These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

2-D Imaging of Electron Temperature in Tokamak Plasmas  

SciTech Connect

By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

2004-07-08

2

2D electron temperature diagnostic using soft x-ray imaging technique  

SciTech Connect

We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

Nishimura, K., E-mail: nishim11@nuclear.es.kit.ac.jp; Sanpei, A., E-mail: sanpei@kit.ac.jp; Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S. [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan)] [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Ohdachi, S.; Mizuguchi, N. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

2014-03-15

3

Staring 2-D hadamard transform spectral imager  

DOEpatents

A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

Gentry, Stephen M. (Albuquerque, NM); Wehlburg, Christine M. (Albuquerque, NM); Wehlburg, Joseph C. (Albuquerque, NM); Smith, Mark W. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM)

2006-02-07

4

A Spot Segmentation Approach for 2D Gel Electrophoresis Images Based on 2D Histograms  

E-print Network

A Spot Segmentation Approach for 2D Gel Electrophoresis Images Based on 2D Histograms Eleni@bioacademy.gr Abstract Spot-Segmentation, an essential stage of processing 2D gel electrophoresis images, remains approach to spot segmentation in 2D gel electrophoresis images. The proposed approach is based on 2D

Athens, University of

5

50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography.  

PubMed

This paper describes a novel laser diagnostic and its demonstration in a practical aero-propulsion engine (General Electric J85). The diagnostic technique, named hyperspectral tomography (HT), enables simultaneous 2-dimensional (2D) imaging of temperature and water-vapor concentration at 225 spatial grid points with a temporal response up to 50 kHz. To our knowledge, this is the first time that such sensing capabilities have been reported. This paper introduces the principles of the HT techniques, reports its operation and application in a J85 engine, and discusses its perspective for the study of high-speed reactive flows. PMID:23389008

Ma, Lin; Li, Xuesong; Sanders, Scott T; Caswell, Andrew W; Roy, Sukesh; Plemmons, David H; Gord, James R

2013-01-14

6

2D microwave imaging reflectometer electronics  

NASA Astrophysics Data System (ADS)

A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

2014-11-01

7

2D microwave imaging reflectometer electronics.  

PubMed

A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

2014-11-01

8

Image 2D et Matrices Frank NIELSEN  

E-print Network

.) · Compiler et tester le programme TestJama.java. Regarder rapidement la documentation des diff´erentes dINF555 TD2 Image 2D et Matrices Frank NIELSEN nielsen@lix.polytechnique.fr 21 Septembre 2011 1 D´etection temps ´ecoul´e depuis le 01/01/1970 (La diff´erence entre deux appels mesure donc la dur

Nielsen, Frank

9

Image Representation Using 2D Gabor Wavelets  

Microsoft Academic Search

This paper extends to two dimensions the frame criterion developed by Daubechies for one-dimensional wavelets, and itcomputes the frame bounds for the particular case of 2D Gabor wavelets. Completeness criteria for 2D Gabor imagerepresentations are important because of their increasing role in many computer vision applications and also in modeling biologicalvision, since recent neurophysiological evidence from the visual cortex of

Tai Sing Lee

1996-01-01

10

Reconstruction-based 3D/2D image registration.  

PubMed

In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs). PMID:16685964

Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

2005-01-01

11

Imaging with a 2D Transducer Hybrid Array  

Microsoft Academic Search

Imaging with fully populated 2D arrays using acoustical lenses in the low MHz frequency range offers the potential for high resolution, real-time, 3D volume imaging together with low power and low cost. A 2D composite piezoelectric receiver array bonded directly to a large custom integrated circuit was discussed1 at the 23rd International Symposium on Acoustical Imaging. This 128 128

Ken Erikson; Jason Stockwell; Allen Hairston; Gary Rich; John Marciniec; Lee Walter; Kristin Clark; Tim White

12

Image 2D et Matrices Frank NIELSEN  

E-print Network

.) · Compiler et tester le programme TestJama.java. Regarder rapidement la documentation des diff´erentes d programme qui num´erote le nombre de composantes connexes (voisinage C4) d'une image binaire anumeroter, 255). 2 D´etection de caract´eristiques dans l'image (points de Harris- Stephens) · ´Ecrire une applet

Nielsen, Frank

13

Photorealistic image synthesis and camera validation from 2D images  

NASA Astrophysics Data System (ADS)

This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

Santos Ferrer, Juan C.; Gonzlez Chvere, David; Manian, Vidya

2014-06-01

14

3D Modeling From 2D Images  

Microsoft Academic Search

This article will give an overview of the methods of transition from the set of images into 3D model. Direct method of creating 3D model using 3D software will be described. Creating photorealistic 3D models from a set of photographs is challenging problem in computer vision because the technology is still in its development stage while the demands for 3D

Lana Madracevic; Stjepan Sogoric

2010-01-01

15

An Image-Based Shading Pipeline for 2D Animation  

Microsoft Academic Search

Shading for cel animation based on images is a recent research topic in computer-assisted animation. This paper proposes an image-based shading pipeline to give a 3D ap- pearance to a 2D character by inspecting the hand-drawn image directly. The proposed method estimates normal vec- tors on the character's outline and interpolates them over the remaining image. The method does not

Hedlena M. De A. Bezerra; Bruno Feij; Luiz Velho

2005-01-01

16

2D and 3D Elasticity Imaging Using Freehand Ultrasound  

E-print Network

2D and 3D Elasticity Imaging Using Freehand Ultrasound Joel Edward Lindop Pembroke College March to mechanical properties (e.g., stiffness) to which conventional forms of ultrasound, X-ray and magnetic that occur between the acquisition of multiple ultrasound images. Likely applications include improved

Drummond, Tom

17

Sparse radar imaging using 2D compressed sensing  

NASA Astrophysics Data System (ADS)

Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

2014-10-01

18

Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector - Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the Multi-2D technique  

NASA Astrophysics Data System (ADS)

The exciplex tracer system fluorobenzene (FB) and diethyl-methyl-amine (DEMA) in a solution of n-hexane and methyl-tert.-butylether (MTBE) was used to investigate the mixture formation in a fired direct injection spark ignition engine. The scope of this paper is the recently developed Multi-2D technique, which allows for the simultaneous measurement of the local air/fuel ratio (?-distribution of the vapor phase), the qualitative distribution of the liquid phase, the temperature distribution of the liquid phase, and the detection of Mie scattering in this application. Basically, the Multi-2D technique consists of a new optical setup, which images the same field of view four times onto one camera, thus combining spatial and spectral resolution based on interference filters. The liquid temperature is derived via two-line thermometry. Using the liquid phase temperature the crosstalk from the liquid into the spectral detection range of the vapor phase is corrected. Quantitative results of the crosstalk-corrected vapor phase signals are achieved by an in-situ calibration.

Wieske, P.; Wissel, S.; Grnefeld, G.; Pischinger, S.

2006-05-01

19

Improving VERITAS sensitivity by fitting 2D Gaussian image parameters  

NASA Astrophysics Data System (ADS)

Our goal is to improve the acceptance and angular resolution of VERITAS by implementing a camera image-fitting algorithm. Elliptical image parameters are extracted from 2D Gaussian distribution fits using a ?2 minimization instead of the standard technique based on the principle moments of an island of pixels above threshold. We optimize the analysis cuts and then characterize the improvements using simulations. We find an improvement of 20% less observing time to reach 5-sigma for weak point sources.

Christiansen, Jodi; VERITAS Collaboration

2012-12-01

20

Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.  

PubMed

Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained. PMID:17281109

Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

2005-01-01

21

SAR imaging via modern 2-D spectral estimation methods.  

PubMed

This paper discusses the use of modern 2D spectral estimation algorithms for synthetic aperture radar (SAR) imaging. The motivation for applying power spectrum estimation methods to SAR imaging is to improve resolution, remove sidelobe artifacts, and reduce speckle compared to what is possible with conventional Fourier transform SAR imaging techniques. This paper makes two principal contributions to the field of adaptive SAR imaging. First, it is a comprehensive comparison of 2D spectral estimation methods for SAR imaging. It provides a synopsis of the algorithms available, discusses their relative merits for SAR imaging, and illustrates their performance on simulated and collected SAR imagery. Some of the algorithms presented or their derivations are new, as are some of the insights into or analyses of the algorithms. Second, this work develops multichannel variants of four related algorithms, minimum variance method (MVM), reduced-rank MVM (RRMVM), adaptive sidelobe reduction (ASR) and space variant apodization (SVA) to estimate both reflectivity intensity and interferometric height from polarimetric displaced-aperture interferometric data. All of these interferometric variants are new. In the interferometric contest, adaptive spectral estimation can improve the height estimates through a combination of adaptive nulling and averaging. Examples illustrate that MVM, ASR, and SVA offer significant advantages over Fourier methods for estimating both scattering intensity and interferometric height, and allow empirical comparison of the accuracies of Fourier, MVM, ASR, and SVA interferometric height estimates. PMID:18276288

DeGraaf, S R

1998-01-01

22

2D/3D image (facial) comparison using camera matching.  

PubMed

A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning device. By projecting the 3D image onto a 2D image with the suspect's head in the same pose as that of the perpetrator, using the same focal length and pixel aspect ratio, numerical comparison of (ratios of) distances between fixed points becomes feasible. An experiment was performed in which, starting from two 3D scans and one 2D image of two colleagues, male and female, and using seven fixed anatomical locations in the face, comparisons were made for the matching and non-matching case. Using this method, the non-matching pair cannot be distinguished from the matching pair of faces. Facial expression and resolution of images were all more or less optimal, and the results of the study are not encouraging for the use of anthropometric arguments in the identification process. More research needs to be done though on larger sets of facial comparisons. PMID:16337353

Goos, Mirelle I M; Alberink, Ivo B; Ruifrok, Arnout C C

2006-11-10

23

Automatic segmentation of scaling in 2-D psoriasis skin images.  

PubMed

Psoriasis is a chronic inflammatory skin disease that affects over 3% of the population. Various methods are currently used to evaluate psoriasis severity and to monitor therapeutic response. The PASI system of scoring is widely used for evaluating psoriasis severity. It employs a visual analogue scale to score the thickness, redness (erythema), and scaling of psoriasis lesions. However, PASI scores are subjective and suffer from poor inter- and intra-observer concordance. As an integral part of developing a reliable evaluation method for psoriasis, an algorithm is presented for segmenting scaling in 2-D digital images. The algorithm is believed to be the first to localize scaling directly in 2-D digital images. The scaling segmentation problem is treated as a classification and parameter estimation problem. A Markov random field (MRF) is used to smooth a pixel-wise classification from a support vector machine (SVM) that utilizes a feature space derived from image color and scaling texture. The training sets for the SVM are collected directly from the image being analyzed giving the algorithm more resilience to variations in lighting and skin type. The algorithm is shown to give reliable segmentation results when evaluated with images with different lighting conditions, skin types, and psoriasis types. PMID:23288330

Lu, Juan; Kazmierczak, Ed; Manton, Jonathan H; Sinclair, Rodney

2013-04-01

24

2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager  

NASA Technical Reports Server (NTRS)

The IMAGE Mission extreme ultraviolet imager (EW) observes He(+) plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He(+) distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He(+) is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion of He' transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global E W images of the plasmasphere might yield two-dimensional pictures of mesoscale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUV analysis that appears capable of following thermal plasma motion on a global basis.

Gallagher, D. L.

2006-01-01

25

2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager  

NASA Technical Reports Server (NTRS)

The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

Gallagher, D.; Adrian, M.

2007-01-01

26

Unsupervised 2D gel electrophoresis image segmentation based on active contours  

E-print Network

Unsupervised 2D gel electrophoresis image segmentation based on active contours Michalis A August 2011 Keywords: Segmentation Active contours 2D-gel electrophoresis images a b s t r a c in two-dimensional gel electrophoresis (2D-GE) images. The proposed segmentation scheme is the first

Athens, University of

27

Semiconductor detectors for 2D X-ray imaging  

NASA Astrophysics Data System (ADS)

Semiconductor nuclear radiation detectors are nowadays of current use for high-resolution spectrometry in a number of fields, including those involving X-ray measurements. The significant advances achieved during the last 10 years in materials properties, detector characteristics, and high-quality electronic systems, now make it possible to go one step further and to build 2D X-ray imaging systems based on semiconductor detectors. It is the aim of this paper to present the state-of-the-art of X-ray imaging systems based on such devices. First the basic principles involved will be presented. The main requirements (detector size, spatial resolution, pixel number, dynamics, counting rate, etc.) and limitations (physical and experimental limitations), with respect to the applications envisaged (material science, medical or industrial imaging) will be discussed. The major properties of the semiconductors of interest for such applications will be briefly summarized. Then the working principles and main characteristics of existing systems based on various semiconductor materials and devices will be reviewed and compared to those of conventional X-ray imagers. Finally, possible evolutions will be discussed in terms of new detector materials and new semiconductor devices, taking into account the increasing potential of microelectronics technology.

Ponpon, J. P.

2005-10-01

28

Mesophases in Nearly 2D Room-Temperature Ionic Liquids  

E-print Network

Computer simulations of (i) a [C12mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C12mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C4mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.

N. Manini; M. Cesaratto; M. G. Del Popolo; P. Ballone

2009-10-27

29

DETECTION AND SEGMENTATION IN 2D GEL ELECTROPHORESIS IMAGES Eirini Kostopoulou, Eleni Zacharia, and Dimitris Maroulis  

E-print Network

DETECTION AND SEGMENTATION IN 2D GEL ELECTROPHORESIS IMAGES Eirini Kostopoulou, Eleni Zacharia: ikostop@di.uoa.gr, eezacharia@gmail.com, dmaroulis@di.uoa.gr ABSTRACT Analyzing 2D-gel electrophoresis presents an original approach to detecting and segmenting spots in 2D-gel electrophoresis images

Athens, University of

30

A 2-D imaging heat-flux gauge  

SciTech Connect

This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

Noel, B.W.; Borella, H.M. (Los Alamos National Lab., NM (United States)); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. (Oak Ridge National Lab., TN (United States)); Turley, W.D. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

1991-07-01

31

Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression  

Microsoft Academic Search

A three-layered neural network is described for transforming two-dimensional discrete signals into generalized nonorthogonal 2-D Gabor representations for image analysis, segmentation, and compression. These transforms are conjoint spatial\\/spectral representations, which provide a complete image description in terms of locally windowed 2-D spectral coordinates embedded within global 2-D spatial coordinates. In the present neural network approach, based on interlaminar interactions involving

JOHN G. DAUGMAN

1988-01-01

32

Radiology Lab 0: Introduction to 2D and 3D Imaging  

NSDL National Science Digital Library

This is a self-directed learning module to introduce students to basic concepts of imaging technology as well as to give students practice going between 2D and 3D imaging using everyday objects.Annotated: true

Shaffer, Kitt

33

Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation.  

PubMed

An efficient Gauss-Newton iterative imaging technique utilizing a three-dimensional (3-D) field solution coupled to a two-dimensional (2-D) parameter estimation scheme (3-D/2-D) is presented for microwave tomographic imaging in medical applications. While electromagnetic wave propagation is described fully by a 3-D vector field, a 3-D scalar model has been applied to improve the efficiency of the iterative reconstruction process with apparently limited reduction in accuracy. In addition, the image recovery has been restricted to 2-D but is generalizable to three dimensions. Image artifacts related primarily to 3-D effects are reduced when compared with results from an entirely two-dimensional inversion (2-D/2-D). Important advances in terms of improving algorithmic efficiency include use of a block solver for computing the field solutions and application of the dual mesh scheme and adjoint approach for Jacobian construction. Methods which enhance the image quality such as the log-magnitude/unwrapped phase minimization were also applied. Results obtained from synthetic measurement data show that the new 3-D/2-D algorithm consistently outperforms its 2-D/2-D counterpart in terms of reducing the effective imaging slice thickness in both permittivity and conductivity images over a range of inclusion sizes and background medium contrasts. PMID:15084072

Fang, Qianqian; Meaney, Paul M; Geimer, Shireen D; Streltsov, Anatoly V; Paulsen, Keith D

2004-04-01

34

Temperature-jump 2D IR spectroscopy to study protein conformational dynamics  

E-print Network

Temperature-jump (T-jump) two-dimensional infrared spectroscopy (2D IR) is developed, characterized, and applied to the study of protein folding and association. In solution, protein conformational changes span a wide range ...

Jones, Kevin C. (Kevin Chapman)

2012-01-01

35

Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR  

E-print Network

We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

Nicodemus, Rebecca A.

36

Temperature Dependence of IP3-Mediated Local and Global Ca2D George D. Dickinson  

E-print Network

Temperature Dependence of IP3-Mediated Local and Global Ca2D Signals George D. Dickinson * and Ian of California, Irvine, California ABSTRACT We examined the effect of temperature (12­40 C) on local and global) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (dura- tions

Parker, Ian

37

2D image segmentation using minimum spanning trees  

Microsoft Academic Search

This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that, by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem.

Ying Xu; Edward C. Uberbacher

1997-01-01

38

Moving Facial Image Transformations Based on Static 2D Prototypes  

Microsoft Academic Search

This paper describes a new method for creating visually realistic moving facial image sequences that retain an actor's personality (individuality, expression and characteristic movements) while altering the facial appearance along a certain specified facial dimension. We combine two existing technologies, facial feature tracking and facial image transformation, to create the sequences. Examples are given of transforming the apparent age, race

Bernard Tiddeman; David I. Perrett

2001-01-01

39

2D\\/3D image (facial) comparison using camera matching  

Microsoft Academic Search

A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning

Mirelle I. M. Goos; Ivo B. Alberink; Arnout C. C. Ruifrok

2006-01-01

40

Recovering 3D tumor locations from 2D bioluminescence images  

E-print Network

to facilitate its use in analyzing the repeated imaging of a same animal transplanted with gene marked cells present our method using both phantom studies and real studies on small animals. 1. Introduction for monitoring molecular events in intact living animals. Important applications of this imaging technique

Huang, Xiaolei

41

An intensity-based registration algorithm for probabilistic images and its application for 2-D to 3-D image registration  

E-print Network

-operative CT image to an intra-operative 2-D x-ray image, one typically computes simulated x-ray images from. Keywords: Probabilistic DRR, intensity-based image registration, mutual information, x-ray projection, CT by registering the CT to one or several intra-operative fluoroscopic x-ray projection images with known

Pratt, Vaughan

42

FAST 2D MODEL-TO-IMAGE REGISTRATION USING VANISHING POINTS FOR SPORTS VIDEO ANALYSIS  

E-print Network

FAST 2D MODEL-TO-IMAGE REGISTRATION USING VANISHING POINTS FOR SPORTS VIDEO ANALYSIS Jean, substantial research has been done in the last few years towards automated sports game analysis, some of which This article focuses on the field-to-image registration for TV sports-related image processing through basic

Piater, Justus H.

43

Separation of image parts using 2-D parallel form recursive filters  

Microsoft Academic Search

This correspondence deals with a new technique to separate objects or image parts in a composite image. A parallel form extension of a 2-D Steiglitz-McBride method is applied to the discrete cosine transform (DCT) of the image containing the objects that are to be separated. The obtained parallel form is the sum of several filters or systems, where the impulse

Radhika Sivaramakrishna

1996-01-01

44

2-D image segmentation using minimum spanning trees  

SciTech Connect

This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.

Xu, Y.; Uberbacher, E.C.

1995-09-01

45

2D image fuzzy deconvolution and scattering centre detection  

Microsoft Academic Search

A new innovative technique based on fuzzy deconvolution for scattering centre detection (F-SCD) is proposed together with its implementation in FPGA for real-time deployment in UAV and automotive collision avoidance application. F-SCD emulates the human interpretation of radar images using fuzzy measurement of features of the radar Point Spread Function (PSF) differently from other classic detection techniques. The first stage

Luigi Giubbolini; Paul Pazandak

2010-01-01

46

Information Theoretic Integrated Segmentation and Registration of Dual 2D Portal Images and 3D CT Images  

E-print Network

D Portal Images and 3D CT Images A Dissertation Presented to the Faculty of the Graduate SchoolAbstract Information Theoretic Integrated Segmentation and Registration of Dual 2D Portal Images where the segmen- tation and registration of dual anteriorposterior and left lateral portal images

Duncan, James S.

47

Phase unwrapping for 2-D blind deconvolution of ultrasound images.  

PubMed

In most approaches to the problem of two-dimensional homomorphic deconvolution of ultrasound images, the estimation of a corresponding point-spread function (PSF) is necessarily the first stage in the process of image restoration. This estimation is usually performed in the Fourier domain by either successive or simultaneous estimation of the amplitude and phase of the Fourier transform (FT) of the PSE This paper addresses the problem of recovering the FT-phase of the PSF, which is an important reconstruction problem by itself. The purpose of this paper is twofold. First, it provides a theoretical framework, establishing that the FT-phase of the PSF can be effectively estimated by a proper smoothing of the FT-phase of the appropriate radio-frequency (RF) image. Second, it presents a novel approach to the estimation of the FT-phase of the PSF, by solving a continuous Poisson equation over a predefined smooth subspace, in contrast to the discrete Poisson equation solver used for the classical least mean squares phase unwrapping algorithms, followed by a smoothing procedure. The proposed approach is possible due to the distinct properties of the FT-phases, among which the most important property is the availability of precise values of their partial derivatives. This property overcomes the main disadvantage of the discrete schemes, which routinely use wrapped (principal) values of the phase in order to approximate its partial derivatives. Since such an approximation is feasible subject to the restriction that the partial phase differences do not exceed pi in absolute value, the discrete schemes perform satisfactory only for few practical situations. The proposed approach is shown to be independent of this restriction and, thus, it performs for a wider class of the phases with significantly lower errors. The main advantages of the novel method over the algorithms based on discrete schemes are demonstrated in a series of computer simulations and for in vivo measurements. PMID:14719683

Michailovich, Oleg; Adam, Dan

2004-01-01

48

A new gold-standard dataset for 2D/3D image registration evaluation  

NASA Astrophysics Data System (ADS)

In this paper, we propose a new gold standard data set for the validation of 2D/3D image registration algorithms for image guided radiotherapy. A gold standard data set was calculated using a pig head with attached fiducial markers. We used several imaging modalities common in diagnostic imaging or radiotherapy which include 64-slice computed tomography (CT), magnetic resonance imaging (MRI) using T1, T2 and proton density (PD) sequences, and cone beam CT (CBCT) imaging data. Radiographic data were acquired using kilovoltage (kV) and megavoltage (MV) imaging techniques. The image information reflects both anatomy and reliable fiducial marker information, and improves over existing data sets by the level of anatomical detail and image data quality. The markers of three dimensional (3D) and two dimensional (2D) images were segmented using Analyze 9.0 (AnalyzeDirect, Inc) and an in-house software. The projection distance errors (PDE) and the expected target registration errors (TRE) over all the image data sets were found to be less than 1.7 mm and 1.3 mm, respectively. The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D registration algorithms for image guided therapy.

Pawiro, Supriyanto; Markelj, Primoz; Gendrin, Christelle; Figl, Michael; Stock, Markus; Bloch, Christoph; Weber, Christoph; Unger, Ewald; Nbauer, Iris; Kainberger, Franz; Bergmeister, Helga; Georg, Dietmar; Bergmann, Helmar; Birkfellner, Wolfgang

2010-02-01

49

Evaluation of the operating space for density fluctuation measurements employing 2D imaging reflectometry.  

PubMed

Microwave imaging reflectometry provides broad poloidal coverage as a density fluctuation measurement tool. 2D imaging systems are evaluated for DIII-D relevant conditions using a full-wave reflectometer code, FWR2D. Reasonable correlation of the synthetic diagnostic signal with density fluctuations at the plasma cutoff surface for a wide range of fluctuation parameters is evaluated and achieved for coherent oscillations; also the frequency spectra are compared for relevant fluctuations. The consequences of non-idealities inherent to imaging fluctuations away from the plasma midplane, where receiving antennas view the plasma cutoff at oblique angles, are evaluated for the optimization of these systems. PMID:23126996

Ren, X; Tobias, B J; Che, S; Domier, C W; Luhmann, N C; Muscatello, C M; Kramer, G; Valeo, E

2012-10-01

50

Evaluation of the operating space for density fluctuation measurements employing 2D imaging reflectometrya)  

NASA Astrophysics Data System (ADS)

Microwave imaging reflectometry provides broad poloidal coverage as a density fluctuation measurement tool. 2D imaging systems are evaluated for DIII-D relevant conditions using a full-wave reflectometer code, FWR2D. Reasonable correlation of the synthetic diagnostic signal with density fluctuations at the plasma cutoff surface for a wide range of fluctuation parameters is evaluated and achieved for coherent oscillations; also the frequency spectra are compared for relevant fluctuations. The consequences of non-idealities inherent to imaging fluctuations away from the plasma midplane, where receiving antennas view the plasma cutoff at oblique angles, are evaluated for the optimization of these systems.

Ren, X.; Tobias, B. J.; Che, S.; Domier, C. W.; Luhmann, N. C.; Muscatello, C. M.; Kramer, G.; Valeo, E.

2012-10-01

51

A 2-D FILTER SPECIFICATION FOR SONAR IMAGE THRESHOLDING , J. Ph. Malkasse*  

E-print Network

#12; #12; A 2-D FILTER SPECIFICATION FOR SONAR IMAGE THRESHOLDING I. Quidu* , J. Ph. Malkasse* , G. Burel** , P. Vilbé** (*) Thomson Marconi Sonar, Route de Sainte Anne du Portzic, 29601 BREST.Burel@univ-brest.fr, Pierre.Vilbe@univ-brest.fr Abstract - We propose a new image sonar segmentation by combining two

Paris-Sud XI, Université de

52

A new approach to distributed passive radar imaging by 2-D NUFFT  

Microsoft Academic Search

This paper studies distributed passive radar imaging of two-dimensional (2-D) scene. The echoes and the reflectivity of target are confirmed to be a Fourier transform pair. However, due to the space configuration based on the illuminators of opportunity, the echoes are sampled non-uniformly, which lead to the non-equispaced property of space-spectrum distribution. In this case, direct 2-D FFT reconstruction doesn't

He Xuezhi; Xu Hao; Liu Changchang; Wang Dongjin; Chen Weidong

2010-01-01

53

Multiresolution image representation using combined 2-D and 1-D directional filter banks.  

PubMed

In this paper, effective multiresolution image representations using a combination of 2-D filter bank (FB) and directional wavelet transform (WT) are presented. The proposed methods yield simple implementation and low computation costs compared to previous 1-D and 2-D FB combinations or adaptive directional WT methods. Furthermore, they are nonredundant transforms and realize quad-tree like multiresolution representations. In applications on nonlinear approximation, image coding, and denoising, the proposed filter banks show visual quality improvements and have higher PSNR than the conventional separable WT or the contourlet. PMID:19095538

Tanaka, Yuichi; Ikehara, Masaaki; Nguyen, Truong Q

2009-02-01

54

2-D nonlinear IIR-filters for image processing - An exploratory analysis  

NASA Technical Reports Server (NTRS)

A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

Bauer, P. H.; Sartori, M.

1991-01-01

55

Reconfigurable 2D optical tapped-delay-line to perform correlation on images.  

PubMed

We demonstrate a reconfigurable 2D optical tapped-delay-line (OTDL) to correlate quadrature-phase-shift-keying (QPSK) 20 Gbaud data. By implementing two independent tapped-delay-lines which performs correlation over rows (inner sum), along with a coherent multiplexing of the correlated rows which performs correlation over columns (outer sum), a 2D correlator is achieved with average error vector magnitude (EVM) of ?7.8%. Here we also search different 22 patterns in a 3131 image and successfully recognize the target patterns in the image. PMID:25490624

Chitgarha, Mohammad Reza; Ziyadi, Morteza; Khaleghi, Salman; Mohajerin-Ariaei, Amirhossein; Almaiman, Ahmed; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

2014-12-01

56

Separation of image parts using 2-D parallel form recursive filters.  

PubMed

This correspondence deals with a new technique to separate objects or image parts in a composite image. A parallel form extension of a 2-D Steiglitz-McBride method is applied to the discrete cosine transform (DCT) of the image containing the objects that are to be separated. The obtained parallel form is the sum of several filters or systems, where the impulse response of each filter corresponds to the DCT of one object in the original image. Preliminary results on an image with two objects show that the algorithm works well, even in the case where one object occludes another as well as in the case of moderate noise. PMID:18285105

Sivaramakrishna, R

1996-01-01

57

Development of 2D imaging of SXR plasma radiation by means of GEM detectors  

NASA Astrophysics Data System (ADS)

Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

Chernyshova, M.; Czarski, T.; Jab?o?ski, S.; Kowalska-Strzeciwilk, E.; Po?niak, K.; Kasprowicz, G.; Zabo?otny, W.; Woje?ski, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

2014-11-01

58

Nanohole-array-based device for 2D snapshot multispectral imaging  

PubMed Central

We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662?nm to 832?nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065

Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.

2013-01-01

59

3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.  

PubMed

Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564

Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

2014-12-01

60

Automatic 2D-to-3D image conversion using 3D examples from the internet  

NASA Astrophysics Data System (ADS)

The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D repository. While far from perfect, the presented results demonstrate that on-line repositories of 3D content can be used for effective 2D-to-3D image conversion. With the continuously increasing amount of 3D data on-line and with the rapidly growing computing power in the cloud, the proposed framework seems a promising alternative to operator-assisted 2D-to-3D conversion.

Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

2012-03-01

61

Facial Muscle Parameter Decision from 2D Frontal Image Shigeo MORISHIMA*, Takahiro ISHIKAWA*, Demetri TERZOPOULOS**  

E-print Network

Facial Muscle Parameter Decision from 2D Frontal Image Shigeo MORISHIMA*, Takahiro ISHIKAWA Road Toronto Ontario Canada Phone: +1-416-978-7777 E-mail: dt@vis.toronto.edu Abstract Muscle based. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces

Terzopoulos, Demetri

62

An image-based shading pipeline for 2D animation Hedlena Bezerra1  

E-print Network

Traditional animation [1], sometimes called cel anima- tion, hand-drawn animation, cartoon animation, or 2DAn image-based shading pipeline for 2D animation Hedlena Bezerra1 Bruno Feijo1 Luiz Velho2 1 PUC 110 22460-320 Rio de Janeiro, RJ, Brazil lvelho@impa.br Abstract Shading for cel animation based

63

Snapshot 2D tomography via coded aperture x-ray scatter imaging  

PubMed Central

This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.

2015-01-01

64

Applications of 2-D and 3-D compression algorithms to ultrasound images  

NASA Astrophysics Data System (ADS)

In this study, we have explored two compression techniques, i.e., 3-D displacement estimated interframe coding algorithm (DEICA) and 2-D DCT algorithm, applied them in ultrasound image compression and assessed their feasibility. A sequence of 96 128 X 128 X 8- bit parallel slices and a set of 25 360 X 264 X 8-bit time-sequence images have been used in our experiments, and compression ratios in the range of 6 - 20 to 1 and 4 - 5 to 1 have been obtained in DEICA, while the mean square error was kept to less than 4.0. While DEICA has achieved higher compression ratios in x-ray CT images than the 2-D DCT algorithm at the same distortion, DEICA has not shown any improvement in compressing ultrasound images. This is mainly due to the fact that statistics within the difference image are sometimes degraded in ultrasound images. After fine-tuning the DEICA by adjusting key parameters based on the statistics of ultrasound images and reducing the speckle noise, higher compression ratios are expected. In the future, 3-D or time-sequence images will have more frame-by-frame correlation and less speckle noise patterns with the technical advances in ultrasound probes and data acquisition & image computing technologies. Furthermore, 3-D ultrasound imaging systems will become more popular and the amount of data generated by these devices will increase even further. These new developments might make DEICA more attractive.

Koo, Ja-Il; Lee, Heesub; Kim, Yongmin

1992-05-01

65

Applications of 2-D and 3-D compression algorithms to ultrasound images  

Microsoft Academic Search

In this study, we have explored two compression techniques, i.e., 3-D displacement estimated interframe coding algorithm (DEICA) and 2-D DCT algorithm, applied them in ultrasound image compression and assessed their feasibility. A sequence of 96 128 X 128 X 8- bit parallel slices and a set of 25 360 X 264 X 8-bit time-sequence images have been used in our

Ja-Il Koo; Heesub Lee; Yongmin Kim

1992-01-01

66

Performance efficient FPGA implementation of parallel 2-D MRI image filtering algorithms using Xilinx system generator  

Microsoft Academic Search

Currently, Field Programmable Gate Array (FPGA) goes beyond the low-level line-by-line hardware description language programming in implementing parallel multidimensional image filtering algorithms. High-level abstract hardware-oriented parallel programming method can structurally bridge this gap. This paper proposes a first step toward such a method to efficiently implement Parallel 2-D MRI image filtering algorithms using the Xilinx system generator. The implementation method

Sami Hasan; Alex Yakovlev; Said Boussakta

2010-01-01

67

The Study of Porous Media Reconstruction Using a 2D Micro-CT Image and MPS  

Microsoft Academic Search

A new method named multiple-point geostatistics (MPS) which originated from geoscience allows extracting the characteristics and structures from training images and anchoring them to the simulated regions. The 3D reconstruction of porous media is quite significant to the study of mechanisms of fluid flow in porous media. Therefore, a method using a real 2D micro-CT image and MPS to reconstruct

Yanlong Wang; Ting Zhang; Jinhua Liu; Jin Zhang

2009-01-01

68

EOS a new 2D|3D, low dose musculoskeletal imaging system  

Microsoft Academic Search

EOS, an ultra low dose 2D|3D digital Xray system, is a new imaging system developed by biospace med. The company was founded\\u000a in 1989 by the 1992 winner of the Nobel Prize for Physics, Georges Charpak, for the invention of a high-energy physics gaseous\\u000a particle detector. Since 2000, the detector technology has had commercial applications in preclinical imaging systems used

Ibrahim Obeid; Tamas Illes

2009-01-01

69

COMPRESSED 3D ULTRASOUND IMAGING WITH 2D ARRAYS Michael Birk*, Amir Burshtein*, Tanya Chernyakova*, Alon Eilam*, Jung Woo Choe**,  

E-print Network

COMPRESSED 3D ULTRASOUND IMAGING WITH 2D ARRAYS Michael Birk*, Amir Burshtein*, Tanya Chernyakova's Nyquist rate, which greatly increases the volume of data that must be processed. In 3D ultrasound imaging extend previous work on frequency domain beamforming for 2D ultrasound imaging to the geometry imposed

Eldar, Yonina

70

2D array design based on Fermat spiral for ultrasound imaging.  

PubMed

The main challenge faced by 3D ultrasonic imaging with 2D array transducers is the large number of elements required to achieve an acceptable level of quality in the images. Therefore, the optimisation of the array layout, in order to reduce the number of active elements in the aperture, has been a research topic in the last years. Nowadays, array technology has made viable the production of 2D arrays with larger flexibility on elements size, shape and position, allowing to study other configurations different to the classical matrix organisation, such as circular, archimedes spiral or polygonal layout between others. In this work, the problem of designing an imaging system array with large apertures and a very limited number of active elements (N(e)=128 and N(e)=256) using the Fermat spiral layout has been studied. As summary, a general discussion about the most interesting cases is presented. PMID:19819510

Martnez-Graullera, Oscar; Martn, Carlos J; Godoy, Gregorio; Ullate, Luis G

2010-02-01

71

Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound  

NASA Astrophysics Data System (ADS)

For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (?, range: 0-180) and random normalized cardiac phase (?, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (?? and ??) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of ?? = 3.24 - 3.69/ ?? = 0.045 - 0.048, ?? = 2.79/ ?? = 0.031 - 0.038, ?? = 2.34/ ?? = 0.023 - 0.026, and ?? = 1.89/ ?? = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.

Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

2012-03-01

72

A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup.  

PubMed

A positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm. PMID:19918223

Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-Fang

2009-01-01

73

Folding of a heterogeneous ?-hairpin peptide from temperature-jump 2D IR spectroscopy  

PubMed Central

We provide a time- and structure-resolved characterization of the folding of the heterogeneous ?-hairpin peptide Tryptophan Zipper 2 (Trpzip2) using 2D IR spectroscopy. The amide I? vibrations of three Trpzip2 isotopologues are used as a local probe of the midstrand contacts, ?-turn, and overall ?-sheet content. Our experiments distinguish between a folded state with a type I? ?-turn and a misfolded state with a bulged turn, providing evidence for distinct conformations of the peptide backbone. Transient 2D IR spectroscopy at 45 C following a laser temperature jump tracks the nanosecond and microsecond kinetics of unfolding and the exchange between conformers. Hydrogen bonds to the peptide backbone are loosened rapidly compared with the 5-ns temperature jump. Subsequently, all relaxation kinetics are characterized by an observed 1.2 0.2-?s exponential. Our time-dependent 2D IR spectra are explained in terms of folding of either native or nonnative contacts from a common compact disordered state. Conversion from the disordered state to the folded state is consistent with a zip-out folding mechanism. PMID:23382249

Jones, Kevin C.; Peng, Chunte Sam; Tokmakoff, Andrei

2013-01-01

74

Fully automatic 2D to 3D conversion with aid of high-level image features  

NASA Astrophysics Data System (ADS)

With the recent advent in 3D display technology, there is an increasing need for conversion of existing 2D content into rendered 3D views. We propose a fully automatic 2D to 3D conversion algorithm that assigns relative depth values to the various objects in a given 2D image/scene and generates two different views (stereo pair) using a Depth Image Based Rendering (DIBR) algorithm for 3D displays. The algorithm described in this paper creates a scene model for each image based on certain low-level features like texture, gradient and pixel location and estimates a pseudo depth map. Since the capture environment is unknown, using low-level features alone creates inaccuracies in the depth map. Using such flawed depth map for 3D rendering will result in various artifacts, causing an unpleasant viewing experience. The proposed algorithm also uses certain high-level image features to overcome these imperfections and generates an enhanced depth map for improved viewing experience. Finally, we show several 3D results generated with our algorithm in the results section.

Appia, Vikram; Batur, Umit

2014-03-01

75

High-resolution imaging 1D and 2D solid state detector systems  

NASA Astrophysics Data System (ADS)

We have developed high energy and high spatial resolution 1D and 2D solid state imaging detectors and their custom integrated circuits (ICs). Readout ICs are now regarded to be an integral part of position-sensitive semiconductor detectors, especially for Si and CdZnTe for x-ray and gamma-ray imaging. These detectors have a 1D or 2D structure. The 1D structure types are mostly used for scanning purposes with some staring type imaging while 2D pixel detectors can be used for both scanning and staring mode imaging applications. Because the requirements of various detector applications tend to be diverse, a custom IC is typically designed for a specific detector array. This often lengthens the time and raises the cost of system development. To help close the readout technology gap and facilitate advances in this field, we have been formulating and implementing strategies for instrumenting different detectors of a given application category with highly versatile ICs that meet a range of requirements. The solid-state detectors and their ICs that have been developed within this effort are presented.

Tumer, Tmay O.; Cajipe, Victoria B.; Clajus, Martin; Hayakawa, Satoshi; Volkovskii, Alexander

2006-08-01

76

Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system  

NASA Astrophysics Data System (ADS)

With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.

Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong

2009-07-01

77

On 2-D recursive LMS algorithms using ARMA prediction for ADPCM encoding of images.  

PubMed

A two-dimensional (2D) linear predictor which has an autoregressive moving average (ARMA) representation well as a bias term is adapted for adaptive differential pulse code modulation (ADPCM) encoding of nonnegative images. The predictor coefficients are updated by using a 2D recursive LMS (TRLMS) algorithm. A constraint on optimum values for the convergence factors and an updating algorithm based on the constraint are developed. The coefficient updating algorithm can be modified with a stability control factor. This realization can operate in real time and in the spatial domain. A comparison of three different types of predictors is made for real images. ARMA predictors show improved performance relative to an AR algorithm. PMID:18296174

Chung, Y S; Kanefsky, M

1992-01-01

78

Novel fabrication of a 2D ring array for real-time volumetric endoscopic ultrasound imaging.  

PubMed

The work presents the development of a forward-looking 2D ring array for real-time volumetric endoscopic ultrasonic imaging using a novel rotary-dicing method. The completed array has an inner diameter of 3.5mm, outer diameter of 5mm, and 50 equal-area elements distributed concentrically. With a single front matching layer and a light backing, the array shows a center frequency of 3.5MHz, a fractional bandwidth of 48%, insertion loss of -21.6dB and cross-talk between nearest neighbor elements of 35.3dB. The beam profile, two-dimensional pulse-echo point spread response, and phantom imaging of the array were studied with the Field-II simulation package. These promising results suggest that the rotary-dicing technology is an effective way to fabricate 2D ring array. PMID:25771298

Sun, Shiyue; Wu, Dawei; Zhu, Benpeng; Zhang, Yue; Chen, Shi; Yang, Xiaofei

2015-07-01

79

Filters in 2D and 3D Cardiac SPECT Image Processing.  

PubMed

Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

2014-01-01

80

Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform  

NASA Astrophysics Data System (ADS)

Most of the existing image encryption techniques bear security risks for taking linear transform or suffer encryption data expansion for adopting nonlinear transformation directly. To overcome these difficulties, a novel image compression-encryption scheme is proposed by combining 2D compressive sensing with nonlinear fractional Mellin transform. In this scheme, the original image is measured by measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the nonlinear fractional Mellin transform. The measurement matrices are controlled by chaos map. The Newton Smoothed l0 Norm (NSL0) algorithm is adopted to obtain the decryption image. Simulation results verify the validity and the reliability of this scheme.

Zhou, Nanrun; Li, Haolin; Wang, Di; Pan, Shumin; Zhou, Zhihong

2015-05-01

81

Mathematical models used in segmentation and fractal methods of 2-D ultrasound images  

NASA Astrophysics Data System (ADS)

Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.

Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin

2012-11-01

82

Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.  

PubMed

This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 ?m to 5.5 ?m) obtained 256 128pixel hyperspectral flame images at high spectral (??? = 0.75cm(?1)) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, ?, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 ?m to 5.1 ?m. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the ? = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 1.7) %, (10.1 1.0) %, and (3.8 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the ?-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo approach. Systematic errors could warrant a factor of two increase in reported uncertainties. This work helps to establish IFTS as a valuable combustion diagnostic tool. PMID:25321539

Rhoby, Michael R; Blunck, David L; Gross, Kevin C

2014-09-01

83

Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data  

NASA Astrophysics Data System (ADS)

A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

2014-07-01

84

Effective Temperature of 2D Dusty Plasma Liquids at the Discrete Level  

SciTech Connect

Fluctuation-dissipation theory has been used to measure the effective temperature of non-equilibrium system. In this work, using a 2D dusty plasma liquid formed by the negatively charged fine particles suspending in weakly ionized discharges and sheared by two CW counter parallel laser beams, we measure the micro-transport at the kinetic level. The effective temperatures Teff at different time scales are obtained through the Stokes-Einstein relation which relates the diffusion coefficient (D) and the viscosity ({eta}). The external energy is cascaded from the slow hopping modes to the fast caging modes through mutual coupling, which leads to the higher effective temperature of the slow hopping modes.

Io, C.-W.; Chan, C.-L.; I Lin [Department of Physics, National Central University, Jhongli 32001, Taiwan (China)

2007-07-13

85

2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering  

NASA Technical Reports Server (NTRS)

The use of molecular Rayleigh scattering for measurements of gas velocity and temperature is evaluated. Molecular scattering avoids problems associated with the seeding required by conventional laser anemometry and particle image velocimetry. The technique considered herein is based on the measurement of the spectrum of the scattered light. Planar imaging of Rayleigh scattering using a laser light sheet is evaluated for conditions at 30 km altitude (typical hypersonic flow conditions). The Cramer-Rao lower bounds for velocity and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light from clean flows can be analyzed to obtain temperature and one component of velocity. Experimental results are presented for planar velocity measurements in a Mach 1.3 air jet.

Seasholtz, Richard G.

1992-01-01

86

Image denoising with 2D scale-mixing complex wavelet transforms.  

PubMed

This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931

Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani

2014-12-01

87

Non-rigid target tracking in 2D ultrasound images using hierarchical grid interpolation  

NASA Astrophysics Data System (ADS)

In this paper, we present a new non-rigid target tracking method within 2D ultrasound (US) image sequence. Due to the poor quality of US images, the motion tracking of a tumor or cyst during needle insertion is considered as an open research issue. Our approach is based on well-known compression algorithm in order to make our method work in real-time which is a necessary condition for many clinical applications. Toward that end, we employed a dedicated hierarchical grid interpolation algorithm (HGI) which can represent a large variety of deformations compared to other motion estimation algorithms such as Overlapped Block Motion Compensation (OBMC), or Block Motion Algorithm (BMA). The sum of squared difference of image intensity is selected as similarity criterion because it provides a good trade-off between computation time and motion estimation quality. Contrary to the others methods proposed in the literature, our approach has the ability to distinguish both rigid and non-rigid motions which are observed in ultrasound image modality. Furthermore, this technique does not take into account any prior knowledge about the target, and limits the user interaction which usually complicates the medical validation process. Finally, a technique aiming at identifying the main phases of a periodic motion (e.g. breathing motion) is introduced. The new approach has been validated from 2D ultrasound images of real human tissues which undergo rigid and non-rigid deformations.

Royer, Lucas; Babel, Marie; Krupa, Alexandre

2014-03-01

88

High Speed and Area Efficient 2D DWT Processor based Image Compression" Signal & Image Processing  

E-print Network

This paper presents a high speed and area efficient DWT processor based design for Image Compression applications. In this proposed design, pipelined partially serial architecture has been used to enhance the speed along with optimal utilization and resources available on target FPGA. The proposed model has been designed and simulated using Simulink and System Generator blocks, synthesized with Xilinx Synthesis tool (XST) and implemented on Spartan 2 and 3 based XC2S100-5tq144 and XC3S500E-4fg320 target device. The results show that proposed design can operate at maximum frequency 231 MHz in case of Spartan 3 by consuming power of 117mW at 28 degree/c junction temperature. The result comparison has shown an improvement of 15% in speed.

Kaur, Sugreev

2011-01-01

89

Generalized 2D principal component analysis for face image representation and recognition.  

PubMed

In the tasks of image representation, recognition and retrieval, a 2D image is usually transformed into a 1D long vector and modelled as a point in a high-dimensional vector space. This vector-space model brings up much convenience and many advantages. However, it also leads to some problems such as the Curse of Dimensionality dilemma and Small Sample Size problem, and thus produces us a series of challenges, for example, how to deal with the problem of numerical instability in image recognition, how to improve the accuracy and meantime to lower down the computational complexity and storage requirement in image retrieval, and how to enhance the image quality and meanwhile to reduce the transmission time in image transmission, etc. In this paper, these problems are solved, to some extent, by the proposed Generalized 2D Principal Component Analysis (G2DPCA). G2DPCA overcomes the limitations of the recently proposed 2DPCA (Yang et al., 2004) from the following aspects: (1) the essence of 2DPCA is clarified and the theoretical proof why 2DPCA is better than Principal Component Analysis (PCA) is given; (2) 2DPCA often needs much more coefficients than PCA in representing an image. In this work, a Bilateral-projection-based 2DPCA (B2DPCA) is proposed to remedy this drawback; (3) a Kernel-based 2DPCA (K2DPCA) scheme is developed and the relationship between K2DPCA and KPCA (Scholkopf et al., 1998) is explored. Experimental results in face image representation and recognition show the excellent performance of G2DPCA. PMID:16112550

Kong, Hui; Wang, Lei; Teoh, Eam Khwang; Li, Xuchun; Wang, Jian-Gang; Venkateswarlu, Ronda

2005-01-01

90

Fast Intensity-based 2D-3D Image Registration of Clinical Data Using Light Daniel B. Russakoff  

E-print Network

@igl.stanford.edu Abstract Registration of a preoperative CT (3D) image to one or more X-ray projection (2D) images. Registration of an X-ray computed tomography (CT) image to one or more X-ray projection images (e.g. simulator or more X-ray projection images, and the floating image is a CT image. The method involves computing

Pratt, Vaughan

91

High-frame-rate 2-D vector blood flow imaging in the frequency domain.  

PubMed

Conventional ultrasound Doppler techniques estimate the blood velocity exclusively in the axial direction to produce the sonograms and color flow maps needed for diagnosis of cardiovascular diseases. In this paper, a novel method to produce bi-dimensional maps of 2-D velocity vectors is proposed. The region of interest (ROI) is illuminated by plane waves transmitted at the pulse repetition frequency (PRF) in a fixed direction. For each transmitted plane wave, the backscattered echoes are recombined offline to produce the radio-frequency image of the ROI. The local 2-D phase shifts between consecutive speckle images are efficiently estimated in the frequency domain, to produce vector maps up to 15 kHz PRF. Simulations and in vitro steady-flow experiments with different setup conditions have been conducted to thoroughly evaluate the method's performance. Bias is proved to be lower than 10% in most simulations and lower than 20% in experiments. Further simulations and in vivo experiments have been made to test the approach's feasibility in pulsatile flow conditions. It has been estimated that the computation of the frequency domain algorithm is more than 50 times faster than the computation of the reference 2-D cross-correlation algorithm. PMID:25167150

Lenge, Matteo; Ramalli, Alessandro; Boni, Enrico; Liebgott, Herv; Cachard, Christian; Tortoli, Piero

2014-09-01

92

Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity.  

PubMed

One of the major challenges in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine constraints on the entropy for observing these phases in two-dimensional Hubbard models using determinantal quantum Monte Carlo simulations. We find that an entropy per particle approximately = ln2 is sufficient to observe the insulating gap in the repulsive Hubbard model at half-filling, or the pairing pseudogap in the attractive case. Observing antiferromagnetic correlations or superfluidity in 2D systems requires a further reduction in entropy by a factor of 3 or more. In contrast with higher dimensions, we find that adiabatic cooling is not useful to achieve the required low temperatures. We also show that double-occupancy measurements are useful for thermometry for temperatures greater than the nearest-neighbor hopping energy. PMID:20366841

Paiva, Thereza; Scalettar, Richard; Randeria, Mohit; Trivedi, Nandini

2010-02-12

93

Augmented depth perception visualization in 2D/3D image fusion.  

PubMed

2D/3D image fusion applications are widely used in endovascular interventions. Complaints from interventionists about existing state-of-art visualization software are usually related to the strong compromise between 2D and 3D visibility or the lack of depth perception. In this paper, we investigate several concepts enabling improvement of current image fusion visualization found in the operating room. First, a contour enhanced visualization is used to circumvent hidden information in the X-ray image. Second, an occlusion and depth color-coding scheme is considered to improve depth perception. To validate our visualization technique both phantom and clinical data are considered. An evaluation is performed in the form of a questionnaire which included 24 participants: ten clinicians and fourteen non-clinicians. Results indicate that the occlusion correction method provides 100% correctness when determining the true position of an aneurysm in X-ray. Further, when integrating an RGB or RB color-depth encoding in the image fusion both perception and intuitiveness are improved. PMID:25066009

Wang, Jian; Kreiser, Matthias; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

2014-12-01

94

3D Materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism.  

PubMed

Segmentation propagation, similar to tracking, is the problem of transferring a segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have distinct shape, appearance, and topology, which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice, and some materials may exhibit specific inter-structure topology that constrains their neighboring relations. Some of these properties have been individually incorporated to segment specific materials images in prior work. In this paper, we develop a propagation framework for materials image segmentation where each propagation is formulated as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. Our framework makes three key contributions: 1) a homomorphic propagation approach, which considers the consistency of region adjacency in the propagation; 2) incorporation of shape and appearance consistency in the propagation; and 3) a local non-homomorphism strategy to handle newly appearing and disappearing substructures during this propagation. To show the effectiveness of our framework, we conduct experiments on various 3D materials images, and compare the performance against several existing image segmentation methods. PMID:24108718

Waggoner, Jarrell; Zhou, Youjie; Simmons, Jeff; De Graef, Marc; Wang, Song

2013-12-01

95

Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"  

ERIC Educational Resources Information Center

The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to

Wu, Bing; Klatzky, Roberta L.; Stetten, George

2010-01-01

96

Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup.  

PubMed

To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 0.5 mm and 0.1 0.4 in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 1.6 mm and -0.4 1.2 on average for each dimension for the cranial site, 0.7 1.6 mm and 0.3 1.3 for HN, 0.7 2.0 mm and -0.7 1.1 for the thorax, and 1.1 2.6 mm and -0.5 1.9 for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with 3D/3D registration in 6DOF: the discrepancy increases in superior to inferior direction. PMID:25223323

Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Ase; Powell, Simon N; Mechalakos, James

2014-09-15

97

Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy  

E-print Network

We provide a systematic characterization of the nanosecond ground-state lactam-lactim tautomerization of pyridine derivatives in aqueous solution under ambient conditions using temperature-jump transient 2D IR spectroscopy. ...

Peng, Chunte Sam

98

Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer  

NASA Astrophysics Data System (ADS)

A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

2011-03-01

99

2D XFEM-Based Modeling of Retraction and Successive Resections for Preoperative Image Update  

PubMed Central

We consider the problem of improving outcomes for neurosurgery patients by enhancing intraoperative navigation and guidance. Currently intraoperative navigation systems do not accurately account for brain shift or for tissue resection. In this paper, we describe how preoperative images are incrementally updated to take into account any type of brain tissue deformation that can occur during surgery, and thus to improve the accuracy of image-guided navigation systems. For this purpose, we develop a nonrigid image registration technique using on a biomechanical model, which deforms based on the Finite Element Method (FEM). While FEM has been successfully used for dealing with deformation such as brain shift, FEM has difficulties dealing with tissue discontinuities. Here, we describe the novel application of the eXtended Finite Element Method (XFEM) in the field of image-guided surgery, in order to model brain deformations that imply tissue discontinuities. In particular, this paper presents a detailed account of the use of XFEM for dealing with retraction and successive resections, and demonstrates the feasibility of the approach by considering 2D examples based on intraoperative MR images. For evaluating our results, we compute the modified Hausdorff distance between Canny edges extracted from images before and after registration. We show that this distance decreases after registration, and thus demonstrate that our approach improves alignment of intraoperative images. PMID:19634040

Vigneron, Lara M.; Duflot, Marc P.; Robe, Pierre A.; Warfield, Simon K.; Verly, Jacques G.

2013-01-01

100

Myocardial infarct segmentation and reconstruction from 2D late-gadolinium enhanced magnetic resonance images.  

PubMed

In this paper, we propose a convex optimization-based algorithm for segmenting myocardial infarct from clinical 2D late-gadolinium enhanced magnetic resonance (LGE-MR) images. Previously segmented left ventricular (LV) myocardium was used to define a region of interest for the infarct segmentation. The infarct segmentation problem was formulated as a continuous min-cut problem, which was solved using its dual formulation, the continuous max-flow (CMF). Bhattacharyya intensity distribution matching was used as the data term, where the prior intensity distributions were computed based on a training data set LGE-MR images from seven patients. The algorithm was parallelized and implemented in a graphics processing unit for reduced computation time. Three-dimensional (3D) volumes of the infarcts were then reconstructed using an interpolation technique we developed based on logarithm of odds. The algorithm was validated using LGE-MR images from 47 patients (309 slices) by comparing computed 2D segmentations and 3D reconstructions to manually generated ones. In addition, the developed algorithm was compared to several previously reported segmentation techniques. The CMF algorithm outperformed the previously reported methods in terms of Dice similarity coefficient. PMID:25485423

Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Wu, Katherine C; Trayanova, Natalia; Vadakkumpadan, Fijoy

2014-01-01

101

GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.  

PubMed

Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256256133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC architecture. PMID:22801484

Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

2012-09-01

102

2D surface temperature measurement of plasma facing components with modulated active pyrometry  

SciTech Connect

In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (? ? 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (? ? 0.10.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Le Niliot, C.; Rigollet, F. [Aix-Marseille Univ, IUSTI, UMR CNRS 7343, F-13453 Marseille (France)

2014-10-15

103

2D surface temperature measurement of plasma facing components with modulated active pyrometry.  

PubMed

In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (? ? 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (? ? 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity. PMID:25362442

Amiel, S; Loarer, T; Pocheau, C; Roche, H; Gauthier, E; Aumeunier, M-H; Le Niliot, C; Rigollet, F; Courtois, X; Jouve, M; Balorin, C; Moncada, V

2014-10-01

104

2D surface temperature measurement of plasma facing components with modulated active pyrometry  

NASA Astrophysics Data System (ADS)

In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (? 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (? 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Le Niliot, C.; Rigollet, F.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.

2014-10-01

105

A 2D image filtering architecture for real-time vision processing systems  

Microsoft Academic Search

A VLSI architecture is proposed for the realization of real-time 2D image filtering in an address-event-representation (AER) vision system. The architecture is capable of implementing any convolutional kernel F(x,y) as long as it is decomposable into x-axis and y-axis components, i.e. F(x,y)=H(x)V(y), for some rotated coordinate system {x,y}, and if this product can be approximated safely by, a signed minimum

Teresa Serrano-Gotarredona; Andreas G. Andreou; Bernab Linares-Barranco

1999-01-01

106

Application of Enhanced-2D-CWT in Topographic Images for Mapping Landslide Risk Areas  

E-print Network

There has been lately a number of catastrophic events of landslides and mudslides in the mountainous region of Rio de Janeiro, Brazil. Those were caused by intense rain in localities where there was unplanned occupation of slopes of hills and mountains. Thus, it became imperative creating an inventory of landslide risk areas in densely populated cities. This work presents a way of demarcating risk areas by using the bidimensional Continuous Wavelet Transform (2D-CWT) applied to high resolution topographic images of the mountainous region of Rio de Janeiro.

Valenzuela, V V Vermehren; de Oliveira, H M

2015-01-01

107

3D Face Expression Estimation and Generation from 2D Image Based on a Physically Constraint Model  

Microsoft Academic Search

this paper, wepropose the strategy of automatic estimation of facial muscle parametersfrom 2D markers'movements located on a face using a neural network.This corresponds to the non-realtime 3D facial motion capturing from2D camera image under the physics based condition.

Takahiro ISHIKAWA; Shigeo MORISHIMA; Demetri TERZOPOULOS

2000-01-01

108

Temperature dependence of the rate coefficient for charge exchange of metastable O/+//2D/ with N2. [in atmosphere  

NASA Technical Reports Server (NTRS)

Using a data base of aeronomical parameters measured on board the Atmosphere Explorer-C satellite, temperature dependence of the reaction rate coefficient is deduced for the charge exchange of O(+)(2D) with N2. The results indicate the Explorer values determined over the temperature range from 700 to 1900 K are not in conflict with laboratory measurements made at higher temperatures.

Torr, M. R.; Torr, D. G.

1980-01-01

109

Enhanced detection of the vertebrae in 2D CT-images  

NASA Astrophysics Data System (ADS)

In recent years, a considerable amount of methods have been proposed for detecting and reconstructing the spine and the vertebrae from CT and MR scans. The results are either used for examining the vertebrae or serve as a preprocessing step for further detection and annotation tasks. In this paper, we propose a method for reliably detecting the position of the vertebrae on a single slice of a transversal body CT scan. Thus, our method is not restricted by the available portion of the 3D scan, but even suffices with a single 2D image. A further advantage of our method is that detection does not require adjusting parameters or direct user interaction. Technically, our method is based on an imaging pipeline comprising five steps: The input image is preprocessed. The relevant region of the image is extracted. Then, a set of candidate locations is selected based on bone density. In the next step, image features are extracted from the surrounding of the candidate locations and an instance-based learning approach is used for selecting the best candidate. Finally, a refinement step optimizes the best candidate region. Our proposed method is validated on a large diverse data set of more than 8 000 images and improves the accuracy in terms of area overlap and distance from the true position significantly compared to the only other method being proposed for this task so far.

Graf, Franz; Greil, Robert; Kriegel, Hans-Peter; Schubert, Matthias; Cavallaro, Alexander

2012-02-01

110

Abstract A Synthesis of 3-D Kabuki Face from Ancient 2-D Images Using Multilevel Radial Basis Function  

E-print Network

A technique to synthesize a 3-D Kabuki face model from ancient images is proposed. Kabuki is a traditional Japanese theater art. Kabuki researchers can know some ancient information of Kabuki from the ancient 2-D images such as Ukiyo-e (Japanese drawing) and Kumadori images (Kabuki makeup

Xin Yin; Weiwei Xu; Ryo Akama; Hiromi T. Tanaka

111

Aortic root 3D parametric morphological model from 2D-echo images.  

PubMed

The gold standard for the study of the macro-anatomy of the aortic root are multi-detector computed tomography (MDCT) and magnetic resonance (MR) imaging. Both technologies have major advantages and limitations. Although 4D echo is entering the study of the aortic root, 2D echo is the most commonly used diagnostic tool in daily practice. We designed and developed an algorithm for 3D modeling of the aortic root based on measures taken routinely at 2D echocardiography from 20 healthy individuals with normal aortic root. The tool was then translated in 12 patients who underwent both echo and MDCT. The results obtained with the 3D modeling program were quantitatively and qualitatively compared with 3D reconstruction from MDCT. Ad hoc ratios describing the morphology of the aortic root in MDCT and in the 3D model were used for comparison. In 12 patients with aortic root dilatation, the ratios obtained with our model are in good agreement with those from MDCT. Linear correlation for both long axis and short axis ratios was strong. The 3D modeling software can be easily adopted by cardiologists routinely involved in clinical evaluation of the pathology of the aortic root. The tool is easy to apply, does not require additional costs, and may be used to generate a set of data images for monitoring the evolution of the morphology and dimension of the aortic root, flanking the 3D MDCT and MR that remain the gold standard tools. PMID:24290936

Morganti, Simone; Valentini, Adele; Favalli, Valentina; Serio, Alessandra; Gambarin, Fabiana I; Vella, Danila; Mazzocchi, Laura; Massetti, Massimo; Auricchio, Ferdinando; Arbustini, Eloisa

2013-12-01

112

From 2D to 3D: II. TEM and AFM Images  

NSDL National Science Digital Library

The problems in the accompanying exercises, "From 2D to 3D: Escher drawings", deal with abstractions that can be related to minerals through geometrical features they have in common. However, we are utimately interested in real minerals, their symmetries, and complexities. High-resolution transmission electron microscopy (HRTEM) provides 2-D projections of mineral structures at almost the atomic scale, and atomic force microscopy (AFM) provides 3-D information about the surfaces of minerals. By using these instruments, we can learn about defects in minerals and their complexities. The mineral examples in this problem set include representatives from several silicate structure type, sulfides, a sulfosalt, and a carbonate. Interpretation of the images is less clear-cut than of the idealized drawings. In some cases the results can be ambiguous, but the provide a scope for fruitful discussions among class members. In a few cases, references are given to the published papers from which the images are taken. These can be used to draw students into the professional literature, even though it will not always be possible to arrive at unambiguous answers. These problems should be thought provoking and yet manageable at several levels of complexity.

113

2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques  

PubMed Central

A 2-D array of 256 256 = 65,536 elements, with total area 4 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving ?6 dB and ?20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with ?6dB and ?20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

Daher, Nadim M.; Yen, Jesse T.

2010-01-01

114

Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization  

NASA Technical Reports Server (NTRS)

The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

2012-01-01

115

Soft X-ray 2-D imaging with time resolution of microseconds and continuous frame rate  

NASA Astrophysics Data System (ADS)

This paper will discuss soft X-ray imaging with time resolution in the range of tens to hundreds of microseconds, and continuous frame rate. A device operating in the range 0.2 10 keV (with capability to be extended to higher energy), has been developed for fast imaging of X-ray emissions of large magnetic fusion plasmas, at ENEA Frascati, Italy in collaboration with INFN-Pisa. It consists of a pinhole camera provided with a Micro Pattern Gas Detector (MPGD) detector, having a Gas Electron Multiplier (GEM) as amplifying stage, and a true 2-D pixel read out, working in photon counting mode. The front end electronics has independent channels for each pixel and the data acquisition system has been designed to allow for high framing rates (1 kHz to 1 MHz) at time intervals with different acquisition parameters. Continuous images of extended magnetically confined fusion plasmas have been acquired with framing rates from 1 to 100 kHz, revealing different types of instabilities. A few representative video clips are included for each case. The monitoring of the core plasma emission in the true 2-D cross section at high time resolution enables the study of MHD instabilities and the possibility of a more effective plasma control. It turns out that such a device has a good potential for applications in other fields of research outside fusion; in order to explore these capabilities, time resolved radiographies have been performed in the laboratory to prove the possibility of monitoring simple dynamic processes on the sub millisecond time scales (see included video clips). Finally, high pixel density developments of this detector will be described, together with a general discussion on this still unexplored domain of continuous sub millisecond soft X-ray imaging.

Pacella, D.; Bellazzini, R.; Brez, A.; Finkenthal, M.

2006-09-01

116

Machine precision assessment in 3D/2D digital subtracted angiography image registration  

NASA Astrophysics Data System (ADS)

During an interventional neuroradiology exam, knowing the exact location of the catheter tip with respect to the patient can dramatically help the physician. An image registration between digital subtracted angiography (DSA) images and a volumic pre-operative image (magnetic resonance or computed tomography volumes) is a way to infer this important information. This mono-patient multimodality matching can be reduced to finding the projection matrix that transforms any voxel of the volume onto the DSA image plane. This modelization is unfortunately not valid in the case of distorted images, which is the case for DSA images. A classical angiography room can now generate 3D X-ray angiography volumes (3DXA). Since the DSA images are obtained with the same machine, it should be possible to deduce the projection matrix from the sensor data indicating the current machine position. We propose an interpolation scheme, associated to a pre-operative calibration of the machine that allows us to correct the distortions in the image at any position used during the exam with a precision of one pixel. Thereafter, we describe some calibration procedures and an associated model of the machine that can provide us with a projection matrix at any position of the machine. Thus, we obtain a machine-based 2D DSA/3DXA registration. The misregistration error can be limited to 2.5 mm if the patient is well centered within the system. This error is confirmed by a validation on a phantom of the vascular tree. This validation also yields that the residual error is a translation in the 3D space. As a consequence, the registration method presented in this paper can be used as an initial guess to an iterative refining algorithm.

Kerrien, Erwan; Vaillant, Regis; Launay, Laurent; Berger, Marie-Odile; Maurincomme, Eric; Picard, Luc

1998-06-01

117

Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector  

NASA Astrophysics Data System (ADS)

In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The scattered LED light is transmitted by the before mentioned bandpath filter and is captured by the imaging lens. A simultaneous mode, in which the ring for distance measurement is superimposed to the image of the object, and a time multiplexing mode were implemented thus demonstrating the flexibility and performance options of this approach.

Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

2006-04-01

118

Optimal interlayer hopping and high temperature Bose-Einstein condensation of local pairs in quasi 2D superconductors.  

PubMed

Both FeSe and cuprate superconductors are quasi 2D materials with high transition temperatures and local fermion pairs. Motivated by such systems, we investigate real space pairing of fermions in an anisotropic lattice model with intersite attraction, V, and strong local Coulomb repulsion, U, leading to a determination of the optimal conditions for superconductivity from Bose-Einstein condensation. Our aim is to gain insight as to why high temperature superconductors tend to be quasi 2D. We make both analytically and numerically exact solutions for two body local pairing applicable to intermediate and strong V. We find that the Bose-Einstein condensation temperature of such local pairs pairs is maximal when hopping between layers is intermediate relative to in-plane hopping, indicating that the quasi 2D nature of unconventional superconductors has an important contribution to their high transition temperatures. PMID:25629425

Kornilovitch, P E; Hague, J P

2015-02-25

119

Multi-step 3D\\/2D Image Registration for Image-guided Spinal Surgery  

Microsoft Academic Search

We presented a set of methods for registration of preoperative CT data set to intra-operative X-ray images in minimally invasive image-guided spinal surgery. The registration procedure is composed of two steps. Firstly, a rough registration using a variant form of Iterative Closest Point algorithm is adopted to get an overlapped area. Secondly, the fine registration is performed based on gradient

Yi Zhang; Manning Wang; Zhijian Song

2008-01-01

120

Elemental 2D imaging of paintings with a mobile EDXRF system.  

PubMed

Imaging techniques are now used commonly and intensively in cultural heritage object analysis. Nowadays, many different techniques in nature as well as many applications exist, where they can be applied. X-ray radiography and infrared reflectography as well as UV photography are some of the most applied techniques. The study of works of art usually requires these techniques to be non-invasive. Furthermore, they are frequently required to perform in situ analysis. A few years ago, our laboratory developed a mobile energy-dispersive X-ray fluorescence and UV-vis-NIR coupled spectrometer, especially designed for fieldwork studies, where all three techniques can be applied strictly at the same site of analysis. Recent developments on a new positioning system have now allowed us to perform 2D elemental mappings with our equipment, which is especially well adapted to painting analysis. The system control is carried out entirely through a laptop computer running a dedicated homemade software. The positioning is achieved by means of a CCD camera embedded in the system and controlled via a Wi-Fi connection through the computer. The data acquisition system, which is made through a homemade multichannel pulse height analyzer, being also managed via the software mentioned above, goes through an Ethernet connection. We will present here the new developments of the system and an example of in situ 2D elemental mapping applied on an anonymous oil painting on wood panel. The discovery of a hidden painting under this oil painting makes it a good choice for a first example of 2D large scan with a mobile instrument. PMID:20953768

Hocquet, Franois-Philippe; Calvo del Castillo, Helena; Cervera Xicotencatl, Ariadna; Bourgeois, Catherine; Oger, Ccile; Marchal, Andr; Clar, Mathieu; Rakkaa, Sad; Micha, Edith; Strivay, David

2011-03-01

121

Assessment of Prosthesis Alignment after Revision Total Knee Arthroplasty Using EOS 2D and 3D Imaging: A Reliability Study  

PubMed Central

Introduction A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobserver reliability of EOS 2D and 3D knee prosthesis alignment measurements after revision total knee arthroplasty (rTKA). Methods Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Varus/valgus angles were measured in 2D (VV2D) and 3D (VV3D). Intraclass correlation coefficients and the Bland and Altman method were used to determine reliability. T-tests were used to test potential differences. Results Intraobserver and interobserver reliability were excellent for VV2D and VV3D. No significant difference or bias between the first and second measurements or the two observers was found. A significant mean and absolute difference of respectively 1.00 and 1.61 existed between 2D and 3D measurements. Conclusions EOS provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between varus/valgus measurements in 2D and 3D. PMID:25247714

Meijer, Marrigje F.; Boerboom, Alexander L.; Stevens, Martin; Bulstra, Sjoerd K.; Reininga, Inge H. F.

2014-01-01

122

A 2D to 3D ultrasound image registration algorithm for robotically assisted laparoscopic radical prostatectomy  

NASA Astrophysics Data System (ADS)

Robotically assisted laparoscopic radical prostatectomy (RARP) is an effective approach to resect the diseased organ, with stereoscopic views of the targeted tissue improving the dexterity of the surgeons. However, since the laparoscopic view acquires only the surface image of the tissue, the underlying distribution of the cancer within the organ is not observed, making it difficult to make informed decisions on surgical margins and sparing of neurovascular bundles. One option to address this problem is to exploit registration to integrate the laparoscopic view with images of pre-operatively acquired dynamic contrast enhanced (DCE) MRI that can demonstrate the regions of malignant tissue within the prostate. Such a view potentially allows the surgeon to visualize the location of the malignancy with respect to the surrounding neurovascular structures, permitting a tissue-sparing strategy to be formulated directly based on the observed tumour distribution. If the tumour is close to the capsule, it may be determined that the adjacent neurovascular bundle (NVB) needs to be sacrificed within the surgical margin to ensure that any erupted tumour was resected. On the other hand, if the cancer is sufficiently far from the capsule, one or both NVBs may be spared. However, in order to realize such image integration, the pre-operative image needs to be fused with the laparoscopic view of the prostate. During the initial stages of the operation, the prostate must be tracked in real time so that the pre-operative MR image remains aligned with patient coordinate system. In this study, we propose and investigate a novel 2D to 3D ultrasound image registration algorithm to track the prostate motion with an accuracy of 2.68+/-1.31mm.

Esteghamatian, Mehdi; Pautler, Stephen E.; McKenzie, Charles A.; Peters, Terry M.

2011-03-01

123

2D photoacoustic scanning imaging with a single pulsed laser diode excitation  

NASA Astrophysics Data System (ADS)

A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 ?J within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 3 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

2012-03-01

124

2D photoacoustic scanning imaging with a single pulsed laser diode excitation  

NASA Astrophysics Data System (ADS)

A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 ?J within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 3 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

2011-11-01

125

2D magnetic field warp reversal in images taken with DIXI (dilation x-ray imager)  

NASA Astrophysics Data System (ADS)

DIXI utilizes pulse-dilation technology to achieve x-ray imaging with temporal gate times below 10 ps. The longitudinal magnetic eld used to guide the electrons during the dilation process results in a warped image, similar to an optical distortion from a lens. Since the front end, where x-rays are converted into electrons at the beginning of the magnetic eld, determines the temporal resolution these distortions in uence the temporal width of the images at the back end, where it is captured. Here we discuss the measurements and methods used to reverse the magnetic warp e ect in the DIXI data. The x-ray measurements were conducted using the COMET laser facility at the Lawrence Livermore National Laboratory.

Nagel, Sabrina R.; Hilsabeck, T. J.; Ayers, M. J.; Felker, B.; Piston, K. W.; Chung, T.; Bell, P. M.; Bradley, D. K.; Collins, G. W.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, A. K. L.

2013-09-01

126

Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade  

NASA Astrophysics Data System (ADS)

Detailed measurements of the 2D mode structure of Alfvn instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfvn eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfvn eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state.

Classen, I. G. J.; Lauber, Ph; Curran, D.; Boom, J. E.; Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Van Zeeland, M. A.; da Graa, S.; ASDEX Upgrade Team

2011-12-01

127

A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery  

SciTech Connect

The authors developed a fast and accurate two-dimensional (2D)-three-dimensional (3D) image registration method to perform precise initial patient setup and frequent detection and correction for patient movement during image-guided cranial radiosurgery treatment. In this method, an approximate geometric relationship is first established to decompose a 3D rigid transformation in the 3D patient coordinate into in-plane transformations and out-of-plane rotations in two orthogonal 2D projections. Digitally reconstructed radiographs are generated offline from a preoperative computed tomography volume prior to treatment and used as the reference for patient position. A multiphase framework is designed to register the digitally reconstructed radiographs with the x-ray images periodically acquired during patient setup and treatment. The registration in each projection is performed independently; the results in the two projections are then combined and converted to a 3D rigid transformation by 2D-3D geometric backprojection. The in-plane transformation and the out-of-plane rotation are estimated using different search methods, including multiresolution matching, steepest descent minimization, and one-dimensional search. Two similarity measures, optimized pattern intensity and sum of squared difference, are applied at different registration phases to optimize accuracy and computation speed. Various experiments on an anthropomorphic head-and-neck phantom showed that, using fiducial registration as a gold standard, the registration errors were 0.33{+-}0.16 mm (s.d.) in overall translation and 0.29 deg. {+-}0.11 deg. (s.d.) in overall rotation. The total targeting errors were 0.34{+-}0.16 mm (s.d.), 0.40{+-}0.2 mm (s.d.), and 0.51{+-}0.26 mm (s.d.) for the targets at the distances of 2, 6, and 10 cm from the rotation center, respectively. The computation time was less than 3 s on a computer with an Intel Pentium 3.0 GHz dual processor.

Fu Dongshan; Kuduvalli, Gopinath [Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, California 94089 (United States)

2008-05-15

128

Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation  

NASA Astrophysics Data System (ADS)

Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

Lu, Kongkuo; Hall, Christopher S.

2014-03-01

129

Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media  

NASA Technical Reports Server (NTRS)

A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

1999-01-01

130

Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media  

NASA Technical Reports Server (NTRS)

A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

2000-01-01

131

3D Tumor Shape Reconstruction from 2D Bioluminescence Images and Registration with CT Images  

E-print Network

which are taken by the same camera but after continually rotating the animal by a small angle. The method is efficient and robust enough to be used for analyzing the repeated imaging of a same animal boundaries) of the animal and its interior hot spots (corresponding to tumors) are segmented in the set

132

Measuring significant inhomogeneity and anisotropy in indoor convective air turbulence in the presence of 2D temperature gradient  

NASA Astrophysics Data System (ADS)

Using a novel set up, experimental study of the statistical properties of a light beam propagating horizontally through indoor convective air turbulence in the presence of a 2D temperature gradient (TG) is presented. A laser beam enters a telescope from its back focal point by virtue of an optical fiber and is expanded and recollimated by it and then passes through the turbulent area. Then the beam enters another telescopes aperture. A mask consisting of four similar widely separated small subapertures was installed in front of the second telescopes aperture. The subapertures were equidistant from the optical axis of the telescope and located at the corners of a square. A flat plane heater is used to produce a vertical TG in the medium. Due to the limited width of the heater, a horizontal component for the TG appeared. Near the focal plane of the second telescope, four distinct images of the source are formed and recorded by a CCD camera. Due to the turbulence all the images (spots) in the successive frames fluctuate. Using the four spot displacements we have calculated the fluctuations of the angle of arrival (AA) over the subapertures. The statistical properties of the optical turbulence are investigated using variance analysis of the AA component fluctuations at horizontal and vertical directions over the subapertures for different temperatures of the heater at different heights of the beam path from the heater. Experimental results show that when the heater is turned off, the variances of horizontal and vertical components of the AA fluctuations are approximately equal to zero over all the subapertures. When it is turned on, the variance of the horizontal component of the AA fluctuations over all of the subapertures are larger than those from the vertical one. In addition, in this case, we find a significant dependence of the variance of the AA components on the height from the heater.

Mohammady Razi, E.; Rasouli, Saifollah

2014-04-01

133

On the assimilation of flood extension images into 2D shallow-water models  

NASA Astrophysics Data System (ADS)

In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images (e.g. from satellite) is still delicate. In the present talk, we address the richness of satellite information to constraint a 2D shallow-water model, and present also related difficulties. A preliminary study done on Mosel river is presented in [LaMo] [HoLaMoPu]. On selected parts of the image, an 0th order model flow allows to obtain some reliable water levels with quantified uncertainties (C. Puech et al.). Next, variationnal sensitivities (based on a gradient computation and adjoint equations) reveal some difficulties that a model designer have to tackle (e.g. roughness parameters at open boundaries), and allow to better understand both the model and the flow. Next, a variational data assimilation algorithm (4D-var) shows that such data lead to a better calibration of the model (e.g. roughness coefficients) and potentially allows to identify the incoming and/or outgoing flow at open boundaries, [LaMo] [HoLaMoPu]. On the other side, the flood dynamic extension is difficult to represent accurately using a 2D SW model since the wet-dry front dynamics is difficult to compute. We compare some 2nd order finite volume solvers and obtain an accurate and stable scheme at wet-dry front. Then, we present some basic rules of compatibility between data and mesh resolution in order to be reliable enough to constraint the model with flood extension data, [CoMaMoViDa]. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. [CoMaMoViDa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Open-source computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial distributed water levels into a shallow-water flood model. Part II: using a remote sensing image of Mosel river". J. Hydrology (2010). [LaMo] X. Lai, J. Monnier. "Assimilation of spatial distributed water levels into a shallow-water flood model. Part I: mathematical method and test case". J. Hydrology (2009). [RoDa] Roux H., Dartus D. Use of Parameter Optimization to Estimate a Flood Wave: Potential Applications to Remote Sensing of Rivers . J. Hydrology (2006).

Monnier, J.; Couderc, F.; Dartus, D.; Madec, R.; Vila, J.

2012-12-01

134

Ultrasound 2D Strain Estimator Based on Image Registration for Ultrasound Elastography  

PubMed Central

In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema.

Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

2015-01-01

135

Ultrasound 2D strain estimator based on image registration for ultrasound elastography  

NASA Astrophysics Data System (ADS)

In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema.

Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

2014-03-01

136

Folding of a heterogeneous ?-hairpin peptide from temperature-jump 2D IR spectroscopy  

E-print Network

We provide a time- and structure-resolved characterization of the folding of the heterogeneous ?-hairpin peptide Tryptophan Zipper 2 (Trpzip2) using 2D IR spectroscopy. The amide I? vibrations of three Trpzip2 isotopologues ...

Jones, K. C.

137

Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.  

PubMed

Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 ? by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D algorithm and kernel dimensions on the order of 1 ? by 3 A-lines or smaller are utilized. PMID:24613642

Ma, Chi; Varghese, Tomy

2014-06-01

138

Parametric phase information based 2D Cepstrum PSF estimation method for blind de-convolution of ultrasound imaging  

NASA Astrophysics Data System (ADS)

In the ultrasound imaging system, blurring which occurs after passing through ultrasound scanner system, represents point spread function (PSF) that describes the response of the ultrasound imaging system to a point source distribution. So, de-blurring can be achieved by de-convolving the ultrasound images with an estimated of corresponding PSF. However, it is hard to attain an accurate estimation of PSF due to the unknown properties of the tissues of the human body through the ultrasound signal propagates. In this paper, we present a new method for PSF estimation in the Fourier domain (FD) based on parametric minimum phase information, and simultaneously, it performs fast 2D de-convolution in the ultrasound imaging system. Although most of complex cepstrum methods [14], are obtained using complex 2D phase unwrapping [18] [19] in order to estimate the FD-phase information of PSF, our algorithm estimates the 2D PSF using 2D FD-phase information with the parametric weighting factor ? and ?. They affect the feature of PSF shapes.This makes the computations much simpler and the estimation more accurate. Our algorithm works on the beam-formed uncompressed radio-frequency data, with pre-measured and estimated 2D PSFs database from actual probe used. We have tested our algorithm with vera-sonic system and commercial ultrasound scanner (Philips C4-2), in known speed of sound phantoms and unknown speeds in vivo scans.

Kang, Jooyoung; Park, Sung-Chan; Kim, Jung-ho; Song, Jongkeun

2014-02-01

139

Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.  

PubMed

Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging. PMID:24569253

Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

2014-03-01

140

Estimating Microtubule Distributions from 2D Immunofluorescence Microscopy Images Reveals Differences among Human Cultured Cell Lines  

PubMed Central

Microtubules are filamentous structures that are involved in several important cellular processes, including cell division, cellular structure and mechanics, and intracellular transportation. Little is known about potential differences in microtubule distributions within and across cell lines. Here we describe a method to estimate information pertaining to 3D microtubule distributions from 2D fluorescence images. Our method allows for quantitative comparisons of microtubule distribution parameters (number of microtubules, mean length) between different cell lines. Among eleven cell lines compared, some showed differences that could be accounted for by differences in the total amount of tubulin per cell while others showed statistically significant differences in the balance between number and length of microtubules. We also observed that some cell lines that visually appear different in their microtubule distributions are quite similar when the model parameters are considered. The method is expected to be generally useful for comparing microtubule distributions between cell lines and for a given cell line after various perturbations. The results are also expected to enable analysis of the differences in gene expression underlying the observed differences in microtubule distributions among cell types. PMID:23209697

Wiking, Mikaela; Lundberg, Emma; Rohde, Gustavo K.; Murphy, Robert F.

2012-01-01

141

Depth map resolution enhancement for 2D/3D imaging system via compressive sensing  

NASA Astrophysics Data System (ADS)

This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a multitude of potential applications on various multimodal data analysis and processing.

Han, Juanjuan; Loffeld, Otmar; Hartmann, Klaus

2011-08-01

142

Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.  

PubMed

A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%. PMID:25430276

Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

2014-11-01

143

Head Pose Estimation From a 2D Face Image Using 3D Face Morphing With Depth Parameters.  

PubMed

This paper presents estimation of head pose angles from a single 2D face image using a 3D face model morphed from a reference face model. A reference model refers to a 3D face of a person of the same ethnicity and gender as the query subject. The proposed scheme minimizes the disparity between the two sets of prominent facial features on the query face image and the corresponding points on the 3D face model to estimate the head pose angles. The 3D face model used is morphed from a reference model to be more specific to the query face in terms of the depth error at the feature points. The morphing process produces a 3D face model more specific to the query image when multiple 2D face images of the query subject are available for training. The proposed morphing process is computationally efficient since the depth of a 3D face model is adjusted by a scalar depth parameter at feature points. Optimal depth parameters are found by minimizing the disparity between the 2D features of the query face image and the corresponding features on the morphed 3D model projected onto 2D space. The proposed head pose estimation technique was evaluated on two benchmarking databases: 1) the USF Human-ID database for depth estimation and 2) the Pointing'04 database for head pose estimation. Experiment results demonstrate that head pose estimation errors in nodding and shaking angles are as low as 7.93 and 4.65 on average for a single 2D input face image. PMID:25706638

Kong, Seong G; Mbouna, Ralph Oyini

2015-06-01

144

2D/4D marker-free tumor tracking using 4D CBCT as the reference image  

NASA Astrophysics Data System (ADS)

Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

2014-05-01

145

Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate  

NASA Astrophysics Data System (ADS)

In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At the macroscale and for the intact samples, a diffuse accommodation of the deformation is observed during the pseudo elastic regime, followed by sudden failure propagation after the peak stress. Conversely, the altered samples exhibit much more localized and pronounced deformation levels. At the SEM scale for the intact samples, but closure of the porosity, failure precursors and localized deformation were not observed. In opposition, the altered samples showed early opening of microcracks at the grain junctions. Finally, at the -tomograph resolution (5m/voxel) and in triaxial conditions, we observed for intact samples at macro and micro scales similar behaviour as for optical and SEM characterization. At 5 MPa of confining pressure the altered samples avoid brittle failure and a few shear bands are visible. As previously inferred from 2D-DIC, we observed strong and early localization of deformation, but the limited resolution of the -tomograph did not allow to clearly evidence microcracks. The DIC results suggest that besides the overall increase of porosity, the dissolution processes enhance the local heterogeneities of the porous network, which phenomenon further increases the weakening of the materials.

zinsmeister, Louis; Dautriat, Jrmie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

2013-04-01

146

Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with  

E-print Network

imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 32 8 spatial matrix (PEPSI) (6,7) is an implementation of this technique with a trapezoidal readout gradient for simultaneous

147

AUTOMATIC FEATURE MATCHING BETWEEN DIGITAL IMAGES AND 2D REPRESENTATIONS OF A 3D LASER SCANNER POINT CLOUD  

E-print Network

. * Corresponding author. 1. INTRODUCTION Laser scanning is a valuable tool for the capturing of 3D objectAUTOMATIC FEATURE MATCHING BETWEEN DIGITAL IMAGES AND 2D REPRESENTATIONS OF A 3D LASER SCANNER the intensity of the NIR laser as grey values. The determination of point correspondences between the 3D point

Gumhold, Stefan

148

A systematic approach for 2D-image to 3D-range registration in urban environments q  

E-print Network

-type maps, realistic sets for movies and games, urban planning, architecture, historical preservationA systematic approach for 2D-image to 3D-range registration in urban environments q Lingyun Liu t The photorealistic modeling of large-scale objects, such as urban scenes, requires the combination of range sensing

Stamos, Ioannis

149

Spectral-based 2D/3D X-ray to CT image rigid registration M. Freimana, O. Pelea, A. Hurvitza, M. Wermana, L. Joskowicza  

E-print Network

Spectral-based 2D/3D X-ray to CT image rigid registration M. Freimana, O. Pelea, A. Hurvitza, M, Israel. ABSTRACT We present a spectral-based method for the 2D/3D rigid registration of X-ray images the CT in the expected in-plane location ranges of the fluoroscopic X-ray imaging devices. Each DRR

Werman, Michael

150

Assessment of landmark measurements of craniofacial images from 2D and 3D reconstructions of spiral CT  

NASA Astrophysics Data System (ADS)

Purpose: The purpose of this study is to compare the accuracy of facial linear measurements obtained from volumetric spiral CT using 2D versus 3D reconstruction, and test the repeatability of these measurements. Material and Methods: The population consisted of 5 cadaver heads that were scanned to a Spiral CT scanner (120 Kvp and 200 mA, Toshiba Xpress S/X Toshiba-America, Medical System Inc., Tustin, CA) with high- resolution contiguous slices. Heads were scanned with 3 mm thick axial slices and a 2 mm/sec table feed. The CT data were archived on optical disks, and then transferred to a networked computer workstation (Sun Microsystems with Cemax version 1.4 software, Fremont, CA), to generate 2D and 3D images for manipulation and analyses. Repeated measurements were done on 2D and 3D images reconstructed from spiral CT scans on the workstation. Linear measurements were done by 2 observers with 2 sessions each, using several unique and conventional craniometric anatomic landmarks. The soft tissues were then partially removed and physical measurements of the same landmarks were repeated by an electromagnetic (3 space) digitizer (Polhemus Navigation Sciences Division, Mc Donnell Douglas Electronic Company, Colchester, VE). Analyses of variance were done to compare 2D versus 3D methods, and the accuracy of measurements between both imaging techniques. Results: The results showed statistically significant differences between 2D and 3D images for the majority of measurements. The 3D image measurements were not statistically different from the physical measurements. However, some of the 2D image landmarks differed from physical measurements. The repeatability of measurements was high by spiral CT-based craniofacial imaging. Conclusion: New computer graphics technology combined with 3D volumetric imaging by spiral CT can distinguish the craniofacial anatomy with greater accuracy than previously reported measurements and with greater accuracy than measurements from 2DCT images. These 3D measurements are essential to diagnostic and treatment planning of craniofacial injuries, anomalies and for craniofacial identification.

Cavalcanti, Marcelo G.; Haller, John W.; Vannier, Michael W.

1998-06-01

151

Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images  

NASA Astrophysics Data System (ADS)

Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.

Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin

2014-08-01

152

Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.  

PubMed

The number of criminal cases requiring facial image identification of a suspect has been increasing because a surveillance camera is installed everywhere in the city and furthermore, the intercom with the recording function is installed in the home. In this study, we aimed to analyze the usefulness of a 2D/3D facial image superimposition system for image identification when facial aging, facial expression, and twins are under consideration. As a result, the mean values of the average distances calculated from the 16 anatomical landmarks between the 3D facial images of the 50s groups and the 2D facial images of the 20s, 30s, and 40s groups were 2.6, 2.3, and 2.2mm, respectively (facial aging). The mean values of the average distances calculated from 12 anatomical landmarks between the 3D normal facial images and four emotional expressions were 4.9 (laughter), 2.9 (anger), 2.9 (sadness), and 3.6mm (surprised), respectively (facial expressions). The average distance obtained from 11 anatomical landmarks between the same person in twins was 1.1mm, while the average distance between different person in twins was 2.0mm (twins). Facial image identification using the 2D/3D facial image superimposition system demonstrated adequate statistical power and identified an individual with high accuracy, suggesting its usefulness. However, computer technology concerning video image processing and superimpose progress, there is a need to keep familiar with the morphology and anatomy as its base. PMID:23886899

Atsuchi, Masaru; Tsuji, Akiko; Usumoto, Yosuke; Yoshino, Mineo; Ikeda, Noriaki

2013-09-01

153

Automated 2D3D registration of portal images and CT data using line-segment enhancement  

PubMed Central

In prostate radiotherapy, setup errors with respect to the patients bony anatomy can be reduced by aligning 2D megavoltage (MV) portal images acquired during treatment to a reference 3D kilovoltage (kV) CT acquired for treatment planning purposes. The purpose of this study was to evaluate a fully automated 2D3D registration algorithm to quantify setup errors in 3D through the alignment of line-enhanced portal images and digitally reconstructed radiographs computed from the CT. The line-enhanced images were obtained by correlating the images with a filter bank of short line segments, or sticks at different orientations. The proposed methods were validated on (1) accurately collected gold-standard data consisting of a 3D kV cone-beam CT scan of an anthropomorphic phantom of the pelvis and 2D MV portal images in the anteriorposterior (AP) view acquired at 15 different poses and (2) a conventional 3D kV CT scan and weekly 2D MV AP portal images of a patient over 8weeks. The mean (and standard deviation) of the absolute registration error for rotations around the right-lateral (RL), inferiorsuperior (IS), and posterioranterior (PA) axes were 0.212 (0.214), 0.055 (0.033) and 0.041 (0.039), respectively. The corresponding registration errors for translations along the RL, IS, and PA axes were 0.161(0.131)mm, 0.096(0.033)mm, and 0.612(0.485)mm. The mean (and standard deviation) of the total registration error was 0.778(0.543)mm. Registration on the patient images was successful in all eight cases as determined visually. The results indicate that it is feasible to automatically enhance features in MV portal images of the pelvis for use within a completely automated 2D3D registration framework for the accurate determination of patient setup errors. They also indicate that it is feasible to estimate all six transformation parameters from a 3D CT of the pelvis and a single portal image in the AP view. PMID:18975681

Munbodh, Reshma; Chen, Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P.S.; Duncan, James S.

2008-01-01

154

Application of 2-D LIF temperature measurements in water using a Nd : YAG laser  

Microsoft Academic Search

The application of Laser Induced Fluorescence (LIF) for temperature measurements in water using a Nd?:?YAG laser is investigated.\\u000a A natural convection problem is used to test the applicability of LIF in the temperature range of 2060C. The measured temperature\\u000a field is compared with numerical results and the influences of shadowgraph effects on the measured temperature field are investigated.\\u000a An accuracy

M. C. J. Coolen; R. N. Kieft; C. C. M. Rindt; A. A. van Steenhoven

1999-01-01

155

Rigid 2D/3D slice-to-volume registration and its application on fluoroscopic CT images  

SciTech Connect

Registration of single slices from FluoroCT, CineMR, or interventional magnetic resonance imaging to three dimensional (3D) volumes is a special aspect of the two-dimensional (2D)/3D registration problem. Rather than digitally rendered radiographs (DRR), single 2D slice images obtained during interventional procedures are compared to oblique reformatted slices from a high resolution 3D scan. Due to the lack of perspective information and the different imaging geometry, convergence behavior differs significantly from 2D/3D registration applications comparing DRR images with conventional x-ray images. We have implemented a number of merit functions and local and global optimization algorithms for slice-to-volume registration of computed tomography (CT) and FluoroCT images. These methods were tested on phantom images derived from clinical scans for liver biopsies. Our results indicate that good registration accuracy in the range of 0.5 degree sign and 1.0 mm is achievable using simple cross correlation and repeated application of local optimization algorithms. Typically, a registration took approximately 1 min on a standard personal computer. Other merit functions such as pattern intensity or normalized mutual information did not perform as well as cross correlation in this initial evaluation. Furthermore, it appears as if the use of global optimization algorithms such as simulated annealing does not improve reliability or accuracy of the registration process. These findings were also confirmed in a preliminary registration study on five clinical scans. These experiments have, however, shown that a strict breath-hold protocol is inevitable when using rigid registration techniques for lesion localization in image-guided biopsy retrieval. Finally, further possible applications of slice-to-volume registration are discussed.

Birkfellner, Wolfgang; Figl, Michael; Kettenbach, Joachim; Hummel, Johann; Homolka, Peter; Schernthaner, Ruediger; Nau, Thomas; Bergmann, Helmar [Center for Biomedical Engineering and Physics, Medical University Vienna, Vienna A-1090 (Austria); Department of Computing, Imperial College, London (United Kingdom); Department of Radiology, Division of Interventional Radiology, Medical University Vienna, Vienna A-1090 (Austria); Center for Biomedical Engineering and Physics, Medical University Vienna, Vienna A-1090 (Austria); Department of Radiology, Division of Interventional Radiology, Medical University Vienna, Vienna A-1090 (Austria); St. George Clinical School, University of New South Wales (Australia); Center for Biomedical Engineering and Physics, Medical University Vienna (Austria)

2007-01-15

156

In-plane magnetic field versus temperature phase diagram of a quasi-2D frustrated multiband superconductor  

NASA Astrophysics Data System (ADS)

Motivated by the recent discovery of iron-based superconductors, with high critical temperatures and multiple bands crossing the Fermi level, we address the conditions for the presence of chiral superconducting phases configurations in the in-plane magnetic field versus temperature phase diagram of a quasi-2D frustrated three-band superconductor. Due to Zeeman splitting, the coupled superconducting gap equations present a complex set of solutions. For weak interband couplings, chiral configurations are only attained in a narrow strip of the in-plane magnetic field versus temperature phase diagram. This strip of chiral states becomes narrower and disappears at low temperatures, giving way to a first-order transition between non-chiral superconducting states. For stronger interband couplings, the chiral strip is much broader, if the interband couplings are approximately equal; otherwise, the chiral region is expected to be completely absent of the phase diagram.

Marques, A. M.; Dias, R. G.; Arajo, M. A. N.; Santos, F. D. R.

2015-04-01

157

Intensity-Based 2D-3D Spine Image Registration Incorporating One Fiducial Marker  

E-print Network

- operative therapy guidance, the images must be registered to a patient coordi- nate system defined in the operating room. Image-to-physical registration is one of the fundamental steps in all image-guided interventions. Surgical navigation systems use the image-to-physical registration transformation to track

Pratt, Vaughan

158

2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.  

PubMed

This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889

Bindu, G; Semenov, S

2013-01-01

159

2D-3D registration for prostate radiation therapy based on a statistical model of transmission images  

SciTech Connect

Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.

Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S. [Department of Radiology, Weill Medical College of Cornell University, New York, New York 10021 (United States); Department of Biomedical Engineering, Yale University, Connecticut 06520 and Department of Diagnostic Radiology, School of Medicine, Yale University, Connecticut 06520 (United States); Department of Therapeutic Radiology, School of Medicine, Yale University, Connecticut 06520 (United States); Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G-2M9 (Canada); Department of Therapeutic Radiology, School of Medicine, Yale University, Connecticut 06520 (United States); Department of Biomedical Engineering, Yale University, Connecticut 06520 and Department of Diagnostic Radiology, School of Medicine, Yale University, Connecticut 06520 (United States)

2009-10-15

160

2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability  

NASA Astrophysics Data System (ADS)

Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability estimates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 ?m predicted permeabilities differing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-resolution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability predictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 ?m resolution. To reduce permeability underestimation from analyses of high-resolution images, a resolution threshold between 3 and 15 ?m was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

Beckingham, L. E.; Peters, C. A.; Um, W.; Jones, K. W.; Lindquist, W. B.

2013-12-01

161

2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability  

SciTech Connect

Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

2013-09-03

162

New Insights to the Sawtooth Oscillation (m/n=1/1 mode) in Hot Plasmas based on High Resolution 2-D Images of Te Fluctuations  

SciTech Connect

Two dimensional (2-D) images of electron temperature fluctuations with high temporal and spatial resolution have been employed to study the sawtooth oscillation (m/n=1/1 mode) in Toroidal EXperiment for Technology Oriented Research (TEXTOR) tokamak plasmas. 2-D imaging data revealed new physics which were not available in previous studies based on the 1-D electron temperature measurement and X-ray tomography. Review of the physics of the sawtooth oscillation is given by comparative studies with prominent theoretical models suggest that a new physics paradigm is needed to describe the reconnection physics of the sawtooth oscillation. The new insights are: A pressure driven instability (not a ballooning mode) leads to the X-point reconnection process. The reconnection process is identified as a random 3-D local reconnection process with a helical structure. The reconnection time scale is similar for different types of sawtooth oscillation ("kink" and tearing type) and is significantly faster than the resistive time scale. Heat flow from the core to the outside of the inversion radius during the reconnection process is highly collective rather than stochastic.

H.K. Park, N.C. Luhmann, Jr, A.J.H. Donn, C.W. Domier, T. Munsat, M.J. Van de Pol, and the TEXTOR Team

2007-11-26

163

Non-rigid 2D-3D Medical Image Registration using Markov Random Fields  

E-print Network

guided surgeries, as laparoscopic or endoscopic [1], and brain surgeries [2] use such images. In those to register endoscopic and laparoscopic ultrasound (US) images with pre-operative computed tomography volumes

164

Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.  

PubMed

A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of ?-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured ?-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of ?-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and ?-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present ?-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. PMID:23559338

Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju

2013-05-27

165

Applying a 2D based CAD scheme for detecting micro-calcification clusters using digital breast tomosynthesis images: an assessment  

NASA Astrophysics Data System (ADS)

Digital breast tomosynthesis (DBT) has emerged as a promising imaging modality for screening mammography. However, visually detecting micro-calcification clusters depicted on DBT images is a difficult task. Computer-aided detection (CAD) schemes for detecting micro-calcification clusters depicted on mammograms can achieve high performance and the use of CAD results can assist radiologists in detecting subtle micro-calcification clusters. In this study, we compared the performance of an available 2D based CAD scheme with one that includes a new grouping and scoring method when applied to both projection and reconstructed DBT images. We selected a dataset involving 96 DBT examinations acquired on 45 women. Each DBT image set included 11 low dose projection images and a varying number of reconstructed image slices ranging from 18 to 87. In this dataset 20 true-positive micro-calcification clusters were visually detected on the projection images and 40 were visually detected on the reconstructed images, respectively. We first applied the CAD scheme that was previously developed in our laboratory to the DBT dataset. We then tested a new grouping method that defines an independent cluster by grouping the same cluster detected on different projection or reconstructed images. We then compared four scoring methods to assess the CAD performance. The maximum sensitivity level observed for the different grouping and scoring methods were 70% and 88% for the projection and reconstructed images with a maximum false-positive rate of 4.0 and 15.9 per examination, respectively. This preliminary study demonstrates that (1) among the maximum, the minimum or the average CAD generated scores, using the maximum score of the grouped cluster regions achieved the highest performance level, (2) the histogram based scoring method is reasonably effective in reducing false-positive detections on the projection images but the overall CAD sensitivity is lower due to lower signal-to-noise ratio, and (3) CAD achieved higher sensitivity and higher false-positive rate (per examination) on the reconstructed images. We concluded that without changing the detection threshold or performing pre-filtering to possibly increase detection sensitivity, current CAD schemes developed and optimized for 2D mammograms perform relatively poorly and need to be re-optimized using DBT datasets and new grouping and scoring methods need to be incorporated into the schemes if these are to be used on the DBT examinations.

Park, Sang Cheol; Zheng, Bin; Wang, Xiao-Hui; Gur, David

2008-03-01

166

2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model  

PubMed Central

This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwells equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889

Bindu, G.; Semenov, S.

2013-01-01

167

Fast Mixing for the Low Temperature 2D Ising Model Through Irreversible Parallel Dynamics  

NASA Astrophysics Data System (ADS)

We study tunneling and mixing time for a non-reversible probabilistic cellular automaton. With a suitable choice of the parameters, we first show that the stationary distribution is close in total variation to a low temperature Ising model. Then we prove that both the mixing time and the time to exit a metastable state grow polynomially in the size of the system, while this growth is exponential in reversible dynamics. In this model, non-reversibility, parallel updatings and a suitable choice of boundary conditions combine to produce an efficient dynamical stability.

Dai Pra, Paolo; Scoppola, Benedetto; Scoppola, Elisabetta

2015-04-01

168

Integrating watersheds and critical point analysis for object detection in discrete 2D images.  

PubMed

This paper presents an improved method for the detection of "significant" low-level objects in medical images. The method overcomes topological problems where multiple redundant saddle points are detected in digital images. Information derived from watershed regions is used to select and refine saddle points in the discrete domain and to construct the watersheds and watercourses (ridges and valleys). We also demonstrate an improved method of pruning the tessellation by which to define low level objects in zero order images. The algorithm was applied on a set of medical images with promising results. Evaluation was based on theoretical analysis and human observer experiments. PMID:15450213

Fu, Guoyi; Hojjat, S A; Colchester, A C F

2004-09-01

169

2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.  

PubMed

3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image registration techniques. Different strategies for automatic serial image registration applied to MS datasets are outlined in detail. The third image modality is histology driven, i.e. a digital scan of the histological stained slices in high-resolution. After fusion of reconstructed scan images and MRI the slice-related coordinates of the mass spectra can be propagated into 3D-space. After image registration of scan images and histological stained images, the anatomical information from histology is fused with the mass spectra from MALDI-MSI. As a result of the described pipeline we have a set of 3 dimensional images representing the same anatomies, i.e. the reconstructed slice scans, the spectral images as well as corresponding clustering results, and the acquired MRI. Great emphasis is put on the fact that the co-registered MRI providing anatomical details improves the interpretation of 3D MALDI images. The ability to relate mass spectrometry derived molecular information with in vivo and in vitro imaging has potentially important implications. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23467008

Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

2014-01-01

170

Study of the electrical conductivity at finite temperature in 2D Si- MOSFETs  

SciTech Connect

We investigate the low temperature density dependent conductivity of two dimensional electron systems in zero magnetic field for sample Si-15 MOSFETs. The first purpose of this paper is to establish that the knee of the conductivity ?{sub 0} (?{sub 0} is the T = 0.3 conductivity obtained by linear extrapolation of the curves of ? (T) for different values of electron density, n{sub s}) as a function of the carrier densities n{sub s} for T = 0.3 K, observed by Lai et al. and Limouny et al. in previous work for two different samples, is independent of temperature. The second aim is the determination of the critical density, n{sub c}, of the metal-insulator transition. Many methods are used in this investigation of n{sub c} which have been already used for other samples. The motivation behind this last study is the observation of many values of n{sub c} that have been obtained from different methods and that are slightly different. We will use in this study three methods with the intention to infer which one is more appropriate to obtain n{sub c}.

Limouny, L., E-mail: kaaouachi21@yahoo.fr; Kaaouachi, A. El, E-mail: kaaouachi21@yahoo.fr; Tata, O.; Daoudi, E.; Errai, M.; Dlimi, S. [Research Group ESNPS, Physics Department, University Ibn Zohr, Faculty of Sciences, B.P 8106, Hay Dakhla, 80000 Agadir (Morocco); Idrissi, H. El [Facult des Sciences et Techniques de Mohammedia, Dpartement de physique. B.P 146 Quartier Yasmina Mohammedia (Morocco); Zatni, A. [Laboratoire MSTI, Ecole Suprieure de Technologie d'Agadir, B.P: 33/S Agadir (Morocco)

2014-01-27

171

Transformation of dynamic facial image sequences using static 2D prototypes  

Microsoft Academic Search

This paper describes a new method for creating visually realistic moving facial image sequences that retain an actor's personality (individuality, expression and characteristic movements) while altering the facial appearance along a certain specified facial dimension. We combine two existing technologies, facial feature tracking and facial image transformation, to create the sequences. Examples are given of transforming the apparent age, ethnic

Bernard Tiddeman; David I. Perrett

2002-01-01

172

3D TUMOR SHAPE RECONSTRUCTION FROM 2D BIOLUMINESCENCE IMAGES Junzhou Huang, Xiaolei Huang, Dimitris Metaxas  

E-print Network

animals. Im- portant applications of this imaging technique include gene therapy and cell trafficking continually rotating the animal by a small angle. The method is efficient and robust enough to be used for analyz- ing the repeated imaging of a same animal transplanted with gene marked cells. There are several

Huang, Junzhou

173

Biomechanical properties and microarchitecture parameters of trabecular bone are correlated with stochastic measures of 2D projection images  

PubMed Central

It is well known that loss of bone mass, quantified by areal bone mineral density (aBMD) using DXA, is associated with the increasing risk of bone fractures. However, bone mineral density alone cannot fully explain changes in fracture risks. On top of bone mass, bone architecture has been identified as another key contributor to fracture risk. In this study, we used a novel stochastic approach to assess the distribution of aBMD from 2D projection images of Micro-CT scans of trabecular bone specimens at a resolution comparable to DXA images. Sill variance, a stochastic measure of distribution of aBMD, had significant relationships with microarchitecture parameters of trabecular bone, including bone volume fraction, bone surface-to-volume ratio, trabecular thickness, trabecular number, trabecular separation and anisotropy. Accordingly, it showed significantly positive correlations with strength and elastic modulus of trabecular bone. Moreover, a combination of aBMD and sill variance derived from the 2D projection images (R2=0.85) predicted bone strength better than using aBMD alone (R2=0.63). Thus, it would be promising to extend the stochastic approach to routine DXA scans to assess the distribution of aBMD, offering a more clinically significant technique for predicting risks of bone fragility fractures. PMID:23756232

Dong, Xuanliang N.; Shirvaikar, Mukul; Wang, Xiaodu

2013-01-01

174

Depletion and low gas temperature in the L183 prestellar core : the N2H+ - N2D+ tool  

E-print Network

Context. The study of pre-stellar cores (PSCs) suffers from a lack of undepleted species to trace the gas physical properties in their very dense inner parts. Aims. We want to carry out detailed modelling of N2H+ and N2D+ cuts across the L183 main core to evaluate the depletion of these species and their usefulness as a probe of physical conditions in PSCs. Methods. We have developed a non-LTE (NLTE) Monte-Carlo code treating the 1D radiative transfer of both N2H+ and N2D+, making use of recently published collisional coefficients with He between individual hyperfine levels. The code includes line overlap between hyperfine transitions. An extensive set of core models is calculated and compared with observations. Special attention is paid to the issue of source coupling to the antenna beam. Results. The best fitting models indicate that i) gas in the core center is very cold (7$\\pm$ 1 K) and thermalized with dust, ii) depletion of N2H+ does occur, starting at densities 5-7E5 cm?3 and reaching a factor of 6 (+13/?3) in abundance, iii) deuterium fractionation reaches ?70% at the core center, and iv) the density profile is proportional to r^-1 out to ?4000 AU, and to r^?2 beyond. Conclusions. Our NLTE code could be used to (re-)interpret recent and upcoming observations of N2H+ and N2D+ in many pre-stellar cores of interest, to obtain better temperature and abundance profiles.

Laurent Pagani; Aurore Bacmann; Sylvie Cabrit; Charlotte Vastel

2007-01-29

175

Faraday imaging at high temperatures  

DOEpatents

A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

1997-01-01

176

Faraday imaging at high temperatures  

DOEpatents

A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

Hackel, L.A.; Reichert, P.

1997-03-18

177

This work introduces a novel active contour-based scheme for unsupervised segmentation of protein spots in two-dimensional gel electrophoresis (2D-GE) images. The proposed segmentation scheme is the first to  

E-print Network

of protein spots in two-dimensional gel electrophoresis (2D-GE) images. The proposed segmentation scheme: Segmentation; Active contours; 2D-gel electrophoresis images. * Corresponding author Tel.: +30-210-7275317 Fax-dimensional gel electrophoresis (2D-GE) [1]. In 2D-GE, an indicative portion of the total protein component

Athens, University of

178

Spontaneous symmetry breaking in 2D: Kibble-Zurek mechanism in temperature quenched colloidal monolayers  

E-print Network

The Kibble-Zurek mechanism describes the formation of topological defects during spontaneous symmetry breaking for quite different systems. Shortly after the big bang, the isotropy of the Higgs-field is broken during the expansion and cooling of the universe. Kibble proposed the formation of monopoles, strings, and membranes in the Higgs field since the phase of the symmetry broken field can not switch globally to gain the same value everywhere in space. Zurek pointed out that the same mechanism is relevant for second order phase transitions in condensed matter systems. Every finite cooling rate induces the system to fall out of equilibrium which is due to the critical slowing down of order parameter fluctuations: the correlation time diverges and the symmetry of the system can not change globally but incorporates defects between different domains. Depending on the cooling rate the heterogeneous order parameter pattern are a fingerprint of critical fluctuations. In the present manuscript we show that a monolayer of superparamagnetic colloidal particles is ideally suited to investigate such phenomena. In thermal equilibrium the system undergos continuous phase transitions according KTHNY-theory. If cooled rapidly across the melting temperature the final state is a polycrystal. We show, that the observations can not be explained with nucleation of a supercooled fluid but is compatible with the Kibble-Zurek mechanism.

Patrick Dillmann; Georg Maret; Peter Keim

2014-09-16

179

Improving object detection in 2D images using a 3D world model  

NASA Astrophysics Data System (ADS)

A mobile robot operating in a netcentric environment can utilize offboard resources on the network to improve its local perception. One such offboard resource is a world model built and maintained by other sensor systems. In this paper we present results from research into improving the performance of Deformable Parts Model object detection algorithms by using an offboard 3D world model. Experiments were run for detecting both people and cars in 2D photographs taken in an urban environment. After generating candidate object detections, a 3D world model built from airborne Light Detection and Ranging (LIDAR) and aerial photographs was used to filter out false alarm using several types of geometric reasoning. Comparison of the baseline detection performance to the performance after false alarm filtering showed a significant decrease in false alarms for a given probability of detection.

Viggh, Herbert E. M.; Cho, Peter L.; Armstrong-Crews, Nicholas; Nam, Myra; Shah, Danelle C.; Brown, Geoffrey E.

2014-05-01

180

Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT  

NASA Astrophysics Data System (ADS)

In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

2014-08-01

181

2D-3D Rigid-Body Registration of X-Ray Fluoroscopy and CT Images  

E-print Network

The registration of pre-operative volumetric datasets to intra- operative two-dimensional images provides an improved way of verifying patient position and medical instrument loca- tion. In applications from orthopedics ...

Zollei, Lilla

2001-08-01

182

Statistical methods for 2D-3D registration of optical and LIDAR images  

E-print Network

Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

Mastin, Dana Andrew

2009-01-01

183

Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.  

PubMed

Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm 8 mm aperture size. The aperture consists of 1024 elements (32 32) with an element pitch of 250 ?m. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper. PMID:24473544

Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, mer; Khuri-Yakub, Butrus T

2013-12-01

184

Registration of 2D to 3D joint images using phase-based mutual information  

NASA Astrophysics Data System (ADS)

Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

2007-03-01

185

Both parallelism and orthogonality are used to perceive 3D slant of rectangles from 2D images.  

PubMed

A 2D perspective image of a slanted rectangular object is sufficient for a strong 3D percept. Two computational assumptions that could be used to interpret 3D from images of rectangles are as follows: (1) converging lines in an image are parallel in the world, and (2) skewed angles in an image are orthogonal in the world. For an accurate perspective image of a slanted rectangle, either constraint implies the same 3D interpretation. However, if an image is rescaled, the 3D interpretations based on parallelism and orthogonality generally conflict. We tested the roles of parallelism and orthogonality by measuring perceived depth within scaled perspective images. Stimuli were monocular images of squares, slanted about a horizontal axis, with an elliptical hole. Subjects judged the length-to-width ratio of the holes, which provided a measure of perceived depth along the object. The rotational alignment of squares within their surface plane was varied from 0 degrees (trapezoidal projected contours) to 20 degrees (skewed projected contours). In consistent-cue conditions, images were accurate projections of either a 10 degree- or 20 degree-wide square, with slants of 75 degrees and 62 degrees, respectively. In cue-conflict conditions, images were generated either by magnifying a 10 degrees image to have a projected size of 20 degrees or by minifying a 20 degree image to have a projected size of 10 degrees. For the aligned squares, which do not produce a conflicting skew cue, we found that subjects' judgments depended primarily on projected size and not on the size used to generate the prescaled images. This is consistent with reliance on the convergence cue, corresponding to a parallelism assumption. As squares were rotated away from alignment, producing skewed projected contours, judgments were increasingly determined by the original image size. This is consistent with use of the skew cue, corresponding to an orthogonality assumption. Our results demonstrate that both parallelism and orthogonality constraints are used to perceive depth from linear perspective. PMID:17685790

Saunders, Jeffrey A; Backus, Benjamin T

2007-01-01

186

Recovery of 3D Pose of Bones in Single 2D X-ray Images Piyush Kanti Bhunre Wee Kheng Leow  

E-print Network

Recovery of 3D Pose of Bones in Single 2D X-ray Images Piyush Kanti Bhunre Wee Kheng Leow Dept procedures that involve only x-ray images, limiting the precision of the procedures. This paper proposes a method for recovering 3D pose by registering a generic 3D model of a bone to single x-ray images

Leow, Wee Kheng

187

An active particle-based tracking framework for 2D and 3D time-lapse microscopy images.  

PubMed

The process required to track cellular structures is a key task in the study of cell migration. This allows the accurate estimation of motility indicators that help in the understanding of mechanisms behind various biological processes. This paper reports a particle-based fully automatic tracking framework that is able to quantify the motility of living cells in time-lapse images. Contrary to the standard tracking methods based on predefined motion models, in this paper we reformulate the tracking mechanism as a data driven optimization process to remove its reliance on a priory motion models. The proposed method has been evaluated using 2D and 3D deconvolved epifluorescent in-vivo image sequences that describe the development of the quail embryo. PMID:22255855

Hossain, M Julius; Whelan, Paul F; Czirok, Andras; Ghita, Ovidiu

2011-01-01

188

EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative  

PubMed Central

We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications. PMID:24284731

Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; Macdonald, J. E.

2013-01-01

189

EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative  

NASA Astrophysics Data System (ADS)

We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.

Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; MacDonald, J. E.

2013-11-01

190

Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation  

NASA Astrophysics Data System (ADS)

Tissue oxygenation plays a critical role in the pathogenesis of various diseases, but non-invasive, robust and user-friendly methods for its measurement in vivo still need to be established. Here, we are presenting an in vivo oxygen-detection system that uses ratiometric luminescence imaging (RLI) as a readout scheme to determine the skin oxygen tension of mouse hind footpads via side-by-side comparison with more established techniques including luminescence-lifetime imaging using planar sensor films and the polarographic electrode as the gold standard. We also demonstrate that this technology allows the detection of changes in mouse skin tissue oxygenation induced by subjecting mice to systemic hypoxia. The data demonstrate oxygen imaging based on RLI to be a most useful tool for reliably and easily analyzing and monitoring skin tissue oxygenation in vivo. This technology will advance our understanding of local regulation of skin tissue oxygenation in various disease conditions.

Hofmann, Julian; Meier, Robert J.; Mahnke, Alexander; Schatz, Valentin; Brackmann, Florian; Trollmann, Regina; Bogdan, Christian; Liebsch, Gregor; Wang, Xu-dong; Wolfbeis, Otto S.; Jantsch, Jonathan

2013-12-01

191

Nonrigid Point Registration for 2D Curves and 3D Surfaces and its Applications in Small Animal Imaging  

PubMed Central

A nonrigid B-spline based point-matching method (BPM) is proposed to match dense surface points. The method solves both the point correspondence and nonrigid transformation without features extraction. The registration method integrates a motion model, which combines a global transformation and a B-spline based local deformation, into a robust point-matching framework. The point correspondence and deformable transformation are estimated simultaneously by fuzzy correspondence and by a deterministic annealing technique. Prior information about global translation, rotation and scaling is incorporated into the optimization. A local B-spline motion model decreases the degrees of freedom for optimization and thus enables the registration of a larger number of feature points. The performance of the BPM method has been demonstrated and validated using synthesized 2D and 3D data, mouse MRI, and micro-CT images. The proposed B-spline point-matching method can be used to register feature point sets, 2D curves, 3D surfaces, and various image data. PMID:23732538

Wang, Hesheng; Fei, Baowei

2013-01-01

192

Digital imaging in radiology: Preliminary results obtained with a high spatial resolution 2D silicon detector  

SciTech Connect

Double-sided microstrip silicon crystals are being tested as detectors for X-rays in the diagnostic energy range (10-100 kcV) for digital radiography. The authors have developed an ADC and CAMAC-based acquisition system to study the imaging capabilities of a silicon [mu]strip detector with 100 and 200 [mu]m read-out pitch. They present the first images of submillimeter high contract phantoms obtained with an X-ray mammography tube operating at high flux density.

Alfano, B. (Inst. per lo Studio dei Tumori Fondazione Pascale and INFN, Napoli (Italy)); Bandettini, A.; Bertolucci, E.; Bottigli, U.; Fantacci, M.E.; Rosso, V.; Stefanini, A. (Univ. di Pisa, (Italy). Dipt. di Fisica and INFN); Bencivelli, W. (dell'Univ. and INFN, Pisa (Italy). Inst. di Patologia Medica); Conti, M.; Larobina, M.; Russo, P. (Univ. di Napoli, (Italy). Dipt. di Scienze Fisiche and INFN); Guerra, A. del; Gambaccini, M.; Marziani, M. (Univ. di Ferrara, (Italy). Dipt. di Fisica and INFN); Randaccio, P. (Univ. di Cagliari, (Italy). Inst. di Fisica Medica and INFN)

1993-08-01

193

A new computational approach to cracks quantification from 2D image analysis: Application to micro-cracks description in rocks  

NASA Astrophysics Data System (ADS)

In this paper we propose a crack quantification method based on 2D image analysis. This technique is applied to a gray level Scanning Electron Microscope (SEM) images, segmented and converted in Black and White (B/W) images using the Trainable Segmentation plugin of Fiji. Resulting images are processed using a novel Matlab script composed of three different algorithms: the separation algorithm, the filtering and quantification algorithm and the orientation one. Initially the input image is enhanced via 5 morphological processes. The resulting lattice is cut into single cracks using 1 pixel-wide bisector lines originated from every node. Cracks are labeled using the connected-component method, then the script computes geometrical parameters, such as width, length, area, aspect ratio and orientation. A filtering is performed using a user-defined value of aspect ratio, followed by a statistical analysis of remaining cracks. In the last part of this paper we discuss about the efficiency of this script, introducing an example of analysis of two datasets with different dimension and resolution; these analyses are performed using a notebook and a high-end professional desktop solution, in order to simulate different working environments.

Arena, Alessio; Delle Piane, Claudio; Sarout, Joel

2014-05-01

194

Visualizing 3D objects from 2D cross sectional images displayed in-situ versus ex-situ  

PubMed Central

The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess peoples ability to integrate spatial information over a series of cross sectional images, in order to visualize an object posed in 3D space. Participants used a hand-held tool to reveal a virtual rod as a sequence of cross-sectional images, which were displayed either directly in the space of exploration (in-situ) or displaced to a remote screen (ex-situ). They manipulated a response stylus to match the virtual rods pitch (vertical slant), yaw (horizontal slant), or both. Consistent with the hypothesis that spatial co-location of image and source object facilitates mental visualization, we found that although single dimensions of slant were judged accurately with both displays, judging pitch and yaw simultaneously produced differences in systematic error between in-situ and ex-situ displays. Ex-situ imaging also exhibited errors such that the magnitude of the response was approximately correct but the direction was reversed. Regression analysis indicated that the in-situ judgments were primarily based on spatio-temporal visualization, while the ex-situ judgments relied on an ad hoc, screen-based heuristic. These findings suggest that in-situ displays may be useful in clinical practice by reducing error and facilitating the ability of radiologists to visualize 3D anatomy from cross sectional images. PMID:20350043

Wu, Bing; Klatzky, Roberta L.; Stetten, George

2010-01-01

195

Algorithms for extracting the medial axis transform of 2D images  

NASA Astrophysics Data System (ADS)

We describe 5 algorithms for finding the MAT for 2D regions in this paper. There are Danielson's algorithm, Rosenfeld and Pfaltz's algorithm, interpolation/extrapolation algorithm, Newton and march algorithm and grid edge interpolation algorithm. The Rosenfeld and Pfaltz's, Danielson's, and interpolation/extrapolation methods are based on the maximal disc criterion. Whether the grid point (i,j) with distance amplitudes (a,b) to the boundary of the regions is a MA point is decided by its grid neighbors. If the discrete circle associated with the gird point (i,j) is not contained in one of the 8 discrete circles associated with its neighbors, then it is a MA point. The Newton and march and the grid edge interpolation methods are based on the equal distance criterion. Given the boundary of a region, we compute the distance transform for the discretized region as preprocessing step. With every grid point we associate the index of a nearest edge or a concave vertex, and the direction and distance to that edge or concave vertex. The main purpose of these steps is to solve the proximity problem. A system of equations will be generated and Newton method will be used to trace the MAT. If we add one more equation, such as the equation for a grid line, instead of marching MAT step by step, we can find the MA point square by square under some assumptions, this is the idea of grid interpolation method.

Chiang, Ching-Shoei

1995-04-01

196

Augmented Reality Based on Fast Deformable 2D-3D Registration for Image Guided Surgery  

E-print Network

(ARS) allow the transparent projection of preoperative CT images onto the physi- cians view in an optimization method using mutual information as metric. Throughout the experiments with our approach, several as a supplement to the actual clin- ical routine. In order to evaluate the non-linear part of the registration, up

Blanz, Volker

197

Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate  

Microsoft Academic Search

An ultrafast optical shutter was used to image ultrasmall objects hidden behind scattering walls by a procedure that selects in time the ballistic component and rejects the scattered diffusive light. Scattering walls used in this experiment included human breast tissue, chicken breast tissue, and a water suspension of polystyrene particles with scattering coefficients up to 21.7. Submillimeter resolution was achieved

L. Wang; P. P. Ho; C. Liu; G. Zhang; R. R. Alfano

1991-01-01

198

Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images  

Microsoft Academic Search

The use of energy-minimizing curves, known as "snakes" to extract features of interest in images has been introduced by Kass, Witkin and Terzopoulos [23]. A balloon model was introduced in [12] as a way to generalize and solve some of the problems encountered with the original method. We present a 3D generalization of the balloon model as a 3D deformable

Laurent D. Cohen; Isaac Cohen

1991-01-01

199

Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry  

PubMed Central

Time-of-flight Secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C60, ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique. PMID:21664172

Fletcher, John S.; Vickerman, John C.; Winograd, Nicholas

2011-01-01

200

Three-Dimensional Modelling and Rendering of the Human Skeletal Trunk from 2D Radiographic Images  

Microsoft Academic Search

The paper presents an original method for the 3D modelling and rendering of the human spine, rib cage and pelvis for the study of spinal deformities. It uses an adaptation of the standard close-range photogrammetry method called Direct Linear Transformation to infer the 3D co-ordinates of anatomical landmarks from 3 radiographic images of the subject's trunk. It then deforms in

S. Delorme; Y. Petit; Carl-eric Aubin; Jean Dansereau; Hubert Labelle; C. Landry; Jacques A. De Guise

1999-01-01

201

Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs  

NASA Technical Reports Server (NTRS)

Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

2006-01-01

202

Diffraction Analysis of 2-D Pupil Mapping for High-Contrast Imaging  

E-print Network

Pupil-mapping is a technique whereby a uniformly-illuminated input pupil, such as from starlight, can be mapped into a non-uniformly illuminated exit pupil, such that the image formed from this pupil will have suppressed sidelobes, many orders of magnitude weaker than classical Airy ring intensities. Pupil mapping is therefore a candidate technique for coronagraphic imaging of extrasolar planets around nearby stars. Unlike most other high-contrast imaging techniques, pupil mapping is lossless and preserves the full angular resolution of the collecting telescope. So, it could possibly give the highest signal-to-noise ratio of any proposed single-telescope system for detecting extrasolar planets. Prior analyses based on pupil-to-pupil ray-tracing indicate that a planet fainter than 10^{-10} times its parent star, and as close as about 2 lambda/D, should be detectable. In this paper, we describe the results of careful diffraction analysis of pupil mapping systems. These results reveal a serious unresolved issue. Namely, high-contrast pupil mappings distribute light from very near the edge of the first pupil to a broad area of the second pupil and this dramatically amplifies diffraction-based edge effects resulting in a limiting attainable contrast of about 10^{-5}. We hope that by identifying this problem others will provide a solution.

R. J. Vanderbei

2005-06-22

203

Sequential functional analysis of left ventricle from 2D-echocardiography images.  

PubMed

The sequential changes in shape of left ventricle (LV), which are the result of cellular interactions and their levels of organizational complexity, in its long axis view during one cardiac cycle are obtained. The changes are presented in terms of shape descriptors by processing of images obtained from a normal subject and two patients with dilated left ventricular cardio-myopathy. These images are processed, frame by frame, by a semi-automatic algorithm developed by MATLAB. This is consisting of gray scale conversion, the LV contour extraction by application of median and SRAD filters, and morphological operations. By filling the identified region with pixels and number of pixels along its contour the area and perimeter are calculated, respectively. From these the changes in LV volume and shape index are calculated. Based on these the stroke volume (SV) and ejection fraction (EF) are calculated. The changes in LV area, perimeter, volume and shape index in cardiac patients are less than that of normal subject. The calculated SV and EF of normal subject are within the range as obtained by various imaging procedures. PMID:24956894

Chacko, Rani; Singh, Megha

2014-06-01

204

Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering  

NASA Technical Reports Server (NTRS)

A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

Seasholtz, Richard G.

1995-01-01

205

Feasibility of the combination of 3D CTA and 2D CT imaging guidance for clipping microsurgery of anterior communicating artery aneurysm.  

PubMed

Objective. We report the technique of three-dimensional computed tomography angiography (3D CTA) + two-dimensional computed tomographic (2D CT) imaging as an adjunct in early surgery for a ruptured anterior communicating artery (ACoA) aneurysm by adopting an anterior interhemispheric approach. These combined imaging modalities provide accurate intraoperative anatomical information. Methods. To produce images for an anterior interhemispheric approach, 3D CTA + 2D coronal CT images, which are perpendicular to the direction of the surgical approach at three levels (brain surface, genu of the corpus callosum and aneurysm neck), were constructed. We also produced two 3D CTA + 2D CT images of the lamina terminalis, with a horizontal 10-degree difference, to clarify the vascular architecture around the aneurysm stereotactically, as well as the dissection point and direction to open the lamina terminalis. Furthermore, we produced a 3D CTA + 2D sagittal CT image at the midline, which allowed us to understand the anatomical architecture of the aneurysm, planum sphenoidale and tuberculum sellae. In addition, four different 3D CTA aneurysm images were produced for deciding the clip size preoperatively. Results. The imaging findings in 28 patients with 28 ACoA aneurysms facilitated early clipping. Based on these 3D CTA + 2D CT images, we conducted aneurysm surgery, and successfully performed neck clipping via an anterior interhemispheric approach. Conclusion. The combination of 3D CTA and 2D CT images is a feasible and useful method of image guidance for ACoA aneurysm microsurgery. PMID:25299789

Wada, Kojiro; Nawashiro, Hiroshi; Ohkawa, Hidenori; Arimoto, Hirohiko; Takeuchi, Satoru; Mori, Kentaro

2014-10-01

206

Efficient recognition of 3D rigid solid objects from 2D projective images based on projective invariant descriptions  

NASA Astrophysics Data System (ADS)

This paper proposes an efficient method to recognize 3-D rigid, solid objects from 2-D projective images in the presence of object overlapping and occlusion which is robust to noise, location accuracy, and able to deal with multiple instances of a model in a scene. The task of the recognition method is to find instances of known object models in projective images. Projective invariants shape descriptors of 3-D solid objects are generated which are invariant to a change in the point of view. To obtain these projective invariants, the classical projective geometry has been taken as a starting point. It is classically known that the cross ratio is projectively invariant. The invariants describing the model are used as `keys' to index the model into a hash table. Because these keys remain the same under the projective transformation they are computed for objects found in an image and used to determine which object model is present in an image. Experiments show excellent performance and together with the inherent parallelism of the recognition method makes the method a promising one.

Gevers, Theo; Smeulders, Arnold W. M.

1994-08-01

207

CMOS Geiger photodiode array with integrated signal processing for imaging of 2D objects using quantum dots  

NASA Astrophysics Data System (ADS)

Geiger-mode photodiodes (GPD) act as binary photon detectors that convert analog light intensity into digital pulses. Fabrication of arrays of GPD in a CMOS environment simplifies the integration of signal-processing electronics to enhance the performance and provide a low-cost detector-on-a-chip platform. Such an instrument facilitates imaging applications with extremely low light and confined volumes. High sensitivity reading of small samples enables twodimensional imaging of DNA arrays and for tracking single molecules, and observing their dynamic behavior. In this work, we describe the performance of a prototype imaging detector of GPD pixels, with integrated active quenching for use in imaging of 2D objects using fluorescent labels. We demonstrate the integration of on-chip memory and a parallel readout interface for an array of CMOS GPD pixels as progress toward an all-digital detector on a chip. We also describe advances in pixel-level signal processing and solid-state photomultiplier developments.

Stapels, Christopher J.; Lawrence, William G.; Gurjar, Rajan S.; Johnson, Erik B.; Christian, James F.

2008-08-01

208

Push-broom hyperspectral image calibration and enhancement by 2D deconvolution with a variant response function estimate.  

PubMed

In this paper, we propose a novel method for spectral and spatial calibration and resolution enhancement of hyperspectral images by a two-step procedure. The spectral and spatial variability of the hyperspectral imaging system response function is characterized by a global parametric model, which is derived from a pair of calibration images corresponding to an exactly defined calibration target and a set of gas-discharge lamps. A 2D Richardson-Lucy deconvolution-based algorithm is used to remove the distortions and enhance the resolution of subsequently acquired hyperspectral images. The results of the characterization and deconvolution process obtained by the proposed method are thoroughly evaluated by an independent set of exactly defined calibration and spectral targets, and compared to the existing state-of-the-art characterization method. The proposed method significantly improves the spectral and spatial coregistration and provides more than five-fold resolution enhancement in the spatial and two-fold resolution enhancement in the spectral domain. PMID:25401909

Jemec, Jurij; Pernu, Franjo; Likar, Botjan; Brmen, Miran

2014-11-01

209

Hartree-Fock Solutions of 2d Interacting Tight-Binding Electrons: Mott Properties and Room Temperature Superconductivity Indications  

NASA Astrophysics Data System (ADS)

Former results for a tight-binding (TB) model of CuO planes in La2CuO4 are reinterpreted here to underline their wider implications. It is noted that physical systems being appropriately described by the TB model can exhibit the main strongly correlated electron system (SCES) properties, when they are solved in the HF approximation, by also allowing crystal symmetry breaking effects and noncollinear spin orientations of the HF orbitals. It is argued how a simple 2D square lattice system of Coulomb interacting electrons can exhibit insulator gaps and pseudogap states, and quantum phase transitions as illustrated by the mentioned former works. A discussion is also presented here indicating the possibility of attaining room temperature superconductivity, by means of a surface coating with water molecules of cleaved planes of graphite, being orthogonal to its c-axis. The possibility that 2D arrays of quantum dots can give rise to the same effect is also proposed to consideration. The analysis also furnishes theoretical insight to solve the Mott-Slater debate, at least for the La2CuO4 and TMO band structures. The idea is to apply a properly noncollinear GW scheme to the electronic structure calculation of these materials. The fact is that the GW approach can be viewed as a HF procedure in which the screening polarization is also determined. This directly indicates the possibility of predicting the assumed dielectric constant in the previous works. Thus, the results seem to identify that the main correlation properties in these materials are determined by screening. Finally, the conclusions also seem to be of help for the description of the experimental observations of metal-insulator transitions and Mott properties in atoms trapped in planar photonic lattices.

Cabo Montes de Oca, A.; March, N. H.; Cabo-Bizet, A.

2014-12-01

210

2D and 3D GPR imaging of structural ceilings in historic and existing constructions  

NASA Astrophysics Data System (ADS)

GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for investigating with rapidity and high resolution, thin as well as very thick ceilings, in a non-destructive manner. Ceilings may be made up as masonry vaults or timber/metal/concrete beams and elements laid down in one or two directions or, again, can be made as a combination of the above. A number of cases are here presented reporting on typical features to be recognised in radargrams in order to distinguish the material and possible shape of the relevant objects with the aim of providing a first small catalogue useful to the radar user and to professionals. This abstract is of interest for COST Action TU1208.

Colla, Camilla

2014-05-01

211

Visualization of aerocolloidal biological particles using 2D particle image velocimetry (PIV)  

NASA Astrophysics Data System (ADS)

Recent concerns over the possible use of airborne biological particles as weapons of mass destruction have significantly increased the attention that researchers are giving to this threat. The size of these particles, ranging from a fraction of a micrometer to several tens of micrometers, allows them to travel over long distances before settling out of the airstreams carrying these particles. Furthermore, the odd shapes of many of these particles along with uncertainties about their light scattering characteristics make detection and tracking quite a challenge. In the present paper, results are reported on the visualization of airborne biological particles using two-dimensional particle image velocimetry (PIV). These initial results show the utility of PIV in illuminating and tracking airborne biological particles. A compressed air nebulizer is used to aerosolize the biological particles inside a Plexiglas test section. The biological particles prepared for the nebulizer are first inoculated and cultured onto agar media, gypsum board, and acoustic ceiling tile to achieve an abundant growth of spores. A colloidal suspension of biological particles is then made using sterilized, de-ionized water and a mild surfactant to de-agglomerate the biological particles in the suspension. The concentration of biological particles in the colloidal suspension is determined using a hemacytometer. In the visualization experiments, images are captured for polystyrene latex (PSL) test particles, liquid water droplets, and spores of the fungal species Aspergillus versicolor. During the PIV system operation, two successive images are captured with a time delay of 50 ?m to develop flow field velocities of the PSL test particles, liquid water droplets, and the A. versicolor spores.

Hall, Carsie A., III; Masabattula, Sree; Akyuzlu, Kazim M.; Russo, Edwin P.; Klich, Maren A.

2003-11-01

212

Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data  

SciTech Connect

The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to reduce the number of required measurement locations, reduce the time to make measurements, reduce the memory required to store the measurements, and possibly reduce the computational burden to classify the measurements. This work considers the appropriate selection of the signal dictionary used for signal reconstruction, and performs an evaluation of compressed sensing technique's ability to reconstruct ultrasonic images using fewer measurements than would be needed using traditional Nyquist-limited data collection techniques.

Mascarenas, David D. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory; Chong, See Yenn [Engineering Institute-Korea; Lee, J.R. [Engineering Institute-Korea; Park, Gyu Hae [Los Alamos National Laboratory; Flynn, Eric B. [Los Alamos National Laboratory

2012-06-29

213

String matching techniques for high-level primitive formation in 2-D vascular imaging.  

PubMed

This paper deals with a so-called "intermediate" description, in other words, the formation of high-level primitives in angiographies. The method is based on an attributed string matching technique capable to capture the shape similarities between low-level primitives (i.e., vessel contours and centerlines). After designing a multiparametric cost function, we propose a multiline pairing algorithm. In order to objectively evaluate its performances, results are first provided on simulated data and then on a set of coronarographic images, where it is shown that anatomically coherent entities like vessel segments and branches can be built, "objects" that can be further individually analyzed for clinical purpose. PMID:15000356

Toumoulin, Christine; Brieva, Jorge; Bellanger, Jean-Jacques; Shu, Huazhong

2003-12-01

214

An image-space Morse decomposition for 2D vector fields  

NASA Astrophysics Data System (ADS)

Morse decompositions have been proposed to compute and represent the topological structure of steady vector fields. Compared to the conventional differential topology, Morse decomposition and the resulting Morse Connection Graph (MCG) is numerically stable. However, the granularity of the original Morse decomposition is constrained by the resolution of the underlying spatial discretization, which typically results in non-smooth representation. In this work, an Image-Space Morse decomposition (ISMD) framework is proposed to address this issue. Compared to the original method, ISMD first projects the original vector field onto an image plane, then computes the Morse decomposition based on the projected field with pixels as the smallest elements. Thus, pixel-level accuracy can be achieved. This ISMD framework has been applied to a number of synthetic and real-world steady vector fields to demonstrate its utility. The performance of the ISMD is carefully studied and reported. Finally, with ISMD an ensemble Morse decomposition can be studied and visualized, which is shown useful for visualizing the stability of the Morse sets with respect to the error introduced in the numerical computation and the perturbation to the input vector fields.

Chen, Guoning; Xu, Shuyu

2015-01-01

215

SIMS of organicsAdvances in 2D and 3D imaging and future outlook  

SciTech Connect

Secondary ion mass spectrometry (SIMS) has become a powerful technique for the label-free analysis of organics from cells to electronic devices. The development of cluster ion sources has revolutionized the field, increasing the sensitivity for organics by two or three orders of magnitude and for large clusters, such as C{sub 60} and argon clusters, allowing depth profiling of organics. The latter has provided the capability to generate stunning three dimensional images with depth resolutions of around 5 nm, simply unavailable by other techniques. Current state-of-the-art allows molecular images with a spatial resolution of around 500 nm to be achieved and future developments are likely to progress into the sub-100 nm regime. This review is intended to bring those with some familiarity with SIMS up-to-date with the latest developments for organics, the fundamental principles that underpin this and define the future progress. State-of-the-art examples are showcased and signposts to more in-depth reviews about specific topics given for the specialist.

Gilmore, Ian S. [National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom)] [National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom)

2013-09-15

216

Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling  

SciTech Connect

Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

Dr. Ricardo Maqueda; Dr. Fred M. Levinton

2011-12-23

217

10B5 4D Elasticity Imaging of PVA LV Phantom Integrated with Pulsatile Circulation System Using 2D Phased Array  

Microsoft Academic Search

Myocardial ischemia or infarction alters myocardial contractility. Strain and strain rate imaging may be able to detect and monitor changes in myocardial contractility as well as evaluate viability. A challenging issue with cardiac elasticity imaging is that heart motion is 3D and complex. Currently available 1D or 2D elasticity imaging techniques are limited by significant out-of-imaging plane motion. To test

C. Jia; K. Kim; T. J. Kolias; J. M. Rubin; W. F. Weitzel; P. Yan; D. Dione; A. J. Sinusas; J. Duncan; M. O'Donnell

2007-01-01

218

3D shape from silhouette points in registered 2D images using conjugate gradient method  

NASA Astrophysics Data System (ADS)

We describe a simple and robust algorithm for estimating 3D shape given a number of silhouette points obtained from two or more viewpoints and a parametric model of the shape. Our algorithm minimizes (in the least squares sense) the distances from the lines obtained by unprojecting the silhouette points to 3D to their closest silhouette points on the 3D shape. The solution is found using an iterative approach. In each iteration, we locally approximate the least squares problem with a degree-4 polynomial function. The approximate problem is solved using a nonlinear conjugate gradient solver that takes advantage of its structure to perform exact and global line searches. We tested our algorithm by applying it to reconstruct patient-specific femur shapes from simulated biplanar X-ray images.

Szymczak, Andrzej; Hoff, William; Mahfouz, Mohamed

2010-03-01

219

New generation CMOS 2D imager evaluation and qualification for semiconductor inspection applications  

NASA Astrophysics Data System (ADS)

Semiconductor fabrication process defect inspection industry is always driven by inspection resolution and through-put. With fabrication technology node advances to 2X ~1Xnm range, critical macro defect size approaches to typical CMOS camera pixel size range, therefore single pixel defect detection technology becomes more and more essential, which is fundamentally constrained by camera performance. A new evaluation model is presented here to specifically describe the camera performance for semiconductor machine vision applications, especially targeting at low image contrast high speed applications. Current mainline cameras and high-end OEM cameras are evaluated with this model. Camera performances are clearly differentiated among CMOS technology generations and vendors, which will facilitate application driven camera selection and operation optimization. The new challenges for CMOS detectors are discussed for semiconductor inspection applications.

Zhou, Wei; Hart, Darcy

2013-09-01

220

2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements  

SciTech Connect

Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (?1 ?s) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05 associated with global tearing modes are resolved with an uncertainty ?0.01. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

2014-11-15

221

Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging  

E-print Network

Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position of a fluorescent particle can be determined using 2d imaging alone, by measuring the diffraction rings generated by an out-of-focus particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from particles vicinity. It is capable of real time analysis thanks to its high performance and low memory footprint. Many of the algorithmic concepts introduced can be advantageous in other cases, particularly for sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. The image analysis algorithm, which is an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of several particles concurrently, when their number in not necessarily fixed, by solving a classification problem. The current implementation is robust to ring occlusion, inclusions and overlaps, which allows resolving particles even when near to each other. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

Eldad Afik

2014-10-02

222

Transverse Strains in Muscle Fascicles during Voluntary Contraction: A 2D Frequency Decomposition of B-Mode Ultrasound Images  

PubMed Central

When skeletal muscle fibres shorten, they must increase in their transverse dimensions in order to maintain a constant volume. In pennate muscle, this transverse expansion results in the fibres rotating to greater pennation angle, with a consequent reduction in their contractile velocity in a process known as gearing. Understanding the nature and extent of this transverse expansion is necessary to understand the mechanisms driving the changes in internal geometry of whole muscles during contraction. Current methodologies allow the fascicle lengths, orientations, and curvatures to be quantified, but not the transverse expansion. The purpose of this study was to develop and validate techniques for quantifying transverse strain in skeletal muscle fascicles during contraction from B-mode ultrasound images. Images were acquired from the medial and lateral gastrocnemii during cyclic contractions, enhanced using multiscale vessel enhancement filtering and the spatial frequencies resolved using 2D discrete Fourier transforms. The frequency information was resolved into the fascicle orientations that were validated against manually digitized values. The transverse fascicle strains were calculated from their wavelengths within the images. These methods showed that the transverse strain increases while the longitudinal fascicle length decreases; however, the extent of these strains was smaller than expected. PMID:25328509

Wakeling, James M.

2014-01-01

223

Enhancing LTW image encoder with perceptual coding and GPU-optimized 2D-DWT transform  

NASA Astrophysics Data System (ADS)

When optimizing a wavelet image coder, the two main targets are to (1) improve its rate-distortion (R/D) performance and (2) reduce the coding times. In general, the encoding engine is mainly responsible for achieving R/D performance. It is usually more complex than the decoding part. A large number of works about R/D or complexity optimizations can be found, but only a few tackle the problem of increasing R/D performance while reducing the computational cost at the same time, like Kakadu, an optimized version of JPEG2000. In this work we propose an optimization of the E_LTW encoder with the aim to increase its R/D performance through perceptual encoding techniques and reduce the encoding time by means of a graphics processing unit-optimized version of the two-dimensional discrete wavelet transform. The results show that in both performance dimensions, our enhanced encoder achieves good results compared with Kakadu and SPIHT encoders, achieving speedups of 6 times with respect to the original E_LTW encoder.

Martnez-Rach, Miguel O.; Lpez-Granado, Otoniel; Galiano, Vicente; Migalln, Hector; Llor, Jess; Malumbres, Manuel P.

2013-12-01

224

Management of mitral stenosis using 2D and 3D echo-Doppler imaging.  

PubMed

Although the prevalence of rheumatic fever is decreasing in developed countries, it still affects numerous areas in the nonindustrialized world. Untreated mitral stenosis (MS) contributes to a significant global morbidity and mortality. Echocardiography is the main diagnostic imaging modality with which to evaluate mitral valve (MV) obstruction and assess the severity and hemodynamic consequences of MS as well as valve morphology. According to current guidelines and recommendations for clinical practice, the severity of MS should not be defined by a single value but assessed by valve areas, mean Doppler gradients, and pulmonary pressures. Transthoracic echocardiography is usually sufficient to grade MS severity and to define the morphology of the valve. Transesophageal echocardiography is used when the valve cannot be adequately assessed with transthoracic echocardiography and to exclude intracardiac thrombi before a percutaneous or surgical intervention. Three-dimensional transthoracic and transesophageal echocardiographic assessment provide more detailed physiological and morphological information. Current definitive treatment for severe MS involves percutaneous mitral balloon valvuloplasty (PMBV) or surgery. The effectiveness of PMBV is related to the etiology of MS, and certain anatomic characteristics tend to predict a more successful outcome for PMBV, whereas other MV structural findings might suggest balloon valvuloplasty to be less likely successful or even contraindicated. PMID:24229772

Wunderlich, Nina C; Beigel, Roy; Siegel, Robert J

2013-11-01

225

Fast 2-D ultrasound strain imaging: the benefits of using a GPU.  

PubMed

Deformation of tissue can be accurately estimated from radio-frequency ultrasound data using a 2-dimensional normalized cross correlation (NCC)-based algorithm. This procedure, however, is very computationally time-consuming. A major time reduction can be achieved by parallelizing the numerous computations of NCC. In this paper, two approaches for parallelization have been investigated: the OpenMP interface on a multi-CPU system and Compute Unified Device Architecture (CUDA) on a graphics processing unit (GPU). The performance of the OpenMP and GPU approaches were compared with a conventional Matlab implementation of NCC. The OpenMP approach with 8 threads achieved a maximum speed-up factor of 132 on the computing of NCC, whereas the GPU approach on an Nvidia Tesla K20 achieved a maximum speed-up factor of 376. Neither parallelization approach resulted in a significant loss in image quality of the elastograms. Parallelization of the NCC computations using the GPU, therefore, significantly reduces the computation time and increases the frame rate for motion estimation. PMID:24402909

Idzenga, Tim; Gaburov, Evghenii; Vermin, Willem; Menssen, Jan; de Korte, Chris

2014-01-01

226

2D imaging in a 3D world: Observing sub-grain scale variations and secondary mineral precipitates in reacted pore networks  

NASA Astrophysics Data System (ADS)

Advancements in 3D imaging techniques and analysis methods, and easier access to benchtop 3D X-ray microscopes, have led to a proliferation of 3D imaging studies of chemical alterations within porous media. However, 2D imaging methods continue to offer complementary insights into processes controlling sub-grain scale variations in mineralogy and intragranular porosity that are often difficult to observe with 3D methods. For example, 2D imaging studies of mineral precipitation-induced changes in the pore network structure including detailed observations of distributions of secondary mineral precipitates can be coupled with 3D image analysis of a pore network to determine the pore properties required to infer permeability. In this work, the combined advantages of 2D and 3D imaging methods are highlighted through 3D X-ray Computed Microtomography (X-ray CT) and 2D Scanning Electron Microscopy (SEM) imaging of a reacted column experiment in the context of the Hanford, WA site and a sedimentary rock sample from the Alberta basin. Both samples were imaged using 3D X-ray CT imaging at a voxel resolution of 4 ?m and analyzed using 3DMA Rock to determine pore and throat size distributions as well as pore coordination numbers. Polished sections were then created from each sample and imaged using 2D SEM imaging with resolutions of 0.4 ?m for the reacted column and an order of magnitude larger for the sedimentary rock. 2D images were analyzed using an erosion dilation method to determine pore and throat size distributions that were then corrected using sample-specific bias correction factors. The permeability of each sample was predicted from pore network models informed with the 2D or 3D pore and throat size distributions and the coordination numbers determined from the 3D analysis. Differences in 2D and 3D image resolutions resulted in over- or under- estimating small pore throats and led to predicted permeabilities that differed by orders of magnitude. For both samples, higher resolution images resulted in over-estimating small pore throats and under-estimating expected permeability. While higher resolution images are generally favored, they may not improve predictions of permeability as they require additional processing to distinguish small flow-conducting pore throats from surface roughness features. While 3D imaging is required to determine the network coordination, 2D imaging is necessary to understand where secondary minerals precipitate within the pore network and to quantify sub-grain scale variations. These advantages are demonstrated through SEM imaging of polished sections from the reacted column experiment. 2D images revealed that secondary mineral precipitates occurred as a relatively uniform coating on grain surfaces, unrelated to mineralogy, pore size, or other factors. SEM images also revealed new observations of sub-grain scale variations that showed that Hanford sand grains have a high amount of intragranular porosity and mineral precipitates formed in intragranular regions. These observations, which are important to understanding the reactive system, could not have been made if 3D imaging was used exclusively.

Crandell, L. E.; Peters, C. A.; Um, W.; Jones, K. W.; Lindquist, W. B.

2012-12-01

227

2D/3D image fusion of x-ray mammograms with speed of sound images: evaluation and visualization  

NASA Astrophysics Data System (ADS)

Breast cancer is the most common cancer among women. The established screening method to detect breast cancer is X-ray mammography. However, X-ray frequently provides poor contrast of tumors located within glandular tissue. In this case, additional modalities like MRI are used for diagnosis in clinical routine. A new imaging approach is Ultrasound Computer Tomography, generating three-dimensional speed of sound images. High speed of sound values are expected to be an indicator of cancerous structures. Therefore, the combination of speed of sound images and X-ray mammograms may benefit early breast cancer diagnosis. In previous work, we proposed a method based on Finite Elements to automatically register speed of sound images with the according mammograms. The FEM simulation overcomes the challenge that X-ray mammograms show two-dimensional projections of a deformed breast whereas speed of sound images render a three-dimensional undeformed breast in prone position. In this work, 15 datasets from a clinical study were used for further evaluation of the registration quality. The quality of the registration was measured by the displacement of the center of a lesion marked in both modalities. We found a mean displacement of 7.1 mm. For visualization, an overlay technique was developed, which displays speed of sound information directly on the mammogram. Hence, the methodology provides a good basis for multimodal diagnosis using mammograms and speed of sound images. It proposes a guidance tool for radiologists who may benefit from the combined information.

Hopp, Torsten; Bonn, Julie; Ruiter, Nicole V.; Sak, Mark; Duric, Neb

2011-03-01

228

High-temperature fiber optic imaging  

NASA Astrophysics Data System (ADS)

An experimental demonstration of fiber optic imaging inside a furnace at 1000 degrees Celsius is described. A sapphire fiber optic video system was designed, fabricated and tested for basic performance in a small tube furnace. The imaging fiber bundle was assembled using 100 high quality sapphire fibers aligned and bonded at each end. Experiments to achieve a high temperature cladding are described. Reference imaging experiments at room temperature were performed with the sapphire fiber bundle and a commercial glass fiber bundle of comparable size. Imaging experiments at 100 degrees Celsius are described and discussed.

Bates, Stephen C.

1996-10-01

229

WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters  

NASA Astrophysics Data System (ADS)

An image processing software has been developed which allows quantitative analysis of multi- and hyperspectral data from oceanic, coastal and inland waters. It has been implemented into the Water Colour Simulator WASI, which is a tool for the simulation and analysis of optical properties and light field parameters of deep and shallow waters. The new module WASI-2D can import atmospherically corrected images from airborne sensors and satellite instruments in various data formats and units like remote sensing reflectance or radiance. It can be easily adapted by the user to different sensors and to optical properties of the studied area. Data analysis is done by inverse modelling using established analytical models. The bio-optical model of the water column accounts for gelbstoff (coloured dissolved organic matter, CDOM), detritus, and mixtures of up to 6 phytoplankton classes and 2 spectrally different types of suspended matter. The reflectance of the sea floor is treated as sum of up to 6 substrate types. An analytic model of downwelling irradiance allows wavelength dependent modelling of sun glint and sky glint at the water surface. The provided database covers the spectral range from 350 to 1000 nm in 1 nm intervals. It can be exchanged easily to represent the optical properties of water constituents, bottom types and the atmosphere of the studied area.

Gege, Peter

2014-01-01

230

Motion-compensated mega-voltage cone beam CT using the deformation derived directly from 2D projection images.  

PubMed

This paper presents a novel method for respiratory motion compensated reconstruction for cone beam computed tomography (CBCT). The reconstruction is based on a time sequence of motion vector fields, which is generated by a dynamic geometrical object shape model. The dynamic model is extracted from the 2D projection images of the CBCT. The process of the motion extraction is converted into an optimal 3D multiple interrelated surface detection problem, which can be solved by computing a maximum flow in a 4D directed graph. The method was tested on 12 mega-voltage (MV) CBCT scans from three patients. Two sets of motion-artifact-free 3D volumes, full exhale (FE) and full inhale (FI) phases, were reconstructed for each daily scan. The reconstruction was compared with three other motion-compensated approaches based on quantification accuracy of motion and size. Contrast-to-noise ratio (CNR) was also quantified for image quality. The proposed approach has the best overall performance, with a relative tumor volume quantification error of 3.39 3.64% and 8.57 8.31% for FE and FI phases, respectively. The CNR near the tumor area is 3.85 0.42 (FE) and 3.58 3.33 (FI). These results show the clinical feasibility to use the proposed method to reconstruct motion-artifact-free MVCBCT volumes. PMID:23247845

Chen, Mingqing; Cao, Kunlin; Zheng, Yefeng; Siochi, R Alfredo C

2013-08-01

231

A novel approach of computer-aided detection of focal ground-glass opacity in 2D lung CT images  

NASA Astrophysics Data System (ADS)

Focal Ground-Glass Opacity (fGGO) plays an important role in diagnose of lung cancers. This paper proposes a novel approach for detecting fGGOs in 2D lung CT images. The approach consists of two stages: extracting regions of interests (ROIs) and labeling each ROI as fGGO or non-fGGO. In the first stage, we use the techniques of Otsu thresholding and mathematical morphology to segment lung parenchyma from lung CT images and extract ROIs in lung parenchyma. In the second stage, a Bayesian classifier is constructed based on the Gaussian mixture Modeling (GMM) of the distribution of visual features of fGGOs to fulfill ROI identification. The parameters in the classifier are estimated from training data by the discriminative learning method of Max-Min posterior Pseudo-probabilities (MMP). A genetic algorithm is further developed to select compact and discriminative features for the classifier. We evaluated the proposed fGGO detection approach through 5-fold cross-validation experiments on a set of 69 lung CT scans that contain 70 fGGOs. The proposed approach achieves the detection sensitivity of 85.7% at the false positive rate of 2.5 per scan, which proves its effectiveness. We also demonstrate the usefulness of our genetic algorithm based feature selection method and MMP discriminative learning method through comparing them with without-selection strategy and Support Vector Machines (SVMs), respectively, in the experiments.

Li, Song; Liu, Xiabi; Yang, Ali; Pang, Kunpeng; Zhou, Chunwu; Zhao, Xinming; Zhao, Yanfeng

2013-02-01

232

Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures.  

PubMed

One current challenge in the field of breast cancer infrared imaging is the identification of carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able to provide a cell by cell thorough classification. The latter is needed to build accurate statistical models capable of recognizing the diversity of breast cancer cell lines that may be present in a tissue section. One possible approach for overcoming this problem is to obtain the IR spectral signature of well-characterized tumor cell lines in culture. Cultures in three-dimensional matrices appear to generate an environment that mimics better the in vivo environment. There are, at present, series of breast cancer cell lines that have been thoroughly characterized in two- and three-dimensional (2D and 3D) cultures by full transcriptomics analyses. In this work, we describe the methods used to grow, to process, and to characterize a triple-negative breast cancer cell line, MDA-MB-231, in 3D laminin-rich extracellular matrix (lrECM) culture and compare it with traditional monolayer cultures and tissue sections. While unsupervised analyses did not completely separate spectra of cells grown in 2D from 3D lrECM cultures, a supervised statistical analysis resulted in an almost perfect separation. When IR spectral responses of epithelial tumor cells from clinical triple-negative breast carcinoma samples were added to these data, a principal component analysis indicated that they cluster closer to the spectra of 3D culture cells than to the spectra of cells grown on a flat plastic substrata. This result is encouraging because of correlating well-characterized cell line features with clinical biopsies. PMID:25568895

Smolina, Margarita; Goormaghtigh, Erik

2015-03-16

233

Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation  

NASA Astrophysics Data System (ADS)

We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14?400 random trials (200 trials on the 72 registration scenarios) with initialization error up to 200 mm and 10. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with success defined as PDE <5 mm) using 1,718?664 96?582 function evaluations computed in 54.0 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., 5 mm, assuming a robust initial run) the same registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery.

Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

2013-12-01

234

Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation.  

PubMed

We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to 200 mm and 10. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with 'success' defined as PDE <5 mm) using 1,718 664 96 582 function evaluations computed in 54.0 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., 5 mm, assuming a robust initial run) the same registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery. PMID:24246386

Otake, Yoshito; Wang, Adam S; Webster Stayman, J; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A Jay; Gokaslan, Ziya L; Siewerdsen, Jeffrey H

2013-12-01

235

A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data  

PubMed Central

Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

2014-01-01

236

Temperature Dependent Equilibrium Native to Unfolded Protein Dynamics and Properties Observed with IR Absorption and 2D IR Vibrational Echo Experiments  

PubMed Central

Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c552 from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature dependent circular dichroism and the IR absorption area ratio RA(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous linewidth and the center frequency shifts as the temperature is increased. The changes in linewidth and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature independent distribution of structures. PMID:21469666

Chung, Jean K.; Thielges, Megan C.; Bowman, Sarah E. J.; Bren, Kara L.; Fayer, M. D.

2011-01-01

237

2D mixture fraction measurements in a high pressure and high temperature combustion system using NO tracer-LIF  

NASA Astrophysics Data System (ADS)

Mixture fraction measurements in a jet-in-cross flow configuration at high pressures (15 bar) and temperatures (above 1000 K) were performed using planar laser induced fluorescence of nitric oxide (NO-PLIF) as trace species. The goal was the evaluation of this tracer LIF technique for the characterization of the mixing of fuel and hot exhaust gas in the mixing channel. The fuel (natural gas (NG) or H2/N2/NG mixture) along with the tracer were injected into the crossflow of the exhaust gas and PLIF measurements were performed in different planes. In order to relate the measured NO-LIF signal to fuel concentration and mixture fraction, effects of pressure, temperature and species concentration were taken into account. Numerical calculations and spectroscopic simulations that mimic the experimental conditions were performed to identify excitation schemes that give optimum correlations between the NO-LIF signal and the mixture fraction. The measured NO-PLIF images were transformed into mixture fraction plots using the computed correlations. The paper reports on the experimental challenges encountered during the measurements and the steps taken to overcome those difficulties. Examples of mixture fraction distributions are presented and discussed. The paper concludes with a detailed analysis on the accuracy of the measured mixture fraction values.

Sadanandan, R.; Fleck, J.; Meier, W.; Griebel, P.; Naumann, C.

2012-01-01

238

Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy  

NASA Astrophysics Data System (ADS)

Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

2014-03-01

239

Efficient Decoding of 2D Structured Illumination with Linear Phase Stepping in X-Ray Phase Contrast and Dark-Field Imaging  

PubMed Central

The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging. PMID:24489853

Harmon, Katherine J.; Bennett, Eric E.; Gomella, Andrew A.; Wen, Han

2014-01-01

240

Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA  

NASA Astrophysics Data System (ADS)

The ability to effectively interpret and reconstruct geomorphic environments has been significantly aided by the subsurface imaging capabilities of ground penetrating radar (GPR). The GPR method, which is based on the propagation and reflection of pulsed high frequency electromagnetic energy, provides high resolution (cm to m scale) and shallow subsurface (0-60 m), near continuous profiles of many coarser-grained deposits (sediments of low electrical conductivity). This paper presents 2-D and 3-D GPR results from an experiment on a regressive modern barrier spit at Willapa Bay, WA, USA. The medium-grained sand spit is 38 km long, up to 2-3.5 km wide, and is influenced by a 3.7-m tidal range (spring) as well as high energy longshore transport and high wave energy depositional processes. The spit has a freshwater aquifer recharged by rainfall. The GPR acquisition system used for the test was a portable, digital pulseEKKO system with antennae frequency ranging from 25 to 200 MHz and transmitter voltages ranging from 400 to 1000 V. Step sizes and antennae separation varied depending on the test requirements. In addition, 100-MHz antennae were used for conducting antennae orientation tests and collecting a detailed grid of data (5050 m sampled every meter). The 2-D digital profiles were processed and plotted using pulseEKKO software. The 3-D datasets, after initial processing, were entered into a LANDMARK workstation that allowed for unique 3-D perspectives of the subsurface. To provide depth, near-surface velocity measurements were calculated from common midpoint (CMP) surveys. Results from the present study demonstrate higher resolution from the 200-MHz antennae for the top 5-6 m, whereas the 25- and 50-MHz antennae show deeper penetration to >10 m. For the study site, 100-MHz antennae provided acceptable resolution, continuity of reflections, and penetration. The dip profiles show a shingle-like accretionary depositional pattern, whereas strike profiles show a horizontal and subhorizontal, nearly continuous reflection pattern. Results from the GPR experiment reveal upper shoreface reflections with dip towards the ocean at about 1-2. The loss of signal from below a depth of 6-8 m indicates a lithofacies change because of the storm wave base. The parallel broadside and perpendicular broadside antennae orientation tests show detailed stratigraphy, continuity, and depth of penetration. The cross-polarization test exhibits reduced continuity of reflections and less depth of penetration, but dipping reflections are apparent. The grid pattern data provided a detailed view of 3-D geometry of individual reflections. High quality data were obtained, processed, and directly exported into a LANDMARK workstation for interpretation. The resulting interpretations of the upper shoreface beds from the test cube (5050 m; total 2600 traces) are shown as vertical sections (slices), horizontal sections (time slices), contour maps, 3-D representations of individual beds, and an isopach map. The 3-D depositional framework allows a more detailed interpretation than widely spaced 2-D profiles.

Jol, Harry M.; Lawton, Don C.; Smith, Derald G.

2003-07-01

241

A Novel Method to Improve Image Quality for 2-D Small Animal PET Reconstruction by Correcting a Monte Carlo-Simulated System Matrix Using an Artificial Neural Network  

Microsoft Academic Search

The aim of this study was to improve image quality of statistical reconstruction by using the 2-D system matrix (SM) trained with an artificial neural network (ANN). For training the ANN SM (SMANN), the inputs of ANN, the digital images, were generated by scanning the mini-deluxe cold spot phantom at ten different orientations using an optical scanner (resolution: 0.01 mm\\/pixel).

Kuan-Hao Su; Liang-Chih Wu; Jih-Shian Lee; Ren-Shyan Liu; Jyh-Cheng Chen

2009-01-01

242

Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR  

SciTech Connect

Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

2004-05-07

243

2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images  

NASA Astrophysics Data System (ADS)

Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI 2 standard deviation was 91:7% 5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

Castro-Mateos, Isaac; Pozo, Jos Maria; Lazary, Aron; Frangi, Alejandro F.

2014-03-01

244

Evaluation of 2-D speckle tracking based strain rate imaging (SRI) using a 3-D heart simulation model  

Microsoft Academic Search

Preliminary 2D SRI results from a porcine heart model showed significant average residual accumulation error (RAE) in the total displacement, similar to widely reported baseline drift artifacts in SRI. Therefore, to understand the performance of 2D SRI methods in a controlled 3D environment, a left-ventricle simulation model with physiological deformation was developed. Torsion was added to move tissue in and

X. Chen; X. Li; D. Sahn; K. Kim; H. Xie; M. O'Donnell

2004-01-01

245

MTF characterization in 2D and 3D for a high resolution, large field of view flat panel imager for cone beam CT  

NASA Astrophysics Data System (ADS)

The 2D and 3D modulation transfer functions (MTFs) of a custom made, large 40x30cm2 area, 600- micron CsI-TFT based flat panel imager having 127-micron pixellation, along with the micro-fiber scintillator structure, were characterized in detail using various techniques. The larger area detector yields a reconstructed FOV of 25cm diameter with an 80cm SID in CT mode. The MTFs were determined with 1x1 (intrinsic) binning. The 2D MTFs were determined using a 50.8 micron tungsten wire and a solid lead edge, and the 3D MTF was measured using a custom made phantom consisting of three nearly orthogonal 50.8 micron tungsten wires suspended in an acrylic cubic frame. The 2D projection data was reconstructed using an iterative OSC algorithm using 16 subsets and 5 iterations. As additional verification of the resolution, along with scatter, the Catphan phantom was also imaged and reconstructed with identical parameters. The measured 2D MTF was ~4% using the wire technique and ~1% using the edge technique at the 3.94 lp/mm Nyquist cut-off frequency. The average 3D MTF measured along the wires was ~8% at the Nyquist. At 50% MTF, the resolutions were 1.2 and 2.1 lp/mm in 2D and 3D, respectively. In the Catphan phantom, the 1.7 lp/mm bars were easily observed. Lastly, the 3D MTF measured on the three wires has an observed 5.9% RMSD, indicating that the resolution of the imaging system is uniform and spatially independent. This high performance detector is integrated into a dedicated breast SPECT-CT imaging system.

Shah, Jainil; Mann, Steve D.; Tornai, Martin P.; Richmond, Michelle; Zentai, George

2014-03-01

246

A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.  

PubMed

A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The meanstandard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.254.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

2015-03-01

247

Significant acceleration of 2D-3D registration-based fusion of ultrasound and x-ray images by mesh-based DRR rendering  

NASA Astrophysics Data System (ADS)

For transcatheter-based minimally invasive procedures in structural heart disease ultrasound and X-ray are the two enabling imaging modalities. A live fusion of both real-time modalities can potentially improve the workflow and the catheter navigation by combining the excellent instrument imaging of X-ray with the high-quality soft tissue imaging of ultrasound. A recently published approach to fuse X-ray fluoroscopy with trans-esophageal echo (TEE) registers the ultrasound probe to X-ray images by a 2D-3D registration method which inherently provides a registration of ultrasound images to X-ray images. In this paper, we significantly accelerate the 2D-3D registration method in this context. The main novelty is to generate the projection images (DRR) of the 3D object not via volume ray-casting but instead via a fast rendering of triangular meshes. This is possible, because in the setting for TEE/X-ray fusion the 3D geometry of the ultrasound probe is known in advance and their main components can be described by triangular meshes. We show that the new approach can achieve a speedup factor up to 65 and does not affect the registration accuracy when used in conjunction with the gradient correlation similarity measure. The improvement is independent of the underlying registration optimizer. Based on the results, a TEE/X-ray fusion could be performed with a higher frame rate and a shorter time lag towards real-time registration performance. The approach could potentially accelerate other applications of 2D-3D registrations, e.g. the registration of implant models with X-ray images.

Kaiser, Markus; John, Matthias; Borsdorf, Anja; Mountney, Peter; Ionasec, Razvan; Nttling, Alois; Kiefer, Philipp; Seeburger, Jrg; Neumuth, Thomas

2013-03-01

248

Effects of Temperature on First-Excited-State Energy of the Strong Coupling Magnetopolaron in 2D RbCl Parabolic Quantum Dots  

NASA Astrophysics Data System (ADS)

We study the effects of external fields that are present in nanostructures and can trap particles and manipulate their quantum states. To obtain the effects of temperature on the strong coupling magnetopolaron's first-excited-state energy (FESE) and transition frequency (TF), we use the Lee-Low-Pines unitary transformation (LLPUT) and linear combination operation (LCO) methods. Numerical results, performed in the 2D RbCl parabolic quantum dot (QD), show that the magnetopolaron's FESE and TF (MFESETF) increase with increasing the effective confinement strength and cyclotron frequency (CF) of the magnetic field and temperature.

Cai, Chun-Yu; Zhao, Cui-Lan; Xiao, Jing-Lin

2015-02-01

249

The 2D versus 3D imaging trade-off: The impact of over- or under-estimating small throats for simulating permeability in porous media  

NASA Astrophysics Data System (ADS)

Geochemical reactions in the subsurface can alter the porosity and permeability of a porous medium through mineral precipitation and dissolution. While effects on porosity are relatively well understood, changes in permeability are more difficult to estimate. In this work, pore-network modeling is used to estimate the permeability of a porous medium using pore and throat size distributions. These distributions can be determined from 2D Scanning Electron Microscopy (SEM) images of thin sections or from 3D X-ray Computed Tomography (CT) images of small cores. Each method has unique advantages as well as unique sources of error. 3D CT imaging has the advantage of reconstructing a 3D pore network without the inherent geometry-based biases of 2D images but is limited by resolutions around 1 ?m. 2D SEM imaging has the advantage of higher resolution, and the ability to examine sub-grain scale variations in porosity and mineralogy, but is limited by the small size of the sample of pores that are quantified. A pore network model was created to estimate flow permeability in a sand-packed experimental column investigating reaction of sediments with caustic radioactive tank wastes in the context of the Hanford, WA site. Before, periodically during, and after reaction, 3D images of the porous medium in the column were produced using the X2B beam line facility at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. These images were interpreted using 3DMA-Rock to characterize the pore and throat size distributions. After completion of the experiment, the column was sectioned and imaged using 2D SEM in backscattered electron mode. The 2D images were interpreted using erosion-dilation to estimate the pore and throat size distributions. A bias correction was determined by comparison with the 3D image data. A special image processing method was developed to infer the pore space before reaction by digitally removing the precipitate. The different sets of pore property distributions were used to generate different network flow models, to examine permeability alterations due to reaction-induced changes in throat sizes. 3D CT images, limited to a resolution of approximately 4 microns, miss small throats present at grain-to-grain contacts. The higher resolution of SEM images captures small throats between grains, however grain surface roughness and other small scale features may be misinterpreted. Precise determination of throat distributions requires careful thresholding to distinguish flow-conducting throats from throats leading to pores that are really just surface roughness. Using the pore network model, the sensitivity of permeability to the throat size roughness threshold was evaluated. Permeabilities calculated from the 2D and 3D pore and throat size distributions are compared to determine the impact of the lower resolution 3D images missing small throats.

Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.

2011-12-01

250

Depletion and low gas temperature in the L183 prestellar core the N2H+ - N2D+ tool  

E-print Network

Context. The study of pre-stellar cores (PSCs) suffers from a lack of undepleted species to trace the gas physical properties in their very dense inner parts. Aims. We want to carry out detailed modelling of N2H+ and N2D+ cuts across the L183 main core to evaluate the depletion of these species and their usefulness as a probe of physical conditions in PSCs. Methods. We have developed a non-LTE (NLTE) Monte-Carlo code treating the 1D radiative transfer of both N2H+ and N2D+, making use of recently published collisional coefficients with He between individual hyperfine levels. The code includes line overlap between hyperfine transitions. An extensive set of core models is calculated and compared with observations. Special attention is paid to the issue of source coupling to the antenna beam. Results. The best fitting models indicate that i) gas in the core center is very cold (7$\\pm$ 1 K) and thermalized with dust, ii) depletion of N2H+ does occur, starting at densities 5-7E5 cm?3 and reaching a facto...

Pagani, L; Cabrit, S; Vastel, C; Pagani, Laurent; Bacmann, Aurore; Cabrit, Sylvie; Vastel, Charlotte

2007-01-01

251

Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism  

PubMed Central

Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458

Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

2014-01-01

252

Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism  

NASA Astrophysics Data System (ADS)

Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3.

Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

2014-10-01

253

2-D velocity inversion/imaging of large offset seismic data via the tau-p domain  

SciTech Connect

The authors describe a method for determining a two-dimensional (2-D) velocity field from refraction data that has been decomposed into some function of slowness. The most common decomposition, intercept time-slowness or [tau]-p, is used as an intermediate step in an iterative wavefield continuation procedure previously applied to one-dimensional (1-D) velocity inversions. They extend the 1-D approach to 2-D by performing the downward continuation along numerically computed raypaths. This allows a correction to be made for the change in ray parameter induced by 2-D velocity fields. A best fitting velocity model is chosen as a surface defined by critically reflected and refracted energy that has been downward continued into a three dimensional (3-D) space of velocity, offset, and depth. Synthetic data are used to demonstrate how this approach can compensate for the effects of known lateral inhomogeneities while determining an underlying 1-D velocity field. They also use synthetic data to show how multiple refraction lines may be used to determine a general 2-D velocity model. Large offset field data collected with an Ocean Bottom Hydrophone are used to illustrate this technique in an area of significant lateral heterogeneity caused by a sloping seafloor.

Reiter, E.C.; Toksoz, M.N. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Earth Atmospheric and Planetary Sciences); Purdy, G.M. (Woods Hole Oceanographic Inst., Woods Hole, MA (United States). Dept. of Geology and Geophysics)

1993-07-01

254

2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion  

NASA Astrophysics Data System (ADS)

Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the amount of the data involved in the inversion from the first-arrival time and allows us to mitigate the weight of the complex late arrivals during the first iterations of the inversion. We applied our FWI approach to the SEG/EAGE overthrust model and the shallow-water Valhall model which is representative of oil and gas fields in North Sea. Results show that the L1 norm provides the most reliable models for both applications, even when only few discrete frequencies are used in the inversion and outliers pollute the data. The L2 norm can provide reliable results in the presence of uniform white noise only if the data redundancy is increased by refining the frequency sampling interval in the inversion, at the expense of the computational efficiency. The Huber and the Hybrid criteria are shown to be sensitive to a threshold, which controls the transition between the L1 and L2 behaviours, and which requires tedious trial-and-error investigations for reliable estimation. We show that the L1 norm provides a robust alternative to the classical approach based on the L2 norm for the inversion of decimated data sets in the framework of efficient frequency-domain FWI.

Brossier, Romain; Operto, Stphane; Virieux, Jean

2010-05-01

255

Synchronized 2D/3D optical mapping for interactive exploration and real-time visualization of multi-function neurological images.  

PubMed

Efficient software with the ability to display multiple neurological image datasets simultaneously with full real-time interactivity is critical for brain disease diagnosis and image-guided planning. In this paper, we describe the creation and function of a new comprehensive software platform that integrates novel algorithms and functions for multiple medical image visualization, processing, and manipulation. We implement an opacity-adjustment algorithm to build 2D lookup tables for multiple slice image display and fusion, which achieves a better visual result than those of using VTK-based methods. We also develop a new real-time 2D and 3D data synchronization scheme for multi-function MR volume and slice image optical mapping and rendering simultaneously through using the same adjustment operation. All these methodologies are integrated into our software framework to provide users with an efficient tool for flexibly, intuitively, and rapidly exploring and analyzing the functional and anatomical MR neurological data. Finally, we validate our new techniques and software platform with visual analysis and task-specific user studies. PMID:23968722

Zhang, Qi; Alexander, Murray; Ryner, Lawrence

2013-01-01

256

Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images.  

PubMed

Deep learning has traditionally been computationally expensive, and advances in training methods have been the prerequisite for improving its efficiency in order to expand its application to a variety of image classification problems. In this letter, we address the problem of efficient training of convolutional deep belief networks by learning the weights in the frequency domain, which eliminates the time-consuming calculation of convolutions. An essential consideration in the design of the algorithm is to minimize the number of transformations to and from frequency space. We have evaluated the running time improvements using two standard benchmark data sets, showing a speed-up of up to 8 times on 2D images and up to 200 times on 3D volumes. Our training algorithm makes training of convolutional deep belief networks on 3D medical images with a resolution of up to 128128128 voxels practical, which opens new directions for using deep learning for medical image analysis. PMID:25380341

Brosch, Tom; Tam, Roger

2015-01-01

257

2D perovskite nanosheets with thermally-stable high-? response: a new platform for high-temperature capacitors.  

PubMed

We investigated high-temperature dielectric responses of high-? perovskite nanosheet (Ca2Nb3O10), an important material platform for postgraphene technology and ultrascale electronic devices. Through in situ characterizations using conducting atomic force microscopy, we found a robust high-temperature property of Ca2Nb3O10 nanosheet even in a monolayer form (?2 nm). Furthermore, layer-by-layer assembled nanocapacitors retained both size-free high-?r characteristic (?200) and high insulation resistance (?110(-7) A/cm2) at high temperatures up to 250 C. The simultaneous improvement of ?r and thermal stability in high-? nanodielectrics is of critical technological importance, and perovskite nanosheet has great potential for a rational design and construction of high-temperature capacitors. PMID:25372940

Kim, Yoon-Hyun; Kim, Hyung-Jun; Osada, Minoru; Li, Bao-Wen; Ebina, Yasuo; Sasaki, Takayoshi

2014-11-26

258

Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model  

NASA Technical Reports Server (NTRS)

A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

1999-01-01

259

Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.  

PubMed

We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

2012-05-01

260

Development of code for 2-D distribution temperature transient analysis of asymmetric element linier using finite element method  

NASA Astrophysics Data System (ADS)

Transient of temperature distribution is found in many physical and engineering events that affect the state of the end of a process. Transient state in the form of geometry and complex boundary conditions is generally difficult to be solved analytically and can only be solved by a computer code. This study is aimed to develop a software code using the finite element method for the analysis of temperature transient distribution with the form of field element discretization asymmetric linier. The completion of the temperature distribution in the transient state is essential following the same procedure on the conditions of temperature distribution at steady state. The main difference is the load at which the load transient analysis is a function of time. Resolution process using finite element method (FEM) involves three stages, namely: the provision of data (preprocessor), problem solving (processor/ solver), interpretation of the results in the form of graphs and contour (postprocessor). Stages of the software development process start from the preprocessor program as making patterns/geometric shapes to be analyzed, discretized field with shape of element asymmetric, writing the number of nodes and elements, loads, initial conditions and boundary conditions. The process of the program code includes completing the matrix stiffness coefficient (K), and matrix load (a) time-based, or called the discretization time. The completion of time discretization uses the Galerkin Method. The stiffness of coefficient consists of stiffness geometry, capacitance matrices, or matrix moisture and the burden imposed as transient loads, such as heat flux load boundary, centralized heat load of boundary, and the initial temperature. In this way the expected completion of temperature transient distribution can be done more easily, quickly, and inexpensively. The code is written using Visual Basic.

Saragi, Elfrida

2014-09-01

261

Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.  

PubMed

Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

Hopp, T; Duric, N; Ruiter, N V

2015-03-01

262

a Circleless "2D/3D Total STATION": a Low Cost Instrument for Surveying, Recording Point Clouds, Documentation, Image Acquisition and Visualisation  

NASA Astrophysics Data System (ADS)

Hardware and software of the universally applicable instrument - referred to as a 2D/3D total station - are described here, as well as its practical use. At its core it consists of a 3D camera - often also called a ToF camera, a pmd camera or a RIM-camera - combined with a common industrial 2D camera. The cameras are rigidly coupled with their optical axes in parallel. A new type of instrument was created mounting this 2D/3D system on a tripod in a specific way. Because of it sharing certain characteristics with a total station and a tacheometer, respectively, the new device was called a 2D/3D total station. It may effectively replace a common total station or a laser scanner in some respects. After a brief overview of the prototype's features this paper then focuses on the methodological characteristics for practical application. Its usability as a universally applicable stand-alone instrument is demonstrated for surveying, recording RGB-coloured point clouds as well as delivering images for documentation and visualisation. Because of its limited range (10m without reflector and 150 m to reflector prisms) and low range accuracy (ca. 2 cm to 3 cm) compared to present-day total stations and laser scanners, the practical usage of the 2D/3D total station is currently limited to acquisition of accidents, forensic purpuses, speleology or facility management, as well as architectural recordings with low requirements regarding accuracy. However, the author is convinced that in the near future advancements in 3D camera technology will allow this type of comparatively low cost instrument to replace the total station as well as the laser scanner in an increasing number of areas.

Scherer, M.

2013-07-01

263

Stream Temperature Estimation From Thermal Infrared Images  

NASA Astrophysics Data System (ADS)

Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the data for atmospheric effects we combine radiosonde profiles with a physically based radiative transfer model (MODTRAN) and an in-scene relative correction adapted from the ISAC algorithm. Laboratory values for water emissivities are used as a baseline estimate of stream emissivities. Emitted radiance reflected by trees in the stream near-bank environment is estimated from the height and canopy temperature, using a radiosity model.

Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

2001-12-01

264

Magnetic resonance tomography using elongated transmitter and in-loop receiver arrays for time-efficient 2-D imaging of subsurface aquifer structures  

NASA Astrophysics Data System (ADS)

Surface nuclear magnetic resonance (surface-NMR) is a promising technique for exploring shallow subsurface aquifer structures. Surface-NMR can be applied in environments that are characterized as a 1-D layered Earth. The technique utilizes a single loop and is referred to as magnetic resonance sounding. The technique referred to as magnetic resonance tomography (MRT) allows complex 2-D aquifer structures to be explored. Currently, MRT requires multiple loops and a roll along measurement scheme, which causes long survey time. We propose a loop layout using an elongated transmitter and an in-loop receiver arrays (ETRA) to conduct a 2-D survey with just one measurement. We present a comprehensive comparison between the new layout and the common approaches based on sensitivity and resolution analyses and show synthetic and field data. The results show that ETRA generates subsurface images at sufficient resolution with significantly lower survey times than other loop layouts.

Jiang, C.; Mller-Petke, M.; Lin, J.; Yaramanci, U.

2015-02-01

265

A Bayesian filtering approach to incorporate 2D/3D time-lapse confocal images for tracking angiogenic sprouting cells interacting with the gel matrix.  

PubMed

We present a new approach to incorporating information from heterogeneous images of migrating cells in 3D gel. We study 3D angiogenic sprouting, where cells burrow into the gel matrix, communicate with other cells and create vascular networks. We combine time-lapse fluorescent images of stained cell nuclei and transmitted light images of the background gel to track cell trajectories. The nuclei images are sampled less frequently due to photo toxicity. Hence, 3D cell tracking can be performed more reliably when 2D sprout profiles, extracted from gel matrix images, are effectively incorporated. We employ a Bayesian filtering approach to optimally combine the two heterogeneous images with different sampling rates. We construct stochastic models to predict cell locations and sprout profiles and condition the likelihood of nuclei location by the sprout profile. The conditional distribution is non-Gaussian and the cell dynamics is non-linear. To jointly update cell and sprout estimates, we use a Rao-Blackwell particle filter. Simulation and experimental results show accurate tracking of multiple cells along with sprout formation, demonstrating synergistic effects of incorporating the two types of images. PMID:24239653

Ong, Lee-Ling S; Dauwels, Justin; Ang, Marcelo H; Asada, H Harry

2014-01-01

266

Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis  

Microsoft Academic Search

Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI

Radin Adi Aizudin Bin Radin Nasirudin; Reinhard Meier; Carmen Ahari; Matti Sievert; Martin Fiebich; Ernst J. Rummeny; Peter B. Nol

2011-01-01

267

Recent Advances In 2D-Band Structure Imaging By k-PEEM and Prospects For Technological Materials  

Microsoft Academic Search

The imaging of surfaces using the PhotoElectron Emission Microscopy (PEEM) technique has recently received considerable interest, mainly thanks to the use of high brilliance synchrotron radiation which facilitates the study of surface properties and chemical selectivity. By inserting a transfer lens in the optical column of a high transmission and full energy-filtering PEEM, it is possible to image the back

C. Mathieu; O. Renault; H. Rotella; N. Barrett; A. Chabli

2011-01-01

268

A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching  

PubMed Central

We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model which captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model instance that best matches (in the normalized cross correlation sense) local neighborhood in the input image. We demonstrate the application of our method to segmenting nuclei from a variety of imaging modalities, and quantitatively compare our results to several other methods. Quantitative results using both simulated and real image data show that, while certain methods may work well for certain imaging modalities, our software is able to obtain high accuracy across several imaging modalities studied. Results also demonstrate that, relative to several existing methods, the template-based method we propose presents increased robustness in the sense of better handling variations in illumination, variations in texture from different imaging modalities, providing more smooth and accurate segmentation borders, as well as handling better cluttered nuclei. PMID:23568787

Chen, Cheng; Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.

2013-01-01

269

Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil.  

PubMed

MR spectroscopic imaging (MRSI) with whole brain coverage in clinically feasible acquisition times still remains a major challenge. A combination of MRSI with parallel imaging has shown promise to reduce the long encoding times and 2D acceleration with a large array coil is expected to provide high acceleration capability. In this work a very high-speed method for 3D-MRSI based on the combination of proton echo planar spectroscopic imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed by constraining the singular value decomposition of the encoding matrix to reduce the effect of low-value and overlapped coil sensitivities. The effects of spectral heterogeneity and discontinuities in coil sensitivity across the spectroscopic voxels were minimized by unaliasing the point spread function. As a result the contamination from extracranial lipids was reduced 1.6-fold on average compared to standard SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 x 32 x 8 spatial matrix using a 32-channel array coil can be accelerated 8-fold (R = 4 x 2) along y-z to achieve a minimum acquisition time of 1 min. Maps of the concentrations of N-acetyl-aspartate, creatine, choline, and glutamate were obtained with moderate reduction in spatial-spectral quality. The short acquisition time makes the method suitable for volumetric metabolite mapping in clinical studies. PMID:17968995

Otazo, Ricardo; Tsai, Shang-Yueh; Lin, Fa-Hsuan; Posse, Stefan

2007-12-01

270

Automatic organ localizations on 3D CT images by using majority-voting of multiple 2D detections based on local binary patterns and Haar-like features  

NASA Astrophysics Data System (ADS)

This paper describes an approach to accomplish the fast and automatic localization of the different inner organ regions on 3D CT scans. The proposed approach combines object detections and the majority voting technique to achieve the robust and quick organ localization. The basic idea of proposed method is to detect a number of 2D partial appearances of a 3D target region on CT images from multiple body directions, on multiple image scales, by using multiple feature spaces, and vote all the 2D detecting results back to the 3D image space to statistically decide one 3D bounding rectangle of the target organ. Ensemble learning was used to train the multiple 2D detectors based on template matching on local binary patterns and Haar-like feature spaces. A collaborative voting was used to decide the corner coordinates of the 3D bounding rectangle of the target organ region based on the coordinate histograms from detection results in three body directions. Since the architecture of the proposed method (multiple independent detections connected to a majority voting) naturally fits the parallel computing paradigm and multi-core CPU hardware, the proposed algorithm was easy to achieve a high computational efficiently for the organ localizations on a whole body CT scan by using general-purpose computers. We applied this approach to localization of 12 kinds of major organ regions independently on 1,300 torso CT scans. In our experiments, we randomly selected 300 CT scans (with human indicated organ and tissue locations) for training, and then, applied the proposed approach with the training results to localize each of the target regions on the other 1,000 CT scans for the performance testing. The experimental results showed the possibility of the proposed approach to automatically locate different kinds of organs on the whole body CT scans.

Zhou, Xiangrong; Yamaguchi, Shoutarou; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi

2013-02-01

271

Left atrial deformation parameters in patients with non-alcoholic fatty liver disease: a 2D speckle tracking imaging study.  

PubMed

The presence of the metabolic syndrome is a strong predictor for the presence of NASH (non-alcoholic steatohepatitis) in patients with NAFLD (non-alcoholic fatty liver disease). In the present study, we assessed LA (left atrial) deformation parameters in patients with NAFLD using 2D-STE (speckle tracking echocardiography) and to investigate if any changes exist between subgroups of the NAFLD. A total of 55 NAFLD patients and 21 healthy controls were included in the study. The diagnosis of NAFLD was based on liver biopsy. After patients were categorized into groups according to histopathological analysis (simple steatosis, borderline NASH, definitive NASH), all patients underwent echocardiography with Doppler examination. In the 2D-STE analysis of the left atrium, LA-Res (peak LA strain during ventricular systole), LA-Pump (peak LA strain during atrial systole), LA-SR(S) (peak LA strain rate during ventricular systole), LA-SR(E) (peak LA strain rate during early diastole) and LA-SR(A) (peak LA strain rate during atrial systole) were obtained. LA-Res, LA-Pump and LA-SR(A) were lower in the NAFLD group than in the control group. LA-Res was found to be significantly lower in NAFLD subgroups compared with healthy subjects (43.914.2 in healthy controls compared with 31.48.3 with simple steatosis, 32.812.8 with borderline NASH and 33.89.0 with definitive NASH). LA-Pump was significantly lower in the NAFLD group (18.23.1 in healthy controls compared with 13.34.7 with borderline NASH and 14.44.7 with definitive NASH). There were significant differences in LA-SR(A) between healthy controls compared with simple steatosis and borderline NASH (-1.560.36 compared with 1.140.38 and 1.240.32 respectively). Correlation analysis showed significant correlation of LA-Res values with E (early diastolic peak velocity)/E(m) (early diastolic mitral annular velocity) ratio (r=-0.50, P?0.001), with LAVI (LA volume index; r=-0.45, P?0.001) and with V(p) (propagation velocity; r=0.39, P?0.001). 2D-STE-based LA deformation parameters are impaired in patients with NAFLD with normal systolic function. Although LA-Res and pump function parameters might be useful in estimating LV (left ventricular) filling pressure in the NAFLD patient group, it could not be used for differentiating the subgroups. PMID:23947743

Kocabay, Gonenc; Karabay, Can Yucel; Colak, Yasar; Oduncu, Vecih; Kalayci, Arzu; Akgun, Taylan; Guler, Ahmet; Kirma, Cevat

2014-02-01

272

Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.  

PubMed

Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

Bohlin, Alexis; Kliewer, Christopher J

2013-06-14

273

Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography  

NASA Astrophysics Data System (ADS)

Three-dimensional (3D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction, by comparing wall motion of the left ventricle under different stages of stress. For quantitative comparison of this motion, it is essential to register the ultrasound data. We propose an intensity based rigid registration method to retrieve two-dimensional (2D) four-chamber (4C), two-chamber, and short-axis planes from the 3D data set acquired in the stress stage, using manually selected 2D planes in the rest stage as reference. The algorithm uses the Nelder-Mead simplex optimization to find the optimal transformation of one uniform scaling, three rotation, and three translation parameters. We compared registration using the SAD, SSD, and NCC metrics, performed on four resolution levels of a Gaussian pyramid. The registration's effectiveness was assessed by comparing the 3D positions of the registered apex and mitral valve midpoints and 4C direction with the manually selected results. The registration was tested on data from 20 patients. Best results were found using the NCC metric on data downsampled with factor two: mean registration errors were 8.1mm, 5.4mm, and 8.0 in the apex position, mitral valve position, and 4C direction respectively. The errors were close to the interobserver (7.1mm, 3.8mm, 7.4) and intraobserver variability (5.2mm, 3.3mm, 7.0), and better than the error before registration (9.4mm, 9.0mm, 9.9). We demonstrated that the registration algorithm visually and quantitatively improves the alignment of rest and stress data sets, performing similar to manual alignment. This will improve automated analysis in 3D stress echocardiography.

Leung, K. Y. Esther; van Stralen, Marijn; Voormolen, Marco M.; van Burken, Gerard; Nemes, Attila; ten Cate, Folkert J.; Geleijnse, Marcel L.; de Jong, Nico; van der Steen, Antonius F. W.; Reiber, Johan H. C.; Bosch, Johan G.

2006-03-01

274

Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization  

PubMed Central

Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells. PMID:24256815

Mattson, Eric C.; Aboualizadeh, Ebrahim; Barabas, Marie E.; Stucky, Cheryl L.; Hirschmugl, Carol J.

2013-01-01

275

Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation  

SciTech Connect

This paper presents a novel instrumentation system for deducing the two-dimensional (2-D) distribution of temperature across a cross section of a furnace fired with pulverized coal. The system consisted of four flame image detectors, a frame-maker, and a microcomputer with a frame-grabber. Four colored images were captured by the four detectors, which were mounted in the four corners of a tangentially fired furnace. A radiation model was established to relate the flame images with the 2-D temperature distribution. A revised Tikhonov regularization method was used to reconstruct the 2-D temperature distribution from the flame radiation images. The experiment was done in a 1025 t/h boiler furnace of a 300-MW power generation unit. The 2-D temperature distribution in 100 discrete meshes in the cross section above the burner zone was deduced continuously using this instrumentation. The experimental results show that the 2-D temperature distribution appears typically to have single-peak shape with temperatures higher in the center and lower near the wall. Results obtained over a range of combustion conditions demonstrated that the average temperature of the cross section changed in direct proportion to the load of the furnace. The method is practically suitable for the on-line monitoring of combustion in a furnace.

Lou, C.; Zhou, H.C. [Huazhong University of Science & Technology, Wuhan (China)

2005-10-01

276

Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis  

NASA Astrophysics Data System (ADS)

Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

2011-03-01

277

Single grating method for low dose 1-D and 2-D phase contrast X-ray imaging  

Microsoft Academic Search

X-ray phase contrast imaging (XPCI) using a single absorption grating and a hybrid semiconductor pixel detector is a newly introduced approach with great potential for application in medicine, biology and material research. In comparison with a conventional grating interferometer technique, which requires a multiple-exposure (phase-stepping) procedure, our method is greatly simplified, because both phase gradient and absorption images are obtained

F. Krejci; J. Jakubek; M. Kroupa

2011-01-01

278

Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration  

NASA Astrophysics Data System (ADS)

Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographic image of food contained on a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image-based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.

Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

2013-10-01

279

Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration  

PubMed Central

Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image. PMID:24223474

Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

2013-01-01

280

Comparison of the effect of simple and complex acquisition trajectories on the 2D SPR and 3D voxelized differences for dedicated breast CT imaging  

NASA Astrophysics Data System (ADS)

The 2D scatter-to-primary (SPR) ratios and 3D voxelized difference volumes were characterized for a cone beam breast CT scanner capable of arbitrary (non-traditional) 3D trajectories. The CT system uses a 30x30cm2 flat panel imager with 197 micron pixellation and a rotating tungsten anode x-ray source with 0.3mm focal spot, with an SID of 70cm. Data were acquired for two cylindrical phantoms (12.5cm and 15cm diameter) filled with three different combinations of water and methanol yielding a range of uniform densities. Projections were acquired with two acquisition trajectories: 1) simple-circular azimuthal orbit with fixed tilt; and 2) saddle orbit following a +/-15 sinusoidal trajectory around the object. Projection data were acquired in 2x2 binned mode. Projections were scatter corrected using a beam stop array method, and the 2D SPR was measured on the projections. The scatter corrected and uncorrected data were then reconstructed individually using an iterative ordered subsets convex algorithm, and the 3D difference volumes were calculated as the absolute difference between the two. Results indicate that the 2D SPR is ~7-15% higher on projections with greatest tilt for the saddle orbit, due to the longer x-ray path length through the volume, compared to the 0 tilt projections. Additionally, the 2D SPR increases with object diameter as well as density. The 3D voxelized difference volumes are an estimate of the scatter contribution to the reconstructed attenuation coefficients on a voxel level. They help visualize minor deficiencies and artifacts in the volumes due to correction methods.

Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

2014-03-01

281

Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions  

NASA Technical Reports Server (NTRS)

A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

Considine, David B.; Douglass, Anne R.

1994-01-01

282

The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) - a novel imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols  

NASA Astrophysics Data System (ADS)

Many relevant processes in tropospheric chemistry take place on rather small scales (e.g., tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established Differential Optical Absorption Spectroscopy (DOAS) method. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we give a technical description of the instrument including its custom-built spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BRomine, Ozone, and Mercury EXperiment (BROMEX) campaign, which was performed 2012 in Barrow (Alaska, USA).

General, S.; Phler, D.; Sihler, H.; Bobrowski, N.; Frie, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.

2014-10-01

283

The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) - a novel Imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols  

NASA Astrophysics Data System (ADS)

Many relevant processes in tropospheric chemistry take place on rather small scales (e.g. tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established DOAS method. The Heidelberg Airborne Imaging Differential Optical Absorption Spectrometer Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we report a technical description of the instrument including its custom build spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BROMEX campaign, which was performed 2012 in Barrow (Alaska, USA).

General, S.; Phler, D.; Sihler, H.; Bobrowski, N.; Frie, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.

2014-03-01

284

How isopolyanions self-assemble and condense into a 2D tungsten oxide crystal: HRTEM imaging of atomic arrangement in an intermediate new hexagonal phase  

SciTech Connect

The structure and structural evolution of tungstic acid solutions, sols and gels are investigated by high-resolution electron microscopy (HRTEM). Acidification of sodium tungstate solutions, through a proton exchange resin, is achieved in a way that ensures homogeneity in size and shape of intermediate polytungstic species. Gelation is shown to involve polycondensation followed by a self-assembling process of polytungstic building blocks leading to sheets with a layered hexagonal structure. Single layers of this new metastable phase are composed of three-, four- and six-membered rings of WO{sub 6} octahedra located in the same plane. This is the first time that a 2D oxide crystal is isolated and observed by direct atomic resolution. Further ageing and structural evolution leading to single sheets of 2D ReO{sub 3}-type structure is directly observed by HRTEM. Based on this atomic level imaging, a model for the formation of the oxide network structure involving a self-assembling process of tritungstic based polymeric chain is proposed. The presence of tritungstic groups and their packing in electrochromic WO{sub 3} films made by different techniques is discussed. - Graphical abstract: From the isopolyanion to the extended bulk tungsten oxide: HRTEM imaging.

Chemseddine, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solarenergieforschung SE4, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: chemseddine@hmi.de; Bloeck, U. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solarenergieforschung SE4, Glienicker Str. 100, 14109 Berlin (Germany)

2008-10-15

285

A frequency-based approach to locate common structure for 2D-3D intensity-based registration of setup images in prostate radiotherapy  

SciTech Connect

In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were {theta}{sub x}:0.18(0.19) deg., {theta}{sub y}:0.04(0.04) deg., {theta}{sub z}:0.04(0.02) deg., t{sub x}:0.14(0.15) mm, t{sub y}:0.09(0.05) mm, and t{sub z}:0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this paper suggest that robust and accurate registration can be achieved with intensity-based methods by focusing on rigid bony structures in the images while diminishing the influence of artifacts with similar frequencies as soft tissue.

Munbodh, Reshma; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Department of Therapeutic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Radiation Physics, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G-2M9 (Canada); Department of Therapeutic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); and Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States)

2007-07-15

286

A frequency-based approach to locate common structure for 2D-3D intensity-based registration of setup images in prostate radiotherapy  

PubMed Central

In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were ?x:0.18(0.19), ?y:0.04(0.04), ?z:0.04(0.02), tx:0.14(0.15) mm, ty:0.09(0.05) mm, and tz: 0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this paper suggest that robust and accurate registration can be achieved with intensity-based methods by focusing on rigid bony structures in the images while diminishing the influence of artifacts with similar frequencies as soft tissue. PMID:17822009

Munbodh, Reshma; Chen, Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

2009-01-01

287

A novel method to acquire 3D data from serial 2D images of a dental cast  

NASA Astrophysics Data System (ADS)

This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

2007-05-01

288

High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images  

SciTech Connect

Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions {approx}16.2 {mu}m). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure changes in regional lung volume at high spatial and temporal resolution during breathing at much lower x-ray dose than would be required using computed tomography.

Leong, Andrew F. T.; Islam, M. Sirajul; Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia); Fouras, Andreas [Division of Biological Engineering, Monash University, Victoria 3800 (Australia); Wallace, Megan J.; Hooper, Stuart B. [Ritchie Centre and Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash University, Victoria 3168 (Australia)

2013-04-15

289

EFFICIENT IMAGE RECONSTRUCTION USING PARTIAL 2D FOURIER TRANSFORM L. Deng, C.-L. Yu, C. Chakrabarti  

E-print Network

-II Pro -100 FPGA and a DDR SDRAM. It can process 512 ? 512 sized Fourier im- age with 128 ? 128 nonzero the implementation of the new reconstruction algorithm on a Xilinx Virtex-II Pro-100 FPGA. For 512 ? 512 natural; image reconstruc- tion; FPGA; row-column decomposition; two dimensional de- composition 1. INTRODUCTION

Kambhampati, Subbarao

290

Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA  

Microsoft Academic Search

The ability to effectively interpret and reconstruct geomorphic environments has been significantly aided by the subsurface imaging capabilities of ground penetrating radar (GPR). The GPR method, which is based on the propagation and reflection of pulsed high frequency electromagnetic energy, provides high resolution (cm to m scale) and shallow subsurface (060 m), near continuous profiles of many coarser-grained deposits (sediments

Harry M Jol; Don C Lawton; Derald G Smith

2003-01-01

291

A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis  

PubMed Central

Background The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. Results We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called RodCellJ, allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. (Continued on next page) (Continued from previous page) Conclusions RodCellJ is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. Availability RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html. PMID:23622681

2013-01-01

292

Localization and quantitative analysis of antigen-antibody binding on 2D substrate using imaging NanoSIMS.  

PubMed

Iron containing-antigen bound specifically to antibody immobilized on a surface is analyzed by nanoscale secondary ion mass spectrometry (NanoSIMS). This technique is well adapted compared with X-ray photoelectron spectroscopy and energy dispersive spectroscopy, which do not allow the detection of iron. The obtained Fe(+) map gives a good representation of the antigen repartition on the surface. NanoSIMS analysis of competition experiments performed with albumin and iron-free antigen are in good accordance with results obtained by a classical fluorescence microscopy approach. These results underline the interest of imaging NanoSIMS as a label-free method, allowing the localization and quantitative analysis of antigen-antibody binding with better spatial resolution than imaging ellipsometry and SPR. PMID:18578503

Dauphas, Stphanie; Delhaye, Thomas; Lavastre, Olivier; Corlu, Anne; Guguen-Guillouzo, Christiane; Ababou-Girard, Soraya; Geneste, Florence

2008-08-01

293

Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II  

SciTech Connect

Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

Crist, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D. [Lawrence Livermore National Lab., CA (United States); Krogh, M. [AlliedSignal FM and T, Kansas City, MO (United States)

1998-11-01

294

Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heatingphantom results  

NASA Astrophysics Data System (ADS)

Minimally invasive therapies (such as radiofrequency ablation) are becoming more commonly used in the United States for the treatment of hepatocellular carcinomas and liver metastases. Unfortunately, these procedures suffer from high recurrence rates of hepatocellular carcinoma (~34-55%) or metastases following ablation therapy. The ability to perform real-time temperature imaging while a patient is undergoing radiofrequency ablation could provide a significant reduction in these recurrence rates. In this paper, we demonstrate the feasibility of ultrasound-based temperature imaging on a tissue-mimicking phantom undergoing radiofrequency heating. Ultrasound echo signals undergo time shifts with increasing temperature, which are tracked using 2D correlation-based speckle tracking methods. Time shifts or displacements in the echo signal are accumulated, and the gradient of these time shifts are related to changes in the temperature of the tissue-mimicking phantom material using a calibration curve generated from experimental data. A tissue-mimicking phantom was developed that can undergo repeated radiofrequency heating procedures. Both sound speed and thermal expansion changes of the tissue-mimicking material were measured experimentally and utilized to generate the calibration curve relating temperature to the displacement gradient. Temperature maps were obtained, and specific regions-of-interest on the temperature maps were compared to invasive temperatures obtained using fiber-optic temperature probes at the same location. Temperature elevation during a radiofrequency ablation procedure on the phantom was successfully tracked to within 0.5 C.

Daniels, M. J.; Varghese, T.; Madsen, E. L.; Zagzebski, J. A.

2007-08-01

295

Reconstruction of 3D lung models from 2D planning data sets for Hodgkin's lymphoma patients using combined deformable image registration and navigator channels  

SciTech Connect

Purpose: Late complications (cardiac toxicities, secondary lung, and breast cancer) remain a significant concern in the radiation treatment of Hodgkin's lymphoma (HL). To address this issue, predictive dose-risk models could potentially be used to estimate radiotherapy-related late toxicities. This study investigates the use of deformable image registration (DIR) and navigator channels (NCs) to reconstruct 3D lung models from 2D radiographic planning images, in order to retrospectively calculate the treatment dose exposure to HL patients treated with 2D planning, which are now experiencing late effects. Methods: Three-dimensional planning CT images of 52 current HL patients were acquired. 12 image sets were used to construct a male and a female population lung model. 23 ''Reference'' images were used to generate lung deformation adaptation templates, constructed by deforming the population model into each patient-specific lung geometry using a biomechanical-based DIR algorithm, MORFEUS. 17 ''Test'' patients were used to test the accuracy of the reconstruction technique by adapting existing templates using 2D digitally reconstructed radiographs. The adaptation process included three steps. First, a Reference patient was matched to a Test patient by thorax measurements. Second, four NCs (small regions of interest) were placed on the lung boundary to calculate 1D differences in lung edges. Third, the Reference lung model was adapted to the Test patient's lung using the 1D edge differences. The Reference-adapted Test model was then compared to the 3D lung contours of the actual Test patient by computing their percentage volume overlap (POL) and Dice coefficient. Results: The average percentage overlapping volumes and Dice coefficient expressed as a percentage between the adapted and actual Test models were found to be 89.2{+-}3.9% (Right lung=88.8%; Left lung=89.6%) and 89.3{+-}2.7% (Right=88.5%; Left=90.2%), respectively. Paired T-tests demonstrated that the volumetric reconstruction method made a statistically significant improvement to the population lung model shape (p<0.05). The error in the results were also comparable to the volume overlap difference observed between inhale and exhale lung volumes during free-breathing respiratory motion (POL:p=0.43; Dice:p=0.20), which implies that the accuracies of the reconstruction method are within breathing constraints and would not be the confining factor in estimating normal tissue dose exposure. Conclusions: The result findings show that the DIR-NC technique can achieve a high degree of reconstruction accuracy, and could be useful in approximating 3D dosimetric representations of historical 2D treatment. In turn, this could provide a better understanding of the biophysical relationship between dose-volume exposure and late term radiotherapy effects.

Ng, Angela; Nguyen, Thao-Nguyen; Moseley, Joanne L.; Hodgson, David C.; Sharpe, Michael B.; Brock, Kristy K. [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

2010-03-15

296

2D soft x-ray system on DIII-D for imaging the magnetic topology in the pedestal region.  

PubMed

A new tangential two-dimensional soft x-ray imaging system (SXRIS) is being designed to examine the edge island structure in the lower X-point region of DIII-D. Plasma shielding and/or amplification of the calculated vacuum islands may play a role in the suppression of edge-localized modes via resonant magnetic perturbations (RMPs). The SXRIS is intended to improve the understanding of three-dimensional (3D) phenomena associated with RMPs. This system utilizes a tangential view with a pinhole imaging system and spectral filtering with beryllium foils. SXR emission is chosen to avoid line radiation and allows suitable signal at the top of a H-mode pedestal where T(e)?1-2?keV. A synthetic diagnostic calculation based on 3D SXR emissivity estimates is used to help assess signal levels and resolution of the design. A signal-to-noise ratio of 10 at 1 cm resolution is expected for the perturbed signals, which are sufficient to resolve most of the predicted vacuum island sizes. PMID:21034061

Shafer, M W; Battaglia, D J; Unterberg, E A; Evans, T E; Hillis, D L; Maingi, R

2010-10-01

297

Stream Temperature Estimation From Thermal Infrared Images  

Microsoft Academic Search

Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in

R. N. Handcock; J. E. Kay; A. Gillespie; N. Naveh; K. A. Cherkauer; S. J. Burges; D. B. Booth

2001-01-01

298

Real-time intensity-based rigid 2d-3d medical image registration using RapidMind Multi-core Development Platform.  

PubMed

In this paper, we present an efficient intensity-based rigid 2D-3D image registration method. We implement the algorithm using the RapidMind Multi-core Development Platform(1) to exploit the highly parallel multi-core architecture of graphics processing units (GPUs). We use a ray casting algorithm to generate the digitally reconstructed radiographs (DRRs) on GPUs and efficiently reduce the complexity of DRR construction. The registration optimization problem is solved by the Gauss-Newton method. To fully exploit the multi-core parallelism, we implement almost the entire registration process in parallel by RapidMind. We also discuss the RapidMind implementation of the major computation steps. Numerical results are presented to demonstrate the efficiency of our method. PMID:19163934

Xu, Lin; Wan, Justin W L

2008-01-01

299

Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique  

PubMed Central

Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3?mm and 0.3 for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6, 81.3, and 102.4, respectively. The pelvis was tilted anteriorly around 4.4 on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4/11.7 and 10.7/10.8, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2/30.7. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056

Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

2014-01-01

300

Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow  

Technology Transfer Automated Retrieval System (TEKTRAN)

With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through...

301

2D-1H proton magnetic resonance spectroscopic imaging study on brain metabolite alterations in patients with diabetic hypertension.  

PubMed

The aim of the present study was to investigate the possible metabolic alterations in the frontal cortex and parietal white matter in patients with diabetic hypertension (DHT) using proton magnetic resonance (MR) spectroscopic imaging. A total of 33DHT patients and 30healthy control subjects aged between 45 and 75 were included in the present study. All subjects were right?handed. The spectroscopy data were collected using a GE Healthcare 1.5T MR scanner. The multi?voxels were located in the semioval center (repetition time/echo time=1,500ms/35ms). The area of interest was 8x10x2cm in volume and contained the two sides of the frontal cortex and the parietal white matter. The spectra data were processed using SAGE software. The ratios of brain metabolite concentrations, particularly for N?acetylaspartate (NAA)/creatine (Cr) and Choline (Cho)/Cr were calculated and analyzed. Statistical analyses were performed using SPSS17.0. The NAA/Cr ratio of the bilateral prefrontal cortex of the DHT group was significantly lower than that of the control group (left t=?7.854, P=0.000 and right t=?5.787, P=0.000), The Cho/Cr ratio was also much lower than the control group (left t=2.422, P=0.024 and right t=2.920, P=0.007). NAA/Cr ratio of the left parietal white matter of the DHT group was extremely lower than that of the control group (t=?4.199, P=0.000). Therefore, DHT may result in metabolic disorders in the frontal cortex and parietal white matter but the metabolic alterations are different in various regions of the brain. The alteration in cerebral metabolism is associated with diabetes and hypertension. The ratios of NAA/Cr and Cho/Cr are potential metabolic markers for the brain damage induced by DHT. PMID:25652580

Cao, Zhen; Ye, Bi-Di; Shen, Zhi-Wei; Cheng, Xiao-Fang; Yang, Zhong-Xian; Liu, Yan-Yan; Wu, Ren-Hua; Geng, Kuan; Xiao, Ye-Yu

2015-06-01

302

Minimum resolvable temperature difference measurements on undersampled imagers  

Microsoft Academic Search

Minimum Resolvable Temperature Difference (MRTD) is the primary measurement of performance for infrared imaging systems. Where Modulation Transfer Function (MTF) is a measurement of resolution and three-dimensional noise (or noise equivalent temperature difference) is a measurement of sensitivity, MRTD combines both measurements into a test of observer visual acuity through the imager. MRTD has been incorrectly applied to undersampled thermal

Ronald G. Driggers; Van A. Hodgkin; Richard H. Vollmerhausen; Patrick O'Shea

2003-01-01

303

Diversity of atrial local Ca2+ signalling: evidence from 2-D confocal imaging in Ca2+-buffered rat atrial myocytes  

PubMed Central

Atrial myocytes, lacking t-tubules, have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with dihydropyridine receptors (DHPRs), and those at the cell interior not associated with DHPRs. We have previously shown that the Ca2+ current (ICa)-gated central Ca2+ release has a fast component that is followed by a slower and delayed rising phase. The mechanisms that regulate the central Ca2+ releases remain poorly understood. The fast central release component is highly resistant to dialysed Ca2+ buffers, while the slower, delayed component is completely suppressed by such exogenous buffers. Here we used dialysis of Ca2+ buffers (EGTA) into voltage-clamped rat atrial myocytes to isolate the fast component of central Ca2+ release and examine its properties using rapid (240 Hz) two-dimensional confocal Ca2+ imaging. We found two populations of rat atrial myocytes with respect to the ratio of central to peripheral Ca2+ release (Rc/p). In one population (group 1, ?60% of cells), Rc/p converged on 0.2, while in another population (group 2, ?40%), Rc/p had a Gaussian distribution with a mean value of 0.625. The fast central release component of group 2 cells appeared to result from in-focus Ca2+ sparks on activation of ICa. In group 1 cells intracellular membranes associated with t-tubular structures were never seen using short exposures to membrane dyes. In most of the group 2 cells, a faint intracellular membrane staining was observed. Quantification of caffeine-releasable Ca2+ pools consistently showed larger central Ca2+ stores in group 2 and larger peripheral stores in group 1 cells. The Rc/p was larger at more positive and negative voltages in group 1 cells. In contrast, in group 2 cells, the Rc/p was constant at all voltages. In group 1 cells the gain of peripheral Ca2+ release sites (?[Ca2+]/ICa) was larger at ?30 than at +20 mV, but significantly dampened at the central sites. On the other hand, the gains of peripheral and central Ca2+ releases in group 2 cells showed no voltage dependence. Surprisingly, the voltage dependence of the fast central release component was bell-shaped and similar to that of ICa in both cell groups. Removal of extracellular Ca2+ or application of Ni2+ (5 mm) suppressed equally ICa and Ca2+ release from the central release sites at +60 mV. Depolarization to +100 mV, where ICa is absent and the Na+Ca2+ exchanger (NCX) acts in reverse mode, did not trigger the fast central Ca2+ releases in either group, but brief reduction of [Na+]o to levels equivalent to [Na+]i facilitated fast peripheral and central Ca2+ releases in group 2 myocytes, but not in group 1 myocytes. In group 2 cells, long-lasting (> 1 min) exposures to caffeine (10 mm) or ryanodine (20 ?m) significantly suppressed ICa-triggered central and peripheral Ca2+ releases. Our data suggest significant diversity of local Ca2+ signalling in rat atrial myocytes. In one group, ICa-triggered peripheral Ca2+ release propagates into the interior triggering central Ca2+ release with significant delay. In a second group of myocytes ICa triggers a significant number of central sites as rapidly and effectively as the peripheral sites, thereby producing more synchronized Ca2+ releases throughout the myocytes. The possible presence of vestigial t-tubules and larger Ca2+ content of central sarcoplasmic reticulum (SR) in group 2 cells may be responsible for the rapid and strong activation of central release of Ca2+ in this subset of atrial myocytes. PMID:16020459

Woo, Sun-Hee; Cleemann, Lars; Morad, Martin

2005-01-01

304

Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone  

SciTech Connect

In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

KEARNEY,SEAN P.; REYES,FELIPE V.

2000-12-13

305

An analog-digital hybrid RX beamformer chip with non-uniform sampling for ultrasound medical imaging with 2D CMUT array.  

PubMed

To reduce the memory area, a two-stage RX beamformer (BF) chip with 64 channels is proposed for the ultrasound medical imaging with a 2D CMUT array. The chip retrieved successfully two B-mode phantom images with a steering angle from -45 () to +45 (), the maximum delay range of 8 ?s, and the delay resolution of 6.25 ns. An analog-digital hybrid BF (HBF) is chosen for the proposed chip to utilize the easy beamforming operation in the digital domain and also to reduce chip area by minimizing the number of ADCs. The chip consists of eight analog beamformers (ABF) for the 1st-stage and a digital beamformer (DBF) for the 2nd-stage. The two-stage architecture reduces the memory area of both ABF and DBF by around four times. The DBF circuit is divided into three steps to further reduce the digital FIFO memory area by around twice. Coupled with the non-uniform sampling scheme, the proposed two-stage HBF chip reduces the total memory area by around 40 times compared to the uniform-sampling single-stage BF chip. The chip fabricated in a 0.13- ?m CMOS process occupies the area of 19.4 mm(2), and dissipates 1.14 W with the analog supply of 3.3 V and the digital supply of 1.2 V. PMID:25532209

Um, Ji-Yong; Kim, Yoon-Jee; Cho, Seong-Eun; Chae, Min-Kyun; Song, Jongkeun; Kim, Baehyung; Lee, Seunghun; Bang, Jihoon; Kim, Youngil; Cho, Kyungil; Kim, Byungsub; Sim, Jae-Yoon; Park, Hong-June

2014-12-01

306

Rotational temperature measurements of excited and ground states of C2(d 3Pig-a 3Piu) transition in a H2\\/CH4 915 MHz microwave pulsed plasma  

Microsoft Academic Search

The rotational temperature of a low energy (0.09 eV), C2 Swan band state (a 3Piu), obtained by white light absorption, is compared to the rotational temperatures of three electronic excited states [C2(d 3Pig),CH(A2Delta) and CN(B 2Sigma+)] in a high power, H2\\/CH4 microwave plasma used for diamond deposition. All temperatures are measured at 50 mbar, and both continuous (as a function

Xavier Duten; Antoine Rousseau; Alix Gicquel; Philippe Leprince

1999-01-01

307

HIGH TIME-RESOLVED, 2-D IMAGING OF TYPE-1 ELMs IN DIII-D USING A IMAGE-INTENSIFIED CID CAMERA  

SciTech Connect

The evolution of 2-D emission profiles of D{sub {alpha}} and C III during type-I ELMs has been investigated in DIII-D using a tangentially viewing gated, intensified charge-injected device (CID) camera. The measured CIII emission profiles indicate transient inner leg attachment with the arrival of the ELM heat pulse. The measured D{sub {alpha}} emission profiles during an ELM cycle show enhanced deuterium recycling during the deposition of the ELM particle pulse at the target, which suggests the detachment of the divertor plasma from the target plates. Measurements taken in ELMy H-mode discharges at densities of 50% and 90% of the Greenwald density limit are compared utilizing the CID camera system and a comprehensive set of other divertor diagnostics. An ELM model based on fluid and PIC simulations is used to discuss the observation on the response of the divertor plasma to the ELM heat and particle pulse.

GROTH, M.; FENSTERMACHER, M.E.; BOEDO, J.A.; BROOKS,N.H.; GRAY, D.S.; LASNIER, C.J.; LEONARD, A.W.; PORTER, G.D.; WATKINS, J.G.

2002-06-01

308

Temperature imaging and image processing in the steel industry  

Microsoft Academic Search

Our aim is twofold: to present our temperature measurement system based on CCD technology, which gives a linear response versus temperature, and to display two industrial applications in which our systems has been involved to optimize and characterize the process. We present a short summary dealing with temperature evaluations from radiation measurements. We consider especially the problems of the surroundings,

Fabrice Meriaudeau; Eric Renier; Frederic Truchetet

1996-01-01

309

A novel material detection algorithm based on 2D GMM-based power density function and image detail addition scheme in dual energy X-ray images.  

PubMed

Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy. PMID:22635176

Pourghassem, Hossein

2012-01-01

310

Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials  

NASA Astrophysics Data System (ADS)

Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons, which is particularly useful for identifying furan and arene rings. The Cdbnd O carbons, whose chemical shifts vary strongly (between 212 and 165 ppm) and systematically depend on their two bonding partners, show particularly informative cross peaks, given that one bonding partner is defined by the other frequency coordinate of the cross peak. The new techniques and the information content of the resulting spectra are validated on sulfuric-acid treated low-temperature carbon materials and on products of the Maillard reaction. The crucial need for spectral editing for correct peak assignment is demonstrated in an example.

Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

2013-09-01

311

Detection of ash fusion temperatures based on the image processing  

NASA Astrophysics Data System (ADS)

The detection of ash fusion temperatures is important in the research of coal characteristics. The prevalent method is to build up ash cone with some dimension and detect the characteristic temperatures according to the morphological change. However, conditional detection work is not accurate and brings high intensity of labor as a result of both visualization and real-time observation. According to the insufficiency of conventional method, a new method to determine ash fusion temperatures with image processing techniques is introduced in this paper. Seven techniques (image cutting, image sharpening, edge picking, open operation, dilate operation, close operation, geometrical property extraction) are used in image processing program. The processing results show that image sharpening can intensify the outline of ash cone; Prewitt operator may extract the edge well among many operators; mathematical morphology of image can filter noise effectively while filling up the crack brought by filtration, which is useful for further disposal; characteristic temperatures of ash fusion temperatures can be measured by depth-to-width ratio. Ash fusion temperatures derived from this method match normal values well, which proves that this method is feasible in detection of ash fusion temperatures.

Li, Peisheng; Yue, Yanan; Hu, Yi; Li, Jie; Yu, Wan; Yang, Jun; Hu, Niansu; Yang, Guolu

2007-11-01

312

JPEG2000 3D compression vs. 2D compression: an assessment of artifact amount and computing time in compressing thin-section abdomen CT images.  

PubMed

To assess the advantages of the Joint Photographic Experts Group (JPEG)2000 3D (part 2) over JPEG2000 in compressing thin-section abdomen CT data sets, 60 thin-section (0.67 mm) scans from 35 males and 25 females, ranging from 23 to 95 years of age (mean, 58 years), were compressed reversibly (as a negative control) and irreversibly to 4:1, 6:1, 8:1, 10:1, and 12:1 using JPEG2000 3D and JPEG2000 algorithms. Encoding and decoding times and peak signal-to-noise ratios (PSNRs) were measured. For 60 (one image per scan) representative sections containing abnormalities, three radiologists independently compared original and compressed images and graded compression artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). According to pooled radiologists' responses, the range of visually lossless threshold (VLT, the highest compression ratio at which a compressed image is indistinguishable from its original) was determined as one of <4:1, 4:1-6:1, 6:1-8:1, 8:1-10:1, 10:1-12:1, and >12:1. Wilcoxon signed rank tests and exact tests for paired proportions were used for the comparisons between the two compressions. At each irreversible compression ratio, compared to JPEG2000, JPEG2000 3D required two- or threefold greater computing times (p < 0.001) and introduced less artifacts in terms of PSNR (p <0.001) and the grade (p < 0.02 at 6:1 or higher) and the presence of perceived artifacts (p <0.008, at 6:1 for all readers and at 8:1 for two readers). According to PSNR and readers' responses, 6:1 and 8:1 JPEG2000 3D compressions showed more artifacts than 4:1 and 6:1 JPEG2000 compressions, respectively, and 10:1 and 12:1 JPEG2000 3D compressions showed similar artifacts to those of 8:1 and 10:1 JPEG2000 compressions, respectively. The determined VLT range was higher for JPEG2000 3D than for JPEG2000 (p < 0.001): the 3D compression showed the VLT ranges of 4:1-6:1, 6:1-8:1, and 8:1-10:1 for 24 (40%), 30 (50%), and 6 (10%) of the 60 original images, respectively, while the 2D compression showed the VLT ranges of <4:1, 4:1-6:1, and 6:1-8:1 for 1 (1.7%), 40 (66.7%), and 19 (31.6%) images, respectively. Compared to JPEG2000, JPEG2000 3D increased the VLT range in 23 of the 60 original images by one (n=22) or two ranges (n=1), while the remaining 37 images had the same VLT range between the two compressions. In conclusion, compared to JPEG2000 compression, JPEG2000 3D compression yields less artifacts in compressing thin-section abdomen CT images but requires significantly greater computing times. For the tested data set compressed to the range from 4:1 to 12:1, JPEG2000 3D could increase compression level reasonably (by 2 or less in terms of compression ratio) compared to JPEG2000 for the same amount of artifacts. PMID:19378744

Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Richter, Thomas; Kang, Heung-Sik; Kim, So Yeon; Kim, Young Hoon; Seo, Jinwook

2009-03-01

313

Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins.  

PubMed

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). PMID:21305128

Becker, J Susanne; Lobinski, Ryszard; Becker, J Sabine

2009-01-01

314

Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2-D time-lapse surface electrical resistivity tomography  

NASA Astrophysics Data System (ADS)

The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper, we use 2-D surface-based time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river water during high stage conditions. We inverted approximately 1200 data sets (400 per line over three lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. To invert the data, we use an image differencing approach that does not require regularization in the time dimension, enabling the inversion to accommodate the sharp, time varying contrasts in conductivity imposed by the moving water table. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal nonuniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity "break through" curves and longer river water residence times.

Wallin, E. L.; Johnson, T. C.; Greenwood, W. J.; Zachara, J. M.

2013-03-01

315

2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cdiz, South Spain).  

NASA Astrophysics Data System (ADS)

The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects ACI2008-0276 (USAL), CGL08-03998BTE (USAL), CGL08-04000BTE (MNCN, CSIC)

Silva, Pablo G.

2010-05-01

316

lEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 50, NO. 11, NOVEMBER 2003 1581 Volumetric Ultrasound Imaging Using 2-D  

E-print Network

bonded onto a glass fanout chip. This chip provides individual leads from a central 16 X 16-element provided using through-wafer vias, and flip-chip bond- ing can be used to integrate these dense 2-D arrays-element 2-D C M U T array with through-wafer via interconnects and a 420-pm element pitch

Khuri-Yakub, Butrus T. "Pierre"

317

Multimodal evaluation of 2-D and 3-D ultrasound, computed tomography and magnetic resonance imaging in measurements of the thyroid volume using universally applicable cross-sectional imaging software: a phantom study.  

PubMed

A precise estimate of thyroid volume is necessary for making adequate therapeutic decisions and planning, as well as for monitoring therapy response. The goal of this study was to compare the precision of different volumetry methods. Thyroid-shaped phantoms were subjected to volumetry via 2-D and 3-D ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI). The 3-D US scans were performed using sensor navigation and mechanical sweeping methods. Volumetry calculation ensued with the conventional ellipsoid model and the manual tracing method. The study confirmed the superiority of manual tracing with CT and MRI volumetry of the thyroid, but extended this knowledge also to the superiority of the 3-D US method, regardless of whether sensor navigation or mechanical sweeping is used. A novel aspect was successful use of the same universally applicable cross-imaging software for all modalities. PMID:24768486

Freesmeyer, Martin; Wiegand, Steffen; Schierz, Jan-Henning; Winkens, Thomas; Licht, Katharina

2014-07-01

318

Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia  

Microsoft Academic Search

The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed

Lifeng Luo; Alan Robock; Konstantin Y. Vinnikov; C. Adam Schlosser; Andrew G. Slater; Aaron Boone; Harald Braden; Peter Cox; Patricia de Rosnay; Robert E. Dickinson; Yongjiu Dai; Qingyun Duan; Pierre Etchevers; Ann Henderson-Sellers; Nicola Gedney; Yevgeniy M. Gusev; Florence Habets; Jinwon Kim; Eva Kowalczyk; Kenneth Mitchell; Olga N. Nasonova; Joel Noilhan; Andrew J. Pitman; John Schaake; Andrey B. Shmakin; Tatiana G. Smirnova; Peter Wetzel; Yongkang Xue; Zong-Liang Yang; Qing-Cun Zeng

2003-01-01

319

Imaging the earth's magnetosphere - Effects of plasma flow and temperature  

NASA Technical Reports Server (NTRS)

The effects of Doppler shifting on the line centers of the magnetospheric O(+) cross section are investigated, and the resulting structure of the scattering rate as a function of bulk density is explained. Whereas the Doppler shifting frequently results in a decrease of the scattering rate, it is demonstrated that for certain drift speeds the overlap of the cross section and the solar intensity profile can lead to an increased rate, thus enhancing the relative brightness of the image above that obtained when v(p) is zero. Simulated images of the magnetosphere are obtained which are used to show quantitively how the magnetospheric image responds to variations in plasma drift speed and temperature. Changes in the brightness of the magnetospheric images also depend on the variability of the solar flux at 83.4 nm. In regions where there are plasma drifts, the brightness in the image is governed by the structure of the scattering rate, assuming a fixed temperature.

Garrido, D. E.; Smith, R. W.; Swift, D. S.; Akasofu, S.-I.

1991-01-01

320

Imaging Transverse Isotropic Properties of Muscle by Monitoring Acoustic Radiation Force Induced Shear Waves using a 2D Matrix Ultrasound Array  

PubMed Central

A 2D matrix ultrasound array is used to monitor acoustic radiation force impulse (ARFI) induced shear wave propagation in 3D in excised canine muscle. From a single acquisition, both the shear wave phase and group velocity can be calculated to estimate the shear wave speed (SWS) along and across the fibers, as well as the fiber orientation in 3D. The true fiber orientation found using the 3D Radon Transform on B-mode volumes of the muscle was used to verify the fiber direction estimated from shear wave data. For the simplified imaging case when the ARFI push can be oriented perpendicular to the fibers, the error in estimating the fiber orientation using phase and group velocity measurements was 3.5 2.6 and 3.4 1.4 (mean standard deviation), respectively, over six acquisitions in different muscle samples. For the more general case when the push is oblique to the fibers, the angle between the push and the fibers is found using the dominant orientation of the shear wave displacement magnitude. In 30 acquisitions on six different muscle samples with oblique push angles up to 40, the error in the estimated fiber orientation using phase and group velocity measurements was 5.42.9 and 5.33.2, respectively, after estimating and accounting for the additional unknown push angle. Either the phase or group velocity measurements can be used to estimate fiber orientation and SWS along and across the fibers. Although it is possible to perform these measurements when the push is not perpendicular to the fibers, highly oblique push angles induce lower shear wave amplitudes which can cause inaccurate SWS measurements. PMID:23686942

Wang, Michael; Byram, Brett; Palmeri, Mark; Rouze, Ned; Nightingale, Kathryn

2013-01-01

321

A comparative study of DIGNET, average, complete, single hierarchical and k-means clustering algorithms in 2D face image recognition  

NASA Astrophysics Data System (ADS)

The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test ? coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.

Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

2014-06-01

322

CSY3019 -Graphics Programming Assignment 1: Development of 2D/3D graphics software: Java 2D (50%)  

E-print Network

CSY3019 - Graphics Programming Assignment 1: Development of 2D/3D graphics software: Java 2D (50 Office). Brief: Produce a technical report and accompanying application using Java 2D. The Java Swing application is to include a Java 2D graphical representation of the instrument panel from a car. An image

Hill, Gary

323

CSY3019 -Graphics Programming Assignment 1: Development of 2D/3D graphics software: Java 2D (50%)  

E-print Network

CSY3019 - Graphics Programming Assignment 1: Development of 2D/3D graphics software: Java 2D (50 Office). Brief: Produce a technical report and accompanying application using Java 2D. The Java Swing application is to include a Java 2D graphical representation of a disc rotor. A partial image of the disc

Hill, Gary

324

Flexible hollow-fiber bundle for body temperature imaging  

NASA Astrophysics Data System (ADS)

For infrared thermal imaging of body temperature, a flexible and coherent bundle of hollow optical fibers was fabricated. Differences in the transmission efficiency among the fibers were numerically compensated to obtain high temperature resolution of 1C for measuring body temperature. In a lens system with 10-fold magnification and hollow fibers of 320- ?m inner diameter, the spatial resolution is around 3 mm. The hollow-fiber bundle enables observation of the surface temperature of inner organs and blood flow of the surfaces when the bundle is introduced into the human body with an endoscope.

Matsuura, Yuji; Naito, Keisuke

2011-03-01

325

A Method to Convert MRI Images of Temperature Change Into Images of Absolute Temperature in Solid Tumors  

PubMed Central

Purpose During hyperthermia (HT), the therapeutic response of tumors varies substantially within the target temperature range (3943C). Current thermometry methods are either invasive or measure only temperature change, which limits the ability to study tissue responses to HT. This study combines manganese-containing low-temperature sensitive liposomes (Mn-LTSL) with proton resonance frequency shift (PRFS) thermometry to measure absolute temperature in tumors with high spatial and temporal resolution using MRI. Methods Liposomes were loaded with 300mM MnSO4. The phase transition temperature (Tm) of Mn-LTSL samples was measured by differential scanning calorimetry (DSC). The release of manganese from Mn-LTSL in saline was characterized with inductively-coupled plasma atomic emission spectroscopy. A 2T GE small animal scanner was used to acquire dynamic T1-weighted images and temperature change images of Mn-LTSL in saline phantoms and fibrosarcoma-bearing Fisher 344 rats receiving hyperthermia after Mn-LTSL injection. Results The Tm of Mn-LTSL in rat blood was 42.9 0.2 C (DSC). For Mn-LTSL samples (0.06mM 0.5mM Mn2+ in saline) heated monotonically from 30C to 50C, a peak in the rate of MRI signal enhancement occurred at 43.1 0.3 C. The same peak in signal enhancement rate was observed during heating of fibrosarcoma tumors (N=3) after injection of Mn-LTSL, and the peak was used to convert temperature change images into absolute temperature. Accuracies of calibrated temperature measurements were in the range 0.9 1.8C. Conclusion The release of Mn2+ from Mn-LTSL affects the rate of MR signal enhancement which enables conversion of MRI-based temperature change images to absolute temperature. PMID:23957326

Davis, Ryan M.; Viglianti, Benjamin L.; Yarmolenko, Pavel; Park, Ji-Young; Stauffer, Paul; Needham, David; Dewhirst, Mark W.

2013-01-01

326

Ultralow-Dose CT of the Craniofacial Bone for Navigated Surgery Using Adaptive Statistical Iterative Reconstruction and Model-Based Iterative Reconstruction: 2D and 3D Image Quality.  

PubMed

OBJECTIVE. The purpose of this article is to evaluate 2D and 3D image quality of high-resolution ultralow-dose CT images of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard filtered backprojection (FBP). MATERIALS AND METHODS. A formalin-fixed human cadaver head was scanned using a clinical reference protocol at a CT dose index volume of 30.48 mGy and a series of five ultralow-dose protocols at 3.48, 2.19, 0.82, 0.44, and 0.22 mGy using FBP and ASIR at 50% (ASIR-50), ASIR at 100% (ASIR-100), and MBIR. Blinded 2D axial and 3D volume-rendered images were compared with each other by three readers using top-down scoring. Scores were analyzed per protocol or dose and reconstruction. All images were compared with the FBP reference at 30.48 mGy. A nonparametric Mann-Whitney U test was used. Statistical significance was set at p < 0.05. RESULTS. For 2D images, the FBP reference at 30.48 mGy did not statistically significantly differ from ASIR-100 at 3.48 mGy, ASIR-100 at 2.19 mGy, and MBIR at 0.82 mGy. MBIR at 2.19 and 3.48 mGy scored statistically significantly better than the FBP reference (p = 0.032 and 0.001, respectively). For 3D images, the FBP reference at 30.48 mGy did not statistically significantly differ from all reconstructions at 3.48 mGy; FBP and ASIR-100 at 2.19 mGy; FBP, ASIR-100, and MBIR at 0.82 mGy; MBIR at 0.44 mGy; and MBIR at 0.22 mGy. CONCLUSION. MBIR (2D and 3D) and ASIR-100 (2D) may significantly improve subjective image quality of ultralow-dose images and may allow more than 90% dose reductions. PMID:25714286

Widmann, Gerlig; Schullian, Peter; Gassner, Eva-Maria; Hoermann, Romed; Bale, Reto; Puelacher, Wolfgang

2015-03-01

327

Please cite this article in press as: C. Zohios, et al., Geometrical methods for level set based abdominal aortic aneurysm thrombus and outer wall 2D image segmentation, Comput. Methods Programs Biomed. (2011), doi:10.1016/j.cmpb.2011.06.009  

E-print Network

abdominal aortic aneurysm thrombus and outer wall 2D image segmentation, Comput. Methods Programs Biomed.intl.elsevierhealth.com/journals/cmpb Geometrical methods for level set based abdominal aortic aneurysm thrombus and outer wall 2D image form 9 December 2010 Accepted 28 June 2011 Keywords: Abdominal aortic aneurysm Level Set Methods

Papaharilaou, Yannis

2011-01-01

328

Temperature profile of the infrared image Heat exchange between  

E-print Network

T Temperature profile of the infrared image Heat exchange between atmosphere and ocean References part at high frequencies delivers the exchange time. Cool skin of the ocean the net heat flux between gas exchange and wind speed over the ocean, J. Geophys. Res. 97, 7373-7381, 1992, Nightingale, P

Jaehne, Bernd

329

Three?Dimensional Echocardiography and 2D?3D Speckle?Tracking Imaging in Chronic Pulmonary Hypertension: Diagnostic Accuracy in Detecting Hemodynamic Signs of Right Ventricular (RV) Failure  

PubMed Central

Background Our aim was to compare three?dimensional (3D) and 2D and 3D speckle?tracking (2D?STE, 3D?STE) echocardiographic parameters with conventional right ventricular (RV) indexes in patients with chronic pulmonary hypertension (PH), and investigate whether these techniques could result in better correlation with hemodynamic variables indicative of heart failure. Methods and Results Seventy?three adult patients (mean age, 5313 years; 44% male) with chronic PH of different etiologies were studied by echocardiography and cardiac catheterization (25 precapillary PH from pulmonary arterial hypertension, 23 obstructive pulmonary heart disease, and 23 postcapillary PH from mitral regurgitation). Thirty healthy subjects (mean age, 5415 years; 43% male) served as controls. Standard 2D measurements (RVfractional area changetricuspid annular plane systolic excursion) and mitral and tricuspid tissue Doppler annular velocities were obtained. RV 3D volumes and global and regional ejection fraction (3D?RVEF) were determined. RV strains were calculated by 2D?STE and 3D?STE. RV 3D global?free?wall longitudinal strain (3DGFW?RVLS), 2D global?free?wall longitudinal strain (GFW?RVLS), apical?free?wall longitudinal strain, basal?free?wall longitudinal strain, and 3D?RVEF were lower in patients with precapillary PH (P<0.0001) and postcapillary PH (P<0.01) compared to controls. 3DGFW?RVLS (hazard ratio 4.6, 95% CI 2.79 to 8.38, P=0.004) and 3D?RVEF (hazard ratio 5.3, 95% CI 2.85 to 9.89, P=0.002) were independent predictors of mortality. Receiver operating characteristic curves showed that the thresholds offering an adequate compromise between sensitivity and specificity for detecting hemodynamic signs of RV failure were 39% for 3D?RVEF (AUC 0.89), ?17% for 3DGFW?RVLS (AUC 0.88), ?18% for GFW?RVLS (AUC 0.88), ?16% for apical?free?wall longitudinal strain (AUC 0.85), 16 mm for tricuspid annular plane systolic excursion (AUC 0.67), and 38% for RV?FAC (AUC 0.62). Conclusions In chronic PH, 3D, 2D?STE and 3D?STE parameters indicate global and regional RV dysfunction that is associated with RV failure hemodynamics better than conventional echo indices. PMID:25792128

Vitarelli, Antonio; Mangieri, Enrico; Terzano, Claudio; Gaudio, Carlo; Salsano, Felice; Rosato, Edoardo; Capotosto, Lidia; D'Orazio, Simona; Azzano, Alessia; Truscelli, Giovanni; Cocco, Nino; Ashurov, Rasul

2015-01-01

330

Rate coefficients for the endothermic reactions C+(^2P)+H2(D2)?CH^+(CD^+)+H(D) as functions of temperature from 4001300 K  

E-print Network

We have measured the bimolecular rate coefficients for the reactions of C+(2P) with H2 and D2 as functions of temperature from 400 to 1300 K using a high temperatureflowing afterglow apparatus. The temperature dependences of these rate coefficients...

Hierl, Peter M.; Morris, Robert A.; Viggiano, A. A.

1997-03-20

331

Imaging of the surface resistance of an SRF cavity by low-temperature laser scanning microscopy  

SciTech Connect

Temperature mapping of the outer surface of a superconducting radio-frequency cavity is a technique that is often used to identify lossy areas on the cavity surface. In this contribution, we present 2-D images of the superconducting state surface resistance R{sub s} of the inner surface of a superconducting radio-frequency (SRF) cavity obtained by low-temperature laser scanning microscopy. This technique, which is applied for the first time to study lossy regions in an operating SRF cavity, allows identifying 'hotspots' with about one order of magnitude better spatial resolution ( ~2 mm) than by thermometry. The R{sub s}-resolution is of the order of 1 {micro}{Ohm} at 3.3 GHz. Surface resistance maps with different laser power and optical images of the cavity surface are discussed in this contribution. It is also shown that the thermal gradient on the niobium surface created by the laser beam can move some of the hotspots, which are identified as locations of trapped bundle of fluxoids. The prospects for this microscope to identify defects that limit the performance of SRF cavities will also be discussed.

G. Ciovati, S.M. Anlage, A.V. Gurevich

2013-06-01

332

Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature.  

PubMed

We present results of 2D real-time imaging of terahertz (THz) beam generated by a photoconductive antenna driven by a femtosecond oscillator. The detector, operating at room temperature, is a 320 x 240 array of antenna-coupled microbolometers with integrated CMOS read-out electronics delivering 25 images per second. High quality images of broadband THz beams covering the 0.1-2 THz range are recorded while maintaining a signal-to-noise ratio of 10 for detected THz power as low as 25 nW. The compactness of the easy-to-use uncooled camera makes it very useful for the alignment of systems such as THz time-domain spectrometers and for the characterization of emitters, optics and other components. PMID:23482016

Oden, Jonathan; Meilhan, Jrome; Lalanne-Dera, Jrmy; Roux, Jean-Franois; Garet, Frdric; Coutaz, Jean-Louis; Simoens, Franois

2013-02-25

333

Meniscal Calcifications: Morphologic and Quantitative Evaluation by using 2D Inversion-Recovery Ultrashort Echo Time and 3D Ultrashort Echo Time 3.0-T MR Imaging TechniquesFeasibility Study  

PubMed Central

Purpose: To assess the ability of ultrashort echo time (UTE) magnetic resonance (MR) imaging techniques to enable morphologic assessment of different types of meniscal calcifications, to compare these sequences with standard clinical sequences, and to perform T2* measurements of meniscal calcifications. Materials and Methods: This study was exempted by the institutional review board, and informed consent was not required. Ten human cadaveric menisci were imaged with high-spatial-resolution radiography and 3.0-T MR imaging by using morphologic (T1-weighted fast spin-echo [FSE], T2-weighted FSE, proton density [PD]-weighted FSE, two-dimensional [2D] fast spoiled gradient-echo [FSPGR], three-dimensional [3D] FSPGR, and 3D UTE) and quantitative (2D inversion-recovery [IR] UTE and 3D UTE) sequences. The menisci were divided into thirds for regional analysis. Morphologic assessment was performed with MR imaging; MR imaging findings were correlated with radiographs. Calcifications were classified as punctate, linear, or globular. T2* measurements were performed by manual placement of regions of interest (ROIs) in calcifications and by automatically creating ROIs in the surrounding tissues. Mixed-effects linear regression was used to determine variations in T2* as a function of region, morphology, and tissue type. Results: The two globular calcifications were visualized with all sequences. For punctate (n = 21) and linear (n = 21) calcifications, respectively, visibility rates were as follows: 9.5% for both with the T1-weighted FSE sequence, 0% for both with the T2-weighted FSE sequence, 19.0% and 23.8% with the PD-weighted FSE sequence, 0% for both with the 2D IR UTE sequence, 100% for both with the 3D UTE sequence, and 100% for both with the 3D FSPGR sequence. T2* values were significantly lower for calcifications than for the surrounding meniscal tissue (P < .001). There was a trend of globular calcifications having lower T2* values than other morphologies (P = .08). With the 2D IR UTE technique, the T2* of the globular calcifications tended to be lower than with the 3D UTE technique (0.130.16 vs 1.323.03 msec) (P = .14, analysis of variance). Conclusion: UTE MR imaging sequences may allow morphologic as well as quantitative evaluation of meniscal calcifications. RSNA, 2012 PMID:22723564

Omoumi, Patrick; Bae, Won C.; Du, Jiang; Diaz, Eric; Statum, Sheronda; Bydder, Graeme M.

2012-01-01

334

Microwave Imager Measures Sea Surface Temperature Through Clouds  

NASA Technical Reports Server (NTRS)

This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake which might last as long as two weeks. Forecasters can quantify the difference in surface temperatures between this footprint and the surrounding temperatures and use that information to better predict storm intensity. If another storm intersects with this cold water trail, it is likely to lose significant strength due to the fact that the colder water does not contain as much potential energy as warm water. TRMM Fact Sheet Predicting Hurricane Intensity Far from Land Remote Sensing Systems Image courtesy TRMM Project, Remote Sensing Systems, and Scientific Visualization Studio, NASA Goddard Space Flight Center

2002-01-01

335

Automatic multimodal 2D/3D image fusion of ultrasound computer tomography and x-ray mammography for breast cancer diagnosis  

NASA Astrophysics Data System (ADS)

Breast cancer is the most common cancer among women. The established screening method to detect breast cancer in an early state is X-ray mammography. However, X-ray frequently provides limited contrast of tumors located within glandular tissue. A new imaging approach is Ultrasound Computer Tomography generating threedimensional volumes of the breast. Three different images are available: reflectivity, attenuation and speed of sound. The correlation of USCT volumes with X-ray mammograms is of interest for evaluation of the new imaging modality as well as for a multimodal diagnosis. Yet, both modalities differ in image dimensionality, patient positioning and deformation state of the breast. In earlier work we proposed a methodology based on Finite Element Method to register speed of sound images with the according mammogram. In this work, we enhanced the methodology to register all three image types provided by USCT. Furthermore, the methodology is now completely automated using image similarity measures to estimate rotations in datasets. A fusion methodology is proposed which combines the information of the three USCT image types with the X-ray mammogram via semitransparent overlay images. The evaluation was done using 13 datasets from a clinical study. The registration accuracy was measured by the displacement of the center of a lesion marked in both modalities. Using the automated rotation estimation, a mean displacement of 10.4 mm was achieved. Due to the clinically relevant registration accuracy, the methodology provides a basis for evaluation of the new imaging device USCT as well as for multimodal diagnosis.

Hopp, Torsten; Duric, Neb; Ruiter, Nicole V.

2012-03-01

336

Luminescence imaging for aerodynamic temperature and pressure measurements  

SciTech Connect

A luminescent temperature sensitive paint containing the molecule rhodamine B base (rhBb) is described whose emission intensity can be monitored by video camera to produce qualitative and quantitative two dimensional surface temperature maps. This paint was designed for use with the pressure sensitive paint containing platinum octaethylporphyrin (PtOEP), but is also a useful tool when used alone in the measurement of heat flow, boundary layer transition, and quantitative surface temperature during wind tunnel studies. The ability of the rhBb paint to produce a continuous temperature map makes it possible to locate structures in the temperature field on an airfoil that are otherwise undetected by surface mounted thermocouples spaced a finite distance apart. A dual temperature/pressure sensitive paint was investigated with both the rhBb and PtOEP dyes incorporated into the silicone polymer paint base of the pressure sensor. Photodegradation and batch variations in the polymer were found to compromise the calibration parameters of the PtOEP paint and therefore the accuracy of pressure predictions. Suggestions are made for improving the prediction ability of the paint. The molecule europium(III) thenoyltrifluoroacetonate (EuTTA) is also discussed as a temperature sensor for a two layer temperature/pressure paint. EuTTA can not be directly incorporated into the silicone paint base of the PtOEP paint (as the rhBp paint can), but performs well in non-oxygenpermeable coatings. Benefits of the EuTTA temperature paint include: (1) decreased photodegradation, (2) very bright luminescence intensity, and (3) long luminescent lifetime (several hundred microseconds). The long lifetime facilitates lifetime imaging, a technique currently under development as an alternative detection method where luminescent lifetimes rather than emission intensity are related to temperature and pressure.

Gallery, J.M.

1993-01-01

337

Terahertz imaging of excised oral cancer at frozen temperature  

PubMed Central

The feasibility of terahertz (THz) imaging at frozen temperature for the clinical application of oral cancer detection was investigated by analyzing seven oral tissues resected from four patients. The size, shape, and internal position of the oral cancers were mapped by THz radiation in the frequency range of 0.21.2 THz at ?20 C and 20 C, and compared with those identified in the histological examination. THz imaging of frozen tissue was found to offer greater sensitivity in distinguishing cancerous areas from surrounding tissue and a larger THz-frequency spectral difference between the oral cancer and normal mucosa than room-temperature THz imaging. A cancerous tumor hidden inside tissue was also detected using this method by observing the THz temporal domain waveform. The histological analysis showed that these findings resulted from cell structure deformations involving the invasion of oral tumor and neoplastic transformations of mucous cells. Therefore, a cytological approach using THz radiation at a frozen temperature might be applied to detect oral cancer. PMID:24010003

Sim, Yookyeong Carolyn; Park, Jae Yeon; Ahn, Kang-Min; Park, Chansik; Son, Joo-Hiuk

2013-01-01

338

GCA in 2d  

NASA Astrophysics Data System (ADS)

We make a detailed study of the infinite dimensional Galilean Conformal Algebra (GCA) in the case of two spacetime dimensions. Classically, this algebra is precisely obtained from a contraction of the generators of the relativistic conformal symmetry in 2 d. Here we find quantum mechanical realisations of the (centrally extended) GCA by considering scaling limits of certain 2d CFTs. These parent CFTs are non-unitary and have their left and right central charges become large in magnitude and opposite in sign. We therefore develop, in parallel to the usual machinery for 2 d CFT, many of the tools for the analysis of the quantum mechanical GCA. These include the representation theory based on GCA primaries, Ward identities for their correlation functions and a nonrelativistic Kac table. In particular, the null vectors of the GCA lead to differential equations for the four point function. The solution to these equations in the simplest case is explicitly obtained and checked to be consistent with various requirements.

Bagchi, Arjun; Gopakumar, Rajesh; Mandal, Ipsita; Miwa, Akitsugu

2010-08-01

339

Recognition of a 3D snake model and its 2D photographic image by captive black tufted-ear marmosets (Callithrix penicillata).  

PubMed

Two-dimensional (2D) displays of real three-dimensional (3D) objects are frequently used experimental tools in animal studies. Whether marmoset monkeys, with their highly diverse and complex anti-predation strategies, readily recognized 2D representations of potential threats has yet to be determined, as seen in other primates. Thus, the behavioral responses of adult captive black tufted-ear marmosets (Callithrix penicillata) toward an unfamiliar motionless snake-model and its photograph were assessed. Pictorially nave subjects were randomly divided into two groups (n = 12/each) and submitted to two trials. Group 1 was initially exposed to the 3D object and after 1 week to its photograph. Group 2 was first presented the picture and only tested with the real object 1 week later. All 15-min trials were divided into three consecutive 5-min intervals: pre-exposure, exposure and post-exposure. In the presence of the 3D snake object, regardless of its presentation order, the frequency of direct gazes, head-cocks, tsik-tsik alarm/mobbing calls and genital displays increased significantly. The photograph induced a similar response, although only when the object had been previously presented, as significantly higher levels of these behaviors were seen in Group 1 than Group 2. Proximity to the stimulus, aerial scan, terrestrial glance, displacement activities and locomotion were not consistently influenced by the stimuli's presence and/or order of presentation. Therefore, marmosets recognized and responded appropriately to biologically and emotionally relevant 3D and 2D stimuli. Since the aversive/fearful reactions toward the photograph were only seen after the snake object had been presented, the former seems to be essentially a learned response. PMID:19449190

Emile, Nally; Barros, Marilia

2009-09-01

340

Finite Heat conduction in 2D Lattices  

E-print Network

This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.

Lei Yang; Yang Kongqing

2001-07-30

341

Revisiting 2D Lattice Based Spin Flip-Flop Ising Model: Magnetic Properties of a Thin Film and Its Temperature Dependence  

ERIC Educational Resources Information Center

This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained

Singh, Satya Pal

2014-01-01

342

Real time thermal imaging of high temperature semiconductor melts  

NASA Technical Reports Server (NTRS)

A real time thermal imaging system with temperature resolution better than + or - 1 C and spatial resolution of better than 0.5 mm was developed and applied to the analysis of melt surface thermal field distributions in both Czochralski and liquid encapsulated Czochralski (LEC) growth configurations. The melt is viewed in near normal incidence by a high resolution charge coupled device camera to which is attached a very narrow bandpass filter. The resulting image is digitized and processed using a pipelined pixel processor operating at an effective 40 million operations per second thus permitting real time high frequency spatial and temporal filtering of the high temperature scene. A multi-pixel averaging algorithm was developed which permits localized, low noise sensing of temperature variations at any location in the hot zone as a function of time. This signial is used to implement initial elements of a feedforward growth control scheme which is aimed at reducing disturbances to the melt caused by the batch nature of the growth process. The effect of magnetic melt stabilization on radial melt temperature distributions was measured using this technique. Problems associated with residual internal reflections and non-optimized path geometry are discussed.

Wargo, Michael J.

1988-01-01

343

Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies  

PubMed Central

The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L2 (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error < 4 for a short period of time, ?t < 10sec, until the data corruption subsides. In its present form, the KF-MRTI method currently fails to compensate for consecutive for consecutive time periods of data loss ?t > 10sec. PMID:22203706

Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

2013-01-01

344

Development of temperature imaging using two-line atomic fluorescence.  

PubMed

This work aims to advance understanding of the coupling between temperature and soot. The ability to image temperature using the two-line atomic fluorescence (TLAF) technique is demonstrated. Previous TLAF theory is extended from linear excitation into the nonlinear fluence regime. Nonlinear regime two-line atomic fluorescence (NTLAF) provides superior signal and reduces single-shot uncertainty from 250 K for conventional TLAF down to 100 K. NTLAF is shown to resolve the temperature profile across the stoichiometric envelope for hydrogen, ethylene, and natural gas flames, with deviation from thermocouple measurements not exceeding 100 K, and typically ?30 K. Measurements in flames containing soot demonstrate good capacity of NTLAF to exclude interferences that hamper most two-dimensional thermometry techniques. PMID:23567586

Medwell, Paul R; Chan, Qing N; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

2009-02-20

345

A Novel Approach for the Registration of 2D Portal and 3D CT Images for Treatment Setup Verification in Radiotherapy  

Microsoft Academic Search

In this paper we present a framework to simultaneously seg- ment portal images and register them to 3D treatment planning CT data sets for the purpose of radiotherapy setup veriflcation. Due to the low resolution and low contrast of the portal image, taken with a high energy treatment photon beam, registration to the 3D CT data is a di-cult problem.

Ravi Bansal; Lawrence H. Staib; Zhe Chen; Anand Rangarajan; Jonathan Knisely; Ravinder Nath; James S. Duncan

1998-01-01

346

SYNTHESIS OF SUPERHARD 3D-POLYMERIC C60 FULLERITES FROM RHOMBOHEDRAL 2D-POLYMER BY HIGH-PRESSUREHIGH-TEMPERATURE TREATMENT  

Microsoft Academic Search

Rhombohedral C60 polymer was subjected to high-pressure-high-temperature treatment at P =13 GPa, T =6201620 K. After quenching, crystalline and disordered structures with densities in the range of 2.12.9 g cm were obtained. The structures of the samples have been investigated by powder X-ray diffraction and Raman scattering. DSC analysis showed a transformation of the polymeric structure into monomenc on annealing

S. G. Buga; V. D. Blank; G. A. Dubitsky; N. R. Serebryanaya; . Fransson; T. Wgberg; B. Sundqvist

2003-01-01

347

Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer  

SciTech Connect

Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.

Russo, James K. [Department of Radiation Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina (United States); Armeson, Kent E. [Division of Biostatistics and Epidemiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina (United States); Richardson, Susan, E-mail: srichardson@radonc.wustl.edu [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri (United States)

2012-05-01

348

Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.  

PubMed

Recognizing the critical need for standardization in strain imaging, in 2010, the European Association of Echocardiography (now the European Association of Cardiovascular Imaging, EACVI) and the American Society of Echocardiography (ASE) invited technical representatives from all interested vendors to participate in a concerted effort to reduce intervendor variability of strain measurement. As an initial product of the work of the EACVI/ASE/Industry initiative to standardize deformation imaging, we prepared this technical document which is intended to provide definitions, names, abbreviations, formulas, and procedures for calculation of physical quantities derived from speckle tracking echocardiography and thus create a common standard. PMID:25623220

Voigt, Jens-Uwe; Pedrizzetti, Gianni; Lysyansky, Peter; Marwick, Tom H; Houle, Hlne; Baumann, Rolf; Pedri, Stefano; Ito, Yasuhiro; Abe, Yasuhiko; Metz, Stephen; Song, Joo Hyun; Hamilton, Jamie; Sengupta, Partho P; Kolias, Theodore J; d'Hooge, Jan; Aurigemma, Gerard P; Thomas, James D; Badano, Luigi Paolo

2015-02-01

349

Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.  

PubMed

Recognizing the critical need for standardization in strain imaging, in 2010, the European Association of Echocardiography (now the European Association of Cardiovascular Imaging, EACVI) and the American Society of Echocardiography (ASE) invited technical representatives from all interested vendors to participate in a concerted effort to reduce intervendor variability of strain measurement. As an initial product of the work of the EACVI/ASE/Industry initiative to standardize deformation imaging, we prepared this technical document which is intended to provide definitions, names, abbreviations, formulas, and procedures for calculation of physical quantities derived from speckle tracking echocardiography and thus create a common standard. PMID:25525063

Voigt, Jens-Uwe; Pedrizzetti, Gianni; Lysyansky, Peter; Marwick, Tom H; Houle, Helen; Baumann, Rolf; Pedri, Stefano; Ito, Yasuhiro; Abe, Yasuhiko; Metz, Stephen; Song, Joo Hyun; Hamilton, Jamie; Sengupta, Partho P; Kolias, Theodore J; d'Hooge, Jan; Aurigemma, Gerard P; Thomas, James D; Badano, Luigi Paolo

2015-01-01

350

Computed Tomography Imaging Spectrometer (CTIS) with 2D Reflective Grating for Ultraviolet to Long-Wave Infrared Detection Especially Useful for Surveying Transient Events  

NASA Technical Reports Server (NTRS)

The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for events it is also for investigation of some slow moving phenomena as in the life sciences.

Wilson, Daniel W. (Inventor); Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor)

2003-01-01

351

Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events  

NASA Technical Reports Server (NTRS)

The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.

Wilson, Daniel W. (Inventor); Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor)

2003-01-01

352

Experimental Investigation of High Temperature Superconducting Imaging Surface Magnetometry  

SciTech Connect

The behavior of high temperature superconducting quantum interference devices (SQUIDs) in the presence of high temperature superconducting surfaces has been investigated. When current sources are placed close to a superconducting imaging surface (SIS) an image current is produced due to the Meissner effect. When a SQUID magnetometer is placed near such a surface it will perform in a gradiometric fashion provided the SQUID and source distances to the SIS are much less than the size of the SIS. We present the first ever experimental verification of this effect for a high temperature SIS. Results are presented for two SQUID-SIS configurations, using a 100 mm diameter YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} disc as the SIS. These results indicate that when the current source and sensor coil (SQUID) are close to the SIS, the behavior is that of a first-order gradiometer. The results are compared to analytic solutions as well as the theoretical predictions of a finite element model.

Espy, M.A.; Matlachov, A.N.; Kraus, R.H., Jr.

1999-06-21

353

Limitations of using a thermal imager for snow pit temperatures  

NASA Astrophysics Data System (ADS)

Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and atmospheric temperatures are enhanced. At crusts or other heterogeneities, we were unable to create a sufficiently homogenous snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack even with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.

Schirmer, M.; Jamieson, B.

2013-10-01

354

A 2D Human Body Model Dressed in Eigen Clothing  

E-print Network

A 2D Human Body Model Dressed in Eigen Clothing Peng Guan Oren Freifeld Michael J. Black estimation of people in monocular images are widely studied. Two-dimensional mod- els of the human body. The resulting generative model captures realistic human forms in monocular images and is used to infer 2D body

Black, Michael J.

355

Spacecraft design project: High temperature superconducting infrared imaging satellite  

NASA Astrophysics Data System (ADS)

The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

1991-12-01

356

Spacecraft design project: High temperature superconducting infrared imaging satellite  

NASA Technical Reports Server (NTRS)

The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

1991-01-01

357

Limitations of using a thermal imager for snow pit temperatures  

NASA Astrophysics Data System (ADS)

Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.

Schirmer, M.; Jamieson, B.

2014-03-01

358

Lectures on 2D gravity and 2D string theory  

Microsoft Academic Search

This report discusses the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity 1 -- path integral approach; 2D Euclidean quantum gravity 2 -- canonical approach; states in 2D string theory; matrix model technology 1 -- method of orthogonal polynomials; matrix model technology 2 -- loops on the lattice; matrix

P. Ginsparg; Gregory Moore

1992-01-01

359

2D discrete Fourier transform on sliding windows.  

PubMed

Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions. PMID:25585421

Park, Chun-Su

2015-03-01

360

A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging  

NASA Astrophysics Data System (ADS)

We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

2014-05-01

361

Comparison of ultrasound temperature imaging with infrared thermometry during radio frequency ablation  

NASA Astrophysics Data System (ADS)

Radio frequency ablation (RFA) is a widely used alternative modality in the treatment of tumors. During RFA, temperature monitoring is essential to ensure accurate and appropriate thermal dosage. Ultrasound temperature imaging based on the detection of echo time-shift has been demonstrated to have good ability to monitor the temperature distribution. However, no study has proven that the region of ultrasound temperature imaging can correspond well to the practical temperature distribution in the tissue. In this study, we aim to combine ultrasound and infrared systems to clarify the correlation between ultrasound temperature imaging and the practical temperature distribution in a tissue. Five porcine livers (n = 5) were ablated using an RFA system and monitored with an ultrasound system to acquire raw backscattered data for temperature imaging. Meanwhile, an infrared imaging system was used to obtain the practical temperature map of the tissue. The results showed that the temperature distribution detected by ultrasound echo time-shift agreed with those obtained from the infrared image. When the tissue temperature was higher than 45 C, ultrasound temperature imaging is difficult to describe the behavior of the heat transfer in a homogeneous medium. In this study, we used the experimental setup based on combining ultrasound and infrared systems to confirm the reliability and limitations of ultrasound temperature imaging in RFA monitoring. Such an experimental design may be considered as an indispensable platform for the development and optimization of ultrasound temperature imaging techniques in RFA monitoring.

Geng, Xiaonan; Zhou, Zhuhuang; Li, Qiang; Wu, Shuicai; Wang, Chiao-Yin; Liu, Hao-Li; Chuang, Ching-Cheng; Tsui, Po-Hsiang

2014-04-01

362

PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture  

PubMed Central

Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated. PMID:24278197

Lovitt, Carrie J.; Avery, Vicky M.

2013-01-01

363

Combined planar imaging of schlieren photography with OH-LIPF and spontaneous OH-emission in a 2-D valveless pulse combustor  

SciTech Connect

Using a novel optical system, simultaneous imaging of schlieren photography and laser induced predissociation fluorescence of OH radicals (OH-LIPF) have been carried out to examine combustion processes and flame structure in a two-dimensional valveless pulse combustor. Simultaneous imaging of schlieren photographs and spontaneous OH-emission have also been made, in order to obtain information on the behavior of the flame front during a cycle of pulsation. The pulse combustor used in this experiment consists of a combustion chamber of a volume of 125 cm{sup 3} and a tailpipe of a length of 976 mm, which is followed by an automobile muffler. The fuel used is commercial grade gaseous propane.

Ishino, Yojiro; Hasegawa, Tatsuya; Yamaguchi, Shigeki; Ohiwa, Norio

1999-07-01

364

Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging  

NASA Technical Reports Server (NTRS)

Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

2012-01-01

365

Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples  

E-print Network

Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples F. Baudenbacher,a) L. E. Fong, and J. R. Holzer Vanderbilt December 2002; accepted 13 March 2003 We have developed a monolithic low-temperature superconducting

Weiss, Benjamin P.

366

Simultaneous imaging of the topography and electrochemical activity of a 2D carbon nanotube network using a dual functional L-shaped nanoprobe.  

PubMed

The application of nanomaterials for biosensors and fuel cells is becoming more common, but it requires an understanding of the relationship between the structure and electrochemical characteristics of the materials at the nanoscale. Herein, we report the development of scanning electrochemical microscopy-atomic force microscopy (SECM-AFM) nanoprobes for collecting spatially resolved data regarding the electrochemical activity of nanomaterials such as carbon nanotube (CNT) networks. The fabrication of the nanoprobe begins with the integration of a CNT-bundle wire into a conventional AFM probe followed by the deposition of an insulating layer and cutting of the probe end. In addition, a protrusive insulating tip is integrated at the end of the insulated CNT-bundle wire to maintain a constant distance between the nanoelectrode and the substrate; this yields an L-shaped nanoprobe. The resulting nanoprobes produced well-fitted maps of faradaic current data with less than 300 nm spatial resolution and topographical images of CNT networks owing to the small effective distance (of the order of tens of nanometers) between the electrode and the substrate. Electrochemical imaging using the L-shaped nanoprobe revealed that the electrochemical activity of the CNT network is not homogeneous and provided further understanding of the relationship between the topography and electrochemical characteristics of CNT networks. PMID:25807070

Lee, Eunjoo; Sung, Jungwoo; An, Taechang; Shin, Heungjoo; Gil Nam, Hong; Lim, Geunbae

2015-05-01

367

Observing temperature fluctuations in humans using infrared imaging  

PubMed Central

In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

2013-01-01

368

Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography  

SciTech Connect

The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stage conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity break through curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.

Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.; Zachara, John M.

2013-03-29

369

3-D/2-D registration by integrating 2-D information in 3-D.  

PubMed

In image-guided therapy, high-quality preoperative images serve for planning and simulation, and intraoperatively as "background", onto which models of surgical instruments or radiation beams are projected. The link between a preoperative image and intraoperative physical space of the patient is established by image-to-patient registration. In this paper, we present a novel 3-D/2-D registration method. First, a 3-D image is reconstructed from a few 2-D X-ray images and next, the preoperative 3-D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure (SM). Because the quality of the reconstructed image is generally low, we introduce a novel SM, which is able to cope with low image quality as well as with different imaging modalities. The novel 3-D/2-D registration method has been evaluated and compared to the gradient-based method (GBM) using standardized evaluation methodology and publicly available 3-D computed tomography (CT), 3-D rotational X-ray (3DRX), and magnetic resonance (MR) and 2-D X-ray images of two spine phantoms, for which gold standard registrations were known. For each of the 3DRX, CT, or MR images and each set of X-ray images, 1600 registrations were performed from starting positions, defined as the mean target registration error (mTRE), randomly generated and uniformly distributed in the interval of 0-20 mm around the gold standard. The capture range was defined as the distance from gold standard for which the final TRE was less than 2 mm in at least 95% of all cases. In terms of success rate, as the function of initial misalignment and capture range the proposed method outperformed the GBM. TREs of the novel method and the GBM were approximately the same. For the registration of 3DRX and CT images to X-ray images as few as 2-3 X-ray views were sufficient to obtain approximately 0.4 mm TREs, 7-9 mm capture range, and 80%-90% of successful registrations. To obtain similar results for MR to X-ray registrations, an image, reconstructed from at least 11 X-ray images was required. Reconstructions from more than 11 images had no effect on the registration results. PMID:16398411

Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

2006-01-01

370

Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna  

SciTech Connect

The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

2009-01-01

371

Volumetric PIV and 2D OH PLIF imaging in the far-field of a low Reynolds number nonpremixed jet flame  

NASA Astrophysics Data System (ADS)

Cinematographic stereoscopic PIV with temporal and spatial resolution ranging from 2.6 to 5.5 Kolmogorov scales, which is sufficient to accurately represent most of the dissipation structures, is used in conjunction with Taylors frozen flow hypothesis to generate quasi-instantaneous pseudo-volumes of the three-component velocity field in the far-field of a nonpremixed jet flame at the jet exit Reynolds number (Red) of 8000. The 3D data enable the computation of the nine components of the velocity gradient tensor and other important kinematic quantities. The volumetric PIV is combined with single-shot simultaneous OH PLIF imaging to mark the instantaneous reaction zone at one plane in the reconstructed volume. The combined datasets enable the investigation of the relationship between the reaction zone and the fully-3D representations of strain, vorticity, kinetic energy dissipation and dilatation, and of the impact of heat release on the structure of turbulence. In this Red = 8000 flame, it is observed that sheet-like layers of vorticity and dissipation tend to coincide and are aligned with the OH layers, an effect that is believed to be due to the stabilizing effect of heat release on this relatively low Reynolds number jet flame. Furthermore, the spatial organization of the strain field is predominantly driven by the presence of the flame rather than turbulence. Finally, intense dissipation is mostly due to the laminar shear caused by the presence of the flame rather than to the strain generated by vortical structures as typically observed in nonreacting jets.

Gamba, M.; Clemens, N. T.; Ezekoye, O. A.

2013-02-01

372

Computation of three-phase capillary entry pressures and arc menisci configurations in pore geometries from 2D rock images: A combinatorial approach  

NASA Astrophysics Data System (ADS)

We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.

Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.

2014-07-01

373

2D array based on fermat spiral  

NASA Astrophysics Data System (ADS)

The main challenge faced by 3D ultrasonic imaging with 2D array transducer is the large number of elements required to achieve an acceptable level of quality in the images. Therefore, the optimization of the array layout to reduce the number of active elements in the aperture has been a research topic in the last years. Nowadays, CMUT array technology has made viable the production of 2D arrays with larger flexibility on elements size, shape and position. This is opening new options in 2D array design, allowing to revise as viable alternatives others layouts that had been studied in the past, like circular and Archimedes spiral layout. In this work the problem of designing an imaging system array with a diameter of 60 ? and a limited number of elements using the Fermat spiral layout has been studied. This study has been done for two different numbers of electronic channels (N = 128 and N = 256). As summary, a general discussion of the results and the most interesting cases are presented.

Martnez, O.; Martn, C. J.; Godoy, G.; Ullate, L. G.

2010-01-01

374

Implementation of 2D\\/3D Transformation for Clothing Panel  

Microsoft Academic Search

2D\\/3D transformation for clothing panel is one of most important steps for virtual clothing. And vector mesh generation is one of the basic tasks that complete 2D\\/3D transformation of clothing panel images and virtual clothing designs. Based on the classical methods of generating meshes, an algorithm for generating vector meshes which is suitable for garment panel images was presented. The

Xinrong Hu; Yan Bai; Shuqin Cui; Zhongmin Deng

2009-01-01

375

Segmentation of 2D Gel Electrophoresis Spots Using a Markov Random Field  

E-print Network

Segmentation of 2D Gel Electrophoresis Spots Using a Markov Random Field Christopher S. Hoeflich based model was tested on actual 2D gel electrophoresis images. Keywords: Segmentation, Statistical) model and simulated annealing. The entire process of matching 2D gel electrophoresis images is widely

Corso, Jason J.

376

Stream-temperature estimation from thermal infrared images  

Microsoft Academic Search

Stream temperature is an important water quality indicator. Spatial gradients of stream temperature can also be used to identify groundwater and surface water input locations in channel systems. Endangered fish populations are sensitive to elevated stream temperature, especially in the summer when low precipitation and high solar insolation increase temperatures beyond established thresholds. The removal of riparian vegetation and increases

Jennifer KAY; Rebecca N. HANDCOCK; Alan GILLESPIE; Christopher KONRAD; Stephen BURGES; Nir NAVEH; Derek BOOTH

2001-01-01

377

The conceptual design of an electron cyclotron emission imaging system for studying ITER-like high temperature plasmas  

NASA Astrophysics Data System (ADS)

The design of an electron cyclotron emission imaging (ECEI) system for two-dimensional (2D) observation of the magnetohydrodynamical modes in high temperature ITER (from International Thermonuclear Experimental Reactor) H-mode-like plasmas (5.3 T and 25 keV) based on fundamental ordinary mode (O1-mode) and second-harmonic extraordinary mode (X2-mode) measurements is explored conceptually. For studying the spatial resolution in high temperature plasmas, the relativistic broadening and inward shift of the emission layer in the mid-plane are calculated. The radial spatial resolution is significantly degraded in the range R < 5.1 m for the O1-mode and in the range R < 6.9 m for the X2-mode. The region with R < 6.5 m is inaccessible for X2-mode study. The emission layer width is enlarged in a narrow region of the pedestal due to the magnetic field being modified by the large pressure gradient. The broadening and shift in the poloidal plane are also calculated, to investigate their effects on 2D measurements. The frequency range of electron cyclotron emission measurements is selected to protect the system from stray radiations of the 170 GHz electron cyclotron resonance heating source and to avoid harmonic overlap. The frequency ranges of 115160 GHz for the O1-mode and 230320 GHz for the X2-mode provide radial coverage of 5.9 < R < 8.2 m or ?0.15 < r/a < 1.The ECEI system utilizes a dual-array detection technique which provides a simultaneous measurement at two radial positions, and each array has 8 by 16 (radial by vertical) channels. The radial image size with 8 channels is 4176 cm for the O1-mode and 1936 cm for the X2-mode, with sufficient resolution. The front-end optics, which focuses the electron cyclotron emission to the low loss corrugated transmission waveguides, is designed with two flat mirrors and two focusing mini-lens arrays. The vertical image size with 16 channels is 150 cm and the spot size of each channel is 815 cm in the plasma region, taking into account the sensitivity pattern of the waveguide. The refraction effect due to inhomogeneous plasma enlarges the vertical image size up to 20% and 5% for the O1-mode and X2-mode cases, respectively. The horizontal distortion due to the relativistic inwards shift is reduced by the increased toroidal field in the core region.

Lee, W.; Yun, G. S.; Park, H. K.; Nam, Y. B.; Seon, C. R.

2014-09-01

378

Examine infrared images that show variation in surface temperature  

NSDL National Science Digital Library

Find a somewhat blurry Flash animation exhibiting five years worth of surface average temperatures. Note seasonal land/water temperature contrasts. The animation can be paused and rewound to emphasize important points.

NASA Earth Observatory

379

Age, Gender and Normalization Covariates for Spinal Cord Gray Matter and Total Cross-Sectional Areas at Cervical and Thoracic Levels: A 2D Phase Sensitive Inversion Recovery Imaging Study  

PubMed Central

The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord. PMID:25781178

Papinutto, Nico; Schlaeger, Regina; Panara, Valentina; Zhu, Alyssa H.; Caverzasi, Eduardo; Stern, William A.; Hauser, Stephen L.; Henry, Roland G.

2015-01-01

380

High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields  

E-print Network

High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures F. Baudenbacher,a) N. T. Peters, and J anchored to the liquid helium reservoir. A 25 m thick sapphire window separates the room temperature RT

Weiss, Benjamin P.

381

Bose-Einstein Condensation in Quasi2D Trapped Gases  

Microsoft Academic Search

We discuss Bose-Einstein condensation (BEC) in quasi-2D trapped gases and find that well below the transition temperature Tc the equilibrium state is a true condensate, whereas at intermediate temperatures T2D gas is sensitive to the frequency omega0 of the (tight) confinement in the ``frozen'' direction, and

D. S. Petrov; M. Holzmann; G. V. Shlyapnikov

2000-01-01

382

Galax2d: 2D isothermal Euler equations solver  

NASA Astrophysics Data System (ADS)

Galax2d computes the 2D stationary solution of the isothermal Euler equations of gas dynamics in a rotating galaxy with a weak bar. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretization of the equations for a steady-state solution, using a consistent linearization and a direct solver. The code can be applied as a tool for generating flow models if used on not too fine meshes, up to 256 by 256 cells for half a disk in polar coordinates.

Mulder, Wim

2015-03-01

383

MAGNUM-2D computer code: user's guide  

SciTech Connect

Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

1985-01-01

384

Bose-einstein condensation in quasi-2D trapped gases  

PubMed

We discuss Bose-Einstein condensation (BEC) in quasi-2D trapped gases and find that well below the transition temperature T(c) the equilibrium state is a true condensate, whereas at intermediate temperatures T2D gas is sensitive to the frequency omega(0) of the (tight) confinement in the "frozen" direction, and one can switch the sign of the interaction by changing omega(0). Variation of omega(0) can also reduce the rates of inelastic processes. This offers promising prospects for tunable BEC in trapped quasi-2D gases. PMID:11017267

Petrov; Holzmann; Shlyapnikov

2000-03-20

385

Three-dimensional temperature imaging around a gold microwire  

NASA Astrophysics Data System (ADS)

We report on the temperature mapping around a resistively heated gold microwire. The temperature is determined by measuring the thermal-induced distortion of an incident optical wavefront crossing the system. The optical technique we introduce herein allows, in addition to 3-dimensional temperature measurements, a retrieval of the heat source density at optical resolution. Experimental results are supported by finite element simulations and electric measurements. Applications are envisioned in microelectronics, microfluidics, or nanochemistry.

Bon, Pierre; Belaid, Nadia; Lagrange, Denis; Bergaud, Christian; Rigneault, Herv; Monneret, Serge; Baffou, Guillaume

2013-06-01

386

Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples  

Microsoft Academic Search

We have developed a monolithic low-temperature superconducting quantum interference device (SQUID) magnetometer and incorporated the device in a scanning microscope for imaging magnetic fields of room temperature samples. The instrument has a ~100 mum spatial resolution and a 1.4 pT\\/Hz1\\/2 field sensitivity above a few hertz. We discuss design constraints on and potential applications of the SQUID microscope.

F. Baudenbacher; L. E. Fong; J. R. Holzer; M. Radparvar

2003-01-01

387

Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples  

Microsoft Academic Search

We have developed a monolithic low-temperature superconducting quantum interference device (SQUID) magnetometer and incorporated the device in a scanning microscope for imaging magnetic fields of room temperature samples. The instrument has a ?100 ?m spatial resolution and a 1.4 pT\\/Hz1\\/2 field sensitivity above a few hertz. We discuss design constraints on and potential applications of the SQUID microscope.

F. Baudenbacher; L. E. Fong; J. R. Holzer; M. Radparvar

2003-01-01

388

ENERGY LANDSCAPE OF 2D FLUID FORMS  

SciTech Connect

The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

Y. JIANG; ET AL

2000-04-01

389

GRAPHICS PROGRAMMING Section B Java 2D  

E-print Network

GRAPHICS PROGRAMMING Section B ­ Java 2D 20 - Graphics2D: Introduction 21 - Graphics2D: Shapes 22 2D: General Path Curves 29 - Graphics 2D: Constructive Area Geometry Gary Hill December 2003 Java 2 Java initially through the Abstract Window Toolkit, which was extended to include swing, shortly

Hill, Gary