Science.gov

Sample records for 2-h post-ogtt plasma

  1. Plasma chemistry and diagnostic in an Ar-N2-H2 microwave expanding plasma used for nitriding treatments

    NASA Astrophysics Data System (ADS)

    Touimi, S.; Jauberteau, J. L.; Jauberteau, I.; Aubreton, J.

    2010-05-01

    This paper reports on the mass spectrometry analysis performed downstream a microwave discharge in an Ar-N2-H2 gas mixture under nitriding conditions. Investigations are focused on the main simple radicals NH2, NH and N, and on the molecular species NH3 and N2H2 produced. Because of wall desorptions due to catalytic effects, we must develop a specific method taking into account both wall desorption and the dissociative ionization effects in order to correct the mass spectrometer signal intensity. The relative concentrations of the above-mentioned species are studied in various gas mixtures. Correlations are made between the plasma chemistry and the plasma parameters (electron density and energy electron distribution function), measured by means of a Langmuir probe spatially resolved within the plasma expansion. These results show the efficiency of ternary gas mixtures (Ar-N2-H2) in producing electrons and NxHy species used in plasma nitriding processes.

  2. Electrical and optical characterization of pulsed plasma of N2 H2

    NASA Astrophysics Data System (ADS)

    Martínez, H.; Yousif, F. B.

    2008-03-01

    This paper considers the electrical and optical characterization of glow discharge pulsed plasma in N2/H2 gas mixtures at a pressures range between 0.5 and 4.0 Torr and discharge current between 0.2 and 0.6 A. Electron temperature and ion density measurements were performed employing a double Langmuir probe. They were found to increase rapidly as the H2 percentage in the mixture was increased up to 20%. This increase slows down as the H2 percentage in the gas mixture was increased above 20% at the same pressure. Emission spectroscopy was employed to observe emission from the pulsed plasma of a steady-state electric discharge. The discharge mainly emits within the range 280 500 nm. The emission consists of N2 (C-X) 316, 336, 358 nm narrow peaks and a broad band with a maximum at λmax = 427 nm. Also lines of N2, N2 + and NH excited states were observed. All lines and bands have their maximum intensity at the discharge current of 0.417 A. The intensities of the main bands and spectral lines are determined as functions of the total pressure and discharge current. Agreement with other theoretical and experimental groups was established.

  3. Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge

    NASA Astrophysics Data System (ADS)

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-01

    A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.

  4. Low Temperature Plasma Nitriding Of Stainless Steel In N_2/H_2/Ar LFICP Discharges

    NASA Astrophysics Data System (ADS)

    Xu, S.; Luo, W.; Jiang, N.; Ostrikov, K. N.

    2001-10-01

    A low frequency, high density, inductively coupled plasma (LF ICP) source has been developed and used for nitriding of AISI stainless steels. A series of experiments has been conducted in a low temperature (320-400^circC), low pressure N_2/H_2/Ar gas mixture discharges. The results show that the nitriding process is very fast, ~ 45μm/hr for AISI 304 and ~ 90μm/hr for AIS410, even at a low nitriding temperature. After nitriding, the micro hardness of the nitrided layer is increased by a factor of 7 and the free corrosion potential is also improved. The pin-on-disc measurement indicates that the wear resistance improved more than 10 times. The microstructure and composition of the nitrided surface layers characterised using scanning electron microscopy/energy dispersive x-ray diffraction and x-ray diffraction reveal that the nitrided layer has crystalline structure with various phases. The distribution of the nitrogen content varies sharply: high in the nitrided layer and almost zero elsewhere. The content of Cr, however, remains constant over the entire substrate/nitrided layer.

  5. Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Carter, Richard J.; Moore, Darren L.; Peng, Hua-Gen; Gidley, David W.; Burke, Peter A.

    2005-06-01

    Porous low-dielectric constant (low-κ) SiCOH thin films deposited using a plasma-enhanced chemical-vapor deposition have been comprehensively characterized before and after exposure to a reactive-ion-etch-type plasma of N2 and H2 chemistry. The low-κ film studied in this work is a carbon-doped silicon oxide film with a dielectric constant (κ) of 2.5. Studies show that a top dense layer is formed as a result of significant surface film densification after exposure to N2/H2 plasma while the underlying bulk layer remains largely unchanged. The top dense layer is found to seal the porous bulk SiCOH film. SiCOH films experienced significant thickness reduction, κ increase, and leakage current degradation after plasma exposure, accompanied by density increase, pore collapse, carbon depletion, and moisture content increase in the top dense layer. Both film densification and removal processes during N2/H2 plasma treatment were found to play important roles in the thickness reduction and κ increase of this porous low-κ SiCOH film. A model based upon mutually limiting film densification and removal processes is proposed for the continuous thickness reduction during plasma exposure. A combination of surface film densification, thickness ratio increase of top dense layer to bulk layer, and moisture content increase results in the increase in κ value of this SiCOH film.

  6. The effects of additive gases (Ar, N2, H2, Cl2, O2) on HCl plasma parameters and composition

    NASA Astrophysics Data System (ADS)

    Efremov, A.; Yudina, A.; Davlyatshina, A.; Murin, D.; Svetsov, V.

    2013-01-01

    The direct current (dc) glow discharge plasma parameters and active species kinetics in HCl-X (X = Ar, N2, H2, Cl2, O2) mixtures were studied using both plasma diagnostics Langmuir probes and modeling. The 0-dimensional self-consistent steady-state model included the simultaneous solution of Boltzmann kinetic equation, the equations of chemical kinetics for neutral and charge particles, plasma conductivity equation and the quasi-neutrality conditions for volume densities of charged particles as well as for their fluxes to the reactor walls. The data on the steady-state electron energy distribution function, electron gas characteristics (mean energy, drift rate and transport coefficients), volume-averaged densities of plasma active species and their fluxed to the reactor walls were obtained as functions of gas mixing ratios and gas pressure at fixed discharge current.

  7. Preparation of hydrogenated diamond-like carbon films using high-density pulsed plasmas of Ar/C2H2 and Ne/C2H2 mixture

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2016-07-01

    Hydrogenated diamond-like carbon films are prepared using reactive high-density pulsed plasmas of Ar/C2H2 and Ne/C2H2 mixture in the total pressure range from 0.5 to 2 Pa. The plasmas are produced using a reactive high-power impulse magnetron sputtering (HiPIMS) system. A negative pulse voltage of ‑500 V is applied to the substrate for a period of 15 µs in the afterglow mode. The growth rate does not strongly depend on the type of ambient gas but it markedly increases to about 2.7 µm/h at a C2H2 fraction of 10% and a total pressure of 2 Pa with increasing C2H2 fraction. The marked increase in the growth rate means that the HiPIMS system can be regarded as a plasma source for the chemical vapor deposition process. The hardness of the films prepared by Ne/C2H2 plasmas is somewhat higher than that of the films prepared by Ar/C2H2 plasmas under the same operating conditions, and the difference becomes larger as the pressure increases. The hardness of the films prepared by Ne/C2H2 plasmas ranges between 11 and 18 GPa. In the Raman spectra, two very broad overlapping bands are assigned as the G (graphite) and D (disorder) bands. The peak position of the G band is roughly independent of the total pressure, whereas the FWHM of the G peak decreases with increasing total pressure as a whole.

  8. Ammonia formation in N2/H2 plasmas on ITER-relevant plasma facing materials: Surface temperature and N2 plasma content effects

    NASA Astrophysics Data System (ADS)

    de Castro, A.; Alegre, D.; Tabarés, F. L.

    2015-08-01

    Ammonia production in N2/H2 direct current glow discharge plasmas, with nitrogen concentrations from 1.5% to 33%, different wall materials (tungsten, stainless steel and aluminium as a proxy for beryllium) and surface temperatures up to 350 °C has been investigated. Ammonia yields on the exposed materials have been deduced, resulting in different values depending on the wall material, its temperature and N2 plasma content. The results indicate weak wall temperature dependence in tungsten and stainless steel. However, wall temperatures above 300 °C have a very clear influence on aluminium walls, as almost all the molecular N2 depleted from the gas phase is converted into ammonia. The amount of implanted N seems to have a direct impact on the ammonia formation yield, pointing to the competition between N implantation and N/H-N/N recombination on the walls as the key mechanism of the ammonia formation.

  9. NO Removal in High Pressure Plasmas of N_2/H_2O/NO Mixtures

    NASA Astrophysics Data System (ADS)

    Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Influence of H_2O on NO removal has been studied using a homogeneous photo-triggered discharge with a time resolved LIF measurement of the NO density, in N_2/H_2O/NO mixtures at 460 mbar. The H_2O maximum concentration was 2.5 was between 70 and 160 J/l. Measurement of NO density has been performed up to 180 µs after the current pulse excitation of short duration, 50 ns. Kinetic analysis has been made using a self-consistent 0D-discharge model. NO is in great part dissociated, in N_2/NO, through collisions with the excited singlet states of N_2. We have previously shown that addition of ethene induces de-excitation of these states, leading to a decrease of the NO removal ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.). Similar processes take place when C_2H4 is replaced by H_2O. The value of the rate constant for collision of singlet states with water, 3.10-10 cm^3 s-1, is obtained from our study.

  10. Kinetic of the OH-radical in high pressure plasmas of N_2/H_2O/hydrocarbons mixtures

    NASA Astrophysics Data System (ADS)

    Baravian, G.; Fresnet, F.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V.; Rousseau, A.

    2001-10-01

    Kinetic of the OH-radical has been studied in homogeneous plasmas achieved in a photo-triggered discharge device, in N_2/H_2O with C_2H4 or C_3H_6, at 460 mbar with 1.2 concentration and a deposited energy in the plasma equal to 92 J/l. Hydrocarbon concentration ranged from 50 ppm up to 1000 ppm. Using the same technique as for NO kinetic studies ( F. Fresnet, G. Baravian, L. Magne, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, Appl. Phys. Lett., 77 (2000) 4118.), a time resolved LIF diagnostic has been performed to measure the OH-radical density up to 180 µs after the short current pulse excitation, 50 ns. At fixed deposited energy, the LIF signal rapidly decreases when hydrocarbon concentration increases. Measurements have been compared to predictions of a self-consistent 0D-model which takes into account a detailed kinetic scheme, including oxidation reactions of hydrocarbons by the radical which are important processes in flue gas non-thermal plasma treatment. Results are discussed.

  11. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  12. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J.

    2007-02-01

    We investigated the efficiency and formation mechanism of ammonia generation in recombining plasmas generated from mixtures of N2 and H2 under various plasma conditions. In contrast to the Haber-Bosch process, in which the molecules are dissociated on a catalytic surface, under these plasma conditions the precursor molecules, N2 and H2, are already dissociated in the gas phase. Surfaces are thus exposed to large fluxes of atomic N and H radicals. The ammonia production turns out to be strongly dependent on the fluxes of atomic N and H radicals to the surface. By optimizing the atomic N and H fluxes to the surface using an atomic nitrogen and hydrogen source ammonia can be formed efficiently, i.e., more than 10% of the total background pressure is measured to be ammonia. The results obtained show a strong similarity with results reported in literature, which were explained by the production of ammonia at the surface by stepwise addition reactions between adsorbed nitrogen and hydrogen containing radicals at the surface and incoming N and H containing radicals. Furthermore, our results indicate that the ammonia production is independent of wall material. The high fluxes of N and H radicals in our experiments result in a passivated surface, and the actual chemistry, leading to the formation of ammonia, takes place in an additional layer on top of this passivated surface.

  13. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. I. N2/H2 and NH3/H2 Plasmas.

    PubMed

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Johnson, Mack; Ashfold, Michael N R; Mankelevich, Yuri A

    2015-12-31

    We report a combined experimental/modeling study of microwave activated dilute N2/H2 and NH3/H2 plasmas as a precursor to diagnosis of the CH4/N2/H2 plasmas used for the chemical vapor deposition (CVD) of N-doped diamond. Absolute column densities of H(n = 2) atoms and NH(X(3)Σ(-), v = 0) radicals have been determined by cavity ring down spectroscopy, as a function of height (z) above a molybdenum substrate and of the plasma process conditions, i.e., total gas pressure p, input power P, and the nitrogen/hydrogen atom ratio in the source gas. Optical emission spectroscopy has been used to investigate variations in the relative number densities of H(n = 3) atoms, NH(A(3)Π) radicals, and N2(C(3)Πu) molecules as functions of the same process conditions. These experimental data are complemented by 2-D (r, z) coupled kinetic and transport modeling for the same process conditions, which consider variations in both the overall chemistry and plasma parameters, including the electron (Te) and gas (T) temperatures, the electron density (ne), and the plasma power density (Q). Comparisons between experiment and theory allow refinement of prior understanding of N/H plasma-chemical reactivity, and its variation with process conditions and with location within the CVD reactor, and serve to highlight the essential role of metastable N2(A(3)Σ(+)u) molecules (formed by electron impact excitation) and their hitherto underappreciated reactivity with H atoms, in converting N2 process gas into reactive NHx (x = 0-3) radical species. PMID:26593853

  14. Determination of (2)H-enrichment of rat brain interstitial fluid and rat plasma by headspace-gas-chromatography - quadrupole-mass-spectrometry.

    PubMed

    Eberl, Anita; Altendorfer-Kroath, Thomas; Kollmann, Denise; Birngruber, Thomas; Sinner, Frank; Raml, Reingard; Magnes, Christoph

    2016-09-15

    (2)H2O as nonradioactive, stable marker substance is commonly used in preclinical and clinical studies and the precise determination of (2)H2O concentration in biological samples is crucial. However, aside from isotope ratio mass spectrometry (IRMS), only a very limited number of methods to accurately measure the (2)H2O concentration in biological samples are routinely established until now. In this study, we present a straightforward method to accurately measure (2)H-enrichment of rat brain interstitial fluid (ISF) and rat plasma to determine the relative recovery of a cerebral open flow microperfusion (cOFM) probe, using headspace-gas-chromatography - quadrupole-mass-spectrometry. This method is based on basic-catalyzed hydrogen/deuterium exchange in acetone and detects the (2)H-labelled acetone directly by the headspace GC-MS. Small sample volumes and limited number of preparation steps make this method highly competitive. It has been fully validated. (2)H enriched to 8800 ppm in plasma showed an accuracy of 98.9% and %Relative Standard Deviation (RSD) of 3.1 with n = 18 over three days and with two operators. Similar performance was obtained for cerebral ISF enriched to 1100 ppm (accuracy: 96.5%, %RSD: 3.1). With this highly reproducible method we demonstrated the successful employment of (2)H2O as performance marker for a cOFM probe. PMID:27402176

  15. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  16. Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles

    PubMed Central

    Gray, Erin M.; Díaz-Vázquez, Gladys; Veatch, Sarah L.

    2015-01-01

    Giant plasma membrane vesicle (GPMV) isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune their plasma membrane

  17. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect

    Li, Shou-Zhe Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang; Wang, Yong-Xing; Xia, Guang-Qing

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  18. On the reactivity of plasma-treated photo-catalytic TiO2 surfaces for oxidation of C2H2 and CO

    NASA Astrophysics Data System (ADS)

    Lopatik, D.; Marinov, D.; Guaitella, O.; Rousseau, A.; Röpcke, J.

    2013-06-01

    The objective of this study is to understand fundamental aspects of interactions of plasmas with catalytic surfaces. Based on this approach the reactivity of plasma treated and stimulated catalytic surfaces of TiO2 is studied by analysing the oxidation (i) of C2H2 to CO and CO2 and (ii) of CO to CO2. The inner surface of a Pyrex discharge tube is coated with TiO2 films impregnated with TiO2 nanoparticles, which provides a surface area of about 4 m2. In addition to the exposure of the TiO2 surface by low-pressure radio-frequency plasmas using O2, Ar or N2 (f = 13.56 MHz, p = 0.53 mbar, P = 17 W) the surfaces are stimulated by heating and UV radiation treatment. The temporal development of the concentrations of the precursor gases C2H2 or CO and of the reaction products is monitored using quantum cascade laser absorption spectroscopy, which provides multi-component detection in the mid-infrared spectral range. The C2H2 concentration was found to be nearly constant over time after a pre-treatment with Ar or N2 discharges using an initial gas mixture of 1% C2H2 in Ar. However, a strong decay of the concentration of C2H2 is observed for pure O2 plasma pre-treatment. In general, the decay is found to be nearly exponential with time constant in the order of about 10 min. The reactive adsorption of C2H2 molecules on the inner surface of the tube reactor showed a density of about 7.5 × 1012 C2H2 molecules cm-2. This behaviour demonstrates that the reaction (O_{ads} +C_{2} H_{2})_{{TiO}_{2}} produces some adsorbed intermediates, which can be thermally or photo-catalytically oxidized to CO2. In contrast, when 1% CO in Ar is used as an initial gas mixture no adsorption processes on the TiO2 surface could be detected. An effective destruction of CO took part via photo-catalytic oxidation.

  19. Effects of hBN Content on the Microstructure and Properties of Atmospheric Plasma-Sprayed NiCr/Cr3C2-hBN Composite Coatings

    NASA Astrophysics Data System (ADS)

    Cao, Yuxia

    2016-04-01

    NiCr/Cr3C2-hBN composite coatings with different contents of hBN were prepared by atmospheric plasma-spray technology. The microstructural, mechanical, and tribological properties of the coatings were systematically investigated. The results show that the flowability and apparent density of NiCr/Cr3C2-hBN composite powders, as well as the microhardness and tensile strength of the NiCr/Cr3C2-hBN composite coating, gradually decrease with the increase of hBN in the composite powders. The addition of hBN is benefit to the friction coefficient of the coatings, but it is positive to the wear rate. When the content of hBN is up to 20%, the friction coefficient of the composite coating is lowest, but the wear rate of the composite coating is highest.

  20. He+O{sub 2}+H{sub 2}O plasmas as a source of reactive oxygen species

    SciTech Connect

    Liu, D. X.; Wang, X. H.; Rong, M. Z.; Iza, F.; Kong, M. G.

    2011-05-30

    The effect of water in the chemistry of atmospheric-pressure He+O{sub 2} plasmas is studied by means of a comprehensive global model. Water enables the generation of reactive oxygen species (ROS) cocktails that are rich not only in O, O{sub 2}*, and O{sub 3} but also in OH and H{sub 2}O{sub 2}. Due to its polar nature, water also leads to cluster formation, possibly affecting the plasma dynamics. Since the lifetime of many of the ROS is short, the plasma chemistry plays two roles: (i) direct interaction with superficial cells and (ii) triggering of a secondary chemistry that propagates the plasma treatment to regions away from the plasma-surface interface.

  1. A mass spectrometric method for measuring glycerol levels and enrichments in plasma using 13C and 2H stable isotopic tracers.

    PubMed

    Gilker, C D; Pesola, G R; Matthews, D E

    1992-08-15

    The stable isotope tracer [1,1,2,3,3,-2H5]glycerol has been commonly used as a tracer to measure glycerol kinetics and lipolysis in vivo. The method for measuring samples using the trimethylsilyl derivative and electron impact gas chromatograph-mass spectrometry retains only three of the five deuteriums, resulting in the possibility of incorrectly identifying the whole glycerol tracer molecule. This reports preparation of glycerol as the heptafluorobutyrl derivative and measurement by negative ion chemical ionization gas chromatography-mass spectrometry to produce a derivative with an intense molecular ion that retains all five deuterium labels. Thus the heptafluorobutyrl derivative analyzed by negative ion mass spectrometry overcomes the problems associated with fragmentation and loss of the isotopic label. Glycerol concentration using a labeled internal standard can be determined in plasma with a precision of 3%. Nanomole amounts of glycerol can be analyzed for 13C or 2H enrichments with a precision of +/- 0.14 mol% excess isotope. This simple, sensitive method for measuring glycerol levels and stable isotopic enrichment in plasma uses a simple extraction procedure and requires a minimal volume of plasma (less than 300 microliters). PMID:1443555

  2. Comparative sterilization effectiveness of plasma in O2-H2O2 mixtures and ethylene oxide treatment.

    PubMed

    Silva, J M F; Moreira, A J; Oliveira, D C; Bonato, C B; Mansano, R D; Pinto, T J A

    2007-01-01

    We investigated the influence of variable parameters of plasma sterilization and compared its effectiveness with that of ethylene oxide using a reactive ion etching plasma reactor at 13.56 MHz. Gases tested were pure oxygen and oxygen-hydrogen peroxide mixtures in 190/10, 180/20, and 160/40 sccm ratios with constant gas flow at 200 sccm, pressure at 0.100 torr, radio-frequency power at 25 W, 50 W, 100 W, and 150 W, and temperature below 60 degrees C. Ethylene oxide sterilization was performed using 450 mg/L at 55 degrees C, 60% humidity, and -0.65 and 0.60 kgf/cm2 pressure. The biological indicator was Bacillus atrophaeus ATCC 9372, with exposure times of 3 to 120 min. Observed D values were 215.91, 55.55, 9.19, and 2.98 min for pure oxygen plasma at 25 W, 50 W, 100 W, and 150 W, respectively. Oxygen-hydrogen peroxide plasma produced D values of 6.41 min (190/10), 6.47 min (180/20), and 4.02 min (160/40) at 100 W and 1.47 min (190/10), 3.11 min (180/20), and 1.94 min (160/40) at 150 W. Ethylene oxide processes resulted in a D value of 2.86 min. Scanning electron microscopy analyses showed damage to the spore cortex. PMID:17722487

  3. Key insights into the reacting kinetics of atmospheric pressure plasmas using He +N2 /O2 /CO2 /H2 O/Air mixtures

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki

    2015-09-01

    A zero dimensional kinetic chemistry computational modeling to identify the important collisional mechanisms and the dominant species in atmospheric pressure plasmas has been developed. This modeling provides an enhanced capability to tailor wide variety of reactive intermediates/species in atmospheric pressure plasmas using He +N2 /O2 /CO2 /H2 O/Air mixtures. The influence of the gas constituent, the gas temperature and the excitation frequency (kHz-, RF-, Pulsed-working) on the complex reacting chemical kinetics is clarified. This work also focuses on the benchmarking between the predictive outputs of this computer-based simulations and the diverse experimental diagnostics with particular emphasis on reactive oxygen/nitrogen intermediates/species. This work was partly supported by KAKENHI Grant Number 24561054.

  4. Investigation of InP etching mechanisms in a Cl{sub 2}/H{sub 2} inductively coupled plasma by optical emission spectroscopy

    SciTech Connect

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-03-15

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl{sub 2}-H{sub 2} inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H{sub 2} percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl{sub 2}-H{sub 2} and Cl{sub 2}-Ar gas mixtures.

  5. Effect of N{sub 2} + H{sub 2} gas mixtures in plasma nitriding on tribological properties of duplex surface treated steels

    SciTech Connect

    Taktak, Sukru Gunes, Ibrahim; Ulker, Sukru; Yalcin, Yilmaz

    2008-12-15

    Thermo-reactive diffusion chromizing followed by pulsed plasma nitriding were carried out on AISI 52100 and 8620 bearing steels. The chromized samples were pulse-plasma nitrided for 5 h at 500 deg. C in various N{sub 2}-H{sub 2} gas mixtures. The coated steels were characterized using scanning electron microscopy, X-ray diffraction and microhardness testing. The unlubricated wear behaviors of only chromized and duplex treated steels were investigated in ball-on-disc system tests at room temperature. X-ray diffraction patterns of the duplex treated samples containing H{sub 2} indicated the formation of dominant CrN and Cr{sub 2}N nitrides as well as the formation of Cr{sub 3}C{sub 2} and Cr{sub 7}C{sub 3} carbides. Gas mixtures in the plasma nitriding, which was performed after chromizing, have a significant influence on the wear rate of the duplex treated steels. The wear and friction tests showed that the lowest friction coefficient and wear rates were observed for the samples duplex treated in a 50%N{sub 2} +50%H{sub 2} plasma. Conversely, the lowest wear resistance was observed on the samples duplex treated in a gas mixture of 75%N{sub 2} + 25%H{sub 2}, probably due to formation of a hard and brittle layer.

  6. OH kinetic in high-pressure plasmas of atmospheric gases containing C2H6 studied by absolute measurement of the radical density in a pulsed homogeneous discharge

    NASA Astrophysics Data System (ADS)

    Magne, L.; Pasquiers, S.; Gadonna, K.; Jeanney, P.; Blin-Simiand, N.; Jorand, F.; Postel, C.

    2009-08-01

    The absolute value of the hydroxyl radical was measured in the afterglow of an homogeneous photo-triggered discharge generated in N2/O2/H2O/C2H6 mixtures, using a UV absorption diagnostic synchronized with the discharge current pulse. Measurements show that OH is efficiently produced even in the absence of water vapour in the mixture, and that the radical production is closely linked to the degradation kinetic of the hydrocarbon. Experimental results for dry mixtures, both for OH and for the removal of ethane in the discharge volume, are compared with predictions of a self-consistent 0D discharge and the kinetic model. It appears that the oxidation reaction of the ethane molecule by O(3P) atoms plays a minor role. Dissociation of the hydrocarbon through quenching collisions of the nitrogen metastable states are of great importance for a low oxygen concentration value. Also, the oxidation of ethane by O(1D) cannot be neglected at high oxygen concentration. The most probable exit channel for N2 states quenching collisions by ethane is the production of ethene and hydrogen molecules. Afterwards C2H4 should be dissociated to produce H and H2. As previously suggested from the study of the OH density time evolution in relative value, the recombination of H and O atoms appears as a main process for the production of OH in transient low temperature plasmas generated in atmospheric gases at high pressure. Another important reaction is the reduction of the HO2 radical by O, this radical coming from the addition of H on the oxygen molecule. H atoms come from numerous kinetic processes, amongst which is the dissociation of ethene.

  7. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Prabaswara, Aditya; Yang, Yang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-07-01

    The dislocation free InxAl1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C-610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of InxAl1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04-0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2H phonons in InxAl1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important InxAl1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  8. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.

    PubMed

    Hasenour, Clinton M; Wall, Martha L; Ridley, D Emerson; Hughey, Curtis C; James, Freyja D; Wasserman, David H; Young, Jamey D

    2015-07-15

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  9. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  10. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    PubMed

    Roux, M; Beswick, V; Coïc, Y M; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2000-11-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups. PMID:11053135

  11. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    PubMed Central

    Roux, M; Beswick, V; Coïc, Y M; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2000-01-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups. PMID:11053135

  12. Agglomeration processes sustained by dust density waves in Ar/C{sub 2}H{sub 2} plasma: From C{sub 2}H{sub 2} injection to the formation of an organized structure

    SciTech Connect

    Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal; Lacroix, David

    2013-03-15

    In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.

  13. The relationship of plasma glucose and electrocardiographic parameters in elderly women with different degrees of glucose tolerance.

    PubMed

    Solini, A; Passaro, A; D'Elia, K; Calzoni, F; Alberti, L; Fellin, R

    2000-08-01

    Plasma glucose has been regarded as a risk factor for macrovascular complications in diabetes, but less is known about its role in the development of cardiac impairment other than coronary heart disease (CHD). The aim of our study was to determine the relationship between basal and post-OGTT (Oral Glucose Tolerance Test) plasma glucose levels and some ECG parameters in a group of elderly women with normal or impaired glucose tolerance (IGT). One-hundred and one women with normal fasting glucose (<6.0 mmol/L) and no familial history or clinical signs of CHD and diabetes underwent an OGTT and a resting ECG. Based on the degree of glucose tolerance, we identified 24 women with a diagnostic OGTT for either IGT or diabetes; the 77 women (age range 52-88 years) with normal glucose tolerance were further divided into two groups according to their post-OGTT area under the curve (AUCG): below and above the median value (32 and 45 women, respectively). Basal plasma glucose and insulin levels, as well as lipid profile and percent of hypertensive patients were similar in the three groups. Mean corrected QT (QTc) was prolonged as a function of progressive worsening of glucose tolerance even after adjustment for possible confounding factors (p=0.03). A similar relationship was apparent when post-OGTT plasma glucose peak (GP) was considered. In a multiple regression analysis, AUCG and GP were the only factors independently related to both QTc and Sokolow index. Our observations suggest that, even in the presence of a normal glucose tolerance, plasma glucose concentrations during an OGTT are associated with peculiar ECG signs potentially combined with an increased risk of sudden death, arrhythmias, or cardiovascular mortality. PMID:11073343

  14. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002}H{sub 2}->CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2

  15. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm-1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r ,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4→C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 14002H2→CH4 is favored in the more distant regions where Tgas<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH4→C2H2 conversion, whereas the reverse C2H2→CH4 process only requires H atoms to drive the reactions; H atoms are not consumed by the overall

  16. 1H- and 2H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H(+)-ATPase. Conformational properties and lipid-peptide interactions.

    PubMed

    Beswick, V; Roux, M; Navarre, C; Coïc, Y M; Huynh-Dinh, T; Goffeau, A; Sanson, A; Neumann, J M

    1998-01-01

    PMP1 is a 38-residue polypeptide associated with the yeast plasma membrane H(+)-ATPase, found to regulate the enzyme activity. To investigate the molecular basis of the PMP1 biological function, the conformational properties of a synthetic PMP1 fragment, A18-F38, comprising the predicted C-terminal cytoplasmic domain and a part of the transmembrane anchor have been studied by 1H- and 2H-NMR spectroscopies. High resolution 1H-NMR experiments showed that, in deuterated DPC micelles, the A18-G34 segment adopts a well defined helix conformation. Our data suggest that the whole PMP1 molecule forms a unique helix whose axis might be slightly tilted with respect to the bilayer normal. Protonated DPC, DMPC and DMPS were incorporated in deuterated micelles containing the PMP1 fragment for studying lipid-peptide interactions. Unusually strong and selective intermolecular NOEs between lipid chain and peptide side chain protons, especially those of the unique Trp residue, were observed. Solid state 2H-NMR experiments performed on pure deuterated POPC and mixed deuterated POPC:POPS (5:1) bilayers revealed that the PMP1 fragment specifically interacts with negatively charged PS lipids. PMID:9782385

  17. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  18. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH{sub 2}F{sub 2}/H{sub 2} plasmas

    SciTech Connect

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-15

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si{sub 3}N{sub 4} hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si{sub 3}N{sub 4} layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH{sub 2}F{sub 2}/H{sub 2}/Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P{sub HF}), and low-frequency source power (P{sub LF}). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si{sub 3}N{sub 4} layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si{sub 3}N{sub 4}/PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO{sub x}/PVD a-C/Si{sub 3}N{sub 4} MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si{sub 3}N{sub 4} hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  19. Radiofrequency plasma decomposition of C /SUB n/ F /SUB 2n+2/ -H/sub 2/ and CF/sub 4/-C/sub 2/F/sub 4/ mixtures during Si etching or fluoropolymer deposition

    SciTech Connect

    d'Agostino, R.; Cramarossa, F.; De Benedictis, S.

    1984-03-01

    Microscopic decomposition processes and gas-solid interactions in C /SUB n/ F /SUB 2n+2/ -H/sub 2/ and CF/sub 4/-C/sub 2/F/sub 4/ discharges are studied by comparing mass-spectrometric results with actinometric emission diagnostics. The role played by CF /SUB x/ radicals is evident in the various processes of gas-phase formation of saturates and unsaturates as well as in the ''activation growth mechanism'' of polymer deposition.

  20. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  1. Nitriding of titanium and its alloys by N2, NH3 or mixtures of N2 + H2 in a dc arc plasma at low pressures ( or = to torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.

    1984-01-01

    The dc glow discharges in different gas mixtures of Ar + N2, Ar + NH3 or Ar + N2 + H2 result in the surface nitriding of Ti metal and its alloy (Ti6Al4V). Various gas mixtures were used in order to establish the main active species governing the nitriding process, i.e., N, N2, NH, or NH2 as excited or ionized particles. The dc discharge was sampled and analyzed by quadruple mass spectrometry (QPMS) and optical emission spectroscopy (OES), and the nitrided samples were analyzed by scanning electron microscopy (SEM) with an EDAX attachment, microhardness, and Fourier transform infrared reflectance spectrometry (FTIR). It was found that the excited and ionized nitrogen and hydrogen atoms are the main species responsible for the nitriding process in a dc glow discharge.

  2. Mecanismos cinéticos y distribuciones energéticas de iones (H3+, N2H+, CH3+...) en plasmas fríos de H2/N2/CH4

    NASA Astrophysics Data System (ADS)

    Tanarro, I.; Herrero, V. J.; Islyaikin, A.; Tabarés, F. L.; Tafalla, D.

    En este trabajo se presenta el estudio espectrométrico de los plasmas levemente ionizados generados en una descarga continua a baja presión de H2 con trazas de N2 y CH4, orientado principalmente a identificar la naturaleza y distribución energética de los iones que en ella se producen, y a asignar algunos de los mecanismos cinéticos elementales de formación y destrucción de tales especies. Alguno de los iones mayoritarios de estos plasmas, como el H3+, presenta gran interés desde el punto de vista de la Astrofísica por su prevista intervención en la química de las ionosferas planetarias y del medio interestelar, al actuar como sustancia intermedia en la formación de gran variedad de especies moleculares; si bien, dada su pequeña concentración, su observación real en el espacio se demoró hasta la pasada década de los años 90, cuando fue detectado por primera vez en la atmósfera de Júpiter y en otros objetos estelares. Del mismo modo que los trabajos espectroscópicos de laboratorio resultan indispensables para la posterior identificación de las especies observadas en el espacio, es de esperar que la asignación de los procesos cinéticos más importantes que tienen lugar en los plasmas generados en reactores de descarga, como los aquí presentados, permitan extrapolar los resultados así obtenidos al esclarecimiento de los mecanismos fisico-químicos participantes en otros medios observables únicamente a larga distancia.

  3. Role of hydrogen on the deposition and properties of fluorinated silicon-nitride films prepared by inductively coupled plasma enhanced chemical vapor deposition using SiF{sub 4}/N{sub 2}/H{sub 2} mixtures

    SciTech Connect

    Fandino, J.; Santana, G.; Rodriguez-Fernandez, L.; Cheang-Wong, J.C.; Ortiz, A.; Alonso, J.C.

    2005-03-01

    Fluorinated silicon-nitride films have been prepared at low temperature (250 deg. C) by remote plasma enhanced chemical vapor deposition using mixtures of SiF{sub 4}, N{sub 2}, Ar, and various H{sub 2} flow rates. The deposited films were characterized by means of single wavelength ellipsometry, infrared transmission, resonant nuclear reactions, Rutherford backscattering analysis, and current-voltage measurements. It was found that films deposited without hydrogen grow with the highest deposition rate, however, they result with the highest fluorine content ({approx}27 at. %) and excess of silicon (Si/N ratio{approx_equal}1.75). These films also have the lowest refractive index and the highest etch rate, and exhibit very poor dielectric properties. As a consequence of the high fluorine content, these films hydrolize rapidly upon exposure to the ambient moisture, forming Si-H and N-H bonds, however, they do not oxidize completely. The addition of hydrogen to the deposition process reduces the deposition rate but improves systematically the stability and insulating properties of the films by reducing the amount of both silicon and fluorine incorporated during growth. All the fluorinated silicon-nitride films deposited at hydrogen flow rates higher than 3.5 sccm resulted free of Si-H bonds. In spite of the fact that films obtained at the highest hydrogen flow rate used in this work are still silicon rich (Si/N ratio{approx_equal}1.0) and contain a considerable amount of fluorine ({approx}16 at. %), they are chemically stable and show acceptable dielectric properties.

  4. Genetic interactions between the Golgi Ca2+/H+ exchanger Gdt1 and the plasma membrane calcium channel Cch1/Mid1 in the regulation of calcium homeostasis, stress response and virulence in Candida albicans.

    PubMed

    Wang, Yanan; Wang, Junjun; Cheng, Jianqing; Xu, Dayong; Jiang, Linghuo

    2015-11-01

    The Golgi-localized Saccharomyces cerevisiae ScGdt1 is a member of the cation/Ca(2+) exchanger superfamily. We show here that Candida albicans CaGdt1 is the functional homolog of ScGdt1 in calcium sensitivity, and shows genetic interactions with CaCch1 or CaMid1 in response to ER stresses. In addition, similar to ScCCH1 and ScMID1, deletion of either CaCCH1 or CaMID1 leads to a growth sensitivity of cells to cold stress, which can be suppressed by deletion of CaGDT1. Furthermore, deletion of CaCCH1 leads to a severe delay in filamentation of C. albicans cells, and this defect is abolished by deletion of CaGDT1. In contrast, CaGDT1 does not show genetic interaction with CaMID1 in filamentation. Interestingly, C. albicans cells lacking both CaMID1 and CaGDT1 exhibit an intermediate virulence between C. albicans cells lacking CaCCH1 (non-virulent) and C. albicans cells lacking CaGDT1 (partially virulent), while C. albicans cells lacking both CaCCH1 and CaGDT1 are not virulent in a mouse model of systemic candidiasis. Therefore, CaGdt1 genetically interacts with the plasma membrane calcium channel, CaCch1/CaMid1, in the response of C. albicans cells to cold and ER stresses and antifungal drug challenge as well as in filamentation and virulence. PMID:26208803

  5. B2H6 PLAD Doped PMOS Device Performance

    SciTech Connect

    Fang, Z.; Miller, T.; Winder, E.; Persing, H.; Arevalo, E.; Gupta, A.; Parrill, T.; Singh, V.; Qin, S.; McTeer, A.

    2006-11-13

    Plasma doping (PLAD) achieves high wafer throughput by directly extracting ions across the plasma sheath. PLAD profiles are typically surface peaked instead of retrograde as obtained from beamline (BL) implant. It may require optimization of PLAD energy and dose in order to match BL doping results. From device optimization point of view, it is necessary to understand the impact of doping parameters to device characteristics. In this paper we present the PMOS device performance with the poly gate and source drain (SD) implants carried out using B2H6 PLAD. The BL control conditions are 2-5 keV 11B+ 4-6x1015 cm-2. Equivalent device performance for p+ poly gate doping is obtained using PLAD with B2H6 / H2. In SD doping using same gas mixture, nearly 50% reduction in SD contact resistance is observed in the PLAD splits. The reduction in SD contact resistance leads to 10-15% increase in device on-current, hence demonstrating the process advantages of using PLAD in addition to having a high wafer throughput.

  6. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  7. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  8. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  9. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  10. Adiabatic hyperspherical study of weakly bound He(2)H(-), He(2)H, and HeH(2) systems.

    PubMed

    Suno, Hiroya

    2010-06-14

    The He(2)H(-), He(2)H, and HeH(2) triatomic systems are studied using the adiabatic hyperspherical representation. By adopting the best empirical interaction potentials, we search for weakly bound states of (4)He(2) H(-), (4)He(2) H, and (4)HeH(2). We consider not only zero total nuclear orbital angular momentum, J=0, states but also J>0 states. We find no bound state for the (4)He(2) H systems, while the (4)He(2) H(-) and (4)HeH(2) systems are shown to possess three and one bound states, respectively, for J(Pi)=0(+). Interestingly, one bound state has been found each for the J(Pi)=1(-) and 2(+) symmetries of the (4)He(2) H(-) anion. We shall calculate the bound state energies and analyze the molecular structure of these species in detail. PMID:20550401

  11. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  12. McDonnell F2H-3 Banshee

    NASA Technical Reports Server (NTRS)

    1957-01-01

    McDonnell F2H-3 Banshee: To more clearly mark the operators of this McDonnell F2H-3 Banshee, the 'VY' of Navy has been painted out and the appropriate lettering to spell NACA has been applied. Note that the second 'A' is of a different shape than the first. The 'Banjo' retained Navy titles on the wings, however.

  13. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  14. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  15. [2H/H] Isotope ratio analyses of [2H5]cholesterol using high-temperature conversion elemental analyser isotope-ratio mass spectrometry: determination of cholesterol absorption in normocholesterolemic volunteers.

    PubMed

    Godin, Jean-Philippe; Richelle, Myriam; Metairon, Sylviane; Fay, Laurent-Bernard

    2004-01-01

    This paper validates the use of high-temperature conversion elemental analyser isotope-ratio mass spectrometry (TC-EA/IRMS) for measuring the [(2)H/H] enrichment of plasma [(2)H(5)]cholesterol. From a molecular point of view, the free cholesterol is initially separated from plasma by thin-layer chromatography (TLC) and then injected onto the TC-EA reactor which converts cholesterol molecules into CO and H(2) gases. The slope of the curve of the experimental mole percent excess (MPE((exp.))) versus MPE((theor.)) was very close to 1, demonstrating that no significant isotopic fractionation was observed during all processing of the samples (i.e., isolation of plasma free cholesterol by TLC and pyrolysis in the TC-EA reactor). Excellent linearity (r(2) = 0.9994, n = 4) of delta ( per thousand ) of [(2)H/H] isotopic measurements versus mole percent (MP) was assessed over the range 0 to 0.1 MP. The precision of the [(2)H/H] measurement, evaluated with two calibration points processed with TLC, was delta(2)H(V-SMOW) = -192.5 +/- 3.4 per thousand and delta(2)H(V-SMOW) = -136.9 +/- 2.9 per thousand. The standard deviations of the within-assay and between-assay repeatabilities of the analytical process, evaluated using the quality control (QC) of plasma samples, were 4.6 and 6.1 per thousand, respectively. Plant sterols are known to reduce cholesterol absorption and therefore were used as a positive control in a clinical study performed with normocholesterolemic volunteers. This present method produces biological results consistent with those already reported in the literature. PMID:14755619

  16. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  17. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  18. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  19. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  20. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  1. Conformation-Specific Infrared Spectroscopy of γ2-PEPTIDE Foldamers: Ac-γ2-hPhe-γ2-hAla-NHMe and Ac-γ2-hAla-γ2-hPhe-NHMe

    NASA Astrophysics Data System (ADS)

    James, William H., III; Buchanan, Evan G.; Müller, Christian W.; Zwier, Timothy S.; Guo, Li; Gellman, Samuel H.

    2010-06-01

    IR/UV double-resonance spectroscopy has been used to study the intrinsic conformational preferences of naturally occurring and synthetic peptides. These studies demonstrated the power of double-resonance methods and highlighted the ability of even short peptide mimics to form a variety of intramolecular hydrogen bonded architectures. Currently, we are extending these studies to a series of model γ2-peptides, which differ from α-peptides by virtue of having two additional, substitutable methylene units separating amide groups in the peptide backbone. Initial studies centered on the conformation-specific infrared spectra of Ac-γ2-hPhe-NHMe, where three unique conformational isomers (two hydrogen-bonded and one intramolecular amide stacked) were observed under the isolated-molecule conditions of a jet-cooled environment. This talk will focus on on two larger γ2-peptides, Ac-γ2-hPhe-γ2-hAla-NHMe and Ac-γ2-hAla-γ2-hPhe-NHMe. Utilizing resonant ion-dip infrared spectroscopy, the single-conformation infrared spectra of eight resolved conformers of the two molecules were recorded in the amide NH stretch region. The resulting infrared spectra of the tri-amides contain evidence for structures comprised of one, two, and three intramolecular amide-amide hydrogen bonds, the last of which is unprecedented for a tri-amide. In an effort to make firm conformational assignments, the spectroscopic data will be compared to the results of harmonic vibrational frequency calculations using traditional DFT and dispersion-corrected DFT methods, the results of which will be discussed.

  2. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  3. The infrared spectra of C2H4(+) and C2H3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2011-02-14

    When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species. PMID:21322694

  4. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. PMID:11878354

  5. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  6. Lattice Instability of 2H-TaSe2

    NASA Astrophysics Data System (ADS)

    John Bosco Balaguru, R.; Lawrence, N.; Alfred Cecil Raj, S.

    The charge density wave (CDW) in the layered compound 2H-TaSe2 at low temperatures has a commensurate phase, which causes super lattice points to appear in the Brillöuin zone of the undistorted phase. A Born-von Karman formalism has been employed for the calculation of phonon frequency distribution curves of 2H-TaSe2 both in the normal and in the commensurate charge density wave (CCDW) phases. A folding technique has been adopted for the calculation in the CCDW phase. The phonon distribution for both the phases have been reported. With these distributions the thermal properties such as specific heat capacity, Debye Waller factor W(k) and thermal conductivity have been worked out, and compared with the available experimental results.

  7. C(2)H(4) metabolism in morning glory flowers.

    PubMed

    Beyer, E M; Sundin, O

    1978-06-01

    Flowers of Ipomoea tricolor Cav. (cv. Heavenly Blue) were cut at various stages of development and evaluated for their ability to metabolize ethylene. Freshly cut buds or flowers were treated in glass containers for 8 hours with 6 mul/liter of highly purified (14)C(2)H(4). Following removal of dissolved (14)C(2)H(4), radioactivity was determined for the different flower tissues and trappd CO(2). (14)C(2)H(4) oxidation to (14)CO(2) and tissue incorporation occurred at very low to nondetectable levels 2 to 3 days prior to flower opening. About 1 day prior to full bloom, just at the time when mature buds become responsive to ethylene (Kende and Hanson, Plant Physiol 1976, 57: 523-527), there was a dramatic increase in the capacity of the buds to oxidize (14)C(2)H(4) to (14)CO(2). This activity continued to increase until the flower was fully opened reaching a peak activity of 2,500 dpm per three flowers per 8 hours. It then declined as the flower closed and rapidly senesced. A similar but smaller peak occurred in tissue incorporation and it was followed by a second peak during late flower senescence. This first peak in tissue incorporation and the dramatic peak in ethylene oxidation slightly preceded a large peak of natural ethylene production which accompanied flower senescence. The ethylene metabolism observed was clearly dependent on cellular metabolism and did not involve microorganisms since heat killing destroyed this activity and badly contaminated heat-killed flowers were unable to metabolize ethylene. PMID:16660421

  8. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  9. 2H Evaporator CP class instrumentation uncertainties evaluations

    SciTech Connect

    Hwang, E.

    1994-02-10

    The Evaporator Pot Temperature Instrumentations and the Steam Condensate Gamma Monitors are two instrumentation systems in the 2H Evaporator facilities that are classified as the critical protection. The temperature high alarm and interlock circuit and the temperature recorder circuit of the pot temperature instrumentation loop are described. From the gamma monitor loop, the high gamma alarm and interlock circuit, failure alarm and interlock circuit, cesium activity recorder circuit, and americium activity recorder circuit are described. (GHH)

  10. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  11. CO2/H(+) sensing: peripheral and central chemoreception.

    PubMed

    Lahiri, Sukhamay; Forster, Robert E

    2003-10-01

    H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter. In order to do this, sensors for H(+) in the internal environment are needed. The sensor-receptor is CO2/H(+) sensing. The sensor-receptor is coupled to integrate and to maintain the body's chemical environment at equilibrium. This chapter dwells on this theme of constancy of H(+) of the blood and of the other internal environments. [H(+)] is regulated jointly by respiratory and renal systems. The respiratory response to [H(+)] originates from the activities of two groups of chemoreceptors in two separate body fluid compartments: (A) carotid and aortic bodies which sense arterial P(O2) and H(+); and (B) the medullary H(+) receptors on the ventrolateral medulla of the central nervous system (CNS). The arterial chemoreceptors function to maintain arterial P(O2) and H(+) constant, and medullary H(+) receptors to maintain H(+) of the brain fluid constant. Any acute change of H(+) in these compartments is taken care of almost instantly by pulmonary ventilation, and slowly by the kidney. This general theme is considered in Section 1. The general principles involving cellular CO2 reactions mediated by carbonic anhydrase (CA), transport of CO2 and H(+) are described in Section 2. Since the rest of the chapter is dependent on these key mechanisms, they are given in detail, including the role of Jacobs-Stewart Cycle and its interaction with carbonic anhydrase. Also, this section deals briefly with the mechanisms of membrane depolarization of the chemoreceptor cells because this is one mechanism on which the responses depend. The metabolic impact of endogenous CO2 appears in the section with a historical twist, in the context of acclimatization to high altitude (Section 3). Because low P(O2) at high altitude stimulates

  12. Theoretical kinetics of O + C2H4

    DOE PAGESBeta

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; Miller, James A.; Klippenstein, Stephen J.

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  13. Rotational spectroscopy of 2H,3H-perfluoropentane

    NASA Astrophysics Data System (ADS)

    Duong, Chinh H.; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.

    2016-06-01

    The structure of 2H,3H-perfluoropentane, CF3CHFCHFCF2CF3, has been determine by a combination of Chirp-pulsed Fourier transform microwave (CP-FTMW) spectroscopy and cavity FTMW spectroscopy. Of the four possible stereoisomers, only the enantiomeric pair (R,R)/(S,S) were observed experimentally; there was no spectroscopic evidence for the enantiomeric pair (R,S)/(S,R). The conformeric structure of the (R,R)/(S,S) stereoisomer(s) was that of partial helices with C-C-C-C dihedral angles of 12° (helical) and 1° (staggered).

  14. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  15. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  16. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  17. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6.

    PubMed

    Li, Peng; He, Yabing; Arman, Hadi D; Krishna, Rajamani; Wang, Hailong; Weng, Linhong; Chen, Banglin

    2014-11-01

    A unique six-fold interpenetrated hydrogen-bonded organic framework (HOF) has been developed, for the first time, for highly selective separation of C2H4/C2H6 at room temperature and normal pressure. PMID:25223376

  18. Phospholipase D2 Modulates the Secretory Pathway in RBL-2H3 Mast Cells

    PubMed Central

    Marchini-Alves, Claudia Maria Meirelles; Barbosa Lorenzi, Valeria Cintra; da Silva, Elaine Zayas Marcelino; Mazucato, Vivian Marino; Jamur, Maria Celia; Oliver, Constance

    2015-01-01

    Phospholipase D (PLD) hydrolyses phosphatidylcholine to produce phosphatidic acid (PA) and choline. It has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type. In mast cells it plays an important role in signal transduction. The aim of the present study was to clarify the role of PLD2 in the secretory pathway. RBL-2H3 cells, a mast cell line, transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2 were used. Previous observations showed that the Golgi complex was well organized in CA cells, but was disorganized and dispersed in CI cells. Furthermore, in CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized. These previous observations demonstrated that PLD2 is important for maintaining the morphology and organization of the Golgi complex. To further understand the role of PLD2 in secretory and vesicular trafficking, the role of PLD2 in the secretory process was investigated. Incorporation of sialic acid was used to follow the synthesis and transport of glycoconjugates in the cell lines. The modified sialic acid was subsequently detected by labeling with a fluorophore or biotin to visualize the localization of the molecule after a pulse-chase for various times. Glycoconjugate trafficking was slower in the CI cells and labeled glycans took longer to reach the plasma membrane. Furthermore, in CI cells sialic acid glycans remained at the plasma membrane for longer periods of time compared to RBL-2H3 cells. These results suggest that PLD2 activity plays an important role in regulating glycoconjugate trafficking in mast cells. PMID:26492088

  19. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  20. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  1. Detailed Studies of Hydrocarbon Radicals: C2H Dissociation

    SciTech Connect

    Wittig, Curt

    2014-10-06

    A novel experimental technique was examined whose goal was the ejection of radical species into the gas phase from a platform (film) of cold non-reactive material. The underlying principle was one of photo-initiated heat release in a stratum that lies below a layer of CO2 or a layer of amorphous solid water (ASW) and CO2. A molecular precursor to the radical species of interest is deposited near or on the film's surface, where it can be photo-dissociated. It proved unfeasible to avoid the rampant formation of fissures, as opposed to large "flakes." This led to many interesting results, but resulted in our aborting the scheme as a means of launching cold C2H radical into the gas phase. A journal article resulted that is germane to astrophysics but not combustion chemistry.

  2. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  3. Study of the $\\tau^- to 3h^- 2h^+ \

    SciTech Connect

    Aubert, Bernard; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /more authors..

    2005-05-04

    The branching fraction of the {tau}{sup -} {yields} 3h{sup -} 2h{sup +} {nu}{sub {tau}} decay (h = {pi}, K) is measured with the BABAR detector to be (8.56 {+-} 0.05 {+-} 0.42) x 10{sup -4}, where the first error is statistical and the second systematic. The observed structure of this decay is significantly different from the phase space prediction, with the {rho} resonance playing a strong role. The decay {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -}{nu}{sub {tau}}, with the f{sub 1}(1285) meson decaying to four charged pions, is observed and the branching fraction is measured to be (3.9 {+-} 0.7 {+-} 0.5) x 10{sup -4}.

  4. The ultraviolet spectrum of Herbig-Haro object 2H

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Seab, C. G.; Shull, J. M.

    1982-01-01

    IUE spectra of Herbig-Haro object 2H are presented. The spectra show a strong 'excess' UV continuum and prominent emission lines of C, N, O, Si, Mg, and possibly Al. The continuum, F(lambda), exhibits a turnover shortward of about 1450 A, confirming for the first time the H0 two-photon nature of the emission source. A possible absorption feature near 1680 A, which could result from a new grain or molecular constituent in these protostellar objects is also noted. Recently computed models of steady shocks into partially ionized gas reproduce the two-photon spectral shape, but its observed intensity relative to H-beta and the Balmer continuum is anomalously high. It is suggested that a range of shock velocities, 70-100 km/s, or nonsteady, 'truncated' shocks may be responsible. Future high-sensitivity UV observations of HH objects may be used to probe grain extinction curves in star-forming regions.

  5. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  6. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  7. Study of the reactions /sup 2/H(d, p)/sup 3/H and /sup 2/H(d,n)/sup 3/He with a polarized deuteron beam. Extrapolation of the cross sections to the low-energy region

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Bragin, V.N.

    1981-05-01

    On the basis of analysis of experimental data on the vector analyzing power of the nuclear reactions /sup 2/H(d,p)/sup 3/H and /sup 2/H(d,n)/sup 3/He and data on the total cross sections for these reactions at energies from 13 to 485 keV we have separated the total cross sections into partial cross sections for s and p waves and have calculated the total cross sections for very low energies down to 0.3 keV. For these same reactions we have calculated the intensities of production of energetic products in a heated deuterium plasma. A formula for practical calculations of this intensity is obtained.

  8. 2F and 2H evaporator loop evaluation closure report

    SciTech Connect

    Bates, W.F.

    1994-01-28

    As a result of the Concentrate Transfer System (CTS) tank ventilation system contamination event, a task team was formed to evaluate instrument loops associated with waste reduction equipment. During the event a conductivity probe designed to provide an alarm and initiate an interlock failed to respond to the presence of liquid. An investigation revealed that the probe had become disconnected from the loop. The daily functional check of the conductivity probe circuit only tested the circuit continuity from the ventilation unit to the control room and did not actually test the probe. To test the continuity, a test switch was used to simulate the conducting probe. Because the functional check did not test each part of the loop, the test could be satisfactorily completed even though the probe itself was inoperable. The function of the task team was to develop a list of loops and interlocks prioritized by importance and likelihood of similar failure. The team evaluated the associated loop calibration and functional test procedures to verify that they are adequate to ensure loop performance on a periodic frequency. This report documents the evaluation findings and associated actions required prior to startup of the 2F and 2H evaporators.

  9. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  10. Electron paramagnetic resonance spectra and structures of Cu(C sub 2 H sub 4 ), Cu(C sub 2 H sub 4 ) sub 2 , and Cu(C sub 2 H sub 4 ) sub 3 in hydrocarbon matrices

    SciTech Connect

    Howard, J.A.; Joly, H.A.; Mile, B. )

    1990-02-22

    Two mononuclear {pi}-complexes, Cu(C{sub 2}H{sub 4}) and Cu(C{sub 2}H{sub 4}){sub 2}, have been positively identified by EPR spectroscopy from reaction of Cu atoms and ethylene at 77 K in inert hydrocarbon matrices on a rotating cryostat. The spectra of these copper(O) complexes are consistent with dative bonding for both species and with a C{sub 2v} structure for Cu(C{sub 2}H{sub 4}) and a D{sub 2h} structure for Cu(C{sub 2}H{sub 4}){sub 2}. Spectra of Cu({sup 13}CH{sub 2}CH{sub 2}) and Cu({sup 13}CH{sub 2}CH{sub 2}){sub 2} are consistent with these assignments. A third complex is formed in both adamantane and cyclohexane that could be Cu(C{sub 2}H{sub 4}){sub 2} with a structure other than D{sub 2h} but is more likely to be the mononuclear trisligand complex Cu(C{sub 2}H{sub 4}){sub 3} with a D{sub 3h} structure. In the absence of a well-resolved isotropic spectrum of Cu({sup 13}CH{sub 2}CH{sub 2}){sub 3}, this assignment must however be taken as tentative.

  11. Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Glatthor, N.; Höpfner, M.; Grabowski, U.; Kellmann, S.; Linden, A.; Stiller, G.; von Clarmann, T.

    2011-08-01

    Vertical profiles of mixing ratios of C2H6, C2H2, HCN, and PAN were retrieved from MIPAS reduced spectral resolution nominal mode limb emission measurements. The retrieval strategy followed that of the analysis of MIPAS high resolution measurements, with occasional adjustments to cope with the reduced spectral resolution under which MIPAS is operated since 2005. Largest mixing ratios are found in the troposphere, and reach 1.2 ppbv for C2H6, 1 ppbv for HCN, 600 pptv for PAN, and 450 pptv for C2H2. The estimated precision in case of significantly enhanced mixing ratios (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 10 %, 3-4.5 km for C2H6, 15 %, 4-6 km for HCN, 6 %, 2.5-3.5 km for PAN, and 7 %, 2.5-4 km for C2H2.

  12. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface.

    PubMed

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H

    2016-05-21

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values. PMID:27208951

  13. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  14. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  15. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H.

    2016-05-01

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  16. Electron capture processes in Li2+ + H collisions

    NASA Astrophysics Data System (ADS)

    Yan, Ling Ling; Liu, Ling; Wang, Jian Guo; Janev, Ratko K.; Buenker, Robert J.

    2015-01-01

    The electron capture processes in Li2 + + H collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method in the energy ranges of 10-8-10 keV/u and 0.1-300 keV/u, respectively. The capture to singlet and triplet systems of states of Li+(1 s,n l 2S + 1L) is considered separately. Total, n,S-resolved and n,l,S-resolved electron capture cross sections are calculated and compared with the results of available experimental and theoretical studies. The present calculations show that the n = 2 shell of Li+ is the main capture channel for all energies considered in both the singlet and triplet case. While for collision energies E> 5 keV/u, the cross sections for capture to the n = 2 manifold are of the same order of magnitude for both the singlet and triplet states (with the 2 p capture cross section being dominant), for energies below ~5 keV/u the cross sections for capture to the n = 2 triplet manifold is significantly (more than three orders of magnitude at 0.1 keV/u) larger than that for capture to the n = 2 singlet manifold of states (with the 2 s capture cross section being dominant). The capture dynamics at low collision energies is discussed in considerable detail, revealing the important role of rotational couplings in population of l> 0 capture states. The elastic scattering processes have been studied as well in the energy range of 10-8-1 keV/u. The calculated elastic scattering cross section is much larger than the electron capture cross section in both the singlet and triplet case. However, as the collision energy increases, the difference between the elastic and electron capture cross sections decreases rapidly.

  17. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  18. Ab initio chemical kinetic study for reactions of H atoms with SiH(4) and Si(2)H(6): comparison of theory and experiment.

    PubMed

    Wu, S Y; Raghunath, P; Wu, J S; Lin, M C

    2010-01-14

    The reactions of hydrogen atom with silane and disilane are relevant to the understanding of catalytic chemical vapor deposition (Cat-CVD) and plasma enhanced chemical vapor deposition (PECVD) processes. In the present study, these reactions have been investigated by means of ab initio molecular-orbital and transition-state theory calculations. In both reactions, the most favorable pathway was found to be the H abstraction leading to the formation of SiH(3) and Si(2)H(5) products, with 5.1 and 4.0 kca/mol barriers, respectively. For H + Si(2)H(6), another possible reaction pathway giving SiH(3) + SiH(4) may take place with two different mechanisms with 4.3 and 6.7 kcal/mol barriers for H-atom attacking side-way and end-on, respectively. To validate the calculated energies of the reactions, two isodesmic reactions, SiH(3)+CH(4)-->SiH(4)+CH(3) and Si(2)H(5)+C(2)H(6)-->Si(2)H(6)+C(2)H(5) were employed; the predicted heats of the formation for SiH(3) (49.0 kcal/mol) and Si(2)H(5) (58.6 kcal/mol) were found to agree well with the experimental data. Finally, rate constants for both H-abstraction reactions predicted in the range of 290-2500 K agree well with experimental data. The result also shows that H+Si(2)H(6) producing H(2)+Si(2)H(5) is more favorable than SiH(3)+SiH(4.). PMID:19938820

  19. Electron swarm parameters in pure C2H2 and in C2H2-Ar mixtures and electron collision cross sections for the C2H2 molecule

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshiharu

    2010-09-01

    Electron swarm parameters (the drift velocity and the longitudinal diffusion coefficient) were measured in pure C2H2 and also in C2H2-Ar mixtures containing 0.517% and 5.06% acetylene over wide E/N ranges. These swarm parameters were analysed using a Boltzmann equation analysis and a set of electron collision cross sections for the C2H2 molecule was derived so that it was consistent with the present swarm data and published ionization coefficient. The present result suggested the presence of a Ramsauer-Townsend minimum in the elastic momentum transfer cross section at 0.08 eV and prominent threshold and resonance peaks in the ν4/ν5 vibrational excitation cross section. The present cross section set was also confirmed to be consistent with the published experimental total cross section of C2H2.

  20. Leucine kinetics from (2H3)- and ( sup 13 C)leucine infused simultaneously by gut and vein

    SciTech Connect

    Hoerr, R.A.; Matthews, D.E.; Bier, D.M.; Young, V.R. )

    1991-01-01

    In amino acid tracer kinetic studies of the fed state, ingested amino acid may be taken up during its initial transit through splanchnic tissues and thus not enter the plasma compartment where tracer is infused. To investigate this possibility, adult human subjects received simultaneous intravenous (iv) and intragastric (ig) leucine tracer infusions, first during a postabsorptive (PA) 4-h primed continuous ig infusion of L-(1-13C)-leucine and L-(5,5,5-2H3)leucine iv, followed on a separate day by a fed infusion, in which an ig infusion of a liquid formula was started 2 h before the tracer infusion and continued throughout the tracer study. Subjects were accustomed to a constant experimental diet supplying 1.5 g protein.kg-1.day-1 and 41-45 kcal.kg-1.day-1 for 7 and 12 days before the PA and fed studies, respectively. For the PA study, plasma enrichment for the ig tracer was 3.34 +/- 0.27 (SE) mol + excess and for the iv tracer it was 4.18 +/- 0.10 (P less than 0.02). Enrichments of alpha-keto-isocaproic acid (KIC) were 3.24 +/- 0.16 (ig) and 3.02 +/- 0.14 (iv), respectively (not significant (NS)). For the fed study, plasma leucine enrichment for the ig tracer was 2.15 +/- 0.14 and for the iv tracer was 2.84 +/- 0.09 (P less than 0.02). KIC enrichments were 2.02 +/- 0.08 (ig) and 2.24 +/- 0.08 (iv), respectively (NS). In the PA study, the ratio of the plasma leucine enrichments for the ig and iv tracers was 0.80 +/- 0.06 and in the fed experiment, 0.76 +/- 0.05, respectively.

  1. Central nervous system dysfunction in a mouse model of FA2H deficiency.

    PubMed

    Potter, Kathleen A; Kern, Michael J; Fullbright, George; Bielawski, Jacek; Scherer, Steven S; Yum, Sabrina W; Li, Jian J; Cheng, Hua; Han, Xianlin; Venkata, Jagadish Kummetha; Khan, P Akbar Ali; Rohrer, Bärbel; Hama, Hiroko

    2011-07-01

    Fatty acid 2-hydroxylase (FA2H) is responsible for the synthesis of myelin galactolipids containing hydroxy fatty acid (hFA) as the N-acyl chain. Mutations in the FA2H gene cause leukodystrophy, spastic paraplegia, and neurodegeneration with brain iron accumulation. Using the Cre-lox system, we developed two types of mouse mutants, Fa2h(-/-) mice (Fa2h deleted in all cells by germline deletion) and Fa2h(flox/flox) Cnp1-Cre mice (Fa2h deleted only in oligodendrocytes and Schwann cells). We found significant demyelination, profound axonal loss, and abnormally enlarged axons in the CNS of Fa2h(-/-) mice at 12 months of age, while structure and function of peripheral nerves were largely unaffected. Fa2h(-/-) mice also exhibited histological and functional disruption in the cerebellum at 12 months of age. In a time course study, significant deterioration of cerebellar function was first detected at 7 months of age. Further behavioral assessments in water T-maze and Morris water maze tasks revealed significant deficits in spatial learning and memory at 4 months of age. These data suggest that various regions of the CNS are functionally compromised in young adult Fa2h(-/-) mice. The cerebellar deficits in 12-month-old Fa2h(flox/flox) Cnp1-Cre mice were indistinguishable from Fa2h(-/-) mice, indicating that these phenotypes likely stem from the lack of myelin hFA-galactolipids. In contrast, Fa2h(flox/flox) Cnp1-Cre mice did not show reduced performance in water maze tasks, indicating that oligodendrocytes are not involved in the learning and memory deficits found in Fa2h(-/-) mice. These findings provide the first evidence that FA2H has an important function outside of oligodendrocytes in the CNS. PMID:21491498

  2. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  3. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  4. Isotope Substitution Effect in Polyatomic Molecules on the Example of 13C2H4 ← 12C2H4 Substitution

    NASA Astrophysics Data System (ADS)

    Bekhtereva, E. S.; Gromova, O. V.; Berezkin, K. B.; Kashirina, N. V.; Konov, I. A.; Bauerecker, S.

    2016-03-01

    General points of the theory of isotope substitution are applied to an analysis of the isotope substitution effect for the substitution 13C2H4←12C2H4 in the ethylene molecule. On the basis of the isotope relations so obtained, numerical predictions of band centers and the most significant rotational, centrifugal, and resonance parameters are made here for the first time for the four lower vibrational states of the 13C2H4 molecule, which can be used to analyze the complicated vibrational-rotational structure of the above-mentioned vibrational states.

  5. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    SciTech Connect

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E. )

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.

  6. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  7. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index. PMID:21932909

  8. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  9. Antioxidative activities of 4-hydroxy-3(2H)-furanones and their anti-cataract effect on spontaneous cataract rat (ICR/f).

    PubMed

    Sasaki, T; Yamakoshi, J; Saito, M; Kasai, K; Matsudo, T; Koga, T; Mori, K

    1998-10-01

    We determined the anti-cataract effects and antioxidative activities of four 4-hydroxy-3(2H)-furanones. These four furanones showed similar antioxidative activities in the ferric ion reduction model. 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone (EHMF) exhibited a higher suppression effect on lipid peroxidation in human plasma than the other furanones did. The effects of hydroxy furanones on the onset of cataract in spontaneous cataract rat (ICR/f rat) were tested, and it was observed that HDMF and EHMF inhibited cataract formation. These results suggest that the antioxidative activity of HDMF and EHMF against superoxide radicals in lens tissue contributed to inhibiting the onset of spontaneous cataract. PMID:9836421

  10. The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4).

    PubMed

    Parker, D S N; Mebel, A M; Kaiser, R I

    2014-04-21

    The classification of chemical reactions based on shared characteristics is at the heart of the chemical sciences, and is well exemplified by Langmuir's concept of isovalency, in which 'two molecular entities with the same number of valence electrons have similar chemistries'. Within this account we further investigate the ramifications of the isovalency of four radicals with the same X(2)Σ(+) electronic structure - cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact that these four reactants own the same X(2)Σ(+) electronic ground state should dictate the outcome of their reactions with prototypical hydrocarbons holding a carbon-carbon triple and double bond. However, we find that other factors come into play, namely, atomic radii, bonding orbital overlaps, and preferential location of the radical site. These doublet radical reactions with simple hydrocarbons play significant roles in extreme environments such as the interstellar medium and planetary atmospheres (CN, SiN and C2H), and combustion flames (C2H, BO). PMID:24418936

  11. Fabrication and tests of 3He and 2H targets for beam polarization measurement

    PubMed

    Naqvi; Aksoy; Nagadi; Al-Ohali; Kidwai; Fageeha

    2000-09-01

    3He and 2H targets were fabricated through implantation of 3He and 2H ions in 0.2-0.3 mm thick tantalum and titanium foils. The energy of 3He and 2H ions was 45-100 and 78 keV, respectively. Ions beams with typical current of 90-300 microA were used for implantation. Stability tests of 3He and 2H targets were carried out by monitoring the yield of 3He(d, p)4He and 2H(d, p)3H reactions. For the 3He target, the reaction yield was stable for both tantalum and titanium foils but the most stabilized maximum yield was observed for the 100 keV tantalum target. In the case of 2H targets, the yield increased with increasing total dose implanted on the target. PMID:10972150

  12. Structure, phase transitions, dielectric and spectroscopic studies of the 2-aminopyrimidinium salts: [(2-NH 2C 4N 2H 3) 2H][ClO 4] and [2-NH 2C 4N 2H 4][BF 4

    NASA Astrophysics Data System (ADS)

    Czupiński, O.; Wojtaś, M.; Ciunik, Z.; Jakubas, R.

    2006-01-01

    Crystal structure of the 2-aminopyrimidinium derivatives: [(2-NH 2C 4N 2H 3) 2H][ClO 4] (I) and [2-NH 2C 4N 2H 4][BF 4] (II) has been determined at 100 K (I) and 293 K (II) by means of single crystal X-ray diffraction as monoclinic space group, P2/c and P2/n, respectively. The asymmetric part of the unit cell of (I) contains two symmetry independent 2-aminopyrimidine forming one dimeric cation and one disordered perchlorate anion. The structure of (II) consists of 2-aminopyrimidinium cation, [2-NH 2C 4N 2H 4] +, protonated at a pyrimidine ring-N atom and [BF 4] - anion. Differential scanning calorimetry (DSC) on perchlorate derivative ( 1:1), [2-NH 2C 4N 2H 3][ClO 4] (III)—being isomorphic to tetrafluoroborate one (I) at room temperature, reveals two phase transitions of first order: at 250/275 K and 390/410 K (cooling-heating, respectively), whereas the analog (II) only one transition at high temperatures—343/385 K. The dielectric studies in the frequency range 75 kHz - 10 MHz disclose relaxation process at high temperatures in salt (I). Infrared spectra of polycrystalline [2-NH 2C 4N 2H 4][BF 4] have been studied in the temperature range 300-420 K. Substantial changes in the temperature evolution of frequencies of internal modes of the 2-aminopyrimidinium cations and [BF 4] - anions near 390 K are due to the variations in the motion of both moieties and hydrogen bond configuration. The experimental studies indicate that all phase transitions taking place in studied 2-aminopyrimidinium derivatives are classified as an order-disorder.

  13. The SNF2H Chromatin Remodeling Enzyme Has Opposing Effects on Cytokine Gene Expression

    PubMed Central

    Precht, Patricia; Wurster, Andrea L.; Pazin, Michael J.

    2010-01-01

    Cytokine gene expression is a key control point in the function of the immune system. Cytokine gene regulation is linked to changes in chromatin structure; however, little is known about the remodeling enzymes mediating these changes. Here we investigated the role of the ATP-dependent chromatin remodeling enzyme SNF2H in mouse T cells; to date, SNF2H has not been investigated in T cells. We found that SNF2H repressed expression of IL-2 and other cytokines in activated cells. By contrast, SNF2H activated expression of IL-3. The ISWI components SNF2H and ACF1 bound to the tested loci, suggesting the regulation was direct. SNF2H decreased accessibility at some binding sites within the IL2 locus, and increased accessibility within some IL3 binding sites. The changes in gene expression positively correlated with accessibility changes, suggesting a simple model that accessibility enables transcription. We also found that loss of the ISWI ATPase SNF2H reduced binding to target genes and protein expression of ACF1, a binding partner for SNF2H, suggesting complex formation stabilized ACF1. Together, these findings reveal a direct role for SNF2H in both repression and activation of cytokine genes. PMID:20471682

  14. Chemical behavior of the gas-phase pentacoordinated carbonium ion, C2H+7

    NASA Astrophysics Data System (ADS)

    Heck, Albert J. R.; de Koning, Leo J.; Nibbering, Nico M. M.

    1992-09-01

    The uni- and bimolecular chemistry of C2H+7 ions have been studied in the gas phase using the methods of sector and Fourier transform ion cyclotron resonance mass spectrometry. Unimolecular decomposition of the C2H+7 ions predominantly shows the elimination of a hydrogen molecule which proceeds without a significant kinetic energy release. However, the elimination of a hydrogen molecule is found to suffer from a very large isotope effect, which has been rationalized by the difference in Gibbs free energy change for H2, HD and D2 loss from the various isotopomers of protonated ethane. In general, long-lived C2H+7 ions can be generated either by proton transfer to ethane, methyl cation transfer to methane or by association of C2H+5 and H2. Conversely, C2H+7 ions can react as a proton or a methyl cation donor, or eliminate an H2 molecule. In contrast to CH+5, C2H+7 displays an ambident chemical behavior, which shows a balanced competition between a proton and a methyl cation donor. Both the uni- and bimolecular reactivity of C2H+7 reveal that the proton accepted in an exothermic protonation of ethane randomizes with the original hydrogen atoms of ethane. This intramolecular randomization is found to be a very fast process which precedes decomposition of the metastable C2H+7 ions as well as the bimolecular processes of the long-lived C2H+7 ions.

  15. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Yanan; Qin, Juanxiu; Liu, Qian; Hong, Xufen; Li, Tianming; Zhu, Yuanjun; He, Lei; Zheng, Bing; Li, Min

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has an extremely poor prognosis. Surgical resection is always inapplicable to HCC patients diagnosed at an advanced tumor stage. The mechanisms underlying HCC cell proliferation remain obscure. In the present study, SWItch/sucrose nonfermentable catalytic subunit SNF2 (SNF2H) expression was tested in HCC tissues and Wnt/β-catenin pathway activation upon overexpression of SNF2H or knockdown of SNF2H expression was investigated in cultured HCC cells. It was demonstrated that SNF2H is a vital factor for HCC growth. The SNF2H expression level is increased in HCC tissues compared with paratumoral liver tissues. SNF2H promotes HCC cell proliferation and colony formation ability in vitro. SNF2H may increase the protein level of β-catenin and enhance its nuclear accumulation in HCC cells, thereby leading to the activation of the Wnt/β-catenin signaling pathway. In conclusion, the present results indicate that SNF2H plays a vital role in HCC cell growth, suggesting that SNF2H may be a promising therapeutic target for HCC treatment. PMID:27446433

  16. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  17. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures

    SciTech Connect

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; Keudell, A. von

    2007-05-15

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250 {mu}m. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56 MHz, and rms voltages around 200-250 V and rms currents of 0.4-0.6 A are obtained. Electron densities around 8x10{sup 20} m{sup -3} and gas temperatures lower than 400 K have been measured using optical emission spectroscopy for main flows of 3 slm and inner capillary flows of 160 SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C{sub 2} bands. The ratio of these two species follows different trends with the amount of precursor for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures, showing the presence of distinct chemistries in each of them. In Ar/C{sub 2}H{sub 2} plasmas, CH{sub x} species are produced mainly by electron impact dissociation of C{sub 2}H{sub 2} molecules, and the CH{sub x}/C{sub 2}H{sub x} ratio is independent of the precursor amount. In Ar/CH{sub 4} mixtures, C{sub 2}H{sub x} species are formed mainly by recombination of CH{sub x} species through three-body reactions, so that the CH{sub x}/C{sub 2}H{sub x} ratio depends on the amount of CH{sub 4} present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  18. 77 FR 74283 - Clearing Requirement Determination Under Section 2(h) of the CEA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ...\\ Clearing Requirement Determination Under Section 2(h) of the CEA; Proposed Rule, 77 FR 47170 (Aug. 7, 2012... to Trade Under Section 2(h)(8) of the Commodity Exchange Act, 76 FR 77728 (Dec. 14, 2011). Clearing... FR 44464 (July 26, 2011); 17 CFR 39.5. The determinations and rules adopted in this release...

  19. Hexapole-selected supersonic beams of reactive radicals: CF3, SiF3, SH, CH, and C2H

    NASA Astrophysics Data System (ADS)

    Weibel, Michael A.; Hain, Toby D.; Curtiss, Thomas J.

    1998-02-01

    A supersonic corona discharge source was used to produce molecular beams of plasma particles. Neutral, polar components of the plasma mixture were selectively focused by an electrostatic hexapole, thereby "simplifying" the chemical and rotational state composition of the beam. Careful choice of a radical precursor, combined with control of discharge and hexapole voltage allowed the production of pure beams of CF3, SiF3, and SH (purity typically better than 90%), with no noticeable signal arising from undissociated precursor, ions, or other radicals. Focused beams from a hydrocarbon plasma contained a radical mixture of predominantly CH and C2H. Radical beams were characterized by rotationally and translationally cold temperatures (typically TR<20 K and TS<20 K, respectively) and high intensities (typically 1011-1012cm-2 s-1). Simulated focusing spectra using classical trajectory calculations showed generally good agreement with the experimental data, leading to the first experimental measurement of the permanent electric dipole moment of SiF3 (μ=1.2±0.1 D).

  20. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  1. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains. PMID:27207144

  2. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  3. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  4. Bi(OTf)3-catalyzed addition of isocyanides to 2H-chromene acetals: an efficient pathway for accessing 2-carboxamide-2H-chromenes.

    PubMed

    Lyu, Longyun; Jin, Ming Yu; He, Qijie; Xie, Han; Bian, Zhaoxiang; Wang, Jun

    2016-09-14

    Bismuth triflate (Bi(OTf)3) is identified as an efficient catalyst for the direct addition of isocyanides to 2H-chromene acetals. The large scope of isocyanides and chromene acetals makes them suitable substrates in this catalytic system. By this synthetic strategy, a polyfunctional molecular scaffold, 2-carboxamide-2H-chromenes could be prepared efficiently in one step up to 95% yield. In addition, this efficient and practical protocol proceeded smoothly in the gram scale even when the catalytic loading was reduced to 2 mol%. PMID:27503764

  5. Hydrogen bridging in the compounds X2H (X=Al,Si,P,S)

    NASA Astrophysics Data System (ADS)

    Owens, Zachary T.; Larkin, Joseph D.; Schaefer, Henry F.

    2006-10-01

    X2H hydrides (X =Al, Si, P, and S) have been investigated using coupled cluster theory with single, double, and triple excitations, the latter incorporated as a perturbative correction [CCSD(T)]. These were performed utilizing a series of correlation-consistent basis sets augmented with diffuse functions (aug-cc-pVXZ, X =D, T, and Q). Al2H and Si2H are determined to have H-bridged C2v structures in their ground states: the Al2H ground state is of B12 symmetry with an Al-H-Al angle of 87.6°, and the Si2H ground state is of A12 symmetry with a Si-H-Si angle of 79.8°. However, P2H and S2H have nonbridged, bent Cs structures: the P2H ground state is of A'2 symmetry with a P-P-H angle of 97.0°, and the S2H ground state is of A'2 symmetry with a S-S-H angle of 93.2°. Ground state geometries, vibrational frequencies, and electron affinities have been computed at all levels of theory. Our CCSD(T)/aug-cc-pVQZ adiabatic electron affinity of 2.34eV for the Si2H radical is in excellent agreement with the photoelectron spectroscopy experiments of Xu et al. [J. Chem. Phys. 108, 7645 (1998)], where the electron affinity was determined to be 2.31±0.01eV.

  6. Fluid resuscitation with O2 vs. non-O2 carriers after 2 h of hemorrhagic shock in conscious hamsters.

    PubMed

    Kerger, H; Tsai, A G; Saltzman, D J; Winslow, R M; Intaglietta, M

    1997-01-01

    Efficacy of a cell-free o-raffinose cross-linked and oligomerized hemoglobin (Hemo-link) solution in restoring macro- and microcirculatory conditions after 2 h of hemorrhagic shock (40 mmHg) was compared with conventional treatment with autologous whole blood, Ringer lactate (RL), and Dextran 70. Studies were conducted in the dorsal skinfold microcirculation of conscious hamsters. Initial infusion was equivalent to shed blood volume (SBV) for RL and 50% of SBV for remaining solutions. After 2 h all animals received blood at 50% of SBV. Vessel diameter, functional capillary density, microvascular red blood cell velocity, and flow were measured. Arteriolar, venular, and tissue PO2 were determined by phosphorescence decay. Systemic parameters included mean arterial blood pressure, heart rate, arterial blood gases, pH, and base excess. Autologous whole blood and Hemolink, but not Dextran 70 and RL, restored mean arterial blood pressure, systemic blood gas, and metabolic parameters. Tissue PO2 recovered to 40-50% with blood and Hemolink but remained significantly lower (10-15% of control) with Dextran 70 and RL. Initial volume replacement after shock with blood or Hemolink yields equivalent macro- and microhemodynamic improvements not attainable with non-O2-carrying plasma expanders. PMID:9038975

  7. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  8. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation.

    PubMed

    He, Shuying; Limi, Saima; McGreal, Rebecca S; Xie, Qing; Brennan, Lisa A; Kantorow, Wanda Lee; Kokavec, Juraj; Majumdar, Romit; Hou, Harry; Edelmann, Winfried; Liu, Wei; Ashery-Padan, Ruth; Zavadil, Jiri; Kantorow, Marc; Skoultchi, Arthur I; Stopka, Tomas; Cvekl, Ales

    2016-06-01

    Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIβ, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation. PMID:27246713

  9. Absorption of 3(2H)-furanones by human intestinal epithelial Caco-2 cells.

    PubMed

    Stadler, Nicole Christina; Somoza, Veronika; Schwab, Wilfried

    2009-05-13

    A number of 3(2H)-furanones are synthesized by fruits and have been found in cooked foodstuffs, where they impart flavor and odor because of their low perception thresholds. They show genotoxic properties in model studies but are also ranked among the antioxidants and anticarcinogens. This study examined the efficiency of intestinal absorption and metabolic conversion of 3(2H)-furanones by using Caco-2 cell monolayers as an intestinal epithelial cell model. The permeability of each agent was measured in both the apical to basal and basal to apical directions. 2,5-Dimethyl-4-methoxy-3(2H)-furanone (DMMF) showed the highest absorption rate in all experiments, while similar amounts of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), and 4-hydroxy-5-methyl-3(2H)-furanone (HMF) were taken up. HDMF-glucoside was almost not absorbed but was hydrolyzed to a small extent. The transport of 3(2H)-furanones could not be saturated even at levels of 500 microM and occurred in both directions. Because the uptake was only slightly reduced by apical hyperosmolarity, passive diffusion by paracellular transport is proposed. PMID:19338346

  10. A Ring of C2H in the Protoplanetary Disk Orbiting TW Hya

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Forveille, Thierry; Oberg, Karin I.

    2015-01-01

    The circumstellar disk orbiting the nearby (D = 54 pc), ~8 Myr-old, ~0.8 Msun classical T Tauri star TW Hya represents a rich source of information concerning the chemical composition of a protoplanetary disk in its late evolutionary stages, just at or after the epoch of giant planet formation. Following up on the detection of strong mm-wave C2H (4-3) emission from this disk via an unbiased single-dish line survey (Kastner et al. 2014, ApJ, 793, 55), we have used the SMA to image C2H (3-2) at ~1.5" resolution. We find the C2H emission emanates from a relatively narrow ring of inner radius ~1" (~50 AU). We consider various interpretations of this striking, ring-like C2H emission morphology, including whether C2H might serve as a disk "snow line" marker (as is the case for N2H+ Qi et al. 2013, Science, 341, 630) and the possibility that C2H traces particularly efficient photodissociation of hydrocarbons and/or the photoevaporation of small, C-rich grains in this region of the disk.

  11. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    PubMed

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  12. Optical emission spectroscopy study of premixed C2H4/O2 and C2H4/C2H2/O2 flames for diamond growth with and without CO2 laser excitation

    NASA Astrophysics Data System (ADS)

    He, X. N.; Gebre, T.; Shen, X. K.; Xie, Z. Q.; Zhou, Y. S.; Lu, Y. F.

    2010-02-01

    Optical emission spectroscopy (OES) measurements were carried out to study premixed C2H4/O2 and C2H4/C2H2/O2 combustion flame for diamond deposition with and without a CO2 laser excitation. Strong emissions from radicals C2 and CH were observed in the visible range in all the OES spectra acquired. By adding a continuous-wave CO2 laser to irradiate the flame at a wavelength of 10.591 μm, the common CO2 laser wavelength, it was discovered that the emission intensities of the C2 and CH radicals were increased due to the laser beam induced excitation. OES measurements of the C2 and CH radicals were performed using different gas combinations and laser powers. The rotational temperatures in the flame were determined by analyzing the spectra of the R-branch of the A2Δ-->X2Π (0, 0) electronic transition near 430 nm (CH band head). Information obtained from the OES spectra, including the emission intensities of the C2 and CH radicals, the intensity ratios, and the rotational temperatures, was integrated into the study of diamond deposition on tungsten carbide substrates for mechanism analysis of the laser induced vibrational excitation and laser-assisted diamond deposition.

  13. C(2)H(4): Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions.

    PubMed

    Beyer, E M

    1975-08-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of (14)C(2)H(4) into the tissue and (b) the conversion of (14)C(2)H(4) to (14)CO(2), was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to (14)C(2)H(4) markedly reduced both a and b. Increasing the (14)C(2)H(4) concentration from 0.14 to over 100 mul/l progressively increased the rate of a and b with tissue incorporation being greater than (14)C(2)H(4) to (14)CO(2) conversion only below 0.3 mul/l (14)C(2)H(4). Reduction of the O(2) concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO(2) (5%) severely inhibited (14)C(2)H(4) to (14)CO(2) conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during (14)C(2)H(4) treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.The possibilities that the incorporation of (14)C(2)H(4) into pea tissues and its conversion to (14)CO(2) is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed.Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. PMID:16659286

  14. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  15. New Determination of the 2H(d,p)3H and 2H(d,n)3He Reaction Rates at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spartà, R.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Pizzone, R. G.; Tognelli, E.; Degl'Innocenti, S.; Burjan, V.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Piskor, S.; Prada Moroni, P. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2014-04-01

    The cross sections of the 2H(d,p)3H and 2H(d,n)3He reactions have been measured via the Trojan Horse method applied to the quasi-free 2H(3He,p 3H)1H and 2H(3He,n 3He)1H processes at 18 MeV off the proton in 3He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the 2H(d,n)3He reaction is quite influential on 7Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (<=1 Myr) with masses >=1 M ⊙.

  16. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  17. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  18. Relative high-resolution absorption cross sections of C2H6 at low temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, R. J.; Bernath, P. F.; Appadoo, D. R. T.

    2015-09-01

    Synchrotron radiation has been used to record absorption cross sections of ethane, C2H6, in the far-infrared with very high spectral resolution (up to 0.00096 cm-1). C2H6 is present in the atmospheres of the Gas Giant planets and Titan but the vapor pressure at relevant atmospheric temperatures (i.e., between 70 and 200 K) is low. This makes laboratory measurements difficult. We demonstrate the effectiveness of a unique "enclosive flow" cold cell, located at the Australian Synchrotron, that enables high-resolution absorption cross sections of gaseous C2H6 to be recorded at 90 K.

  19. A practical way to synthesize chiral fluoro-containing polyhydro-2H-chromenes from monoterpenoids

    PubMed Central

    Mikhalchenko, Oksana S; Korchagina, Dina V; Salakhutdinov, Nariman F

    2016-01-01

    Summary Conditions enabling the single-step preparative synthesis of chiral 4-fluoropolyhydro-2H-chromenes in good yields through a reaction between monoterpenoid alcohols with para-menthane skeleton and aldehydes were developed for the first time. The BF3·Et2O/H2O system is used both as a catalyst and as a fluorine source. The reaction can involve aliphatic aldehydes as well as aromatic aldehydes containing various acceptor and donor substituents. 4-Hydroxyhexahydro-2H-chromenes were demonstrated to be capable of converting to 4-fluorohexahydro-2H-chromenes under the developed conditions, the reaction occurs with inversion of configuration. PMID:27340456

  20. Kinetic Resolution of 2H-Azirines by Asymmetric Imine Amidation.

    PubMed

    Hu, Haipeng; Liu, Yangbin; Lin, Lili; Zhang, Yuheng; Liu, Xiaohua; Feng, Xiaoming

    2016-08-16

    Highly efficient kinetic resolution of 2H-azirines by an asymmetric imine amidation was achieved in the presence of a chiral N,N'-dioxide/Sc(III) complex, thus providing a promising method to obtain the enantioenriched 2H-azirine derivatives and protecting-group free aziridines at the same time. It is rare to find an example of N1 of an oxindole participating in a reaction over C3. Moreover, chiral 2H-azirines were stereospecifically transformed into an unprotected aziridine and α-amino ketone. PMID:27384910

  1. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  2. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  3. Review of 2H-tetraphenylporphyrins metalation in ultra-high vacuum on metal surfaces

    NASA Astrophysics Data System (ADS)

    Panighel, M.; Di Santo, G.; Caputo, M.; Lal, C.; Taleatu, B.; Goldoni, A.

    2013-12-01

    The formation and conformational adaptation of self-assembled monolayer of 2H-tetraphenylporphyrins (2H-TPPs) on metal surfaces, as well as their metalation processes in ultra-high vacuum (UHV), are reviewed. By means of XPS, NEXAFS and STM measurements we demonstrate that, after the annealing at 550 K, a temperature-induced chemical modification of 2H-TPP monolayer on Ag(111) occurs, resulting in the rotation of the phenyl rings parallel to the substrate plane. Moreover, independently of the conformation, we report three different methods to metalate 2H-TPP monolayers in UHV. Experimental evidence indicates that the presence of a metal atom in the TPP macrocycle influences both the conformation of the molecule and its adsorption distance.

  4. Indirect Approach To The {sup 2}H(d,p){sup 3}H Reaction Study

    SciTech Connect

    Sparta, R.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Kiss, G.; McCleskey, M.; Trache, L.

    2010-11-24

    In order to understand primordial and stellar nucleosynthesis, we have studied {sup 2}H(d,p){sup 3}H reaction at 0.4 MeV down to astrophysical energies. Knowledge of its S-factor is interesting also to plan reactions for fusion reactors to produce energy. The {sup 2}H(d,p)H reaction has been studied through the Trojan Horse Method applied to the three-body reaction {sup 2}H(He,pt)H, at beam energy of 17 MeV. Once selection of protons and tritons detected in coincidence and the selection of quasi-free events, the obtained S-factor is compared with direct measurements. Such data are in agreement with the direct ones and a pole invariance test has been obtained comparing the present results with another {sup 2}H(d,p){sup 3}H THM measurements, where a different spectator particle was employed.

  5. Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems.

    PubMed

    Escande, Vincent; Velati, Alicia; Grison, Claude

    2015-04-01

    A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides. PMID:25131683

  6. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups. PMID:26639021

  7. Alcohol binding to liposomes by 2H NMR and radiolabel binding assays: does partitioning describe binding?

    PubMed Central

    Dubey, A K; Eryomin, V A; Taraschi, T F; Janes, N

    1996-01-01

    Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes. PMID:9172754

  8. Rings of C2H in the Molecular Disks Orbiting TW Hya and V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Kastner, J. H.; Qi, C.; Gorti, U.; Hily-Blant, P.; Oberg, K.; Forveille, T.; Andrews, S.; Wilner, D.

    2016-01-01

    We have used the Submillimeter Array (SMA) to image, at ~1'' resolution, C2H(3-2) emission from the molecule-rich circumstellar disks orbiting the nearby, classical T Tauri star systems TW Hya and V4046 Sgr. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology within each disk; the radius of the inner hole of the C2H ring within the V4046 Sgr disk (~70 AU) is somewhat larger than than of its counterpart within the TW Hya disk (~45 AU). We suggest that, in each case, the C2H emission likely traces irradiation of the tenuous surface layers of the outer disks by high-energy photons from the central stars.

  9. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state. PMID:27351464

  10. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  11. A Ring of C2H in the Molecular Disk Orbiting TW Hya

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Oberg, Karin; Forveille, Thierry; Andrews, Sean; Wilner, David

    2015-06-01

    We have used the Submillimeter Array to image, at ˜1.″5 resolution, C2H N=3\\to 2 emission from the circumstellar disk orbiting the nearby (D = 54 pc), ˜8 Myr-old, ˜0.8 {{M}⊙ } classical T Tauri star TW Hya. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology. Based on a model in which the C2H column density follows a truncated radial power-law distribution, we find that the inner edge of the ring lies at ˜45 AU, and that the ring extends to at least ˜120 AU. Comparison with previous (single-dish) observations of C2H N=4\\to 3 emission indicates that the C2H molecules are subthermally excited and, hence, that the emission arises from the relatively warm (T≳ 40 K), tenuous (n\\ll {{10}7} cm-3) upper atmosphere of the disk. Based on these results and comparisons of the SMA C2H map with previous submillimeter and scattered-light imaging, we propose that the C2H emission most likely traces particularly efficient photo-destruction of small grains and/or photodesorption and photodissociation of hydrocarbons derived from grain ice mantles in the surface layers of the outer disk. The presence of a C2H ring in the TW Hya disk hence likely serves as a marker of dust grain processing and radial and vertical grain size segregation within the disk.

  12. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210). PMID:27506302

  13. Broad N2H+ Emission toward the Protostellar Shock L1157-B1

    NASA Astrophysics Data System (ADS)

    Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.

    2013-10-01

    We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.

  14. Variations in the Nature of Triple Bonds: The N2, HCN, and HC2H Series.

    PubMed

    Xu, Lu T; Dunning, Thom H

    2016-07-01

    The inertness of molecular nitrogen and the reactivity of acetylene suggest there are significant variations in the nature of triple bonds. To understand these differences, we performed generalized valence bond as well as more accurate electronic structure calculations on three molecules with putative triple bonds: N2, HCN, and HC2H. The calculations predict that the triple bond in HC2H is quite different from the triple bond in N2, with HCN being an intermediate case but closer to N2 than HC2H. The triple bond in N2 is a traditional triple bond with the spins of the electrons in the bonding orbital pairs predominantly singlet coupled in the GVB wave function (92%). In HC2H, however, there is a substantial amount of residual CH(a(4)Σ(-)) fragment coupling in the triple bond at its equilibrium geometry with the contribution of the perfect pairing spin function dropping to 82% (77% in a full valence GVB calculation). This difference in the nature of the triple bond in N2 and HC2H may well be responsible for the differences in the reactivities of N2 and HC2H. PMID:27299373

  15. Infrared spectrum of the disilane cation (Si2H6+) from Ar-tagging spectroscopy.

    PubMed

    Savoca, Marco; George, Martin Andreas Robert; Langer, Judith; Dopfer, Otto

    2013-02-28

    The infrared spectrum of the disilane cation, Si(2)H(6)(+), in its (2)A(1g) ground state is inferred from photodissociation of cold Si(2)H(6)(+)-Ar(n) complexes (n = 1, 2). Vibrational analysis is consistent with a D(3d) symmetric structure of H(3)SiSiH(3)(+) generated by ionization from the bonding σ(SiSi) orbital. Structural, vibrational, and electronic properties of Si(2)H(6)((+)) and Si(2)H(6)(+)-Ar(1,2) are determined at the MP2/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels. Ar ligands bind weakly at the C(3) axis on opposite sides to Si(2)H(6)(+) with only a minor impact on the Si(2)H(6)(+) properties. The calculations reveal a low-energy H(2)SiHSiH(3)(+) isomer with C(s) symmetry and a Si-H-Si bridge, which is only ~15 kJ mol(-1) above the D(3d) structure. PMID:23325390

  16. Investigation on the Interactions of NiCR and NiCR-2H with DNA

    PubMed Central

    Chitranshi, Priyanka; Chen, Chang-Nan; Jones, Patrick R.; Faridi, Jesika S.; Xue, Liang

    2010-01-01

    We report here a biophysical and biochemical approach to determine the differences in interactions of NiCR and NiCR-2H with DNA. Our goal is to determine whether such interactions are responsible for the recently observed differences in their cytotoxicity toward MCF-7 cancer cells. Viscosity measurement and fluorescence displacement titration indicated that both NiCR and NiCR-2H bind weakly to duplex DNA in the grooves. The coordination of NiCR-2H with the N-7 of 2′-deoxyguanosine 5′-monophosphate (5′-dGMP) is stronger than that of NiCR as determined by 1H NMR. NiCR-2H, like NiCR, can selectively oxidize guanines present in distinctive DNA structures (e.g., bulges), and notably, NiCR-2H oxidizes guanines more efficiently than NiCR. In addition, UV and 1H NMR studies revealed that NiCR is oxidized into NiCR-2H in the presence of KHSO5 at low molar ratios with respect to NiCR (≤4). PMID:20671951

  17. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  18. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  19. {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions at sub-coulomb energies

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Sparta, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-11-20

    The {sup 2}H({sup 3}He,p{sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n{sup 3}He){sup 1}H processes have been measured in quasi free kinematics to investigate for the first time the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions by means of the Trojan Horse Method. The {sup 3}He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  20. Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Li, Z. S.; Li, B.; Alwahabi, Z. T.; Aldén, M.

    2010-10-01

    Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He-Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ˜2×10-7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.

  1. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  2. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  3. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  4. Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO.

    PubMed

    Wang, Xiaona; Liu, Yushan; Sun, Yanyun; Liu, Wenlan; Jin, Xinchun

    2016-04-15

    The blood brain barrier (BBB) could be damaged within the thrombolytic time window and is considered to be a precursor to hemorrhagic transformation during reperfusion. Although we have recently reported the association between BBB damage and tissue injury within the thrombolytic time window, our knowledge about this early BBB damage is limited. In this study, rats were subjected to 2-h middle cerebral artery occlusion (MCAO) followed by 10 min reperfusion with Evan's blue as a tracer to detect BBB damage. Rat brain was sliced into 10 consecutive sections and with TTC staining, a macro and full view of the spatial distribution of BBB damage and tissue injury could be clearly seen in the same group of animals. After 2-h MCAO, tissue injury started from 2nd slice and the BBB leakage started from the 5th slice, of note, there is no colocalization between BBB damage and tissue injury. Fluoro Jade B was employed to explore the localization of neuronal degeneration, and our results showed that 2-h MCAO produced greater number of positive cells in ischemic cortex and dorsal striatum than other areas. More important, 2-h MCAO induced occludin but not claudin-5 degradation in the ischemic hemisphere and pretreatment with MMP inhibitor GM6001 significantly reduced occludin degradation as well as BBB damage detected by IgG leakage. Taken together, our findings demonstrated a "mismatch" between ischemic tissue injury and BBB leakage and a differential degradation of occludin and claudin-5 by MMP-2 after 2-h MCAO. PMID:27000223

  5. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)2H MAS NMR spectra when these paramagnetic effects are taken into account. PMID:18027914

  6. 2H transmit-receive NMR probes for magnetic field monitoring in MRI.

    PubMed

    Sipilä, Pekka; Greding, Sebastian; Wachutka, Gerhard; Wiesinger, Florian

    2011-05-01

    Measuring image encoding fields in real time and applying the information in postprocessing offer improved image quality for MRI, particularly for applications that are intrinsically sensitive to gradient imperfections. For this task, a stand-alone magnetometer system based on multiple (2)H transmit-receive NMR probes has been developed. The conceptual advantages of changing to (2)H NMR probes for (1)H magnetic field monitoring are elucidated here, and the practical design of the probes is described. In comparison to previous (1)H NMR probe-based designs, (2)H probes are perfectly decoupled from standard (1)H imaging. Utilization of RF shielding or other nonoptimal decoupling schemes is therefore not needed. Probes based on (2)H nuclei are also more easily miniaturized for high-resolution imaging. This is particularly important for diffusion tensor and phase-contrast imaging, which rely on strong motion-sensitizing gradients. The presented (2)H NMR probes have been shown to fulfill the requirements for accurate (1)H imaging down to image resolutions of 0.2 mm. Using susceptibility matching techniques, the probe's B(0) inhomogeneity-induced signal dephasing is reduced and monitoring periods beyond 200 msec are achieved. The benefit of real time magnetic field monitoring is highlighted for phase-contrast and non-Cartesian multishot imaging. PMID:21254204

  7. Prediction of the existence of the N2H- molecular anion

    NASA Astrophysics Data System (ADS)

    Lique, François; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2012-06-01

    We predict the existence of the N2H- anion from first principle calculations. We present the three-dimensional potential energy surface and the bound states of the N2H-/D- van der Waals anion. The electronic calculations were performed using state-of-the-art ab initio methods and the nuclear motions were solved using a quantum close-coupling scattering theory. A T-shaped equilibrium structure was found, with a well depth of 349.1 cm-1, where 18 bound states have been located for N2H- and 25 for N2D- for total angular momentum J = 0. We also present the absorption spectra of the N2H- complex. This anion could be formed after low energy collisions between N2 and H- through radiative association. The importance of this prediction in astrophysics and the possible use of N2H- as a tracer of N2 and H- in the interstellar medium is discussed.

  8. Hydrogenation-induced atomic stripes on the 2 H -MoS2 surface

    NASA Astrophysics Data System (ADS)

    Han, Sang Wook; Yun, Won Seok; Lee, J. D.; Hwang, Y. H.; Baik, J.; Shin, H. J.; Lee, Wang G.; Park, Young S.; Kim, Kwang S.

    2015-12-01

    We report that the hydrogenation of a single crystal 2 H -MoS2 induces a novel-intermediate phase between 2H and 1T phases on its surface, i.e., the large-area, uniform, robust, and surface array of atomic stripes through the intralayer atomic-plane gliding. The total energy calculations confirm that the hydrogenation-induced atomic stripes are energetically most stable on the MoS2 surface between the semiconducting 2H and metallic 1T phase. Furthermore, the electronic states associated with the hydrogen ions, which is bonded to sulfur anions on both sides of the MoS2 surface layer, appear in the vicinity of the Fermi level (EF) and reduces the band gap. This is promising in developing the monolayer-based field-effect transistor or vanishing the Schottky barrier for practical applications.

  9. Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H.

    PubMed

    Schoser, Benedikt G H; Frosk, Patrick; Engel, Andrew G; Klutzny, Ursula; Lochmüller, Hanns; Wrogemann, Klaus

    2005-04-01

    Sarcotubular myopathy (OMIM 268950) is a rare autosomal recessive myopathy first described in two Hutterite brothers from South Dakota and in two non-Hutterite brothers from Germany. We report that sarcotubular myopathy (STM) is caused by mutation in TRIM32, the gene encoding the tripartite motif-containing protein 32. TRIM32 was found to be the gene mutated in limb girdle muscular dystrophy type 2H (LGMD2H [OMIM 254110]), a disorder that has been confined to the Hutterite population. The TRIM32 mutation found in the STM patients is identical to the causative mutation for LGMD2H (D487N), Haplotype analysis shows that the disease chromosomes share common ancestry. PMID:15786463

  10. Photodetectors and birefringence in ZnP2-С2h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  11. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st

  12. Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®).

    PubMed

    Schwab, Wilfried

    2013-01-01

    4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these compounds have been published and are applied by industry, but for the development of a biotechnological process the knowledge and availability of biosynthetic enzymes are required. During the last years substantial progress has been made in the elucidation of the biological pathway leading to HDMF and DMMF. This review summarizes the latest advances in this field. PMID:23765232

  13. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  14. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  15. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  16. Online high-precision delta(2)H and delta(18)O analysis in water by pyrolysis.

    PubMed

    Lu, Feng H

    2009-10-01

    A method for online simultaneous delta(2)H and delta(18)O analysis in water by high-temperature conversion is presented. Water is injected by using a syringe into a high-temperature carbon reactor and converted into H(2) and CO, which are separated by gas chromatography (GC) and carried by helium to the isotope ratio mass spectrometer for hydrogen and oxygen isotope analysis. A series of experiments was conducted to evaluate several issues such as sample size, temperature and memory effects. The delta(2)H and delta(18)O values in multiple water standards changed consistently as the reactor temperature increased from 1150 to 1480 degrees C. The delta(18)O in water can be measured at a lower temperature (e.g. 1150 degrees C) although the precision was relatively poor at temperatures <1300 degrees C. Memory effects exist for delta(2)H and delta(18)O between two waters, and can be reduced (to <1%) with proper measures. The injection of different amounts of water may affect the isotope ratio results. For example, in contrast to small injections (100 nL or less) from small syringes (e.g. 1.2 microL), large injections (1 microL or more) from larger syringes (e.g. 10 microL) with dilution produced asymmetric peaks and shifts of isotope ratios, e.g. 4 per thousand for delta(2)H and 0.4 per thousand for delta(18)O, probably resulting from isotope fractionation during dilution via the ConFlo interface. This method can be used to analyze nanoliter samples of water (e.g. 30 nL) with good precision of 0.5 per thousand for delta(2)H and 0.1 per thousand for delta(18)O. This is important for geosciences; for instance, fluid inclusions in ancient minerals may be analyzed for delta(2)H and delta(18)O to help understand the formation environments. PMID:19714707

  17. Analytical potential energy surface for O + C2H2 system

    NASA Astrophysics Data System (ADS)

    Garashchuk, Sophya; Rassolov, Vitaly A.; Braams, Bastiaan J.

    2013-11-01

    Full-dimensional analytical potential energy surfaces (PESs) for the O(1P) + C2H2 and O(3P) + C2H2 reactions are presented. The PESs are constructed by fitting thousands of ab initio data points using permutationally invariant polynomials [5]. Electronic structure data are obtained within the restricted coupled cluster theory with single and double excitations with perturbative triple corrections and correlation consistent basis set of triple-ζ with diffuse functions. Motivated by experiments, formation of DOCC and cyclic DCCO at collision energies of 2.5-4 eV is examined using quasi-classical trajectory dynamics on the triplet surface.

  18. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    PubMed Central

    Triplett, Ashley R.

    2014-01-01

    For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport. PMID:25237603

  19. Implications of C2H photochemistry on the modeling of C2 distributions in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.

    1991-01-01

    Laboratory studies of the secondary photolysis of the C2H radical are summarized and used to explain some discrepancies between models of C2 emission in comets. These studies show that several states of the C2 radicals produced in the photolysis of C2H2 at 193 nm have bimodal rotational distributions when plotted as a Boltzmann diagram. They also establish that the C2 radicals are formed with varying degrees of vibrational excitation, so that if they are formed in a similar manner in comets, the C2 radicals must start out with this initial vibrational excitation.

  20. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  1. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  2. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  3. High-resolution absorption cross sections of C2H6 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Buzan, Eric; Dulick, Michael; Bernath, Peter F.

    2015-11-01

    Infrared absorption cross sections near 3.3 μm have been obtained for ethane, C2H6. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm-1. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C2H6 cross sections at elevated temperatures.

  4. Infrared intensities and optical constants of crystalline C 2H 4 and C 2D 4

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Ospina, M. J.; Khanna, R. K.

    Infrared absorption spectra of several thin films of C 2H 4 and C 2D 4 at ˜55 K were investigated at ˜0.6 cm -1 resolution. The integrated band intensities of the infrared active fundamental modes were obtained by a linear fit of the integrated absorbances vs film thickness. An iterative Kramers—Kronig analysis of the absorption data was carried out to obtain the complex refractive indices of crystalline C 2H 4 and C 2D 4 in the regions of absorption bands.

  5. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137

  6. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  7. Improved watermelon quality using bottle gourd rootstock expressing a Ca(2+)/H(+) antiporter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bottle gourd ("Lagenaria siceraria" Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified "Arabidopsis" Ca(2+)/H(+) exchanger sCAX2B. This t...

  8. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2015-02-06

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  9. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  10. Raman and Brillouin scattering studies of bulk 2H-WSe2.

    PubMed

    Akintola, K; Andrews, G T; Curnoe, S H; Koehler, M R; Keppens, V

    2015-10-01

    Raman and Brillouin spectroscopy were used to probe optic and acoustic phonons in bulk 2H-WSe2. Raman spectra collected under different polarization conditions allowed assignment of spectral peaks to various first- and second-order processes. In contrast to some previous studies, a Raman peak at  ∼259 cm(-1)was found not to be due to the A(1g) mode but to a second-order process involving phonons at either the M or K point of the Brillouin zone. Resonance effects due to excitons were also observed in the Raman spectra. Brillouin spectra of 2H-WSe2 contain a single peak doublet arising from a Rayleigh surface mode propagating with a velocity of [Formula: see text] m s(-1). This value is comparable to that estimated from Density Functional Theory calculations and also to those for the transition metal diselenides 2H-TaSe2 and 2H-NbSe2. Unlike these two materials, however, peaks arising from scattering via the elasto-optic mechanism were not observed in Brillouin spectra of WSe2 despite its lower opacity. PMID:26381161

  11. Mutant and overexpression analysis of a C2H2 single zinc finger gene of Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this work was to characterize an Arabidopsis C2H2 single zinc finger gene, named AtZFP11, that is similar to SUPERMAN (SUP) and RABBIT EARS (RBE). No altered phenotype was observed in mutants analyzed that were derived through TILLING, nor a T-DNA insertion into the exon of AtZFP11. Pl...

  12. TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ON)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ON) News:  TES News ... Title:  TES Discipline:  Tropospheric Chemistry Level:  L2 Instrument:  TES/Aura L2 Water Vapor Spatial Coverage:  5.3 x 8.5 km nadir ...

  13. TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ONS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Nadir (TL2H2ONS) News:  TES News ... Title:  TES Discipline:  Tropospheric Chemistry Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  5.3 8.5 km nadir ...

  14. "In planta" regulation of the "Arabidopsis" Ca(2+)/H(+) antiporter CAX1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vacuolar localized Ca(2+)/H(+) exchangers such as "Arabidopsis thaliana" cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1...

  15. Fluorescence from photoexcitation of C2H5OH by vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Suto, Masako; Lee, L. C.

    1989-01-01

    The photoabsorption and fluorescence cross sections of C2H5OH have been measured in the 46-200 nm region. Fluorescence is dispersed to identify the emission systems, which are mainly OH(A-X), CH(A,B-X), and the H Balmer series. The photodissociation processes that produce the observed emissions are discussed.

  16. Preliminary investigations on the synthesis and antitumor activity of 3(2H)-furanones.

    PubMed

    Rappai, J P; Raman, V; Unnikrishnan, P A; Prathapan, S; Thomas, S K; Paulose, C S

    2009-02-01

    Two triaryl-3(2H)-furanones were synthesized and their antitumor activity was evaluated. These compounds inhibited the proliferation of DLA cell line in vitro. In vivo studies also showed that these compounds were active against tumor cell proliferation. PMID:19121938

  17. Gamow-Teller decay studies with 2p-2h configurations

    NASA Astrophysics Data System (ADS)

    Severyukhin, A. P.; Voronov, V. V.; Borzov, I. N.; Arsenyev, N. N.; Van Giai, Nguyen

    2016-06-01

    Starting from a Skyrme interaction with tensor terms, the β-decay rates have been studied within a microscopic model including the 2p-2h configuration effects. As an application we present the evolution of the neutron-rich Ni isotopes near 78Ni that are important for stellar nucleosynthesis.

  18. 77 FR 47169 - Clearing Requirement Determination Under Section 2(h) of the CEA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Commodity Exchange Act, 76 FR 77728 (Dec. 14, 2011). Clearing is at the heart of the Dodd-Frank financial...; and (4) the staying of a clearing requirement. \\19\\ See 76 FR 44464 (July 26, 2011); 17 CFR 39.5. This... under Section 2(h) of the CEA, 76 FR 58186 (Sept. 20, 2011). This comment letter is available on...

  19. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  20. Conformation of NH 3 and C 2H 4 molecules approaching a metal surface

    NASA Astrophysics Data System (ADS)

    Flores, F.; Gabbay, I.; March, N. H.

    1981-10-01

    Using a semiempirical approach to the conformation of free space molecules, the HNH angle in NH 3 adsorbed on Ru(001) is estimated to increase by about 1°. For C 2H 4, both HCC and HCH angles are predicted to decrease.

  1. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  2. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  3. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  4. 6-Hydroxy-1,2,4-triazine-3,5(2H,4H)-dione Derivatives as Novel d-Amino Acid Oxidase Inhibitors

    PubMed Central

    2015-01-01

    A series of 2-substituted 6-hydroxy-1,2,4-triazine-3,5(2H,4H)-dione derivatives were synthesized as inhibitors of d-amino acid oxidase (DAAO). Many compounds in this series were found to be potent DAAO inhibitors, with IC50 values in the double-digit nanomolar range. The 6-hydroxy-1,2,4-triazine-3,5(2H,4H)-dione pharmacophore appears metabolically resistant to O-glucuronidation unlike other structurally related DAAO inhibitors. Among them, 6-hydroxy-2-(naphthalen-1-ylmethyl)-1,2,4-triazine-3,5(2H,4H)-dione 11h was found to be selective over a number of targets and orally available in mice. Furthermore, oral coadministration of d-serine with 11h enhanced the plasma levels of d-serine in mice compared to the oral administration of d-serine alone, demonstrating its ability to serve as a pharmacoenhancer of d-serine. PMID:26309148

  5. Synthesis of Open-Framework Iron Phosphates, [C 6N 2H 14][Fe III2F 2(HPO 4) 2(H 2PO 4) 2]·2H 2O and [C 6N 2H 14] 2[Fe III3(OH)F 3(PO 4)(HPO 4) 2] 2·H 2O, with One- and Three-Dimensional Structures

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Green, Mark A.; Natarajan, Srinivasan

    2002-05-01

    The hydrothermal syntheses and structures of two new open-framework iron phosphates, I, [C6N2H14][FeIII2F2(HPO4)2 (H2PO4)2].2H2O, II, and [C6N2H14]2[FeIII3(OH)F3(PO4) (HPO4)2]2. H2O, are presented. The structures of both I and II consist of FeO4F2 octahedra and PO4 terahedra linked to form one- and three-dimensional structures. Both the compounds possess infinite one-dimensional chains of Fe-O/F-Fe formed by the FeO4F2 octahedra. The di-protonated DABCO cations are located in between the chains in I and within the channels in II. Whilst I possess the tancoite structure with a new chain composition, II has a three-dimensional structure similar to the gallophosphate, ULM-1. Crystal data for I: M=685.84, monoclinic, space group=C2/c (no. 15), a=7.232(2), b=20.520(7), c=13.933(4) Å, β=97.68(3)°, ν=2049.1(1) Å3, Z=4, ρcalc.=2.223 g cm-3, μ(MoKα)=1.841 mm-1, R1=0.06, wR2=0.12, S=1.17 for 163 parameters; II, M=1303.33, monoclinic, space group =C2/c (no. 15), a=18.1836(2), b=10.0126(7), c=20.0589(4) Å, β=106.08(3)°, ν=3509.0(2) Å3, Z=4, ρcalc=2.467 g cm-3, μ(MoKα)=2.830 mm-1, R1=0.034, wR2=0.081, S=1.06 for 284 parameters.

  6. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  7. The 13C/2H-glucose test for determination of small intestinal lactase activity.

    PubMed

    Vonk, R J; Stellaard, F; Priebe, M G; Koetse, H A; Hagedoorn, R E; De Bruijn, S; Elzinga, H; Lenoir-Wijnkoop, I; Antoine, J M

    2001-03-01

    To diagnose hypolactasia, determination of lactase enzyme activity in small intestinal biopsy material is considered to be the golden standard. Because of its strongly invasive character and the sampling problems, alternative methods have been looked for. We analysed the 13C-glucose response in serum after consumption of 25 g of naturally enriched 13C-lactose. As an internal standard, 0.5 g of 2H-glucose was added and the 2H-glucose response in serum was measured simultaneously. The studies were performed in healthy volunteers with a background of genetically determined lactase nonpersistence (n = 12; low lactase activity) and lactase persistence (n = 27; high lactase activity). The results were compared with those of the lactose hydrogen breath test, the lactose 13CO2 breath test and the previously described 13C-lactose digestion test. After consumption of 13C-lactose and 2H-glucose, the mean ratio 13C-glucose/2H-glucose concentration in serum at 45-75 min was 0.26 +/- 0.09 in the low lactase activity group and 0.93 +/- 0.17 in the high lactase activity group (P < 0.01). Threshold of the ratio between digesters and maldigesters was calculated as 0.46. Accuracy of the new test was superior to all other tests. We conclude that the 13C/2H-glucose test has the potential of determining the small intestinal lactase activity in vivo and of estimating the amount of lactose which is digested in the small intestine. PMID:11264650

  8. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar /CH4 and Ar /C2H2 mixtures

    NASA Astrophysics Data System (ADS)

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; von Keudell, A.

    2007-05-01

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar /CH4 and Ar /C2H2 mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250μm. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56MHz, and rms voltages around 200-250V and rms currents of 0.4-0.6A are obtained. Electron densities around 8×1020m-3 and gas temperatures lower than 400K have been measured using optical emission spectroscopy for main flows of 3slm and inner capillary flows of 160SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar /CH4 and Ar /C2H2 plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C2 bands. The ratio of these two species follows different trends with the amount of precursor for Ar /CH4 and Ar /C2H2 mixtures, showing the presence of distinct chemistries in each of them. In Ar /C2H2 plasmas, CHx species are produced mainly by electron impact dissociation of C2H2 molecules, and the CHx/C2Hx ratio is independent of the precursor amount. In Ar /CH4 mixtures, C2Hx species are formed mainly by recombination of CHx species through three-body reactions, so that the CHx/C2Hx ratio depends on the amount of CH4 present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  9. A Comparison of hs-CRP Levels in New Diabetes Groups Diagnosed Based on FPG, 2-hPG, or HbA1c Criteria

    PubMed Central

    Tutuncu, Yildiz; Satman, Ilhan; Celik, Selda; Dinccag, Nevin; Karsidag, Kubilay; Telci, Aysegul; Genc, Sema; Issever, Halim; Tuomilehto, Jaakko; Omer, Beyhan

    2016-01-01

    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) have been used to diagnose new-onset diabetes mellitus (DM) in order to simplify the diagnostic tests compared with the 2-hour oral glucose tolerance test (OGTT; 2-hPG). We aimed to identify optimal cut-off points of high sensitive C-reactive protein (hs-CRP) in new-onset DM people based on FPG, 2-hPG, or HbA1c methods. Data derived from recent population-based survey in Turkey (TURDEP-II). The study included 26,499 adult people (63% women, response rate 85%). The mean serum concentration of hs-CRP in women was higher than in men (p < 0.001). The people with new-onset DM based on HbA1c had higher mean hs-CRP level than FPG based and 2-hPG based DM cases. In HbA1c, 2-hPG, and FPG based new-onset DM people, cut-off levels of hs-CRP in women were 2.9, 2.1, and 2.5 mg/L [27.5, 19.7, and 23.5 nmol/L] and corresponding values in men were 2.0, 1.8, and 1.8 mg/L (19.0, 16.9, and 16.9 nmol/L), respectively (sensitivity 60–65% and specificity 54–64%). Our results revealed that hs-CRP may not further strengthen the diagnosis of new-onset DM. Nevertheless, the highest hs-CRP level observed in new-onset DM people diagnosed with HbA1c criterion supports the general assumption that this method might recognize people in more advanced diabetic stage compared with other diagnostic methods. PMID:26824043

  10. Tetrahydroxanthene-1,3(2H)-dione derivatives from Uvaria valderramensis.

    PubMed

    Macabeo, Allan Patrick G; Martinez, Franze Perry A; Kurtán, Tibor; Tóth, László; Mándi, Attila; Schmidt, Sebastian; Heilmann, Jörg; Alejandro, Grecebio Jonathan D; Knorn, Matthias; Dahse, Hans-Martin; Franzblau, Scott G

    2014-12-26

    Two tetrahydroxanthene-1,3(2H)-dione metabolites, valderramenols A (1) and B (2), were isolated from the Philippine endemic Annonaceous species Uvaria valderramensis. Planar structures of the rac-xanthene-1,3-(2H)-diones 1 and 2 were established by MS and NMR measurements. Their enantiomers were separated by chiral HPLC, and the absolute configurations of the separated enantiomers were determined by comparison of the HPLC-ECD spectra with computed TDDFT-generated spectra. A TDDFT-ECD study of the known grandiuvarone (3) allowed the revision of its absolute configuration as S. Compound 1 showed antitubercular activity (MIC 10 μg/mL), while 3 and 4 had weaker activities (MIC 32 μg/mL). Oxepinone 3 exhibited cytotoxic activity against KB-562, a chronic myeloid leukemia cell line. PMID:25372601

  11. Electron Transport Properties in HSi(OC2H5)3 Vapor

    NASA Astrophysics Data System (ADS)

    Yoshida, Kosaku; Sato, Ran; Yokota, Takuya; Kishimoto, Yasutaka; Date, Hiroyuki

    2011-12-01

    The electron swarm parameters in HSi(OC2H5)3 (triethoxysilane, TRIES) vapor have been investigated for relatively wide ranges of reduced electric field (E/N). Based on the arrival-time spectra (ATS) method for electrons using a double-shutter drift tube, the drift velocity and the longitudinal diffusion coefficient were measured for the E/N=20-5000 Td, and the ionization coefficient was obtained for E/N=300-5000 Td. The results were compared with those for SiH4 and Si(OC2H5)4 (tetraethoxysilane, TEOS), to show characteristics similar to the parameters in TEOS. We also determined the electron collision cross sections for TRIES by means of the Boltzmann equation analysis.

  12. Critical fluctuations in DOPC/DPPC-d62/cholesterol mixtures: 2H magnetic resonance and relaxation.

    PubMed

    Davis, James H; Ziani, Latifa; Schmidt, Miranda L

    2013-07-28

    Static and magic angle spinning (MAS) (2)H nuclear magnetic resonance experiments have been performed on a series of multilamellar dispersions of di-oleoyl-sn-glycero-3-phosphocholine/di-palmitoyl-sn-glycero-3-phosphocholine-d62/cholesterol in water to investigate the compositional fluctuations which occur in the region of the line of critical points for this ternary system. The strong dependence of the MAS line widths on temperature, sample composition, and spinning rate provides a direct measure of the magnitude of the fluctuations in the (2)H quadrupolar Hamiltonian. These data are analyzed in terms of models for critical fluctuations in composition leading to a value for the critical index for the correlation length, ν(c) = 0.628, consistent with a three dimensional Ising model. PMID:23902029

  13. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory. PMID:26480341

  14. Isotopic Study ( 18O, 2H) of the Ground Water in the Bekaa's plain (Lebanon)

    NASA Astrophysics Data System (ADS)

    Awad, S.

    The stable isotopes of the water molecule (18O, 2H) give informations about the paleoclimate existing during the water seepage and about the recharge conditions of the groundwater. The effects of the Orography, the Continentality, and the origin of the masses of air have an effect on the isotopic abundance of the precipitations (rain + snow) in Lebanon. An evaporation of the recharge water exists in the atmosphere, with a mixing between the deep water and the shallow ones. The sea water has an isotopic abundance at 0 ‰ (SMOW: Standard Mean Ocean Water) for δ2H et δ18O, the Mediterranean Sea is at the origin of the rains which fall on the studied area, and which do not keep the isotopic abundances of the sea because the high mountains that they cross during their movement. This high altitude causes an impoverishment of the water of the rain on heavy isotope (18O).

  15. DIMMI-2h a MOF-based instrument for Solar Satellite ADAHELI

    NASA Astrophysics Data System (ADS)

    Stangalini, M.; Moretti, P. F.; Berrilli, F.; Del Moro, D.; Jefferies, S. M.; Severino, G.; Oliviero, M.

    2011-10-01

    The Doppler-Intensity-Magnetograms with a Magneto-optical filter Instrument at two heights (DIMMI-2h) is a double channel imager using Magneto Optical Filters (MOF) in the potassium 770 nm and sodium 589 nm lines. The instrument will provide simultaneous dopplergrams (velocity fields), continuum intensity and longitudinal magnetic flux images at two heights in the solar atmosphere corresponding to low and high photosphere. Dimmi- 2h is the possible piggy-back payload on ADAHELI satellite. The spatial resolution (approximately 4 arcsec) and the high temporal cadence (15 s) will permit to investigate low and medium oscillating modes (from 0 to below 1000) up to approximately 32 mHz in the frequency spectrum. The acquisition of long-term simultaneous velocity, intensity and magnetic information up to these high frequencies will permit also the study of the propagation and excitation of the waves with a frequency resolution never obtained before.

  16. Exploring a dynamical path for C2H- and NCO- formation in dark molecular clouds

    NASA Astrophysics Data System (ADS)

    Iskandarov, Ibrokhim; Gianturco, Francesco Antonio; Carelli, Fabio; Yurtsever, Ersin; Wester, Roland

    2016-02-01

    This paper deals with the possible formation of two molecular anions often considered likely components in the physical environments of the interstellar medium (ISM): C2H- and NCO-. They are both discussed here by computationally following the radiative association (RA) mechanism starting from C2-, H, N- and O as partners. The corresponding RA total cross sections produced by the calculations are in turn employed to generate the overall association rates over the relevant range of temperatures. The latter are found to be in line with other molecular ions formed by RA but not large enough to uniquivocally suggest this path as the main route to the anions formation in the ISM. Other possible paths of formation are also analysed and discussed. The presence of resonant structures during the association dynamics for both systems is found by the calculations and their consequences are discussed in some detail in the present study.

  17. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  18. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  19. Mixed H2/H(infinity)-Control with an output-feedback compensator using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  20. Simultaneous H2/H-infinity optimal control - The state feedback case

    NASA Technical Reports Server (NTRS)

    Saberi, Ali; Chen, Ben M.; Sannuti, Peddapullaiah; Ly, Uy-Loi

    1992-01-01

    A simultaneous H2/H-infinity control problem is considered. This problem seeks to minimize the H2 norm of a closed-loop transfer matrix while simultaneously satisfying a prescribed H-infinity norm bound on some other closed-loop transfer matrix by utilizing dynamic state feedback controllers. Such a problem was formulated earlier by Rotea and Khargonekar (1991) who considered only so called regular problems. Here, for a class of singular problems, necessary and sufficient conditions are established so that the posed simultaneous H2/H-infinity problem is solvable by using state feedback controllers. The class of singular problems considered have a left invertible transfer function matrix from the control input to the controlled output which is used for the H2 norm performance measure. This class of problems subsumes the class of regular problems.

  1. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  2. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling.

    PubMed

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2013-05-28

    Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling. PMID:23676270

  3. Constraints on the δ2H diffusion rate in firn from field measurements at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Meijer, Harro A. J.; (L. G.) van der Wel, Gerko; Been, Henk A.; van de Wal, Roderik S. W.; (C. J. P. P) Smeets, Paul

    2015-04-01

    Diffusion smears out, and can eventually wash away, spatial gradients (such as seasonal cycles) in the stable isotope signals in snow and firn after deposition. The diffusion process is governed by the continuous evaporation and condensation of ice particles into and from the air channels. As this diffusion process influences the isotope signals that are eventually conserved in ice cores, quantitative knowledge of the process is necessary. We performed detailed 2H isotope diffusion measurements in the upper 3 meters of firn at Summit, Greenland. Using a small snow gun, a thin snow layer was formed from 2H-enriched water over a 6 x 6 m2 area. We followed the diffusion process, quantified as the increase of the δ2H diffusion length, over a four years period, by retrieving the layer once per year. Each year we drilled 2-3 firn cores, sliced them into 1 cm layers and measured the δ2H-signal of these layers. Our experimental findings show the gradual increase of the diffusion length to close to 4 cm after four years. This is much smaller than the result based on the commonly used model by Johnsen at al (2000), which yields more than 6 cm. We have studied the possible causes for this discrepancy, and conclude that the poor constraint of the tortuosity partly explains the discrepancy. But more important, it is likely that isotopic inhomogeneity exists within the ice grains in the firn, which slows down the diffusion process. This effect has not been considered in the model. Reference: S. Johnsen, K. Clausen, K. Cuffey, K. Hoffmann, J. Schwander, T. Creyts. Diffusion of stable isotopes in polar firn and ice: The isotope effect in firn diffusion. Physics of ice core Records (T. Hondoh, editor) Hokkaido University Press 2000.

  4. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  5. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  6. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  7. A Neber approach for the synthesis of spiro-fused 2H-azirine-pyrazolone.

    PubMed

    Yue, Deng-Feng; Zhao, Jian-Qiang; Wang, Zhen-Hua; Zhang, Xiao-Mei; Xu, Xiao-Ying; Yuan, Wei-Cheng

    2016-02-14

    A base-mediated Neber reaction of enaminopyrazolones, which are the tautomers of 4-acyloxime-2-pyrazolin-5-ones, with sulfonyl chlorides was achieved. With this developed approach, a range of spiro-fused 2H-azirine-pyrazolones were obtained in good yields under mild conditions. A preliminary trial of a catalytic asymmetric version of the Neber reaction was conducted and gave promising enantioselectivity. PMID:26780927

  8. Palladium-catalyzed cross-dehydrogenative functionalization of C(sp(2))-H Bonds.

    PubMed

    Wu, Yinuo; Wang, Jun; Mao, Fei; Kwong, Fuk Yee

    2014-01-01

    The catalytic cross-dehydrogenative coupling (CDC) reaction has received intense attention in recent years. The attractive feature of this coupling process is the formation of a C-C bond from two C-H moieties under oxidative conditions. In this Focus Review, recent advances in the palladium-catalyzed CDC reactions of C(sp(2) )-H bond are summarized, with a focus on the period from 2011 to early 2013. PMID:24123795

  9. Band structure analysis of (1 × 2)-H/Pd(110)-pr

    NASA Astrophysics Data System (ADS)

    Shuttleworth, I. G.

    2013-09-01

    A novel method of band structure analysis based on the atomic orbital (AO) coefficients in LCAO-DFT has been applied to the (1 × 2)-H/Pd(110)-pr system. The analysis has revealed symmetry-dependent Pd 4d band splitting due to H ligand effects; ensemble effects due to the (1 × 2) Pd reconstruction are shown to be relatively minor.

  10. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  11. Modeling studies of the chemical vapor deposition of boron films from B 2H 6

    NASA Astrophysics Data System (ADS)

    Lamborn, Daniel R.; Snyder, David W.; Xi, X. X.; Redwing, Joan M.

    2007-02-01

    The effect of growth conditions on the chemical vapor deposition of boron thin films from diborane (B 2H 6) was investigated using a combination of experimental studies and computational fluid dynamics-based reactor modeling. A multi-physics computational model was developed to simulate the thermal-fluid environment in the reactor. The proposed chemistry model incorporated into the simulations includes gas-phase decomposition and formation of B 2H 6 and surface adsorption and reaction of borane (BH 3). The model accurately predicts the experimentally measured temperature and partial pressure dependence of the boron growth rate using the sticking coefficient of BH 3 on the growth surface as the only adjustable parameter in the calculations. The results indicate that at lower growth temperatures (<500 °C) the boron growth rate is limited by gas-phase kinetics while at higher temperatures (>500 °C) the growth rate is limited by mass transfer of BH 3 to the substrate surface. The studies of boron thin film growth are relevant to the deposition of superconducting MgB 2 thin films, in which B 2H 6 is used as the boron precursor.

  12. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  13. Intragenic deletion of TRIM32 in compound heterozygotes with sarcotubular myopathy/LGMD2H.

    PubMed

    Borg, Kristian; Stucka, Rolf; Locke, Matthew; Melin, Eva; Ahlberg, Gabrielle; Klutzny, Ursula; Hagen, Maja von der; Huebner, Angela; Lochmüller, Hanns; Wrogemann, Klaus; Thornell, Lars-Eric; Blake, Derek J; Schoser, Benedikt

    2009-09-01

    In 2005 the commonality of sarcotubular myopathy (STM) and limb girdle muscular dystrophy type 2H (LGMD2H) was demonstrated, as both are caused by the p D487N missense mutation in TRIM32 originally found in the Manitoba Hutterite population. Recently, three novel homozygous TRIM32 mutations have been described in LGMD patients. Here we describe a three generation Swedish family clinically presenting with limb girdle muscular weakness and histological features of a microvacuolar myopathy. The two index patients were compound heterozygotes for a frameshift mutation in TRIM32 (c.1560delC ) and a 30 kb intragenic deletion, encompassing parts of intron 1 and the entire exon 2 of TRIM32. In these patients, no full-length or truncated TRIM32 could be detected. Interestingly, heterozygous family members carrying only one mutation showed mild clinical symptoms and vacuolar changes in muscle. In our family, the phenotype encompasses additionally a mild demyelinating polyneuropathic syndrome. Thus STM and LGMD2H are the result of loss of function mutations that can be either deletions or missense mutations. PMID:19492423

  14. A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity

    PubMed Central

    Garton, Michael; Najafabadi, Hamed S.; Schmitges, Frank W.; Radovani, Ernest; Hughes, Timothy R.; Kim, Philip M.

    2015-01-01

    Development of an accurate protein–DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF–DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering. PMID:26384429

  15. Antinociceptive properties of new coumarin derivatives bearing substituted 3,4-dihydro-2H-benzothiazines

    PubMed Central

    2014-01-01

    Background Coumarins are an important class of widely distributed heterocyclic natural products exhibiting a broad pharmacological profile. In this work, a new series of coumarins bearing substituted 3,4-dihydro-2H-benzothiazines were described as potential analgesic agents. The clinical use of NSAIDs as traditional analgesics is associated with side effects such as gastrointestinal lesions and nephrotoxicity. Therefore, the discovery of new safer drugs represents a challenging goal for such a research area. Results The target compounds 3-(3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazin-3-yl)-2H-chromen-2-ones 2a-u were synthesized and characterized by spectral data. The antinociceptive properties of target compounds were determined by formalin-induced test and acetic acid-induced writhing test in mice. Among the tested compounds, compound 2u bearing 2-(4-(methylsulfonyl)benzoyl)- moiety on benzothiazine ring and 4-(methylsulfonyl)phenacyloxy- group on the 7 position of coumarin nucleus showed better profile of antinocecieption in both models. It was more effective than mefenamic acid during the late phase of formalin-induced test as well as in the acetic acid-induced writhing test. Conclusion Considering the significant antinoceciptive action of phenacyloxycoumarin derivatives, compound 2u prototype might be further used as model to obtain new more potent analgesic drugs. PMID:24398032

  16. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    PubMed

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process. PMID:36390

  17. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  18. Detection of interstellar ethylene oxide (c-C2H4O).

    PubMed

    Dickens, J E; Irvine, W M; Ohishi, M; Ikeda, M; Ishikawa, S; Nummelin, A; Hjalmarson, A

    1997-11-10

    We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature T(rot) = 18 K and a molecular column density N(c-C2H4O) = 3.3 x 10(14) cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10(-11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW. PMID:11541726

  19. Exotic SiO2H2 Isomers: Theory and Experiment Working in Harmony.

    PubMed

    McCarthy, Michael C; Gauss, Jürgen

    2016-05-19

    Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. The isotopic studies also provide insight into their formation route, suggesting that c-H2SiO2 is formed promptly in the expansion but that cis,trans-HOSiOH is likely formed by secondary reactions following formation of the most stable dissociation pair, SiO + H2O. Although less abundant, the rotational spectrum of trans-silanoic acid, the silicon analogue of formic acid, HSi(O)OH, has also been observed. PMID:27139016

  20. Preparation of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate

    DOEpatents

    Naud, Darren L.; Hiskey, Michael A.

    2003-05-27

    A process of preparing bis-(1(2)H-tetrazol-5-yl)-amine monohydrate is provided including combining a dicyanamide salt, an azide salt and water to form a first reaction mixture, adding a solution of a first strong acid characterized as having a pKa of less than about 1 to said first reaction mixture over a period of time characterized as providing a controlled reaction rate so as to gradually form hydrazoic acid without loss of significant quantities of hydrazoic acid from the solution while heating the first reaction mixture at temperatures greater than about 65.degree. C., heating the resultant reaction mixture at temperatures greater than about 65.degree. C. for a period of time sufficient to substantially completely form a reaction product, treating the reaction product with a solution of a second strong acid to form a product of bis-(1(2)H-tetrazol-5-yl)-amine monohydrate, and, recovering the bis-(1(2)H-tetrazol-5-yl)-amine monohydrate product.

  1. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  2. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, A.

    1997-01-01

    We report the identification of 10 transitions which support the detection of the small cyclic molecule ethylene oxide (c-C2H40) in SgrB2(N). Although one of these transitions is severely blended, such that an accurate intensity and linewidth could not be determined, and two other lines are only marginally detected, we have done gaussian fits to the remaining 7 lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature, Trot = 18 K, and a molecular column density, N(c-C2H40) = 3.3 x 1014cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10exp -11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst (1996). This result suggests that grain chemistry might play an effective role in the production Of c-C2H40. No transitions of this molecule were detected in either SgrB2(M) or SgrB2(NW).

  3. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, Å.

    1997-11-01

    We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature Trot = 18 K and a molecular column density N(c-C2H4O) = 3.3 × 1014 cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 × 10-11. This is a factor of more than 200 higher than the abundance for this molecule suggested by the ``new standard'' chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW.

  4. Hydration and Lateral Organization in Phospholipid Bilayers Containing Sphingomyelin: A 2H-NMR Study

    PubMed Central

    Steinbauer, Bernhard; Mehnert, Thomas; Beyer, Klaus

    2003-01-01

    Interfacial properties of lipid bilayers were studied by 2H nuclear magnetic resonance spectroscopy, with emphasis on a comparison between phosphatidylcholine and sphingomyelin. Spectral resolution and sensitivity was improved by macroscopic membrane alignment. The motionally averaged quadrupolar interaction of interlamellar deuterium oxide was employed to probe the interfacial polarity of the membranes. The D2O quadrupolar splittings indicated that the sphingomyelin lipid-water interface is less polar above the phase transition temperature Tm than below Tm. The opposite behavior was found in phosphatidylcholine bilayers. Macroscopically aligned sphingomyelin bilayers also furnished 2H-signals from the amide residue and from the hydroxyl group of the sphingosine moiety. The rate of water-hydroxyl deuteron exchange could be measured, whereas the exchange of the amide deuteron was too slow for the inversion-transfer technique employed, suggesting that the amide residue is involved in intermolecular hydrogen bonding. Order parameter profiles in mixtures of sphingomyelin and chain-perdeuterated phosphatidylcholine revealed an ordering effect as a result of the highly saturated chains of the sphingolipids. The temperature dependence of the 2H quadrupolar splittings was indicative of lateral phase separation in the mixed systems. The results are discussed with regard to interfacial structure and lateral organization in sphingomyelin-containing biomembranes. PMID:12885648

  5. Modelling of c-C2H4O formation on grain surfaces

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Viti, S.; Ward, M. D.; Price, S. D.

    2012-12-01

    Despite its potential reactivity due to ring strain, ethylene oxide (c-C2H4O) is a complex molecule that seems to be stable under the physical conditions of an interstellar dense core; indeed, it has been detected towards several high-mass star-forming regions with a column density of the order of 1013 cm-2. To date, its observational abundances cannot be reproduced by chemical models and this may be due to the significant contribution played by its chemistry on grain surfaces. Recently, Ward & Price have performed experiments in order to investigate the surface formation of ethylene oxide starting with oxygen atoms and ethylene ice as reactants. We present a chemical model which includes the most recent experimental results from Ward & Price on the formation of c-C2H4O. We study the influence of the physical parameters of dense cores on the abundances of c-C2H4O. We verify that ethylene oxide can indeed be formed during the cold phase (when the interstellar medium dense cores are formed), via addition of an oxygen atom across the C=C double bond of the ethylene molecule, and released by thermal desorption during the hot core phase. A qualitative comparison between our theoretical results and those from the observations shows that we are able to reproduce the abundances of ethylene oxide towards high-mass star-forming regions.

  6. CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Azizi, Morteza; Mousavi, Seyyed Abbas

    2015-11-01

    In this study, Molecular Dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were conducted to investigate the diffusivity, solubility, and permeability of CO2, CO, H2, and H2O in a polyurethane membrane at three different temperatures. The characterization of the simulated structures was carried out using XRD, FFV, Tg and density calculation, and cavity size distribution. The obtained results were within the expectations reported data in the literature based on the experimental approach, indicating the authenticity of approached in this work. The results showed that the highest diffusivity and permeability coefficients were observed for H2; while the highest values of solubility coefficient were found for H2O and CO2 gases. The increase of operating temperature from 298 K to 318 K has a positive effect on the permeation of all gases and a corresponding negative effect on the selectivity of the gas pair CO2/H2. Also, the results vividly showed that CO2 and H2O gases have a profound affinity with hard phase of polyurethane, while H2 and CO were conversely adsorbed by soft one. Moreover, the enhancement of permeability and permselectivity of CO2/H2 pair confirmed using Robeson Upper-Bond graph showed its good capacity for CO2/H2 separation application.

  7. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Astrophysics Data System (ADS)

    Knez, C.; Moore, M. H.; Ferrante, R. F.; Hudson, R. L.

    2012-04-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's ν5-band position (743 cm-1, 13.46 μm) and FWHM on temperature. Our results show that the ν5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  8. Comparative Shock-Tube Study of Autoignition and Plasma-Assisted Ignition of C2-Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Kindysheva, Svetlana; Plastinin, Eugeny; Aleksandrov, Nikolay; Starikovskiy, Andrey

    2015-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane Using a shock tube with a discharge cell, ignition delay time was measured in a lean (φ = 0.5) C2H6:O2:Ar mixture and in lean (φ = 0.5) and stoichiometric C2H4:O2:Ar mixtures with a high-voltage nanosecond discharge and without it. The measured results were compared with the measurements made previously with the same setup for C2H6-, C2H5OH- and C2H2-containing mixtures. It was shown that the effect of plasma on ignition is almost the same for C2H6, C2H4 and C2H5OH. The reduction in time is smaller for C2H2, the fuel that is well ignited even without the discharge. Autoignition delay time was independent of the stoichiometric ratio for C2H6 and C2H4, whereas this time in stoichiometric C2H2- and C2H5OH-containing mixtures was noticeably shorter than that in the lean mixtures. Ignition after the discharge was not affected by a change in the stoichiometric ratio for C2H2 and C2H4, whereas the plasma-assisted ignition delay time for C2H6 and C2H5OH decreased as the equivalence ratio changed from 1 to 0.5. Ignition delay time was calculated in C2-hydrocarbon-containing mixtures under study by simulating separately discharge and ignition processes. Good agreement was obtained between new measurements and calculated ignition delay times.

  9. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.

    PubMed

    Nag, Kaushik; Keough, Kevin M W; Morrow, Michael R

    2006-05-15

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in

  10. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  11. Gas-phase CO2, C2H2, and HCN toward Orion-KL

    NASA Astrophysics Data System (ADS)

    Boonman, A. M. S.; van Dishoeck, E. F.; Lahuis, F.; Doty, S. D.; Wright, C. M.; Rosenthal, D.

    2003-03-01

    The infrared spectra toward Orion-IRc2, Peak 1 and Peak 2 in the 13.5-15.5 mu m wavelength range are presented, obtained with the Short Wavelength Spectrometer on board the Infrared Space Observatory. The spectra show absorption and emission features of the vibration-rotation bands of gas-phase CO2, HCN, and C2H2, respectively. Toward the deeply embedded massive young stellar object IRc2 all three bands appear in absorption, while toward the shocked region Peak 2 CO2, HCN, and C2H2 are seen in emission. Toward Peak 1 only CO2 has been detected in emission. Analysis of these bands shows that the absorption features toward IRc2 are characterized by excitation temperatures of ~ 175-275 K, which can be explained by an origin in the shocked plateau gas. HCN and C2H2 are only seen in absorption in the direction of IRc2, whereas the CO2 absorption is probably more widespread. The CO2 emission toward Peak 1 and 2 is best explained with excitation by infrared radiation from dust mixed with the gas in the warm component of the shock. The similarity of the CO2 emission and absorption line shapes toward IRc2, Peak 1 and Peak 2 suggests that the CO2 is located in the warm component of the shock (T ~ 200 K) toward all three positions. The CO2 abundances of ~ 10-8 for Peak 1 and 2, and of a few times 10-7 toward IRc2 can be explained by grain mantle evaporation and/or reformation in the gas-phase after destruction by the shock. The HCN and C2H2 emission detected toward Peak 2 is narrower (T ~ 50-150 K) and originates either in the warm component of the shock or in the extended ridge. In the case of an origin in the warm component of the shock, the low HCN and C2H2 abundances of ~ 10-9 suggest that they are destroyed by the shock or have only been in the warm gas for a short time (t <~ 104 yr). In the case of an origin in the extended ridge, the inferred abundances are much higher and do not agree with predictions from current chemical models at low temperatures. Based on

  12. 2H Stable Isotope Analysis of Tooth Enamel: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Holobinko, Anastasia; Kemp, Helen; Meier-Augenstein, Wolfram; Prowse, Tracy; Ford, Susan

    2010-05-01

    Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well recognized and increasingly important method for determining provenance of human remains, and has been used successfully in bioarchaeological studies as well as forensic investigations (Lee-Thorp, 2008; Meier-Augenstein and Fraser, 2008). Particularly, 18O and 2H stable isotopes are well established proxies as environmental indicators of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans (Hobson et al., 2004; Schwarcz and Walker, 2006). While methodology for 2H analysis of human hair, fingernails, and bone collagen is currently used to determine geographic origin and identify possible migration patterns, studies involving the analysis of 2H in tooth enamel appear to be nonexistent in the scientific literature. The apparent lack of research in this area is believed to have two main reasons. (1) Compared to the mineral calcium hydroxylapatite Ca10(PO4)6(OH)2, in tooth enamel forming bio-apatite carbonate ions replace some of the hydroxyl ions at a rate of one CO32 replacing two OH, yet published figures for the degree of substitution vary (Wopenka and Pasteris, 2005). (2) Most probably due to the aforementioned no published protocols exist for sample preparation and analytical method to obtain δ2H-values from the hydroxyl fraction of tooth enamel. This dilemma has been addressed through a pilot study to establish feasibility of 2H stable isotope analysis of ground tooth enamel by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyzer (TC/EA). An array of archaeological and modern teeth has been analyzed under different experimental conditions, and results from this pilot study are being presented. References: Lee-Thorp, J.A. (2008) Archaeometry, 50, 925-950 Meier-Augenstein, W. and Fraser, I. (2008) Science & Justice

  13. Planar B3S2H3(-) and B3S2H3 clusters with a five-membered B3S2 ring: boron-sulfur hydride analogues of cyclopentadiene.

    PubMed

    Li, Da-Zhi; Li, Rui; Zhang, Li-Juan; Ou, Ting; Zhai, Hua-Jin

    2016-08-21

    Boron clusters can serve as inorganic analogues of hydrocarbons or polycyclic aromatic hydrocarbons (PAHs). We present herein, based upon global searches and electronic structural calculations at the B3LYP and CCSD(T) levels, the global-minimum structures of two boron-sulfur hydride clusters: C2v B3S2H3(-) (1, (2)B1) and C2v B3S2H3 (2, (1)A1). Both species are perfectly planar and feature a five-membered B3S2 ring as the structural core, with three H atoms attached terminally to the B sites. Chemical bonding analysis shows that C2v B3S2H3(-) (1) has a delocalized 5π system within a heteroatomic B3S2 ring, analogous to the π bonding in cyclopentadiene, D5h C5H5. The corresponding closed-shell C2v B3S2H3(2-) (3, (1)A1) dianion is only a local minimum. At the single-point CCSD(T) level, it is 5.7 kcal mol(-1) above the chain-like C1 ((1)A) open structure. This situation is in contrast to the cyclopentadienyl anion, C5H5(-), a prototypical aromatic hydrocarbon with a π sextet. The C2v B3S2H3 (2) neutral cluster is readily obtained upon removal of one π electron from C2v B3S2H3(-) (1). The anion photoelectron spectrum of C2v B3S2H3(-) (1) and the infrared absorption spectrum of C2v B3S2H3 (2) are predicted. The C2v B3S2H3(-) (1) species can be stabilized in sandwich-type C2h [(B3S2H3)2Fe](2-) and salt C2h [(B3S2H3)2Fe]Li2 complexes. An intriguing difference is observed between the pattern of π sextet in C2v B3S2H3(2-) (3) dianion and that in cyclopentadienyl anion. The present work also sheds light on the mechanism of structural evolution in the B3S2H3(0/-/2-) series with charge states. PMID:27424889

  14. Atmospheric-pressure plasma synthesis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Yoshida, Shinpei; Karatsu, Takuya; Okazaki, Ken

    2011-05-01

    An atmospheric-pressure radio-frequency discharge (APRFD) has great advantages over vacuum-oriented plasma-enhanced chemical vapour deposition (PECVD) as well as other types of atmospheric-pressure plasma sources in terms of single-walled carbon nanotube (SWCNT) growth. We first provide an overview on the recent advances in PECVD synthesis of CNTs, ranging from low pressure to atmospheric pressure, and then we present our current work focusing on the analysis of reactive species generated in the cathodic plasma sheath for further understanding of the SWCNT growth mechanism in PECVD. It was found that the plasma-generated C2H2 is the main CNT growth precursor in PECVD. Approximately 30% of the CH4 (initial feedstock) was converted into C2H6, C2H4 and C2H2. A trace amount of C2H2 enabled the synthesis of SWCNTs in the thermal chemical vapour deposition (CVD) regime. H2 is necessary to grow SWCNTs using PECVD because H2 suppresses the formation of excess amount of C2H2; however, H2 does not eliminate amorphous carbon even at H2/C2H2 ratios of 300. PECVD using a binary mixture of C2H2 and isotope-modified 13CH4 demonstrated that CH4 does not contribute to CNT growth in C2H2-assisted thermal CVD. Atmospheric-pressure PECVD performed with a He/CH4/H2 system is equivalent to C2H2-assisted thermal CVD without an etching gas. APRFD appears to produce a hidden species, which influences the CNT growth process.

  15. Cometary implications of recent laboratory experiments on the photochemistry of the C2H and C3H2 radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.; Song, Xueyu; Gosine, Jai; Lu, Chi

    1992-01-01

    Recent laboratory results on the photodissociation of the C2H and C3H2 radicals are described. These studies show that the C2 and C3 radicals are produced by the 193 nm photolysis of the C2H and C3H2 radicals, respectively. The quantum state distributions that were determined for the C2 radicals put certain constraints on the initial conditions for any models of the observed C2 cometary spectra. Experimental observations of C2 formed by the 212.8 nm photolysis of C2H are used to calculate a range of photochemical lifetimes for the C2H radical.

  16. First-Principles Electronic Structure Calculations of N2H4 Adsorbed on Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2008-03-01

    Recent experiments conducted by Desai et al. [1] reveal that single-wall carbon nanotube (SWCNT) networks exposed to N2H4 vapor at various pressures exhibit considerable drop in resistance with respect to the pristine sample. Experimental findings reveal: (i) n-type behavior for the adsorption of N2H4/SWCNT, and (ii) the binding of N2H4 on SWCNT as chemisorption. In the present work, we have performed first-principles electronic structure calculations [2] for the N2H4 adsorbed on the (14, 0) SWCNT, where several orientations for the N2H4 molecule were considered. Calculations for the combined system were performed using 3 unit cells with the DFT/GGA and ultra soft pseudo-potentials. Our calculations reveal: (i) the binding of N2H4 on SWCNT as physisorption, and (ii) the electronic structure of SWCNT to be practically unaltered by the adsorption of N2H4, suggesting that there will not be a dramatic drop in resistance for N2H4/SWCNT. This is in disagreement with the experimental findings. To further understand the experimental observations, we will discuss mechanisms that may alter the binding nature of N2H4 on SWCNT. [1] S. Desai, G. Sumanasekera, et al. (APS, March 2008). [2] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

  17. Plasma turbulence

    SciTech Connect

    Horton, W.; Hu, G.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  18. Investigation of the Direct Charge Transfer in Low Energy D2+ + H Collisions using Merged-Beams Technique

    NASA Astrophysics Data System (ADS)

    Romano, S. L.; Guillen, C. I.; Andrianarijaona, V. M.; Havener, C. C.

    2011-10-01

    The hydrogen - hydrogen (deuterium) molecular ion is the most fundamental ion-molecule two-electron system. Charge transfer (CT) for H2+ on H, which is one of the possible reaction paths for the (H-H2)+ system, is of special interest because of its contribution to H2 formation in the early universe, its exoergicity, and rich collision dynamics. Due to technical difficulty in making an atomic H target, the direct experimental investigations of CT for H2+ on H are sparse and generally limited to higher collision energies. The measurements of the absolute cross section of different CT paths for H2+ on H over a large range of collision energy are needed to benchmark theoretical calculations, especially the ones at low energies. The rate coefficient of CT at low energy is not known but may be comparable to other reaction rate coefficients in cold plasmas with H, H+, H2+, and H3+ as constituents. For instance, CT for H2+ on H and the following H3+ formation reaction H2+ + H2 → H + H3+ are clearly rate interdependent although it was always assumed that every ionization of H2 will lead to the formation of H3+. CT proceeds through dynamically coupled electronic, vibrational and rotational degrees of freedom. One can depict three paths, electronic CT, CT with nuclear substitution, and CT with dissociation. Electronic CT and CT with nuclear substitution in the H2+ on H collisions are not distinguishable by any quantum theory. Here we use the isotopic system (D2+ - H) to measure without ambiguity the electronic CT cross section by observing the H+ products. Using the ion-atom merged-beam apparatus at Oak Ridge National Laboratory, the absolute direct CT cross sections for D2+ + H from keV/u to meV/u collision energies have been measured. The molecular ions are extracted from an Electron-Cyclotron Resonance (ECR) ion source with a vibrational state distribution which is most likely determined by Frank-Condon transitions between ground state D2 and D2+. A ground-state H beam

  19. Thermal neutron capture cross sections for 16,171,18O and 2H

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.

    2016-04-01

    Thermal neutron capture γ -ray spectra for 16,17,18O and 2H have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O,1817 enriched D2O targets. Complete neutron capture γ -ray decay schemes for the 16,17,18O(n ,γ ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ -ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from 16O(n ,γ ) was measured as Pγ(871 )=96.6 ±0.5 % and the thermal neutron cross section for this γ ray was determined as 0.164 ±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ -ray cross sections were previously standardized. The γ -ray cross sections for the O,1817(n ,γ ) and 2H(n ,γ ) reactions were then determined relative to the 870.76-keV γ -ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ -ray cross sections and transition probabilities; σ0(16O )=0.170 ±0.003 mb; σ0(17O )=0.67 ±0.07 mb; σ0(18O )=0.141 ±0.006 mb; and σ0(2H )=0.489 ±0.006 mb.

  20. Limb-girdle muscular dystrophy 2H and the role of TRIM32.

    PubMed

    Shieh, Perry B; Kudryashova, Elena; Spencer, Melissa J

    2011-01-01

    Limb-girdle muscular dystrophy (LGMD) 2H is a slowly progressive condition characterized by proximal weakness, atrophy, and mildly to moderately raised levels of creatine kinase. Facial weakness, scapular winging, hypertrophied calves, and Achilles tendon contractions are not uncommon and the age of onset ranges between the first and fourth decade. LGMD2H was originally described in the Hutterite population that resides in central Canada and the Dakotas of the USA. LGMD2H was mapped to a specific mutation in the TRIM32 gene and it has subsequently been shown that the same mutation also results in the "sarcotubular myopathy" syndrome, which was described histopathologically. TRIM32 appears to be an E3 ubiquitin ligase, containing the tripartite motif common to this family of proteins (RING finger, B-box, coiled-coil). A few substrates have been identified, including actin and dysbindin. Recent studies have identified additional mutations in the C-terminal region of TRIM32 that result in a dystrophic myopathy. Although TRIM32 appears to be expressed ubiquitously, it is still not clear why certain mutations of TRIM32 would result in a phenotype relatively restricted to skeletal muscle. A mutation in the B-box region of TRIM32 has also been shown to result in a more pleiotropic disorder, Bardet-Biedl Syndrome (BBS11). This disorder is associated with obesity, retinopathy, diabetes, polydactyly, renal abnormalities, learning disability, and hypogenitalism. It is likely that C-terminal mutations in TRIM32 affect the ability of muscle proteins to be degraded by the ubiquitin-proteasome pathway. PMID:21496629

  1. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  2. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  3. Quinolone-1-(2H)-ones as hedgehog signalling pathway inhibitors.

    PubMed

    Trinh, Trieu N; McLaughlin, Eileen A; Abdel-Hamid, Mohammed K; Gordon, Christopher P; Bernstein, Ilana R; Pye, Victoria; Cossar, Peter; Sakoff, Jennette A; McCluskey, Adam

    2016-07-14

    A series of quinolone-2-(1H)-ones derived from the Ugi-Knoevenagel three- and four-component reaction were prepared exhibiting low micromolar cytotoxicity against a panel of eight human cancer cell lines known to possess the Hedgehog Signalling Pathway (HSP) components, as well as the seminoma TCAM-2 cell line. A focused SAR study was conducted and revealed core characteristics of the quinolone-2-(1H)-ones required for cytotoxicity. These requirements included a C3-tethered indole moiety, an indole C5-methyl moiety, an aliphatic tail or an ester, as well as an additional aromatic moiety. Further investigation in the SAG-activated Shh-LIGHT2 cell line with the most active analogues: 2-(3-cyano-2-oxo-4-phenylquinolin-1(2H)-yl)-2-(1-methyl-1H-indol-3-yl)-N-(pentan-2-yl)acetamide (5), 2-(3-cyano-2-oxo-4-phenylquinolin-1(2H)-yl)-2-(5-methyl-1H-indol-3-yl)-N-(pentan-2-yl)acetamide (23) and ethyl (2-(3-cyano-2-oxo-4-phenylquinolin-1(2H)-yl)-2-(5-methyl-1H-indol-3-yl)acetyl)glycinate (24) demonstrated a down regulation of the HSP via a reduction in Gli expression, and in the mRNA levels of Ptch1 and Gli2. Analogues 5, 23 and 24 returned in cell inhibition values of 11.6, 2.9 and 3.1 μM, respectively, making this new HSP-inhibitor pharmacophore amongst the most potent non-Smo targeted inhibitors thus far reported. PMID:27272335

  4. Volume-discharge formed in SF6 and C2H6 mixtures without preionization

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Ke, Changjun; Zhang, Shujuan

    2014-11-01

    A new approach to obtain glow discharge in working mixtures of non-chain HF laser has been brought forward. The most advantage of the approach is without pre-ionization, so the contamination of pre-ionization will not happen and the laser equipment is compact and simple. It is found, if the cathode surface is equally rough, we can obtain uniform volume-discharge in SF6 mixtures without any pre-ionization, and dispense with uniform electric field electrode profile. The form of Self-Sustained Volume Discharge (SSVD) is a Self-Initiated Volume Discharge (SIVD). We show here the possibility of obtaining SIVD with a uniform energy deposition in a system of electrodes with non-uniform electric field. Experiments show that, with rough cathode and even anode, a volume discharge is forming in non-uniform electric-field without pre-ionization in SF6 and C2H6 mixtures. At the beginning of the discharge, many diffuse channels attached to bright circular cathode spots, then, diverge towards the anode, with the channels overlapping, form a spatially uniform glow discharge. SIVD has been performed at a total mixture pressure up to 8kPa and energy deposition up to 200J/l. We also report measurements of the V-I characteristics of SIVD with SF6 and C2H6 mixtures at pressure up to about 8kPa. The experimental results indicate that SSVD in SF6 and C2H6 mixtures develops in the form of SIVD is promising for creation of high energy and pulse-periodic HF laser.

  5. Charge transfer in energetic Li2+-H and He+-He+ collisions

    NASA Astrophysics Data System (ADS)

    Mančev, I.

    2009-02-01

    The total cross sections for charge transfer in Li2+-H and He+-He+ collisions have been calculated, using the four body first Born approximation with correct boundary conditions (CB1-4B) and four body continuum distorted wave method (CDW-4B) in the energy range 10-5000 keV/amu. The role of dynamic electron correlations is examined as a function of the impact energy. The present results call for additional experimental data at higher impact energies than presently available.

  6. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  7. Positron measurements in 2H-TaSe/sub 2/ crystals

    SciTech Connect

    Jean, Y.C.; Fluss, M.J.

    1985-01-01

    Temperature-dependent positron annihilation lifetime and Doppler broadening experiments are reported on single crystals of 2H-TaSe/sub 2/ to search for effects from known charge-density-wave (CDW) phase transitions. The positron lifetime in the perfect lattice and in positron trapping sites were found to be 0.173 and 0.378 ns, respectively. The apparent activation energy for the thermally generated trapping sites was found to be 0.12 eV. Doppler broadening spectra exhibited no response to the known CDW phase transitions, nor any significant overall anisotropy in their temperature dependence.

  8. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  9. Low-temperature solid-state phase transformations in 2H silicon carbide.

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Will, H. A.

    1972-01-01

    Study of the phase transformations taking place in 2H SiC single crystals at temperatures as low as 400 C. Some crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent, and is greatly enhanced by dislocations. The transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid-state transformation above 1400 C.

  10. Mid-Infrared Spectrum of the Atmospherically Significant N2-H2O Complex

    NASA Astrophysics Data System (ADS)

    Springer, Sean D.; McElmurry, Blake A.; Lucchese, Robert R.; Bevan, John W.; Coudert, L. H.

    2014-06-01

    Rovibrational transitions associated with tunneling states in the vibration of the N2-H2O complex have been recorded using a supersonic jet quantum cascade laser spectrometer at 6.2μm. Analysis of the resulting spectra is facilitated by incorporating fits of previously recorded microwave and submillimeter data accounting for Coriolis coupling to obtain the levels of the ground vibrational state. The results are then used to confirm assignment of the νb{3} vibration and explore the nature of tunneling dynamics in associated vibrationally excited states of the complex.

  11. Rate constants for reactions between atmospheric reservoir species. 2. H sub 2 O

    SciTech Connect

    Hatakeyama, Shiro; Leu, Mingtaun )

    1989-07-27

    The kinetics of the reactions of H{sub 2}O with ClONO{sub 2}, N{sub 2}O{sub 5}, O{sub 3}, and COCl{sub 2} have been investigated by using a large-volume static cell and a Fourier transform infrared spectrometer at 296 K. Upper limits for the homogeneous gas-phase reaction rate constants of the ClONO{sub 2} + H{sub 2}O, N{sub 2}O{sub 5} + H{sub 2}O, O{sub 3} + H{sub 2}O, and COCl{sub 2} + H{sub 2}O reactions were found to be 3.4 {times} 10{sup {minus}21}, 2.8 {times} 10{sup {minus}21}, 1.1 {times} 10{sup {minus}22}, and 1.2 {times} 10{sup {minus}23}, respectively (all in units of cm{sup 3} s{sup {minus}1}), based on the observed decay rates of ClONO{sub 2}, N{sub 2}O{sub 5}, O{sub 3}, and COCl{sub 2}. Product analyses gave 0.82 {plus minus} 0.07 for the yield of HNO{sub 3} in the ClONO{sub 2} + H{sub 2}O {yields} HOCl + HNO{sub 3} reaction and 1.1 {plus minus} 0.3 for the yield of HNO{sub 3} from the N{sub 2}O{sub 5} + H{sub 2}O {yields} 2HNO{sub 3} reaction. The quoted error represents one standard deviation of the measurement. An attempt was also made to monitor possible reaction products such as H{sub 2}O{sub 2} for the O{sub 3} + H{sub 2}O reaction, and CO{sub 2} or HCl for the COCl{sub 2} + H{sub 2}O reaction. These results may be important in the elucidation of the springtime Antarctic ozone depletion over the past decade. The implication for NO{sub x} chemistry in the nighttime troposphere based on their results of the N{sub 2}O{sub 5} + H{sub 2}O reaction will be discussed.

  12. The quasielastic 2H(e,e'p)n reaction at high recoil momenta

    SciTech Connect

    D. Crovelli; Konrad Aniol; Javier Gomez; John LeRose; Arunava Saha; Paul Ulmer; Vina Punjabi; Richard Lindgren; Charles Perdrisat; David Meekins; Joseph Mitchell; Mark Jones; Robert Michaels; Bogdan Wojtsekhowski; Hartmuth Arenhoevel; Michael Finn; Jens-Ole Hansen; Riad Suleiman; Kevin Fissum; Sergey Malov; Cornelis De Jager; Cornelis de Jager; Rikki Roche; Michael Kuss; Eugene Chudakov; Sabine Jeschonnek; Franck Sabatie; Luminita Todor; Meihua Liang; Olivier Gayou; Jian-Ping Chen

    2001-11-01

    The 2H(e,e'p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) in quasielastic kinematics (x=0.96) at a four-momentum transfer squared, Q{sup 2}=0.67 (GeV/c){sup 2}. The experiment was performed in fixed electron kinematics for recoil momenta from zero to 550 MeV/c. Though the measured cross section deviates by 1-2 sigma from a state-of-the-art calculation at low recoil momenta, it agrees at high recoil momenta where final state interactions (FSI) are predicted to be large.

  13. Palladium-Catalyzed Synthesis of 2-Aryl-2H-Benzotriazoles from Azoarenes and TMSN3.

    PubMed

    Khatun, Nilufa; Modi, Anju; Ali, Wajid; Patel, Bhisma K

    2015-10-01

    Substrate-directed ortho C-H amination of azoarenes using TMSN3 as the source of nitrogen leading to the synthesis of 2-aryl-2H-benzotriazoles has been accomplished with the help of Pd/TBHP combinations. An intermolecular o-azidation (C-N bond formation) followed by an intramolecular N-N bond formation via nucleophilic attack of one of the azo nitrogen onto the o-azide nitrogen leads to cyclization with the expulsion of N2. PMID:26372371

  14. Early Gravitropic Events in Roots of Arabidopsis: Ca(2+)H(+) Fluxes in the Columella Cells

    NASA Technical Reports Server (NTRS)

    Feldman, Lewis

    2003-01-01

    Despite the wealth of information derived from physiological approaches, molecular mechanisms for sensing and responding to gravity in plants remain largely uncharacterized. Roots of higher plants offer many advantages for studying the sensing and responding phases. In roots, gravisensing occurs in specialized cells, the columella cells in which earlier studies have indicated an involvement of the cytoskeleton, Ca(2+), H(+) and auxin in processing the gravity signal. The overall goal of this project was to characterize gravity-stimulated Ca(2+) and H(+) fluxes in the columella cells of a model plant Arabidopsis thaliana and to define their regulation. For this work we used intact Arabidopsis roots.

  15. Crystal structure of 2-oxo-N′-phenyl-2H-chromene-3-carbohydrazide

    PubMed Central

    Mague, Joel T.; Mohamed, Shaaban K.; Akkurt, Mehmet; Younes, Sabry H. H.; Albayati, Mustafa R.

    2015-01-01

    In the title compound, C16H12N2O3, the 2H-chromene moiety is essentially planar, with an r.m.s. deviation of the nine constituent atoms from the mean plane of 0.0093 Å, and makes a dihedral angle of 76.84 (3)° with the pendant phenyl ring. An intra­molecular N—H⋯O hydrogen bond helps to determine the conformation of the side chain. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules, forming [100] chains. PMID:26870466

  16. Phthalazin-1(2H)-one–picric acid (1/1)

    PubMed Central

    Yathirajan, H. S.; Narayana, B.; Swamy, M. T.; Sarojini, B. K.; Bolte, Michael

    2008-01-01

    The geometric parameters of the title compound, C8H6N2O·C6H3N3O7, are in the usual ranges. The three nitro groups are almost coplanar with the aromatic picrate ring [dihedral angles 10.2 (2)°, 7.62 (16) and 8.08 (17)°]. The mol­ecular conformation of the picric acid is stabilized by an intra­molecular O—H⋯O hydrogen bond. The phthalazin-1(2H)-one mol­ecules are connected via N—H⋯O hydrogen bonds, forming centrosymmetric dimers. PMID:21200682

  17. Quantum effects in the scattering of argon from 2H-W(100)

    SciTech Connect

    Schweizer, E. K.; Rettner, C. T.

    1989-06-26

    Diffraction has been observed in the scattering of Ar from a 2H-W(100) surface. Results are found to be consistent with an effective surface corrugation amplitude of about 0.05 A, which is similar to values obtained for He and Ne diffraction from this surface. The temperature dependence yields a surface Debye temperature of /similar to/400 K. We also find that the shape and behavior of surface scattering rainbows observed in this system are best accounted for by a quantum mechanical treatment of the Ar-surface interaction.

  18. Probing anisotropic interaction potentials of unsaturated hydrocarbons with He*(2 3S) metastable atom: Attractive-site preference of σ-direction in C2H2 and π-direction in C2H4

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Hatamoto, Takuro; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi

    2006-03-01

    State-resolved collision energy dependence of Penning ionization cross sections of acetylene (C2H2) and ethylene (C2H4) with He*(2S3) metastable atoms was observed in a wide collision energy range from 20to350meV. A recently developed discharge nozzle source with a liquid N2 circulator was employed for the measurements in the low-energy range from 20to80meV. Based on classical trajectory calculations for the energy dependence of the partial ionization cross sections, anisotropic potential energy surfaces for the present systems were obtained by optimizing ab initio model potentials for the chemically related systems Li +C2H2 and C2H4. In the case of C2H2, the global minimum was found to be located around the H atom along the molecular axis with a well depth of 48meV (ca. 1.1kcal/mol). On the other hand, a dominant attractive well with a depth of 62meV (ca. 1.4kcal/mol) was found in the πCC electron region of C2H4. These findings were discussed in connection with orbital interactions between molecular orbitals of the target molecules and atomic orbitals of the metastable atom. It is concluded that σ-type unoccupied molecular orbitals of C2H2 and a πCC-type highest occupied molecular orbital of C2H4 play a significant role for the attractive-site preference of σ direction in C2H2 and π direction in C2H4, respectively.

  19. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  20. Mining the Brassica oleracea genome for Q-type C2H2 zinc finger transcription factor proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Q-type zinc finger proteins have been studied in several plant species and have been associated with response to stress. A whole genome analysis of Arabidopsis identified 176 putative C2H2 transcription factors (TF). Q-type C2H2 TFs containing the QALGGH motif and are a subset of these. In Arabidops...

  1. Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Paaske, Berit; Oschkinat, Hartmut; Akbey, Ümit; Nielsen, Niels Chr.

    2012-01-01

    We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from 1H and 2H spins, taking advantage of their different T1 relaxation times. Different 1H- and 2H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) 1H → 13C/ 2H → 13C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly 2H, 15N, 13C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile 2H to 1H. It is demonstrated how 1D 13C CP/MAS or 2D 13C- 13C correlation spectra initialized with polarization from either 1H or 2H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D 13C- 13C correlation spectra may be recorded interleaved with 2H- 13C correlation spectra to obtain 13C- 13C correlations along with information about dynamics from 2H sideband patterns.

  2. EVIDENCE OF DIFFERENTIAL PH REGULATION OF THE ARABIDOPSIS VACUOLAR CA2+/H+ ANTIPORTERS CAX1 AND CAX2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis Ca(2+)/H(+) antiporters cation exchanger (CAX) 1 and 2 utilise an electrochemical gradient to transport Ca(2+) into the vacuole to help mediate Ca(2+) homeostasis. Previous whole plant studies indicate that activity of Ca(2+)/H(+) antiporters is regulated by pH. However, the pH regul...

  3. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  4. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  5. Theoretical study of radiative electron attachment to CN, C2H, and C4H radicals.

    PubMed

    Douguet, Nicolas; Fonseca dos Santos, S; Raoult, Maurice; Dulieu, Olivier; Orel, Ann E; Kokoouline, Viatcheslav

    2015-06-21

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN(-), C4H(-), and C2H(-). Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN(-) is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10(-16) cm(3)/s for CN(-), 7 × 10(-17) cm(3)/s for C2H(-), and 2 × 10(-16) cm(3)/s for C4H(-). These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments. PMID:26093561

  6. Pumping Ca2+ up H+ gradients: a Ca2(+)-H+ exchanger without a membrane.

    PubMed

    Swietach, Pawel; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2014-08-01

    Cellular processes are exquisitely sensitive to H+ and Ca2+ ions because of powerful ionic interactions with proteins. By regulating the spatial and temporal distribution of intracellular [Ca2+] and [H+], cells such as cardiac myocytes can exercise control over their biological function. A well-established paradigm in cellular physiology is that ion concentrations are regulated by specialized, membrane-embedded transporter proteins. Many of these couple the movement of two or more ionic species per transport cycle, thereby linking ion concentrations among neighbouring compartments. Here, we compare and contrast canonical membrane transport with a novel type of Ca(2+)-H+ coupling within cytoplasm, which produces uphill Ca2+ transport energized by spatial H+ ion gradients, and can result in the cytoplasmic compartmentalization of Ca2+ without requiring a partitioning membrane. The mechanism, demonstrated in mammalian myocytes, relies on diffusible cytoplasmic buffers, such as carnosine, homocarnosine and ATP, to which Ca2+ and H+ ions bind in an apparently competitive manner. These buffer molecules can actively recruit Ca2+ to acidic microdomains, in exchange for the movement of H+ ions. The resulting Ca2+ microdomains thus have the potential to regulate function locally. Spatial cytoplasmic Ca(2+)-H+ exchange (cCHX) acts like a 'pump' without a membrane and may be operational in many cell types. PMID:24514908

  7. CCQE, 2p2h excitations and ν—energy reconstruction

    SciTech Connect

    Nieves, J.; Simo, I. Ruiz; Sánchez, F.; Vacas, M. J. Vicente

    2015-05-15

    We analyze the MiniBooNE muon neutrino CCQE-like dσ/dT{sub μ} d cos θ{sub μ} data using a theoretical model that, among other nuclear effects, includes RPA correlations and 2p2h (multinucleon) mechanisms. These corrections turn out to be essential for the description of the data. We find that MiniBooNE CCQE-like data are fully compatible with former determinations of the nucleon axial mass M{sub A} ∼ 1.05 GeV. This is in sharp contrast with several previous analysis where anomalously large values of M{sub A} ∼ 1.4 GeV have been suggested. We also show that because of the the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events. Finally, we analyze the MiniBooNE unfolded cross section, and show that it exhibits an excess (deficit) of low (high) energy neutrinos, which is an artifact of the unfolding process that ignores 2p2h mechanisms.

  8. Orientational landscapes of peptides in membranes: prediction of (2)H NMR couplings in a dynamic context.

    PubMed

    Esteban-Martín, Santi; Giménez, Diana; Fuertes, Gustavo; Salgado, Jesús

    2009-12-01

    Unlike soluble proteins, membrane polypeptides face an anisotropic milieu. This imposes restraints on their orientation and provides a reference that makes structure prediction tractable by minimalistic thermodynamic models. Here we use this framework to build orientational distributions of monomeric membrane-bound peptides and to predict their expected solid-state (2)H NMR quadrupolar couplings when labeled at specific side chain positions. Using a complete rigid-body sampling of configurations relative to an implicit lipid membrane, peptide free energy landscapes are calculated. This allows us to obtain probability distributions of the peptide tilt, azimuthal rotation, and depth of membrane insertion. The orientational distributions are broad and originate from an interplay among the three relevant rigid-body degrees of freedom, which allows population of multiple states in shallow free energy minima. Remarkably, only when the orientational distributions are taken into account do we obtain a close correlation between predicted (2)H NMR splittings and values measured in experiments. Such a good correlation is not seen with splittings calculated from single configurations, being either the averaged or the lowest free energy state, showing there are distributions, rather than single structures, that best define the peptide-membrane systems. Moreover, we propose that these distributions contribute to the understanding of the rigid-body dynamics of the system. PMID:19860438

  9. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra. PMID:25621533

  10. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.

    PubMed

    Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R

    2015-02-23

    Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. PMID:25612324

  11. Trojan Horse particle invariance for 2H(d,p)3H reaction: a detailed study

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L.; La Cognata, M.; Lamia, L.; Rinollo, A.; Spartá, R.; Tumino, A.

    2014-03-01

    In the last decades the Trojan Horse method has played a crucial role for the measurement of several charged particle induced reactions cross sections of astrophysical interest. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance for the binary d(d,p)t reaction was therefore tested using the quasi free 2H(6Li, pt)4He and 2H(3He,pt)H reactions after 6Li and 3He break-up, respectively. The astrophysical S(E)-factor for the d(d,p)t binary process was then extracted in the framework of the Plane Wave Approximation applied to the two different break-up schemes. The obtained results are compared with direct data as well as with previous indirect investigations. The very good agreement confirms the applicability of the plane wave approximation and suggests the independence of binary indirect cross section on the chosen Trojan Horse nucleus also for the present case.

  12. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-01

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures. PMID:25198539

  13. Mobility of Core Water in Bacillus subtilis Spores by 2H NMR

    NASA Astrophysics Data System (ADS)

    Kaieda, Shuji; Setlow, Barbara; Setlow, Peter; Halle, Bertil

    2013-11-01

    Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore's core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore's dormancy and thermal stability. Here, we use $^2$H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn$^{2+}$ ions. We also report and analyze the solid-state $^2$H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (~ 25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7 % on average of the maximum sixfold water coordination.

  14. Redetermination of [EuCl2(H2O)6]Cl

    PubMed Central

    Tambornino, Frank; Bielec, Philipp; Hoch, Constantin

    2014-01-01

    The crystal structure of the title compound, hexa­aqua­dichlorido­europium(III) chloride, was redetermined with modern crystallographic methods. In comparison with the previous study [Lepert et al. (1983 ▶). Aust. J. Chem. 36, 477–482], it could be shown that the atomic coordinates of some O atoms had been confused and now were corrected. Moreover, it was possible to freely refine the positions of the H atoms and thus to improve the accurracy of the crystal structure. [EuCl2(H2O)6]Cl crystallizes with the GdCl3·6H2O structure-type, exhibiting discrete [EuCl2(H2O)6]+ cations as the main building blocks. The main blocks are linked with isolated chloride anions via O—H⋯Cl hydrogen bonds into a three-dimensional framework. The Eu3+ cation is located on a twofold rotation axis and is coordinated in the form of a Cl2O6 square anti­prism. One chloride anion coordinates directly to Eu3+, whereas the other chloride anion, situated on a twofold rotation axis, is hydrogen bonded to six octa­hedrally arranged water mol­ecules. PMID:24940187

  15. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  16. Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in Escherichia coli O2:H6

    PubMed Central

    Bielaszewska, Martina; Schiller, Roswitha; Lammers, Lydia; Bauwens, Andreas; Fruth, Angelika; Middendorf, Barbara; Schmidt, M Alexander; Tarr, Phillip I; Dobrindt, Ulrich; Karch, Helge; Mellmann, Alexander

    2014-01-01

    Extraintestinal pathogenic and intestinal pathogenic (diarrheagenic) Escherichia coli differ phylogenetically and by virulence profiles. Classic theory teaches simple linear descent in this species, where non-pathogens acquire virulence traits and emerge as pathogens. However, diarrheagenic Shiga toxin-producing E. coli (STEC) O2:H6 not only possess and express virulence factors associated with diarrheagenic and uropathogenic E. coli but also cause diarrhea and urinary tract infections. These organisms are phylogenetically positioned between members of an intestinal pathogenic group (STEC) and extraintestinal pathogenic E. coli. STEC O2:H6 is, therefore, a ‘heteropathogen,’ and the first such hybrid virulent E. coli identified. The phylogeny of these E. coli and the repertoire of virulence traits they possess compel consideration of an alternate view of pathogen emergence, whereby one pathogroup of E. coli undergoes phased metamorphosis into another. By understanding the evolutionary mechanisms of bacterial pathogens, rational strategies for counteracting their detrimental effects on humans can be developed. Subject Categories Microbiology, Virology & Host Pathogen Interaction PMID:24413188

  17. Bound and continuum states of molecular anions C2H- and C3N-

    NASA Astrophysics Data System (ADS)

    Harrison, Stephen; Tennyson, Jonathan

    2011-02-01

    Recently a number of molecular anions, closed-shell linear carbon chains of the form CnH- and CnN-, have been detected in space. The molecules C2H- and C3N- are investigated by using the R-matrix method to consider electron scattering from the corresponding neutral targets. Initial target calculations are conducted and refined in order to produce target state characteristics similar to the experimental data. A number of different scattering models are tested including static exchange and close-coupling models, and the use of Hartree-Fock or natural orbitals in the close-coupling calculations. The calculations concentrate on bound and resonances states for the anions as well as eigenphase sums, elastic cross-sections and electronic excitation cross-sections for electron collisions with the neutral. It is found that electronic resonances are all too high in energy to be important for anion formation in the interstellar medium. However, C3N-, unlike C2H-, supports a number of very weakly bound excited states, which may well provide the route to electron attachment for this system.

  18. Gas-phase CO depletion and N2H+ abundances in starless cores

    NASA Astrophysics Data System (ADS)

    Lippok, N.; Launhardt, R.; Semenov, D.; Stutz, A. M.; Balog, Z.; Henning, Th.; Krause, O.; Linz, H.; Nielbock, M.; Pavlyuchenkov, Ya. N.; Schmalzl, M.; Schmiedeke, A.; Bieging, J. H.

    2013-12-01

    Context. In the dense and cold interiors of starless molecular cloud cores, a number of chemical processes allow for the formation of complex molecules and the deposition of ice layers on dust grains. Dust density and temperature maps of starless cores derived from Herschel continuum observations constrain the physical structure of the cloud cores better than ever before. We use these to model the temporal chemical evolution of starless cores. Aims: We derive molecular abundance profiles for a sample of starless cores. We then analyze these using chemical modeling based on dust temperature and hydrogen density maps derived from Herschel continuum observations. Methods: We observed the 12CO (2-1), 13CO (2-1), C18O (2-1) and N2H+ (1-0) transitions towards seven isolated, nearby low-mass starless molecular cloud cores. Using far infrared (FIR) and submillimeter (submm) dust emission maps from the Herschel key program Earliest Phases of Star formation (EPoS) and by applying a ray-tracing technique, we derived the physical structure (density, dust temperature) of these cores. Based on these results we applied time-dependent chemical modeling of the molecular abundances. We modeled the molecular emission profiles with a line-radiative transfer code and compared them to the observed emission profiles. Results: CO is frozen onto the grains in the center of all cores in our sample. The level of CO depletion increases with hydrogen density and ranges from 46% up to more than 95% in the core centers of the three cores with the highest hydrogen density. The average hydrogen density at which 50% of CO is frozen onto the grains is 1.1 ± 0.4 × 105 cm-3. At about this density, the cores typically have the highest relative abundance of N2H+. The cores with higher central densities show depletion of N2H+ at levels of 13% to 55%. The chemical ages for the individual species are on average (2 ± 1) × 105 yr for 13CO, (6 ± 3) × 104 yr for C18O, and (9 ± 2) × 104 yr for N2H

  19. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    PubMed

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses. PMID:24915771

  20. Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).

  1. Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.

    2012-05-01

    Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.

  2. Pulsed RF Plasma Source for Materials Processing

    NASA Astrophysics Data System (ADS)

    Nasiruddin, Abutaher Mohammad

    A pulsed rf plasma source was evaluated for materials processing. A pulsed rf discharge of carbon tetrafluoride (CF_4), sulfur hexafluoride (SF _6), oxygen (O_2), or acetylene (C_2H_2 ) created the plasmas. The frequency and duration of the rf discharge were about 290 kHz and 30 musec, respectively. The repetition rate was 1 discharge per minute. Plasma diagnostics included Langmuir probes, a photodiode dectector, an optical multichannel analyzer (OMA), and a microwave interferometer. Langmuir probe measurements showed that at a position 67 cm away from the rf coil, CF_4 plasma arrived in separate packets. Plasma densities and electron temperatures at this position were in the range 4 times 10^{11} cm ^{-3} to 1.8 times 10^{13} cm ^{-3} and 2 eV to 8.3 eV, respectively. The OMA measurements identified neutral atomic fluorine in the CF_4 plasma and neutral atomic oxygen in the O_2 plasma. A plasma slab model of the microwave interferometer was applied to predict the interferometer response. The measured response was found to be almost identical to the predicted response. The influence of different reactor parameters on plasma parameters was studied. Metal barriers of different geometry were used to control the ratio of charged particles to atomic neutrals in the plasma chamber. Four plasma structures were identified: precursor plasma, shock induced plasma, driver plasma, and delayed glow plasma. Pulsed CF _4 and SF_6 plasmas were used to etch silicon dioxide (SiO_2 ) grown on silicon wafers. The SF_6 plasma etched SiO_2 at a rate of about 0.71 A per discharge and the CF_4 plasma deposited a non-uniform film (possibly polymer) instead of etching. The C_2H _2 plasma deposited plasma polymerized acetylene on a KBr pellet with a deposition rate of 127 A per discharge. An FT-IR spectrum of the deposited film showed that carbon -to-carbon double bonds as well as carbon-to-hydrogen bonds were present. This device can be used in plasma assisted deposition and/or synthesis

  3. Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Eley, Yvette; Dawson, Lorna; Black, Stuart; Andrews, Julian; Pedentchouk, Nikolai

    2014-03-01

    Interpretation of sedimentary n-alkyl lipid δ2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked δ2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35‰ depending on marsh sub-environment, and exhibited site-specific seasonal shifts in δ2H up to a maximum of 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed seasonally by a maximum of 29‰. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100‰ throughout the 2012 growing season, resulting in an interspecies range in the ɛwax/leaf water values of -79‰ to -227‰. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane δ2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane δ2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate

  4. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  5. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  6. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  7. Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve

    NASA Astrophysics Data System (ADS)

    Bailey, E.; Stevenson, D. J.

    2015-12-01

    We present a range of models of Uranus and Neptune, taking into account recent experimental data (Bali, 2013) implying the location of the critical curve of the H2-H2O system at pressures up to 2.6 GPa. The models presented satisfy the observed total mass of each planet and the radius at the observed 1-bar pressure level. We assume the existence of three regions at different depths: an outer adiabatic envelope composed predominately of H2 and He, with a helium mass fraction 0.26, a water-rich layer including varied amounts of rock and hydrogen, and a chemically homogeneous rock core. Using measured rotation rates of Uranus and Neptune, and a density profile obtained for each model using constituent equations of state and the assumption of hydrostatic equilibrium, we calculate the gravitational harmonics J2 and J4 for comparison with observed values as an additional constraint. The H2-H2O critical curve provides information about the nature of the boundary between the outer, hydrogen-rich envelope and underlying water-rich layer. The extrapolated critical curve for hydrogen-water mixtures crosses the adiabat of the outer atmospheric shell in these models at two depths, implying a shallow outer region of limited miscibility, an intermediate region between ~90 and 98 percent of the total planet radius within which hydrogen and water can mix in all proportions, and another, deeper region of limited miscibility at less than ~90 percent of the total planet radius. The pressure and temperature of the gaseous adiabatic shell at the depth of the shallowest extent of the water-rich layer determines whether a gradual compositional transition or an ocean surface boundary may exist at depth in these planets. To satisfy the observed J2, the outer extent of the water-rich layer in these models must be located between approximately 80 and 85 percent of the total planet radius, within the deep region of limited H2-H2O miscibility, implying an ocean surface is possible within the

  8. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations. PMID:9177038

  9. Satellite observations of ethylene (C2H4) from the Aura Tropospheric Emission Spectrometer: A scoping study

    NASA Astrophysics Data System (ADS)

    Dolan, Wayana; Payne, Vivienne H.; Kualwik, Susan S.; Bowman, Kevin W.

    2016-09-01

    We present a study focusing on detection and initial quantitative estimates of ethylene (C2H4) in observations from the Tropospheric Emission Spectrometer (TES), a Fourier transform spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution (0.1 cm-1). We analyze observations taken in support of the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission and demonstrate the feasibility of future development of C2H4 into a TES standard product. In the Northern Hemisphere, C2H4 is commonly associated with boreal fire plumes, motor vehicle exhaust and petrochemical emissions. It has a short lifetime (∼14-32 h) in the troposphere due to its reaction with OH and O3. Chemical destruction of C2H4 in the atmosphere leads to the production of ozone and other species such as carbon monoxide (CO) and formaldehyde. Results indicate a correlation between C2H4 and CO in boreal fire plumes. Quantitative C2H4 estimates are sensitive to assumptions about the plume height and width. We find that C2H4 greater than 2-3 ppbv can be detected in a single TES observation (for a fire plume at 3 km altitude and 1.5 km width). Spatial averaging will be needed for surface-peaking profiles where TES sensitivity is lower.

  10. SNF2H interacts with XRCC1 and is involved in repair of H2O2-induced DNA damage.

    PubMed

    Kubota, Yoshiko; Shimizu, Shinji; Yasuhira, Shinji; Horiuchi, Saburo

    2016-07-01

    The protein XRCC1 has no inherent enzymatic activity, and is believed to function in base excision repair as a dedicated scaffold component that coordinates other DNA repair factors. Repair foci clearly represent the recruitment and accumulation of DNA repair factors at sites of damage; however, uncertainties remain regarding their organization in the context of nuclear architecture and their biological significance. Here we identified the chromatin remodeling factor SNF2H/SMARCA5 as a novel binding partner of XRCC1, with their interaction dependent on the casein kinase 2-mediated constitutive phosphorylation of XRCC1. The proficiency of repairing H2O2-induced damage was strongly impaired by SNF2H knock-down, and similar impairment was observed with knock-down of both XRCC1 and SNF2H simultaneously, suggesting their role in a common repair pathway. Most SNF2H exists in the nuclear matrix fraction, forming salt extraction-resistant foci-like structures in unchallenged nuclei. Remarkably, damage-induced formation of both PAR and XRCC1 foci depended on SNF2H, and the PAR and XRCC1 foci co-localized with the SNF2H foci. We propose a model in which a base excision repair complex containing damaged chromatin is recruited to specific locations in the nuclear matrix for repair, with this recruitment mediated by XRCC1-SNF2H interaction. PMID:27268481

  11. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo.

    PubMed

    Melchionda, Manuela; Pittman, Jon K; Mayor, Roberto; Patel, Sandip

    2016-03-28

    Increasing evidence implicates Ca(2+) in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca(2+) stores are fast emerging as signaling centers. But how Ca(2+) is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca(2+)/H(+)exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca(2+) signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca(2+) is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca(2+) stores in the control of Ca(2+)-dependent function. PMID:27002171

  12. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair

    PubMed Central

    Kato, Akihiro; Komatsu, Kenshi

    2015-01-01

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair. PMID:26184323

  13. Clonal diversity of Shiga toxin-producing Escherichia coli O103:H2/H(-) in Germany.

    PubMed

    Prager, Rita; Liesegang, Almut; Voigt, W; Rabsch, W; Fruth, Angelika; Tschäpe, H

    2002-07-01

    Shiga toxin producing Escherichia coli O103:H2/H(-) belong to the third most frequently isolated EHEC serotypes in Germany following isolates of O157:H7/H(-) and O26:H11/H(-). A total of 145 respective E. coli 103 isolates from single cases of diarrhoea and haemolytic uremic syndrome (HUS) in 1997-2000 were characterised by a range of molecular subtyping methods (PFGE, P-gene profiling, ribotyping, electrotyping) and phage typing in order to analyse their genetic relatedness and the practicability for new epidemiological tracing back. All isolates cluster into a distinct EHEC subgroup and reveal a high clonal diversity together with a considerable stability. Since strains of this serotype rank up to the third most frequently isolated EHEC in Germany a large population of this serotype, and therefore, a great supply of such strains may exist in this country. PMID:12798005

  14. Synthesis of novel 2H,5H-Dihydrofuran-3-yl Ketones via ISNC reactions

    PubMed Central

    Grandbois, Matthew L.; Betsch, Kelsie J.; Buchanan, William D.; Duffy-Matzner, Jetty L.

    2009-01-01

    Unique 1-[2H,5H-dihydrofur-3-yl]ketones have been synthesized from propargylic nitroethers via intramolecular cycloadditions involving silyl nitronates. Various substituent groups were placed on the 2 and 5 positions of the dihydrofuran rings. We examined the scope of the long-range coupling in proton NMR of the oxo-dihydrofuran products. The identities of the diastereomers resulting from the Michael Addition/cycloaddition reactions were tentatively assigned for the first time. CAChe MNDO PM5 and CONFLEX programs were engaged to assist with the identification of these stereoisomers. The reaction times and conditions for these oxo-dihydrofurans were found to be different than that of the published dihydrofuranals, which led us to propose a different mechanism. PMID:20161382

  15. Ferrimagnetism in MnFeF/sub 5/. 2H/sub 2/O

    SciTech Connect

    Jones, E.R. Jr.; Van Hine, C.; Datta, T.; Cathey, L.; Karraker, D.G.

    1985-11-06

    The magnetic susceptibility of MnFeF/sub 5/.2H/sub 2/O was measured at temperatures from 5 to 300 K for applied fields of up to 1 kOe with a SQUID susceptometer. A ferrimagnetic phase transition was observed at 38 +/- 0.25 K. At temperatures between 200 and 300 K the susceptibility followed a Curie-Weiss law chi = C/(T-Theta) with Theta = -164 K and an effective magnetic moment of 7.4 +/- 0.1 ..mu../sub B/. The Moessbauer resonance spectrum gave a quadrupole-split doublet with an isomer shift of 0.483 mm/s relative to ..cap alpha..-iron, indicating that all of the iron was Fe/sup 3 +/. 13 references, 4 figures, 2 tables.

  16. Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation

    PubMed Central

    Mazurek, Anthony; Johnson, Christopher N.; Germann, Markus W.; Fishel, Richard

    2009-01-01

    Numerous DNA mismatches and lesions activate MutS homologue (MSH) ATPase activity that is essential for mismatch repair (MMR). We have found that a mismatch embedded in a nearest-neighbor sequence context containing symmetric 3′-purines (2 × 3′-purines) enhanced, whereas symmetric 3′-pyrimidines (2 × 3′-pyrimidines) reduced, hMSH2-hMSH6 ATPase activation. The 3′-purine/pyrimidine effect was most evident for G-containing mispairs. A similar trend pervaded mismatch binding (KD) and the melting of unbound oligonucleotides (Tm; ΔG). However, these latter measures did not accurately predict the hierarchy of MSH ATPase activation. NMR studies of imino proton lifetime, solvent accessibility, and NOE connectivity suggest that sequence contexts that provoke improved MSH-activation displayed enhanced localized DNA flexibility: a dynamic DNA signature that may account for the wide range of lesions that activate MSH functions. PMID:19237577

  17. Pressure Induced Local Structure Distortions in Cu(pyz)F2(H2O)2

    SciTech Connect

    Musfeldt, J.L.; Carr, G.; Liu, Z.; Li, S.; Kang, C.L., Jena, P.; Manson, J.L.; Schlueter, J.A. Whangbo, M.H.

    2011-06-06

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  18. Pressure-Induced Local Structure Distortions in Cu(pyz)F(2)(H(2)O)(2)

    SciTech Connect

    J Musfeldt; Z Liu; S Li; J Kang; C Lee; P Jena; J Manson; J Schlueter; G Carr; M Whangbo

    2011-12-31

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  19. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils. PMID:15969485

  20. Dual-laser absorption spectroscopy of C2H2 at 1.4 μ m

    NASA Astrophysics Data System (ADS)

    Fasci, E.; Odintsova, T. A.; Castrillo, A.; De Vizia, M. D.; Merlone, A.; Bertiglia, F.; Moretti, L.; Gianfrani, L.

    2016-04-01

    Spectroscopic parameters (line intensity factor, pressure self-broadening, and shifting coefficients) of C2H2 at 1.4 μ m were accurately measured using a dual-laser approach, based upon the technique of optical phase locking. This generated an absolute frequency scale underneath the absorption spectra. A pair of extended-cavity diode lasers was used. One of them, the probe laser, is forced to maintain a precise frequency offset from a reference laser, which is an optical frequency standard based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Laser-gas interaction takes place inside an isothermal multipass cell that is stabilized at the temperature of the triple point of water. The fidelity in the observation of the shape associated to the Pe(14) line of the 2 ν3+ν5 band allowed us to measure the spectroscopic parameters, with a global uncertainty for the line strength of 0.22%.

  1. Crystal structure of NH4[La(SO4)2(H2O)].

    PubMed

    Benslimane, Meriem; Redjel, Yasmine Kheira; Merazig, Hocine; Daran, Jean-Claude

    2015-06-01

    The principal building units in the crystal structure of ammonium aqua-bis(sulfato)-lanthanate(III) are slightly distorted SO4 tetra-hedra, LaO9 polyhedra in the form of distorted tricapped trigonal prisms, and NH4 (+) ions. The La(3+) cation is coordinated by eight O atoms from six different sulfate tetra-hedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water mol-ecule; each sulfate anion bridges three La(3+) cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO4)2(H2O)](-) framework that is stabilized by O-H⋯O hydrogen-bonding inter-actions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms. PMID:26090145

  2. Inhibition of Myeloperoxidase: Evaluation of 2H-Indazoles and 1H-Indazolones

    PubMed Central

    Roth, Aaron; Ott, Sean; Farber, Kelli M.; Palazzo, Teresa A.; Conrad, Wayne E.; Haddadin, Makhluf J.; Tantillo, Dean J.; Cross, Carroll E.; Eiserich, Jason P.; Kurth, Mark J.

    2014-01-01

    Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1 μM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO:H2O2:HOCl/HOBr system. PMID:25438766

  3. A thermodynamic model of methyldiethanolamine-CO{sub 2}-H{sub 2}S-water

    SciTech Connect

    Posey, M.L.; Rochelle, G.T.

    1997-09-01

    Methyldiethanolamine (MDEA) is one of the favored alkanolamines in acid gas treating. It is receiving increased use due to its lower heat of reaction and lower corrosivity compared to the other amines. The electrolyte-nonrandom two-liquid model has been used to represent the thermodynamic behavior of the system: methyldiethanolamine-CO{sub 2}-H{sub 2}S-water. The Data Regression System (DRS) of Aspen Plus was used to regress parameters of the model to experimental data. pH and conductivity data were utilized to supplement vapor-liquid equilibria (VLE) data and improve confidence in model predictions at low acid gas loadings. Predictions for the mixed acid gas systems can be accurately made from the single acid gas parameter sets without the need to regress additional parameters. VLE data were fit well and the calculated heat absorption matches calorimetric data.

  4. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  5. Structural reinvestigation of the photoluminescent complex [NdCl2(H2O)6]Cl.

    PubMed

    Hsieh, Kuan-Ying; Bendeif, El-Eulmi; Pillet, Sebastien; Doudouh, Abdelatif; Schaniel, Dominik; Woike, Theo

    2013-09-01

    The structure of the photoluminescent compound hexaaquadichloridoneodymium(III) chloride has been redetermined from single-crystal X-ray diffraction data at 100 K, with the aim of providing an accurate structural model for the bulk crystalline material. The crystal structure may be described as a network of [NdCl2(H2O)6](+) cations with distorted square-antiprism geometry around the Nd(III) centre. The Nd(III) cation and the nonbonded Cl(-) anion are both located on twofold symmetry axes. The crystal packing consists of three different neodymium pairs linked by a three-dimensional network of O-H···Cl intermolecular interactions. The pair distribution function (PDF) calculated from the experimentally determined structure is used for the discussion of the local structure. PMID:24005508

  6. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  7. Synthesis of (3) H, (2) H4 and (14) C-SCH 417690 (Vicriviroc).

    PubMed

    Hesk, D; Borges, S; Hendershot, S; Koharski, D; McNamara, P; Ren, S; Saluja, S; Truong, V; Voronin, K

    2016-05-15

    Vicriviroc or SCH 417690 is a potent and selective antagonist of the CCR5 receptor. CCR5 receptor antagonists have the potential for the treatment of HIV infections. Four distinct isotopically labelled forms of SCH 417690 were synthesized. Low specific activity [(3) H]SCH 417690 was prepared for a preliminary absorption, distribution, metabolism and excretion evaluation of the compound and [(14) C]SCH 417690 for more definitive absorption, distribution, metabolism and excretion work, including an absorption, metabolism and excretion study in man. In addition, high specific activity [(3) H]SCH 417690 was prepared for CCR5 receptor binding work and [(2) H4 ]SCH 417690 was prepared as an internal standard for a liquid chromatography-mass spectrometry bioanalytical method. The paper discusses the synthesis of four isotopically labelled forms of SCH 417690. PMID:26991320

  8. Modelling of c-C2H4O Formation on Grain-Surfaces

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, Angela; Viti, S.; Ward, M. D.; Price, S. D.

    2013-01-01

    Ethylene oxide (c-C2H4O) is a ring-shaped organic compound that may lead to the synthesis of amino acids and the early metabolic pathways in the interstellar medium (ISM) (Cleaves 2003; Miller & Schlesinger 1993). This molecule has been detected towards several high-mass star forming regions (Ikeda et al. 2001) but to date, its observational abundances cannot be reproduced by chemical models. We include new experimental results in the UCL_CHEM chemical model with the aim of reproducing the abundances of ethylene oxide across high-mass sources. In particular, we focused on the solid state reaction investigated by Ward & Price (2011). By comparing our theoretical column densities with those from the observations we found that the reaction between atomic oxygen and ethylene on grains is a viable route of formation for ethylene oxide (Occhiogrosso et al., accepted by MNRAS).

  9. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  10. Equilibrium concentrations of N2H4 and its decomposition products at elevated temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fairchild, H. N., III; Martin, G. L.

    1973-01-01

    Liquid hydrazine is considered as a convenient source of hydrogen rather than just as a rocket fuel. For such purposes, the hydrogen is usually obtained by passing the hydrazine through a heated catalytic bed. One convenient measure of the effectiveness of a catalytic decomposition device as a whole is to compare the quantity of hydrogen produced with the equilibrium concentration of the gaseous species N2H4, NH3, N3, and H2 which would exist at the temperature and pressure found in various parts of the device. Calculations of the concentrations were carried out and are reported here. Following presentation of the results in both tabular and graphical forms is a comparison between the computed equilibrium concentrations and available experimental data.

  11. Direct growth of graphene on gallium nitride using C2H2 as carbon source

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhao, Yun; Yi, Xiao-Yan; Wang, Guo-Hong; Liu, Zhi-Qiang; Duan, Rui-Rei; Huang, Peng; Wang, Jun-Xi; Li, Jin-Min

    2016-04-01

    Growing graphene on gallium nitride (GaN) at temperatures greater than 900°C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4-5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830°C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.

  12. Crystal structure of NH4[La(SO4)2(H2O)

    PubMed Central

    Benslimane, Meriem; Redjel, Yasmine Kheira; Merazig, Hocine; Daran, Jean-Claude

    2015-01-01

    The principal building units in the crystal structure of ammonium aqua­bis(sulfato)­lanthanate(III) are slightly distorted SO4 tetra­hedra, LaO9 polyhedra in the form of distorted tricapped trigonal prisms, and NH4 + ions. The La3+ cation is coordinated by eight O atoms from six different sulfate tetra­hedra, two of which are bidentate coordinating and four monodentate, as well as one O atom from a water mol­ecule; each sulfate anion bridges three La3+ cations. These bridging modes result in the formation of a three-dimensional anionic [La(SO4)2(H2O)]− framework that is stabilized by O—H⋯O hydrogen-bonding inter­actions. The disordered ammonium cations are situated in the cavities of this framework and are hydrogen-bonded to six surrounding O atoms. PMID:26090145

  13. Core-mass nonadiabatic corrections to molecules: H2, H2+, and isotopologues.

    PubMed

    Diniz, Leonardo G; Alijah, Alexander; Mohallem, José Rachid

    2012-10-28

    For high-precision calculations of rovibrational states of light molecules, it is essential to include non-adiabatic corrections. In the absence of crossings of potential energy surfaces, they can be incorporated in a single surface picture through coordinate-dependent vibrational and rotational reduced masses. We present a compact method for their evaluation and relate in particular the vibrational mass to a well defined nuclear core mass derived from a Mulliken analysis of the electronic density. For the rotational mass we propose a simple, but very effective parametrization. The use of these masses in the nuclear Schrödinger equation yields numerical data for the corrections of a much higher quality than can be obtained with optimized constant masses, typically better than 0.1 cm(-1). We demonstrate the method for H(2), H(2)(+), and singly deuterated isotopologues. Isotopic asymmetry does not present any particular difficulty. Generalization to polyatomic molecules is straightforward. PMID:23126719

  14. Exploring water binding motifs to an excess electron via X2(-)(H2O) [X = O, F].

    PubMed

    Chiou, Mong-Feng; Sheu, Wen-Shyan

    2012-07-26

    X(2)(-)(H(2)O) [X = O, F] is utilized to explore water binding motifs to an excess electron via ab initio calculations at the MP4(SDQ)/aug-cc-pVDZ + diffs(2s2p,2s2p) level of theory. X(2)(-)(H(2)O) can be regarded as a water molecule that binds to an excess electron, the distribution of which is gauged by X(2). By varying the interatomic distance of X(2), r(X1-X2), the distribution of the excess electron is altered, and the water binding motifs to the excess electron is then examined. Depending on r(X1-X2), both binding motifs of C(s) and C(2v) forms are found with a critical distance of ∼1.37 Å and ∼1.71 Å for O(2)(-)(H(2)O) and F(2)(-)(H(2)O), respectively. The energetic and geometrical features of O(2)(-)(H(2)O) and F(2)(-)(H(2)O) are compared. In addition, various electronic properties of X(2)(-)(H(2)O) are examined. For both O(2)(-)(H(2)O) and F(2)(-)(H(2)O), the C(s) binding motif appears to prevail at a compact distribution of the excess electron. However, when the electron is diffuse, characterized by the radius of gyration in the direction of the X(2) bond axis with a threshold of ∼0.84 Å, the C(2v) binding motif is formed. PMID:22762788

  15. Aryl Hydrocarbon Receptor Ligand Effects in RBL2H3 Cells

    PubMed Central

    Maaetoft-Udsen, Kristina; Shimoda, Lori M.N.; Frøkiær, Hanne; Turner, Helen

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory responses and release a spectrum of pro-inflammatory mediators including histamine, mast cell proteases, and pro-inflammatory cytokines such as IL-6 upon stimulation. Our aim was to investigate the AHR in model mast cells and examine how both putative and known AHR ligands, e.g., kynurenine, kynurenic acid (KA), Resveratrol, indolmycin, and violacein, affect mast cell activation and signaling. We tested these ligands on calcium signaling, degranulation, and gene expression. Our data show that AHR is present in three model mast cell lines, and that various known and putative AHR ligands regulate gene expression of Cyp1a1, a gene down-stream of AHR. Furthermore, we found that calcium influxes and mast cell secretory responses were enhanced or suppressed after chronic treatment with AHR agonists or antagonists, and that AHR ligands modified RBL2H3 cell degranulation. AHR ligands can chronically change cytokine gene expression in activated mast cells, as exemplified by IL-6. The antagonist Resveratrol repressed expression of induced IL-6 gene expression. Though KA and kynurenine are both AHR agonists, these ligands behaved differently in regards to degranulation and IL-6 expression, indicating that they may function outside of AHR pathways. These data suggest considerable complexity in RBL2H3 responses to AHR ligands, with implications for our understanding of both dioxin pathology and the immunological effects of endogenous AHR ligands. PMID:22471748

  16. Direct Detection of C_2H_2 in Air and Human Breath by Cw-Crds

    NASA Astrophysics Data System (ADS)

    Schmidt, Florian M.; Vaittinen, Olavi; Metsälä, Markus; Halonen, Lauri

    2010-06-01

    Continuous wave cavity ring-down spectroscopy (cw-CRDS) is an established cavity-enhanced absorption technique that can provide the necessary sensitivity, selectivity and fast acquisition time for many applications involving the detection of trace species. We present a simple but highly sensitive cw-CRDS spectrometer based on an external cavity diode laser operating in the near-infrared region. This instrument allows us to directly detect acetylene (C_2H_2) mixing ratios in air with a detection limit of 120 parts per trillion by volume (pptv) measuring on a C_2H_2 absorption line at 6565.620 cm-1. Acetylene is a combustion product that is routinely used in environmental monitoring as a marker for anthropogenic emissions. In a recent work, the spectrometer was employed to measure the level of acetylene in indoor and outdoor air in Helsinki. Continuous flow measurements with high time resolution (one minute) revealed strong fluctuations in the acetylene mixing ratio in outdoor air during daytime. Due to its non-invasive nature and fast response time, the analysis of exhaled breath for medical diagnostics is an excellent and straightforward alternative to methods using urine or blood samples. In an ongoing study, the cw-CRDS instrument is used to establish the baseline level of acetylene in the breath of the healthy population. An elevated amount of acetylene in breath could indicate exposure to combustion exhausts or other volatile organic compound (VOC) rich sources. The latest results of this investigation will be presented. F. M. Schmidt, O. Vaittinen, M. Metsälä, P. Kraus and L. Halonen, submitted for publication in Appl. Phys. B.

  17. Equilibrium 2H/ 1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Carbon-bound hydrogen in sedimentary organic matter can undergo exchange over geologic timescales, altering its isotopic composition. Studies investigating the natural abundance distribution of 1H and 2H in such molecules must account for this exchange, which in turn requires quantitative knowledge regarding the endpoint of exchange, i.e., the equilibrium isotopic fractionation factor ( α eq). To date, relevant data have been lacking for molecules larger than methane. Here we describe an experimental method to measure α eq for C-bound H positions adjacent to carbonyl group (H α) in ketones. H at these positions equilibrates on a timescale of days as a result of keto-enol tautomerism, allowing equilibrium 2H/ 1H distributions to be indirectly measured. Molecular vibrations for the same ketone molecules are then computed using Density Functional Theory at the B3LYP/6-311G∗∗ level and used to calculate α eq values for H α. Comparison of experimental and computational results for six different straight and branched ketones yields a temperature-dependent linear calibration curve with slope = 1.081-0.00376 T and intercept = 8.404-0.387 T, where T is temperature in degrees Celsius. Since the dominant systematic error in the calculation (omission of anharmonicity) is of the same size for ketones and C-bound H in most other linear compounds, we propose that this calibration can be applied to analogous calculations for a wide variety of organic molecules with linear carbon skeletons for temperatures below 100 °C. In a companion paper ( Wang et al., 2009) we use this new calibration dataset to calculate the temperature-dependent equilibrium isotopic fractionation factors for a range of linear hydrocarbons, alcohols, ethers, ketones, esters and acids.

  18. C2H+H2CO: A new route for formaldehyde removal

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Ding, Yi-hong; Sun, Chia-chung

    2005-05-01

    The title unknown reaction is theoretically studied at various levels to probe the interaction mechanism between the ethynyl radical (HCC•) and formaldehyde (H2CO). The most feasible pathway is a barrier-free direct H-abstraction process leading to acetylene and formyl radical (C2H2+HCO) via a weakly bound complex, and then the product can take secondary dissociation to the final product C2H2+CO+H. The C-addition channel leading to propynal plus H-atom (HCCCHO+H) has the barrier of only 3.6, 2.9, and 2.1kcal/mol at the CCSD(T )/6-311+G(3df,2p)//MP2/6-311G(d,p)+ZPVE, CCSD(T )/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE, and G3//MP2 levels, respectively [CCSD(T)—coupled cluster with single, double, and triple excitations; ZPVE—zero-point vibrational energy; QCISD—quadratic configuration interaction with single and double excitations; G3//MP2—Gaussian-3 based on Moller-Plesset geometry]. The O addition also leading to propynal plus H atom needs to overcome a higher barrier of 5.3, 8.7, and 3.0kcal/mol at the three corresponding levels. The title no-barrier reaction presents a new efficient route to remove the pollutant H2CO, and should be included in the combustion models of hydrocarbons. It may also represent the fastest radical-H2CO reaction among the available theoretical data. Moreover, it could play an important role in the interstellar chemistry where the zero- or minute-barrier reactions are generally favored. Discussions are also made on the possible formation of the intriguing propynal in space via the title reaction on ice surface.

  19. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2

    PubMed Central

    Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, Chanhee; Jeon, B.-G.; Min, B. H.; Park, S.; Kim, Kee Hoon

    2016-01-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09–0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2. PMID:27045426

  20. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2.

    PubMed

    Bhoi, D; Khim, S; Nam, W; Lee, B S; Kim, Chanhee; Jeon, B-G; Min, B H; Park, S; Kim, Kee Hoon

    2016-01-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09-0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2. PMID:27045426

  1. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    PubMed

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-01

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (<10(2) s(-1)). When the silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks. PMID:25619304

  2. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells.

    PubMed

    Maaetoft-Udsen, Kristina; Shimoda, Lori M N; Frøkiær, Hanne; Turner, Helen

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory responses and release a spectrum of pro-inflammatory mediators including histamine, mast cell proteases, and pro-inflammatory cytokines such as IL-6 upon stimulation. The aim was to investigate the AHR in model mast cells and examine how both putative and known AHR ligands, e.g., kynurenine, kynurenic acid (KA), Resveratrol, indolmycin, and violacein, affect mast cell activation and signaling. These ligands were tested on calcium signaling, degranulation, and gene expression. The data show that AHR is present in three model mast cell lines, and that various known and putative AHR ligands regulate gene expression of Cyp1a1, a gene down-stream of AHR. Furthermore, it was found that calcium influxes and mast cell secretory responses were enhanced or suppressed after chronic treatment with AHR agonists or antagonists, and that AHR ligands modified RBL2H3 cell degranulation. AHR ligands can chronically change cytokine gene expression in activated mast cells, as exemplified by IL-6. The antagonist Resveratrol repressed expression of induced IL-6 gene expression. Although KA and kynurenine are both AHR agonists, these ligands behaved differently in regards to degranulation and IL-6 expression, indicating that they may function outside of AHR pathways. These data suggest considerable complexity in RBL2H3 responses to AHR ligands, with implications for understanding of both dioxin pathology and the immunological effects of endogenous AHR ligands. PMID:22471748

  3. The Microwave Spectrum of the HCOOCD_2H Species of Methyl Formate

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Huet, T. R.; Margulès, L.; Motiyenko, R.; Mollendal, H.

    2010-06-01

    Methyl formate is a non-rigid molecule displaying internal rotation of its methyl group. The microwave spectra of its normal and mono deuterated HCOOCH_2D species have already been studied and values for the tunneling splitting due to the internal rotation were determined. The normal species displays a 405 MHz A/E splitting, the mono deuterated one, a smaller 84.76 MHz A'/A'' splitting. For the bideuterated species HCOOCD_2H, the value of this splitting is not known as its microwave spectrum has not been studied yet. In this paper experimental and theoretical investigations of the microwave spectrum of HCOOCD_2H are presented. More than 9000 transitions were measured with a submillimeter wave spectrometer. About 20 lines were recorded with a molecular beam spectrometer. Like for the mono deuterated species,^c depending on the location of the only hydrogen atom of the methyl group, two configurations arise. The C_s-symmetry H-in plane configuration displays a rigid rotator spectrum and its data was analyzed using a Watson-type Hamiltonian. The C_1-symmetry H-out of plane configuration undergoes the large amplitude internal rotation. Its data was analyzed using the so called water dimer formalism which allowed us to accurately reproduce the observed frequencies and to obtain the value of the tunneling splitting as well as the parameters involved in its rotational dependence. The hyperfine structure due to quadrupole coupling at the two deuterium atoms was also analyzed. Unexpectedly, for the H-out of plane configuration, the observed hyperfine patterns are neither those expected for two equivalent deuterium atoms nor those of a rigid molecule. Ilyushin, Kryvda, and Alekseev, J. Mol. Spec. 255 (2009) 32. Margulès, Coudert, Mollendal, Guillemin, Huet, and Janeckovà, J. Mol. Spec. 254 (2009) 55. Hougen, J. Mol. Spec. 114 (1985) 395; and Coudert and Hougen, J. Mol. Spec. 130 (1988) 86.

  4. Protein dynamics in the solid state from 2H NMR line shape analysis: a consistent perspective.

    PubMed

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H

    2015-02-19

    Deuterium line shape analysis of CD3 groups has emerged as a particularly useful tool for studying microsecond-millisecond protein motions in the solid state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison among the different systems is not possible. Here we develop a new methodology for (2)H NMR line shape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model improvement is accomplished by monitoring the magnitude, symmetry, and orientation of the various tensors. The generality of MOMD makes possible comparison among different scenarios. CD3 line shapes from the Chicken Villin Headpiece Subdomain and the Streptomyces Subtilisin Inhibitor are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and by axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2-3 k(B)T. The diffusion tensor is tilted at 120° from the C-CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1-1.0 ms (3.3-30 μs). Activation energies in the 1.1-8.0 kcal/mol range are estimated. Future prospects include extension to the (2)H relaxation limit, application to the (15)N and (13)C NMR nuclei, and accounting for collective motions and anisotropic media. PMID:25594631

  5. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood.

    PubMed

    Mansell, T; Novakovic, B; Meyer, B; Rzehak, P; Vuillermin, P; Ponsonby, A-L; Collier, F; Burgner, D; Saffery, R; Ryan, J

    2016-01-01

    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=-2.23%; 95% CI=-3.68 to -0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=-3.89%; 95% CI=-6.06 to -1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=-3.70%; 95% CI=-5.90 to -1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed. PMID:27023171

  6. The thermal decomposition of C{sub 2}H{sub 5}I

    SciTech Connect

    Kumaran, S.S.; Su, M.C.; Lim, K.P.; Michael, J.V.

    1996-06-01

    The high temperature thermal dissociation of C{sub 2}H{sub 5}I has been characterized in this study. Kinetics and overall yield experiments were performed over the temperature range, 946--2,046 K, using the atomic resonance absorption spectrometric technique (ARAS) for the temporal detection of both product H- and I-atoms behind reflected shock waves. The C{sub 2}H{sub 5}I decomposition proceeds by both C-I fission and HI elimination. Rate constants for the C-I fission process, measured over the temperature and density ranges, 946--1,303 K and 0.82--4.4 {times} 10{sup 18} cm{sup {minus}3}, respectively, can be well represented to within {+-}37% by the first-order expression: k = 6.34 {times} 10{sup 9} exp({minus}15,894 K/T) s{sup {minus}1}. Overall yield data for atomic product gave a branching ratio for C-I fission of (0.87 {+-} 0.11) suggesting that 13% of the reaction proceeds through molecular HI elimination. This conclusion is consistent with earlier studies that showed C-I fission to be the dominant dissociation channel. The temperature and pressure dependences of the dissociation rate constants and the yield data have been theoretically described using three formulations of unimolecular rate theory. The best description was obtained with a full Master`s equation analysis. However, all three calculations confirm that the HI elimination pathway is lower lying than the C-I fission process by {approximately} 3 kcal/mole.

  7. Protein Dynamics in the Solid-State from 2H NMR Lineshape Analysis: a Consistent Perspective

    PubMed Central

    Meirovitch, Eva; Liang, Zhichun; Freed, Jack H.

    2015-01-01

    Deuterium lineshape analysis of CD3 groups has emerged as a particularly useful tool for studying μs - ms protein motions in the solid-state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison amongst the different systems is not possible. Here we develop a new methodology for 2H NMR lineshape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model-improvement is accomplished by monitoring the magnitude, symmetry and orientation of the various tensors. The generality of MOMD makes possible comparison amongst different scenarios. CD3 lineshapes from the Chicken Villin Headpiece Subdomain, and the Streptomyces Subtilisin Inhibitor, are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2 − 3 [kBT]. The diffusion tensor is tilted at 120° from the C−CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1 − 1.0 ms (3.3 − 30 μs). Activation energies in the 1.1 − 8.0 kcal/mol range are estimated. Future prospects include extension to the 2H relaxation limit, application to the 15N and 13C NMR nuclei, and accounting for collective motions and anisotropic media. PMID:25594631

  8. A classical trajectory study of the dissociation and isomerization of C2H5.

    PubMed

    Wagner, Albert F; Rivera-Rivera, Luis A; Bachellerie, Damien; Perry, Jamin W; Thompson, Donald L

    2013-11-21

    Motivated by photodissociation experiments in which non-RRKM nanosecond lifetimes of the ethyl radical were reported, we have performed a classical trajectory study of the dissociation and isomerization of C2H5 over the energy range 100-150 kcal/mol. We used a customized version of the AIREBO semiempirical potential (Stuart, S. J.; et al. J. Chem. Phys. 2000, 112, 6472-6486) to more accurately describe the gas-phase decomposition of C2H5. This study constitutes one of the first gas-phase applications of this potential form. At each energy, 10,000 trajectories were run and all underwent dissociation in less than 100 ps. The calculated dissociation rate constants are consistent with RRKM models; no evidence was found for nanosecond lifetimes. An analytic kinetics model of isomerization/dissociation competition was developed that incorporated incomplete mode mixing through a postulated divided phase space. The fits of the model to the trajectory data are good and represent the trajectory results in detail through repeated isomerizations at all energies. The model correctly displays single exponential decay at lower energies, but at higher energies, multiexponential decay due to incomplete mode mixing becomes more apparent. At both ends of the energy range, we carried out similar trajectory studies on CD2CH3 to examine isotopic scrambling. The results largely support the assumption that a H or a D atom is equally likely to dissociate from the mixed-isotope methyl end of the molecule. The calculated fraction of products that have the D atom dissociation is ∼20%, twice the experimental value available at one energy within our range. The calculated degree of isotopic scrambling is non-monotonic with respect to energy due to a non-monotonic ratio of the isomerization to dissociation rate constants. PMID:23448205

  9. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2

    NASA Astrophysics Data System (ADS)

    Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, Chanhee; Jeon, B.-G.; Min, B. H.; Park, S.; Kim, Kee Hoon

    2016-04-01

    2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09–0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2.

  10. Disturbed motor control of rhythmic movement at 2 h and delayed after maximal eccentric actions.

    PubMed

    Bottas, Reijo; Miettunen, Kari; Komi, Paavo V; Linnamo, Vesa

    2010-08-01

    The aim of this study was to examine the influence of exercise-induced muscle damage on elbow rhythmic movement (RM) performance and neural activity pattern and to investigate whether this influence is joint angle specific. Ten males performed an exercise of 50 maximal eccentric elbow flexions in isokinetic machine with duty cycle of 1:15. Maximal dynamic and isometric force tests (90 degrees , 110 degrees and 130 degrees elbow angle) and both active and passive stretch reflex tests of elbow flexors were applied to the elbow joint. The intentional RM was performed in the horizontal plane at elbow angles; 60-120 degrees (SA-RM), 80-140 degrees (MA-RM) and 100-160 degrees (LA-RM). All measurements together with the determination of muscle soreness, swelling, passive stiffness, serum creatine kinase were conducted before, immediately and 2h as well as 2 days, 4 days, 6 days and 8 days post-exercise. Repeated maximal eccentric actions modified the RM trajectory symmetry acutely (SA-RM) and delayed (SA/MA/LA-RM) until the entire follow up of 8 days. Acutely lowered MA-RM peak velocity together with reduced activity of biceps brachii (BB) at every RM range, reflected a poorer acceleration and deceleration capacity of elbow flexors. A large acute drop of BB EMG burst amplitude together with parallel decrease in BB active stretch reflex amplitude, especially 2h post-exercise, suggested an inhibitory effect originating most likely from groups III/IV mechano-nociceptors. PMID:20064728

  11. The First Detailed 2H and 18O Isoscapes of Freshwater in Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, W.; Hoogewerff, J.; Kemp, H. F.; Frew, D.

    2012-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwater quality by the Scottish Environmental Protection Agency (SEPA) fulfils the legislative requirements but new scientific methods involving stable isotope analysis present an opportunity for delivering on current and nascent government policies [1] and gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and the aforementioned functions. In brief, 2H and 18O isoscapes of Scottish freshwater could be used to support fundamental and applied research in: • Climate change - These first ever isoscapes will provide a baseline against which future environmental impact can be assessed due to changes in the characteristic isotope composition of freshwater lochs and reservoirs. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish berries and Scottish Whisky. During 2011, freshwater samples were collected with the support of SEPA from more than 80 freshwater lochs and reservoirs across Scotland. Here we present the result of the 2H and 18O stable isotope analyses of these water samples together with the first isoscapes generated based on these data. [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland's National Food and Drink Policy (2009); Scottish Planning Policy Environmental Report (2009); Scottish Planning Policy (SPP) 15 Planning for Rural Development (2005); National Planning Policy Guideline (NPPG) 14: Natural Heritage (1999).

  12. Stability evaluation of a rocket engine for gaseous oxygen difluoride (OF2) and gaseous diborane (B2H6) propellants

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1972-01-01

    Results of an experimental evaluation of the dynamic stability of a candidate combustor for the space storable propellants gaseous OF2/B2H6 show that the combustor is unstable without supplementary damping. A computer analysis indicated that the uninhibited engine could be unstable. The experiments, conducted with O2/C2H4 substitute propellants and with 70-30 FLOX/B2H6 (OF2 simulated with FLOX), show that the uninhibited combustor has a low stability margin to starting transient perturbations, but that is relatively insensitive to bomb disturbances. Damping cavities are shown to provide stability.

  13. Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyrans

    PubMed Central

    Rideau, Emeline

    2015-01-01

    Summary Asymmetric allylic alkylation is a powerful reaction that allows the enantioselective formation of C–C bonds. Here we describe the asymmetric alkylation of alkylzirconium species to racemic 3,6-dihydro-2H-pyrans. Two systems were examined: 3-chloro-3,6-dihydro-2H-pyran using linear optimization (45–93% ee, up to 33% yield, 5 examples) and 3,6-dihydro-2H-pyran-3-yl diethyl phosphate with the assistance of a design of experiments statistical approach (83% ee, 12% yield). 1H NMR spectroscopy was used to gain insight into the reaction mechanisms. PMID:26734091

  14. High resolution, low temperature photoabsorption cross-section of C2H2 with application to Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Caldwell, John; Wu, C. Y. R.; Xia, T. J.; Judge, D. L.; Wagener, R.

    1990-01-01

    New laboratory observations of the VUV absorption cross-section of C2H2, obtained under physical conditions approximating stratospheres of the giant planets, were combined with IUE observations of the albedo of Saturn, for which improved data reduction techniques have been used, to produce new models for that atmosphere. When the effects of C2H2 absorption are accounted for, additional absorption by other molecules is required. The best-fitting model also includes absorption by PH3, H2O, C2H6 and CH4. A small residual disagreement near 1600 A suggests that an additional trace species may be required to complete the model.

  15. Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites.

    PubMed

    Xu, Danyun; Zhu, Yuanzhi; Liu, Jiapeng; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2016-09-23

    Exfoliated molybdenum disulfide (MoS2) has unique 2H phase and semiconductor properties and potential applications across a wide range of fields. However, the chemically exfoliated MoS2 nanosheets from Li x MoS2 have a 1T phase, and searching for a fast route to get processable 2H-MoS2 nanosheets and its nanocomposites is still an urgent task. This study reports on a simple, fast and efficient microwave strategy to achieve the 1T to 2H phase conversion of MoS2 and the successful preparation of processable 2H-MoS2 nanosheets and their nanocomposites. The method here may be easily changed to achieve the phase change of other exfoliated TMDs. PMID:27528593

  16. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  17. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.

    PubMed

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H2, H2O, and (H2O)2, to obtain full PESs for H2(H2O) and H2(H2O)2. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H2(H2O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H2@(H2O)20. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H2 from the calculated equilibrium structure. PMID:26328838

  18. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M.

    2015-08-01

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H2(H2O) two-body and H2(H2O)2 three-body potentials. The database for H2(H2O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via "purified" symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H2, H2O, and (H2O)2, to obtain full PESs for H2(H2O) and H2(H2O)2. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H2(H2O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H2@(H2O)20. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H2 from the calculated equilibrium structure.

  19. Numerical investigation on fundamental properties in capacitively-coupled methane plasmas for deposition of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Kousaka, Hiroyuki

    2012-10-01

    Capacitively-coupled methane (CH4) plasmas for deposition of diamond-like carbon films have been simulated using a self-consistent one-dimensional fluid model, incorporating the mass balance equations for electrons, ions, radicals and non-radicals, the electron energy balance equation, coupled with the Poisson equation. Despite of low-pressure CH4 gas condition, many positive-ion species, such as C2H4^+, CH4^+, C2H2^+, CH5^+ etc., have been found in the plasmas. The non-radical neutrals, such as C2H4, C3H8, C2H2 and C2H6, have also found with higher densities comparable to the source gas density. This result indicates that this complexity of background gas in CH4 plasmas is strongly affected to the electron energy distribution function, which is important for the determination of plasmas properties.

  20. Inductively coupled plasma etching of GaN

    SciTech Connect

    Shul, R.J.; McClellan, G.B.; Casalnuovo, S.A.; Rieger, D.J.; Pearton, S.J.; Constantine, C.; Barratt, C.; Karlicek, R.F. Jr.; Tran, C.; Schurman, M.

    1996-08-01

    Inductively coupled plasma (ICP) etch rates for GaN are reported as a function of plasma pressure, plasma chemistry, rf power, and ICP power. Using a Cl{sub 2}/H{sub 2}/Ar plasma chemistry, GaN etch rates as high as 6875 A/min are reported. The GaN surface morphology remains smooth over a wide range of plasma conditions as quantified using atomic force microscopy. Several etch conditions yield highly anisotropic profiles with smooth sidewalls. These results have direct application to the fabrication of group-III nitride etched laser facets. {copyright} {ital 1996 American Institute of Physics.}

  1. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors

    PubMed Central

    Wiechens, Nicola; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-01-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase’s most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  2. Diffusion Coefficient-Formula Weight (D-FW) Analysis of (2)H Diffusion-Ordered NMR Spectroscopy (DOSY).

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G

    2015-09-18

    We report extension of the D-FW analysis using referenced (2)H DOSY. This technique was developed in response to limitations due to peak overlay in (1)H DOSY spectra. We find a corresponding linear relationship (R(2) > 0.99) between log D and log FW as the basis of the D-FW analysis. The solution-state structure of THF solvated lithium diisopropyl amide (LDA) in hydrocarbon solvent was chosen to demonstrate the reliability of the methodology. We observe an equilibrium between monosolvated and disolvated dimeric LDA complexes at room temperature. Additionally we demonstrate the application of the (2)H D-FW analysis using a compound with an exchangeable proton that is readily labeled with (2)H. Hence, the (2)H DOSY D-FW analysis is shown to provide results consistent with the (1)H DOSY method, thereby greatly extending the applicability of the D-FW analysis. PMID:26318438

  3. Thermal Dehydrogenation of Base-Stabilized B2H5(+) Complexes and Its Role in C-H Borylation.

    PubMed

    Prokofjevs, Aleksandrs

    2015-11-01

    Thermally induced dehydrogenation of the H-bridged cation L2B2H5(+) (L=Lewis base) is proposed to be the key step in the intramolecular C-H borylation of tertiary amine boranes activated with catalytic amounts of strong "hydridophiles". Loss of H2 from L2B2H5(+) generates the highly reactive cation L2B2H3(+), which in its sp(2)-sp(3) diborane(4) form then undergoes either an intramolecular C-H insertion with B-B bond cleavage, or captures BH3 to produce L2B3H6(+). The effect of the counterion stability on the outcome of the reaction is illustrated by formation of LBH2C6F5 complexes through disproportionation of L2B2H5(+) HB(C6F5)3(-) . PMID:26377358

  4. Molecular Behavior CO2 and CO2-H2O Mixtures at Interfaces

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Chialvo, A.; Rother, G.; Vlcek, L.

    2010-12-01

    Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. Regardless of the formation type, the CO2 will encounter a complex heterogeneous porous matrix with widely varying pore size and pore distribution, interconnectivity, and surface composition. A small but non-trivial percentage of the pore space is comprised of voids that range from 100 nm down to a few nm in size. These nanoporous environments are more dominant in the cap or seal rocks, such as shale or clay-rich mudstones that act as confining barriers to leakage of CO2 out of the storage reservoir. A concern is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We investigated the behavior of pure CO2 and CO2-H2O mixtures interacting with simple substrates, e.g. SiO2 and muscovite, that act as proxies for more complex mineralogical systems. SANS results were described for sorption properties of supercritical CO2 inside mesoporous silica aerogel (95% porosity; 5-40 nm pores), a proxy for the quartz sub-system. The Adsorbed Phase Model (APM) allows, for the first time, a means to quantify the physical properties (e.g. excess, absolute and total adsorption) of the adsorbed phase formed by fluids inside porous media in terms of the mean density and volume of the sorption phase. The results show clear evidence for fluid depletion for conditions above the critical density. Classical molecular dynamics (CMD) modeling of CO2-silica aerogel interactions also indicates the presence of fluid depletion for conditions above the critical density consistent with SANS results. CMD was also used to assess the microscopic behavior of CO2-H2O mixture

  5. Ligand-induced substrate steering and reshaping of [Ag2(H)](+) scaffold for selective CO2 extrusion from formic acid.

    PubMed

    Zavras, Athanasios; Khairallah, George N; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)](+) by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)](+) and [Ph3PAg2(H)](+) react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)](+) is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)(+) scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)](+) and H2. Decarboxylation of [dppmAg2(O2CH)](+) via CID regenerates [dppmAg2(H)](+). These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  6. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    PubMed Central

    Zavras, Athanasios; Khairallah, George N.; Krstić, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dissociation (CID), infrared and ultraviolet action spectroscopy and computational chemistry link structure to reactivity and mechanism. [Ag2(H)]+ and [Ph3PAg2(H)]+ react with formic acid yielding Lewis adducts, while [(Ph3P)2Ag2(H)]+ is unreactive. Using bis(diphenylphosphino)methane (dppm) reshapes the geometry of the binuclear Ag2(H)+ scaffold, triggering reactivity towards formic acid, to produce [dppmAg2(O2CH)]+ and H2. Decarboxylation of [dppmAg2(O2CH)]+ via CID regenerates [dppmAg2(H)]+. These gas-phase insights inspired variable temperature NMR studies that show CO2 and H2 production at 70 °C from solutions containing dppm, AgBF4, NaO2CH and HO2CH. PMID:27265868

  7. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  8. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was

  9. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood

    PubMed Central

    Mansell, T; Novakovic, B; Meyer, B; Rzehak, P; Vuillermin, P; Ponsonby, A-L; Collier, F; Burgner, D; Saffery, R; Ryan, J; Vuillermin, Peter; Ponsonby, Anne-Louise; Carlin, John B; Allen, Katie J; Tang, Mimi L; Saffery, Richard; Ranganathan, Sarath; Burgner, David; Dwyer, Terry; Jachno, Kim; Sly, Peter

    2016-01-01

    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=−2.23% 95% CI=−3.68 to −0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=−3.89% 95% CI=−6.06 to −1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=−3.70% 95% CI=−5.90 to −1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed. PMID:27023171

  10. CO2 and C2H2 in cold nanodroplets of oxygenated organic molecules and water.

    PubMed

    Devlin, J Paul; Balcı, F Mine; Maşlakcı, Zafer; Uras-Aytemiz, Nevin

    2014-11-14

    Recent demonstrations of subsecond and microsecond timescales for formation of clathrate hydrate nanocrystals hint at future methods of control of environmental and industrial gases such as CO2 and methane. Combined results from cold-chamber and supersonic-nozzle [A. S. Bhabhe, "Experimental study of condensation and freezing in a supersonic nozzle," Ph.D. thesis (Ohio State University, 2012), Chap. 7] experiments indicate extremely rapid encagement of components of all-vapor pre-mixtures. The extreme rates are derived from (a) the all-vapor premixing of the gas-hydrate components and (b) catalytic activity of certain oxygenated organic large-cage guests. Premixing presents no obvious barrier to large-scale conditions of formation. Further, from sequential efforts of the groups of Trout and Buch, a credible defect-based model of the catalysis mechanism exists for guidance. Since the catalyst-generated defects are both mobile and abundant, it is often unnecessary for a high percentage of the cages to be occupied by a molecular catalyst. Droplets represent the liquid phase that bridges the premixed vapor and clathrate hydrate phases but few data exist for the droplets themselves. Here we describe a focused computational and FTIR spectroscopic effort to characterize the aerosol droplets of the all-vapor cold-chamber methodology. Computational data for CO2 and C2H2, hetero-dimerized with each of the organic catalysts and water, closely match spectroscopic redshift patterns in both magnitude and direction. Though vibrational frequency shifts are an order of magnitude greater for the acetylene stretch mode, both CO2 and C2H2 experience redshift values that increase from that for an 80% water-methanol solvent through the solvent series to approximately doubled values for tetrahydrofuran and trimethylene oxide (TMO) droplets. The TMO solvent properties extend to a 50 mol.% solution of CO2, more than an order of magnitude greater than for the water-methanol solvent mixture

  11. Hydrochemistry and 18O/16O and 2H/1H Ratios of Ugandan Waters

    NASA Astrophysics Data System (ADS)

    Gebremichael, M. G.; Jasechko, S.

    2013-12-01

    Today, 70% of the 35 million people living in Uganda have access to an improved water source, ranking Uganda 148 out of 179 nations reporting in 2010 (Millennium Development Goals Indicators). 80% of Ugandans rely on groundwater as their primary drinking water source, collecting at springs or from shallow wells. Similarly, 80% of Ugandans rely upon agriculture - usually rain fed - as their primary income source. Despite lack of access to protected water sources faced by 10 million Ugandans, and the importance of the blue economy to Uganda's continued development, a country-wide investigation of the chemistry and the stable oxygen and hydrogen isotope compositions of waters has yet to be completed. Here we present 250 analyses of 18O/16O, 2H/1H and dissolved ion concentrations of Ugandan lakes, rivers, groundwaters and springs collected during July, 2013. We use the new data to characterize regional scale groundwater recharge sources, advection pathways and interactions with surface waters. Large lakes - Albert, Edward and Victoria - show increases in 18O/16O and 2H/1H ratios consistent with open water evaporation, and are shown to be distinct from nearby groundwaters, suggesting minimal recharge from large lakes to the subsurface. Salinities of eastern Ugandan groundwaters are elevated relative to samples collected from the central and western regions, suggesting that longer groundwater residence times and enhanced water-rock interactions characterize these waters. Springs from western Uganda show a shift in 18O/16O to higher values as a result of hydrothermal water-rock exchanges. Dissolved ion and noble gas concentrations show potential for use in assessing geothermal energy resources, perhaps aiding the Ugandan Ministry for Energy, Minerals and Development to meet their goal of increasing renewable energy from 4% (current) to 61% of total use by 2017 (Nyakabwa-Atwoki, 2013). Millennium Development Goals Indicators. mdgs.un.org/unsd/mdg/data.aspx Nyakabwa

  12. Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N2H7+

    NASA Astrophysics Data System (ADS)

    García-Fernández, P.; García-Canales, L.; García-Lastra, J. M.; Junquera, J.; Moreno, M.; Aramburu, J. A.

    2008-09-01

    The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N2H7+ were studied by means of ab initio and density-functional theory (DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H5O2+. All geometry optimizations carried out using wavefunction-based methods [Hartree-Fock, second and fourth order Möller-Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H3N-H+⋯NH3 conformation (C3v symmetry) with a small energy barrier (1.26kcal/mol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H3N⋯H+⋯NH3 structure (D3d point group). The instability of the symmetric D3d structure is shown to originate from the pseudo-Jahn-Teller mixing of the electronic A1g1 ground state with five low lying excited states of A2u symmetry through the asymmetric α2u vibrational mode. A molecular orbital study of the pseudo-Jahn-Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH3 molecules and the transfer of electronic charge between the proton and the NH3 units (rebonding). The parallel study of the H5O2+ cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle-Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N-N distance in the D3d and C3v configurations of N2H7+ indicates a large anharmonic coupling between α2u-α1g modes along the proton

  13. CO2 and C2H2 in cold nanodroplets of oxygenated organic molecules and water

    NASA Astrophysics Data System (ADS)

    Devlin, J. Paul; Balcı, F. Mine; Maşlakcı, Zafer; Uras-Aytemiz, Nevin

    2014-11-01

    Recent demonstrations of subsecond and microsecond timescales for formation of clathrate hydrate nanocrystals hint at future methods of control of environmental and industrial gases such as CO2 and methane. Combined results from cold-chamber and supersonic-nozzle [A. S. Bhabhe, "Experimental study of condensation and freezing in a supersonic nozzle," Ph.D. thesis (Ohio State University, 2012), Chap. 7] experiments indicate extremely rapid encagement of components of all-vapor pre-mixtures. The extreme rates are derived from (a) the all-vapor premixing of the gas-hydrate components and (b) catalytic activity of certain oxygenated organic large-cage guests. Premixing presents no obvious barrier to large-scale conditions of formation. Further, from sequential efforts of the groups of Trout and Buch, a credible defect-based model of the catalysis mechanism exists for guidance. Since the catalyst-generated defects are both mobile and abundant, it is often unnecessary for a high percentage of the cages to be occupied by a molecular catalyst. Droplets represent the liquid phase that bridges the premixed vapor and clathrate hydrate phases but few data exist for the droplets themselves. Here we describe a focused computational and FTIR spectroscopic effort to characterize the aerosol droplets of the all-vapor cold-chamber methodology. Computational data for CO2 and C2H2, hetero-dimerized with each of the organic catalysts and water, closely match spectroscopic redshift patterns in both magnitude and direction. Though vibrational frequency shifts are an order of magnitude greater for the acetylene stretch mode, both CO2 and C2H2 experience redshift values that increase from that for an 80% water-methanol solvent through the solvent series to approximately doubled values for tetrahydrofuran and trimethylene oxide (TMO) droplets. The TMO solvent properties extend to a 50 mol.% solution of CO2, more than an order of magnitude greater than for the water-methanol solvent mixture

  14. The antithrombotic factor singlet oxygen/light (1O2/h nu).

    PubMed

    Stief, T W; Fareed, J

    2000-01-01

    Activated phagocytes (especially polymorphonuclear granulocytes (PMNs)) by respiratory oxidative/photonic burst (activation of NADPH-oxidase and myeloper-oxidase) generate large amounts of oxidants of the hypochlorite-/chloramine-type, which are physiologic sources for singlet oxygen (1O2), a nonradical-excited (photon (h nu) emitting) oxygen species [Weiss SJ, NEJM 1989;320:365-376]. In vitro experiments show that 1O2 (1) inhibits coagulation by inactivation of thrombocytes, fibrinogen, factor V, factor VIII, and factor X and (2) activates fibrinolysis by inactivation of the main fibrinolysis inhibitors plasminogen activator inhibitor (PAI)-1 and alpha-2-antiplasmin, and by activation of single-chain urokinase by plasmin and oxidized fibrin. Additionally, this work suggests that 1O2/h nu acts antithrombotically, inducing selective thrombolysis in vivo (i.e., thrombolysis induced by 0.1 to 0.5 mmol/l chloramine within 30 to 60 minutes without changes of the plasmatic hemostasis system). 1O2 might activate flowing to (on the endothelium) rolling PMN, increasing their chance to get in contact with fibrin/platelet aggregates deposited on the endothelial layer. Via 1O2 generation, the thrombus-activated phagocytes might call for (acute, physiologic) inflammation/fibrinolysis amplification, resulting in the "moving front" of PMN, which infiltrates and destroys the thrombus. 1O2 seems to (partially) participate in the reactivity of nitric oxide, another prooxidative agent. The inhibition of physiologic amounts of 1O2 by blood cholesterol might be involved in the pathogenesis of atherothrombosis. Consequently, it is suggested that activated PMNs modulate hemostasis, shifting it into an antithrombotic state; this cellular part of fibrinolysis seems to be of greater physiologic importance than the plasmatic one. Impaired PMN function (e.g., as occurring in patients with antineutrophil cytoplasmic antibodies or under cytostatic treatments) often results in serious thrombotic

  15. Methionine kinetics in adult men: effects of dietary betaine on L-(2H3-methyl-1-13C)methionine

    SciTech Connect

    Storch, K.J.; Wagner, D.A.; Young, V.R. )

    1991-08-01

    The effects of a daily 3-g supplement of betaine on kinetic aspects of L-(2H3-methyl-1-13C)methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated from plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine.

  16. Diborylated magnesium anthracene as precursor for B2H5(-)-bridged 9,10-dihydroanthracene.

    PubMed

    Pospiech, Steffen; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias

    2015-05-26

    9,10-(Bpin)2-anthracene (3, HBpin = pinacolborane) was synthesized from 9,10-dibromoanthracene in a stepwise lithiation/borylation sequence. The reaction of 3 with highly activated magnesium furnished the diborylated magnesium anthracene 4, which was quenched in situ with ethereal HCl to yield cis-9,10-(Bpin)2-DHA (cis-5, DHA = 9,10-dihydroanthracene). Compound cis-5, in turn, can be reduced with Li[AlH4] in THF to give its diborate Li2[cis-9,10-(BH3)2-DHA] (Li2 [cis-6]). In the crystal lattice, the THF solvate Li2[cis-6]⋅3 THF establishes a dimeric structure with Li-(μ-H)-B coordination modes. Hydride abstraction from Li2[cis-6] with Me3SiCl yields the B-H-B-bridged DHA Li[7]. This product can also be viewed as a unique cyclic B2H7(-) derivative with a hydrocarbon backbone. Treatment of Li2[cis-6] with the stronger hydride abstracting agent Me3SiOTf (HOTf = trifluoromethanesulfonic acid) in THF affords the THF diadduct of cis-9,10-(BH(OTf))2-DHA. PMID:25892077

  17. Anisotropic sup 2 H NMR spin-lattice relaxation in L sub. alpha. -phase cerebroside bilayers

    SciTech Connect

    Speyer, J.B.; Weber, R.T.; Gupta, S.K.D.; Griffin, R.G. )

    1989-12-12

    A series of {sup 2}H NMR inversion recovery experiments in the L{sub {alpha}} phase of the cerebroside N-palmitoylgalactosylsphingosine (NPGS) have been performed. In these liquid crystalline lipid bilayers the authors have observed substantial anisotropy in the spin-lattice relaxation of the CD{sub 2} groups in the acyl chains. The form and magnitude of the anisotropy varies with position in the chain, being positive in the upper region, decreasing to zero at the 4-position, and reversing sign at the lower chain positions. It is also shown that addition of cholesterol to the bilayer results in profound changes in the anisotropy. These observations are accounted for by a simple motional model of discrete hops among nine sites, which result from the coupling of two modes of motion - long-axis rotational diffusion and guache-trans isomerization. This model is employed in quantitative simulations of the spectral line shapes and permits determination of site populations and motional rates. These results, plus preliminary results in sphingomyelin and lecithin bilayers,illustrate the utility of T{sub 1} anisotropy measurements as a probe of dynamics in L{sub {alpha}}-phase bilayers.

  18. Scattering matrix approach to the dissociative recombination of HCO+ and N2H+.

    PubMed

    Fonseca dos Santos, S; Douguet, N; Kokoouline, V; Orel, A E

    2014-04-28

    We present a theoretical study of the indirect dissociative recombination of linear polyatomic ions at low collisional energies. The approach is based on the computation of the scattering matrix just above the ionization threshold and enables the explicit determination of all diabatic electronic couplings responsible for dissociative recombination. In addition, we use the multi-channel quantum-defect theory to demonstrate the precision of the scattering matrix by reproducing accurately ab initio Rydberg state energies of the neutral molecule. We consider the molecular ions N2H(+) and HCO(+) as benchmark systems of astrophysical interest and improve former theoretical studies, which had repeatedly produced smaller cross sections than experimentally measured. Specifically, we demonstrate the crucial role of the previously overlooked stretching modes for linear polyatomic ions with large permanent dipole moment. The theoretical cross sections for both ions agree well with experimental data over a wide energy range. Finally, we consider the potential role of the HOC(+) isomer in the experimental cross sections of HCO(+) at energies below 10 meV. PMID:24784271

  19. Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)

    SciTech Connect

    Stark, Michael; Träg, Johannes; Ditze, Stefanie; Steinrück, Hans-Peter; Marbach, Hubertus; Brenner, Wolfgang; Jux, Norbert

    2015-03-14

    The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibit two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.

  20. Phthalocyanines of a novel structure: Dinaphthotetraazaporphyrins with D[sub 2h] symmetry

    SciTech Connect

    Kobayashi, Nagao; Ashida, Tohru; Osa, Tetsuo Tohoku Univ., Kathahira, Sendai ); Konami, Hideo

    1994-04-27

    Phthalocyanines (Pcs) are compounds in which a benzene ring is fused to each of the four pyrrole rings of tetraazaporphyrins (TAPs). In addition to traditional uses as dyes and in xerography, they are now rapidly increasing in importance in many fields such as batteries, photodynamic cancer therapy, chemical sensors, molecular metals, and liquid crystals. Two naphthalene molecule-fused tetraazaporphyrins (TAPs) with D[sub 2h] symmetry have been synthesized, and some of their spectroscopic and electrochemical properties are reported. These compounds are structural isomers of phthalocyanines (Pcs) in the sense that four benzene units are fused to the TAP skeleton. In contrast to MPcs (M = metal) with D[sub 4h] symmetry, both the Q[sub o-o] and Soret bands split into two as a result of the lowering of the molecular symmetry. Magnetic circular dichroism (MCD) shows Faraday B terms corresponding to the peaks and shoulders of the electronic absorption spectra, indicating that no degenerate state is included. The fluorescence quantum yield of the zinc complex is much smaller than in ZnPc with D[sub 4h] symmetry. The electronic absorption and electrochemical redox data of these complexes are reproduced by molecular orbital (MO) calculations within the framework of the Pariser-Parr-Pople (PPP) approximation. The results are compared with those of Pcs and mononaphtho-TAPs.

  1. Optimization of electrode characteristics for the Br-2/H-2 redox flow cell

    SciTech Connect

    Tucker, MC; Cho, KT; Weber, AZ; Lin, GY; Nguyen, TV

    2014-10-17

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (-) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (-) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm(-2) and a peak power density of 1.4 W cm(-2). Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (-) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  2. Cyclical mechanical stretch enhances degranulation and IL-4 secretion in RBL-2H3 mast cells.

    PubMed

    Komiyama, Hidenori; Miyake, Koichi; Asai, Kuniya; Mizuno, Kyoichi; Shimada, Takashi

    2014-01-01

    Mast cells are widely distributed in the body and affect their surrounding environment through degranulation and secretion of cytokines. Conversely, mast cells are influenced by environmental stimuli such as cyclical mechanical stretch (CMS), such as that induced by heartbeat and respiration. Peripherally distributed mast cells are surrounded by extracellular matrix, where they bind IgE on their surface by expressing the high-affinity Fc receptor for IgE (FcεRI), and they release mediators after cross-linking of surface-bound IgE by allergen. To analyse how CMS affects mast cell responses, we examined the effect of applying CMS on the behaviour of IgE-bound mast cells (RBL-2H3 cell line) adhering to fibronectin as a substitute for extracellular matrix. We found that CMS enhanced FcεRI-mediated secretion in the presence of antigen (2,4-dinitrophenol-bovine serum albumin). CMS increased expression of IL-4 mRNA and secretion of IL-4 protein. Western blot analysis showed that CMS changes the signal transduction in mitogen-activated protein kinases and AKT, which in turn alters the regulation of IL-4 and increases the secretion of IL-4. These results suggest that CMS modulates the effect of mast cells on inflammation and resultant tissue remodelling. Understanding how CMS affects mast cell responses is crucial for developing therapies to treat mast cell-related diseases. PMID:23584980

  3. Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Carli, B.

    1991-01-01

    Stratospheric concentrations of HO2, H2O2, and OH have been retrieved simultaneously from the far-infrared emission spectra obtained with a balloon-borne Fourier transform spectrometer in June 1983 at 32 deg N latitude. Retrieved concentrations of HO2 and H2O2 are reported, along with vertical distributions of OH which were reported in an earlier paper for the afternoon, sunset, and nighttime periods for altitudes from 26 to 38 km. HO2 distributions are obtained with uncertainties that are about the same as OH for the same vertical range and for the afternoon and sunset periods. H2O2 concentration is obtained at an altitude of 30 km for the period that covers afternoon and sunset hours. The retrieved concentrations of these HO(x) species agree well with other individually measured results and the steady state photochemical predictions. The ratio HO2/OH at around 32 km seems to increase from the afternoon period to the sunset period.

  4. Polymorphism in 3-acetyl-4-hydroxy-2H-chromen-2-one.

    PubMed

    Ghouili, Afef; Brahmia, Ameni; Ben Hassen, Rached

    2015-10-01

    A new polymorph (denoted polymorph II) of 3-acetyl-4-hydroxy-2H-chromen-2-one, C11H8O4, was obtained unexpectedly during an attempt to recrystallize the compound from salt-melted ice, and the structure is compared with that of the original polymorph (denoted polymorph I) [Lyssenko & Antipin (2001). Russ. Chem. Bull. 50, 418-431]. Strong intramolecular O-H...O hydrogen bonds are observed equally in the two polymorphs [O...O = 2.4263 (13) Å in polymorph II and 2.442 (1) Å in polymorph I], with a slight delocalization of the hydroxy H atom towards the ketonic O atom in polymorph II [H...O = 1.32 (2) Å in polymorph II and 1.45 (3) Å in polymorph I]. In both crystal structures, the packing of the molecules is dominated and stabilized by weak intermolecular C-H...O hydrogen bonds. Additional π-π stacking interactions between the keto-enol hydrogen-bonded rings stabilize polymorph I [the centres are separated by 3.28 (1) Å], while polymorph II is stabilized by interactions between α-pyrone rings, which are parallel to one another and separated by 3.670 (5) Å. PMID:26422214

  5. Conformations of banana-shaped molecules studied by 2H NMR spectroscopy in liquid crystalline solvents.

    PubMed

    Calucci, Lucia; Forte, Claudia; Csorba, Katalin Fodor; Mennucci, Benedetta; Pizzanelli, Silvia

    2007-01-11

    ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed. PMID:17201428

  6. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2007-08-01

    The discovery of extremophiles on Earth is a sequence of discoveries of life in environments where it had been deemed impossible a few decades ago. The next frontier may be the Martian surface environment: could life have adapted to this harsh environment? What we learned from terrestrial extremophiles is that life adapts to every available niche where energy, liquid water and organic materials are available so that in principle metabolism and propagation are possible. A feasible adaptation mechanism to the Martian surface environment would be the incorporation of a high concentration of hydrogen peroxide in the intracellular fluid of organisms. The H2O2-H2O hypothesis suggests the existence of Martian organisms that have a mixture of H2O2 and H2O instead of salty water as their intracellular liquid (Houtkooper and Schulze-Makuch, 2007). The advantages are that the freezing point is low (the eutectic freezes at 56.5°C) and that the mixture is hygroscopic. This would enable the organisms to scavenge water from the atmosphere or from the adsorbed layers of water molecules on mineral grains, with H2O2 being also a source of oxygen. Moreover, below its freezing point the H2O2-H2O mixture has the tendency to supercool. Hydrogen peroxide is not unknown to biochemistry on Earth. There are organisms for which H2O2 plays a significant role: the bombardier beetle, Brachinus crepitans, produces a 25% H2O2 solution and, when attacked by a predator, mixes it with a fluid containing hydroquinone and a catalyst, which produces an audible steam explosion and noxious fumes. Another example is Acetobacter peroxidans, which uses H2O2 in its metabolism. H2O2 plays various other roles, such as the mediation of physiological responses such as cell proliferation, differentiation, and migration. Moreover, most eukaryotic cells contain an organelle, the peroxisome, which mediates the reactions involving H2O2. Therefore it is feasible that in the course of evolution, water-based organisms

  7. Mesostructured tin oxide as sensitive material for C(2)H(5)OH sensor.

    PubMed

    Wang, Yu-De; Ma, Chun-Lai; Wu, Xing-Hui; Sun, Xiao-Dan; Li, Heng-De

    2002-07-01

    Mesostructured tin oxide with high specific surface area was synthesized using cationic surfactant (cetyltrimethylammonium bromide, CTAB: CH(3)(CH(2))(15)N(+)(CH(3))(3)Br(-)) as the organic template and hydrous tin chloride (SnCl(4).5H(2)O) and NH(4)OH as the inorganic precursors under acidic conditions at ambient temperature. Thermogravimetric analysis (TGA), Fourier transformed infrared (FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectrum (XPS) and N(2)-sorption isotherms were used to characterize the mesostructured tin oxide that was formed at room temperature as well as calcined at different temperature. The surface area of mesostructured tin oxide calcined at 400 degrees C is 136 m(2) g(-1). The indirect heating sensor using this material as sensitive body was fabricated on an alumna tube with Au electrodes and platinum wires. Electrical and sensing properties of such a sensor were investigated. It was found that the mesostructured tin oxide with high surface area had higher sensitivity to C(2)H(5)OH and selectivity to gasoline than commercial sample of polycrystalline tin(IV) oxide. PMID:18968691

  8. Removal of Boron in Silicon by H2-H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Andersson, Stefan; Nordstrand, Erlend; Tangstad, Merete

    2012-08-01

    The removal of boron in pure silicon by gas mixtures has been examined in the laboratory. Water-vapor-saturated hydrogen was used to remove boron doped in electronic-grade silicon in a vacuum frequency furnace. Boron concentrations in silicon were reduced from 52 ppm initially to 0.7 ppm and 3.4 ppm at 1450°C and 1500°C, respectively, after blowing a H2-3.2%H2O gas mixture for 180 min. The experimental results indicate that the boron removal as a function of gas-blowing time follows the law of exponential decay. After 99% of the boron is removed, approximately 90% of the silicon can be recovered. In order to better understand the gaseous refining mechanism, the quantum chemical coupled cluster with single and double excitations and a perturbative treatment of triple excitations method was used to accurately predict the enthalpy and entropy of formation of the HBO molecule. A simple refining model was then used to describe the boron refining process. This model can be used to optimize the refining efficiency.

  9. Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111).

    PubMed

    Stark, Michael; Träg, Johannes; Ditze, Stefanie; Brenner, Wolfgang; Jux, Norbert; Steinrück, Hans-Peter; Marbach, Hubertus

    2015-03-14

    The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibit two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions. PMID:25770514

  10. Experimental ion mobility measurements in Ar-C2H6 mixtures

    NASA Astrophysics Data System (ADS)

    Cortez, A. F. V.; Garcia, A. N. C.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Barata, J. A. S.; Conde, C. A. N.

    2013-12-01

    In this paper we present the experimental results for the mobility of ions in argon-ethane gaseous mixtures (Ar-C2H6) for pressures ranging from 6 to 10 Torr and for reduced electric fields in the 10 Td to 25 Td range, at room temperature. For Ar concentrations below 80% two peaks were observed in the time of arrival spectra which were attributed to ion species with 3-carbons (C3H7+, C3H8+ and C3H9+) and with 4-carbons (which includes C4H7+, C4H9+, C4H10+ and C4H12+ ions). For Ar concentrations above 80% a third peak appears, which may belong to C5H11+. The time of arrival spectra for Ar concentrations of 80%, 85%, 90% and 95% are displayed in the present paper as well as the reduced mobilities determined from the peaks observed for a typical reduced electric field used in gaseous detectors (E/N = 15 Td).

  11. Resonances in the reaction ortho- and para- D2 + H at temperatures below 10 K

    NASA Astrophysics Data System (ADS)

    Simbotin, I.; Côté, R.

    2016-05-01

    In a previous study we reported cross sections for the reaction H2 + D in the temperature regime 10-6 < T < 10 K, and found pronounced shape resonances, especially in the p and d partial waves. We found that the resonant structures were sensitive to the initial rovibrational state of H2; in particular, we showed that the effect of the nuclear-spin symmetry was very important, since ortho- and para- H2 gave significantly different results. We now investigate the reaction D2 + H for vibrationally excited ortho- and para- D2, and compare and contrast these results with those for H2 + D. We remark that this benchmark system is a prototypical example of reactions with a strong barrier, which have very small cross sections in the cold and ultracold regimes. However, shape resonances can enhance the reaction cross sections by orders of magnitude for temperatures around and below T = 1 K. Moreover, resonant features would provide stringent tests for quantum chemistry calculations of potential energy surfaces. Partial support from the US Army Research Office (Grant No. W911NF-13-1-0213).

  12. Spin-flip reactions of Zr + C2H6 researched by relativistic density functional theory.

    PubMed

    Xiao, Yi; Chen, Xian-Yang; Qiu, Yi-Xiang; Wang, Shu-Guang

    2013-09-01

    Density functional theory (DFT) with relativistic corrections of zero-order regular approximation (ZORA) has been applied to explore the reaction mechanisms of ethane dehydrogenation by Zr atom with triplet and singlet spin-states. Among the complicated minimum energy reaction path, the available states involves three transition states (TS), and four stationary states (1) to (4) and one intersystem crossing with spin-flip (marked by -->): (3) Zr + C 2 H 6 → (3) Zr-CH 3 -CH 3 ((3)1) → (3)TS 1/2 → (3) ZrH-CH 2 -CH 3 ((3)2) → (3) TS 2/3 --> (1) ZrH2-CH2 = CH2 ((1) 3) → (1) TS 3/4 → (1) ZrH 3 -CH = CH 2 ((1)4). The minimum energy crossing point is determined with the help of the DFT fractional-occupation-number (FON) approach. The spin inversion leads the reaction pathway transferring from the triplet potential energy surface (PES) to the singlet's accompanying with the activation of the second C-H bond. The overall reaction is calculated to be exothermic by about 231 kJ mol(-1). Frequency and NBO analysis are also applied to confirm with the experimental observed data. PMID:23851999

  13. Isomerization, Perturbations, Calculations and the S_{1} State of C_{2}H_{2}

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Berk, J. R. P.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2013-06-01

    Preliminary analysis of the energy region of the cis-trans isomerization transition state on the S_{1} surface of C_{2}H_{2} has revealed novel patterns and surprising perturbations, including unusually large (and high-order) anharmonicities, as well as K-staggerings of several vibrational levels. These effects complicate the analysis considerably, and require new models and calculations to account for and predict features of the observed spectra. The ˜{A}-˜{X} spectrum of acetylene has been studied both experimentally and theoretically for almost a century, and this cycle of unexpected phenomena eliciting innovative responses is found throughout its history. Especially in the last ten years, progress in understanding the S_{1} state rovibrational level structure and cis-trans isomerization has been accelerated by combining the information available from both ab initio computation and spectroscopic observations. The resulting dialogue has then frequently suggested fruitful avenues for further experiments and calculations. Current challenges and recent results in understanding the cis-trans isomerization transition state region will be discussed in this context.

  14. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  15. DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults

    PubMed Central

    2012-01-01

    Background The insulin-like growth factor 2 (IGF2) and H19 imprinted genes control growth and body composition. Adverse in-utero environments have been associated with obesity-related diseases and linked with altered DNA methylation at the IGF2/H19 locus. Postnatally, methylation at the IGF2/H19 imprinting control region (ICR) has been linked with cerebellum weight. We aimed to investigate whether decreased IGF2/H19 ICR methylation is associated with decreased birth and childhood anthropometry and increased contemporaneous adiposity. DNA methylation in peripheral blood (n = 315) at 17 years old was measured at 12 cytosine-phosphate-guanine sites (CpGs), analysed as Sequenom MassARRAY EpiTYPER units within the IGF2/H19 ICR. Birth size, childhood head circumference (HC) at six time-points and anthropometry at age 17 years were measured. DNA methylation was investigated for its association with anthropometry using linear regression. Results The principal component of IGF2/H19 ICR DNA methylation (representing mean methylation across all CpG units) positively correlated with skin fold thickness (at four CpG units) (P-values between 0.04 to 0.001) and subcutaneous adiposity (P = 0.023) at age 17, but not with weight, height, BMI, waist circumference or visceral adiposity. IGF2/H19 methylation did not associate with birth weight, length or HC, but CpG unit 13 to 14 methylation was negatively associated with HC between 1 and 10 years. β-coefficients of four out of five remaining CpG units also estimated lower methylation with increasing childhood HC. Conclusions As greater IGF2/H19 methylation was associated with greater subcutaneous fat measures, but not overall, visceral or central adiposity, we hypothesize that obesogenic pressures in youth result in excess fat being preferentially stored in peripheral fat depots via the IGF2/H19 domain. Secondly, as IGF2/H19 methylation was not associated with birth size but negatively with early childhood HC, we hypothesize that the

  16. The NER-related gene GTF2H5 predicts survival in high-grade serous ovarian cancer patients

    PubMed Central

    Kamieniak, Marta M.; Muñoz-Repeto, Ivan; Borrego, Salud; Hernando, Susana; Hernández-Agudo, Elena; Heredia Soto, Victoria; Márquez-Rodas, Ivan; Echarri, María José; Lacambra-Calvet, Carmen; Sáez, Raquel; Redondo, Andrés; Benítez, Javier

    2016-01-01

    Objective We aimed to evaluate the prognostic and predictive value of the nucleotide excision repair-related gene GTF2H5, which is localized at the 6q24.2-26 deletion previously reported by our group to predict longer survival of high-grade serous ovarian cancer patients. Methods In order to test if protein levels of GTF2H5 are associated with patients' outcome, we performed GTF2H5 immunohistochemical staining in 139 high-grade serous ovarian carcinomas included in tissue microarrays. Upon stratification of cases into high- and low-GTF2H5 staining categories (> and ≤ median staining, respectively) Kaplan-Meier and log-rank test were used to estimate patients’ survival and assess statistical differences. We also evaluated the association of GTF2H5 with survival at the transcriptional level by using the on-line Kaplan-Meier plotter tool, which includes gene expression and survival data of 855 high-grade serous ovarian cancer patients from 13 different datasets. Finally, we determined whether stable short hairpin RNA-mediated GTF2H5 downregulation modulates cisplatin sensitivity in the SKOV3 and COV504 cell lines by using cytotoxicity assays. Results Low expression of GTF2H5 was associated with longer 5-year survival of patients at the protein (hazard ratio [HR], 0.52; 95% CI, 0.29 to 0.93; p=0.024) and transcriptional level (HR, 0.80; 95% CI, 0.65 to 0.97; p=0.023) in high-grade serous ovarian cancer patients. We confirmed the association with 5-year overall survival (HR, 0.55; 95% CI, 0.38 to 0.78; p=0.0007) and also found an association with progression-free survival (HR, 0.72; 95% CI, 0.54 to 0.96; p=0.026) in a homogenous group of 388 high-stage (stages III-IV using the International Federation of Gynecology and Obstetrics staging system), optimally debulked high-grade serous ovarian cancer patients. GTF2H5-silencing induced a decrease of the half maximal inhibitory concentration upon cisplatin treatment in GTF2H5-silenced ovarian cancer cells. Conclusion Low

  17. Photodissociation of (SO{sub 2}⋯XH) Van der Waals complexes and clusters (XH = C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}) excited at 32 040–32 090 cm{sup −1} with formation of HSO{sub 2} and X

    SciTech Connect

    Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor

    2014-02-07

    We studied photodecomposition dynamics of (SO{sub 2}⋯XH) Van der Waals’ (VdW) complexes and clusters in gas phase, with X = C{sub 2}H, C{sub 2}H{sub 3}, and C{sub 2}H{sub 5}. SO{sub 2} was excited by frequency-doubled radiation of a tunable dye laser and resonance-enhanced multiphoton ionization was used to detect the C{sub 2}H (m/z 25), C{sub 2}H{sub 3} (m/z 27), and C{sub 2}H{sub 5} (m/z 29) ions by time-of-flight mass spectroscopy. Spectra obtained at higher nozzle pressures (P{sub 0} > 2.5 atm) indicate formation of clusters. Detailed studies of the VdW complex structure were carried out by analyzing the rotational structure of the respective action spectra. We also performed ab initio theoretical analysis of structures of the VdW complexes and transitional states leading to photodecomposition. We find that the structure of the transition state is significantly different as compared to the equilibrium ground-state structure of the respective complex. The photodecomposition mechanism depends on the hydrocarbon molecule bound to SO{sub 2}.

  18. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  19. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-01-01

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  20. Reactions of He/sup +/, Ne/sup +/, and Ar/sup +/ with CH/sub 4/, C/sub 2/H/sub 6/, SiH/sub 4/, and Si/sub 2/H/sub 6/

    SciTech Connect

    Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A.C.

    1983-08-01

    The rate coefficients and product-ion distributions for the reactions of He/sup +/ and Ar/sup +/ with silane and disilane have been measured in a drift tube, typically for collision energies of 0.01--1 eV. The total charge-exchange rate coefficients are found to be roughly independent of E/N, or collision energy, and are about equal to the Langevin values for the reactions of He/sup +/ with SiH/sub 4/ and C/sub 2/H/sub 6/ and Ar/sup +/ with CH/sub 4/ and C/sub 2/H/sub 6/. The He/sup +/ rate coefficients on CH/sub 4/ and Si/sub 2/H/sub 6/, and the Ne/sup +/ rate coefficients on SiH/sub 4/ and Si/sub 2/H/sub 6/ are 50% to 80% of the Langevin values, while the Ar/sup +/ rate coefficients on SiH/sub 4/ and Si/sub 2/H/sub 6/ are much smaller. Product ions tend to be hydrogen poor with very infrequent breaking of the C--C or Si--Si bonds. Furthermore, hydrogen stripping is more severe for the silanes than the alkanes. These product-ion distributions bear no resemblance to the product-ion distributions of either photoionization or electron collisional ionization.

  1. Laser/Plasma/Chemical-Vapor Deposition Of Diamond

    NASA Technical Reports Server (NTRS)

    Hsu, George C.

    1989-01-01

    Proposed process for deposition of diamond films includes combination of plasma induced in hydrocarbon feed gas by microwave radiation and irradiation of plasma and substrate by lasers. Deposition of graphite suppressed. Reaction chamber irradiated at wavelength favoring polymerization of CH2 radical into powders filtered out of gas. CH3 radicals, having desired sp3 configuration, remains in gas to serve as precursors for deposition. Feed gas selected to favor formation of CH3 radicals; candidates include CH4, C2H4, C2H2, and C2H6. Plasma produced by applying sufficient power at frequency of 2.45 GHz and adjusting density of gas to obtain electron kinetic energies around 100 eV in low-pressure, low-temperature regime.

  2. Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges

    NASA Astrophysics Data System (ADS)

    Xiang-Mei, Liu; Qi-Nan, Li; Rui, Li

    2016-06-01

    The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges, with the total input gas flow rate of 400 sccm. It co-exists with a homogeneous, secondary electron-dominated low temperature γ-mode glow discharges. The heat transfer equation and flow equation for neutral gas are taken into account. We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges, and discussed the influences of pressure, electrode spacing, and applied voltage on the plasma density and nanoparticle density profiles. The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges. First, the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges. Second, the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases, especially in the presheath. Finally, as the electrode spacing increases, the nanoparticle density decreased instead of increasing. Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-Z11), the National Natural Science Foundation of China (Grant No. 11404180), and the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095).

  3. Monitoring particle growth in deposition plasmas

    NASA Astrophysics Data System (ADS)

    Schlebrowski, T.; Bahre, H.; Böke, M.; Winter, J.

    2013-12-01

    Plasma-enhanced chemical vapor deposition methods are frequently used to deposit barrier layers, e.g. on polymers for food packaging. These plasmas may suffer from particle (dust) formation. We report on a flexible monitoring system for dust. It is based on scanning a 3D plasma volume for particles by laser light scattering. The lower size limit of particles detected in the presented system is 20 nm. We report on existence diagrams for obtaining dust free or dust loaded capacitively or inductively coupled rf-plasmas in C2H2 depending on pressure, flow and rf-power. We further present growth rates for dust in these plasmas and show that monodisperse particles are only obtained during the first growth cycle.

  4. Long path monitoring of tropospheric O3, NO2, H2CO and SO2

    NASA Technical Reports Server (NTRS)

    Vandaele, A. C.; Carleer, M.; Colin, R.; Simon, P. C.

    1994-01-01

    Concentrations of tropospheric O3, NO2, H2CO, and SO2 have been measured on the Campus of the 'Universite Libre de Bruxelles' on a routine basis since October 1990. The long path system consists of a source lamp, a first 30 cm f/8 Cassegrain type telescope which collimates the light onto a slightly parabolic mirror placed on the roof of a building situated 394 m away from the laboratory. The light is sent back into a second 30 cm Cassegrain telescope. This telescope has been modified so that the output beam is a 5 cm diameter parallel beam. This beam is then focused onto the entrance aperture of the BRUKER IFS120HR fourier transform spectrometer. The two telescopes are mounted on alignment devices and the external mirror is equipped with a driving system operated from the laboratory. The choice of the light source (either a 1000 W high pressure 'ozone free' xenon lamp or a 250 W tungsten filament) and of the detector (either a solar blind UV-diode or a silicon diode) depended on the spectral region studied. These regions lie respectively from 26,000 cm(exp -1) to 30,000 cm(exp -1) (260-380 nm) and from 14,000 cm(exp -1) to 30,000 cm(exp -1) (330-700 nm). The spectra have been recorded at the resolution of 16 cm(exp -1) and with a dispersion of 7.7 cm(exp -1). They have been measured during the forward and the backward movements of the mobile mirror, in double sided mode; each spectrum is an average of 2000 scans. The time required to record a spectrum is about 45 minutes. The shape of the raw spectra in the two investigated regions are represented.

  5. EFFECT OF CLINICAL MUTATIONS ON FUNCTIONALITY OF THE HUMAN RIBOFLAVIN TRANSPORTER-2 (hRFT-2)

    PubMed Central

    Nabokina, Svetlana M.; Subramanian, Veedamali S.; Said, Hamid M.

    2012-01-01

    The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by ponto-bulbar palsy, bilateral sensorineural deafness, and respiratory insufficiency. Recent genetic studies have identified mutations in the C20orf54 gene, which encodes the human riboflavin (RF) transporter -2 (hRFT-2) and suggested their link to the manifestation of BVVLS. However, there is nothing currently known about the effect of these mutations on functionality of hRFT-2, a protein that is expressed in a variety of tissues with high expression in the intestine. We addressed this issue using the human-derived intestinal epithelial Caco-2 cells. Our results showed significant (P < 0.01) impairment in RF uptake by Caco-2 cells transiently expressing W17R, P28T, E36K, E71K, and R132W (but not L350M) hRFT-2 mutants. This impairment in RF transport was not due to a decrease in transcription and/or translation of hRFT-2, since mRNA and protein levels of the carrier were similar in cells expressing the mutants and wild-type hRFT-2. Confocal images of live Caco-2 cells transiently transfected with hRFT-2 mutants (fused with green fluorescent protein) showed the P28T, E36K, E71K, and R132W mutants were retained within the endoplasmic reticulum, while the W17R and L350M mutants were expressed at the cell membrane; cell surface expression of the W17R mutant was further confirmed by direct determination of cell surface transporter density. These results show for the first time that some of the BVVLS associated mutations in hRFT-2 affect the transporter functionality and that this effect is mediated via alterations in membrane targeting and/or activity of the transporter. PMID:22273710

  6. Effect of clinical mutations on functionality of the human riboflavin transporter-2 (hRFT-2).

    PubMed

    Nabokina, Svetlana M; Subramanian, Veedamali S; Said, Hamid M

    2012-04-01

    The Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurological disease characterized by ponto-bulbar palsy, bilateral sensorineural deafness, and respiratory insufficiency. Recent genetic studies have identified mutations in the C20orf54 gene, which encodes the human riboflavin (RF) transporter -2 (hRFT-2) and suggested their link to the manifestation of BVVLS. However, there is nothing currently known about the effect of these mutations on functionality of hRFT-2, a protein that is expressed in a variety of tissues with high expression in the intestine. We addressed this issue using the human-derived intestinal epithelial Caco-2 cells. Our results showed significant (P<0.01) impairment in RF uptake by Caco-2 cells transiently expressing W17R, P28T, E36K, E71K, and R132W (but not L350M) hRFT-2 mutants. This impairment in RF transport was not due to a decrease in transcription and/or translation of hRFT-2, since mRNA and protein levels of the carrier were similar in cells expressing the mutants and wild-type hRFT-2. Confocal images of live Caco-2 cells transiently transfected with hRFT-2 mutants (fused with green fluorescent protein) showed the P28T, E36K, E71K, and R132W mutants were retained within the endoplasmic reticulum, while the W17R and L350M mutants were expressed at the cell membrane; cell surface expression of the W17R mutant was further confirmed by direct determination of cell surface transporter density. These results show for the first time that some of the BVVLS associated mutations in hRFT-2 affect the transporter functionality and that this effect is mediated via alterations in membrane targeting and/or activity of the transporter. PMID:22273710

  7. Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies

    SciTech Connect

    Kumosinski, T.F.; Pessen, H.; Prestrelski, S.J.; Farrell, H.M. Jr.

    1987-09-01

    The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H/sub 2/O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in /sup 2/H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D/sub 2/O was used instead of H/sub 2/O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles.

  8. Structures of the Phosphorylated and VO3-bound 2H-Phosphatase Domain of Sts-2

    SciTech Connect

    Chen, Y.; Jakoncic, J.; Parker, K.A.; Carpino, N; Nassar, N.

    2009-09-23

    The C-terminal domain of the suppressor of T cell receptor (TCR) signaling 1 and 2 (Sts-1 and -2) proteins has homology to the 2H-phosphatase family of enzymes. The phosphatase activity of the correspondent Sts-1 domain, Sts-1{sub PGM}, is key for its ability to negatively regulate the signaling of membrane-bound receptors including TCR and the epidermal growth factor receptor (EGFR). A nucleophilic histidine, which is transiently phosphorylated during the phosphatase reaction, is essential for the activity. Here, we present the crystal structure of Sts-2{sub PGM} in the phosphorylated active form and bound to VO{sub 3}, which represent structures of an intermediate and of a transition state analogue along the path of the dephosphorylation reaction. In the former structure, the proposed nucleophilic His366 is the only phoshorylated residue and is stabilized by several interactions with conserved basic residues within the active site. In the latter structure, the vanadium atom sits in the middle of a trigonal bipyramid formed by the three oxygen atoms of the VO{sub 3} molecule, atom NE2 of His366, and an apical water molecule Wa. The V-NE2 bond length (2.25 {angstrom}) suggests that VO{sub 3} is not covalently attached to His366 and that the reaction mechanism is partially associative. The two structures also suggest a role for Glu476 in activating a uniquely positioned water molecule. In both structures, the conformation of the active site is remarkably similar to the one seen in apo-Sts-2{sub PGM} suggesting that the spatial arrangement of the catalytic residues does not change during the dephosphorylation reaction.

  9. Dilution space ratio of 2H and 18O of doubly labeled water method in humans.

    PubMed

    Sagayama, Hiroyuki; Yamada, Yosuke; Racine, Natalie M; Shriver, Timothy C; Schoeller, Dale A

    2016-06-01

    Variation of the dilution space ratio (Nd/No) between deuterium ((2)H) and oxygen-18 ((18)O) impacts the calculation of total energy expenditure (TEE) by doubly labeled water (DLW). Our aim was to examine the physiological and methodological sources of variation of Nd/No in humans. We analyzed data from 2,297 humans (0.25-89 yr old). This included the variables Nd/No, total body water, TEE, body mass index (BMI), and percent body fat (%fat). To differentiate between physiologic and methodologic sources of variation, the urine samples from 54 subjects were divided and blinded and analyzed separately, and repeated DLW dosing was performed in an additional 55 participants after 6 mo. Sex, BMI, and %fat did not significantly affect Nd/No, for which the interindividual SD was 0.017. The measurement error from the duplicate urine sample sets was 0.010, and intraindividual SD of Nd/No in repeats experiments was 0.013. An additional SD of 0.008 was contributed by calibration of the DLW dose water. The variation of measured Nd/No in humans was distributed within a small range and measurement error accounted for 68% of this variation. There was no evidence that Nd/No differed with respect to sex, BMI, and age between 1 and 80 yr, and thus use of a constant value is suggested to minimize the effect of stable isotope analysis error on calculation of TEE in the DLW studies in humans. Based on a review of 103 publications, the average dilution space ratio is 1.036 for individuals between 1 and 80 yr of age. PMID:26989221

  10. Revisiting Mt. Kilimanjaro: Do n-alkane biomarkers in soils reflect the δ2H isotopic composition of precipitation?

    NASA Astrophysics Data System (ADS)

    Zech, M.; Zech, R.; Rozanski, K.; Hemp, A.; Gleixner, G.; Zech, W.

    2014-06-01

    During the last decade compound-specific deuterium (δ2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2H,sub>n-alkanes) can also be used as proxy in paleoaltimetry studies. Here we present results from a δ2H transect study (~1500 to 4000 m a.s.l.) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ~2000 m a.s.l., i.e. δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro (Peterse et al., 2009, BG, 6, 2799-2807), a major re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% at ~ 2000 m a.s.l. to 51% at 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled δ2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2

  11. Synthesis and antifungal activity of 2H-1,4-benzoxazin-3(4H)-one derivatives.

    PubMed

    Śmist, Małgorzata; Kwiecień, Halina; Krawczyk, Maria

    2016-06-01

    A series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next "green" catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, (1)H and (13)C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi-Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata-and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L(-1)). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L(-1) in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L(-1) and 20 mg L(-1). In the concentration of 100 mg L(-1), the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L(-1), compound 6 showed good activity only against P. cactorum strain (72%). PMID:26963527

  12. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using (2)H solid-state NMR.

    PubMed

    Lucier, Bryan E G; Zhang, Yue; Lee, Kelly J; Lu, Yuanjun; Huang, Yining

    2016-06-18

    Record greenhouse gas emissions have spurred the search for clean energy sources such as hydrogen (H2) fuel cells. Metal-organic frameworks (MOFs) are promising H2 adsorption and storage media, but knowledge of H2 dynamics and adsorption strengths in these materials is lacking. Variable-temperature (VT) (2)H solid-state NMR (SSNMR) experiments targeting (2)H2 gas (i.e., D2) shed light on D2 adsorption and dynamics within six representative MOFs: UiO-66, M-MOF-74 (M = Zn, Mg, Ni), and α-M3(COOH)6 (M = Mg, Zn). D2 binding is relatively strong in Mg-MOF-74, Ni-MOF-74, α-Mg3(COOH)6, and α-Zn3(COOH)6, giving rise to broad (2)H SSNMR powder patterns. In contrast, D2 adsorption is weaker in UiO-66 and Zn-MOF-74, as evidenced by the narrow (2)H resonances that correspond to rapid reorientation of the D2 molecules. Employing (2)H SSNMR experiments in this fashion holds great promise for the correlation of MOF structural features and functional groups/metal centers to H2 dynamics and host-guest interactions. PMID:27181834

  13. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  14. Synergistic WO3·2H2O Nanoplates/WS2 Hybrid Catalysts for High-Efficiency Hydrogen Evolution.

    PubMed

    Yang, Lun; Zhu, Xiaobin; Xiong, Shijie; Wu, Xinglong; Shan, Yun; Chu, Paul K

    2016-06-01

    Tungsten trioxide dihydrate (WO3·2H2O) nanoplates are prepared by in situ anodic oxidation of tungsten disulfide (WS2) film on carbon fiber paper (CFP). The WO3·2H2O/WS2 hybrid catalyst exhibits excellent synergistic effects which facilitate the kinetics of the hydrogen evolution reaction (HER). The electrochromatic effect takes place via hydrogen intercalation into WO3·2H2O. This process is accelerated by the desirable proton diffusion coefficient in the layered WO3·2H2O. Hydrogen spillover from WO3·2H2O to WS2 occurs via atomic polarization caused by the electric field of the charges on the planar defect or edge active sites of WS2. The optimized hybrid catalyst presents a geometrical current density of 100 mA cm(-2) at 152 mV overpotential with a Tafel slope of ∼54 mV per decade, making the materials one of the most active nonprecious metal HER catalysts. PMID:27211828

  15. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  16. Dusty plasmas

    SciTech Connect

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.

  17. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  18. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    SciTech Connect

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen; Bowman, Joel M.

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.

  19. A new diabatic representation of the coupled potential energy surfaces for Na(3p P-2) + H2 yields Na(3s S-2) + H2 or NaH + H

    NASA Technical Reports Server (NTRS)

    Halvick, Philippe; Truhlar, Donald G.

    1992-01-01

    A diabatic representation is presented of the coupled potential-energy surfaces for Na(3p P-2) + H2 yields Na (3s S-2) + H2 or NaH + H. The representation is designed to yield, upon diagonalization, realistic values for the two lowest energy adiabatic states at both asymptotes of the chemical reaction as well as near the conical intersection in the three-body interaction region. It is economical to evaluate and portable. It is suitable for dynamics calculations on both the quenching process and the electronically nonadiabatic chemical reaction.

  20. Cascade alkylarylation of substituted N-allylbenzamides for the construction of dihydroisoquinolin-1(2H)-ones and isoquinoline-1,3(2H,4H)-diones

    PubMed Central

    Qian, Ping; Du, Bingnan; Jiao, Wei; Mei, Haibo

    2016-01-01

    Summary An oxidative reaction for the synthesis of 4-alkyl-substituted dihydroisoquinolin-1(2H)-ones with N-allylbenzamide derivatives as starting materials has been developed. The radical alkylarylation reaction proceeds through a sequence of alkylation and intramolecular cyclization. The substituent on the C–C double bond was found to play a key role for the progress of the reaction to give the expected products with good chemical yields. Additionally, N-methacryloylbenzamides were also suitable substrates for the current reaction and provided the alkyl-substituted isoquinoline-1,3(2H,4H)-diones in good yield. PMID:26977189

  1. Direct measurements of collisional Raman line broadening in the S-branch transitions of acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Hsu, Paul S.; Stauffer, Hans U.; Jiang, Naibo; Gord, James R.; Roy, Sukesh

    2013-10-01

    We report direct measurements of the self- and N2-broadened Raman S-branch linewidths of acetylene (C2H2), obtained by employing time-resolved picosecond rotational coherent anti-Stokes Raman scattering spectroscopy. Using broadband 115-ps pump and Stokes pulses (˜135 cm-1 bandwidth) and a spectrally narrowed 90-ps probe pulse (˜0.2 cm-1 bandwidth), Raman-coherence lifetimes are measured at room temperature for the S-branch (ΔJ = +2) transitions associated with rotational quantum number J = 3-25. These directly measured Raman-coherence lifetimes, when converted to collisional linewidth broadening coefficients, differ from the previously reported broadening coefficients extracted from theoretical calculations by 6%-35% for self-broadening for C2H2 and by up to 60% for N2-broadened C2H2.

  2. Dehydrogenation of N{sub 2}H{sub X} (X = 2 − 4) by nitrogen atoms: Thermochemical and kinetics

    SciTech Connect

    Spada, Rene Felipe Keidel; Araujo Ferrão, Luiz Fernando de; Roberto-Neto, Orlando; Machado, Francisco Bolivar Correto

    2013-11-21

    Thermochemical and kinetics of sequential hydrogen abstraction reactions from hydrazine by nitrogen atoms were studied. The dehydrogenation was divided in three steps, N{sub 2}H{sub 4} + N, N{sub 2}H{sub 3} + N, and N{sub 2}H{sub 2} + N. The thermal rate constants were calculated within the framework of canonical variational theory, with zero and small curvature multidimensional tunnelling corrections. The reaction paths were computed with the BB1K/aug-cc-pVTZ method and the thermochemical properties were improved with the CCSD(T)/CBS//BB1K/aug-cc-pVTZ approach. The first dehydrogenation step presents the lowest rate constants, equal to 1.22 × 10{sup −20} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K.

  3. Detection of NO sub x,C2H4 concentrations by using CO and CO2 lasers

    NASA Technical Reports Server (NTRS)

    Gengchen, W.; Qinxin, K.

    1986-01-01

    A laser, especially the infrared line tunable laser, opens up a new way to monitor the atmospheric environment, and already has gotten effective practical application. One of the most serious problems in open path remote measurement at atmospheric pressure is the broadening effect which leads to increased linewidths, spectral interferences, and, as a result, tends to reduce detection sensitivity, so measuring laser wavelengths should be selected carefully, and interaction between the measuring wavelength and gas to be measured must be known very well. Therefore, N2O, No, NO2, CH4, NH3 and C2H4 absorption properties at some lines of CO and CO2 line tunable lasers were studied. The absorption coefficients of NO, NO2, and C2H4; some results on detection of NO sub x, C2H4 concentrations in both laboratory and field; and selection of measuring wavelengths and error analysis are discussed.

  4. Synthesis, Photochemical Properties, and Cytotoxicities of 2H-Naphtho[1,2-b]pyran and Its Photodimers.

    PubMed

    Ota, Motohiro; Sasamori, Takahiro; Tokitoh, Norihiro; Onodera, Takefumi; Mizushina, Yoshiyuki; Kuramochi, Kouji; Tsubaki, Kazunori

    2015-06-01

    A 2H-naphtho[1,2-b]pyran, prepared by dimerization of 2-bromo-3-methyl-1,4-naphthoquinone and O-methylation, readily undergoes solid-state [2 + 2] photodimerization to give a photodimer in excellent yield and with excellent selectivity. Retro [2 + 2] cycloaddition can be achieved by irradiation of a solution of the photodimer in chloroform. Interestingly, the 2H-naphtho[1,2-b]pyran dimerizes with a skeletal rearrangement to afford 2,5-dihydro-1-benzoxepin dimers upon irradiation in methanol or via irradiation with hexamethylditin. Furthermore, treatment of the resulting dimers with triethylamine regenerates the 2H-naphtho[1,2-b]pyran monomer. Significant differences in the color, fluorescence, and cytotoxic properties of the monomer and dimers were observed. PMID:25927340

  5. A first Late Glacial and Early Holocene coupled 18O and 2H biomarker isotope record from Gemuendener Maar, Germany

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Bromm, Tobias; Hepp, Johannes; Benesch, Marianne; Sirocko, Frank; Glaser, Bruno; Zech, Roland

    2015-04-01

    During the last years, we developed a method for compound-specific d18O analyses of hemicellulose-derived sugars from plants, soils and sediment archives (Zech and Glaser, 2009; Zech et al., 2014). The coupling of respective d18O sugar results with d2H alkane results from paleosol and sediment climate archives proved to be a valuable innovative approach towards quantitative paleoclimate reconstruction (Hepp et al., 2014; Zech et al., 2013). Here we present a first coupled d18O sugar and d2H alkane biomarker record obtained for Late Glacial and Early Holocene sediments from the Gemuendener Maar in the Eifel, Germany. The d18O sugar biomarker record resembles the d18O ice core records of Greenland. The coupling with the d2H alkane biomarker results allows drawing further more quantitative paleocimate information in terms of (i) paleohumidity and (ii) d18O of paleoprecipitation.

  6. A Sulfide-Bridged Diiron(II) Complex with a cis-N2H4Ligand

    PubMed Central

    Stubbert, Bryan D.; Vela, Javier; Brennessel, William W.; Holland, Patrick L.

    2014-01-01

    A sulfide-bridged diiron(II) complex bearing a cis-N2H4 (hydrazine) ligand has been prepared by reaction of LFeII(μ-S)FeIIL (1; L = sterically encumbered βdiketiminate ligand) with 2 molar equivalents of N2H4. The metastable diiron(II) hydrazine complex LFeII(μ-S)(μH N–NH2)FeII (3) is formed, as shown by crystallography, and NMR, vibrational, and electronic absorption spectroscopies. Compound 3 has been crystallographically characterized as its DBU (1,8-diazabicyclo[5.4.0]undec-7$ene) adduct, which exhibits weak N–H···DBU hydrogen bonding. The synthetic process evolves roughly 2 equivalents of NH3. The cis-N2H4 bridge in 3 may be relevant to the structure and function of intermediates on the FeMoco of nitrogenase. PMID:24678131

  7. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  8. A compact laser-based spectrometer for detection of C2H2 in exhaled breath and HCN in vitro

    NASA Astrophysics Data System (ADS)

    Marchenko, D.; Neerincx, A. H.; Mandon, J.; Zhang, J.; Boerkamp, M.; Mink, J.; Cristescu, S. M.; Hekkert, S. te Lintel; Harren, F. J. M.

    2015-02-01

    We report on the development of a compact prototype near-infrared DBR laser-based spectrometer employing off-axis integrated cavity output spectroscopy. The spectrometer is capable of simultaneous detection of acetylene (C2H2) and CO2 at 1,529.2 nm as well as hydrogen cyanide (HCN) at 1,533.5 nm. The detection limits of 8 ppbv for C2H2 and 80 ppbv for HCN are achieved for the acquisition time of 1 s. The setup has been tested for online measurements of C2H2 in exhaled breath of a smoking subject and HCN resulting from the metabolism of Pseudomonas aeruginosa bacteria in vitro. Further improvements of the performance of the spectrometer are discussed.

  9. Controls on compound specific 2H/1H of leaf waxes along a North American monsoonal transect

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Tipple, B. J.; Hambach, B.; Ehleringer, J. R.

    2013-12-01

    The use of hydrogen isotope ratios of sedimentary n-alkanes from leaf waxes has become an important method for the reconstruction of paleohydrologic conditions. Ideally, the relationship between lipid 2H/1H values and source water is one-to-one. But the extent to which the 2H/1H values are altered between initial source water and lipid 2H/1H values varies by plant type and environment. Additionally, these variables may be confounded by use of varied source waters by plants in the same ecosystem. Here, we use a transect study across the arid southwestern landscape of the United States, which is heavily influenced by the North American Monsoon, to study the variability in 2H/1H values of leaf waxes in co-occurring plants from Tucson, Arizona to Salt Lake City, Utah. Perennials, including rabbit brush (Chrysothamnus nauseosus), sagebrush (Artemisia tridentata), and gambel oak (Quercus gambelii) and an annual plant, sunflower (Helianthus annuus), were chosen for their wide geographic distribution along the entire transect. Our results indicate that n-alkane distribution for each plant was similar and generally showed no relationship to environmental variables (elevation, mean annual precipitation, latitude, and temperature). However, we find evidence of n-alkane 2H/1H value relating to transect latitude, a relationship that is weaker for all samples combined than the strong individual correlation for each plant species. Further, these 2H/1H values suggest that not all plants in the monsoon region utilize monsoon-delivered precipitation. These results imply an adaptation to discontinuous spatial coverage and amount of monsoonal precipitation and suggest care must be taken when assuming consistent source water for different plants, particularly in regions with highly seasonal precipitation delivery.

  10. BROAD N{sub 2}H{sup +} EMISSION TOWARD THE PROTOSTELLAR SHOCK L1157-B1

    SciTech Connect

    Codella, C.; Fontani, F.; Gómez-Ruiz, A.; Vasta, M.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Podio, L.; Caselli, P.

    2013-10-10

    We present the first detection of N{sub 2}H{sup +} toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ∼0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N{sub 2}H{sup +}(1-0) line originated from the dense (≥10{sup 5} cm{sup –3}) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N{sub 2}H{sup +} column density of a few 10{sup 12} cm{sup –2} corresponding to an abundance of (2-8) × 10{sup –9}. The N{sub 2}H{sup +} abundance can be matched by a model of quiescent gas evolved for more than 10{sup 4} yr, i.e., for more than the shock kinematical age (≅2000 yr). Modeling of C-shocks confirms that the abundance of N{sub 2}H{sup +} is not increased by the passage of the shock. In summary, N{sub 2}H{sup +} is a fossil record of the pre-shock gas, formed when the density of the gas was around 10{sup 4} cm{sup –3}, and then further compressed and accelerated by the shock.

  11. Antibacterial agent triclosan suppresses RBL-2H3 mast cell function

    SciTech Connect

    Palmer, Rachel K.; Hutchinson, Lee M.; Burpee, Benjamin T.; Tupper, Emily J.; Pelletier, Jonathan H.; Kormendy, Zsolt; Hopke, Alex R.; Malay, Ethan T.; Evans, Brieana L.; Velez, Alejandro; Gosse, Julie A.

    2012-01-01

    Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clone 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells.

  12. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed Central

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-01-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  13. New estimates of global CH4 and C2H6 production in the Precambrian crust

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Chelsea N.; Lacrampe-Couloume, Georges; Ballentine, Chris J.; Sherwood Lollar, Barbara

    2015-04-01

    Saline fracture fluids found deep within the Precambrian shield possess isotopic and geochemical signatures consistent with prolonged water rock interaction. Noble gas-derived residence times of these fluids, on the order of millions to billions of years, highlight their significance as an ancient deep hydrosphere (Lippmann-Pipke et al., 2011; Holland et al., 2013). With mM concentrations of dissolved gases such as H2 and hydrocarbons, these fracture fluids are energy rich and capable of sustaining microbial communities of H2-utilizing methanogens and sulphate reducers (Lin et al., 2006). Globally, Precambrian rocks constitute over 70% of the volume of the continental crust (Goodwin, 1996) and represent a substantial under-investigated source of such dissolved gases. Recent calculations of global H2 production from these Precambrian Shield rocks, including both hydration reactions and radiolysis, doubles previous estimates to an increased rate of 0.4-2.3 x 1011 mol/yr (Sherwood Lollar et al., 2014). This has important consequences for hydrocarbon production, reflected in the high abundance of CH4 and C2H6 in dissolved fracture gases, up to 80 and 10 vol %, respectively. Given the long residence times of these fluids, hydrocarbon production could have persisted on geological timescales. To date, production from this source has not been incorporated into models of evolution of the early atmosphere. Additionally, the quantification of abiotic sources of methane and ethane in the analogous terrestrial Precambrian crust could contribute to our understanding of the origin of the episodic traces of methane recently detected on Mars (Webster et al., 2014). Investigating the origin of these gases has important implications for the global carbon cycle, as well as the distribution of life in the terrestrial deep subsurface and on other planets. We examine the isotopic evolution of these fracture fluids in the Canadian Shield and provide the first attempts to estimate methane

  14. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-10-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  15. The ν17 band of C2H5D from 770 to 880 cm-1

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian J.; Pearson, John C.; Sung, Keeyoon; Brown, Linda R.; Mantz, Arlan; Smith, Mary Ann H.

    2015-10-01

    Atmospheric investigations rely heavily on the availability of accurate spectral information of hydrocarbons. To extend the ethane database we recorded a 0.0028 cm-1 resolution spectrum of 12C2H5D from 650 to 1500 cm-1 using a Bruker Fourier Transform spectrometer IFS-125HR at the Jet Propulsion Laboratory. The 98% deuterium-enriched sample was contained in a 0.2038 m absorption cell; one spectrum was obtained with the sample cryogenically cooled to 130.5 K and another at room temperature. From the cold data, we retrieved line positions and intensities of 8704 individual absorption features from 770 to 880 cm-1 using a least squares curve fitting algorithm. From this set of measurements, we assigned 5035 transitions to the v17 fundamental at 805.342729(27) cm-1; this band is a c-type vibration, with often-resolved A and E components arising from internal rotation. The positions were modeled to a 22 term torsional Hamiltonian using SPFIT to fit the spectrum to a standard deviation of 7 × 10-4 cm-1 (21 MHz). The prediction of the 5035 line intensities at 130.5 K agreed with observed intensities, but a small centrifugal distortion type correction to the transition dipole was needed to model the intensity of high Ka R and P transitions. The integrated band intensities of 3.6628 × 10-19 cm-1/(molecule cm-2) at 296 K in the 770-880 cm-1 region was obtained. To predict line intensities at different temperatures, the partition function values were determined at nine temperatures between 9.8 and 300 K by summing individual energy levels up to J = 99 and Ka = 99 for the six states up through ν17 at 805 cm-1. We found the energy of A and E are inverted as compared to ground state (with the E state lower than the A state) and the splitting, -241.8(10) MHz, lies between the ground state value of +74.167(18) MHz and the first torsional state (ν18 = 271.1 cm-1) value of -3382.23(34) MHz. The proximity of the energy splitting to the ground state suggests that the ν17 state

  16. Silver-catalyzed C(sp2)-H functionalization/C-O cyclization reaction at room temperature.

    PubMed

    Dai, Jian-Jun; Xu, Wen-Tao; Wu, Ya-Dong; Zhang, Wen-Man; Gong, Ying; He, Xia-Ping; Zhang, Xin-Qing; Xu, Hua-Jian

    2015-01-16

    Silver-catalyzed C(sp(2))-H functionalization/C-O cyclization has been developed. The scalable reaction proceeds at room temperature in an open flask. The present method exhibits good functional-group compatibility because of the mild reaction conditions. Using a AgNO3 catalyst and a (NH4)2S2O8 oxidant in CH2Cl2/H2O solvent, various lactones are obtained in good to excellent yields. A kinetic isotope effect (KIE) study indicates that the reaction may occur via a radical process. PMID:25495388

  17. Second-meal effects of pulses on blood glucose and subjective appetite following a standardized meal 2 h later.

    PubMed

    Mollard, Rebecca C; Wong, Christina L; Luhovyy, Bohdan L; Cho, France; Anderson, G Harvey

    2014-07-01

    This study investigated whether pulses (chickpeas, yellow peas, navy beans, lentils) have an effect on blood glucose (BG) and appetite following a fixed-size meal 2 h later. Over the following 2 h, all pulses lowered BG area under the curve (AUC) and lentils reduced appetite AUC compared with white bread (p < 0.05). Following the meal, BG was lower after lentils and chickpeas at 150 and 165 min, and AUC was lower after lentils compared with white bread (p < 0.05). PMID:24797207

  18. ARP: Automatic rapid processing for the generation of problem dependent SAS2H/ORIGEN-s cross section libraries

    SciTech Connect

    Leal, L.C.; Hermann, O.W.; Bowman, S.M.; Parks, C.V.

    1998-04-01

    In this report, a methodology is described which serves as an alternative to the SAS2H path of the SCALE system to generate cross sections for point-depletion calculations with the ORIGEN-S code. ARP, Automatic Rapid Processing, is an algorithm that allows the generation of cross-section libraries suitable to the ORIGEN-S code by interpolation over pregenerated SAS2H libraries. The interpolations are carried out on the following variables: burnup, enrichment, and water density. The adequacy of the methodology is evaluated by comparing measured and computed spent fuel isotopic compositions for PWR and BWR systems.

  19. The Organocatalytic Approach to Enantiopure 2H- and 3H-Pyrroles: Inhibitors of the Hedgehog Signaling Pathway.

    PubMed

    Kötzner, Lisa; Leutzsch, Markus; Sievers, Sonja; Patil, Sumersing; Waldmann, Herbert; Zheng, Yiying; Thiel, Walter; List, Benjamin

    2016-06-27

    A divergent approach to enantioenriched 2H- and 3H-pyrroles catalyzed by a spirocyclic phosphoric acid is reported that makes use of a Fischer-type indolization and a [1,5]-alkyl shift. Catalyzed by the chiral phosphoric acid STRIP, good to excellent yields and enantioselectivities could be obtained. Remarkably, biological evaluation reveals one of these novel 2H-pyrroles to be a potent but nontoxic inhibitor of the Hedgehog signaling pathway by binding to the Smoothened protein. PMID:27239757

  20. Hyperbaric Oxygen Therapy Improves Glucose Homeostasis in Type 2 Diabetes Patients: A Likely Involvement of the Carotid Bodies.

    PubMed

    Vera-Cruz, P; Guerreiro, F; Ribeiro, M J; Guarino, M P; Conde, S V

    2015-01-01

    The carotid bodies (CBs) are peripheral chemoreceptors that respond to hypoxia increasing minute ventilation and activating the sympathetic nervous system. Besides its role in ventilation we recently described that CB regulate peripheral insulin sensitivity. Knowing that the CB is functionally blocked by hyperoxia and that hyperbaric oxygen therapy (HBOT) improves fasting blood glucose in diabetes patients, we have investigated the effect of HBOT on glucose tolerance in type 2 diabetes patients. Volunteers with indication for HBOT were recruited at the Subaquatic and Hyperbaric Medicine Center of Portuguese Navy and divided into two groups: type 2 diabetes patients and controls. Groups were submitted to 20 sessions of HBOT. OGTT were done before the first and after the last HBOT session. Sixteen diabetic patients and 16 control individual were included. Fasting glycemia was143.5 ± 12.62 mg/dl in diabetic patients and 92.06 ± 2.99 mg/dl in controls. In diabetic patients glycemia post-OGTT was 280.25 ± 22.29 mg/dl before the first HBOT session. After 20 sessions, fasting and 2 h post-OGTT glycemia decreased significantly. In control group HBOT did not modify fasting glycemia and post-OGTT glycemia. Our results showed that HBOT ameliorates glucose tolerance in diabetic patients and suggest that HBOT could be used as a therapeutic intervention for type 2 diabetes. PMID:26303484

  1. Novel soft-chemistry route of Ag2Mo3O10·2H2O nanowires and in situ photogeneration of a Ag@Ag2Mo3O10·2H2O plasmonic heterostructure.

    PubMed

    Hakouk, Khadija; Deniard, Philippe; Lajaunie, Luc; Guillot-Deudon, Catherine; Harel, Sylvie; Wang, Zeyan; Huang, Baibiao; Koo, Hyun-Joo; Whangbo, Myung-Hwan; Jobic, Stéphane; Dessapt, Rémi

    2013-06-01

    Ultrathin Ag2Mo3O10·2H2O nanowires (NWs) were synthesized by soft chemistry under atmospheric pressure from a hybrid organic-inorganic polyoxometalate (CH3NH3)2[Mo7O22] and characterized by powder X-ray diffraction, DSC/TGA analyses, FT-IR and FT-Raman spectroscopies, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Their diameters are a few tens of nanometers and hence much thinner than that found for silver molybdates commonly obtained under hydrothermal conditions. The optical properties of Ag2Mo3O10·2H2O NWs before and after UV irradiation were investigated by UV-vis-NIR diffuse reflectance spectroscopy revealing, in addition to photoreduction of Mo(6+) to Mo(5+) cations, in situ photogeneration of well-dispersed silver Ag(0) nanoparticles on the surface of the NWs. The resulting Ag@Ag2Mo3O10·2H2O heterostructure was confirmed by electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), and Auger spectroscopy. Concomitant reduction of Mo(6+) and Ag(+) cations under UV excitation was discussed on the basis of electronic band structure calculations. The Ag@Ag2Mo3O10·2H2O nanocomposite is an efficient visible-light-driven plasmonic photocatalyst for degradation of Rhodamine B dye in aqueous solution. PMID:23679344

  2. Reactions of C{sub 2}H{sub 5} radicals with O, O{sub 3}, and NO{sub 3}: Decomposition pathways of the intermediate C{sub 2}H{sub 5}O radical

    SciTech Connect

    Hoyermann, K.; Seeba, J.; Olzmann, M.; Viskolcz

    1999-07-22

    Alkoxy radicals are important species in the atmospheric degradation of hydrocarbons as well as in combustion processes. Additionally, they play a crucial role in the pyrolysis of oxygen-containing hydrocarbons. The reactions of C{sub 2}H{sub 5} with O, O{sub 3}, and NO{sub 3} have been investigated in a discharge flow reactor at room temperature and pressures between 1 and 3 mbar. The reaction products were detected by mass spectrometry with electron-impact ionization. The product pattern observed is explained in terms of the decomposition of an intermediately formed, chemically activated ethoxy radical. It is shown that, with this assumption, the experimentally determined branching ratios of the different product channels can be reproduced nearly quantitatively by RRKM calculations based on ab initio results for the stationary points of the potential energy surface of C{sub 2}H{sub 5}O. For C{sub 2}H{sub 5} + O and C{sub 2}H{sub 5} + O{sub 3}, the existence of an additional, parallel channel leading to OH has to be assumed.. High-pressure Arrhenius parameters for the unimolecular reactions of the ethoxy radical are given and discussed.

  3. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2.

    PubMed

    Huang, Xinchuan; Valeev, Edward F; Lee, Timothy J

    2010-12-28

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H(2)O, N(2)H(+), NO(2)(+), and C(2)H(2) molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N(2)H(+) where it is concluded that basis set extrapolation is still preferred. The differences for H(2)O and NO(2)(+) are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C(2)H(2), however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)(R12), incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N(2)H(+) and NO(2)(+) were computed, including basis set extrapolation, core-correlation, scalar

  4. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe(110) surface

    NASA Astrophysics Data System (ADS)

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-01

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C2H2 molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C2H2 molecules. The most stable site for C2H2 on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C2H2 molecule, the barrier height energies for the C atom, C2-dimer and CH as well as the C2H2 molecule are estimated using the nudged elastic band method. The barrier height energy for C2H2 is 0.71 eV and this indicates that the C2H2 diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C2H2 on Fe. The first step is the dissociation of C2H2 into C2H and H, and the second step is that of C2H into C2 and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C2H2 into C2H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C2H2. The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C2H2 which characterizes the beginning of the formation of the graphene.

  5. Structure and activation dynamics of RBL-2H3 cells observed with scanning force microscopy.

    PubMed Central

    Braunstein, D; Spudich, A

    1994-01-01

    Surface and subsurface dynamics of Rat Basophilic Leukemia cells, a model system of stimulated secretion, were imaged using Scanning Force Microscopy (SFM) at a rate of 50-60 s/image. Cytoskeletal elements and organelles were tracked within quiescent cells and those activated after IgE receptor crosslinking. In addition, surface waves were observed moving within the plasma membrane. The structures seen in quiescent and activated cells can be correlated with those seen in electron micrographs and topographic SFM images of fixed detergent-extracted cells. Furthermore, images of the detergent-extracted nuclei reveal the presence of numerous nuclear pore complexes. High-magnification images of the nuclear pore complexes show evidence of subunit structure and exhibit dimensions consistent with those reported previously using electron microscopy. The behavior and overall change in morphology of cells observed during activation was consistent with that observed under similar conditions with Differential Interference Contrast microscopy. This study demonstrates that SFM, unlike other techniques, can be used to provide high-resolution information in both fixed and living cells. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 PMID:8061220

  6. The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer

    SciTech Connect

    Hassan Ibrahim

    2006-12-31

    in June 2002 and the high Q^2 kinematics were completed in November 2002. Before the start of the experiment many preparations were made to assure the quality of the collected data. Approximately two Terabytes of data were collected by the end of the experiment. The cross section results in this dissertation show clearly the effect of final state interactions between the two final state nucleons. The cross section ratio to the Laget PWBA+FSI calculation has a wiggle at P_miss ~ 300 MeV. It is yet to be seen whether this is merely due to the lack of MEC and IC in the present theoretical calculation. However, a similar feature was observed in a previous Hall A experiment. Further, discrepancies at very low P_miss cast some doubt on neutron form factor measurements using the deuteron as target. This study will add to the already growing body of systematic data for the ^2H(e,e'p)n reaction to better understand the N N short range and to provide vital input for heavier nuclei.

  7. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation

    PubMed Central

    Alvarez-Saavedra, Matías; De Repentigny, Yves; Lagali, Pamela S.; Raghu Ram, Edupuganti V. S.; Yan, Keqin; Hashem, Emile; Ivanochko, Danton; Huh, Michael S.; Yang, Doo; Mears, Alan J.; Todd, Matthew A. M.; Corcoran, Chelsea P.; Bassett, Erin A.; Tokarew, Nicholas J. A.; Kokavec, Juraj; Majumder, Romit; Ioshikhes, Ilya; Wallace, Valerie A.; Kothary, Rashmi; Meshorer, Eran; Stopka, Tomas; Skoultchi, Arthur I.; Picketts, David J.

    2014-01-01

    Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation. PMID:24946904

  8. 21 CFR 176.230 - 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false 3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione. 176.230 Section 176.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER...

  9. Synthesis of 3,4-Disubstituted 2H-Benzopyrans Through C-C Bond Formation via Electrophilic Cyclization

    PubMed Central

    Worlikar, Shilpa A.; Kesharwani, Tanay; Yao, Tuanli; Larock, Richard C.

    2008-01-01

    The electrophilic cyclization of substituted propargylic aryl ethers by I2, ICl and PhSeBr produces 3,4-disubstituted 2H-benzopyrans in excellent yields. This methodology results in vinylic halides or selenides under mild reaction conditions, and tolerates a variety of functional groups, including methoxy, alcohol, aldehyde and nitro groups. PMID:17288382

  10. TES/Aura L2 Water Vapor (H2O) Lite Nadir (TL2H2OLN)

    Atmospheric Science Data Center

    2015-06-16

    TES/Aura L2 Water Vapor (H2O) Lite Nadir (TL2H2OLN) News:  TES News ... Title:  TES Discipline:  Tropospheric Chemistry Version:  V6 Level:  L2 Instrument:  TES/Aura L2 Water Vapor Spatial Coverage:  5.3 km nadir ...

  11. Computational study on the negative electron affinities of NO2 -.(H2O)n clusters (n=0-30).

    PubMed

    Ejsing, Anne Marie; Brøndsted Nielsen, Steen

    2007-04-21

    Here we report negative electron affinities of NO(2)(-).(H2O)n clusters (n=0-30) obtained from density functional theory calculations and a simple correction to Koopmans' theorem. The method relies on the calculation of the detachment energy of the monoanion and its highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and explicit calculations on the dianion itself are avoided. A good agreement with resonances in the cross section for neutral production in electron scattering experiments is found for n=0, 1, and 2. We find several isomeric structures of NO(2)(-).(H2O)2 of similar energy that elucidate the interplay between water-water and ion-water interactions. The topology is predicted to influence the electron affinity by 0.5 and 0.4 eV for NO(2)(-).(H2O) and NO(2)(-).(H2O)2, respectively. The electron affinity of larger clusters is shown to follow a (n+delta)-1/3 dependence, where delta=3 represents the number of water molecules that in volume, could replace NO(2) (-). PMID:17461632

  12. ACIDIFICATION OF RAIN IN THE PRESENCE OF SO2, H2O2, O3, AND HNO3

    EPA Science Inventory

    The production of acid sulfate and the accumulation of acid nitrate are calculated for falling raindrops using a physico-chemical model that accounts for the mass transfer of SO2, H2O2, O3, HNO3, and CO2. The acidification is postulated to occur through the absorption of free gas...

  13. A theoretical study of the CH[sub 3]+C[sub 2]H[sub 2] reaction

    SciTech Connect

    Diau, E.W.; Lin, M.C. ); Melius, C.F. )

    1994-09-01

    The rate constants for the formation of various products in the CH[sub 3]+C[sub 2]H[sub 2] reaction have been computed by multichannel RRKM calculations using the molecular and transition-state parameters predicted by the BAC-MP4 method. The results of the calculations agree quantitatively with experimental data obtained under varying conditions: [ital T]=300--2200 K, [ital P]=30--2500 Torr. At low temperatures ([ital T][lt]1300 K), the CH[sub 3]+C[sub 2]H[sub 2] reaction is dominated by the addition-stabilization process producing CH[sub 3]C[sub 2]H[sub 2]. Under high-temperature ([ital T][gt]1400 K) and atmospheric-pressure conditions, the reaction occurs primarily by the CH[sub 3]-for-H displacement process producing CH[sub 3]C[sub 2]H, a likely source of the C[sub 3]H[sub 3] radical (which has recently been shown to be a key precursor of C[sub 6]H[sub 6] in hydrocarbon combustion reactions).

  14. Atomic structures and electronic properties of 2H-NbSe{sub 2}: The impact of Ti doping

    SciTech Connect

    Li, Hongping E-mail: zcwang@wpi-aimr.tohoku.ac.jp; Chen, Lin; Zhang, Kun; Liang, Jiaqing; Tang, Hua; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Wang, Zhongchang E-mail: zcwang@wpi-aimr.tohoku.ac.jp

    2014-09-14

    Layered transition metal dichalcogenides have aroused renewed interest as electronic materials, yet their electronic performances could be modified by chemical doping. Here, we perform a systematic first-principles calculation to investigate the effect of Ti doping on atomic structure and electronic properties of the 2H-NbSe{sub 2}. We consider a total of three possible Ti-doping models and find that both the substitution and intercalated models are chemically preferred with the intercalation model being more favorable than the substitution one. Structural analyses reveal a slight lattice distortion triggered by Ti doping, but the original structure of 2H-NbSe{sub 2} is maintained. We also observe an expansion of c axis in the substituted model, which is attributed to the reduced van der Waals interaction arising from the increased Se-Se bond length. Our calculations also predict that the electron transport properties can be enhanced by the Ti doping, especially for the Ti-intercalated 2H-NbSe{sub 2}, which should be beneficial for the realization of superconductivity. Furthermore, the covalence element is found in the Ti-Se bonds, which is ascribed to the hybridization of Ti 3d and Se 4p orbitals. The findings indicate that doping of transition metals can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe{sub 2}.

  15. The inhibitory effect of piperine from Fructus piperis extract on the degranulation of RBL-2H3 cells.

    PubMed

    Huang, Jing; Zhang, Tao; Han, Shengli; Cao, Jingjing; Chen, Qinhua; Wang, Sicen

    2014-12-01

    Allergy is an abnormal immune response to an allergen. Type I hypersensitivity is an immunoglobulin (Ig) E-mediated allergic disorder. Fructus piperis is derived from the ripe fruit of the pepper, which is widely used as a spice in human diets and is also administered as a medicine in many countries. Piperine has been shown to have anti-oxidant, anti-depressant, anti-tumor, and anti-inflammatory activities. However, the effect of piperine on IgE-mediated allergic responses has not been reported. Here, the rat basophilic leukemia cells by membrane chromatography (RBL-2H3/CMC) coupled to high performance liquid chromatography/mass spectrometry (HPLC/MS) to discover and identify piperine can bind to RBL-2H3 cell membranes. Piperine inhibited the expression of cytokines, and the release of both β-hexosaminidase and histamine, which could be stimulated by antigen in RBL-2H3 mast cells. We found that the levels of intracellular Ca(2+) also decreased. Furthermore, RT-PCR showed that the mRNA expression levels of IL-4, IL-13, and TNF-α were significantly suppressed by piperine. The inhibitory effect of piperine on IgE-mediated degranulation and cytokine production by RBL-2H3 cells may be caused by the inhibition of IgE-mediated signaling pathways, including the phosphorylation of Lyn, p38, Erk, and Ras. In summary, piperine can inhibit antigen-induced allergic reactions that control degranulation. PMID:25307563

  16. Laser photoacoustic trace detection of C2H4 revealing adverse environmental effects of atmospheric pollution on plant material

    NASA Astrophysics Data System (ADS)

    Harren, Frans J. M.; Petruzzelli, Luciana

    1993-03-01

    The photoacoustic detection method for trace gases in the atmosphere is well developed towards very low limits of detection, in the last years. Due to the combination of a sensitive photoacoustic cell placed intracavity in an infrared CO2 laser we were able to detect C2H4 at ultralow (< 1:1011) concentrations within 10 seconds, C2H4 in a plant hormone which seems to play an important role throughout all the life stages of a plant, including seed germination. In addition, various types of stress have been reported to promote ethylene production from different plant tissues. As part of our ongoing research on the role of ethylene in seed germination, we have compared our laser photoacoustic set-up to a gaschromatograph for measuring C2H4 produced by germinating Pisum sativum L. seeds within the first days of imbibition. C2H4 evolution by intact seeds shows a maximum at about 25 hours of germination. Thereafter, the rate of ethylene measured by gaschromatograph continues to decrease while that measured by the laser-driven photoacoustic system shows further increases. Most of the ethylene produced by seeds is found in isolated embryonic axes. The fumigation with ozone affects the growth of seedlings and their ethylene evolution.

  17. Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts.

    PubMed

    Huang, Xin; Yuan, Jian; Shi, Jianwei; Shangguan, Wenfeng

    2009-11-15

    TiO(2)/H-ZSM-5 catalysts were prepared by impregnation with different amount of TiO(2) loading and calcination at various temperatures. The catalysts were characterized by X-ray diffraction (XRD), ultraviolet and visible spectroscopy (UV-vis) and BET specific surface area. It was demonstrated that the anatase TiO(2) retained stable on H-ZSM-5 after heat treatment even at 700 degrees C. The activities of samples were investigated under the various conditions of UV, ozone and UV-ozone, respectively by the comparison of acetaldehyde degradation. It was found that the photocatalysis combined with ozonation promoted the acetaldehyde degradation. TiO(2)/H-ZSM-5 catalysts were superior to simple TiO(2) and H-ZSM-5 with respect to the ozone-assisted photocatalytic oxidation of gaseous acetaldehyde, and the activity of the catalyst TiO(2)/H-ZSM-5 (TiO(2):H-ZSM-5=2:10) is the highest one among all those prepared samples. The improvement was attributed to the synergetic effect among adsorption, ozonation and catalytic reaction. PMID:19604630

  18. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  19. Inductions of the fatty acid 2-hydroxylase (FA2H) gene by Δ9-tetrahydrocannabinol in human breast cancer cells

    PubMed Central

    Takeda, Shuso; Harada, Mari; Su, Shengzhong; Okajima, Shunsuke; Miyoshi, Hiroko; Yoshida, Kazutaka; Nishimura, Hajime; Okamoto, Yoshiko; Amamoto, Toshiaki; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-01-01

    To investigate gene(s) being regulated by Δ9-tetrahydrocannabinol (Δ9-THC), we performed DNA microarray analysis of human breast cancer MDA-MB-231 cells, which are poorly differentiated breast cancer cells, treated with Δ9-THC for 48 hr at an IC50 concentration of approximately 25 μM. Among the highly up-regulated genes (> 10-fold) observed, fatty acid 2-hydroxylase (FA2H) was significantly induced (17.8-fold). Although the physiological role of FA2H has not yet been fully understood, FA2H has been shown to modulate cell differentiation. The results of Oil Red O staining after Δ9-THC exposure showed the distribution of lipid droplets (a sign of the differentiated phenotype) in cells. Taken together, the results obtained here indicate that FA2H is a novel Δ9-THC-regulated gene, and that Δ9-THC induces differentiation signal(s) in poorly differentiated MDA-MB-231 cells. PMID:23535410

  20. Herbivory responsive C2H2 zinc finger transcription factor protein StZFP2 from potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While C2H2 zinc finger transcription factors are often regulated by abiotic stress, their role during insect infestation has been overlooked. This study demonstrates that the transcripts of the zinc finger transcription factors StZFP1 and StZFP2 are induced in potato (Solanum tuberosum) upon infesta...

  1. N2H+ and N15NH+ toward the prestellar core 16293E in L1689N

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Faure, A.; Pagani, L.; Lique, F.; Gérin, M.; Lis, D.; Hily-Blant, P.; Bacmann, A.; Roueff, E.

    2016-07-01

    Context. Understanding the processes that could lead to an enrichment of molecules in 15N atoms is of particular interest because this may shed light on the relatively strong variations observed in the 14N/15N ratio in various solar system environments. Aims: The sample of molecular clouds where 14N/15N ratios have been measured currently is small and has to be enlarged to allow statistically significant studies. In particular, the N2H+ molecule currently shows the broadest spread of 14N/15N ratios in high-mass star-forming regions. However, the 14N/15N ratio in N2H+ was obtained in only two low-mass star-forming regions (L1544 and B1b). We here extend this sample to a third dark cloud. Methods: We targeted the 16293E prestellar core, where the N15NH+J = 1-0 line was detected. Using a model previously developed for the physical structure of the source, we solved the molecular excitation with a nonlocal radiative transfer code. For this purpose, we computed specific collisional rate coefficients for the N15NH+-H2 collisional system. As a first step of the analysis, the N2H+ abundance profile was constrained by reproducing the N2H+J = 1-0 and 3-2 maps. A scaling factor was then applied to this profile to match the N15NH+J = 1-0 spectrum. Results: We derive a column density ratio N2H+/N15NH. Conclusions: We performed a detailed analysis of the excitation of N2H+ and N15NH+ in the direction of the 16293E core with modern models that solve the radiative transfer and with the most accurate collisional rate coefficients available to date. We obtained the third estimate of the N2H+/N15NH+ column density ratio in the direction of a cold prestellar core. The current estimate ~330 agrees with the typical value of the elemental isotopic ratio in the local interstellar medium. It is lower than in some other cores, however, where values as high as 1300 have been reported.

  2. Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow

    NASA Astrophysics Data System (ADS)

    Xiao, Yaping; Jacob, Daniel J.; Wang, James S.; Logan, Jennifer A.; Palmer, Paul I.; Suntharalingam, Parvadha; Yantosca, Robert M.; Sachse, Glen W.; Blake, Donald R.; Streets, David G.

    2004-08-01

    Aircraft observations of Asian outflow from the Transport and Chemical Evolution Over the Pacific (TRACE-P) aircraft mission over the NW Pacific (March and April 2001) show large CH4 enhancements relative to background, as well as strong CH4-C2H6-CO correlations that provide signatures of regional sources. We apply a global chemical transport model simulation of the CH4-C2H6-CO system for the TRACE-P period to interpret these observations in terms of CH4 sources and to explore in particular the unique constraints from the CH4-C2H6-CO correlations. We use as a priori a global CH4 source inventory constrained with National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL) surface observations [Wang et al., 2004]. We find that the observed CH4 concentration enhancements and CH4-C2H6-CO correlations in Asian outflow in TRACE-P are determined mainly by anthropogenic emissions from China and Eurasia (defined here as Europe and eastern Russia), with only little contribution from tropical sources (wetlands and biomass burning). The a priori inventory overestimates the observed CH4 enhancements and shows regionally variable biases for the CH4/C2H6 slope. The CH4/CO slopes are simulated without significant bias. Matching both the observed CH4 enhancements and the CH4-C2H6-CO slopes in Asian outflow requires increasing the east Asian anthropogenic source of CH4, and decreasing the Eurasian anthropogenic source, by at least 30% for both. The need to increase the east Asian source is driven by the underestimate of the CH4/C2H6 slope in boundary layer Chinese outflow. The Streets et al. [2003] anthropogenic emission inventory for east Asia fits this constraint by increasing CH4 emissions from that region by 40% relative to the a priori, largely because of higher livestock and landfill source estimates. Eurasian sources (mostly European) then need to be reduced by 30-50% from the a priori value of 68 Tg yr-1. The decrease of

  3. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  4. Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H.

    PubMed

    Saccone, Valentina; Palmieri, Michela; Passamano, Luigia; Piluso, Giulio; Meroni, Germana; Politano, Luisa; Nigro, Vincenzo

    2008-02-01

    TRIM32 belongs to a large family of proteins characterized by a tripartite motif, possibly involved in the ubiquitination process, acting as an E3 ligase. In addition, TRIM32 has six NHL repeats with putative interaction properties. A homozygous mutation at the third NHL repeat (D487N) has been found in patients with limb girdle muscular dystrophy 2H (LGMD2H). This mutation was only identified in the inbred Manitoba Hutterite or their descendants. Interestingly, a mutation in the B-box domain of TRIM32 cosegregates with Bardet-Biedl syndrome type 11 (BBS11). The signs of BBS11 include obesity, pigmentary and retinal malformations, diabetes, polydactyly, and no muscular dystrophy, suggesting an alternative disease mechanism. We aim to ascertain whether D487N is the only pathological LGMD2H allele, limited to Hutterites. We studied the TRIM32 gene in 310 LGMD patients with no mutations at the other known loci. We identified four patients with novel mutated alleles. Two mutations were homozygous and missing in controls. These mutations also clustered at the NHL domain, suggesting that a specific (interaction) property might be abolished in LGMD2H patients. No mutations were found at the B-box region where the BBS11 mutation is found. We tested TRIM32 and its mutants by yeast-two-hybrid assay, developing an interaction test to validate mutations. All LGMD2H mutants, but not the BBS11, lost their ability to self-interact. The interaction of TRIM32 mutants with E2N, a protein involved in the ubiquitination process, was similarly impaired. In conclusion, the mutations here reported may cause muscular dystrophy by affecting the interaction properties of TRIM32. PMID:17994549

  5. Deuterium NMR of Val1...(2-2H)Ala3...gramicidin A in oriented DMPC bilayers.

    PubMed

    Hing, A W; Adams, S P; Silbert, D F; Norberg, R E

    1990-05-01

    Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study. PMID:1694457

  6. Analyses of Weapons-Grade MOX VVER-1000 Neutronics Benchmarks: Pin-Cell Calculations with SCALE/SAS2H

    SciTech Connect

    Ellis, R.J.

    2001-01-11

    A series of unit pin-cell benchmark problems have been analyzed related to irradiation of mixed oxide fuel in VVER-1000s (water-water energetic reactors). One-dimensional, discrete-ordinates eigenvalue calculations of these benchmarks were performed at ORNL using the SAS2H control sequence module of the SCALE-4.3 computational code system, as part of the Fissile Materials Disposition Program (FMDP) of the US DOE. Calculations were also performed using the SCALE module CSAS to confirm the results. The 238 neutron energy group SCALE nuclear data library 238GROUPNDF5 (based on ENDF/B-V) was used for all calculations. The VVER-1000 pin-cell benchmark cases modeled with SAS2H included zero-burnup calculations for eight fuel material variants (from LEU UO{sub 2} to weapons-grade MOX) at five different reactor states, and three fuel depletion cases up to high burnup. Results of the SAS2H analyses of the VVER-1000 neutronics benchmarks are presented in this report. Good general agreement was obtained between the SAS2H results, the ORNL results using HELIOS-1.4 with ENDF/B-VI nuclear data, and the results from several Russian benchmark studies using the codes TVS-M, MCU-RFFI/A, and WIMS-ABBN. This SAS2H benchmark study is useful for the verification of HELIOS calculations, the HELIOS code being the principal computational tool at ORNL for physics studies of assembly design for weapons-grade plutonium disposition in Russian reactors.

  7. Formation and Fragmentation of Unsaturated Fatty Acid [M - 2H + Na]- Ions: Stabilized Carbanions for Charge-Directed Fragmentation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Kirk, Benjamin B.; Altvater, Jens; Blanksby, Stephen J.; Nette, Geoffrey W.

    2013-12-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na]-). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

  8. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO total columns measured in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2013-12-01

    We present a five-year timeseries of seven tropospheric species measured using a ground-based Fourier Transform InfraRed (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6), as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH), and formaldehyde (H2CO) are investigated, providing a new dataset in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the Optimal Estimation Method. The microwindows, as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the timeseries, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The timeseries of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO timeseries. These cycles result from the relative contributions of the photochemistry, oxidation, and transport, as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97, and 0.50 to 3.35, respectively, for the seven target species. Our new dataset is compared with previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6 concentrations are consistent with negative trends observed over

  9. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2014-06-01

    We present a five-year time series of seven tropospheric species measured using a ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL; Eureka, Nunavut, Canada; 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH) and formaldehyde (H2CO) are investigated, providing a new data set in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the optimal estimation method. The microwindows as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the time series, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The time series of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO time series. These cycles result from the relative contributions of the photochemistry, oxidation and transport as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97 and 0.50 to 3.35, respectively, for the seven target species. Our new data set is compared to previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6concentrations are consistent with negative trends observed over the

  10. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21° S, 55° E) and comparisons with model data

    NASA Astrophysics Data System (ADS)

    Vigouroux, C.; Stavrakou, T.; Whaley, C.; Dils, B.; Duflot, V.; Hermans, C.; Kumps, N.; Metzger, J.-M.; Scolas, F.; Vanhaelewyn, G.; Müller, J.-F.; Jones, D. B. A.; Li, Q.; De Mazière, M.

    2012-11-01

    Reunion Island (21° S, 55° E), situated in the Indian Ocean at about 800 km east of Madagascar, is appropriately located to monitor the outflow of biomass burning pollution from Southern Africa and Madagascar, in the case of short-lived compounds, and from other Southern Hemispheric landmasses such as South America, in the case of longer-lived species. Ground-based Fourier transform infrared (FTIR) solar absorption observations are sensitive to a large number of biomass burning products. We present in this work the FTIR retrieval strategies, suitable for very humid sites such as Reunion Island, for hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), methanol (CH3OH), and formic acid (HCOOH). We provide their total columns time-series obtained from the measurements during August-October 2004, May-October 2007, and May 2009-December 2010. We show that biomass burning explains a large part of the observed seasonal and interannual variability of the chemical species. The correlations between the daily mean total columns of each of the species and those of CO, also measured with our FTIR spectrometer at Reunion Island, are very good from August to November (R ≥ 0.86). This allows us to derive, for that period, the following enhancement ratios with respect to CO: 0.0047, 0.0078, 0.0020, 0.012, and 0.0046 for HCN, C2H6, C2H2, CH3OH, and HCOOH, respectively. The HCN ground-based data are compared to the chemical transport model GEOS-Chem, while the data for the other species are compared to the IMAGESv2 model. We show that using the HCN/CO ratio derived from our measurements (0.0047) in GEOS-Chem reduces the underestimation of the modeled HCN columns compared with the FTIR measurements. The comparisons between IMAGESv2 and the long-lived species C2H6 and C2H2 indicate that the biomass burning emissions used in the model (from the GFED3 inventory) are probably underestimated in the late September-October period for all years of measurements, and especially in

  11. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  12. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  13. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  14. Unmatter Plasma

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2015-11-01

    ``Unmatter Plasma'' is a novel form of plasma, exclusively made of matter and its antimatter counterpart. An experiment (2015) on matter-antimatter plasma [or unmatter plasma] was recently successful at the Astra Gemini laser facility at the Rutherford Appleton Laboratory, Oxford, United Kingdom. The experiment that was made has produced electron-positron plasma. The positron is the antimatter of the electron, having an opposite charge of the electron, but the other properties are the same. Unmatter is considered as a combination of matter and antimatter. For example electron-positron is a type of unmatter. We coined the word ``unmatter'' (2004) that means neither matter nor antimatter, but something in between. Besides matter and antimatter there may exist unmatter (as a new form of matter) in accordance with the neutrosophy theory that between an entity and its opposite there exist intermediate entities.

  15. Is the Reaction of C3N(-) with C2H2 a Possible Process for Chain Elongation in Titan's Ionosphere?

    PubMed

    Lindén, Fredrik; Alcaraz, Christian; Ascenzi, Daniela; Guillemin, Jean-Claude; Koch, Leopold; Lopes, Allan; Polášek, Miroslav; Romanzin, Claire; Žabka, Jan; Zymak, Illia; Geppert, Wolf D

    2016-07-14

    The reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation. The formations of all these products show considerable reaction thresholds and also display comparatively small cross sections. Also, no strong signals of anionic products for collision energies lower than 1 eV have been observed. Ab initio calculations have been performed to identify possible pathways leading to the observed products of the title reaction and to elucidate the thermodynamics of these processes. Although the productions of CN(-) and C5N(-) are exoergic, all reaction pathways have considerable barriers. Overall, the results of these computations are in agreement with the observed reaction thresholds. Due to the existence of considerable reaction energy barriers and the small observed cross sections, the title reaction is not very likely to play a major role in the buildup of large anions in cold environments like the interstellar medium or planetary and satellite ionospheres. PMID:27135984

  16. [18F]Fluoromethyl-[1,2-2H4]-choline: A novel radiotracer for imaging choline metabolism in tumors by positron emission tomography

    PubMed Central

    Leyton, Julius; Smith, Graham; Zhao, Yongjun; Perumal, Meg; Nguyen, Quang-De; Robins, Edward; Årstad, Erik; Aboagye, Eric O.

    2009-01-01

    Current radiotracers for positron emission tomography (PET) imaging of choline metabolism have poor systemic metabolic stability in vivo. We describe a novel radiotracer, [18F]fluoromethyl-[1,2-2H4]-choline (D4-FCH), that employs deuterium isotope effect to improve metabolic stability. D4-FCH proved more resistant to oxidation than its non-deuterated analog, [18F]fluoromethylcholine (FCH), in plasma, kidneys, liver and tumor, while retaining phosphorylation potential. Tumor radiotracer levels, a determinant of sensitivity in imaging studies, was improved by deuterium substitution; tumor uptake values expressed as %injected dose/voxel at 60 min were 7.43 ± 0.47 and 5.50 ± 0.49 for D4-FCH and FCH, respectively, (P = 0.04). D4-FCH was also found to be a useful response biomarker. Treatment with the mitogenic extracellular kinase inhibitor, PD0325901, resulted in a reduction in tumor radiotracer uptake that occurred in parallel with reductions in choline kinase A expression. In conclusion, D4-FCH is a very promising metabolically stable radiotracer for imaging choline metabolism in tumors. PMID:19773436

  17. Synthesis and evaluation of substituted 4-methyl-2-oxo-2H-chromen-7-yl phenyl carbamates as potent acetylcholinesterase inhibitors and anti- amnestic agents.

    PubMed

    Anand, Preet; Singh, Baldev

    2013-08-01

    The study aimed to synthesize and evaluate substituted 4-methyl-2-oxo-2H-chromen-7-yl phenylcarbamates as potent acetylcholinesterase (AChE) inhibitors and anti-amnestic agents. The compounds were evaluated for AChE and butyrylcholinesterase (BuChE) inhibitory activity in rat brain homogenate and plasma, respectively. The most potent test compound 4d was evaluated for memory testing in scopolamine-induced amnesia. The phenylcarbamate substituted coumarins (4a-4h) demonstrated more potent AChE inhibitory as compared to parent 7-hydroxy-4-methylcoumarin. The introduction of phenylcarbamate moiety to coumarin template also significantly increased BuChE inhibitory activity, albeit less than AChE inhibitory activity with approximate BuChE/AChE selectivity ratio of 20. The compound 4d displayed the most potent AChE inhibitory activity with IC50 = 13.5 ± 1.7 nM, along with amelioration of amnesia in mice in terms of restoration of time spent in target quadrant and escap latency time. It is concluded that carbamate derivatives of coumarin may be employed as potential AChE inhibitors and anti-amnestic agents. PMID:23072555

  18. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  19. High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) and Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O

    SciTech Connect

    Schmidt, Corinna; Feyand, Mark; Rothkirch, Andre; Stock, Norbert

    2012-04-15

    The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambient temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder

  20. Synthesis and the crystal and molecular structure of the silver(I)-germanium(IV) polymeric complex with citrate anions {[Ag2Ge(H Cit)2(H2O)2] • 2H2O} n

    NASA Astrophysics Data System (ADS)

    Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.

    2016-03-01

    The synthesis and X-ray diffraction study of compound {[Ag2Ge(H Cit)2(H2O)2] • 2H2O} n , where H4 Cit is the citric acid, are performed. In the polymeric structure, the H Cit 3- ligand fulfils the tetradentate chelate-μ4-bridging (3Ag, Ge) function (tridentate with respect to Ge and Ag atoms). The Ge atom is octahedrally coordinated by six O atoms of two H Cit 3-ligands. The coordination polyhedron of the Ag atom is an irregular five-vertex polyhedron [four O atoms of four H Cit 3- ligands and the O(H2O) atom]. An extended system of O-H···O hydrogen bonds connects complex molecules into a supramolecular 3D-framework.

  1. On the Stark effect in open shell complexes exhibiting partially quenched electronic angular momentum: Infrared laser Stark spectroscopy of OH-C2H2, OH-C2H4, and OH-H2O

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Douberly, Gary E.

    2015-08-01

    The Stark effect is considered for polyatomic open shell complexes that exhibit partially quenched electronic angular momentum. Matrix elements of the Stark Hamiltonian represented in a parity conserving Hund's case (a) basis are derived for the most general case, in which the permanent dipole moment has projections on all three inertial axes of the system. Transition intensities are derived, again for the most general case, in which the laser polarization has projections onto axes parallel and perpendicular to the Stark electric field, and the transition dipole moment vector is projected onto all three inertial axes in the molecular frame. Simulations derived from this model are compared to experimental rovibrational Stark spectra of OH-C2H2, OH-C2H4, and OH-H2O complexes formed in helium nanodroplets.

  2. Different cation-protonation patterns in mol­ecular salts of unsymmetrical dimethyhydrazine: C2H9N2·Br and C2H9N2·H2PO3

    PubMed Central

    Katinaitė, Judita; Harrison, William T. A.

    2016-01-01

    We describe the syntheses and crystal structures of two mol­ecular salts containing the 1,1-di­methyl­hydrazinium cation, namely 1,1-di­methyl­hydrazin-1-ium bromide, C2H9N2 +·Br−, (I), and 2,2-di­methyl­hydrazin-1-ium di­hydrogen phosphite, C2H9N2 +·H2PO3 −, (II). In (I), the cation is protonated at the methyl­ated N atom and N—H⋯Br hydrogen bonds generate [010] chains in the crystal. In (II), the cation is protonated at the terminal N atom and cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds generate (001) sheets. PMID:27536415

  3. Covariance mapping of two-photon double core hole states in C2H2 and C2H6 produced by an x-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Mucke, M.; Zhaunerchyk, V.; Frasinski, L. J.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; Salén, P.; Meulen, P. v. d.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C2H2) and ethane (C2H6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.

  4. Study of the reactions /sup 2/H(d,p)/sup 3/H and /sup 2/H(d,n)/sup 3/He with a polarized deuteron beam. Measurement of the analyzing power

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Fomenko, D.E.

    1981-03-01

    The angular distributions of all charged particles produced in the mirror reactions /sup 2/H(d,p)/sup 3/H and /sup 2/H(d,n)/sup 3/He in a gaseous deuterium target approx.10 keV thick have been measured for polarized-deuteron energies from 60 to 485 keV for various orientations of the beam axis. The angular distributions of the analyzing powers A/sub y/(theta), A/sub z/z(theta), A/sub x/z(theta), and A/sub x/x-yy(theta) have been measured for 12 values of the energy for each reaction at angles from 20/sup 0/ to 150/sup 0/ (in the laboratory frame). The results are shown as contour diagrams and compared with the results of similar experiments. The differences found are attributed to the effect of the target thickness and the energy calibration.

  5. Different cation-protonation patterns in mol-ecular salts of unsymmetrical dimethyhydrazine: C2H9N2·Br and C2H9N2·H2PO3.

    PubMed

    Katinaitė, Judita; Harrison, William T A

    2016-08-01

    We describe the syntheses and crystal structures of two mol-ecular salts containing the 1,1-di-methyl-hydrazinium cation, namely 1,1-di-methyl-hydrazin-1-ium bromide, C2H9N2 (+)·Br(-), (I), and 2,2-di-methyl-hydrazin-1-ium di-hydrogen phosphite, C2H9N2 (+)·H2PO3 (-), (II). In (I), the cation is protonated at the methyl-ated N atom and N-H⋯Br hydrogen bonds generate [010] chains in the crystal. In (II), the cation is protonated at the terminal N atom and cation-to-anion N-H⋯O and anion-to-anion O-H⋯O hydrogen bonds generate (001) sheets. PMID:27536415

  6. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGESBeta

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; Squibb, R J; Siano, M; Eland, J H D; Linusson, P; Salén, P; Meulen, P v d; Thomas, R D; et al

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C2H2) and ethane (C2H6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at thirdmore » generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  7. Synthesis and crystal structure of [UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O

    SciTech Connect

    Serezhkina, L. B.; Vologzhanina, A. V.; Novikov, S. A.; Korlyukov, A. A.; Serezhkin, V. N.

    2011-03-15

    Crystals of UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)] {center_dot} 2H{sub 2}O are synthesized and their structure is studied by X-ray diffraction. The compound crystallizes in the triclinic crystal system. The unit cell parameters are as follows: a = 7.0834(10) Angstrom-Sign , b = 10.6358(14) Angstrom-Sign , c = 12.9539(17) Angstrom-Sign , {alpha} = 75.096(2) Degree-Sign , {beta} = 74.490(2) Degree-Sign , and {gamma} = 80.657(2) Degree-Sign ; V = 904.1(2) Angstrom-Sign {sup 3}, space group P1-bar, Z = 2, and R = 0.026. The structure is built of [UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)]{sub 2} centrosymmetric dimers, which are linked into a framework by a system of hydrogen bonds involving inner-sphere and outer-sphere water molecules. The coordination number of the U(VI) atom is seven, and the coordination polyhedron is a pentagonal bipyramid with the oxygen atoms of the uranyl group, two chromate groups, two molecules of isonicotinic acid, and a water molecule at the vertices. The crystal chemical formula of the [UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)]{sub 2} dimer is represented as AB{sup 2}M{sub 3}{sup 1}, where AB{sup 2}M{sub 3}{sup 1}, where A = UO{sub 2}{sup 2+}, B{sup 2} = CrO{sub 4}{sup 2-}, and M{sup 1} = = C{sub 5}NH{sub 4}COOH and H{sub 2}O.

  8. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (α eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H α in ketones ( Wang et al., 2009). The total uncertainty in reported α eq values is estimated at 10-20‰. The effects of functional groups were found to increase the value of α eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of α eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H β and sometimes H γ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90‰ to -70‰ for n-alkanes and around -100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of α eq agree well with field data for thermally mature hydrocarbons (δ 2H values between -80‰ and -110‰ relative to water). Therefore the observed δ 2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ 2H values that are close to equilibrium with water. In these cases, constant down-core δ 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  9. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the

  10. Upper limit for the D2H+ ortho-to-para ratio in the prestellar core 16293E (CHESS)

    NASA Astrophysics Data System (ADS)

    Vastel, C.; Caselli, P.; Ceccarelli, C.; Bacmann, A.; Lis, D. C.; Caux, E.; Codella, C.; Beckwith, J. A.; Ridley, T.

    2012-11-01

    The H_3^+ ion plays a key role in the chemistry of dense interstellar gas clouds where stars and planets are forming. The low temperatures and high extinctions of such clouds make direct observations of H_3^+ impossible, but lead to large abundances of H2D+ and D2H+, which are very useful probes of the early stages of star and planet formation. The ground-state rotational ortho-D2H+ 11,1-00,0 transition at 1476.6 GHz in the prestellar core 16293E has been searched for with the Herschel HIFI instrument, within the CHESS (Chemical HErschel Surveys of Star forming regions) Key Program. The line has not been detected at the 21 mK km s-1 level (3σ integrated line intensity). We used the ortho-H2D+ 11,0-11,1 transition and para-D2H+ 11,0-10,1 transition detected in this source to determine an upper limit on the ortho-to-para D2H+ ratio as well as the para-D2H+/ortho-H2D+ ratio from a non-local thermodynamic equilibrium analysis. The comparison between our chemical modeling and the observations suggests that the CO depletion must be high (larger than 100), with a density between 5 × 105 and 106 cm-3. Also the upper limit on the ortho-D2H+ line is consistent with a low gas temperature (~11 K) with a ortho-to-para ratio of 6 to 9, i.e. 2 to 3 times higher than the value estimated from the chemical modeling, making it impossible to detect this high frequency transition with the present state of the art receivers. The chemical network is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A33Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. Theoretical characterization of the reaction CH3 +OH yields CH3OH yeilds products: The (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO channels

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface (PES) for the CH3OH system has been characterized for the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels using complete-active-space self-consistent-field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration-interaction (CCI) calculations to refine the energetics. The (1)CH2 + H2O channel is found to have no barrier. The long range interaction is dominated by the dipole-dipole term, which orients the respective dipole moments parallel to each other but pointing in opposite directions. At shorter separations there is a dative bond structure in which a water lone pair donates into the empty a" orbital of CH2. Subsequent insertion of CH2 into an OH bond of water have barriers located at -5.2 kcal/mol and 1.7 kcal/mol, respectively, with respect to CH3 + OH. From comparison of the computed energetics of the reactants and products to known thermochemical data it is estimated that the computed PES is accurate to plus or minus 2 kcal/mol.

  12. A Microporous Metal-Organic Framework with Lewis Basic Nitrogen Sites for High C2H2 Storage and Significantly Enhanced C2H2/CO2 Separation at Ambient Conditions.

    PubMed

    Wen, Hui-Min; Wang, Huizhen; Li, Bin; Cui, Yuanjing; Wang, Hailong; Qian, Guodong; Chen, Banglin

    2016-08-01

    A novel metal-organic framework (MOF), [Cu2L(H2O)2]·7DMF·4H2O [ZJU-40; H4L = 5,5'-(pyrazine-2,5-diyl)diisophthalic acid], with Lewis basic nitrogen sites has been constructed and structurally characterized. Owing to the combined features of high porosity, moderate pore sizes, and immobilized Lewis basic nitrogen sites, the activated ZJU-40a exhibits the second-highest gravimetric C2H2 uptake of 216 cm(3) g(-1) (at 298 K and 1 bar) among all of the reported MOFs so far. This value is not only much higher than that of the isoreticular NOTT-101a (184 cm(3) g(-1)), but also superior to those of two very promising MOFs, known as HKUST-1 (201 cm(3) g(-1)) and Co-MOF-74 (197 cm(3) g(-1)). Interestingly, the immobilized nitrogen sites in ZJU-40a have nearly no effect on the CO2 uptake, so ZJU-40a adsorbs a similar amount of CO2 (87 cm(3) g(-1)) compared with NOTT-101a (84 cm(3) g(-1)) at 298 K and 1 bar. As a result, ZJU-40a shows significantly enhanced adsorption selectivity for C2H2/CO2 separation (17-11.5) at ambient temperature compared to that of NOTT-101a (8-9), leading to a superior MOF material for highly selective C2H2/CO2 separation. PMID:27176900

  13. Identification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) with DNA breaking activity in soy sauce.

    PubMed

    Li, X; Hiramoto, K; Yoshida, M; Kato, T; Kikugawa, K

    1998-04-01

    Components with DNA breaking activity in soy sauce were investigated. It was found that there were water soluble high molecular weight DNA breaking components in soy sauce. Two DNA breaking components in the ethyl acetate extract of soy sauce were identified as fragrant components, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), in addition to the previously characterized DNA breaking fragrant component 4-hydroxy-5-methyl-3(2H)-furanone (HMF) (Hiramoto et al., 1996b). Characterization of DNA breaking activity of HEMF was performed, and the mechanisms for the breaking were considered. HEMF cleaved the single strands of supercoiled pBR 322 DNA at pH 7.4 dose dependently and time dependently. DNA breaking was inhibited by superoxide dismutase, catalase, hydroxyl radical scavengers, spin trapping agents and metal chelators, and enhanced by Fe(III) ion. Electron spin resonance-spin trapping technique revealed the generation of hydroxyl radical. Hence, active oxygen species derived from interaction of HEMF with metal ions and oxygen participated in the cleavage. HEMF exhibited mutagenicity to Salmonella typhimurium TA100 without metabolic activation and induced micronucleated mouse peripheral reticulocytes. PMID:9651047

  14. Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission

    NASA Astrophysics Data System (ADS)

    Durry, G.; Li, J. S.; Vinogradov, I.; Titov, A.; Joly, L.; Cousin, J.; Decarpenterie, T.; Amarouche, N.; Liu, X.; Parvitte, B.; Korablev, O.; Gerasimov, M.; Zéninari, V.

    2010-04-01

    A near-infrared tunable diode laser spectrometer called TDLAS has been developed that combines telecommunication-type as well as new-generation antimonide laser diodes to measure C2H2, H2O, CO2 and their isotopologues in the near infrared. This sensor is devoted to the in situ analysis of the soil of the Martian satellite PHOBOS, within the framework of the Russian space mission PHOBOS-GRUNT. In the first part of the paper, we report accurate spectroscopic measurements of C2H2 and 13C12CH2 near 1.533 μm, of H2O and CO2 at 2.682 μm and of the isotopologues 13C16O2 and 16O12C18O near 2.041 μm and H2 17O, H2 18O and HDO near 2.642 μm. The achieved line strengths are thoroughly compared to data from molecular databases or from former experimental determinations. In the second part of the paper, we describe the TDLAS spectrometer for the PHOBOS-GRUNT mission.

  15. Theoretical study of the radiative capture reactions {sup 2}H(n,{gamma}){sup 3}H and {sup 2}H(p,{gamma}){sup 3}He at low energies

    SciTech Connect

    M. Viviani; R. Schiavilla; A. Kievsky

    1996-02-01

    Correlated Hyperspherical Harmonics wave functions with {Delta}-isobar admixtures obtained from realistic interactions are used to study the thermal neutron radiative capture on deuterium, and the {sup 2}H({rvec p},{gamma}){sup 3}He and p({rvec d},{gamma}){sup 3}He reactions in the center of mass energy range 0-100 keV. The nuclear electromagnetic current includes one and two-body components. Results for the {sup 2}H({rvec d},{gamma}){sup 3}H cross section and photon polarization parameter, as well as for the energy dependence of the astrophysical factor and angular distributions of the differential cross section, vector and tensor analyzing powers, and photon linear polarization coefficient of the {sup 2}H({rvec p},{gamma}){sup 3}He and p({rvec d},{gamma}){sup 3}He reactions are reported. Large effects due to two-body currents, in particular the long-range ones associated with the tensor component of the nucleon-nucleon interaction, are observed in the photon polarization parameter and vector analyzing power. Good, quantitative agreement between theory and experiment is found for all observables, with the exception of the vector analyzing power for which the calculated values underestimate the data by about 30%.

  16. The role of multifunctional kinetics during early-stage silicon hydride pyrolysis: reactivity of Si2H2 isomers with SiH4 and Si2H6.

    PubMed

    Adamczyk, Andrew J; Broadbelt, Linda J

    2011-03-24

    Kinetic parameters for the dominant pathways during the addition of the four Si(2)H(2) isomers, i.e., trans-HSiSiH, SiSiH(2), Si(H)SiH, and Si(H(2))Si, to monosilane, SiH(4), and disilane, Si(2)H(6), have been calculated using G3//B3LYP, statistical thermodynamics, conventional and variational transition state theory, and internal rotation corrections. The direct addition products of the multifunctional Si(2)H(2) isomers were monofunctional substituted silylenes, hydrogen-bridged species, and silenes. During addition to monosilane and disilane, the SiSiH(2) isomer was found to be most reactive over the temperature range of 800 to 1200 K. Revised parameters for the Evans-Polanyi correlation and a representative pre-exponential factor for multifunctional silicon hydride addition and elimination reaction families under pyrolysis conditions were regressed from the reactions in this study. This revised kinetic correlation was found to capture the activation energies and rate coefficients better than the current literature methods. PMID:21361329

  17. Plasma universe

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.

  18. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O

    SciTech Connect

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-15

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O (1) has been synthesized by reaction of Sb{sub 2}O{sub 3}, Na{sub 2}WO{sub 4}·2H{sub 2}O, CuCl{sub 2}·2H{sub 2}O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW{sub 9}O{sub 33}]{sup 9−} subunits sandwiching a hexagonal (Cu{sub 2}Na{sub 4}) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu{sub 2}Na{sub 4}) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu{sub 2}Na{sub 4}) sandwiched tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu (en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu{sub 2}Na{sub 4} sandwiched) tungstoantimonate [Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]{sup 10−}. • Ferromagnetic tungstoantimonate.

  19. Genetic analysis of salt tolerance in Arabidopsis: Evidence for the role of Ca(2+)/H(+) transporter CAX1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell's ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. The plasma membrane (PM) Na+/H+ antiporter SOS1 is inv...

  20. Process for the preparation of benozotriazoles and their polymers, and 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole produced thereby

    DOEpatents

    Vogl, Otto; Nir, Zohar

    1989-03-14

    The compound 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole (2H5P) is produced by azo coupling of o-nitrophenyl diazonium chloride with p-hydroxyacetophenone, subjecting the resulting isolated azo compound to reductive cyclization with zinc in the presence of sodium hydroxide at a temperature of about 50.degree.-70.degree. C., acidifying the resulting mixture so as to produce (2(2-hydroxy-5-acetylphenyl)2H-benzotriazole (2H5A), acetylating the isolated 2(2-hydroxy-5-acetylphenyl)2H-benzotriazole (2H5A), so as to produce 2(2-acetoxy-5-acetylphenyl)2H-benzotriazole (2A5A), methylating the isolated 2(2-acetoxy-5-acetylphenyl(2H-benzotriazole (2A5A) with a methyl Grignard reagent and dehydrating the isolated reaction product with potassium hydrogen sulfate so as to produce 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole (2H5P). The compound is used as a polymerizable ultra violet light stabilizer.