from speckle tracking echocardiography and thus create a common standard. PMID:25525063

  18. Electron density and temperature in the solar corona from multifrequency radio imaging

    NASA Astrophysics Data System (ADS)

    Mercier, C.; Chambe, G.

    2015-11-01

    Context. The 2D images obtained through rotational aperture synthesis with the Nançay Radioheliograph are suitable for quantitative exploitation. First results are presented. Aims: We study the variations of the quiet corona in brightness and size during an 8-year period and derive electron density and temperature in the corona. Methods: Images at 6 frequencies between 150 and 450 MHz for 183 quiet days between 2004 and 2011 were used. Measurements of the brightness temperature Tb beyond the limb allowed coronal density models to be derived in both EW and NS radial directions, with a weak dependence on the electron temperature. The total ranges in the heliocentric distance r are 1.15-1.60 R? (EW) and 1.0-1.4 R? (NS). The agreement between results from different frequencies, in the ranges of r where there is overlapping shows the robustness of the method. The electron temperature, in turn, can be derived from the comparison of the observed mean spectra on the disk with those predicted through transfer calculations from the density models derived from limb observations. Results: The widths of the brightness profiles that were averaged yearly have minima at cycle minimum (2008-2009). These minima are more pronounced for EW profiles than for NS ones. The derived yearly-averaged density models along equatorial and polar diameters are consistent with isothermal and hydrostatic models. They are characterized by their density value n0 extrapolated down to the base of the corona and their scale-height temperature TH. Changes in n0 and TH with solar cycle are given for equatorial and polar regions. The kinetic temperature Te of electrons in the corona (~0.62 MK) is found to be significantly less than TH (~1.5 MK). This implies an ion temperature Ti ~ 2.2 MK. Conclusions: The yearly-averaged variations of these models are less than the dispersion between models derived from other techniques, such as white light and EUV observations, partly because these two techniques are not time-averaged, and they refer to particular days. The radio models are generally less dense, which is compatible with isothermal hydrostatic equilibrium in their range of heliocentric distances, and they show different behaviors with the solar cycle in the equatorial or polar radial directions. The electron kinetic temperature Te is substantially less than TH.

  19. Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.

  20. Computed Tomography Imaging Spectrometer (CTIS) with 2D Reflective Grating for Ultraviolet to Long-Wave Infrared Detection Especially Useful for Surveying Transient Events

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for events it is also for investigation of some slow moving phenomena as in the life sciences.

  1. Stacking of 2D electron gases in Ge probed at the atomic level and its correlation to low-temperature magnetotransport.

    PubMed

    Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y

    2012-09-12

    Stacking of two-dimensional electron gases (2DEGs) obtained by ?-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked ?-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (?220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (?1000 × ) than the scattering time within the dopant plane. PMID:22935029

  2. Experimental Investigation of High Temperature Superconducting Imaging Surface Magnetometry

    SciTech Connect

    Espy, M.A.; Matlachov, A.N.; Kraus, R.H., Jr.

    1999-06-21

    The behavior of high temperature superconducting quantum interference devices (SQUIDs) in the presence of high temperature superconducting surfaces has been investigated. When current sources are placed close to a superconducting imaging surface (SIS) an image current is produced due to the Meissner effect. When a SQUID magnetometer is placed near such a surface it will perform in a gradiometric fashion provided the SQUID and source distances to the SIS are much less than the size of the SIS. We present the first ever experimental verification of this effect for a high temperature SIS. Results are presented for two SQUID-SIS configurations, using a 100 mm diameter YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} disc as the SIS. These results indicate that when the current source and sensor coil (SQUID) are close to the SIS, the behavior is that of a first-order gradiometer. The results are compared to analytic solutions as well as the theoretical predictions of a finite element model.

  3. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

    2014-05-01

    We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

  4. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2013-10-01

    Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and atmospheric temperatures are enhanced. At crusts or other heterogeneities, we were unable to create a sufficiently homogenous snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack even with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.

  5. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise.

    PubMed

    Winzenrieth, Renaud; Michelet, Franck; Hans, Didier

    2013-01-01

    The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (?CT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D ?CT reconstruction (TBS?CT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93 ?m. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488 ?m). Relationships between 3D microarchitecture parameters and TBS?CT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBS?CT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711 ? r² ? 0.752) and trabecular number (0.584 ? r² ? 0.648) and negative for trabecular space (-0.407 ? r² ? -0.491), up to a pixel size of 1023 ?m. In addition, TBS?CT values were strongly correlated between each other (0.77 ? r² ? 0.96). Study results show that the correlations between TBS?CT at 93 ?m and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise. PMID:22749406

  6. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  7. Television image transmission from close quarters of a high-temperature object

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoxiang; Su, Jingni; Min, Qingfeng

    1996-10-01

    A new Chinese patent 'micropore imager of industrial television supervision' is introduced in this paper. Three ways of transmission is compared. The author invent a flame- proof 'micropore imager' to image close quarters high- temperature at normal temperature area, obtain 'first image' then use television-camera to shoot the image into television system, transmit it to supervision center. The micropore imager is based on the principle of small aperture imaging and it applies image sharpening technology to make image fitting for supervision requirements, it also attaches accessories to prevent blocking. This method has been proved by doing experiments on boilers in power station.

  8. Limitations of using a thermal imager for snow pit temperatures

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Jamieson, B.

    2014-03-01

    Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.

  9. Combined planar imaging of schlieren photography with OH-LIPF and spontaneous OH-emission in a 2-D valveless pulse combustor

    SciTech Connect

    Ishino, Yojiro; Hasegawa, Tatsuya; Yamaguchi, Shigeki; Ohiwa, Norio

    1999-07-01

    Using a novel optical system, simultaneous imaging of schlieren photography and laser induced predissociation fluorescence of OH radicals (OH-LIPF) have been carried out to examine combustion processes and flame structure in a two-dimensional valveless pulse combustor. Simultaneous imaging of schlieren photographs and spontaneous OH-emission have also been made, in order to obtain information on the behavior of the flame front during a cycle of pulsation. The pulse combustor used in this experiment consists of a combustion chamber of a volume of 125 cm{sup 3} and a tailpipe of a length of 976 mm, which is followed by an automobile muffler. The fuel used is commercial grade gaseous propane.

  10. From 2D slices to 3D volumes: image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning.

    PubMed

    Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf

    2011-03-01

    3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray ?CT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. PMID:21353151

  11. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  12. MR temperature imaging of nanoshell mediated laser ablation.

    PubMed

    Stafford, R Jason; Shetty, Anil; Elliott, Andrew M; Schwartz, Jon A; Goodrich, Glenn P; Hazle, John D

    2011-01-01

    Minimally invasive thermal therapy using high-power diode lasers is an active area of clinical research. Gold nanoshells (AuNS) can be tuned to absorb light in the range used for laser ablation and may facilitate more conformal tumor heating and sparing of normal tissue via enhanced tumor specific heating. This concept was investigated in a xenograft model of prostate cancer (PC-3) using MR temperature imaging (MRTI) in a 1.5T scanner to characterize the spatiotemporal temperature distribution resulting from nanoparticle mediated heating. Tumors with and without intravenously injected AuNS were exposed to an external laser tuned to 808?nm for 180?sec at 4?W/cm(2) under real-time monitoring with proton resonance frequency shift based MRTI. Microscopy indicated that these nanoparticles (140-150?nm) accumulated passively in the tumor and remained close to the tumor microvasculature. MRTI measured a statistically significant (p?temperature in the tumor cortex (mean?=?21?±?7°C) in +AuNS tumors versus control tumors. Analysis of the temperature maps helped demonstrate that the overall distribution of temperature within +AuNS tumors was demonstrably higher versus control, and resulted in damage visible on histopathology. This research demonstrates that passive uptake of intravenously injected AuNS in PC-3 xenografts converts the tumor vasculature into a potent heating source for nanoparticle mediated ablation at power levels which do not generate significant damage in normal tissue. When used in conjunction with MRTI, this has implications for development and validation of more conformal delivery of therapy for interstitial laser ablations. PMID:22098362

  13. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  14. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  15. The power of three-dimensional imaging for an unambiguous identification of the ro-vibrational state of H2+,D2+, and HD+

    NASA Astrophysics Data System (ADS)

    Sauza, J. B.; Guillen, C. I.; Duot, A. C.; Andrianarijaona, V. M.

    2015-03-01

    We are presenting a three-dimensional imaging technique that could efficiently measure the ro-vibrational states of small diatomic molecular ions such as H2+in two steps. First, the molecular ion is sent toward a jet of alkali atoms to undergo a resonant dissociative charge exchange. Then, the positions of the fragments and their flight time difference are measured with two position sensitive detectors. From these measurements, we obtained the value of the kinetic energy release, which is directly related to the original vibrational excitation of H2+.This technique scheme was first developed by D. P. de Bruijn and J. Los (Rev. Sci. Intstrum. 53, 1020, 1982). Details and examples will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  16. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography

    SciTech Connect

    Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.; Zachara, John M.

    2013-03-29

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stage conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.

  17. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842?m at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  18. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    SciTech Connect

    Ellis, Richard K.

    2013-01-01

    The Humboldt House-Rye Patch geothermal resource area (HH-RP) comprises approximately 12,000 acres along and west of the Humboldt Range, adjacent to the Rye Patch Reservoir (Figure 1). A Federal Geothermal Unit covers essentially all of the known shallow thermal anomaly at the site, and the Operator, Presco Energy, is in the process of completing wellfield development adjacent to the Rye Patch binary plant, a nominal 17-megawatt system in the southern Unit area (Figure 1). DOE award EE0002840, made under the auspices of the Geothermal Technologies Program, was originally approved in January of 2010, and used a VSP profiling technology to improve seismic imaging in the Basin and Range. Phase I field activities were conducted in the 3rd quarter of 2010, and both the Phase I report and a supplemental report were completed in March and April of 2011. Two targets were identified for tests of upflow structures, both using existing wellbores, originally the 51-21 and 52-28, in the Rye Patch wellfield. The Phase II validation was approved by DOE in May of 2011.

  19. Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna

    SciTech Connect

    Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

    2009-01-01

    The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

  20. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  1. 2D array based on fermat spiral

    NASA Astrophysics Data System (ADS)

    Martínez, O.; Martín, C. J.; Godoy, G.; Ullate, L. G.

    2010-01-01

    The main challenge faced by 3D ultrasonic imaging with 2D array transducer is the large number of elements required to achieve an acceptable level of quality in the images. Therefore, the optimization of the array layout to reduce the number of active elements in the aperture has been a research topic in the last years. Nowadays, CMUT array technology has made viable the production of 2D arrays with larger flexibility on elements size, shape and position. This is opening new options in 2D array design, allowing to revise as viable alternatives others layouts that had been studied in the past, like circular and Archimedes spiral layout. In this work the problem of designing an imaging system array with a diameter of 60 ? and a limited number of elements using the Fermat spiral layout has been studied. This study has been done for two different numbers of electronic channels (N = 128 and N = 256). As summary, a general discussion of the results and the most interesting cases are presented.

  2. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D?3D) induced by temperature

    NASA Astrophysics Data System (ADS)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R.; García-Granda, Santiago

    2015-05-01

    Three new zinc(II) coordination polymers, [Zn(HO3PCH2CH2COO)(C12H8N2)(H2O)] (1), [Zn3(O3PCH2CH2COO)2(C12H8N2)](H2O)3.40 (2) and [Zn5(HO3PCH2CH2COO)2(O3PCH2CH2COO)2(C12H8N2)4](H2O)0.32 (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P21/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P-1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds.

  3. Explicit 2-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (ESTSC)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore »isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  4. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    PubMed

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4×GRAPPA 2) can likely provide even greater gains in sensitivity but should be carefully optimized to minimize the possibility of false activations. PMID:26341029

  5. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts

    PubMed Central

    Todd, Nick; Moeller, Steen; Auerbach, Edward J.; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5 mm isotropic whole-brain acquisitions at 3 T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2 × (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2 × GRAPPA 2, MB 4 × GRAPPA 2, and MB 6 × GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2 × GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4 × GRAPPA 2) can likely provide even greater gains in sensitivity but should be carefully optimized to minimize the possibility of false activations. PMID:26341029

  6. Imaging informatics based on method of MR temperature measurement in high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Chen, Xiangjiao; Zhang, Jianguo

    2014-03-01

    MR imaging has been used to perform imaging guided high-intensity focused ultrasound (HIFU) and meanwhile can also be used precisely to measure tissue temperature in theory. But in practice, the temperature environment and target are complex. Therefore, it is difficult to measure targeted temperature just by simply using the theory of numerical calculation based on MR image information. In this presentation, we presented new MR temperature measurement, based on imaging informatics, to measure the targeted tissue temperature in MR imaging guided HIFU therapeutic procedure. By heating up the water phantom experiments under HIFU, the new algorithm gives a satisfactory result compared with existing algorithm. Based on experimental data, we can see the accuracy increase 37.5% from 0.4048? up to 0.2530? when we choose new algorithms.

  7. Downscaling of Aircraft, Landsat, and MODIS-bases Land Surface Temperature Images with Support Vector Machines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at s...

  8. Age, Gender and Normalization Covariates for Spinal Cord Gray Matter and Total Cross-Sectional Areas at Cervical and Thoracic Levels: A 2D Phase Sensitive Inversion Recovery Imaging Study

    PubMed Central

    Papinutto, Nico; Schlaeger, Regina; Panara, Valentina; Zhu, Alyssa H.; Caverzasi, Eduardo; Stern, William A.; Hauser, Stephen L.; Henry, Roland G.

    2015-01-01

    The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord. PMID:25781178

  9. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    NASA Astrophysics Data System (ADS)

    Iezzi, F.; Todisco, M. T.

    2015-11-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable thermal imager is confirmed by the direct measurement of stream temperature using an ordinary technique based on an appropriate thermometer.

  10. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  11. Measurement of brain temperature using magnetic resonance spectroscopic imaging 

    E-print Network

    Parikh, Jehill

    2013-07-06

    The study of brain temperature is important for a number of clinical conditions such as stroke, traumatic brain injury, schizophrenia and birth asphyxia (for neonates). A direct method to estimate brain temperature ...

  12. GRAPHICS PROGRAMMING Section B Java 2D

    E-print Network

    Hill, Gary

    GRAPHICS PROGRAMMING Section B ­ Java 2D 20 - Graphics2D: Introduction 21 - Graphics2D: Shapes 22 2D: General Path Curves 29 - Graphics 2D: Constructive Area Geometry Gary Hill December 2003 Java 2 Java initially through the Abstract Window Toolkit, which was extended to include swing, shortly

  13. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1?cm2) positioning system featuring a step size of about 15?µm in a 170?µm displacement range. The high payload (20?mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  14. Top2maya A Tool for Converting 2D Topographical

    E-print Network

    Illinois at Urbana-Champaign, University of

    Top2maya ­ A Tool for Converting 2D Topographical Maps to 3D Models Rob Gillespie, Consultant Topographical Maps to 3D Models. Rob Gillespie Consultant Visualization, Media and Imaging Laboratory jrgilles@itg.uiuc.edu Figure 1: left: red blood cells imaged on AFM (J. Gunther), right: The resulting 3D model produced using

  15. Top2maya A Tool for Converting 2D Topographical

    E-print Network

    Illinois at Urbana-Champaign, University of

    Top2maya ­ A Tool for Converting 2D Topographical Maps to 3D Models Rob Gillespie Student to 3D Models. Rob Gillespie Consultant Visualization, Media and Imaging Laboratory jrgilles of the image you are going to change into a 3D model. If nothing is entered in the next field it is also

  16. Measuring glacier surface temperatures with ground-based thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Aubry-Wake, Caroline; Baraer, Michel; McKenzie, Jeffrey M.; Mark, Bryan G.; Wigmore, Oliver; Hellström, Robert È.; Lautz, Laura; Somers, Lauren

    2015-10-01

    Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground-based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23-25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground-based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.

  17. Conservation Anomaly in 2-d

    E-print Network

    California at Santa Cruz, University of

    What is an anomaly? Current Conservation Anomaly in 2-d QED: Schwinger model Current Matrix´alez University of California ­ Santa Cruz March 2015 1 / 23 #12;What is an anomaly? Current Conservation Anomaly, in other words quantum corrections break the symmetry. 2 / 23 #12;What is an anomaly? Current Conservation

  18. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  19. Thermochromic liquid crystal temperature measurements through a borescope imaging system

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Elkins, Christopher J.; Mukerji, Debjit; Eaton, John K.

    2007-10-01

    Thermochromic liquid crystals (TLCs) have proven to be a valuable tool for the collection of full-field, high-resolution heat transfer data. This paper presents an extension of previously developed calibration techniques to a simplified transonic linear cascade for a highly cambered turbine blade geometry. This required the introduction of miniature periscopes to image the measurement surfaces. The procedures and equipment used to ensure high-accuracy wide-band TLC measurements are presented. These included a geometry-matched calibration device, mechanisms to accurately position the borescope imaging optics, an algorithm to automatically divide the imaging region into a large number of calibration subregions (termed as cells), and algorithms to correct for geometric and optical image distortions. The cell calibration approach is shown to halve calibration times and dramatically reduce memory requirements when compared to a pixel-by-pixel calibration. The results of an extensive validation study are presented.

  20. Conversion of infrared grey-level image into temperature field by polynomial curve fitting

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Kuo, Ming-Hsuan

    2015-02-01

    A simple method to convert the infrared gray-level image into temperature field is developed by using least squares polynomial curve fitting. In this method, the correspondence between the infrared gray-level image and the associated temperature field for various emissivity values and temperature range is analyzed first. Then a second-order polynomial can be applied to fit the correspondence between the gray-level image and the associated temperature field as a function of emissivity. For multiple conversions of temperature ranges, the constants of the fitted polynomial in multiple ranges can be further fitted as a function of emissivity and temperature range. Test of the method on a cup of hot water was done. An average error less than 1% was achieved between the proposed method and the commercial ones.

  1. Retrieval of Temperature and Species Distributions from Multispectral Image Data of Surface Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Annen, K. D.; Conant, John A.; Weiland, Karen J.

    2001-01-01

    Weight, size, and power constraints severely limit the ability of researchers to fully characterize temperature and species distributions in microgravity combustion experiments. A powerful diagnostic technique, infrared imaging spectrometry, has the potential to address the need for temperature and species distribution measurements in microgravity experiments. An infrared spectrum imaged along a line-of-sight contains information on the temperature and species distribution in the imaged path. With multiple lines-of-sight and approximate knowledge of the geometry of the combustion flowfield, a three-dimensional distribution of temperature and species can be obtained from one hyperspectral image of a flame. While infrared imaging spectrometers exist for collecting hyperspectral imagery, the remaining challenge is retrieving the temperature and species information from this data. An initial version of an infrared analysis software package, called CAMEO (Combustion Analysis Model et Optimizer), has been developed for retrieving temperature and species distributions from hyperspectral imaging data of combustion flowfields. CAMEO has been applied to the analysis of multispectral imaging data of flame spread over a PMMA surface in microgravity that was acquired in the DARTFire program. In the next section of this paper, a description of CAMEO and its operation is presented, followed by the results of the analysis of microgravity flame spread data.

  2. MAGNETIC RESONANCE IMAGING OF TEMPERATURE STRESSED COTTON ROOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major factor impacting the growth and function of plant root systems. Changes in root development in response to changes in soil temperature are difficult to assess on a dynamic basis since destructive sampling and disturbance of roots is necessary for any evaluation. This stud...

  3. Relationship among eye temperature measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of...

  4. The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems 

    E-print Network

    Graham, Emmelyn M

    2008-01-01

    The technique of Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed to quantitatively and spatially map the fluid composition and temperature within microfluidic systems. A molecular probe with a ...

  5. 2D Lattice Liquid Models

    E-print Network

    Yukitaka Ishimoto; Takahiro Murashima; Takashi Taniguchi; Ryoichi Yamamoto

    2012-03-31

    A family of novel models of liquid on a 2D lattice (2D lattice liquid models) have been proposed as primitive models of soft-material membrane. As a first step, we have formulated them as single-component, single-layered, classical particle systems on a two-dimensional surface with no explicit viscosity. Among the family of the models, we have shown and constructed two stochastic models, a vicious walk model and a flow model, on an isotropic regular lattice and on the rectangular honeycomb lattice of various sizes. In both cases, the dynamics is governed by the nature of the frustration of the particle movements. By simulations, we have found the approximate functional form of the frustration probability, and peculiar anomalous diffusions in their time-averaged mean square displacements in the flow model. The relations to other existing statistical models and possible extensions of the models are also discussed.

  6. Image quality improvements of electronic portal imaging devices by multi-level gain calibration and temperature correction.

    PubMed

    Huber, S; Mooslechner, M; Mitterlechner, B; Weichenberger, H; Serpa, M; Sedlmayer, F; Deutschmann, H

    2013-09-21

    Amorphous silicon (aSi:H) flat panel detectors are prevalent in radiotherapy for megavoltage imaging tasks. Any clinical and dosimetrical application requires a well-defined dose response of the system to achieve meaningful results. Due to radiation damages, panels deteriorate and the linearity of pixel response to dose as well as the stability with regard to changing operating temperatures get worse with time. Using a single level gain correction can lead to an error of about 23% when irradiating a flood field image with 100 MU min(-1) on an old detector. A multi-level gain (MLG) correction is introduced, emending the nonlinearities and subpanel-related artifacts caused by insufficient radiation hardness of amplifiers in the read-out electronics. With rising temperature, offset values typically increase (up to 300 gray values) while the response at higher dose values per frame remain constant for a majority of pixels. To account for temperature-related image artifacts, two additional temperature correction methods have been developed. MLG in combination with temperature corrections can re-establish the aSi:H image quality to the performance required by reliable medical verification tools. Furthermore, the life span and recalibration intervals of these costly devices can be prolonged decisively. PMID:23999060

  7. A Simulation Model for Ultrasonic Temperature Imaging Using Change in Backscattered Energy

    PubMed Central

    Trobaugh, Jason W.; Arthur, R. Martin; Straube, William L.; Moros, Eduardo G.

    2008-01-01

    Ultrasound backscattered from tissue has previously been shown theoretically and experimentally to change predictably with temperature in the hyperthermia range, i.e., 37 to 45°C, motivating use of the change in backscattered ultrasonic energy (CBE) for ultrasonic thermometry. Our earlier theoretical model predicts that CBE from an individual scatterer will be monotonic with temperature, with, e.g., positive change for lipid-based scatterers and negative for aqueous-based scatterers. Experimental results have previously confirmed the presence of these positive and negative changes in one-dimensional ultrasonic signals and in two-dimensional images acquired from in vitro bovine, porcine and turkey tissues. In order to investigate CBE for populations of scatterers, we have developed an ultrasonic image simulation model, including temperature dependence for individual scatterers based on predictions from our theoretical model. CBE computed from images simulated for populations of randomly distributed scatterers behaves similarly to experimental results, with monotonic variation for individual pixel measurements and for image regions. Effects on CBE of scatterer type and distribution, size of the image region, and signal-to-noise ratio have been examined. This model also provides the basis for future work regarding significant issues relevant to temperature imaging based on ultrasonic CBE such as effects of motion on CBE, limitations of motion-compensation techniques, and accuracy of temperature estimation, including tradeoffs between temperature accuracy and available spatial resolution. PMID:17935869

  8. Concurrent OH imager and sodium temperature//wind lidar observation of localized ripples over northern Colorado

    E-print Network

    Concurrent OH imager and sodium temperature//wind lidar observation of localized ripples over min, respectively. The Colorado State University sodium lidar at nearby Fort Collins, Colorado (40.6°N. Yuan, R. L. Collins, L. M. Kieffaber, and A. W. Peterson (2005), Concurrent OH imager and sodium

  9. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy

    PubMed Central

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-01-01

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function. PMID:22426226

  10. Two-Dimensional Thin Layer Chromatography (2D-TLC) 1. Resuspend RNA pellet in 5 l ddH2O. Place at room temperature for 5-15 minutes. Use pipette tip

    E-print Network

    Aris, John P.

    119 Two-Dimensional Thin Layer Chromatography (2D-TLC) 1. Resuspend RNA pellet in 5 µl ddH2O. Place: AMP, A9272; CMP, C1133; GMP, G3628; UMP, U1126. 4. Mark origin on chromatography plate using a pencil, no indicator (from VWR). 5. Spot sample on chromatography plate at origin. Do 0.1 - 0.2 µl at a time. Dry

  11. Temperature dependent operation of PSAPD-based compact gamma camera for SPECT imaging.

    PubMed

    Kim, Sangtaek; McClish, Mickel; Alhassen, Fares; Seo, Youngho; Shah, Kanai S; Gould, Robert G

    2011-10-10

    We investigated the dependence of image quality on the temperature of a position sensitive avalanche photodiode (PSAPD)-based small animal single photon emission computed tomography (SPECT) gamma camera with a CsI:Tl scintillator. Currently, nitrogen gas cooling is preferred to operate PSAPDs in order to minimize the dark current shot noise. Being able to operate a PSAPD at a relatively high temperature (e.g., 5 °C) would allow a more compact and simple cooling system for the PSAPD. In our investigation, the temperature of the PSAPD was controlled by varying the flow of cold nitrogen gas through the PSAPD module and varied from -40 °C to 20 °C. Three experiments were performed to demonstrate the performance variation over this temperature range. The point spread function (PSF) of the gamma camera was measured at various temperatures, showing variation of full-width-half-maximum (FWHM) of the PSF. In addition, a (99m)Tc-pertechnetate (140 keV) flood source was imaged and the visibility of the scintillator segmentation (16×16 array, 8 mm × 8 mm area, 400 ?m pixel size) at different temperatures was evaluated. Comparison of image quality was made at -25 °C and 5 °C using a mouse heart phantom filled with an aqueous solution of (99m)Tc-pertechnetate and imaged using a 0.5 mm pinhole collimator made of tungsten. The reconstructed image quality of the mouse heart phantom at 5 °C degraded in comparision to the reconstructed image quality at -25 °C. However, the defect and structure of the mouse heart phantom were clearly observed, showing the feasibility of operating PSAPDs for SPECT imaging at 5 °C, a temperature that would not need the nitrogen cooling. All PSAPD evaluations were conducted with an applied bias voltage that allowed the highest gain at a given temperature. PMID:24465051

  12. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  13. Monitoring Sea Surface temperature change at the Caribbean Sea, using AVHRR images.

    E-print Network

    Gilbes, Fernando

    1 Monitoring Sea Surface temperature change at the Caribbean Sea, using AVHRR images. Y. Santiago 9017, Mayagüez, P.R. 00681 Abstract The Caribbean Sea is influenced by rivers, currents and winds which may have a significant impact in the sea surface temperature. The Caribbean Sea is said

  14. Infrared imaging of the surface temperature field of water during film spreading

    E-print Network

    Saylor, John R.

    Infrared imaging of the surface temperature field of water during film spreading J. R. Saylor and G in the temperature field of a clean water surface were essentially eliminated upon introduction of a surfactant-spreading film on a clean water surface creates a front which propagates radially outward from the point

  15. Temperature and Emissivity Measurements with the Multispectral Thermal Imager Satellite at Ivanpah Playa

    SciTech Connect

    Villa-Aleman, E.

    2003-01-06

    The Multispectral Thermal Imager (MTI) is a research and development satellite sponsored by the Department of Energy (DOE) for accurate water surface temperature retrieval. MTI uses five thermal spectral bands to retrieve ground temperatures. The application of MTI for land-based temperature and emissivity retrieval has been limited. Savannah River Technology Center conducted several ground truth campaigns at Ivanpah Playa to measure reflectance, temperature and emissivity. The results of MTI temperature and emissivity retrievals and material identification will be discussed in context with the ground truth data.

  16. IR Temperatures of Mauna Loa Caldera Obtained with Multispectral Thermal Imager

    SciTech Connect

    Kurzeja, R.J.

    2001-07-18

    A survey of surface temperatures of the Mauna Loa caldera during 7/14/00 and 7/15/00 was made by SRTC in conjunction with a MTI satellite image collection. The general variation of surface temperature appears quite predictable responding to solar heating. The analysis of detailed times series of temperature indicates systematic variations in temperature of 5 C corresponding to time scales of 3-5 minutes and space scales of 10-20 m. The average temperature patterns are consistent with those predicted by the Regional Atmospheric Modeling System (RAMS).

  17. Domain coarsening in 2D crystals B.Bak Saclay (F)

    E-print Network

    György, Géza

    for higher temperature Disordered relaxed (equilibrium) configurations in the absence of climb Field theory preparation #12;May 18, 2010 Crystallization and Melting in 2D 3 Overview 2D lattices Mermin-Wagner: No infinite 2D lattice in equilibrium, if forces are short range small elastic constans, easy creation

  18. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ?60?000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60?000 K to measured 4000 K has been obtained.

  19. Three dimension temperature field reconstruction with image processing technique on pulverized coal boiler furnace

    SciTech Connect

    Shen Peihua; Qi Guoshui; Ma Zengyi

    1999-07-01

    Temperature field distribution measurement is important for combustion diagnostics. With CCD camera, the authors can obtain abundance digital data of flame image instantaneous. Every data represent radiation heat transfer along projection beam. Based on Optic geometric and heat transfer theory, they develop a 3-d flame temperature field reconstruction technique, which can calculate a 3-d zone temperature using two perspectives CCD camera. The optical geometric relation of CCD's image formation and flame radiation heat transfer model is deduced, they establish the reconstruction equation group from radiation heat transfer, and optimization is introduced to solve these equation. The result of a PC boiler is presented.

  20. Fusion of MODIS and Landsat-8 Surface Temperature Images: A New Approach

    PubMed Central

    Hazaymeh, Khaled; Hassan, Quazi K.

    2015-01-01

    Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93–0.94, 0.94–0.99; and 2.97–20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084–0.90, 0.061–0.080, and 0.003–0.004, respectively. PMID:25730279

  1. Fusion of MODIS and landsat-8 surface temperature images: a new approach.

    PubMed

    Hazaymeh, Khaled; Hassan, Quazi K

    2015-01-01

    Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93-0.94, 0.94-0.99; and 2.97-20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084-0.90, 0.061-0.080, and 0.003-0.004, respectively. PMID:25730279

  2. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    NASA Astrophysics Data System (ADS)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  3. High-temperature strain cell for tomographic imaging

    DOEpatents

    MacDowell, Alastair A.; Nasiatka, James; Haboub, Abdel; Ritchie, Robert O.; Bale, Hrishikesh A.

    2015-06-16

    This disclosure provides systems, methods, and apparatus related to the high temperature mechanical testing of materials. In one aspect, a method includes providing an apparatus. The apparatus may include a chamber. The chamber may comprise a top portion and a bottom portion, with the top portion and the bottom portion each joined to a window material. A first cooled fixture and a second cooled fixture may be mounted to the chamber and configured to hold the sample in the chamber. A plurality of heating lamps may be mounted to the chamber and positioned to heat the sample. The sample may be placed in the first and the second cooled fixtures. The sample may be heated to a specific temperature using the heating lamps. Radiation may be directed though the window material, the radiation thereafter interacting with the sample and exiting the chamber through the window material.

  4. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    E-print Network

    Chandra, Premi

    Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment online). Finite temperature phase diagram of classical windmill Heisenberg antiferromagnet as a function

  5. Temperature imaging of laser-induced thermotherapy (LITT) by MRI: evaluation of different sequences in phantom.

    PubMed

    Bazrafshan, Babak; Hübner, Frank; Farshid, Parviz; Hammerstingl, Renate; Paul, Jijo; Vogel, Vitali; Mäntele, Werner; Vogl, Thomas J

    2014-01-01

    The purpose of this study was to evaluate magnetic resonance (MR) temperature imaging of the laser-induced thermotherapy (LITT) comparing the proton resonance frequency (PRF) and T 1 thermometry methods. LITT was applied to a liver-mimicking acrylamide gel phantom. Temperature rise up to 70 °C was measured using a MR-compatible fiber-optic thermometer. MR imaging was performed by a 1.5-T scanner utilizing fast gradient echo sequences including a segmented echo planar imaging (seg-EPI) sequence for PRF and the following sequences for T 1 method: fast low-angle shot (FLASH), inversion recovery turbo flash (IRTF), saturation recovery turbo flash (SRTF), and true fast imaging (TRUFI). Temperature-induced change of the pixel values in circular regions of interest, selected on images under the temperature probe tip, was recorded. For each sequence, a calibration constant could be determined to be -0.0088 ± 0.0002 ppm °C(-1) (EPI), -1.15 ± 0.03 °C(-1) (FLASH), -1.49 ± 0.03 °C(-1) (IRTF), -1.21 ± 0.03 °C(-1) (SRTF), and -2.52 ± 0.12 °C(-1) (TRUFI). These constants were evaluated in further LITT experiments in phantom comparing the calculated temperatures with the fiber optic-measured ones; temperature precisions of 0.60 °C (EPI), 0.81 °C (FLASH), 1.85 °C (IRTF), 1.95 °C (SRTF), and 3.36 °C (TRUFI) were obtained. Furthermore, performing the Bland-Altman analysis, temperature accuracy was determined to be 0.23 °C (EPI), 0.31 °C (FLASH), 1.66 °C (IRTF), 1.19 °C (SRTF), and 3.20 °C (TRUFI). In conclusion, the seg-EPI sequence was found to be more convenient for MR temperature imaging of LITT due to its relatively high precision and accuracy. Among the T 1 method sequences, FLASH showed the highest accuracy and robustness. PMID:23535892

  6. Thermal Imaging in the Chemistry Laboratory Thermal imaging devices take advantage of the fact that all objects with a temperature above absolute

    E-print Network

    Short, Daniel

    Thermal Imaging in the Chemistry Laboratory Thermal imaging devices take advantage of the fact the energy in the infrared radiation emitted by a viewed object into a visible light display. Thermal imaging to the temperature of the object (the Stefan-Boltzman law). Recently the cost of thermal imaging cameras has declined

  7. Raman characterization of high temperature materials using an imaging detector

    SciTech Connect

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs.

  8. Improving Image Quality by Accounting for Changes in Water Temperature during a Photoacoustic Tomography Scan

    PubMed Central

    Van de Sompel, Dominique; Sasportas, Laura Sarah; Dragulescu-Andrasi, Anca; Bohndiek, Sarah; Gambhir, Sanjiv Sam

    2012-01-01

    The emerging field of photoacoustic tomography is rapidly evolving with many new system designs and reconstruction algorithms being published. Many systems use water as a coupling medium between the scanned object and the ultrasound transducers. Prior to a scan, the water is heated to body temperature to enable small animal imaging. During the scan, the water heating system of some systems is switched off to minimize the risk of bubble formation, which leads to a gradual decrease in water temperature and hence the speed of sound. In this work, we use a commercially available scanner that follows this procedure, and show that a failure to model intra-scan temperature decreases as small as 1.5°C leads to image artifacts that may be difficult to distinguish from true structures, particularly in complex scenes. We then improve image quality by continuously monitoring the water temperature during the scan and applying variable speed of sound corrections in the image reconstruction algorithm. While upgrading to an air bubble-free heating pump and keeping it running during the scan could also solve the changing temperature problem, we show that a software correction for the temperature changes provides a cost-effective alternative to a hardware upgrade. The efficacy of the software corrections was shown to be consistent across objects of widely varying appearances, namely physical phantoms, ex vivo tissue, and in vivo mouse imaging. To the best of our knowledge, this is the first study to demonstrate the efficacy of modeling temporal variations in the speed of sound during photoacoustic scans, as opposed to spatial variations as focused on by previous studies. Since air bubbles pose a common problem in ultrasonic and photoacoustic imaging systems, our results will be useful to future small animal imaging studies that use scanners with similarly limited heating units. PMID:23071512

  9. Thermal imaging of Uranus: Upper-tropospheric temperatures one season after Voyager

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh N.; Encrenaz, Therese; Leyrat, Cedric; Roe, Henry G.; Fujiyoshi, Takuya; Pantin, Eric

    2015-11-01

    We report on 18-25 ?m thermal imaging of Uranus that took place between 2003 and 2011, a time span roughly one season after the thermal maps made by the Voyager-2 IRIS experiment in 1986. We re-derived meridional variations of temperature and para-H2 fraction from the Voyager experiment and compared these with the thermal images, which are sensitive to temperatures in the upper troposphere of Uranus around the 70-400 mbar atmospheric pressure range. The thermal images display a maximum of 3 K of equivalent temperature changes across the disk, and they are consistent with the temperature distribution measured by the Voyager IRIS experiment. This implies that there has been no detectable change of the meridional distribution of upper-tropospheric/lower-stratospheric temperatures over a season. This is inconsistent with seasonally dependent radiative-convective-dynamical models and full global climate models that predict some variability with season if the effective temperature is meridionally constant. We posit that the effective temperature of Uranus could be meridionally variable, with the additional possibility that even the small temperature variations predicted by the GCMs are overestimated.

  10. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    NASA Astrophysics Data System (ADS)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 ?m. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  11. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions

    PubMed Central

    Petrova, Elena; Ermilov, Sergey; Su, Richard; Nadvoretskiy, Vyacheslav; Conjusteau, André; Oraevsky, Alexander

    2013-01-01

    Grüneisen parameter is a key temperature-dependent physical characteristic responsible for thermoelastic efficiency of materials. We propose a new methodology for accurate measurements of temperature dependence of Grüneisen parameter in optically absorbing solutions. We use two-dimensional optoacoustic (OA) imaging to improve accuracy of measurements. Our approach eliminates contribution of local optical fluence and absorbance. To validate the proposed methodology, we studied temperature dependence of aqueous cupric sulfate solutions in the range from 22 to 4°C. Our results for the most diluted salt perfectly matched known temperature dependence for the Grüneisen parameter of water. We also found that Grüneisen-temperature relationship for cupric sulfate exhibits linear trend with respect to the concentration. In addition to accurate measurements of Grüneisen changes with temperature, the developed technique provides a basis for future high precision OA temperature monitoring in live tissues. PMID:24150350

  12. A model of the temperature rise in the head due to magnetic resonance imaging procedures.

    PubMed

    Athey, T W

    1989-02-01

    A simple model of power deposition in the head is presented in which the temperature increase in the head in general and, in particular, in a small spherical region of unperfused tissue contained within the head is calculated. The result of the calculation provides a limit on the SAR needed to ensure that a 1 degree C temperature rise is not exceeded for unperfused spheres of different sizes, imaging sessions of different lengths of time, and different blood flow rates to the head. The model assumes that the rest of the body during a head imaging session can act as a perfect heat sink at 37 degrees C. The model suggests that current practices in MRI imaging will not cause a temperature rise in the center of small unperfused regions such as the eye of more than 1 degree C. PMID:2716503

  13. Spectroscopic diagnostics of temperatures for a non-axisymmetric coupling arc by monochromatic imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Xiong, Jun; Hu, Yutang

    2010-10-01

    The twin-electrode TIG coupling arc is a newly developed non-axisymmetric welding arc. The imaging method that consists of a high-speed camera with a narrow-band filter has been used to obtain monochromatic images of a coupling arc at atmospheric pressure. The spatial emission coefficients of the non-axisymmetric coupling arc are reconstructed by means of the Maldonado method. Under the assumption of local thermodynamic equilibrium, the temperature distribution of the coupling arc has been determined. The temperature distribution is similar to an ellipse, and the short axis of the ellipse is in the direction that the two electrodes are arranged along. The highest temperature area is in the middle of both electrodes. It indicates that there is a strong interaction within the coupling arc. The results show that the imaging method is an efficient way of characterizing the non-axisymmetric coupling arc.

  14. High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles.

    PubMed

    Abram, Christopher; Fond, Benoit; Beyrau, Frank

    2015-07-27

    Zinc oxide (ZnO) particles are characterised as a tracer for temperature measurements in turbulent flows, in the context of the thermographic particle image velocimetry technique. Flow measurements are used to compare the temperature precision of ZnO to that obtained using a well-characterised thermographic phosphor, BAM:Eu(2+), under the same conditions. For this two-colour, ratio-based technique the strongly temperature-dependent redshift of the luminescence emission of ZnO offers improved temperature sensitivity, and so at room temperature a threefold increase in the temperature precision is achieved. A dependence of the intensity ratio on the laser fluence is identified, and additional measurements with different laser pulse durations are used to independently show that there is also a dependence on the laser excitation irradiance, irrespective of fluence. A simple method to correct for these effects is demonstrated and sources of error are analysed in detail. Temperature images in a Re = 2000 jet of air heated to 363 K with a precision of 4 K (1.1%) are presented. The sensitivity of ZnO increases across the tested temperature range 300-500 K, so that at 500 K, using a seeding density of 2 x 10(11) particles/m(3), a precision of 3 K (0.6%) is feasible. This new phosphor extends the capabilities of this versatile technique toward the study of flows with small temperature variations. PMID:26367604

  15. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  16. *PSD:Position Sensitive Detector GP2D12/GP2D15 Distance Measuring Sensors

    E-print Network

    Wedeward, Kevin

    *PSD:Position Sensitive Detector GP2D12/GP2D15 Distance Measuring Sensors General Purpose Type Distance Measuring Sensors SHARP's GP2D12/GP2D15 are general purpose type distance measuring sensors which -10 to +60°C -10 to +60°C Dissipation current Icc MAX.35mA GP2D12 Distance Measuring SensorsGP2D12/GP2

  17. Preliminary Analysis of Images from the Thermospheric Temperature Image on Fast, Affordable, Science and Technology Satellite (FASTSAT)

    NASA Technical Reports Server (NTRS)

    Rodriquez, Marcello; Jones, Sarah; Mentzell, Eric; Gill, Nathaniel

    2011-01-01

    The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermospheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.

  18. Ultrafast 2D IR Vibrational Echo Spectroscopy

    E-print Network

    Fayer, Michael D.

    Ultrafast 2D IR Vibrational Echo Spectroscopy JUNRONG ZHENG, KYUNGWON KWAK, AND M. D. FAYER The experimental technique and applications of ultrafast two- dimensional infrared (2D IR) vibrational echo systems. The form and time evolution of the 2D IR spectrum permits examination of processes that cannot

  19. Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.

    1996-01-01

    The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.

  20. Experimental and theoretical kinetics for the H2O+ + H2/D2 ? H3O+/H2DO+ + H/D reactions: observation of the rotational effect in the temperature dependence.

    PubMed

    Ard, Shaun G; Li, Anyang; Martinez, Oscar; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua

    2014-12-11

    Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ?81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, showing a subtle, but unusual temperature dependence of the rate coefficients. For both reactions the temperature dependence has a maximum around 350 K, which is a result of H2O(+) rotations increasing the reactivity, while kinetic energy is decreasing the reactivity. A strong isotope effect is found, although the calculations slightly overestimate the kinetic isotope effect. The good experiment-theory agreement not only validates the accuracy of the potential energy surface but also provides more accurate kinetic data over a large temperature range. PMID:25398042

  1. Qualitative gas temperature distribution in positive DC glow corona using spectral image processing in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Inada, Yoichi; Shimizu, Daisuke; Izawa, Yasuji; Nishijima, Kiyoto

    2015-01-01

    An experimental method of determining a qualitative two-dimensional image of the gas temperature in stationary atmospheric nonthermal plasma by spectral image processing was presented. In the experiment, a steady-state glow corona discharge was generated by applying a positive DC voltage to a rod-plane electrode in synthetic air. The changes in the gas temperature distribution due to the amplitude of applied voltage and the ambient gas pressure were investigated. Spectral images of a positive DC glow corona were taken using a gated ICCD camera with ultranarrow band-pass filters, corresponding to the head and tail of a N2 second positive system band (0-2). The qualitative gas temperature was obtained from the emission intensity ratio between the head and tail of the N2 second positive system band (0-2). From the results, we confirmed that the gas temperature and its distribution of a positive DC glow corona increased with increasing applied voltage. In particular, just before the sparkover voltage, a distinctly high temperature region was formed in the positive DC glow at the tip of the rod electrode. In addition, the gas temperature decreased and its distribution spread diffusely with decreasing ambient gas pressure.

  2. Measurement of effective temperature range of fire service thermal imaging cameras

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Bryner, Nelson

    2008-04-01

    The use of thermal imaging cameras (TIC) by the fire service is increasing as fire fighters become more aware of the value of these tools. The National Fire Protection Association (NFPA) is currently developing a consensus standard for design and performance requirements of TIC as used by the fire service. The National Institute of Standards and Technology facilitates this process by providing recommendations for science-based performance metrics and test methods to the NFPA technical committee charged with the development of this standard. A suite of imaging performance metrics and test methods, based on the harsh operating environment and limitations of use particular to the fire service, has been proposed for inclusion in the standard. The Effective Temperature Range (ETR) measures the range of temperatures that a TIC can view while still providing useful information to the user. Specifically, extreme heat in the field of view tends to inhibit a TIC's ability to discern surfaces having intermediate temperatures, such as victims and fire fighters. The ETR measures the contrast of a target having alternating 25 °C and 30 °C bars while an increasing temperature range is imposed on other surfaces in the field of view. The ETR also indicates the thermal conditions that trigger a shift in integration time common to TIC employing microbolometer sensors. The reported values for this imaging performance metric are the hot surface temperature range within which the TIC provides adequate bar contrast, and the hot surface temperature at which the TIC shifts integration time.

  3. In situ X-ray ptychography imaging of high-temperature CO{sub 2} acceptor particle agglomerates

    SciTech Connect

    Høydalsvik, Kristin; Bø Fløystad, Jostein; Esmaeili, Morteza; Mathiesen, Ragnvald H.; Breiby, Dag W.; Zhao, Tiejun; Rønning, Magnus; Diaz, Ana; Andreasen, Jens W.

    2014-06-16

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO{sub 2} capture material, was studied at a pressure of one atmosphere in air and in CO{sub 2}, at temperatures exceeding 600?°C. Images with a spatial resolution better than 200?nm were retrieved, and possibilities for improving the experiment are described.

  4. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  5. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics

    PubMed Central

    Chung, Hoi Sung; Ganim, Ziad; Jones, Kevin C.; Tokmakoff, Andrei

    2007-01-01

    Transient two-dimensional infrared (2D IR) spectroscopy is used as a probe of protein unfolding dynamics in a direct comparison of fast unfolding experiments with molecular dynamics simulations. In the experiments, the unfolding of ubiquitin is initiated by a laser temperature jump, and protein structural evolution from nanoseconds to milliseconds is probed using amide I 2D IR spectroscopy. The temperature jump prepares a subensemble near the unfolding transition state, leading to quasi-barrierless unfolding (the “burst phase”) before the millisecond activated unfolding kinetics. The burst phase unfolding of ubiquitin is characterized by a loss of the coupling between vibrations of the ?-sheet, a process that manifests itself in the 2D IR spectrum as a frequency blue-shift and intensity decrease of the diagonal and cross-peaks of the sheet's two IR active modes. As the sheet unfolds, increased fluctuations and solvent exposure of the ?-sheet amide groups are also characterized by increases in homogeneous linewidth. Experimental spectra are compared with 2D IR spectra calculated from the time-evolving structures in a molecular dynamics simulation of ubiquitin unfolding. Unfolding is described as a sequential unfolding of strands in ubiquitin's ?-sheet, using two collective coordinates of the sheet: (i) the native interstrand contacts between adjacent ?-strands I and II and (ii) the remaining ?-strand contacts within the sheet. The methods used illustrate the general principles by which 2D IR spectroscopy can be used for detailed dynamical comparisons of experiment and simulation. PMID:17551015

  6. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  7. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (ESTSC)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more »By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  8. A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1989-01-01

    It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.

  9. Real-time Microwave Imaging of Differential Temperature for Thermal Therapy Monitoring

    PubMed Central

    Haynes, Mark; Stang, John; Moghaddam, Mahta

    2014-01-01

    A microwave imaging system for real-time 3D imaging of differential temperature has been developed for the monitoring and feedback of thermal therapy systems. Design parameters are constrained by features of a prototype focused microwave thermal therapy system for the breast, operating at 915 MHz. Real-time imaging is accomplished with a precomputed linear inverse scattering solution combined with continuous Vector Network Analyzer (VNA) measurements of a 36-antenna, HFSS modeled, cylindrical cavity. Volumetric images of differential change of dielectric constant due to temperature are formed with a refresh rate as fast as 1 frame per second and 1°C resolution. Procedures for data segmentation and post-processed S-parameter error-correction are developed. Antenna pair VNA calibration is accelerated by using the cavity as the unknown thru standard. The device is tested on water targets and a simple breast phantom. Differentially heated targets are successfully imaged in cluttered environments. The rate of change of scattering contrast magnitude correlates 1:1 with target temperature. PMID:24845289

  10. Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager

    E-print Network

    Daniel, Rosenfeld

    Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager Yannian Zhu1 the Suomi National Polar-Orbiting Partnership (NPP) satellite provided a quantum jump in the satellite) and validate it over the Atmospheric System Research Southern Great Plains site for the satellite early

  11. Changes in Body Temperature in Incomplete Spinal Cord Injury by Digital Infrared Thermographic Imaging

    PubMed Central

    Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan

    2015-01-01

    Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167

  12. Temperature measurements in an axisymmetric methane-air flame using Talbot images

    NASA Astrophysics Data System (ADS)

    Khramtsov, P. P.; Penyazkov, O. G.; Shatan, I. N.

    2015-02-01

    The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane -air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.

  13. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere.

    PubMed

    Makowska, Ma?gorzata G; Theil Kuhn, Luise; Cleemann, Lars N; Lauridsen, Erik M; Bilheux, Hassina Z; Molaison, Jamie J; Santodonato, Louis J; Tremsin, Anton S; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100?°C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components. PMID:26724075

  14. Automatic Color-Temperature Compensator with Guest -Host Liquid-Crystal Filter for Video Image Sensing

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Yonai, Jun; Sato, Hiroto; Kikuchi, Hiroshi; Iino, Yoshiki; Kawakita, Masahiro; Tsuchiya, Yuzuru; Iwashita, Kenichi; Umeda, Shinya

    2001-05-01

    A color-temperature compensating system with an electrically controllable liquid-crystal filter and a color sensor mounted on a video camera has been developed for color image sensing. The filter contains two guest -host liquid-crystal devices with dichroic dyes that have strong light absorption for shorter-wavelength light; two devices are necessary because of the spectral difference between the sun and an incandescent lamp as light sources. The filter s absorption is continuously controlled by the voltage applied to the filter. Because the filter is driven according to spectral information about the illumination detected by the color sensor, the color balance of the video image to be sensed can be compensated automatically and rapidly. This is especially useful for video image shooting in which a video camera experiences changes in illumination color temperatures.

  15. Method of Images for the Fast Calculation of Temperature Distributions in Packaged VLSI Chips

    E-print Network

    Virginia Martín Hériz; J. -H. Park; T. Kemper; S. -M. Kang; A. Shakouri

    2008-01-07

    Thermal aware routing and placement algorithms are important in industry. Currently, there are reasonably fast Green's function based algorithms that calculate the temperature distribution in a chip made from a stack of different materials. However, the layers are all assumed to have the same size, thus neglecting the important fact that the thermal mounts which are placed underneath the chip can be significantly larger than the chip itself. In an earlier publication, we showed that the image blurring technique can be used to calculate quickly temperature distribution in realistic packages. For this method to be effective, temperature distribution for several point heat sources at the center and at the corner and edges of the chip should be calculated using finite element analysis (FEA) or measured. In addition, more accurate results require correction by a weighting function that will need several FEA simulations. In this paper, we introduce the method of images that take the symmetry of the thermal boundary conditions into account. Thus with only "two" finite element simulations, the steady-state temperature distribution for an arbitrary complex power dissipation profile in a packaged chip can be calculated. Several simulation results are presented. It is shown that the power blurring technique together with the method of images can reproduce the temperature profile with an error less than 0.5%.

  16. Low temperature magnetic imaging of strained multiferroic EuTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Geng, Yanan; Wu, Weida; Freeland, J. W.; Ryan, P.; Kim, J. W.; Ke, X.; Schiffer, P.; Lee, J. H.; Schlom, D. G.; Fennie, C. J.

    2010-03-01

    It has been predicted that the competition between paraelectric antiferromagnetic state and ferroelectric ferromagnetic state in perovskite EuTiO3 can be tuned by epitaxial strain.footnotetextC.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006). Tensile-strained EuTiO3 thin films grown on DyScO3 (110) substrate by molecular-beam epitaxy are confirmed to be ferromagnetic at low temperature by magnetometry and magneto-capacitance. Here we present magnetic imaging of EuTiO3/DyScO3 thin film using low temperature magnetic force microscopy (LT-MFM). Temperature dependence of MFM contrast confirms the ferromagnetic ground state. The magnetic field dependence of MFM images will be discussed in conjunction with magnetometry and magneto-capacitance measurements.

  17. BOREAS Level-2 MAS Surface Reflectance and Temperature Images in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey (Editor); Lobitz, Brad; Spanner, Michael; Strub, Richard; Lobitz, Brad

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed aircraft data products they needed to compare and spatially extend point results. The MODIS Airborne Simulator (MAS) images, along with other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes biophysical parameter maps such as surface reflectance and temperature. Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-2 MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 navigation data in a MAS scan model. The data are provided in binary image format files.

  18. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao

    2015-04-01

    High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 ?s, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption.High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 ?s, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07650h

  19. Concurrent OH imager and sodium temperature//wind lidar observation of a mesopause region undular bore event

    E-print Network

    Concurrent OH imager and sodium temperature//wind lidar observation of a mesopause region undular and Atmospheric Dynamics: Waves and tides; KEYWORDS: airglow, mesospheric bore, sodium lidar Citation: She, C. Y., T. Li, B. P. Williams, T. Yuan, and R. H. Picard (2004), Concurrent OH imager and sodium temperature

  20. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    PubMed

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function. PMID:26415433

  1. 2D Barcode for DNA Encoding

    E-print Network

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  2. Study on magnetic mirror array image intensifier to work at room temperature.

    PubMed

    Tang, Yuanhe; Yu, Yang; Gao, HaiYang; Liu, Shulin; Wang, Xiaolin

    2015-09-10

    In order to improve the detection capability of the current low-light-level (LLL) imaging systems at room temperature, a new device, a magnetic mirror array image intensifier (MMAII), is proposed in this paper. A magnetic mirror array device (MMAD) is coupled into an image intensifier which sits between the photocathode and the microchannel plate (MCP). The trace photoelectrons, one after another, are first sufficiently accumulated by the MMAD over a long time at room temperature, and then they are released and enter the MCP for further gain. These two steps are used to improve the detection capability at the LLL imaging system at room temperature. After the two-dimensional magnetic field distribution of the magnetic mirror array (MMA) is calculated, the MMA is designed and optimized with a rubidium Nd-Fe-B permanent magnet. Three groups of ideal parameters for the Nd-Fe-B permanent magnet MMAD, with a magnetic mirror ratio of 1.69, for all of them have been obtained. According to the research results on the noise of the escape cone of the MMAII, the angle between the incident direction and the axis is greater than 57°, so the trace electrons must be constrained by the magnetic mirror. We made 54 MMAs from Nd-Fe-B permanent magnets and packaged them in a container. Then the system was evacuated to 10-3??Pa at room temperature. It was found by experiment that the trace electrons could be actually constrained by the MMAD. The MMAII can be applied to images for static LLL objects. PMID:26368978

  3. Temperature-dependent photoluminescence imaging of GaAs/AlGaAs heterostructure quantum well tubes

    NASA Astrophysics Data System (ADS)

    Shi, Teng; Jackson, Howard; Smith, Leigh; Yarrison-Rice, Jan; Jiang, Nian; Tan, Hoe; Gao, Qiang; Jagadish, Chennupati

    2014-03-01

    Two sets of GaAs/AlGaAs core-multi shell nanowire quantum well tubes (QWTs) grown by MOCVD, with QW widths of 2nm and 6nm are dispersed onto a 4mm diameter hemispherical solid immersion lens. We obtain high spatial resolution photoluminescence (PL) images of single nanowires (NWs) from 10 K up to 120 K. High spectral resolution PL spectra reveal several narrow emission lines on high energy side of the 2nm QWT at low temperatures. In the 6nm QW, such narrow emission lines are not observed. Spatially-resolved PL images show that these localized states are randomly distributed along the NW long axis. Temperature-dependent PL imaging indicates that the quantum dot emissions disappear at temperatures above 50K. The recombination lifetime for electrons and holes in the QWT for the 2nm and 6nm QWTs are 500ps and 800 ps, respectively. We observe the recombination lifetime increases slightly with increasing temperature. We acknowledge the NSF through DMR-1105362, 1105121 and ECCS-1100489, and the Australian Research Council.

  4. Thermographic imaging of facial skin—gender differences and temperature changes over time in healthy subjects

    PubMed Central

    Christensen, J; Vaeth, M; Wenzel, A

    2012-01-01

    Objectives To assess changes in facial skin temperature over time, to identify sources of variation related to skin temperature and to evaluate interobserver reproducibility in measurements of the thermograms. Methods 62 volunteers (32 females, 30 males, mean age 23.4, range 19.5–29.5 years) underwent thermography of the face (left and right side lateral images) on four occasions with approximately 2 months between each session. Three observers recorded the images and marked regions of interest (ROIs) in each image using dedicated software. Smoking, exercise habits and use of oral contraceptives were recorded. Results A significant difference between sessions (?1 °C, p < 0.001) and between observers (?0.11 °C, p < 0.001) was identified. The difference between sides was not significant (?0.07 °C, p = 0.7). None of the interactions between side, session and observer were significant. Smoking, exercise habits and oral contraceptive intake were not significant impact factors when included as covariates in the analysis (p > 0.1). ROI temperature was significantly higher in males than in females (0.7 °C, p < 0.001). A mixed model analysis of variance showed that observer had little impact on the expected standard deviation, whereas session and subject had a greater impact. Conclusions Face temperature is symmetrical and varies over time. The non-significant difference between sides is highly reproducible, even between observers. PMID:22554986

  5. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Li, Bing; Chow, Tommy W. S.

    2013-09-01

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment efficacy.

  6. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio elastograms, which provide additional valuable information for disease diagnosis. Finally, measurements of temperature dependent variables, including sound speed, attenuation coefficient, and thermal expansion in canine liver tissue, are performed. This information is necessary for the estimation of the temperature profile during ablation. A mapping function between the gradient of timeshifts and tissue temperature is calculated using this information and subsequently applied to estimate temperature profiles.

  7. Microburst applications of brightness temperature difference between GOES Imager channels 3 and 4

    E-print Network

    Pryor, Kenneth L

    2010-01-01

    This paper presents a new application of brightness temperature difference (BTD) between Geostationary Operational Environmental Satellite (GOES) imager channels 3 and 4. It has been found recently that the BTD between GOES infrared channel 3 (water vapor) and channel 4 (thermal infrared) can highlight regions where severe outflow wind generation (i.e. downbursts, microbursts) is likely due to the channeling of dry mid-tropospheric air into the precipitation core of a deep, moist convective storm. Case studies demonstrating effective operational use of this image product are presented for two significant marine transportation accidents as well as a severe downburst event over the Washington, DC metropolitan area in April 2010.

  8. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a ?3 honeycomb phase that is indistinguishable from the silver-induced ?3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  9. Search for temperature-related albedo changes in nightside and posteclipse images of Io

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Boucher, Jennifer; Helfenstein, Paul; Veverka, Joseph; O'Shaughnessy, Megan

    1994-01-01

    Using an image-summing process that increases the visibility of Jupiterlit surface features in Voyager images, we have produced the best-ever violet-filter image of the nightside of Io and the best-ever nightside/dayside brightness ratio map of this jovian moon. The ratio map shows no convincing evidence, on either global or local scales, of diurnal temperature-dependent albedo variations. We have also taken an image-ratioing technique developed by O'Shaughnessy et al. (1989), which those authors applied to Voyager violet-filter observations of one Io eclipse reappearance, and extended it to two other, higher-resolution Voyager posteclipse imaging sequences. In none of three imaging sequences do we find any isolated surface regions that convincingly exhibit posteclipse temperature-related albedo variations. These negative results suggest that on Io, pure cyclo-octasulfur (S8), and transient nighttime or in-eclipse deposits of SO2 frost, are at best limited to isolated areas smaller than the resolution of the images in use (i.e., smaller than a few tens of kilometers in size). Such limits are consistent with (1) the negative results reported by the majority of telescopic observers who have searched for posteclipse brightening of Io, (2) indications that physical processes in the ionian surface environment will change any S8 into other allotropes of sulfur, and (3) suggestions that Io's atmosphere is too thin to allow the deposition of transient, optically thick SO2 frost layers at nighttime or during eclipse.

  10. Reconfigurable 2-D WDM Optical Tapped-Delay-Line to Correlate 20Gbaud QPSK Data

    E-print Network

    Touch, Joe

    is mapped to a WDM channel by modulating optical frequency comb fingers (phase locked sources) with QPSK 94305, USA Abstract We demonstrate a 2-D optical tapped-delay-line that exploits nonlinearities product of the 2-D correlator, the WDM channels (which represent the image rows) are sent into a nonlinear

  11. Fundamental Performance Assessment of 2-D Myocardial Elastography in a Phased Array

    E-print Network

    Konofagou, Elisa E.

    ) canine left-ventricular model, a theoretical framework was previously developed by our group to evaluate the estimation quality of 2-D myocardial elastography using a linear array. In this paper, an ultrasound finite- element (FE) model of the canine left-ventricle [3, 4]. A 2-D convolutional image formation model

  12. Localization and Segmentation of A 2D High Capacity Color Barcode Devi Parikh Gavin Jancke

    E-print Network

    Chen, Tsuhan

    Localization and Segmentation of A 2D High Capacity Color Barcode Devi Parikh Gavin Jancke dparikh Abstract A 2D color barcode can hold much more information than a binary barcode. Barcodes are often intended for consumer use, such as, a consumer can take an image with her cell- phone camera of a barcode

  13. Estimating more reliable measures of forest canopy temperatures using thermal imaging

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Still, C. J.; Aubrecht, D. M.; Richardson, A. D.

    2014-12-01

    Leaf temperature is critical to plant function, and it can be used to examine forest responses to droughts, heat waves, and storm events. The recent development of thermal infrared (TIR) imaging techniques has offered indirect measurement of forest canopy skin temperature, and it allows for extensive temporal and spatial sampling compared to direct thermocouple-based measurements. However, the accuracy of TIR indirect canopy temperature is not well understood, as few studies have evaluated how TIR-derived temperatures compare to other approaches. The objectives of this study are: (1) to monitor canopy temperatures of a coniferous forest canopy using a TIR camera and in situ sensors; (2) to evaluate the reliability of TIR canopy temperatures by comparing against leaf temperatures measured by thermocouples; (3) to develop and examine methods for improving TIR measures based on corrections of camera's default parameters ("Recalculation") and records of sensitivity by parameter changes ("Data-training"). This study showed the canopy temperatures varied from -5 and 30°C, and the patterns of changes between the TIR and thermocouple measures corresponded well. Overall, TIR canopy temperatures were underestimated against the direct thermocouple measurements with mean absolute error (MAE) of 0.83-1.38°C and root mean square error (RMSE) of 1.11-1.53°C for the study period. The modified TIR temperatures from the "Recalculation" method exhibited MAE of 0.56-0.95°C and RMSE of 0.83-1.15°C, and those by the "Data-training" method resulted in MAE of 0.32-0.50°C and RMSE of 0.53-0.83°C. Our results demonstrate that the TIR technique includes small errors for canopy temperature measurements; however, the range of errors is smaller when correction methods are applied.

  14. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions

    PubMed Central

    Renosh, P. R.; Schmitt, Francois G.; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  15. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  16. Capability of Thermographic Imaging Defined for Detection in High-Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1997-01-01

    Significant effort and resources are being expended to develop ceramic matrix (CMC), metal matrix (MMC), and polymer matrix (PMC) composites for high-temperature engine components and other parts in advanced aircraft. The objective of this NASA Lewis Research Center study was to evaluate the ability of a thermographic imaging technique for detecting artificially created defects (flat-bottom holes) of various diameters and depths in four composite systems (two CMC's, one MMC, and one PMC) of interest as high-temperature structural materials.

  17. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.

    PubMed

    Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao

    2015-04-21

    High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 ?s, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption. PMID:25807291

  18. Thermographic imaging for high-temperature composite materials: A defect detection study

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Bodis, James R.; Bishop, Chip

    1995-01-01

    The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.

  19. 2D conglomerate crystallization of heptahelicene.

    PubMed

    Seibel, Johannes; Zoppi, Laura; Ernst, Karl-Heinz

    2014-08-14

    Two-dimensional (2D) nucleation and crystallization of the helical aromatic hydrocarbon heptahelicene on the single crystalline copper(100) surface has been studied with scanning tunnelling microscopy. In contrast to previously observed racemic 2D crystals on Cu(111), separation into homochiral domains is observed for Cu(100). PMID:24968343

  20. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  1. High-speed two-camera imaging pyrometer for mapping fireball temperatures.

    PubMed

    Densmore, John M; Homan, Barrie E; Biss, Matthew M; McNesby, Kevin L

    2011-11-20

    A high-speed imaging pyrometer was developed to investigate the behavior of flames and explosive events. The instrument consists of two monochrome high-speed Phantom v7.3 m cameras made by Vision Research Inc. arranged so that one lens assembly collects light for both cameras. The cameras are filtered at 700 or 900 nm with a 10 nm bandpass. The high irradiance produced by blackbody emission combined with variable shutter time and f-stop produces properly exposed images. The wavelengths were chosen with the expected temperatures in mind, and also to avoid any molecular or atomic gas phase emission. Temperatures measured using this pyrometer of exploded TNT charges are presented. PMID:22108886

  2. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  3. High temperature measurement using very high shutter speed to avoid image saturation

    SciTech Connect

    Ma, Zhen; Zhang, Yang

    2014-04-11

    This paper explores the adaptation of the two-colour principle to develop a high-speed colour temperature correlation system, which is able to cover a range of temperature that is challenging to achieve before. A colour digital camera has built in RGB filters. It is possible to measure the temperature from the ratio of intensity of the green and red pixels using the two-colour principle based on the expansion of the Plank’s radiation law. In this study, experiments were carried out using a temperature calibrated tungsten ribbon lamp which can be tuned to vary from 1300 to 2200°C. Using very high shutter speed and small aperture, the high-speed camera successfully captured the tungsten ribbon without image saturation at the full temperature scale. Tests have been carried out at different temperature and camera settings. The sensitivity and errors have been analysed, and experiment results demonstrate the potential of using very high shutter speed is available for measuring the temperature even beyond 2200°C.

  4. Analysis and calibration of absorptive images of Bose-Einstein condensate at nonzero temperatures

    SciTech Connect

    Szczepkowski, J.; Gartman, R.; Zawada, M.; Witkowski, M.; Tracewski, L.; Gawlik, W.

    2009-05-15

    We describe the method allowing quantitative interpretation of absorptive images of mixtures of Bose-Einstein condensate and thermal atoms which reduces possible systematic errors associated with evaluation of the contribution of each fraction and eliminates arbitrariness of most of the previous approaches. By using known temperature dependence of the BEC fraction, the analysis allows precise calibration of the fitting results. The developed method is verified in two different measurements and compares well with theoretical calculations and with measurements performed by another group.

  5. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  6. Bose Metal in 2D

    NASA Astrophysics Data System (ADS)

    Phillips, Philip

    2005-03-01

    Bosons are thought to exist in two quite distinct ground states: 1) localized in a Mott insulator or 2) condensed in a superconductor. However, recent experiments point to a third intriguing possibility: a metal with a finite resistivity at zero temperature. The Bose metallic phase appears to be quite robust and is observed in a wide variety of thin films which should nominally exihibit only insulating or superconducting phases. I will review the standard theoretical framework used to understand the insulator-superconductor transition, the recent experimental results and I will show quite generally how bosons in the presence of disorder can form a metallic state. The metallic state is rather weird, however. The phase degrees of freedom are glassy and it is the low-lying degrees of freedom in the glassy state that mediate the metallic state. An explicit calculation reveals that the phase stiffness vanishes, thereby confirming that the state found here is distinct from a superconductor. The relevance to the vortex glass state of the cuprates in which recent experiments suggest a transition to such a state occurs without the vanishing of the linear resistivity will be discussed. Relevant papers: 1.) P. Phillips and D. Dalidovich, Science 302, 243 (2003). 2.) P. Phillips and D. Dalidovich, Phys. Rev. B 68, 104427 (2003). 3.) D. Dalidovich and P. Phillips, Phys. Rev. Lett. 89, 27001 (2002).

  7. Thermographic Imaging of the Superficial Temperature in Racing Greyhounds before and after the Race

    PubMed Central

    Vainionpää, Mari; Tienhaara, Esa-Pekka; Raekallio, Marja; Junnila, Jouni; Snellman, Marjatta; Vainio, Outi

    2012-01-01

    A total of 47 racing greyhounds were enrolled in this study on two race days (in July and September, resp.) at a racetrack. Twelve of the dogs participated in the study on both days. Thermographic images were taken before and after each race. From the images, superficial temperature points of selected sites (tendo calcaneus, musculus gastrocnemius, musculus gracilis, and musculus biceps femoris portio caudalis) were taken and used to investigate the differences in superficial temperatures before and after the race. The thermographic images were compared between the right and left legs of a dog, between the raced distances, and between the two race days. The theoretical heat capacity of a racing greyhound was calculated. With regard to all distances raced, the superficial temperatures measured from the musculus gastrocnemius were significantly higher after the race than at baseline. No significant differences were found between the left and right legs of a dog after completing any of the distances. Significant difference was found between the two race days. The heat loss mechanisms of racing greyhounds during the race through forced conduction, radiation, evaporation, and panting can be considered adequate when observing the calculated heat capacity of the dogs. PMID:23097633

  8. Sub-optical resolution of single spins using magnetic resonance imaging at room temperature in diamond

    E-print Network

    Chang Shin; Changdong Kim; Roman Kolesov; Gopalakrishnan Balasubramanian; Fedor Jelezko; Jörg Wrachtrup; Philip R. Hemmer

    2010-03-29

    There has been much recent interest in extending the technique of magnetic resonance imaging (MRI) down to the level of single spins with sub-optical wavelength resolution. However, the signal to noise ratio for images of individual spins is usually low and this necessitates long acquisition times and low temperatures to achieve high resolution. An exception to this is the nitrogen-vacancy (NV) color center in diamond whose spin state can be detected optically at room temperature. Here we apply MRI to magnetically equivalent NV spins in order to resolve them with resolution well below the optical wavelength of the readout light. In addition, using a microwave version of MRI we achieved a resolution that is 1/270 size of the coplanar striplines, which define the effective wavelength of the microwaves that were used to excite the transition. This technique can eventually be extended to imaging of large numbers of NVs in a confocal spot and possibly to image nearby dark spins via their mutual magnetic interaction with the NV spin.

  9. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  10. Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers.

    PubMed

    Hu, Xianglong; Li, Yang; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2015-07-22

    Intracellular temperature plays a prominent role in cellular functions and biochemical activities inside living cells, but effective intracellular temperature sensing and imaging is still in its infancy. Herein, thermoresponsive double hydrophilic block copolymers (DHBCs)-based fluorescent thermometers were fabricated to investigate their application in intracellular temperature imaging. Blue-emitting coumarin monomer, CMA, green-emitting 7-nitro-2,1,3-benzoxadiazole (NBD) monomer, NBDAE, and red-emitting rhodamine B monomer, RhBEA, were copolymerized separately with N-isopropylacrylamide (NIPAM) to afford dye-labeled PEG-b-P(NIPAM-co-CMA), PEG-b-P(NIPAM-co-NBDAE), and PEG-b-P(NIPAM-co-RhBEA). Because of the favorable fluorescence resonance energy transfer (FRET) potentials between CMA and NBDAE, NBDAE and RhBEA, as well as the slight tendency between CMA and RhBEA fluorophore pairs, three polymeric thermometers based on traditional one-step FRET were fabricated by facile mixing two of these three fluorescent DHBCs, whereas exhibiting limited advantages. Thus, two-step cascade FRET among three polymeric fluorophores was further interrogated, in which NBD acted as a bridging dye by transferring energy from CMA to RhBEA. Through the delicate optimization of the molar contents of three polymeric components, a ?8.4-fold ratio change occurred in the temperature range of 20-44 °C, and the detection sensitivity improved significantly, reached as low as ?0.4 °C, which definitely outperformed other one-step FRET thermometers in the intracellular temperature imaging of living cells. To our knowledge, this work represents the first example of polymeric ratiometric thermometer employing thermoresponsive polymer-based cascade FRET mechanism. PMID:26114380

  11. 2D and 3D Dense-Fluid Shear Flows via Nonequilibrium Molecular Dynamics. Comparison of Time-and-Space-Averaged Tensor Temperature and Normal Stresses from Doll's, Sllod, and Boundary-Driven Shear Algorithms

    E-print Network

    Wm. G. Hoover; Carol G. Hoover; Janka Petravic

    2008-07-19

    Homogeneous shear flows (with constant strainrate du/dy) are generated with the Doll's and Sllod algorithms and compared to corresponding inhomogeneous boundary-driven flows. We use one-, two-, and three-dimensional smooth-particle weight functions for computing instantaneous spatial averages. The nonlinear stress differences are small, but significant, in both two and three space dimensions. In homogeneous systems the sign and magnitude of the shearplane stress difference, P(xx) - P(yy), depend on both the thermostat type and the chosen shearflow algorithm. The Doll's and Sllod algorithms predict opposite signs for this stress difference, with the Sllod approach definitely wrong, but somewhat closer to the (boundary-driven) truth. Neither of the homogeneous shear algorithms predicts the correct ordering of the kinetic temperatures, T(xx) > T(zz) > T(yy).

  12. Experimental investigation of 2D and 3D internal wave fields

    E-print Network

    Saidi, Sasan John

    2011-01-01

    The generation of 2D and 3D internal wave fields is extensively studied via planarand stereo- Particle Image Velocimetry (PIV) flow field measurement techniques. A benchmark was provided by an experiment involving tidal ...

  13. Measurements for displacement and deformation at high temperature by using edge detection of digital image.

    PubMed

    Qu, Zhe; Fang, Xufei; Su, Honghong; Feng, Xue

    2015-10-10

    In this work, we propose a structural deformation measuring method based on structural feature processing (straight line/edge detection) of the recorded digital images for specimens subjected to a high-temperature environment. Both radiation light and oxidation at high temperatures challenge the optics-based measurements. The images of a rectangular piece of copper specimen are obtained by using a bandpass filtering method at high temperatures, then all the edges are detected by using an edge detection operator, and then a Hough transform is conducted to search the straight edges for the calculation of deformation. Especially, due to the severe oxidation, a special seed strategy is adopted to reduce the oxidation effect and obtain an accurate result. For validation, the structural thermal deformation and the values of coefficients of thermal expansion for the copper specimen are measured and compared with data in the literature. The results reveal that the proposed method is accurate to measure the deformation of the structures at high temperatures. PMID:26479811

  14. Water transport in cement-in-polymer dispersions at variable temperature studied by magnetic resonance imaging

    SciTech Connect

    Olaru, A.M. Bluemich, B.; Adams, A.

    2013-02-15

    The hydration of recently developed cement-in-polymer dispersions (c/p) containing 30% and 40% poly (vinyl acetate) [PVAc] and 30% poly(vinyl alcohol) [PVA] was monitored on-line at various temperatures using {sup 1}H Single Point Imaging (SPI). The physical changes undergone by the materials as well as the complex manner in which the absorption process takes place and the evolution of the spin density were characterized and were found to be strongly dependent on the nature and amount of polymer and on the temperature. Based on the results obtained we propose a simple mathematical model which can be used to characterize the behaviour of the c/p dispersions exposed to hydration at variable temperature.

  15. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  16. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052

  17. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots

    E-print Network

    McEuen, Paul L.

    Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots J. Scott Bunch, Yuval Yaish-temperature electrical transport measurements on gated, quasi-2D graphite quantum dots. In devices with low contact that electrons in mesoscopic graphite pieces are delocalized over nearly the whole graphite piece down to low

  18. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure cou