Science.gov

Sample records for 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase

  1. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the

  2. Structure of the PLP Degradative Enzyme 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase from Mesorhizobium loti MAFF303099 and Its Mechanistic Implications

    SciTech Connect

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.; Cornell

    2009-06-12

    A vitamin B{sub 6} degradative pathway has recently been identified and characterized in Mesorhizobium loti MAFF303099. One of the enzymes on this pathway, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO), is a flavin-dependent enzyme and catalyzes the oxidative ring-opening of 2-methyl-3-hydroxypyridine-5-carboxylic acid to form E-2-(acetamino-methylene)succinate. The gene for this enzyme has been cloned, and the corresponding protein has been overexpressed in Escherichia coli and purified. The crystal structure of MHPCO has been solved to 2.1 {angstrom} using SAD phasing with and without the substrate MHPC bound. These crystal structures provide insight into the reaction mechanism and suggest roles for active site residues in the catalysis of a novel oxidative ring-opening reaction.

  3. Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Chaiyen, Pimchai; Sucharitakul, Jeerus; Svasti, Jisnuson; Entsch, Barrie; Massey, Vincent; Ballou, David P

    2004-04-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (MHPCO) is a flavoprotein that catalyzes the oxygenation of MHPC to form alpha-(N-acetylaminomethylene)-succinic acid. Although formally similar to the oxygenation reactions catalyzed by phenol hydroxylases, MHPCO catalyzes the oxygenation of a pyridyl derivative rather than a simple phenol. Therefore, in this study, the mechanism of the reaction was investigated by replacing the natural cofactor FAD with FAD analogues having various substituents (-Cl, -CN, -NH(2), -OCH(3)) at the C8-position of the isoalloxazine. Thermodynamic and catalytic properties of the reconstituted enzyme were investigated and found to be similar to those of the native enzyme, validating that these FAD analogues are reasonable to be used as mechanistic probes. Dissociation constants for the binding of MHPC or the substrate analogue 5-hydroxynicotinate (5HN) to the reconstituted enzymes indicate that the reconstituted enzymes bind well with ligands. Redox potential values of the reconstituted enzymes were measured and found to be more positive than the values of free FAD analogues, which correlated well with the electronic effects of the 8-substituents. Studies of the reductive half-reaction of MHPCO have shown that the rates of flavin reduction by NADH could be described as a parabolic relationship with the redox potential values of the reconstituted enzymes, which is consistent with the Marcus electron transfer theory. Studies of the oxidative half-reaction of MHPCO revealed that the rate of hydroxylation depended upon the different analogues employed. The rate constants for the hydroxylation step correlated with the calculated pK(a) values of the 8-substituted C(4a)-hydroxyflavin intermediates, which are the leaving groups in the oxygen transfer step. It was observed that the rates of hydroxylation were greater when the pK(a) values of C(4a)-hydroxyflavins were lower. Although these results are not as dramatic as those from

  4. Oxygenases for aliphatic hydrocarbons and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenases catalyzing the insertion of oxygen into either aliphatic hydrocarbons or fatty acids have great similarity. There are two classes of oxygenases: monooxygenases and dioxygenases. Dioxygenase inserts both atoms of molecular oxygen into a substrate, whereas monooxygenase incorporates one a...

  5. Alkylamine-Dependent Amino-Acid Oxidation by Lysine Monooxygenase—Fragmented Substrate of Oxygenase

    PubMed Central

    Yamamoto, Shozo; Yamauchi, Takashi; Hayaishi, Osamu

    1972-01-01

    Lysine monooxygenase catalyzes the oxygenative decarboxylation of L-lysine and produces a corresponding acid amide. L-Alanine was inactive as substrate. However, when propylamine was present, oxidation, but not oxygenation, of alanine was demonstrated with the oxygenase. Alanine was converted to pyruvate, with the liberation of ammonia and hydrogen peroxide, but propylamine remained unchanged. Other α-monoamino acids were also oxidized in the presence of alkylamines with various carbon chain lengths. The highest oxidase activity was observed when the total chain length of both amino acid and amine was nearly identical with that of lysine. Available evidence indicates that the amine-dependent amino-acid oxidase activity is associated with the lysine oxygenase activity. PMID:4509334

  6. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  7. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    SciTech Connect

    Becker, Jan C. . E-mail: beckeja@uni-muenster.de; Grosser, Nina; Waltke, Christian; Schulz, Stephanie; Erdmann, Kati; Domschke, Wolfram; Schroeder, Henning; Pohle, Thorsten

    2006-07-07

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection.

  8. Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100.

    PubMed Central

    Danganan, C E; Shankar, S; Ye, R W; Chakrabarty, A M

    1995-01-01

    Burkholderia cepacia AC1100 uses the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid as a sole source of carbon and energy. The genes encoding the proteins involved in the first step (tftA and tftB [previously designated tftA1 and tftA2, respectively]) have been cloned and sequenced. The oxygenase, TftAB, is capable of converting not only 2,4,5-trichlorophenoxyacetic acid to 2,4,5-trichlorophenol but also a wide range of chlorinated aromatic phenoxyacetates to their corresponding phenolic derivatives, as shown by whole-cell and cell-free assays. The rate of substrate utilization by TftAB depends upon the extent of chlorination of the substrate, the positions of the chlorines, and the phenoxy group. These results indicate a mechanistic similarity between TftAB and the 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate-dependent dioxygenase, TfdA, from Alcaligenes eutrophus JMP134. The promoter of the oxygenase genes was localized by promoter-probe analysis, and the transcriptional start site was identified by primer extension. The beta-galactosidase activity of the construct containing the promoter region cloned upstream of the beta-galactosidase gene in the promoter-probe vector pKRZ-1 showed that this construct is constitutively expressed in Escherichia coli and in AC1100. The -35 and -10 regions of the oxygenase genes show significant sequence identity to typical Escherichia coli sigma 70 promoters. PMID:8534119

  9. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase

    PubMed Central

    Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  10. His-311 and Arg-559 are key residues involved in fatty acid oxygenation in pathogen-inducible oxygenase.

    PubMed

    Koszelak-Rosenblum, Mary; Krol, Adam C; Simmons, Danielle M; Goulah, Christopher C; Wroblewski, Liliana; Malkowski, Michael G

    2008-09-01

    Pathogen-inducible oxygenase (PIOX) oxygenates fatty acids into 2R-hydroperoxides. PIOX belongs to the fatty acid alpha-dioxygenase family, which exhibits homology to cyclooxygenase enzymes (COX-1 and COX-2). Although these enzymes share common catalytic features, including the use of a tyrosine radical during catalysis, little is known about other residues involved in the dioxygenase reaction of PIOX. We generated a model of linoleic acid (LA) bound to PIOX based on computational sequence alignment and secondary structure predictions with COX-1 and experimental observations that governed the placement of carbon-2 of LA below the catalytic Tyr-379. Examination of the model identified His-311, Arg-558, and Arg-559 as potential molecular determinants of the dioxygenase reaction. Substitutions at His-311 and Arg-559 resulted in mutant constructs that retained virtually no oxygenase activity, whereas substitutions of Arg-558 caused only moderate decreases in activity. Arg-559 mutant constructs exhibited increases of greater than 140-fold in Km, whereas no substantial change in Km was observed for His-311 or Arg-558 mutant constructs. Thermal shift assays used to measure ligand binding affinity show that the binding of LA is significantly reduced in a Y379F/R559A mutant construct compared with that observed for Y379F/R558A construct. Although Oryza sativa PIOX exhibited oxygenase activity against a variety of 14-20-carbon fatty acids, the enzyme did not oxygenate substrates containing modifications at the carboxylate, carbon-1, or carbon-2. Taken together, these data suggest that Arg-559 is required for high affinity binding of substrates to PIOX, whereas His-311 is involved in optimally aligning carbon-2 below Tyr-379 for catalysis. PMID:18596034

  11. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2

    PubMed Central

    2011-01-01

    Background Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid. Methods The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays. Results Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid. Conclusions Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway. PMID:21199573

  12. REGULATION OF RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE AND HEME OXYGENASE ACTIVITIES: EVIDENCE FOR CONTROL BY HEME AND AGAINST MEDIATION BY PROSTHETIC IRON

    EPA Science Inventory

    The effects of in vivo administration of 6 compounds on the activity of delta-aminolevulinic acid (ALA) synthetase and heme oxygenase were determined. The order of decreasing potency in reducing ALA synthetase activity was heme, bilirubin, protoporphyrin IX, bilirubin dimethyl es...

  13. Bryonolic Acid: A Large-Scale Isolation and Evaluation of Heme Oxygenase 1 Expression in Activated Macrophages

    PubMed Central

    Barker, Emily C.; Gatbonton-Schwager, Tonibelle N.; Han, Yong; Clay, Jennifer E.; Letterio, John J.; Tochtrop, Gregory P.

    2010-01-01

    Bryonolic acid (BA) is a triterpenoid found in the Cucurbitaceae family of plants. Our interests in the immunomodulatory effects of this class of natural products led us to discover that BA induces a marked increase in the expression of a phase 2 response enzyme, heme oxygenase 1 (HO-1) in a dose dependent manner. This phenotype has translational implications in malarial disease progression, and consequently we developed a large scale isolation method for BA that will be enabling in terms of future in vitro and in vivo analysis. We have determined ideal growth conditions and time scale for maximizing BA content in the roots of Cucurbita pepo L., and analyzed BA production by HPLC. Large-scale extraction yielded 1.34% BA based on dry weight, allowing for the isolation of BA on a multi-gram scale. PMID:20481554

  14. ACTIVATION OF VASCULAR ENDOTHELIAL NITRIC OXIDE SYNTHASE AND HEME OXYGENASE-1 EXPRESSION BY ELECTROPHILIC NITRO-FATTY ACIDS

    PubMed Central

    Khoo, Nicholas K.H.; Rudolph, Volker; Cole, Marsha P.; Golin-Bisello, Franca; Schopfer, Francisco J.; Woodcock, Steven R.; Batthyany, Carlos; Freeman, Bruce A.

    2010-01-01

    Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated byproducts of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yield electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These post-translational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders. PMID:19857569

  15. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response.

    PubMed

    Ma, Lin-Lin; Wang, Hui-Qiang; Wu, Ping; Hu, Jin; Yin, Jin-Qiu; Wu, Shuo; Ge, Miao; Sun, Wen-Fang; Zhao, Jiang-Yu; Aisa, Haji Akber; Li, Yu-Huan; Jiang, Jian-Dong

    2016-07-01

    Given the limitation of available antiviral drugs and vaccines, there remains to be a pressing need for novel anti-influenza drugs. Rupestonic acid derivatives were reported to have an anti-influenza virus activity, but their mechanism remains to be elucidated. Herein, we aim to evaluate the antiviral activity of YZH-106, a rupestonic acid derivative, against a broad-spectrum of influenza viruses and to dissect its antiviral mechanisms. Our results demonstrated that YZH-106 exhibited a broad-spectrum antiviral activity against influenza viruses, including drug-resistant strains in vitro. Furthermore, YZH-106 provided partial protection of the mice to Influenza A virus (IAV) infection, as judged by decreased viral load in lungs, improved lung pathology, reduced body weight loss and partial survival benefits. Mechanistically, YZH-106 induced p38 MAPK and ERK1/2 phosphorylation, which led to the activation of erythroid 2-related factor 2 (Nrf2) that up-regulated heme oxygenase-1 (HO-1) expression in addition to other genes. HO-1 inhibited IAV replication by activation of type I IFN expression and subsequent induction of IFN-stimulated genes (ISGs), possibly in a HO-1 enzymatic activity-independent manner. These results suggest that YZH-106 inhibits IAV by up-regulating HO-1-mediated IFN response. HO-1 is thus a promising host target for antiviral therapeutics against influenza and other viral infectious diseases. PMID:27107768

  16. Cytoprotection of human endothelial cells from menadione cytotoxicity by caffeic acid phenethyl ester: the role of heme oxygenase-1.

    PubMed

    Wang, Xinyu; Stavchansky, Salomon; Zhao, Baiteng; Bynum, James A; Kerwin, Sean M; Bowman, Phillip D

    2008-09-01

    Caffeic acid phenethyl ester (CAPE), derived from various plant sources, has been shown to ameliorate ischemia/reperfusion injury in vivo, and this has been attributed to its ability to reduce oxidative stress. Here we investigated the cytoprotection of CAPE against menadione-induced oxidative stress in human umbilical vein endothelial cells (HUVEC) to evaluate potential gene expression involvement. CAPE exhibited dose-dependent cytoprotection of HUVEC. A gene screen with microarrays was performed to identify the potential cytoprotective gene(s) induced by CAPE. Heme oxygenase-1 (HO-1) was highly upregulated by CAPE and this was confirmed with reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Inhibition of HO-1 activity using the HO-1 inhibitor tin protoporphyrin IX (SnPPIX), resulted in loss of cytoprotection. Carbon monoxide, one of HO-1 catabolic products appeared to play a small role in CAPE protection. Caffeic acid, a potential metabolite of CAPE with similar free radical scavenging ability, however, didn't show any cytoprotective effect nor induce HO-1. These findings suggest an important role of HO-1 induction in CAPE cytoprotection against oxidant stress, which may not relate to CAPE structural antioxidant activity nor to its traditional enzymatic activity in decomposing heme but to a yet to be determined activity. PMID:18573251

  17. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE. PMID:26003724

  18. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1.

    PubMed

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun; Chen, Jun; Zhang, Feng

    2014-01-29

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies. PMID:24478369

  19. Applications of Stereospecifically-labeled Fatty Acids in Oxygenase and Desaturase Biochemistry

    PubMed Central

    Brash, Alan R.; Schneider, Claus; Hamberg, Mats

    2012-01-01

    Oxygenation and desaturation reactions are inherently associated with the abstraction of a hydrogen from the fatty acid substrate. Since the first published application in 1965, stereospecific placement of a labeled hydrogen isotope (deuterium or tritium) at the reacting carbons has proven a highly effective strategy for investigating the chemical mechanisms catalyzed by lipoxygenases, hemoprotein fatty acid dioxygenases including cyclooxygenases, cytochromes P450, and also the desaturases and isomerases. This review presents a synopsis of all published studies through 2010 on the synthesis and use of stereospecifically labeled fatty acids (70 references), and highlights some of the mechanistic insights gained by application of stereospecifically labeled fatty acids. PMID:21971646

  20. Oxygenation by COX-2 (cyclo-oxygenase-2) of 3-HETE (3-hydroxyeicosatetraenoic acid), a fungal mimetic of arachidonic acid, produces a cascade of novel bioactive 3-hydroxyeicosanoids

    PubMed Central

    2005-01-01

    Cyclo-oxygenases-1/2 (COX-1/2) catalyse the oxygenation of AA (arachidonic acid) and related polyunsaturated fatty acids to endoperoxide precursors of prostanoids. COX-1 is referred to as a constitutive enzyme involved in haemostasis, whereas COX-2 is an inducible enzyme expressed in inflammatory diseases and cancer. The fungus Dipodascopsis uninucleata has been shown by us to convert exogenous AA into 3(R)-HETE [3(R)-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid]. 3R-HETE is stereochemically identical with AA, except that a hydroxy group is attached at its C-3 position. Molecular modelling studies with 3-HETE and COX-1/2 revealed a similar enzyme–substrate structure as reported for AA and COX-1/2. Here, we report that 3-HETE is an appropriate substrate for COX-1 and -2, albeit with a lower activity of oxygenation than AA. Oxygenation of 3-HETE by COX-2 produced a novel cascade of 3-hydroxyeicosanoids, as identified with EI (electron impact)–GC–MS, LC–MS–ES (electrospray) and LC–MS–API (atmospheric pressure ionization) methods. Evidence for in vitro production of 3-hydroxy-PGE2 (3-hydroxy-prostaglandin E2) was obtained upon infection of HeLa cells with Candida albicans at an MOI (multiplicity of infection) of 100. Analogous to interaction of AA and aspirin-treated COX-2, 3-HETE was transformed by acetylated COX-2 to 3,15-di-HETE (3,15-dihydroxy-HETE), whereby C-15 showed the (R)-stereochemistry. 3-Hydroxy-PGs are potent biologically active compounds. Thus 3-hydroxy-PGE2 induced interleukin-6 gene expression via the EP3 receptor (PGE2 receptor 3) in A549 cells, and raised cAMP levels via the EP4 receptor in Jurkat cells. Moreover, 3R,15S-di-HETE triggered the opening of the K+ channel in HTM (human trabecular meshwork) cells, as measured by the patch–clamp technique. Since many fatty acid disorders are associated with an ‘escape’ of 3-hydroxy fatty acids from the β-oxidation cycle, the production of 3-hydroxyeicosanoids may be critical in

  1. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki

    2015-05-25

    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells. PMID:25765579

  2. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    PubMed

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver. PMID:25036135

  3. ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory

    ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsi...

  4. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  5. Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems

    PubMed Central

    Costa, Barbara; Conti, Silvia; Giagnoni, Gabriella; Colleoni, Mariapia

    2002-01-01

    The anti-inflammatory activity of the endogenous fatty acid amide palmitoylethanolamide and its relationship to cyclo-oxygenase (COX) activity, nitric oxide (NO) and oxygen free radical production were investigated in the rat model of carrageenan-induced acute paw inflammation and compared with the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Palmitoylethanolamide (1, 3, 5, 10 mg kg−1; p.o.) and indomethacin (5 mg kg−1; p.o.) were administered daily after the onset of inflammation for three days and the paw oedema was measured daily; 24 h after the last dose (fourth day) the rats were killed and the COX activity and the content of nitrite/nitrate (NO2−/NO3−), malondialdehyde (MDA), endothelial and inducible nitric oxide synthase (eNOS and iNOS) were evaluated in the paw tissues. Palmitoylethanolamide had a curative effect on inflammation, inhibiting the carrageenan-induced oedema in a dose- and time-dependent manner. This effect was not reversed by the selective CB2 receptor antagonist (N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3 carboxamide) (SR144528), 3 mg kg−1 p.o. On the fourth day after carrageenan injection, COX activity and the level of NO2−/NO3−, eNOS and MDA were increased in the inflamed paw, but iNOS was not present. Palmitoylethanolamide (10 mg kg−1) and indomethacin markedly reduced these increases. Our findings show, for the first time, that palmitoylethanolamide has a curative effect in a model of acute inflammation. The inhibition of COX activity and of NO and free radical production at the site of inflammation might account for this activity. PMID:12359622

  6. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  7. ARSENIC INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    EPA Science Inventory


    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are not. Therefore, HO enzyme induction ...

  8. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene.

    PubMed

    Kamimura, Kazuo; Okabayashi, Ai; Kikumoto, Mei; Manchur, Mohammed Abul; Wakai, Satoshi; Kanao, Tadayoshi

    2010-03-01

    Iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage (ARD) from a pyrite mine in Yanahara, Okayama prefecture, Japan, were analyzed using the gene (cbbL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO). Analyses of partial sequences of cbbL genes from Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus strains revealed the diversity in their cbbL gene sequences. In contrast to the presence of two copies of form I cbbL genes (cbbL1 and cbbL2) in A. ferrooxidans genome, A. thiooxidans and A. caldus had a single copy of form I cbbL gene in their genomes. A phylogenetic analysis based on deduced amino acid sequences from cbbL genes detected in the ARD treatment plant and their close relatives revealed that 89% of the total clones were affiliated with A. ferrooxidans. Clones loosely affiliated with the cbbL from A. thiooxidans NB1-3 or Thiobacillus denitrificans was also detected in the treatment plant. cbbL gene sequences of iron- or sulfur-oxidizing bacteria isolated from the ARD and the ARD treatment plant were not detected in the cbbL libraries from the treatment plant, suggesting the low frequencies of isolates in the samples. PMID:20159572

  9. Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-SY5Y Cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Parkinson's disease (PD) is a neurodegenerative disorder, which can be modeled using the neurotoxin 6-hydroxydopamine (6-OHDA) to generate oxidative stress. Here, we studied the effects of the antioxidants deferricoprogen (DFC) and dimerumic acid (DMA), produced by rice fermented with Monascus purpureus NTU 568, on 6-OHDA-induced apoptosis in SH-SY5Y cells and their potential protective mechanisms. DMA and DFC inhibited 6-OHDA-induced apoptosis and cellular reactive oxygen species (ROS) in SH-SY5Y human neuroblastoma cells. Molecular analysis demonstrated associated upregulation of the Ak mouse strain thymoma (Akt), heme oxygenase-1 (HO-1), and signal-regulated kinase (ERK) pathways along with inhibited phosphorylation of c-Jun N-terminal kinase (JNK) and p38 pathways and altered homodimeric glycoprotein, N-methyl-d-aspartate (NMDA) receptor, and immunoglobulin Fc receptor gene expression. These results suggested that the neuroprotection elicited by DMA and DFC against 6-OHDA-induced neurotoxicity was associated with the Akt, MAPK, and HO-1 pathways via regulating the gene expression of NMDA receptor, homodimeric glycoprotein, and immunoglobulin Fc receptor. PMID:27431098

  10. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells.

    PubMed

    Jeong, Sun-Oh; Son, Yong; Lee, Ju Hwan; Cheong, Yong-Kwan; Park, Seong Hoon; Chung, Hun-Taeg; Pae, Hyun-Ock

    2015-07-01

    Growing evidence suggests that the elevation of free fatty acids, including palmitic acid (PA), are associated with inflammation and oxidative stress, which may be involved in endothelial dysfunction, characterized by the reduced bioavailability of nitric oxide (NO) synthesized from endothelial NO synthase (eNOS). Heme oxygenase-1 (HO-1) is important in the preservation of NO bioavailability. Piceatannol (Pic), with similar chemical structure to resveratrol, is suggested to possess similar protective effects as resveratrol. In the present study, human umbilical vein endothelial cells (HUVECs), stimulated with PA, were used to examine the endothelial protective effects of Pic. Pic increased the expression of HO-1 via nuclear factor erythroid-2-related factor-2 activation in the HUVECs, and decreased the PA-induced secretions of interleukin-6 and tumor necrosis factor-α, and the formation of reactive oxygen species ROS via inhibition of NF-κB activation. Notably, following inhibition of HO-1 activity by tin protoporphryin-IX, Pic did not prevent cytokine secretion, ROS formation, and NF-κB activation in the PA-stimulated HUVECs. PA attenuated insulin-mediated insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, leading to decreased glucose uptake, and phosphorylation of eNOS, leading to a reduction in the production of NO. Pic effectively mitigated the inhibitory effects of PA on the insulin-mediated phosphorylation of IRS-1 and eNOS, which was not observed following inhibition of HO‑1 activity. The results of the present study suggested that Pic may have the potential to prevent PA-induced impairment of insulin signaling and eNOS function, by inducing the expression of the anti-inflammatory and antioxidant, HO-1. PMID:25815690

  11. Lycopene and Apo-10′-lycopenoic Acid Have Differential Mechanisms of Protection against Hepatic Steatosis in β-Carotene-9′,10′-oxygenase Knockout Male Mice123

    PubMed Central

    Ip, Blanche C; Liu, Chun; Lichtenstein, Alice H; von Lintig, Johannes; Wang, Xiang-Dong

    2015-01-01

    Background: Nonalcoholic fatty liver disease is positively associated with obesity and cardiovascular disease risk. Apo-10′-lycopenoic acid (APO10LA), a potential oxidation product of apo-10′-lycopenal that is generated endogenously by β-carotene-9′,10′-oxygenase (BCO2) cleavage of lycopene, inhibited hepatic steatosis in BCO2-expressing mice. Objective: The present study evaluated lycopene and APO10LA effects on hepatic steatosis in mice without BCO2 expression. Methods: Male and female BCO2-knockout (BCO2-KO) mice were fed a high saturated fat diet (HSFD) with or without APO10LA (10 mg/kg diet) or lycopene (100 mg/kg diet) for 12 wk. Results: Lycopene or APO10LA supplementation reduced hepatic steatosis incidence (78% and 72%, respectively) and severity in BCO2-KO male mice. Female mice did not develop steatosis, had greater hepatic total cholesterol (3.06 vs. 2.31 mg/g tissue) and cholesteryl ester (1.58 vs. 0.86 mg/g tissue), but had lower plasma triglyceride (TG) (229 vs. 282 mg/dL) and cholesterol (97.1 vs. 119 mg/dL) than male mice. APO10LA-mitigated steatosis in males was associated with reduced hepatic total cholesterol (18%) and activated sirtuin 1 signaling, which resulted in reduced fatty acids (FAs) and TG synthesis markers [stearoyl-coenzyme A (CoA) desaturase protein, 71%; acetyl-CoA carboxylase phosphorylation, 79%; AMP-activated protein kinase phosphorylation, 67%], and elevated cholesterol efflux genes (cytochrome P450 family 7A1, 65%; ATP-binding cassette transporter G5/8, 11%). These APO10LA-mediated effects were not mimicked by lycopene supplementation. Intriguingly, steatosis inhibition by lycopene induced peroxisome proliferator–activated receptor (PPAR)α- and PPARγ-related genes in mesenteric adipose tissue (MAT) that increases mitochondrial uncoupling [cell death–inducing DNA fragmentation factor, α subunit-like effector a, 55%; PR domain-containing 16, 47%; uncoupling protein 3 (Ucp3), 55%], FA β-oxidation (PPARα, 53

  12. Crystal Structure of Dicamba Monooxygenase: A Rieske Nonheme Oxygenase that Catalyzes Oxidative Demethylation

    SciTech Connect

    Dumitru, Razvan; Jiang, Wen Zhi; Weeks, Donald P.; Wilson, Mark A.

    2009-08-28

    Dicamba (3,6-dichloro-2-methoxybenzoic acid) is a widely used herbicide that is efficiently degraded by soil microbes. These microbes use a novel Rieske nonheme oxygenase, dicamba monooxygenase (DMO), to catalyze the oxidative demethylation of dicamba to 3,6-dichlorosalicylic acid (DCSA) and formaldehyde. We have determined the crystal structures of DMO in the free state, bound to its substrate dicamba, and bound to the product DCSA at 2.10-1.75 {angstrom} resolution. The structures show that the DMO active site uses a combination of extensive hydrogen bonding and steric interactions to correctly orient chlorinated, ortho-substituted benzoic-acid-like substrates for catalysis. Unlike other Rieske aromatic oxygenases, DMO oxygenates the exocyclic methyl group, rather than the aromatic ring, of its substrate. This first crystal structure of a Rieske demethylase shows that the Rieske oxygenase structural scaffold can be co-opted to perform varied types of reactions on xenobiotic substrates.

  13. 7-Methoxy-(9H-β-Carbolin-1-il)-(E)-1-Propenoic Acid, a β-Carboline Alkaloid From Eurycoma longifolia, Exhibits Anti-Inflammatory Effects by Activating the Nrf2/Heme Oxygenase-1 Pathway.

    PubMed

    Nguyen, Hai Dang; Choo, Young-Yeon; Nguyen, Tien Dat; Nguyen, Hoai Nam; Chau, Van Minh; Lee, Jeong-Hyung

    2016-03-01

    Eurycoma longifolia is an herbal medicinal plant popularly used in Southeast Asian countries. In the present study, we show that 7-methoxy-(9H-β-carbolin-1-il)-(E)-1-propenoic acid (7-MCPA), a β-carboline alkaloid isolated from E. longifolia, exerted anti-inflammatory effects by activating the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. 7-MCPA inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO), prostaglandin E2 (PGE2 ), and interleukin-6 (IL-6) in RAW264.7 cells and rescued C57BL/6 mice from LPS-induced lethality in vivo. LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and IL-6 was also significantly suppressed by treatment of 7-MCPA in RAW264.7 cells. 7-MCPA induced nuclear translocation of Nrf2 and increased transcription of its target genes, such as HO-1. Treating RAW264.7 cells with 7-MCPA increased the intracellular level of reactive oxygen species (ROS) and the phosphorylation level of p38 mitogen-activated protein kinase (MAPK); however, co-treatment with the antioxidant N-acetyl-cysteine (NAC) blocked 7-MCPA-induced p38 MAPK phosphorylation. Moreover, NAC or SB203580 (p38 MAPK inhibitor) blocked 7-MCPA-induced nuclear translocation of Nrf2, suggesting that 7-MCPA activated Nrf2 via a ROS-dependent p38 pathway. 7-MCPA induced HO-1 protein and mRNA expression and knockdown of Nrf2 with siRNA or SB203580 blocked 7-MCPA-mediated induction of HO-1 expression. Inhibiting Nrf2 or HO-1 abrogated the anti-inflammatory effects of 7-MCPA in LPS-stimulated RAW264.7 cells. We also demonstrated that 7-MCPA suppressed LPS-induced nuclear factor κB (NF-κB) activation. These results provide the first evidence that 7-MCPA exerts its anti-inflammatory effect by modulating the Nrf2 and NF-κB pathways and may be a potential Nrf2 activator to prevent or treat inflammatory diseases. PMID:26291957

  14. 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation

    PubMed Central

    Aik, WeiShen; Che, Ka Hing; Li, Xuan Shirley; Kristensen, Jan B. L.; King, Oliver N. F.; Chan, Mun Chiang; Yeoh, Kar Kheng; Choi, Hwanho; Walport, Louise J.; Thinnes, Cyrille C.; Bush, Jacob T.; Lejeune, Clarisse; Rydzik, Anna M.; Rose, Nathan R.; Bagg, Eleanor A.; McDonough, Michael A.; Krojer, Tobias; Yue, Wyatt W.; Ng, Stanley S.; Olsen, Lars; Brennan, Paul E.; Oppermann, Udo; Muller-Knapp, Susanne; Klose, Robert J.; Ratcliffe, Peter J.; Schofield, Christopher J.; Kawamura, Akane

    2015-01-01

    2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement PMID:26682036

  15. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  16. Secreted lipoxygenase from Pseudomonas aeruginosa exhibits biomembrane oxygenase activity and induces hemolysis in human red blood cells.

    PubMed

    Banthiya, Swathi; Pekárová, Mária; Kuhn, Hartmut; Heydeck, Dagmar

    2015-10-15

    Pseudomonas aeruginosa (PA) expresses a secreted lipoxygenase (LOX), which oxygenates free arachidonic acid predominantly to 15S-H(p)ETE. The enzyme is capable of binding phospholipids at its active site and physically interacts with model membranes. However, its membrane oxygenase activity has not been quantified. To address this question, we overexpressed PA-LOX as intracellular his-tag fusion protein in Escherichia coli, purified it to electrophoretic homogeneity and compared its biomembrane oxygenase activity with that of rabbit ALOX15. We found that both enzymes were capable of oxygenating mitochondrial membranes to specific oxygenation products and 13S-H(p)ODE and 15S-H(p)ETE esterified to phosphatidylcholine and phosphatidylethanolamine were identified as major oxygenation products. When normalized to similar linoleic acid oxygenase activity, the rabbit enzyme exhibited a much more effective mitochondrial membrane oxygenase activity. In contrast, during long-term incubations (24 h) with red blood cells PA-LOX induced significant (50%) hemolysis whereas rabbit ALOX15 was more or less ineffective. These data indicate the principle capability of PA-LOX of oxygenating membrane bound phospholipids which is likely to alter the barrier function of the biomembranes. Although the membrane oxygenase activity was lower than the fatty acid oxygenase activity of PA-LOX red blood cell membrane oxygenation might be of biological relevance for P. aeruginosa septicemia. PMID:26361973

  17. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella

    PubMed Central

    Fabrick, Jeffrey A.; Kanost, Michael R.; Baker, James E.

    2004-01-01

    Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database under NCBI Accession # AY427951. Abbreviation RNAi RNA interference PCR polymerase chain reaction RT-PCR reverse transcription-PCR PMID:15861231

  18. Heme Oxygenases in Cardiovascular Health and Disease.

    PubMed

    Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland

    2016-10-01

    Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies. PMID:27604527

  19. The roles of Jumonji-type oxygenases in human disease

    PubMed Central

    Johansson, Catrine; Tumber, Anthony; Che, KaHing; Cain, Peter; Nowak, Radoslaw; Gileadi, Carina; Oppermann, Udo

    2014-01-01

    The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin-modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation, as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases. PMID:24579949

  20. Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase.

    PubMed

    Watschinger, Katrin; Fuchs, Julian E; Yarov-Yarovoy, Vladimir; Keller, Markus A; Golderer, Georg; Hermetter, Albin; Werner-Felmayer, Gabriele; Hulo, Nicolas; Werner, Ernst R

    2012-04-01

    Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure-function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis-Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase. PMID:22220568

  1. Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase

    PubMed Central

    Watschinger, Katrin; Fuchs, Julian E.; Yarov-Yarovoy, Vladimir; Keller, Markus A.; Golderer, Georg; Hermetter, Albin; Werner-Felmayer, Gabriele; Hulo, Nicolas; Werner, Ernst R.

    2012-01-01

    Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure–function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis–Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase. PMID:22220568

  2. Cyclo-oxygenase isoenzymes: physiological and pharmacological role.

    PubMed

    Kam, P C; See, A U

    2000-05-01

    Prostaglandins play important roles in inflammation and the maintenance of normal physiological function of several organ systems. Prostaglandin production requires the conversion of arachidonic acid to the intermediate prostaglandin H2 catalysed by the cyclo-oxygenase (COX) enzyme. There are two isoforms of the COX enzyme, COX-1 and COX-2. These isoforms vary in their distribution and expression but are similar in size, substrate specificity and kinetics. Normal physiological functions are mediated by 'constitutive' COX-1, while the inflammatory response is mediated by 'inducible' COX-2. Current nonsteroidal anti-inflammatory drugs inhibit both enzymes to varying degrees and can cause adverse effects in the gastrointestinal tract, kidney, respiratory system and platelets. Newer, selective COX-2 inhibitors offer real hope for safer anti-inflammatory drugs although their long-term safety and efficacy need to be studied as questions remain unanswered about possible physiological functions of COX-2. PMID:10792135

  3. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases.

    PubMed

    Sui, Xuewu; Golczak, Marcin; Zhang, Jianye; Kleinberg, Katie A; von Lintig, Johannes; Palczewski, Krzysztof; Kiser, Philip D

    2015-12-18

    Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs. PMID:26499794

  4. Purification and Characterization of a New Indole Oxygenase from the Leaves of Tecoma stans L

    PubMed Central

    Kunapuli, Satya P.; Vaidyanathan, Chelarkara S.

    1983-01-01

    A new indole oxygenase from the leaves of Tecoma stans was isolated and purified to homogenity. The purified enzyme system catalyzes the conversion of indole to anthranilic acid. It is optimally active at pH 5.2 and 30°C. Two moles of oxygen are consumed and one mole of anthranilic acid is formed for every mole of indole oxidized. Dialysis resulted in complete loss of the activity. The inactive enzyme could be reactivated by the addition of concentrated dialysate. The enzyme is not inhibited by copper-specific chelators, non-heme iron chelators or atebrin. It is not a cuproflavoprotein, unlike the other indole oxygenases and oxidases. PMID:16662784

  5. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases.

    PubMed

    Urquhart, P; Nicolaou, A; Woodward, D F

    2015-04-01

    The naturally occurring mammalian endocannabinoids possess biological attributes that extend beyond interaction with cannabinoid receptors. These extended biological properties are the result of oxidative metabolism of the principal mammalian endocannabinoids arachidonoyl ethanolamide (anandamide; A-EA) and 2-arachidonoylglycerol (2-AG). Both endocannabinoids are oxidized by cyclo-oxygenase-2 (COX-2), but not by COX-1, to a series of prostaglandin derivatives (PGs) with quite different biological properties from those of the parent substrates. PG ethanolamides (prostamides, PG-EAs) and PG glyceryl esters (PG-Gs) are not only pharmacologically distinct from their parent endocannabinoids, they are distinct from the corresponding acidic PGs, and are differentiated from each other. Ethanolamides and glyceryl esters of the major prostanoids PGD2, PGE2, PGF2α, and PGI2 are formed by the various PG synthases, and thromboxane ethanolamides and glyceryl esters are not similarly produced. COX-2 is also of interest by virtue of its corollary central role in modulating endocannabinoid tone, providing a new therapeutic approach for treating pain and anxiety. Other major oxidative conversion pathways are provided for both A-EA and 2-AG by several lipoxygenases (LOXs), resulting in the formation of numerous hydroxyl metabolites. These do not necessarily represent inactivation pathways for endocannabinoids but may mimic or modulate the endocannabinoids or even display alternative pharmacology. Similarly, A-EA and 2-AG may be oxidized by P450 enzymes. Again a very diverse number of metabolites are formed, with either cannabinoid-like biological properties or an introduction of disparate pharmacology. The biological activity of epoxy and hydroxyl derivatives of the endocannabinoids remains to be fully elucidated. This review attempts to consolidate and compare the findings obtained to date in an increasingly important research area. This article is part of a Special Issue entitled

  6. X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis.

    PubMed

    Haslinger, Kristina; Peschke, Madeleine; Brieke, Clara; Maximowitsch, Egle; Cryle, Max J

    2015-05-01

    Non-ribosomal peptide synthetase (NRPS) mega-enzyme complexes are modular assembly lines that are involved in the biosynthesis of numerous peptide metabolites independently of the ribosome. The multiple interactions between catalytic domains within the NRPS machinery are further complemented by additional interactions with external enzymes, particularly focused on the final peptide maturation process. An important class of NRPS metabolites that require extensive external modification of the NRPS-bound peptide are the glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin. These clinically relevant peptide antibiotics undergo cytochrome P450-catalysed oxidative crosslinking of aromatic side chains to achieve their final, active conformation. However, the mechanism underlying the recruitment of the cytochrome P450 oxygenases to the NRPS-bound peptide was previously unknown. Here we show, through in vitro studies, that the X-domain, a conserved domain of unknown function present in the final module of all GPA NRPS machineries, is responsible for the recruitment of oxygenases to the NRPS-bound peptide to perform the essential side-chain crosslinking. X-ray crystallography shows that the X-domain is structurally related to condensation domains, but that its amino acid substitutions render it catalytically inactive. We found that the X-domain recruits cytochrome P450 oxygenases to the NRPS and determined the interface by solving the structure of a P450-X-domain complex. Additionally, we demonstrated that the modification of peptide precursors by oxygenases in vitro--in particular the installation of the second crosslink in GPA biosynthesis--occurs only in the presence of the X-domain. Our results indicate that the presentation of peptidyl carrier protein (PCP)-bound substrates for oxidation in GPA biosynthesis requires the presence of the NRPS X-domain to ensure conversion of the precursor peptide into a mature aglycone, and that the carrier protein

  7. Dicamba Monooxygenase: Structural Insights into a Dynamic Rieske Oxygenase that Catalyzes an Exocyclic Monooxygenation

    SciTech Connect

    D'Ordine, Robert L.; Rydel, Timothy J.; Storek, Michael J.; Sturman, Eric J.; Moshiri, Farhad; Bartlett, Ryan K.; Brown, Gregory R.; Eilers, Robert J.; Dart, Crystal; Qi, Youlin; Flasinski, Stanislaw; Franklin, Sonya J.

    2009-09-08

    Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O{sub 2} into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer ({alpha}{sub 3}) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co{sup 2+}, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 {angstrom}, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.

  8. Heme Oxygenase-1: A Metabolic Nike

    PubMed Central

    Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C.; Otterbein, Leo E.

    2014-01-01

    Abstract Significance: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. Recent Advances: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. Critical Issues: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. Future Directions: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer. Antioxid. Redox Signal. 20, 1709–1722. PMID:24180257

  9. Nickel induction of microsomal heme oxygenase activity in rodents

    SciTech Connect

    Sunderman, F.W. Jr.; Reid, M.C.; Bibeau, L.M.; Linden, J.V.

    1983-01-01

    Heme oxygenase activity was measured in tissues of rats killed after administration of NiCl/sub 2/ or Ni/sub 3/S/sub 2/. Induction of renal heme oxygenase activity occurred 6 hr after NiCl/sub 2/ injection (0.25 mmol/kg sc), reached a maximum of five to six times the baseline activity at 17 hr, and remained significantly increased at 72 hr. Heme oxygenase activities were also increased in liver, lung, and brain at 17 hr after the NiCl/sub 2/ injection; heme oxygenase activities in spleen and intestinal mucosa were unchanged. The effects of NiCl/sub 2/ on heme oxygenase activities in kidney and liver were dose-related from 0.06 to 0.75 mmol/kg, sc. Three Ni chelators were administered (1 mmol/kg, im) prior to injection of NiCl/sub 2/ (0.25 mmol/kg, sc); d-penicillamine partially prevented Ni induction of renal heme oxygenase activity; triethylenetetramine had no effect; sodium diethyldithiocarbamate enhanced the Ni induction of renal heme oxygenase activity (three times greater than NiCl/sub 2/ alone). Intrarenal injection of Ni/sub 3/S/sub 2/ (10 mg/rat) caused induction of renal heme oxygenase activity at 1 week but not at 2, 3, or 4 weeks; no correlation was observed between induction of renal heme oxygenase activity and erythropoietin-mediated erythrocytosis. Hypoxia (10% O/sub 2/, 12 hr/day, 7 days) did not affect renal heme oxygenase activity. Induction of renal heme oxygenase activity was observed in mice, hamsters, and guinea pigs killed 17 hr after injection of NiCl/sub 2/ (0.25 mmol/kg, sc). These studies established (a) the time course, dose-effect, organ selectivity, and species susceptibility relationships for Ni induction of microsomal heme oxygenase activity, (b) the effects of Ni chelators, and (c) the lack of relationship between induction of renal heme oxygenase activity and the erythrocytosis that develops after intrarenal injection of Ni/sub 3/S/sub 2/.

  10. Functional and structural characterization of an unusual cofactor-independent oxygenase.

    PubMed

    Baas, Bert-Jan; Poddar, Harshwardhan; Geertsema, Edzard M; Rozeboom, Henriette J; de Vries, Marcel P; Permentier, Hjalmar P; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-02-10

    The vast majority of characterized oxygenases use bound cofactors to activate molecular oxygen to carry out oxidation chemistry. Here, we show that an enzyme of unknown activity, RhCC from Rhodococcus jostii RHA1, functions as an oxygenase, using 4-hydroxyphenylenolpyruvate as a substrate. This unique and complex reaction yields 3-hydroxy-3-(4-hydroxyphenyl)-pyruvate, 4-hydroxybenzaldehyde, and oxalic acid as major products. Incubations with H2(18)O, (18)O2, and a substrate analogue suggest that this enzymatic oxygenation reaction likely involves a peroxide anion intermediate. Analysis of sequence similarity and the crystal structure of RhCC (solved at 1.78 Å resolution) reveal that this enzyme belongs to the tautomerase superfamily. Members of this superfamily typically catalyze tautomerization, dehalogenation, or decarboxylation reactions rather than oxygenation reactions. The structure shows the absence of cofactors, establishing RhCC as a rare example of a redox-metal- and coenzyme-free oxygenase. This sets the stage to study the mechanistic details of cofactor-independent oxygen activation in the unusual context of the tautomerase superfamily. PMID:25565350

  11. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

    PubMed

    Coursolle, Dan; Lian, Jiazhang; Shanklin, John; Zhao, Huimin

    2015-09-01

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg L(-1) long chain alcohol/alkane products including a 57 mg L(-1) titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system. PMID:26135500

  12. Expression and characterization of an N-oxygenase from Rhodococcus jostii RHAI.

    PubMed

    Indest, Karl J; Eberly, Jed O; Hancock, Dawn E

    2015-01-01

    Nitro group-containing natural products are rare in nature. There are few examples of N-oxygenases, enzymes that incorporate atmospheric oxygen into primary and secondary amines, characterized in the literature. N-oxygenases have yet to be characterized from the Corynebacterineae, a metabolically diverse group of organisms that includes the genera Rhodococcus, Gordonia, and Mycobacterium. A preliminary in silico search for N-oxygenase AurF gene orthologs revealed multiple protein candidates present in the genome of the Actinomycete Rhodococcus jostii RHAI (RHAI_ro06104). Towards the goal of identifying novel biocatalysts with potential utility for the biosynthesis of nitroaromatics, AurF ortholog RHAI_ro6104 was cloned, expressed and purified in E. coli and amine and nitro containing phenol substrates tested for activity. RHAI-ro06104 showed the highest activity with 4-aminophenol, producing a Vmax of 18.76 μM s(-1) and a Km of 15.29 mM and demonstrated significant activities with 2-aminophenol and 2-amino-5-methylphenol, producing a Vmax of 12.86 and 12.72 μM s(-1) with a Km of 8.34 and 2.81 mM, respectively. These findings are consistent with a substrate range observed in other N-oxygenases, which seem to accommodate substrates that lack halogenated substitutions and side groups directly flanking the amine group. Attempts to identify modulators of RHAI-ro06104 gene activity demonstrated that aromatic amino acids inhibit expression by almost 50%. PMID:26782651

  13. Modifying the maker: Oxygenases target ribosome biology.

    PubMed

    Zhuang, Qinqin; Feng, Tianshu; Coleman, Mathew L

    2015-01-01

    The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of 'translational modifications' is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes. PMID:26779412

  14. Targeting heme oxygenase after intracerebral hemorrhage

    PubMed Central

    Chen-Roetling, Jing; Lu, Xiangping; Regan, Raymond F.

    2015-01-01

    Intracerebral hemorrhage (ICH) is the primary event in approximately 10% of strokes, and has higher rates of morbidity and mortality than ischemic stroke. Experimental evidence suggests that the toxicity of hemoglobin and its degradation products contributes to secondary injury that may be amenable to therapeutic intervention. Hemin, the oxidized form of heme, accumulates in intracranial hematomas to cytotoxic levels. The rate limiting step of its breakdown is catalyzed by the heme oxygenase (HO) enzymes, which consist of inducible HO-1 and constitutively-expressed HO-2. The effect of these enzymes on perihematomal injury and neurological outcome has been investigated in ICH models using both genetic and pharmacological approaches to alter their expression, with variable results reported. These findings are summarized and reconciled in this review; therapeutic strategies that may optimize HO expression and activity after ICH are described. PMID:25642455

  15. Heme oxygenase-1 system and gastrointestinal tumors

    PubMed Central

    Zhu, Xiao; Fan, Wen-Guo; Li, Dong-Pei; Lin, Marie CM; Kung, Hsiangfu

    2010-01-01

    Heme oxygenase-1 (HO-1) system catabolizes heme into three products: carbon monoxide, biliverdin/bilirubin and free iron. It is involved in many physiological and pathophysiological processes. A great deal of data has demonstrated the roles of HO-1 in the formation, growth and metastasis of tumors. The interest in this system by investigators involved in gastrointestinal tumors is fairly recent, and few papers on HO-1 have touched upon this subject. This review focuses on the current understanding of the physiological significance of HO-1 induction and its possible roles in the gastrointestinal tumors studied to date. The implications for possible therapeutic manipulation of HO-1 in gastrointestinal tumors are also discussed. PMID:20518085

  16. Modifying the maker: Oxygenases target ribosome biology

    PubMed Central

    Zhuang, Qinqin; Feng, Tianshu; Coleman, Mathew L

    2015-01-01

    The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes. PMID:26779412

  17. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases*

    PubMed Central

    Markolovic, Suzana; Wilkins, Sarah E.; Schofield, Christopher J.

    2015-01-01

    The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of Nϵ-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries. PMID:26152730

  18. The heme oxygenases: important regulators of pregnancy and preeclampsia

    PubMed Central

    George, Eric M.; Warrington, Junie P.; Spradley, Frank T.; Palei, Ana C.

    2014-01-01

    The heme oxygenase system has long been believed to act largely as a housekeeping unit, converting prooxidant free heme from heme protein degradation into the benign bilirubin for conjugation and safe excretion. In recent decades, however, heme oxygenases have emerged as important regulators of cardiovascular function, largely through the production of their biologically active metabolites: carbon monoxide, bilirubin, and elemental iron. Even more recently, a number of separate lines of evidence have demonstrated an important role for the heme oxygenases in the establishment and maintenance of pregnancy. Early preclinical and clinical studies have associated defects in the heme oxygenase with the obstetrical complication preeclampsia, as well as failure to establish adequate placental blood flow, an underlying mechanism of the disorder. Several recent preclinical studies have suggested, however, that the heme oxygenase system could serve as a valuable therapeutic tool for the management of preeclampsia, which currently has few pharmacological options. This review will summarize the role of heme oxygenases in pregnancy and highlight their potential in advancing the management of patients with preeclampsia. PMID:24898840

  19. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. PMID:25164030

  20. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  1. Heme oxygenase metabolites inhibit tubuloglomerular feedback (TGF).

    PubMed

    Ren, YiLin; D'Ambrosio, Martin A; Wang, Hong; Liu, Ruisheng; Garvin, Jeffrey L; Carretero, Oscar A

    2008-10-01

    Tubuloglomerular feedback (TGF) is the mechanism by which the macula densa (MD) senses increases in luminal NaCl concentration and sends a signal to constrict the afferent arteriole (Af-Art). The kidney expresses constitutively heme oxygenase-2 (HO-2) and low levels of HO-1. HOs release carbon monoxide (CO), biliverdin, and free iron. We hypothesized that renal HOs inhibit TGF via release of CO and biliverdin. Rabbit Af-Arts and attached MD were simultaneously microperfused in vitro. The TGF response was determined by measuring Af-Art diameter before and after increasing NaCl in the MD perfusate. When HO activity was inhibited by adding stannous mesoporphyrin (SnMP) to the MD perfusate, the TGF response increased from 2.1+/-0.2 to 4.1+/-0.4 microm (P=0.003, control vs. SnMP, n=7). When a CO-releasing molecule, (CORM-3; 50 microM), was added to the MD perfusate, the TGF response decreased by 41%, from 3.6+/-0.3 to 2.1+/-0.2 microm (P<0.001, control vs. CORM-3, n=12). When CORM-3 at 100 microM was added to the perfusate, it completely blocked the TGF response, from 4.2+/-0.4 to -0.2+/-0.3 microm (P<0.001, control vs. CORM-3, n=6). When biliverdin was added to the perfusate, the TGF response decreased by 79%, from 3.4+/-0.3 to 0.7+/-0.4 microm (P=0.001, control vs. biliverdin, n=6). The effects of SnMP and CORM-3 were not blocked by inhibition of nitric oxide synthase. We concluded that renal HO inhibits TGF probably via release of CO and biliverdin. HO regulation of TGF is a novel mechanism that could lead to a better understanding of the control of renal microcirculation and function. PMID:18715939

  2. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    PubMed

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity. PMID:15297453

  3. Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component.

    PubMed Central

    Schläfli, H R; Weiss, M A; Leisinger, T; Cook, A M

    1994-01-01

    Comamonas testosteroni T-2, grown in terephthalate (TER)-salts medium, synthesizes inducible enzymes that convert TER to (1R,2S)-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylic acid (DCD) and protocatechuate (PC). Anion-exchange chromatography of cell extracts yielded two sets of fractions, R and Z, that were necessary for oxygenation of TER to DCD; we termed this activity the TER dioxygenase system (TERDOS). An NAD(+)-dependent DCD dehydrogenase, which converted DCD to PC, overlapped all fractions R. No significant purification from fraction R, which contained an NADH-dependent reductase function(s) of TERDOS, was attained. Fraction Z, at the end of the gradient, contained essentially one protein, which was further purified by hydrophobic interaction chromatography. This component, Z, had the UV-visible spectrum and electron paramagnetic resonance characteristics of a Rieske [2Fe-2S] protein and was considered to be the oxygenase. M(r)s of about 126,000 for oxygenase Z under native conditions were observed. Oxygenase Z consisted of two subunits, alpha and beta, with M(r)s of 49,000 and 18,000, respectively, under denaturing conditions. We presume that this oxygenase has an alpha 2 beta 2 structure. The sequences of the N-terminal amino acids of each subunit were determined. The activity of the purified enzyme was enhanced about fivefold by addition of Fe2+. In the presence of O2, NADH, and fraction R, component Z catalyzed the stoichiometric transformation of TER to PC, with the intermediate formation of DCD. The reaction was confirmed as a dioxygenation when we observed incorporation of two oxygen atoms from 18O2 into PC. The substrate range of TERDOS appeared to be narrow; apart from TER, only 2,5-dicarboxypyridine and 1,4-dicarboxynaphthalene (of 11 compounds tested) were converted to a product. Images PMID:7961417

  4. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    EPA Science Inventory

    An ELISA assay for heme oxygenase (HO-l )

    Abstract

    A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  5. [Heme oxygenase activity in rat organs during cadmium chloride administration].

    PubMed

    Strel'chenko, E V; Nikitchenko, I V; Kaliman, P A

    2002-01-01

    Heme oxygenase activity, the level of spontaneous and ascorbat-induced LPO in the liver, kidney and spleen homogenates of rats and blood serum absorption spectrum in the Soret region in different periods both after CdCl2 and prior alpha-tocopherol administration were studied. The increase in the hemolysis products content in the serum was observed in 15 min after CdCl2 injection and remained during 24 h. Heme oxygenase activity in the liver and kidney increased after 6 h and stayed at the same level 24 h after CdCl2 administration. The level of spontaneous LPO in the spleen increased after 6 h, and in the liver and kidney the level of spontaneous and ascorbat-induced LPO increased in 24 h after CdCl2 injection. The preliminary alpha-tocopherol administration did not prevent the accumulation of hemolysis products in the serum and the increase of heme oxygenase activity in the liver and kidney caused by CdCl2 administration. However, the increase in the ascorbat-induced LPO in these organs was completely blocked. The role of heme and LPO in the heme oxygenase induction by CdCl2 are discussed. PMID:12916165

  6. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii

    PubMed Central

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  7. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii.

    PubMed

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  8. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    PubMed

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(·+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(·+)) by tyrosine residues within 11 Å of the prosthetic group. In hHO-1, Y58· is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer. PMID:25023856

  9. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    PubMed Central

    Khara, Pratick; Roy, Madhumita; Chakraborty, Joydeep; Ghosal, Debajyoti; Dutta, Tapan K.

    2014-01-01

    Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads. PMID:24918041

  10. 2-Prenylated m-dimethoxybenzenes as potent inhibitors of 15-lipo-oxygenase: inhibitory mechanism and SAR studies.

    PubMed

    Jabbari, Atena; Sadeghian, Hamid; Salimi, Alireza; Mousavian, Mina; Seyedi, Seyed M; Bakavoli, Mehdi

    2016-09-01

    15-lipo-oxygenases are one of the iron-containing proteins capable of performing peroxidation of unsaturated fatty acids in animals and plants. The critical role of enzymes in the formation of inflammations, sensitivities, and some cancers has been demonstrated in mammals. The importance of enzymes has led to the development of mechanistic studies, product analysis, and synthesis of inhibitors. In this study, a series of allyl and prenyl dimethoxybenzenes were synthesized and their inhibitory potency against soybean 15-Lipo-oxygenase (L1; EC 1,13,11,12) was determined. Among the synthetic compounds, 2,6-dimethoxy-1-isopentenyl-4-methylbenzene, 2,6-dimethoxy-1-geranyl-4-methylbenzene, and 2,6-dimethoxy-1-farnesyl-4-methylbenzene showed the most potent inhibitory activity with IC50 values of 7.6, 5.3, and 0.52 μm, respectively. For some of the compounds, SAR studies showed acceptable relationship between inhibitory potency and enzyme-ligand interactions. Radical scavenging assessment results apart from the SAR studies indicate that electronic properties are the major factors for lipo-oxygenase inhibition potency of the mentioned compounds. Based on the theoretical studies, it was suggested that CH…O intramolecular hydrogen bond between ortho-methoxy oxygen and methine hydrogen atoms is one of the major factors in the stability of 2,6-dimethoxyallyl(or prenyl)benzenes radical via the planarity fixation between phenyl and allyl (or prenyl) pi orbitals. PMID:27113261

  11. Ribosomal Oxygenases are Structurally Conserved from Prokaryotes to Humans

    PubMed Central

    Chowdhury, Rasheduzzaman; Krojer, Tobias; Ho, Chia-hua; Ng, Stanley S.; Clifton, Ian J.; Ge, Wei; Kershaw, Nadia J.; Fox, Gavin C.; Muniz, Joao R. C.; Vollmar, Melanie; Phillips, Claire; Pilka, Ewa S.; Kavanagh, Kathryn L.; von Delft, Frank; Oppermann, Udo; McDonough, Michael A.; Doherty, Aiden J.; Schofield, Christopher J.

    2014-01-01

    2-Oxoglutarate (2OG)-dependent oxygenases play important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2, hydroxylation of transcription factors3, and of splicing factor proteins4. Recently, 2OG-oxygenases that catalyze hydroxylation of tRNA5-7 and ribosomal proteins8, have been shown to play roles in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9-12. The finding that the ribosomal oxygenases (ROX) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, ycfD catalyzes arginine-hydroxylation in the ribosomal protein L16; in humans, Mina53 (MYC-induced nuclear antigen) and NO66 (Nucleolar protein 66) catalyze histidine-hydroxylation in ribosomal proteins rpL27a and rpL8, respectively. The functional assignments of the ROX open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in residue- and protein-selectivities of prokaryotic and eukaryotic ROX, crystal structures of ycfD and ycfDRM from E. coli and Rhodothermus marinus with those of human Mina53 and NO66 (hROX) reveal highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-oxygenases. ROX structures in complex with/without their substrates, support their functional assignments as hydroxylases, but not demethylases and reveal how the subfamily has evolved to catalyze the hydroxylation of different residue sidechains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-hydroxylases including the hypoxia-inducible factor asparaginyl-hydroxylase (FIH) and histone Nε-methyl lysine demethylases (KDMs) identifies branchpoints in 2OG-oxygenase evolution and distinguishes between JmjC-hydroxylases and -demethylases catalyzing modifications of translational and transcriptional machinery. The

  12. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis.

    PubMed

    Zeilmaker, Tieme; Ludwig, Nora R; Elberse, Joyce; Seidl, Michael F; Berke, Lidija; Van Doorn, Arjen; Schuurink, Robert C; Snel, Berend; Van den Ackerveken, Guido

    2015-01-01

    Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to H. arabidopsidis, P. capsici, and P. syringae. Phylogenetic analysis of the superfamily of 2-oxoglutarate Fe(II)-dependent oxygenases revealed a subgroup of DMR6-LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co-expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew-infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of H. arabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6-3_dlo1 double mutant, that is completely resistant to H. arabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression. PMID:25376907

  13. Role of Heme Oxygenase, Leptin, Coenzyme Q10 and Trace Elements in Pre-eclamptic Women.

    PubMed

    Abo-Elmatty, Dina M; Badawy, Ehsan A; Hussein, Jihan S; Elela, Somaya Abo; Megahed, Hoda A

    2012-10-01

    The objective of this study to evaluate heme oxygenase (COHb), leptin and coenzyme Q10 (CoQ10) in pre-eclamptic women. Also Zinc, copper, Iron, total iron binding capacity, Ferritin and uric acid were assessed. 120 female subjects were included in this study. They were divided into, 60 female with normal pregnancy attending the outpatient clinic, 60 pre-eclamptic patients were recruited from obstetrics and gynaecology department El-kasr El-Aini hospital. The results showed that in pre-eclampatic group, leptin level was significantly increased while COHb and CoQ10 was significantly decreased. It is concluded that hemeoxygenase, leptin and coenzyme CoQ10 can be considered as new markers for prediction of pre-eclampsia. PMID:24082464

  14. Recombinant truncated and microsomal heme oxygenase-1 and -2: differential sensitivity to inhibitors.

    PubMed

    Vukomanovic, Dragic; McLaughlin, Brian; Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Dercho, Ryan A; Kinobe, Robert T; Hum, Maaike; Brien, James F; Jia, Zongchao; Szarek, Walter A; Nakatsu, Kanji

    2010-04-01

    Recombinant truncated forms of heme oxygenase-1 and -2 (HO-1 and HO-2) were compared with their crude microsomal counterparts from brain and spleen tissue of adult male rats with respect to their inhibition by azole-based, nonporphyrin HO inhibitors. The drugs tested were an imidazole-alcohol, an imidazole-dioxolane, and a triazole-ketone. Both the recombinant and crude forms of HO-2 were similarly inhibited by the 3 drugs. The crude microsomal spleen form of HO-1 was more susceptible to inhibition than was the truncated recombinant form. This difference is attributed to the extra amino acids in the full-length enzyme. These observations may be relevant in the design of drugs as inhibitors of HO and other membrane proteins. PMID:20555417

  15. Escherichia coli heme oxygenase modulates host innate immune responses

    PubMed Central

    Maharshak, Nitsan; Ryu, Hyungjin Sally; Fan, Ting-Jia; Onyiah, Joseph C.; Schulz, Stephanie; Otterbein, Sherrie L.; Wong, Ron; Hansen, Jonathan; Otterbein, Leo E; Carroll, Ian; Plevy, Scott E.

    2015-01-01

    Induction of mammalian heme oxygenase-1 and exposure of animals to carbon monoxide ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an heme oxygenase-like enzyme, chuS, and metabolize heme into iron, biliverdin and carbon monoxide. Given the abundance of enteric bacteria residing in the intestinal lumen, we hypothesized that commensal intestinal bacteria may be a significant source of carbon monoxide, with the consequence that enteric bacteria expressing chuS and other heme oxygenase -like molecules suppress inflammatory immune responses through release of carbon monoxide. Carbon monoxide exposed mice have altered enteric bacterial composition and increased E. coli 16S and chuS DNA by real-time PCR. Moreover, severity of experimental colitis correlates with increased E. coli chuS expression in IL-10 deficient mice. To explore functional roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co-culture of chuS-overexpressing E. coli with bone marrow derived macrophages results in decreased IL-12 p40 and increased IL-10 secretion compared to wild-type or chuS-deficient E. coli. Mice infected with chuS-overexpressing E. coli have increased levels of hepatic carbon monoxide and decreased serum IL-12 p40 compared to mice infected with chuS-deficient E. coli. Thus, carbon monoxide alters the composition of the commensal intestinal microbiota and expands E. coli populations harboring the chuS gene. These bacteria are capable of attenuating innate immune responses through expression of chuS. Bacterial heme oxygenase -like molecules and bacterial-derived carbon monoxide may represent novel targets for therapeutic intervention in inflammatory conditions. PMID:26146866

  16. Comparison of Bacillus monooxygenase genes for unique fatty acid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activiti...

  17. Purification, crystallization and preliminary X-ray diffraction analysis of pathogen-inducible oxygenase (PIOX) from Oryza sativa

    SciTech Connect

    Lloyd, Tracy; Krol, Adam; Campanaro, Danielle; Malkowski, Michael

    2006-04-01

    The heme-containing membrane-associated fatty-acid α-dioxygenase pathogen-inducible oxygenase (PIOX) from O. sativa has been crystallized and a data set collected to 3.0 Å using a rotating-anode generator and R-AXIS IV detector. Pathogen-inducible oxygenase (PIOX) is a heme-containing membrane-associated protein found in monocotyledon and dicotyledon plants that utilizes molecular oxygen to convert polyunsaturated fatty acids into their corresponding 2R-hydroperoxides. PIOX is a member of a larger family of fatty-acid α-dioxygenases that includes the mammalian cyclooxygenase enzymes cyclooxygenase 1 and 2 (COX-1 and COX-2). Single crystals of PIOX from rice (Oryza sativa) have been grown from MPD using recombinant protein expressed in Escherichia coli and subsequently extracted utilizing decyl maltoside as the solubilizing detergent. Crystals diffract to 3.0 Å resolution using a rotating-anode generator and R-AXIS IV detector, and belong to space group P1. Based on the Matthews coefficient and self-rotation function analyses, there are presumed to be four molecules in the asymmetric unit related by noncrystallographic 222 symmetry.

  18. Induction of benzo[a]pyrene Mono-oxygenase in liver cell culture by the photochemical generation of active oxygen species. Evidence for the involvement of singlet oxygen and the formation of a stable inducing intermediate.

    PubMed Central

    Paine, A J

    1976-01-01

    1. The photochemical generation of excited states of oxygen in liver cell culture by the mild ilumination of culture medium containing riboflavin, results in stimulation of benzo[a]pyrene 3-mono-oxygenase, a cytochrome P-450-linked mono-oxygenase. 2. The same large increase in mono-oxygenase activity was found when medium containing riboflavin was illuminated in the absence of cells and then stored in the dark for 24h before contact with the cells. From this it may be inferred that stimulation is due to the formation of a stable inducer in the culture medium. Further experiments indicate that the stable inducer is due to the photo-oxidation of an amino acid. 3. Evidence that singlet oxygen is responsible for initiating the stimulation of the mono-oxygenase is based on the use of molecules that scavenge particular active oxygen species. Of all the scavengers tested, only those that scavenge single oxygen inhibited the stimulation. 4. A hypothesis is developed to relate the stimulation of the mono-oxygenase by singlet oxygen in cultured cells to the regulation of the cytochrome P-450 enzyme system in vivo. It is suggested that single oxygen generation within cells may be a common factor linking the many structurally diverse inducers of the enzyme system. PMID:962887

  19. Induction of benzo[a]pyrene Mono-oxygenase in liver cell culture by the photochemical generation of active oxygen species. Evidence for the involvement of singlet oxygen and the formation of a stable inducing intermediate.

    PubMed

    Paine, A J

    1976-07-15

    1. The photochemical generation of excited states of oxygen in liver cell culture by the mild ilumination of culture medium containing riboflavin, results in stimulation of benzo[a]pyrene 3-mono-oxygenase, a cytochrome P-450-linked mono-oxygenase. 2. The same large increase in mono-oxygenase activity was found when medium containing riboflavin was illuminated in the absence of cells and then stored in the dark for 24h before contact with the cells. From this it may be inferred that stimulation is due to the formation of a stable inducer in the culture medium. Further experiments indicate that the stable inducer is due to the photo-oxidation of an amino acid. 3. Evidence that singlet oxygen is responsible for initiating the stimulation of the mono-oxygenase is based on the use of molecules that scavenge particular active oxygen species. Of all the scavengers tested, only those that scavenge single oxygen inhibited the stimulation. 4. A hypothesis is developed to relate the stimulation of the mono-oxygenase by singlet oxygen in cultured cells to the regulation of the cytochrome P-450 enzyme system in vivo. It is suggested that single oxygen generation within cells may be a common factor linking the many structurally diverse inducers of the enzyme system. PMID:962887

  20. Novel Three-Component Rieske Non-Heme Iron Oxygenase System Catalyzing the N-Dealkylation of Chloroacetanilide Herbicides in Sphingomonads DC-6 and DC-2

    PubMed Central

    Chen, Qing; Wang, Cheng-Hong; Deng, Shi-Kai; Wu, Ya-Dong; Li, Yi; Yao, Li; Jiang, Jian-Dong; Yan, Xin; Li, Shun-Peng

    2014-01-01

    Sphingomonads DC-6 and DC-2 degrade the chloroacetanilide herbicides alachlor, acetochlor, and butachlor via N-dealkylation. In this study, we report a three-component Rieske non-heme iron oxygenase (RHO) system catalyzing the N-dealkylation of these herbicides. The oxygenase component gene cndA is located in a transposable element that is highly conserved in the two strains. CndA shares 24 to 42% amino acid sequence identities with the oxygenase components of some RHOs that catalyze N- or O-demethylation. Two putative [2Fe-2S] ferredoxin genes and one glutathione reductase (GR)-type reductase gene were retrieved from the genome of each strain. These genes were not located in the immediate vicinity of cndA. The four ferredoxins share 64 to 72% amino acid sequence identities to the ferredoxin component of dicamba O-demethylase (DMO), and the two reductases share 62 to 65% amino acid sequence identities to the reductase component of DMO. cndA, the four ferredoxin genes, and the two reductases genes were expressed in Escherichia coli, and the recombinant proteins were purified using Ni-affinity chromatography. The individual components or the components in pairs displayed no activity; the enzyme mixture showed N-dealkylase activities toward alachlor, acetochlor, and butachlor only when CndA-His6 was combined with one of the four ferredoxins and one of the two reductases, suggesting that the enzyme consists of three components, a homo-oligomer oxygenase, a [2Fe-2S] ferredoxin, and a GR-type reductase, and CndA has a low specificity for the electron transport component (ETC). The N-dealkylase utilizes NADH, but not NADPH, as the electron donor. PMID:24928877

  1. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa.

    PubMed Central

    Visca, P; Ciervo, A; Orsi, N

    1994-01-01

    The enzyme L-ornithine N5-oxygenase catalyzes the hydroxylation of L-ornithine (L-Orn), which represents an early step in the biosynthesis of the peptidic moiety of the fluorescent siderophore pyoverdin in Pseudomonas aeruginosa. A gene bank of DNA from P. aeruginosa PAO1 (ATCC 15692) was constructed in the broad-host-range cosmid pLAFR3 and mobilized into the L-Orn N5-oxygenase-defective (pvdA) P. aeruginosa mutant PALS124. Screening for fluorescent transconjugants made it possible to identify the trans-complementing cosmid pPV4, which was able to restore pyoverdin synthesis and L-Orn N5-oxygenase activity in the pvdA mutant PALS124. The 17-kb PAO1 DNA insert of pPV4 contained at least two genetic determinants involved in pyoverdin synthesis, i.e., pvdA and pvdC4, as shown by complementation analysis of a set of mutants blocked in different steps of the pyoverdin biosynthetic pathway. Deletion analysis, subcloning, and transposon mutagenesis enabled us to locate the pvdA gene in a minimum DNA fragment of 1.7 kb flanked by two SphI restriction sites. Complementation of the pvdA mutation was under stringent iron control; both pyoverdin synthesis and L-Orn N5-oxygenase activity were undetectable in cells of the trans-complemented mutant which had been grown in the presence of 100 microM FeCl3. The entire nucleotide sequence of the pvdA gene, from which the primary structure of the encoded polypeptide was deduced, was determined. The pvdA structural gene is 1,278 bp; the cloned DNA fragment contains at the 5' end of the gene a putative ribosome-binding site but apparently lacks known promoterlike sequences. The P. aeruginosa L-Orn N5-oxygenase gene codes for a 426-amino-acid peptide with a predicted molecular mass of 47.7 kDa and an isoelectric point of 8.1. The enzyme shows approximately 50% homology with functional analogs, i.e., L-lysine N6-hydroxylase of aerobactin-producing Escherichia coli and L-Orn N5-oxygenase of ferrichrome-producing Ustilago maydis. The pvd

  2. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    EPA Science Inventory

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  3. Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases

    PubMed Central

    Barry, Sarah M.; Challis, Gregory L.

    2013-01-01

    Rieske non-heme iron-dependent oxygenases are important enzymes that catalyze a wide variety of reactions in the biodegradation of xenobiotics and the biosynthesis of bioactive natural products. In this perspective article, we summarize recent efforts to elucidate the catalytic mechanisms of Rieske oxygenases and highlight the diverse range of reactions now known to be catalyzed by such enzymes. PMID:24244885

  4. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease. PMID:14517400

  5. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    PubMed

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-01

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking. PMID:7703255

  6. The metal centres of particulate methane mono-oxygenase.

    PubMed

    Rosenzweig, Amy C

    2008-12-01

    pMMO (particulate methane mono-oxygenase) is an integral membrane metalloenzyme that catalyses the oxidation of methane to methanol. The pMMO metal active site has not been identified, precluding detailed investigation of the reaction mechanism. Models for the metal centres proposed by various research groups have evolved as crystallographic and spectroscopic data have become available. The present review traces the evolution of these active-site models before and after the 2005 Methylococcus capsulatus (Bath) pMMO crystal structure determination. PMID:19021511

  7. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  8. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.

    PubMed

    Lee, M Hope; Clingenpeel, Scott C; Leiser, Owen P; Wymore, Ryan A; Sorenson, Kent S; Watwood, Mary E

    2008-05-01

    A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes. PMID:17904715

  9. Differential effects of metalloporphyrins on messenger RNA levels of delta-aminolevulinate synthase and heme oxygenase. Studies in cultured chick embryo liver cells.

    PubMed Central

    Cable, E E; Pepe, J A; Karamitsios, N C; Lambrecht, R W; Bonkovsky, H L

    1994-01-01

    The acute porphyrias in relapse are commonly treated with intravenous heme infusion to decrease the activity of delta-aminolevulinic acid synthase, normally the rate-controlling enzyme in heme biosynthesis. The biochemical effects of heme treatment are short-lived, probably due in part to heme-mediated induction of heme oxygenase, the rate-controlling enzyme for heme degradation. In this work, selected nonheme metalloporphyrins were screened for their ability to reduce delta-aminolevulinic acid synthase mRNA and induce heme oxygenase mRNA in chick embryo liver cell cultures. Of the metalloporphyrins tested, only zinc-mesoporphyrin reduced delta-aminolevulinic acid synthase mRNA without increasing heme oxygenase mRNA. The combination of zinc-mesoporphyrin and heme, at nanomolar concentrations, decreased delta-aminolevulinic acid synthase mRNA in a dose-dependent manner. The combination of zinc-mesoporphyrin (50 nM) and heme (200 nM) decreased the half-life of the mRNA for delta-aminolevulinic acid synthase from 5.2 to 2.5 h, while a similar decrease was produced by heme (10 microM) alone (2.2 h). The ability of zinc-mesoporphyrin to supplement the reduction of delta-aminolevulinic acid synthase mRNA by heme, in a process similar to that observed with heme alone, provides a rationale for further investigation of this compound for eventual use as a supplement to heme therapy of the acute porphyrias and perhaps other conditions in which heme may be of benefit. Images PMID:8040318

  10. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death

    PubMed Central

    Kwon, Min-Young; Park, Eunhee

    2015-01-01

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1−/− fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death. PMID:26405158

  11. Structural Investigations of the Ferredoxin and Terminal Oxygenase Components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1

    SciTech Connect

    Ferraro,D.; Brown, E.; Yu, C.; Parales, R.; Gibson, D.; Ramaswamy, S.

    2007-01-01

    The initial step involved in oxidative hydroxylation of monoaromatic and polyaromatic compounds by the microorganism Sphingobium yanoikuyae strain B1 (B1), previously known as Sphingomonas yanoikuyae strain B1 and Beijerinckia sp. strain B1, is performed by a set of multiple terminal Rieske non-heme iron oxygenases. These enzymes share a single electron donor system consisting of a reductase and a ferredoxin (BPDO-F{sub B1}). One of the terminal Rieske oxygenases, biphenyl 2,3-dioxygenase (BPDO-O{sub B1}), is responsible for B1's ability to dihydroxylate large aromatic compounds, such as chrysene and benzo(a)pyrene. Results: In this study, crystal structures of BPDO-O{sub B1} in both native and biphenyl bound forms are described. Sequence and structural comparisons to other Rieske oxygenases show this enzyme to be most similar, with 43.5 % sequence identity, to naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. While structurally similar to naphthalene 1,2-dioxygenase, the active site entrance is significantly larger than the entrance for naphthalene 1,2-dioxygenase. Differences in active site residues also allow the binding of large aromatic substrates. There are no major structural changes observed upon binding of the substrate. BPDO-F{sub B1} has large sequence identity to other bacterial Rieske ferredoxins whose structures are known and demonstrates a high structural homology; however, differences in side chain composition and conformation around the Rieske cluster binding site are noted. Conclusion: This is the first structure of a Rieske oxygenase that oxidizes substrates with five aromatic rings to be reported. This ability to catalyze the oxidation of larger substrates is a result of both a larger entrance to the active site as well as the ability of the active site to accommodate larger substrates. While the biphenyl ferredoxin is structurally similar to other Rieske ferredoxins, there are distinct changes in the amino acids near the iron

  12. Purification, crystallization and preliminary X-ray diffraction analysis of pathogen-inducible oxygenase (PIOX) from Oryza sativa.

    PubMed

    Lloyd, Tracy; Krol, Adam; Campanaro, Danielle; Malkowski, Michael

    2006-04-01

    Pathogen-inducible oxygenase (PIOX) is a heme-containing membrane-associated protein found in monocotyledon and dicotyledon plants that utilizes molecular oxygen to convert polyunsaturated fatty acids into their corresponding 2R-hydroperoxides. PIOX is a member of a larger family of fatty-acid alpha-dioxygenases that includes the mammalian cyclooxygenase enzymes cyclooxygenase 1 and 2 (COX-1 and COX-2). Single crystals of PIOX from rice (Oryza sativa) have been grown from MPD using recombinant protein expressed in Escherichia coli and subsequently extracted utilizing decyl maltoside as the solubilizing detergent. Crystals diffract to 3.0 angstroms resolution using a rotating-anode generator and R-AXIS IV detector, and belong to space group P1. Based on the Matthews coefficient and self-rotation function analyses, there are presumed to be four molecules in the asymmetric unit related by noncrystallographic 222 symmetry. PMID:16582486

  13. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.

    PubMed

    Cankar, Katarina; van Houwelingen, Adèle; Bosch, Dirk; Sonke, Theo; Bouwmeester, Harro; Beekwilder, Jules

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene. PMID:21115006

  14. Detergents profoundly affect inhibitor potencies against both cyclo-oxygenase isoforms.

    PubMed

    Ouellet, Marc; Falgueyret, Jean-Pierre; Percival, M David

    2004-02-01

    The sensitivity of Coxs (cyclo-oxygenases) to inhibition is known to be highly dependent on assay conditions. In the present study, the inhibitor sensitivities of purified Cox-1 and -2 were determined in a colorimetric assay using the reducing agent N, N, N ', N '-tetramethyl- p -phenylenediamine. With the detergent genapol X-100 (2 mM) present, the potencies of nimesulide, ibuprofen, flufenamic acid, niflumic acid and naproxen were increased over 100-fold against Cox-2 and titration curve shapes changed, so that maximal inhibition now approached 100%. Indomethacin, diclofenac and flosulide were not changed in potency. Similar effects of genapol were observed with inhibitors of Cox-1. DuP-697 and two analogues became more than 10-fold less potent against Cox-2 with genapol present. Tween-20, Triton X-100 and phosphatidylcholine, but not octylglucoside, gave qualitatively similar effects as genapol. Similar detergent-dependent changes in inhibitor potency were also observed using a [(14)C]arachidonic acid HPLC assay. The increases in potency of ibuprofen, flufenamic acid, isoxicam and niflumic acid towards Cox-2 and ibuprofen towards Cox-1 were accompanied by a change from time-independent to time-dependent inhibition. The interactions of Cox inhibitors has been described in terms of multiple binding step mechanisms. The genapol-dependent increase in inhibitor potency for ketoprofen was associated with an increase in the rate constant for the conversion of the initial enzyme-inhibitor complex to a second, more tightly bound form. The loss of potency for some inhibitors is probably due to inhibitor partitioning into detergent micelles. The present study identifies detergents as another factor that must be considered when determining inhibitor potencies against both Cox isoforms. PMID:14510637

  15. The Conserved Rieske Oxygenase DAF-36/Neverland Is a Novel Cholesterol-metabolizing Enzyme*

    PubMed Central

    Yoshiyama-Yanagawa, Takuji; Enya, Sora; Shimada-Niwa, Yuko; Yaguchi, Shunsuke; Haramoto, Yoshikazu; Matsuya, Takeshi; Shiomi, Kensuke; Sasakura, Yasunori; Takahashi, Shuji; Asashima, Makoto; Kataoka, Hiroshi; Niwa, Ryusuke

    2011-01-01

    Steroid hormones play essential roles in a wide variety of biological processes in multicellular organisms. The principal steroid hormones in nematodes and arthropods are dafachronic acids and ecdysteroids, respectively, both of which are synthesized from cholesterol as an indispensable precursor. The first critical catalytic step in the biosynthesis of these ecdysozoan steroids is the conversion of cholesterol to 7-dehydrocholesterol. However, the enzymes responsible for cholesterol 7,8-dehydrogenation remain unclear at the molecular level. Here we report that the Rieske oxygenase DAF-36/Neverland (Nvd) is a cholesterol 7,8-dehydrogenase. The daf-36/nvd genes are evolutionarily conserved, not only in nematodes and insects but also in deuterostome species that do not produce dafachronic acids or ecdysteroids, including the sea urchin Hemicentrotus pulcherrimus, the sea squirt Ciona intestinalis, the fish Danio rerio, and the frog Xenopus laevis. An in vitro enzymatic assay system reveals that all DAF-36/Nvd proteins cloned so far have the ability to convert cholesterol to 7-dehydrocholesterol. Moreover, the lethality of loss of nvd function in the fruit fly Drosophila melanogaster is rescued by the expression of daf-36/nvd genes from the nematode Caenorhabditis elegans, the insect Bombyx mori, or the vertebrates D. rerio and X. laevis. These data suggest that daf-36/nvd genes are functionally orthologous across the bilaterian phylogeny. We propose that the daf-36/nvd family of proteins is a novel conserved player in cholesterol metabolism across the animal phyla. PMID:21632547

  16. PIOX, a new pathogen-induced oxygenase with homology to animal cyclooxygenase.

    PubMed Central

    Sanz, A; Moreno, J I; Castresana, C

    1998-01-01

    Changes in gene expression induced in tobacco leaves by the harpin HrpN protein elicitor were examined, and a new cDNA, piox (for pathogen-induced oxygenase), with homology to genes encoding cyclooxygenase or prostaglandin endoperoxide synthase (PGHS), was identified. In addition to the amino acid identity determined, the protein encoded by piox is predicted to have a structural core similar to that of ovine PGHS-1. Moreover, studies of protein functionality demonstrate that the PIOX recombinant protein possesses at least one of the two enzymatic activities of PGHSs, that of catalyzing the oxygenation of polyunsaturated fatty acids. piox transcripts accumulated after protein elicitor treatment or inoculation with bacteria. Expression of piox was induced in tissues responding to inoculation with both incompatible and compatible bacteria, but RNA and protein accumulation differed for both types of interactions. We show that expression of piox is rapidly induced in response to various cellular signals mediating plant responses to pathogen infection and that activation of piox expression is most likely related to the oxidative burst that takes place during the cell death processes examined. Cyclooxygenase catalyzes the first committed step in the formation of prostaglandins and thromboxanes, which are lipid-derived signal molecules that mediate many cellular processes, including the immune response in vertebrates. The finding of tobacco PIOX suggests that more similarities than hitherto expected will be found between the lipid-based responses for plant and animal systems. PMID:9724698

  17. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme.

    PubMed

    Yoshiyama-Yanagawa, Takuji; Enya, Sora; Shimada-Niwa, Yuko; Yaguchi, Shunsuke; Haramoto, Yoshikazu; Matsuya, Takeshi; Shiomi, Kensuke; Sasakura, Yasunori; Takahashi, Shuji; Asashima, Makoto; Kataoka, Hiroshi; Niwa, Ryusuke

    2011-07-22

    Steroid hormones play essential roles in a wide variety of biological processes in multicellular organisms. The principal steroid hormones in nematodes and arthropods are dafachronic acids and ecdysteroids, respectively, both of which are synthesized from cholesterol as an indispensable precursor. The first critical catalytic step in the biosynthesis of these ecdysozoan steroids is the conversion of cholesterol to 7-dehydrocholesterol. However, the enzymes responsible for cholesterol 7,8-dehydrogenation remain unclear at the molecular level. Here we report that the Rieske oxygenase DAF-36/Neverland (Nvd) is a cholesterol 7,8-dehydrogenase. The daf-36/nvd genes are evolutionarily conserved, not only in nematodes and insects but also in deuterostome species that do not produce dafachronic acids or ecdysteroids, including the sea urchin Hemicentrotus pulcherrimus, the sea squirt Ciona intestinalis, the fish Danio rerio, and the frog Xenopus laevis. An in vitro enzymatic assay system reveals that all DAF-36/Nvd proteins cloned so far have the ability to convert cholesterol to 7-dehydrocholesterol. Moreover, the lethality of loss of nvd function in the fruit fly Drosophila melanogaster is rescued by the expression of daf-36/nvd genes from the nematode Caenorhabditis elegans, the insect Bombyx mori, or the vertebrates D. rerio and X. laevis. These data suggest that daf-36/nvd genes are functionally orthologous across the bilaterian phylogeny. We propose that the daf-36/nvd family of proteins is a novel conserved player in cholesterol metabolism across the animal phyla. PMID:21632547

  18. Aryl hydrocarbon mono-oxygenase activity in human lymphocytes

    SciTech Connect

    Griffin, G.D.; Schuresko, D.D.

    1981-06-01

    Aryl hydrocarbon mono-oxygenase (AHM), an enzyme of key importance in metabolism of xenobiotic chemicals such as polynuclear aromatic hydrocarbons (PNA), is present in human lymphocytes. Studies investing the relation of activity of AHM in human lymphocytes to parameters such as disease state, PNA exposure, in vitro mitogen stimulation, etc. have been summarized in this report. Some studies have demonstrated increased AHM activity in lymphocytes from cigarette smokers (compared to nonsmokers), and in lung cancer patients when compared to appropriate control groups. These observations are confused by extreme variability in human lymphocyte AHM activities, such variability arising from factors such as genetic variation in AHM activity, variation in in vitro culture conditions which affect AHM activity, and the problematical relationship of common AHM assays to actual PNA metabolism taking place in lymphocytes. If some of the foregoing problems can be adequately addressed, lymphocyte AHM activity could hold the promise of being a useful biomarker system for human PNA exposure.

  19. Role of rice heme oxygenase in lateral root formation

    PubMed Central

    Huei Kao, Ching

    2013-01-01

    Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. In rice, exposure to auxin, methyl jasmonate (MJ), apocynin, and CoCl2 has been shown to increase LR formation. This review provides evidence showing a close link between rice heme oxygenase (HO) and LR formation. The effect of auxin and MJ is nitric oxide (NO) dependent, whereas that of apocynin requires H2O2. The effect of CoCl2 on the LR formation could be by some other pathway unrelated to NO and H2O2. This review also highlights future lines of research that should increase our knowledge of HO-involved LR formation in rice. PMID:23887491

  20. Retuning Rieske-type Oxygenases to Expand Substrate Range

    SciTech Connect

    Mohammadi, Mahmood; Viger, Jean-François; Kumar, Pravindra; Barriault, Diane; Bolin, Jeffrey T.; Sylvestre, Michel

    2012-09-17

    Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE{sub p4}, a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE{sub LB400} by the double substitution T335A/F336M, and BphAE{sub RR41}, obtained by changing Asn{sup 338}, Ile{sup 341}, and Leu{sup 409} of BphAE{sub p4} to Gln{sup 338}, Val{sup 341}, and Phe{sup 409}, metabolize dibenzofuran two and three times faster than BphAE{sub LB400}, respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE{sub LB400} showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.

  1. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    PubMed

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  2. The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity.

    PubMed

    Prado, R A; Santos, C R; Kato, D I; Murakami, M T; Viviani, V R

    2016-05-11

    Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343). PMID:27101527

  3. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    EPA Science Inventory

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  4. In vitro Activation of heme oxygenase-2 by menadione and its analogs

    PubMed Central

    2014-01-01

    Background Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure–activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Methods Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and −2, respectively, as well as recombinant, human heme oxygenase-2. Results Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and −3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, α-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. Conclusions These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties. PMID:24533775

  5. Functional metagenomic selection of ribulose 1, 5-bisphosphate carboxylase/oxygenase from uncultivated bacteria.

    PubMed

    Varaljay, Vanessa A; Satagopan, Sriram; North, Justin A; Witte, Brian; Dourado, Manuella N; Anantharaman, Karthik; Arbing, Mark A; McCann, Shelley Hoeft; Oremland, Ronald S; Banfield, Jillian F; Wrighton, Kelly C; Tabita, F Robert

    2016-04-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2 -dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2 /O2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2 -fixing enzymes not previously characterized. PMID:26617072

  6. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces.

    PubMed

    Medina, Humberto R; Cerdá-Olmedo, Enrique; Al-Babili, Salim

    2011-10-01

    Mixed cultures of strains of opposite sex of the Mucorales produce trisporic acids and other compounds arising from cleavage of β-carotene, some of which act as signals in the mating process. The genome of Phycomyces blakesleeanus contains five sequences akin to those of verified carotenoid cleavage oxygenases. All five are transcribed, three of them have the sequence traits that are considered essential for activity, and we have discovered the reactions catalysed by the products of two of them, genes carS and acaA. The transcripts of carS became more abundant in the course of mating, and its expression in β-carotene-producing Escherichia coli cells led to the formation of β-apo-12'-carotenal, a C₂₅ cleavage product of β-carotene. Joint expression of both genes in the same in vivo system resulted in the production of β-apo-13-carotenone, a C₁₈ fragment. In vitro, AcaA cleaved β-apo-12'-carotenal into β-apo-13-carotenone and was active on other apocarotenoid substrates. According to these and other results, the first reactions in the apocarotenoid pathway of Phycomyces are the cleavage of β-carotene at its C11'-C12' double bond by CarS and the cleavage of the resulting C₂₅-fragment at its C13-14 double bond by AcaA. PMID:21854466

  7. Crystal Structure of the Terminal Oxygenase Component of Cumene Dioxygenase from Pseudomonas fluorescens IP01†

    PubMed Central

    Dong, Xuesong; Fushinobu, Shinya; Fukuda, Eriko; Terada, Tohru; Nakamura, Shugo; Shimizu, Kentaro; Nojiri, Hideaki; Omori, Toshio; Shoun, Hirofumi; Wakagi, Takayoshi

    2005-01-01

    The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 Å by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases. PMID:15774891

  8. Vitamins C, E and A and heme oxygenase in rats fed methyl/folate-deficient diets.

    PubMed

    Henning, S M; Swendseid, M E; Ivandic, B T; Liao, F

    1997-01-01

    There is evidence that the development of hepatocarcinoma in rats fed a methyl-deficient diet is associated with oxidative stress. We investigated, therefore, whether the tissue concentrations of the antioxidant vitamins ascorbic acid (AA) and alpha- and gamma-tocopherol (T) are altered in methyl/folate deficiency. We also measured retinol concentrations in tissues and hepatic mRNA expression of heme oxygenase (HO1). A 6% gelatin, 6% casein diet, devoid of choline and folate (CFD) was selected based on the high rate of tumor development in rats fed this diet. Spectrophotometric measurement of AA and HPLC determination of tissue T and retinol showed decreased concentrations of AA in blood; alpha- and gamma-T in lung, heart and plasma, alpha-T and retinol in liver; retinol in lung; and increased expression of hepatic HO1 mRNA. Similar alterations in tissue vitamin concentrations were found when the CFD diet devoid of niacin (CFND) was fed. Reducing alpha-T in the CFND diet (CFNED) further decreased hepatic alpha-T concentrations. These results show that chronic methyl/folate deficiency is associated with a compromised antioxidant defense system. PMID:9378373

  9. Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice.

    PubMed

    Chen, Yi-Hsuan; Chao, Yun-Yang; Hsu, Yun Yen; Hong, Chwan-Yang; Kao, Ching Huei

    2012-06-01

    Lateral root (LR) development performs the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of nitric oxide (NO), auxin, and hemin (Hm) on LR formation in rice. Treatment with Hm [a highly effective heme oxygenase (HO) inducer], sodium nitroprusside (SNP, an NO donor), or indole-3-butyric acid (IBA, a naturally occurring auxin) induced LR formation and HO activity. LR formation and HO activity induced by SNP and IBA but not Hm was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. As well, Hm, SNP, and IBA could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) and hemoglobin (the carbon monoxide/NO scavenger) reduced LR number and HO activity induced by Hm, SNP, and IBA. Our data suggest that HO is required for Hm-, auxin-, and NO-induced LR formation in rice. PMID:22262313

  10. Ribulose-1,5-bisphosphate Carboxylase/Oxygenase content, assimilatory charge, and mesophyll conductance in leaves

    PubMed

    Eichelmann; Laisk

    1999-01-01

    The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 &mgr;mol active sites m-2. Mesophyll conductance (&mgr;) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of &mgr; on Et saturated at Et = 30 &mgr;mol active sites m-2 and &mgr; = 11 mm s-1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a &mgr; of only 6 to 8 mm s-1. &mgr; was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 &mgr;M-1 s-1. Our data show that the saturation of the relationship between Et and &mgr; is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites. PMID:9880359

  11. Mechanistic Insights from Reaction of α-Oxiranyl-Aldehydes with Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Das, Debasis; Ellington, Benjamin; Paul, Bishwajit; Marsh, E. Neil G.

    2014-01-01

    The biosynthesis of long-chain aliphatic hydrocarbons, which are derived from fatty acids, is widespread in Nature. The last step in this pathway involves the decarbonylation of fatty aldehydes to the corresponding alkanes or alkenes. In cyanobacteria this is catalyzed by an aldehyde deformylating oxygenase. We have investigated the mechanism of this enzyme using substrates bearing an oxirane ring adjacent to the aldehyde carbon. The enzyme catalyzed the deformylation of these substrates to produce the corresponding oxiranes. Performing the reaction in D2O allowed the facial selectivity of proton addition to be examined by 1H-NMR spectroscopy. The proton is delivered with equal probability to either face of the oxirane ring, indicating the formation of an oxiranyl radical intermediate that is free to rotate during the reaction. Unexpectedly, the enzyme also catalyzes a side reaction in which oxiranyl-aldehydes undergo tandem deformylation to furnish alkanes two carbons shorter. We present evidence that this involves the rearrangement of the intermediate oxiranyl radical formed in the first step, resulting an aldehyde that is further deformylated in a second step. These observations provide support for a radical mechanism for deformylation and, furthermore, allow the lifetime of the radical intermediate to be estimated based on prior measurements of rate constants for the rearrangement of oxiranyl radicals. PMID:24313866

  12. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    PubMed

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats. PMID:11509478

  13. Characterization of a Wheat Heme Oxygenase-1 Gene and Its Responses to Different Abiotic Stresses

    PubMed Central

    Xu, Dao-kun; Jin, Qi-jiang; Xie, Yan-jie; Liu, Ya-hui; Lin, Yu-ting; Shen, Wen-biao; Zhou, Yi-jun

    2011-01-01

    In animals and recently in plants, heme oxygenase-1 (HO1) has been found to confer protection against a variety of oxidant-induced cell and tissue injuries. In this study, a wheat (Triticum aestivum) HO1 gene TaHO1 was cloned and sequenced. It encodes a polypeptide of 31.7 kD with a putative N-terminal plastid transit peptide. The amino acid sequence of TaHO1 was found to be 78% similar to that of maize HO1. Phylogenetic analysis revealed that TaHO1 clusters together with the HO1-like sequences in plants. The purified recombinant TaHO1 protein expressed in Escherichia coli was active in the conversion of heme to biliverdin IXa (BV), and showed that the Vmax was 8.8 U·mg−1 protein with an apparent Km value for hemin of 3.04 μM. The optimum Tm and pH were 35 °C and 7.4, respectively. The result of subcellular localization of TaHO1 showed that the putative transit peptide was sufficient for green fluorescent protein (GFP) to localize in chloroplast and implied that TaHO1 gene product is at least localized in the chloroplast. Moreover, we found that TaHO1 mRNA could be differentially induced by the well-known nitric oxide (NO) donor sodium nitroprusside (SNP), gibberellin acid (GA), abscisic acid (ABA), hydrogen peroxide (H2O2) and NaCl treatments. Therefore, the results suggested that TaHO1 might play an important role in abiotic stress responses. PMID:22174625

  14. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    PubMed

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. PMID:16222706

  15. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo

    PubMed Central

    Elassiuty, Yasser E.; Klarquist, Jared; Speiser, Jodi; Yousef, Randa M.; EL Refaee, Abdelaziz A.; Hunter, Nahla S.; Shaker, Olfat G.; Gundeti, Mohan; Nieuweboer-Krobotova, Ludmila; Le Poole, I. Caroline

    2013-01-01

    To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP. Similarly, expression of heme oxygenases was followed in skin from vitiligo patients before and after PUVA treatment. Single and double immunostainings were used in combination with light and confocal microscopic analysis and Western blotting. Melanocyte expression of heme oxygenase 1 is upregulated, whereas heme oxygenase 2 is reduced in response to UV and 4-TBP. Upregulation of inducible heme oxygenase 1 was also observed in UV-treated explant cultures, in skin of successfully PUVA-treated patients and in melanocytes cultured from vitiligo non-lesional skin. Heme oxygenase encoding genes were subsequently cloned to study consequences of either gene product on cell viability, demonstrating that HO-1 but not HO-2 overexpression offers protection from stress-induced cell death in MTT assays. HO-1 expression by melanocytes may contribute to beneficial effects of UV treatment for vitiligo patients. PMID:21426408

  16. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    PubMed

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells. PMID:8652820

  17. Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis

    PubMed Central

    Muchova, Lucie; Vanova, Katerina; Suk, Jakub; Micuda, Stanislav; Dolezelova, Eva; Fuksa, Leos; Cerny, Dalibor; Farghali, Hassan; Zelenkova, Miroslava; Lenicek, Martin; Wong, Ronald J; Vreman, Hendrik J; Vitek, Libor

    2015-01-01

    Estrogen-induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase-1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol-induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down-regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up-regulated Mrp3 (348%, P ≤ 0.05). Heme pre-treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up-regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol-treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme-induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up-regulation (Mrp2/Mrp4) or down-regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2-dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1

  18. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  19. Role of heme Oxygenase-1 in low dose Radioadaptive response

    PubMed Central

    Bao, Lingzhi; Ma, Jie; Chen, Guodong; Hou, Jue; Hei, Tom K.; Yu, K.N.; Han, Wei

    2016-01-01

    Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1–10 cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5 cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. PMID:26966892

  20. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  1. Heme oxygenase-1 protects against vascular constriction and proliferation.

    PubMed

    Duckers, H J; Boehm, M; True, A L; Yet, S F; San, H; Park, J L; Clinton Webb, R; Lee, M E; Nabel, G J; Nabel, E G

    2001-06-01

    Heme oxygenase (HO-1, encoded by Hmox1) is an inducible protein activated in systemic inflammatory conditions by oxidant stress. Vascular injury is characterized by a local reparative process with inflammatory components, indicating a potential protective role for HO-1 in arterial wound repair. Here we report that HO-1 directly reduces vasoconstriction and inhibits cell proliferation during vascular injury. Expression of HO-1 in arteries stimulated vascular relaxation, mediated by guanylate cyclase and cGMP, independent of nitric oxide. The unexpected effects of HO-1 on vascular smooth muscle cell growth were mediated by cell-cycle arrest involving p21Cip1. HO-1 reduced the proliferative response to vascular injury in vivo; expression of HO-1 in pig arteries inhibited lesion formation and Hmox1-/- mice produced hyperplastic arteries compared with controls. Induction of the HO-1 pathway moderates the severity of vascular injury by at least two adaptive mechanisms independent of nitric oxide, and is a potential therapeutic target for diseases of the vasculature. PMID:11385506

  2. Heme oxygenase-1 regulates mitochondrial quality control in the heart

    PubMed Central

    Hull, Travis D.; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C.; Traylor, Amie M.; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D.; Suliman, Hagir B.; Piantadosi, Claude A.; Agarwal, Anupam; George, James F.

    2016-01-01

    The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control. PMID:27110594

  3. The copper active site of CBM33 polysaccharide oxygenases.

    PubMed

    Hemsworth, Glyn R; Taylor, Edward J; Kim, Robbert Q; Gregory, Rebecca C; Lewis, Sally J; Turkenburg, Johan P; Parkin, Alison; Davies, Gideon J; Walton, Paul H

    2013-04-24

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  4. Heme oxygenase-1 comes back to endoplasmic reticulum

    SciTech Connect

    Kim, Hong Pyo; Pae, Hyun-Ock; Back, Sung Hun; Chung, Su Wol; Woo, Je Moon; Son, Yong; Chung, Hun-Taeg

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  5. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis

    SciTech Connect

    Li Mei; Chen Zhiwei; Zhang Pingfeng; Pan Xiaowei; Jiang Chengying; An Xiaomin; Liu Shuangjiang; Chang Wenrui

    2008-05-09

    Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.

  6. Heme oxygenase-1 in macrophages controls prostate cancer progression

    PubMed Central

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-01-01

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression. We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells. In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression. PMID:26418896

  7. Heatstroke Effect on Brain Heme Oxygenase-1 in Rats.

    PubMed

    Wen, Ya-Ting; Liu, Tsung-Ta; Lin, Yuh-Feng; Chen, Chun-Chi; Kung, Woon-Man; Huang, Chi-Chang; Lin, Tien-Jen; Wang, Yuan-Hung; Wei, Li

    2015-01-01

    Exposure to high environmental temperature leading to increased core body temperature above 40°C and central nervous system abnormalities such as convulsions, delirium, or coma is defined as heat stroke. Studies in humans and animals indicate that the heat shock responses of the host contribute to multiple organ injury and death during heat stroke. Heme oxygenase-1 (HO-1)-a stress-responsive enzyme that catabolizes heme into iron, carbon monoxide, and biliverdin-has an important role in the neuroprotective mechanism against ischemic stroke. Here, we investigated the role of endogenous HO-1 in heat-induced brain damage in rats. RT-PCR results revealed that levels of HO-1 mRNA peaked at 0 h after heat exposure and immunoblot analysis revealed that the maximal protein expression occurred at 1 h post-heat exposure. Subsequently, we detected the HO-1 expression in the cortical brain cells and revealed the neuronal cell morphology. In conclusion, HO-1 is a potent protective molecule against heat-induced brain damage. Manipulation of HO-1 may provide a potential therapeutic approach for heat-related diseases. PMID:26392811

  8. Role of heme Oxygenase-1 in low dose Radioadaptive response.

    PubMed

    Bao, Lingzhi; Ma, Jie; Chen, Guodong; Hou, Jue; Hei, Tom K; Yu, K N; Han, Wei

    2016-08-01

    Radioadaptive response (RAR) is an important phenomenon induced by low dose radiation. However, the molecular mechanism of RAR is obscure. In this study, we focused on the possible role of heme oxygenase 1 (HO-1) in RAR. Consistent with previous studies, priming dose of X-ray radiation (1-10cGy) induced significant RAR in normal human skin fibroblasts (AG 1522 cells). Transcription and translation of HO-1 was up-regulated more than two fold by a priming dose of radiation (5cGy). Zinc protoporphyrin Ⅸ, a specific competitive inhibitor of HO-1, efficiently inhibited RAR whereas hemin, an inducer of HO-1, could mimic priming dose of X-rays to induce RAR. Knocking down of HO-1 by transfection of HO-1 siRNA significantly attenuated RAR. Furthermore, the expression of HO-1 gene was modulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which translocated from cytoplasm to nucleus after priming dose radiation and enhance the antioxidant level of cells. PMID:26966892

  9. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  10. Heme oxygenase-1 in macrophages controls prostate cancer progression.

    PubMed

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-10-20

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression.We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells.In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression. PMID:26418896

  11. Heme oxygenase-1 modulates fetal growth in the rat.

    PubMed

    Kreiser, Doron; Nguyen, Xuandai; Wong, Ron; Seidman, Daniel; Stevenson, David; Quan, Shou; Abraham, Nader; Dennery, Phyllis A

    2002-06-01

    Intrauterine growth restriction is associated with increased perinatal morbidity and mortality as well as with lifelong cardiovascular and metabolic complications. Deficiency of heme oxygenase 1 (HO-1) is associated with growth restriction in mice and in humans, suggesting a role for HO-1 in fetal growth and maintenance of pregnancy. We hypothesized that modulation of HO-1 in the pregnant rat would alter fetal growth. In pregnant dams, placental HO activity was significantly inhibited with zinc deuteroporphyrin IX 2,4 bis glycol, and HO-1 protein was increased by transducing adenoviral human HO-1. Inhibition of HO-1 by zinc deuteroporphyrin IX 2,4 bis glycol resulted in a significant decrease in pup size, whereas transfection with hHO-1 resulted in increased pup size. Furthermore, the expression of IGF binding protein-1 and its receptor paralleled the expression of HO-1 in the placenta and were significantly modulated by modification of HO-1 along with the expression of vascular endothelial growth factor. These observations demonstrate that HO-1 modulates fetal growth by its effects on placental growth factors. PMID:12065678

  12. Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies.

    PubMed

    Wagner, K R; Hua, Y; de Courten-Myers, G M; Broderick, J P; Nishimura, R N; Lu, S Y; Dwyer, B E

    2000-05-01

    Spontaneous intracerebral hemorrhage (ICH) is the stroke subtype with highest mortality and morbidity. ICH can also occur following traumatic brain injury and thrombolysis for ischemic stroke and myocardial infarction. Development of ICH-induced hemispheric edema can elevate intracranial pressure and cause death. In survivors, edema-related white matter injury can lead to life-long neurological deficits. At present, there are no scientifically proven treatments for ICH. Heme oxygenase products, particularly iron and bilirubin, can be toxic to cells. In cerebral ischemia models, metalloporphyrins that are potent heme oxygenase inhibitors, reduce edema and infarct size. Tin-mesoporphyrin (SnMP) is a neuroprotectant that has also been used clinically to treat hyperbilirubinemia. Presently, we tested the hypothesis that SnMP treatment would reduce edema development following experimental ICH. We produced hematomas in pentobarbital-anesthetized pigs (9-11 kg) by infusing autologous blood into the frontal white matter. To maximize tissue concentrations, SnMP (87.5 microM in DMSO) or DMSO (vehicle controls) was included in the infused blood. Pig brains were frozen in situ at 24 hrs. following ICH and hematoma and edema volumes were determined on coronal sections by computer-assisted image analysis. We also examined the effects of SnMP in vitro on ferritin iron release, the formation of iron-induced thiobarbituric acid reactive substances (TBARS) and initial clot formation and hemolysis. SnMP treatment significantly reduced intracerebral mass following ICH. This was due to significant decreases in hematoma (0.68+/-0.08 vs. 1.39+/-0.30 cc, vehicle controls p<0.025) and edema volumes (edema = 1. 16+/-0.33 vs. 1.77+/-0.31 cc, p<0.05). In vitro, SnMP did not stabilize ferritin iron against reductive release nor did it decrease iron-induced TBARS formation in brain homogenates. SnMP or DMSO added to pig blood did not alter clot weights. In conclusion, SnMP reduced intracerebral

  13. Alternative 5’ Untranslated Regions Are Involved in Expression Regulation of Human Heme Oxygenase-1

    PubMed Central

    Kramer, Marcel; Sponholz, Christoph; Slaba, Monique; Wissuwa, Bianka; Claus, Ralf A.; Menzel, Uwe; Huse, Klaus; Platzer, Matthias; Bauer, Michael

    2013-01-01

    The single nucleotide polymorphism rs2071746 and a (GT)n microsatellite within the human gene encoding heme oxygenase-1 (HMOX1) are associated with incidence or outcome in a variety of diseases. Most of these associations involve either release of heme or oxidative stress. Both polymorphisms are localized in the promoter region, but previously reported correlations with heme oxygenase-1 expression remain not coherent. This ambiguity suggests a more complex organization of the 5’ gene region which we sought to investigate more fully. We evaluated the 5‘ end of HMOX1 and found a novel first exon 1a placing the two previously reported polymorphisms in intronic or exonic positions within the 5’ untranslated region respectively. Expression of exon 1a can be induced in HepG2 hepatoma cells by hemin and is a repressor of heme oxygenase-1 translation as shown by luciferase reporter assays. Moreover, minigene approaches revealed that the quantitative outcome of alternative splicing within the 5’ untranslated region is affected by the (GT)n microsatellite. This data supporting an extended HMOX1 gene model and provide further insights into expression regulation of heme oxygenase-1. Alternative splicing within the HMOX1 5' untranslated region contributes to translational regulation and is a mechanistic feature involved in the interplay between genetic variations, heme oxygenase-1 expression and disease outcome. PMID:24098580

  14. Microinjection of heme oxygenase genes rescues phytochrome-chromophore-deficient mutants of the moss Ceratodon purpureus.

    PubMed

    Brücker, G; Zeidler, M; Kohchi, T; Hartmann, E; Lamparter, T

    2000-03-01

    In protonemal tip cells of the moss Ceratodon purpureus (Hedw.) Brid., phototropism and chlorophyll accumulation are regulated by the photoreceptor phytochrome. The mutant ptr116 lacks both responses as a result of a defect in the biosynthesis of phytochromobilin, the chromophore of phytochrome, at the point of biliverdin formation. The rescue of the phototropic response and of chlorophyll synthesis were tested by injecting different substances into tip cells of ptr116. Microinjection was first optimised with the use of fluorescent dyes and an expression plasmid containing a green fluorescent protein (GFP) gene. Injected phycocyanobilin, which substitutes for phytochromobilin, rescued both the phototropic response and light-induced chlorophyll accumulation in ptr116. The same results were obtained when expression plasmids with heme oxygenase genes of rat (HO-1) and Arabidopsis thaliana (L.) Heynh. (HY1) were injected. Heme oxygenase catalyses the conversion of heme into biliverdin. Whereas HY1 has a plastid target sequence and is presumably transferred to plastids, HO-1 is proposed to be cytosolic. The data show that ptr116 lacks heme oxygenase enzyme activity and indicate that heme oxygenases of various origin are active in Ceratodon bilin synthesis. In addition, it can be inferred from the data that the intracellular localisation of the expressed heme oxygenase is not important since the plastid enzyme can be replaced by a cytosolic one. PMID:10787045

  15. Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily

    PubMed Central

    McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; Sarwar, Maruf; Mathieu, Jeannette L.; Gitschlag, Bryan L.; Du, Yu; Bachmann, Brian O.; Iverson, T. M.

    2015-01-01

    Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics. PMID:26240321

  16. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    PubMed

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine. PMID:26862199

  17. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death

    PubMed Central

    Lanceta, Lilibeth; Mattingly, Jacob M.

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by “loose” (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity–CO and bilirubin–have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity. PMID:26270345

  18. Heme oxygenase system and hypertension: a comprehensive insight.

    PubMed

    Tiwari, Shuchita; Ndisang, Joseph Fomusi

    2014-01-01

    Hypertension is a complex interplay of interrelated etiologies, and the leading risk factor for many cardiovascular morbidity and mortality worldwide. Cardinal pathophysiological features of hypertension include enhanced vascular inflammation, vascular remodeling, vascular contractility and increased oxidative stress. In response to oxidative, inflammatory or other noxious stimuli, many physiological pathways like the heme oxygenase (HO) system are activated in an attempt to counteract tissue insults. However, the pathophysiological activation of the HO system only results to a transient increase of HO activity that fall below the necessary threshold capable of activating the downstream signaling components of the HO system like the soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) secondary messenger system. Therefore, a more robust potentiation of the HO system by pharmacological agents such as hemin, heme-arginate, cobalt protoporphyrin or through retroviral HO-1 gene delivery would be needed to surmount the threshold for cytoprotection. The HO system modulates cellular homeostasis. Importantly, the HO system plays a vital role in a wide spectrum of physiologic including the regulation of blood vessel tone. Alterations in the activity and expression of HO has been correlated to pathophysiology of hypertension and related complications such as hypertrophy, myocardial infarction and heart failure. Moreover, the cytoprotection exerted by HO is attributable to its catabolic products namely, carbon monoxide, bilirubin/biliverdin, and ferritin that are known to modulate immune, inflammatory and oxidative insults. The growing incidence of hypertension and associated cardiometabolic complications has prompted the need for the exploration of alternative therapeutic strategies like substances capable of potentiating the HO system. This review briefly, highlights the functional significance of the HO system and its downstream signaling molecules

  19. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  20. Heme oxygenase-1 alleviates alcoholic liver steatosis: histopathological study

    PubMed Central

    Palipoch, Sarawoot; Koomhin, Phanit; Punsawad, Chuchard; Na-Ek, Prasit; Sattayakhom, Apsorn; Suwannalert, Prasit

    2015-01-01

    Excessive alcohol consumption is one of the most important causes of hepatic steatosis, which involves oxidative stress. In particular, increased oxidative stress has been strongly linked to stimulation of the expression of heme oxygenase-1 (HO-1). This study aimed to investigate whether HO-1 could alleviates alcoholic steatosis in rats. Male Wistar rats were randomly divided into 4 groups: 1) the control group, 2) the EtOH group, 3) the EtOH + ZnPP-IX group and 4) the EtOH + Hemin group. Liver histopathology was investigated in weeks 1 and 4 after the start of the treatment period. Alcohol treatment significantly increased the hepatic malondialdehyde (MDA) levels, an oxidative stress marker. In addition, it increased the triglyceride, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in both weeks. Gross examination demonstrated a yellowish and slightly enlarged liver in the alcohol-treated rats. Hematoxylin and eosin (H&E) and Oil Red O staining indicated hepatic steatosis, which was characterized by diffuse, extensive fatty accumulation and discrete lipid droplets of variable size in hepatocytes of the alcohol-treated rats. Administration of the HO-1 inducer hemin resulted in upregulation of hepatic HO-1 gene expression, reduced the MDA, triglyceride, ALT and AST levels and alleviated alcoholic hepatic steatosis, whereas administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX) resulted in downregulation of hepatic HO-1 gene expression and could not alleviate alcoholic hepatic steatosis either week. In conclusion, HO-1 could alleviate alcoholic hepatic steatosis in male Wistar rats and may be useful in development of a new therapeutic approach. PMID:26989297

  1. Heme oxygenase metabolites inhibit tubuloglomerular feedback in vivo.

    PubMed

    Wang, Hong; Garvin, Jeffrey L; D'Ambrosio, Martin A; Falck, John R; Leung, Pablo; Liu, Ruisheng; Ren, YiLin; Carretero, Oscar A

    2011-04-01

    Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involved. We hypothesized that in vivo HO-1 and HO-2 in the nephron inhibit TGF via release of CO and biliverdin. We first performed laser capture microdissection followed by real-time PCR and found that both HO-1 and HO-2 are expressed in the macula densa. We next performed micropuncture experiments in vivo on individual rat nephrons, adding different compounds to the perfusate, and found that an HO inhibitor, stannous mesoporphyrin (SnMP), potentiated TGF (P < 0.05, SnMP vs. control). The CO-releasing molecule (CORM)-3 partially inhibited TGF at 50 μmol/l (P < 0.01, CORM-3 vs. control) and blocked it completely at higher doses. A soluble guanylyl cyclase (sGC) inhibitor, LY83583, blocked the inhibitory effect of CORM-3 on TGF. Biliverdin also partially inhibited TGF (P < 0.01, biliverdin vs. control), most likely attributable to decreased superoxide (O(2)(-)) because biliverdin was rendered ineffective by tempol, a O(2)(-) dismutase mimetic. We concluded that HO-1 and HO-2 in the nephron inhibit TGF by releasing CO and biliverdin. The inhibitory effect of CO on TGF is mediated by the sGC/cGMP signaling pathway, whereas biliverdin probably acts by reducing O(2)(-). PMID:21239629

  2. Heme Oxygenase-1 and Carbon Monoxide Promote Burkholderia pseudomallei Infection.

    PubMed

    Stolt, Claudia; Schmidt, Imke H E; Sayfart, Yana; Steinmetz, Ivo; Bast, Antje

    2016-08-01

    The environmental bacterium and potential biothreat agent Burkholderia pseudomallei causes melioidosis, an often fatal infectious disease. Increased serum bilirubin has been shown to be a negative predictive factor in melioidosis patients. We therefore investigated the role of heme oxygenase-1 (HO-1), which catalyzes the degradation of heme into the bilirubin precursor biliverdin, ferrous iron, and CO during B. pseudomallei infection. We found that infection of murine macrophages induces HO-1 expression, involving activation of several protein kinases and the transcription factor nuclear erythroid-related factor 2 (Nrf2). Deficiency of Nrf2 improved B. pseudomallei clearance by macrophages, whereas Nrf2 activation by sulforaphane and tert-butylhydroquinone with subsequent HO-1 induction enhanced intracellular bacterial growth. The HO-1 inducer cobalt protoporphyrin IX diminished proinflammatory cytokine levels, leading to an increased bacterial burden in macrophages. In contrast, HO-1 gene knockdown reduced the survival of intramacrophage B. pseudomallei Pharmacological administration of cobalt protoporphyrin IX to mice resulted in an enhanced bacterial load in various organs and was associated with higher mortality of intranasally infected mice. The unfavorable outcome of B. pseudomallei infection after HO-1 induction was associated with higher serum IL-6, TNF-α, and MCP-1 levels but decreased secretion of IFN-γ. Finally, we demonstrate that the CO-releasing molecule CORM-2 increases the B. pseudomallei load in macrophages and mice. Thus, our data suggest that the B. pseudomallei-mediated induction of HO-1 and the release of its metabolite CO impair bacterial clearance in macrophages and during murine melioidosis. PMID:27316684

  3. Protective role of heme oxygenase-1 in atrial remodeling.

    PubMed

    Yeh, Yung-Hsin; Hsu, Lung-An; Chen, Ying-Hwa; Kuo, Chi-Tai; Chang, Gwo-Jyh; Chen, Wei-Jan

    2016-09-01

    Structural and electrical remodeling in the atrium constitutes the main feature of atrial fibrillation (AF), which is characterized by increased oxidative stress. Heme oxygenase-1 (HO-1) is a potent anti-oxidant system that may provide protection against various oxidative stress-related diseases. The aim of this study is to investigate whether HO-1 has a protective effect on AF-related remodeling. Cultured atrium-derived myocytes (HL-1 cell line) were used to evaluate tachypacing-induced oxidative stress, structural, and electrical remodeling. Transforming growth factor-β (TGF-β) was utilized to assess collagen (a main fibrosis-related protein) expression in atrial fibroblasts. Tachypacing in HL-1 myocytes and treatment of atrial fibroblasts with TGF-β enhanced the expression of HO-1, both of which were mediated by the activation of nuclear factor erythroid-2-related factor 2. Over-expression of HO-1 in HL-1 cells attenuated tachypacing-induced oxidative stress, myofibril degradation, down-regulation of L-type calcium channel, and shortening of action potential duration. Furthermore, HO-1 over-expression in atrial fibroblasts blocked the up-regulation of collagen by TGF-β, implicating a protective role of HO-1 in structural and electrical remodeling in the atrium. In vivo, HO-1(-/-) mice exhibited a higher degree of oxidative stress, myofibril degradation, and collagen deposit in their atria than wild-type mice. Moreover, burst atrial pacing induced a greater susceptibility to AF in HO-1(-/-) mice than in wild-type mice. In conclusion, a negative-feedback regulation of HO-1 in activated atrial myocytes and fibroblasts may provide protection against AF-related remodeling and AF development. PMID:27562817

  4. Natural heme oxygenase-1 inducers in hepatobiliary function

    PubMed Central

    Volti, Giovanni Li; Sacerdoti, David; Giacomo, Claudia Di; Barcellona, Maria Luisa; Scacco, Antonio; Murabito, Paolo; Biondi, Antonio; Basile, Francesco; Gazzolo, Diego; Abella, Raul; Frigiola, Alessandro; Galvano, Fabio

    2008-01-01

    Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of α-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defences and modulate the cellular redox state. Changes in the cellular redox state may have wide-ranging consequences for cellular growth and differentiation. The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. However, in recent years a possible novel aspect in the mode of action of these compounds has been suggested; that is, the ultimate stimulation of the heme oxygenase-1 (HO-1) pathway is likely to account for the established and powerful antioxidant/anti-inflammatory properties of these polyphenols. The products of the HO-catalyzed reaction, particularly carbon monoxide (CO) and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against various stressors in several pathological conditions. PMID:18985801

  5. Generation and Characterization of Human Heme Oxygenase-1 Transgenic Pigs

    PubMed Central

    Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J.; Kim, Hyunil; Surh, Charles D.; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation. PMID:23071605

  6. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    PubMed

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation. PMID:23071605

  7. Mesenchymal Stromal Cells Expressing Heme Oxygenase-1 Reverse Pulmonary Hypertension

    PubMed Central

    Liang, Olin D.; Mitsialis, S. Alex; Chang, Mun Seog; Vergadi, Eleni; Lee, Changjin; Aslam, Muhammad; Fernandez-Gonzalez, Angeles; Liu, Xianlan; Baveja, Rajiv; Kourembanas, Stella

    2012-01-01

    Pulmonary arterial hypertension (PAH) remains a serious disease, and, while current treatments may prolong and improve quality of life, search for novel and effective therapies is warranted. Using genetically-modified mouse lines, we tested the ability of bone marrow-derived stromal cells (MSCs), to treat chronic hypoxia-induced PAH. Recipient mice were exposed for five weeks to normobaric hypoxia (8%–10% O2), MSC preparations were delivered through jugular vein injection and their effect on PAH was assessed after two additional weeks in hypoxia. Donor MSCs derived from wild-type (WT) mice or Heme Oxygenase-1 (HO-1) null mice (Hmox1KO) conferred partial protection from PAH when transplanted into WT or Hmox1KO recipients, whereas treatment with MSCs isolated from transgenic mice harboring a human HO-1 transgene under the control of surfactant protein C promoter (SHO1 line) reversed established disease in WT recipients. SH01-MSC treatment of Hmox1KO animals, which develop right ventricular (RV) infarction under prolonged hypoxia, resulted in normal RV systolic pressure, significant reduction of RV hypertrophy and prevention of RV infarction. Donor MSCs isolated from a bitransgenic mouse line with doxycycline-inducible, lung-specific expression of HO-1 exhibited similar therapeutic efficacy only upon doxycycline treatment of the recipients. In vitro experiments indicate that potential mechanisms of MSC action include modulation of hypoxia-induced lung inflammation and inhibition of smooth muscle cell proliferation. Cumulative, our results demonstrate that MSCs ameliorate chronic hypoxia – induced PAH and their efficacy is highly augmented by lung-specific HO-1 expression in the transplanted cells, suggesting an interplay between HO-1 dependent and HO-1 independent protective pathways. PMID:20957739

  8. Recent insights into copper-containing lytic polysaccharide mono-oxygenases.

    PubMed

    Hemsworth, Glyn R; Davies, Gideon J; Walton, Paul H

    2013-10-01

    Recently the role of oxidative enzymes in the degradation of polysaccharides by saprophytic bacteria and fungi was uncovered, challenging the classical model of polysaccharide degradation of being solely via a hydrolytic pathway. 3D structural analyses of lytic polysaccharide mono-oxygenases of both bacterial AA10 (formerly CBM33) and fungal AA9 (formerly GH61) enzymes revealed structures with β-sandwich folds containing an active site with a metal coordinated by an N-terminal histidine. Following some initial confusion about the identity of the metal ion it has now been shown that these enzymes are copper-dependent oxygenases. Here we assess recent developments in the academic literature, focussing on the structures of the copper active sites. We provide critical comparisons with known small-molecules studies of copper-oxygen complexes and with copper methane monoxygenase, another of nature's powerful copper oxygenases. PMID:23769965

  9. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat.

    PubMed Central

    Nath, K A; Balla, G; Vercellotti, G M; Balla, J; Jacob, H S; Levitt, M D; Rosenberg, M E

    1992-01-01

    Heme proteins such as myoglobin or hemoglobin, when released into the extracellular space, can instigate tissue toxicity. Myoglobin is directly implicated in the pathogenesis of renal failure in rhabdomyolysis. In the glycerol model of this syndrome, we demonstrate that the kidney responds to such inordinate amounts of heme proteins by inducing the heme-degradative enzyme, heme oxygenase, as well as increasing the synthesis of ferritin, the major cellular repository for iron. Prior recruitment of this response with a single preinfusion of hemoglobin prevents kidney failure and drastically reduces mortality (from 100% to 14%). Conversely, ablating this response with a competitive inhibitor of heme oxygenase exacerbates kidney dysfunction. We provide the first in vivo evidence that induction of heme oxygenase coupled to ferritin synthesis is a rapid, protective antioxidant response. Our findings suggest a therapeutic strategy for populations at a high risk for rhabdomyolysis. Images PMID:1634613

  10. The pharmacology and therapeutic relevance of endocannabinoid derived cyclo-oxygenase (COX)-2 products.

    PubMed

    Woodward, D F; Carling, R W C; Cornell, C L; Fliri, H G; Martos, J L; Pettit, S N; Liang, Y; Wang, J W

    2008-10-01

    The discovery of anandamide and 2-arachidonyl glycerol (2-AG) as naturally occurring mammalian endocannabinoids has had important and wide-reaching therapeutic implications. This, to a large extent, ensues from the complexity of endocannabinoid biology. One facet of endocannabinoid biology now receiving increased attention is the cyclo-oxygenase-2 (COX-2) derived oxidation products. Anandamide and 2-AG are oxidized to a range of PG-ethanolamides and PG-glyceryl esters that closely approaches that of the prostaglandins (PGs) formed from arachidonic acid. The pharmacology of these electrochemically neutral PG-ethanolamides (prostamides) and PG-glyceryl esters appears to be unique. No meaningful interaction with natural or recombinant prostanoid receptors is apparent. Nevertheless, in certain cells and tissues, prostamides and PG-glyceryl esters exert potent effects. The recent discovery of selective antagonists for the putative prostamide receptor has been a major advance in further establishing prostamide pharmacology as an entity distinct from prostanoid receptors. Since discovery of the prototype prostamide antagonist (AGN 204396), rapid progress has been made. The latest prostamide antagonists (AGN 211334-6) are 100 times more potent than the prototype and are, therefore, sufficiently active to be used in living animal studies. These compounds will allow a full evaluation of the role of prostamides in health and disease. To date, the only therapeutic application for prostamides is in glaucoma. The prostamide analog, bimatoprost, being the most effective ocular hypotensive drug currently available. Interestingly, PGE(2)-glyceryl ester and its chemically stable analog PGE(2)-serinolamide also lower intraocular pressure in dogs. Nevertheless, the therapeutic future of PGE(2)-glyceryl ester is more likely to reside in inflammation. PMID:18700152

  11. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin.

    PubMed

    Orozco-Ibarra, Marisol; Estrada-Sánchez, Ana María; Massieu, Lourdes; Pedraza-Chaverrí, José

    2009-06-01

    Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions. PMID:19063990

  12. Inhibition of cyclo-oxygenase-2 exacerbates ischaemia-induced acute myocardial dysfunction in the rabbit

    PubMed Central

    Rossoni, Giuseppe; Muscara, Marcelo N; Cirino, Giuseppe; Wallace, John L

    2002-01-01

    The effects of treatment with a number of cyclo-oxygenase inhibitors, (celecoxib, meloxicam, DuP-697 and aspirin) on ischaemia-reperfusion-induced myocardial dysfunction were examined using an in vitro perfused rabbit heart model.Ischaemia resulted in myocardial dysfunction, as indicated by a significant increase in left ventricular end diastolic pressure and marked changes in coronary perfusion pressure and left ventricular developed pressure. In the post-ischaemic state, coronary perfusion pressure increased dramatically, left ventricular developed pressure recovered to a small degree and there were significant increases in creatinine kinase release (indicative of myocardial damage) and prostacyclin release.Pretreatment with aspirin, or with drugs that selectively inhibit cyclo-oxygenase-2 (celecoxib, meloxicam and DuP-697), resulted in a concentration-dependent exacerbation of the myocardial dysfunction and damage. Exacerbation of myocardial dysfunction and damage was evident with 10 μM concentrations of the cyclo-oxygenase-2 inhibitors, which inhibited prostacyclin release but did not affect cyclo-oxygenase-1 activity (as measured by whole blood thromboxane synthesis).NCX-4016, a nitric oxide-releasing aspirin derivative, significantly reduced the myocardial dysfunction and damage caused by ischaemia and reperfusion. Beneficial effects were observed even at a concentration (100 μM) that significantly inhibited prostacyclin synthesis by the heart.The results suggest that prostacyclin released by cardiac tissue in response to ischaemia and reperfusion is derived, at least in part, from cyclo-oxygenase-2. Cyclo-oxygenase-2 plays an important protective role in a setting of ischaemia-reperfusion of the heart. PMID:11906968

  13. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.

    PubMed

    Badger, M R; von Caemmerer, S; Ruuska, S; Nakano, H

    2000-10-29

    Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O2. The two primary reactions that have been extensively studied are: first, the direct reduction of O2 to superoxide by reduced donors associated with PS I (the Mehler reaction), and second, the rubisco oxygenase (ribulose 1,5-bisphosphate carboxylase oxygenase EC 4.1.1.39) reaction and associated peroxisomal and mitochondrial reactions of the photorespiratory pathway. This paper reviews a number of recent and past studies with higher plants, algae and cyanobacteria that have attempted to quantify O2 fluxes under various conditions and their contributions to a number of roles, including photon energy dissipation. In C3 and Crassulacean acid metabolism (CAM) plants, a Mehler O2 uptake reaction is unlikely to support a significant flow of electron transport (probably less than 10%). In addition, if it were present it would appear to scale with photosynthetic carbon oxidation cycle (PCO) and photosynthetic carbon reduction cycle (PCR) activity This is supported by studies with antisense tobacco plants with reduced rubisco at low and high temperatures and high light, as well as studies with potatoes, grapes and madrone during water stress. The lack of significant Mehler in these plants directly argues for a strong control of Mehler reaction in the absence of ATP consumption by the PCR and PCO cycles. The difference between C3 and C4 plants is primarily that the level of light-dependent O2 uptake is generally much lower in C4 plants and is relatively insensitive to the external CO2 concentration. Such a major difference is readily attributed to the operation of the C4 CO2 concentrating mechanism. Algae show a range of light-dependent O2 uptake rates, similar to C4 plants. As in C4 plants, the O2 uptake appears to be largely insensitive to CO2, even in species that lack a CO2 concentrating

  14. Therapeutic Efficacy of Stem Cells Transplantation in Diabetes: Role of Heme Oxygenase

    PubMed Central

    Raffaele, Marco; Li Volti, Giovanni; Barbagallo, Ignazio A.; Vanella, Luca

    2016-01-01

    The growing data obtained from in vivo studies and clinical trials demonstrated the benefit of adult stem cells transplantation in diabetes; although an important limit is represented by their survival after the transplant. To this regard, recent reports suggest that genetic manipulation of stem cells prior to transplantation can lead to enhanced survival and better engraftment. The following review proposes to stimulate interest in the role of heme oxygenase-1 over-expression on transplantation of stem cells in diabetes, focusing on the clinical potential of heme oxygenase protein and activity to restore tissue damage and/or to improve the immunomodulatory properties of transplanted stem cells. PMID:27547752

  15. A reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors

    PubMed Central

    Leung, Ivanhoe K. H.; Demetriades, Marina; Hardy, Adam P.; Lejeune, Clarisse; Smart, Tristan J.; Szöllössi, Andrea; Kawamura, Akane; Schofield, Christopher J.; Claridge, Timothy D. W.

    2015-01-01

    The human 2-oxoglutarate (2OG) dependent oxygenases belong to a family of structurally related enzymes that play important roles in many biological processes. We report that competition-based NMR methods, using 2OG as a reporter ligand, can be used for quantitative and site-specific screening of ligand binding to 2OG oxygenases. The method was demonstrated using hypoxia inducible factor (HIF) hydroxylases and histone demethylases, and KD values were determined for inhibitors that compete with 2OG at the metal centre. This technique is also useful as a screening or validation tool for inhibitor discovery, as exemplified by work with protein-directed dynamic combinatorial chemistry (DCC). PMID:23234607

  16. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity

    PubMed Central

    Ndisang, Joseph Fomusi; Tiwari, Shuchita

    2014-01-01

    Obesity and excessive inflammation/oxidative stress are pathophysiological forces associated with kidney dysfunction. Although we recently showed that heme-oxygenase (HO) improves renal functions, the mechanisms are largely unclear. Moreover, the effects of the HO-system on podocyte cytoskeletal proteins like podocin, podocalyxin, CD2-associated-protein (CD2AP) and proteins of regeneration/repair like beta-catenin, Oct3/4, WT1 and Pax2 in renal tissue from normoglycemic obese Zucker-fatty rats (ZFs) have not been reported. Treatment with hemin reduced renal histo-pathological lesions including glomerular-hypertrophy, tubular-cast, tubular-atrophy and mononuclear cell-infiltration in ZFs. These were associated with enhanced expression of beta-catenin, Oct3/4, WT1, Pax2 and nephrin, an essential transmembrane protein required for the formation of the scaffoldings of the podocyte slit-diaphragm, permitting the filtration of small ions, but not massive excretion of proteins, hence proteinuria. Besides nephrin, hemin also enhanced other important podocyte-regulators including, podocalyxin, podocin and CD2AP. Correspondingly, important markers of renal dysfunction such as albuminuria and proteinuria were reduced, while creatinine clearance increased, suggesting improved renal function in hemin-treated ZFs. The renoprotection by hemin was accompanied by the reduction of inflammatory/oxidative mediators including, macrophage-inflammatory-protein-1α, macrophage-chemoattractant-protein-1 and 8-isoprostane, whereas HO-1, HO-activity and the total-anti-oxidant-capacity increased. Contrarily, the HO-inhibitor, stannous-mesoporphyrin nullified the reno-protection by hemin. Collectively, these data suggest that hemin ameliorates nephropathy by potentiating the expression of proteins of repair/regeneration, abating oxidative/inflammatory mediators, reducing renal histo-pathological lesions, while enhancing nephrin, podocin, podocalyxin, CD2AP and creatinine clearance, with

  17. Interaction of nitric oxide with human heme oxygenase-1.

    PubMed

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO. PMID:12433915

  18. Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors.

    PubMed Central

    Dornand, J; Gerber, M

    1989-01-01

    We have previously established that oxidative phenomena are involved in human T-cell activation (Sekkat, Dornand & Gerber, 1988). In the present work we have studied the effect of different anti-oxidants (scavengers of O2-, .OH and lipo-oxygenase inhibitors) on the stimulation of murine T cells. We report here that all the anti-oxidants used suppressed T-lymphocyte proliferation and IL-2 synthesis, the former effect resulting very likely from the latter. This inhibition was concomitant with the triggering of activation. We also demonstrate that the various anti-oxidants have different biochemical targets. Unlike the other compounds, the phenolic drugs nordihydroguaiaretic acid (NDGA) and butylated hydroxyanisole (BHA), which block lipid peroxidation, affect both signals triggered by the binding of lectin to its receptors: they suppress the rise of intracellular free calcium concentration and inhibit some of the events, depending on the sole protein kinase C activation, namely IL-2 receptor expression and phorbol myristate acetate (PMA)-induced pH change. Our results are discussed within the framework of a possible involvement of reactive oxygen species and of arachidonic acid derivative(s) in T-cell activation and IL-2 production. PMID:2512249

  19. Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors.

    PubMed

    Dornand, J; Gerber, M

    1989-11-01

    We have previously established that oxidative phenomena are involved in human T-cell activation (Sekkat, Dornand & Gerber, 1988). In the present work we have studied the effect of different anti-oxidants (scavengers of O2-, .OH and lipo-oxygenase inhibitors) on the stimulation of murine T cells. We report here that all the anti-oxidants used suppressed T-lymphocyte proliferation and IL-2 synthesis, the former effect resulting very likely from the latter. This inhibition was concomitant with the triggering of activation. We also demonstrate that the various anti-oxidants have different biochemical targets. Unlike the other compounds, the phenolic drugs nordihydroguaiaretic acid (NDGA) and butylated hydroxyanisole (BHA), which block lipid peroxidation, affect both signals triggered by the binding of lectin to its receptors: they suppress the rise of intracellular free calcium concentration and inhibit some of the events, depending on the sole protein kinase C activation, namely IL-2 receptor expression and phorbol myristate acetate (PMA)-induced pH change. Our results are discussed within the framework of a possible involvement of reactive oxygen species and of arachidonic acid derivative(s) in T-cell activation and IL-2 production. PMID:2512249

  20. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants.

    PubMed

    Lin, Lin; Luo, Zhaopeng; Yan, Fei; Lu, Yuwen; Zheng, Hongying; Chen, Jianping

    2011-08-01

    The P3 protein encoded by Shallot yellow stripe virus onion isolate (SYSV-O) interacted in the Yeast Two-hybrid (Y2H) system and in co-immunoprecipitation (Co-IP) assays with the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) protein that is encoded by the rbcL gene of its onion host. Dissection analysis by Y2H showed that the main part of SYSV P3 (amino acids 1-390) and onion RbcL (amino acids 1-137) were responsible for the interaction. The P3 proteins encoded by Onion yellow dwarf virus (OYDV), Soybean mosaic virus Pinellia isolate (SMV-P), and Turnip mosaic virus (TuMV) also interacted with RbcL, suggesting that a P3/RbcL interaction might exist generally for potyviruses. An interaction between P3 of these potyviruses and the small subunit of RubisCO (RbcS) was also demonstrated. Moreover, the P3N-PIPO protein encoded by a newly identified open reading frame embedded within the P3 cistron also interacted with both RbcL and RbcS. It is possible that the potyvirus P3 protein affects the normal functions of RubisCO which thus contributes to symptom development. PMID:21400205

  1. Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound

    PubMed Central

    2015-01-01

    The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solvent with the deeply buried active site and reveal a mode of substrate binding that is different from previously determined structures with long-chain fatty acids bound. The structures also identify a water channel leading to the active site that could facilitate the entry of protons required in the reaction. NMR studies examining 1-[13C]-octanal binding to cADO indicate that the enzyme binds the aldehyde form rather than the hydrated form. Lastly, the fortuitous cocrystallization of the metal-free form of the protein with aldehyde bound has revealed protein conformation changes that are involved in binding iron. PMID:25222710

  2. AN INTEGRATED PHARMACOKINETIC AND PHARMACODYNAMIC STUDY OF ARSENITE ACTION 2. HEME OXYGENASE INDUCTION IN MICE

    EPA Science Inventory

    Heme oxygenase (HO) is the rate-limiting enzyme in heme degradation and its activity has a significant impact on intracellular heme pools. Rat studies indicate that HO induction is a sensitive, dose-dependent response to arsenite (AsIII) exposure in both liver and kidney. The o...

  3. Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath.

    PubMed Central

    Colby, J; Dalton, H

    1976-01-01

    Soluble extracts of Methylococcus capsulatus (Bath), obtained by centrifugation of crude extracts at 160000g for 1h, catalyse the NAD(P)H- and O2-dependent disappearance of bromomethane, and also the formation of methanol from methane. Soluble methane mono-oxygenase is not inhibited by chelating agents or by most electron-transport inhibitors, and is a multicomponent enzyme. PMID:962879

  4. Isolation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multi-functional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a...

  5. Heme oxygenase effect on mesenchymal stem cells action on experimental Alzheimer's disease

    PubMed Central

    Abdel Aziza, MT; Atta, HM; Samer, H; Ahmed, HH; Rashed, LA; Sabry, D; Abdel Raouf, ER; Alkaffas, Marwa Abdul latif

    2013-01-01

    The objective is to evaluate the effect of heme oxygenase-1 (HO-1) enzyme inducer and inhibitor on Mesenchymal Stem Cells (MSCs) in Alzheimer disease. 70 female albino rats were divided equally into 7 groups as follows: group 1: healthy control; group 2: Aluminium chloride induced Alzheimer disease; group 3: induced Alzheimer rats that received intravenous injection of MSCs; group 4: induced Alzheimer rats that received MSCs and HO inducer cobalt protoporphyrin; group 5: induced Alzheimer rats that received MSCs and HO inhibitor zinc protoporphyrin; group 6: induced Alzheimer rats that received HO inducer; group7: induced Alzheimer rats that received HO inhibitor. Brain tissue was collected for HO-1, seladin-1 gene expression by real time polymerase chain reaction, heme oxygenase activity, cholesterol estimation and histopathological examination. MSCs decreased the plaque lesions, heme oxygenase induction with stem cells also decreased plaque lesions however there was hemorrhage in the brain. Both heme oxygenase inducer alone or with stem cells increased seladin-1 expression and decreased cholesterol level. MSCs alone or with HO-1 induction exert a therapeutic effect against the brain lesion in Alzheimer's disease possibly through decreasing the brain cholesterol level and increasing seladin-1 gene expression. PMID:26622218

  6. Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice

    PubMed Central

    Fraser, Stuart T.; Midwinter, Robyn G.; Coupland, Lucy A.; Kong, Stephanie; Berger, Birgit S.; Yeo, Jia Hao; Andrade, Osvaldo Cooley; Cromer, Deborah; Suarna, Cacang; Lam, Magda; Maghzal, Ghassan J.; Chong, Beng H.; Parish, Christopher R.; Stocker, Roland

    2015-01-01

    Heme oxygenase-1 is critical for iron recycling during red blood cell turnover, whereas its impact on steady-state erythropoiesis and red blood cell lifespan is not known. We show here that in 8- to 14-week old mice, heme oxygenase-1 deficiency adversely affects steady-state erythropoiesis in the bone marrow. This is manifested by a decrease in Ter-119+-erythroid cells, abnormal adhesion molecule expression on macrophages and erythroid cells, and a greatly diminished ability to form erythroblastic islands. Compared with wild-type animals, red blood cell size and hemoglobin content are decreased, while the number of circulating red blood cells is increased in heme oxygenase-1 deficient mice, overall leading to microcytic anemia. Heme oxygenase-1 deficiency increases oxidative stress in circulating red blood cells and greatly decreases the frequency of macrophages expressing the phosphatidylserine receptor Tim4 in bone marrow, spleen and liver. Heme oxygenase-1 deficiency increases spleen weight and Ter119+-erythroid cells in the spleen, although α4β1-integrin expression by these cells and splenic macrophages positive for vascular cell adhesion molecule 1 are both decreased. Red blood cell lifespan is prolonged in heme oxygenase-1 deficient mice compared with wild-type mice. Our findings suggest that while macrophages and relevant receptors required for red blood cell formation and removal are substantially depleted in heme oxygenase-1 deficient mice, the extent of anemia in these mice may be ameliorated by the prolonged lifespan of their oxidatively stressed erythrocytes. PMID:25682599

  7. Crystallization and preliminary X-ray diffraction studies of the reduced form of the terminal oxygenase component of the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase.

    PubMed

    Matsuzawa, Jun; Umeda, Takashi; Aikawa, Hiroki; Suzuki, Chiho; Fujimoto, Zui; Okada, Kazunori; Yamane, Hisakazu; Nojiri, Hideaki

    2013-11-01

    The initial reaction of bacterial carbazole degradation is catalysed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase, ferredoxin and ferredoxin reductase components. The reduced form of the terminal oxygenase component was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals diffracted to a resolution of 1.74 Å and belonged to space group P6(5), with unit-cell parameters a = b = 92.0, c = 243.6 Å. The asymmetric unit contained a trimer of terminal oxygenase molecules. PMID:24192370

  8. Evolutionary Changes in Chlorophyllide a Oxygenase (CAO) Structure Contribute to the Acquisition of a New Light-harvesting Complex in Micromonas*♦

    PubMed Central

    Kunugi, Motoshi; Takabayashi, Atsushi; Tanaka, Ayumi

    2013-01-01

    Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems. PMID:23677999

  9. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways.

    PubMed Central

    Van Der Werf, M J

    2000-01-01

    A Baeyer-Villiger mono-oxygenase (BVMO), catalysing the NADPH- and oxygen-dependent oxidation of the monocyclic monoterpene ketones 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone, was purified to homogeneity from Rhodococcus erythropolis DCL14. Monocyclic monoterpene ketone mono-oxygenase (MMKMO) is a monomeric enzyme of molecular mass 60 kDa. It contains 1 mol of FAD/monomer as the prosthetic group. The N-terminal amino acid sequence showed homology with many other NADPH-dependent and FAD-containing (Type 1) BVMOs. Maximal enzyme activity was measured at pH 9 and 35 degrees C. MMKMO has a broad substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones. The natural substrates 1-hydroxy-2-oxolimonene, dihydrocarvone and menthone were converted stoichiometrically into 3-isopropenyl-6-oxoheptanoate (the spontaneous rearrangement product of the lactone formed by MMKMO), 4-isopropenyl-7-methyl-2-oxo-oxepanone and 7-isopropyl-4-methyl-2-oxo-oxepanone respectively. The MMKMO-catalysed conversion of iso-dihydrocarvone showed an opposite regioselectivity to that of dihydrocarvone; in this case, 6-isopropenyl-3-methyl-2-oxo-oxepanone was formed as the product. MMKMO converted all enantiomers of the natural substrates with almost equal efficiency. MMKMO is involved in the conversion of the monocyclic monoterpene ketone intermediates formed in the degradation pathways of all stereoisomers of three different monocyclic monoterpenes, i.e. limonene, (dihydro)carveol and menthol. PMID:10769172

  10. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases

    PubMed Central

    Kweon, Ohgew; Kim, Seong-Jae; Baek, Songjoon; Chae, Jong-Chan; Adjei, Michael D; Baek, Dong-Heon; Kim, Young-Chang; Cerniglia, Carl E

    2008-01-01

    Background Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. Result We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. Conclusion The new classification system provides the following

  11. Curcumin inhibits HCV replication by induction of heme oxygenase-1 and suppression of AKT

    PubMed Central

    CHEN, MING-HO; LEE, MING-YANG; CHUANG, JING-JING; LI, YI-ZHEN; NING, SIN-TZU; CHEN, JUNG-CHOU; LIU, YI-WEN

    2012-01-01

    Although hepatitis C virus (HCV) affects approximately 130–170 million people worldwide, no vaccines are available. HCV is an important cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma, leading to the need for liver transplantation. In this study, curcumin, a constituent used in traditional Chinese medicine, has been evaluated for its anti-HCV activity and mechanism, using a human hepatoma cell line containing the HCV genotype 1b subgenomic replicon. Below the concentration of 20% cytotoxicity, curcumin dose-dependently inhibited HCV replication by luciferase reporter gene assay, HCV RNA detection and HCV protein analysis. Under the same conditions, curcumin also dose-dependently induced heme oxygenase-1 with the highest induction at 24 h. Hemin, a heme oxygenase-1 inducer, also inhibited HCV protein expression in a dose-dependent manner. The knockdown of heme oxygenase-1 partially reversed the curcumin-inhibited HCV protein expression. In addition to the heme oxygenase-1 induction, signaling molecule activities of AKT, extracellular signal-regulated kinases (ERK) and nuclear factor-κB (NF-κB) were inhibited by curcumin. Using specific inhibitors of PI3K-AKT, MEK-ERK and NF-κB, the results suggested that only PI3K-AKT inhibition is positively involved in curcumin-inhibited HCV replication. Inhibition of ERK and NF-κB was likely to promote HCV protein expression. In summary, curcumin inhibited HCV replication by heme oxygenase-1 induction and AKT pathway inhibition. Although curcumin also inhibits ERK and NF-κB activities, it slightly increased the HCV protein expression. This result may provide information when curcumin is used as an adjuvant in anti-HCV therapy. PMID:22922731

  12. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193

    SciTech Connect

    Suits,M.; Jaffer, N.; Jia, Z.

    2006-01-01

    Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 {angstrom} resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a {beta}-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the {alpha}-meso carbon position where O{sub 2} is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.

  13. Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Rordorf, Christiane M; Choi, Les; Marshall, Paul; Mangold, James B

    2005-01-01

    Lumiracoxib (Prexige) is a selective cyclo-oxygenase (COX)-2 inhibitor developed for the treatment of osteoarthritis, rheumatoid arthritis and acute pain. Lumiracoxib possesses a carboxylic acid group that makes it weakly acidic (acid dissociation constant [pKa] 4.7), distinguishing it from other selective COX-2 inhibitors. Lumiracoxib has good oral bioavailability (74%). It is rapidly absorbed, reaching maximum plasma concentrations 2 hours after dosing, and is highly plasma protein bound. Lumiracoxib has a short elimination half-life from plasma (mean 4 hours) and demonstrates dose-proportional plasma pharmacokinetics with no accumulation during multiple dosing. In patients with rheumatoid arthritis, peak lumiracoxib synovial fluid concentrations occur 3-4 hours later than in plasma and exceed plasma concentrations from 5 hours after dosing to the end of the 24-hour dosing interval. These data suggest that lumiracoxib may be associated with reduced systemic exposure, while still reaching sites where COX-2 inhibition is required for pain relief. Lumiracoxib is metabolised extensively prior to excretion, with only a small amount excreted unchanged in urine or faeces. Lumiracoxib and its metabolites are excreted via renal and faecal routes in approximately equal amounts. The major metabolic pathways identified involve oxidation of the 5-methyl group of lumiracoxib and/or hydroxylation of its dihaloaromatic ring. Major metabolites of lumiracoxib in plasma are the 5-carboxy, 4'-hydroxy and 4'-hydroxy-5-carboxy derivatives, of which only the 4'-hydroxy derivative is active and COX-2 selective. In vitro, the major oxidative pathways are catalysed primarily by cytochrome P450 (CYP) 2C9 with very minor contribution from CYP1A2 and CYP2C19. However, in patients genotyped as poor CYP2C9 metabolisers, exposure to lumiracoxib (area under the plasma concentration-time curve) is not significantly increased compared with control subjects, indicating no requirement for adjustment

  14. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    PubMed

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  15. Role of haem oxygenase in the renoprotective effects of soluble epoxide hydrolase inhibition in diabetic spontaneously hypertensive rats.

    PubMed

    Elmarakby, Ahmed A; Faulkner, Jessica; Pye, Chelsey; Rouch, Katelyn; Alhashim, Abdulmohsin; Maddipati, Krishna Rao; Baban, Babak

    2013-10-01

    We have shown previously that inhibition of sEH (soluble epoxide hydrolase) increased EETs (epoxyeicosatrienoic acids) levels and reduced renal injury in diabetic mice and these changes were associated with induction of HO (haem oxygenase)-1. The present study determines whether the inhibition of HO negates the renoprotective effect of sEH inhibition in diabetic SHR (spontaneously hypertensive rats). After 6 weeks of induction of diabetes with streptozotocin, SHR were divided into the following groups: untreated, treated with the sEH inhibitor t-AUCB {trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid}, treated with the HO inhibitor SnMP (stannous mesoporphyrin), and treated with both inhibitors for 4 more weeks; non-diabetic SHR served as a control group. Induction of diabetes significantly increased renal sEH expression and decreased the renal EETs/DHETEs (dihydroxyeicosatrienoic acid) ratio without affecting HO-1 activity or expression in SHR. Inhibition of sEH with t-AUCB increased the renal EETs/DHETEs ratio and HO-1 activity in diabetic SHR; however, it did not significantly alter systolic blood pressure. Treatment of diabetic SHR with t-AUCB significantly reduced the elevation in urinary albumin and nephrin excretion, whereas co-administration of the HO inhibitor SnMP with t-AUCB prevented these changes. Immunohistochemical analysis revealed elevations in renal fibrosis as indicated by increased renal TGF-β (transforming growth factor β) levels and fibronectin expression in diabetic SHR and these changes were reduced with sEH inhibition. Co-administration of SnMP with t-AUCB prevented its ability to reduce renal fibrosis in diabetic SHR. In addition, SnMP treatment also prevented t-AUCB-induced decreases in renal macrophage infiltration, IL-17 expression and MCP-1 levels in diabetic SHR. These findings suggest that HO-1 induction is involved in the protective effect of sEH inhibition against diabetic renal injury. PMID:23611540

  16. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process.

    PubMed

    Xuan, Wei; Zhu, Fu-Yuan; Xu, Sheng; Huang, Ben-Kai; Ling, Teng-Fang; Qi, Ji-Yan; Ye, Mao-Bing; Shen, Wen-Biao

    2008-10-01

    Indole acetic acid (IAA) is an important regulator of adventitious rooting via the activation of complex signaling cascades. In animals, carbon monoxide (CO), mainly generated by heme oxygenases (HOs), is a significant modulator of inflammatory reactions, affecting cell proliferation and the production of growth factors. In this report, we show that treatment with the auxin transport inhibitor naphthylphthalamic acid prevented auxin-mediated induction of adventitious rooting and also decreased the activity of HO and its by-product CO content. The application of IAA, HO-1 activator/CO donor hematin, or CO aqueous solution was able to alleviate the IAA depletion-induced inhibition of adventitious root formation. Meanwhile, IAA or hematin treatment rapidly activated HO activity or HO-1 protein expression, and CO content was also enhanced. The application of the HO-1-specific inhibitor zinc protoporphyrin IX (ZnPPIX) could inhibit the above IAA and hematin responses. CO aqueous solution treatment was able to ameliorate the ZnPPIX-induced inhibition of adventitious rooting. Molecular evidence further showed that ZnPPIX mimicked the effects of naphthylphthalamic acid on the inhibition of adventitious rooting, the down-regulation of one DnaJ-like gene (CSDNAJ-1), and two calcium-dependent protein kinase genes (CSCDPK1 and CSCDPK5). Application of CO aqueous solution not only dose-dependently blocked IAA depletion-induced inhibition of adventitious rooting but also enhanced endogenous CO content and up-regulated CSDNAJ-1 and CSCDPK1/5 transcripts. Together, we provided pharmacological, physiological, and molecular evidence that auxin rapidly activates HO activity and that the product of HO action, CO, then triggers the signal transduction events that lead to the auxin responses of adventitious root formation in cucumber (Cucumis sativus). PMID:18689445

  17. The Heme Oxygenase/Carbon Monoxide System Is Involved in the Auxin-Induced Cucumber Adventitious Rooting Process1

    PubMed Central

    Xuan, Wei; Zhu, Fu-Yuan; Xu, Sheng; Huang, Ben-Kai; Ling, Teng-Fang; Qi, Ji-Yan; Ye, Mao-Bing; Shen, Wen-Biao

    2008-01-01

    Indole acetic acid (IAA) is an important regulator of adventitious rooting via the activation of complex signaling cascades. In animals, carbon monoxide (CO), mainly generated by heme oxygenases (HOs), is a significant modulator of inflammatory reactions, affecting cell proliferation and the production of growth factors. In this report, we show that treatment with the auxin transport inhibitor naphthylphthalamic acid prevented auxin-mediated induction of adventitious rooting and also decreased the activity of HO and its by-product CO content. The application of IAA, HO-1 activator/CO donor hematin, or CO aqueous solution was able to alleviate the IAA depletion-induced inhibition of adventitious root formation. Meanwhile, IAA or hematin treatment rapidly activated HO activity or HO-1 protein expression, and CO content was also enhanced. The application of the HO-1-specific inhibitor zinc protoporphyrin IX (ZnPPIX) could inhibit the above IAA and hematin responses. CO aqueous solution treatment was able to ameliorate the ZnPPIX-induced inhibition of adventitious rooting. Molecular evidence further showed that ZnPPIX mimicked the effects of naphthylphthalamic acid on the inhibition of adventitious rooting, the down-regulation of one DnaJ-like gene (CSDNAJ-1), and two calcium-dependent protein kinase genes (CSCDPK1 and CSCDPK5). Application of CO aqueous solution not only dose-dependently blocked IAA depletion-induced inhibition of adventitious rooting but also enhanced endogenous CO content and up-regulated CSDNAJ-1 and CSCDPK1/5 transcripts. Together, we provided pharmacological, physiological, and molecular evidence that auxin rapidly activates HO activity and that the product of HO action, CO, then triggers the signal transduction events that lead to the auxin responses of adventitious root formation in cucumber (Cucumis sativus). PMID:18689445

  18. Perspective of ribulose bisphosphate carboxylase/oxygenase, the key catalyst in photosynthesis and photorespiration

    SciTech Connect

    McFadden, B.A.

    1980-11-01

    Reported works dealing with the opposing processes photosynthesis and photorespiration, catalyzed by ribulose biphosphate carboxylase (RuBP) are summarized with 75 references being cited. Some recent findings that suggest that it should be possible to increase the RuBP carboxylase:oxygenase ratio by mutation and that this increase should lead to higher plant productivity are reported. It is pointed out that a better understanding of these catalytic mechanisms is necessary before the activities can be tailored to specific purposes. (BLM)

  19. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  20. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.

    PubMed

    Knoot, Cory J; Kovaleva, Elena G; Lipscomb, John D

    2016-09-01

    The diiron cluster-containing oxygenase CmlI catalyzes the conversion of the aromatic amine precursor of chloramphenicol to the nitroaromatic moiety of the active antibiotic. The X-ray crystal structures of the fully active, N-terminally truncated CmlIΔ33 in the chemically reduced Fe(2+)/Fe(2+) state and a cis μ-1,2(η (1):η (1))-peroxo complex are presented. These structures allow comparison with the homologous arylamine oxygenase AurF as well as other types of diiron cluster-containing oxygenases. The structural model of CmlIΔ33 crystallized at pH 6.8 lacks the oxo-bridge apparent from the enzyme optical spectrum in solution at higher pH. In its place, residue E236 forms a μ-1,3(η (1):η (2)) bridge between the irons in both models. This orientation of E236 stabilizes a helical region near the cluster which closes the active site to substrate binding in contrast to the open site found for AurF. A very similar closed structure was observed for the inactive dimanganese form of AurF. The observation of this same structure in different arylamine oxygenases may indicate that there are two structural states that are involved in regulation of the catalytic cycle. Both the structural studies and single crystal optical spectra indicate that the observed cis μ-1,2(η (1):η (1))-peroxo complex differs from the μ-η (1):η (2)-peroxo proposed from spectroscopic studies of a reactive intermediate formed in solution by addition of O2 to diferrous CmlI. It is proposed that the structural changes required to open the active site also drive conversion of the µ-1,2-peroxo species to the reactive form. PMID:27229511

  1. Chemical and physical characterization of the activation of ribulosebiphosphate carboxylase/oxygenase

    SciTech Connect

    Donnelly, M.I.; Ramakrishnan, V.; Hartman, F.C.

    1983-01-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere. 1 drawing.

  2. A Lactobacillus rhamnosus Strain Induces a Heme Oxygenase Dependent Increase in Foxp3+ Regulatory T Cells

    PubMed Central

    Karimi, Khalil; Kandiah, Nalaayini; Chau, Jessie; Bienenstock, John; Forsythe, Paul

    2012-01-01

    We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells. PMID:23077634

  3. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    PubMed

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase. PMID:15525643

  4. Epoxyeicosatrienoic acids and heme oxygenase-1 interaction attenuates diabetes and metabolic syndrome complications

    PubMed Central

    Burgess, Angela; Vanella, Luca; Bellner, Lars; Schwartzman, Michal L.; Abraham, Nader G.

    2011-01-01

    MSCs are considered to be the natural precursors to adipocyte development through the process of adipogenesis. A link has been established between decreased protective effects of EETs or HO-1 and their interaction in metabolic syndrome. Decreases in HO-1 or EET were associated with an increase in adipocyte stem cell differentiation and increased levels of inflammatory cytokines. EET agonist (AKR-I-27-28) inhibited MSC-derived adipocytes and decreased the levels of inflammatory cytokines. We further describe the role of CYP-epoxygenase expression, HO expression, and circulating cytokine levels in an obese mouse, ob/ob−/− mouse model. Ex vivo measurements of EET expression within MSCs derived from ob/ob−/− showed decreased levels of EETs that were increased by HO induction. This review demonstrates that suppression of HO and EET systems exist in MSCs prior to the development of adipocyte dysfunction. Further, adipocyte dysfunction can be ameliorated by induction of HO-1 and CYP-epoxygenase, i.e. EET. PMID:22100745

  5. The source and characteristics of chemiluminescence associated with the oxygenase reaction catalyzed by Mn(2+)-ribulosebisphosphate carboxylase.

    PubMed

    Lilley, R M; Riesen, H; Andrews, T J

    1993-07-01

    We confirm the observation of Mogel and McFadden (Mogel, S.N., and McFadden, B. A. (1990) Biochemistry 29, 8333-8337) that ribulosebisphosphate carboxylase/oxygenase (rubisco) exhibits chemiluminescence while catalyzing its oxygenase reaction in the presence of Mn2+. However, our results with the spinach and Rhodospirillum rubrum enzymes differ markedly in the following respects. 1) Chemiluminescence intensity was directly proportional to enzyme concentration and behaved as if representing the rate of oxygenase catalysis. 2) The wavelength spectrum peaked at about 770 nm and extended beyond 810 nm. This seems inconsistent with chemiluminescence generated by simultaneous decay of pairs of singlet O2 molecules. It is consistent with manganese(II) luminescence and we discuss its possible sources. The time course of chemiluminescence (resolution, 0.25 s) was distinctively different for spinach and R. rubrum enzymes during the initial 5 s of catalysis, with the bacterial enzyme exhibiting a pronounced initial "burst." Chemiluminescence by the spinach enzyme responded to substrate concentrations in a manner consistent with known oxygenase properties, exhibiting Michaelis-Menten kinetics with ribulose-1,5-bisphosphate (Km 400 nM). Chemiluminescence required carbamylated enzyme with Mn2+ bound at the active site (activation energy, -57.1 KJ.mol-1). As an indicator of oxygenase activity, chemiluminescence represents an improvement over oxygen electrode measurements in response time and sensitivity by factors of at least 100. PMID:8314755

  6. Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: ferredoxin NADP+ reductase and not ferredoxin is the redox partner of heme oxygenase under iron-starvation conditions.

    PubMed

    Wang, An; Zeng, Yuhong; Han, Huijong; Weeratunga, Saroja; Morgan, Bailey N; Moënne-Loccoz, Pierre; Schönbrunn, Ernst; Rivera, Mario

    2007-10-30

    Among the 118 genes upregulated by Pseudomonas aeruginosa in response to iron starvation [Ochsner, U. A., Wilderman, P. J., Vasil, A. I., and Vasil, M. L. (2002) Mol. Microbiol. 45, 1277-1287], we focused on the products of the two genes encoding electron transfer proteins, as a means of identifying the redox partners of the heme oxygenase (pa-HO) expressed under low-iron stress conditions. Biochemical and spectroscopic investigations demonstrated that the bfd gene encodes a 73-amino acid protein (pa-Bfd) that incorporates a [2Fe-2S]2+/+ center, whereas the fpr gene encodes a 258-residue NADPH-dependent ferredoxin reductase (pa-FPR) that utilizes FAD as a cofactor. In vitro reconstitution of pa-HO catalytic activity with the newly characterized proteins led to the surprising observation that pa-FPR efficiently supports the catalytic cycle of pa-HO, without the need of a ferredoxin. In comparison, electron transfer from pa-Bfd to pa-HO is sluggish, which strongly argues against the possibility that the seven electrons needed by pa-HO to degrade biliverdin are transferred from NADPH to pa-HO in a ferredoxin (Bfd)-dependent manner. Given that pa-HO functions to release iron from exogenous heme acquired under iron-starvation conditions, the use of a flavoenzyme rather than an iron-sulfur center-containing protein to support heme degradation is an efficient use of resources in the cell. The crystal structure of pa-FPR (1.6 A resolution) showed that its fold is comparable that of the superfamily of ferredoxin reductases and most similar to the structure of Azotobacter vinelandii FPR and Escherichia coli flavodoxin reductase. The latter two enzymes interact with distinct redox partners, a ferredoxin and a flavodoxin, respectively. Hence, findings reported herein extend the range of redox partners recognized by the fold of pa-FPR to include a heme oxygenase (pa-HO). PMID:17915950

  7. In vitro activation of cyclo-oxygenase in the rabbit carotid body: effect of its blockade on [3H]catecholamine release.

    PubMed Central

    Gómez-Niño, A; Almaraz, L; González, C

    1994-01-01

    The release of prostaglandin E2 (PGE2) from rabbit carotid bodies (CBs) incubated in basal conditions (PO2 approximately 132 mmHg; PCO2 approximately 33 mmHg; pH = 7.42) amounts to 94.4 +/- 10.1 pg (mg protein)-1 (10 min)-1 (mean +/- S.E.M.). Incubation of the CB in a hypoxic solution (PO2 approximately 46 mmHg) produced a significant 40% increase (P < 0.05) in the release of PGE2. Indomethacin (2 microM) prevented the hypoxia-induced release of PGE2. Sensory plus sympathetic denervation of the CB 4 days prior to the experiments did not modify either basal or low PO2-induced PGE2 release, indicating that intraglomic nerve endings are not significant sources for the PGE2 released. Incubation of the CB in an acidic-hypercapnic solution (PO2 approximately 132 mmHg; PCO2 approximately 132 mmHg; pH = 6.60) or in a high K(+)-containing solution (35 mM) was also effective in promoting an increase in the outflow of PGE2 from the organs. The release of [3H]catecholamines ([3H]CA) from the CB elicited by incubating the organs in low PO2 solutions (PO2 ranged between 66 and 13 mmHg) was potentiated by two inhibitors of cyclo-oxygenase, acetylsalicylic acid (ASA, 100 microM) and indomethacin (2 microM). The effect persisted after chronic denervation of the organ. The secretory response elicited by acidic stimuli was also augmented by cyclo-oxygenase inhibitors. Thus, [3H]CA release elicited by incubating the CBs in the acidic-hypercapnic solution increased by 300% in the presence of indomethacin (2 microM), and ASA (100 microM) more than doubled the release induced by dinitrophenol (100 microM), a protonophore that mimics an acidic stimulus. Indomethacin, but not ASA, moderately increased the high K(+)-evoked [3H]CA release. The effect of indomethacin on the release of [3H]CA elicited by acidic and hypoxic stimuli was reversed by PGE2 in a dose-dependent manner (0.3-300 nM). These results show that low PO2 and high PCO2-low pH, the natural stimuli to the CB, as well as high

  8. Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH.

    PubMed

    Taabazuing, Cornelius Y; Fermann, Justin; Garman, Scott; Knapp, Michael J

    2016-01-19

    The Fe(2+)/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe(2+)/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}(7) electron paramagnetic resonance spectroscopy, and ultraviolet-visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation. PMID:26727884

  9. Mixed function oxygenases and xenobiotic detoxication/toxication systems in bivalve molluscs

    NASA Astrophysics Data System (ADS)

    Moore, M. N.; Livingstone, D. R.; Donkin, P.; Bayne, B. L.; Widdows, J.; Lowe, D. M.

    1980-03-01

    Components of a xenobiotic detoxication/toxication system involving mixed function oxygenases are present in Mytilus edulis. Our paper critically reviews the recent literature on this topic which reported the apparent absence of such a system in bivalve molluscs and attempts to reconcile this viewpoint with our own findings on NADPH neotetrazolium reductase, glucose-6-phosphate dehydrogenase, aldrin epoxidation and other reports of the presence of mixed function oxygenases. New experimental data are presented which indicate that some elements of the detoxication/toxication system in M. edulis can be induced by aromatic hydrocarbons derived from crude oil. This includes a brief review of the results of long-term experiments in which mussels were exposed to low concentrations of the water accommodated fraction of North Sea crude oil (7.7-68 µg 1-1) in which general stress responses such as reduced physiological scope for growth, cytotoxic damage to lysosomal integrity and cellular damage are considered as characteristics of the general stress syndrome induced by the toxic action of the xenobiotics. In addition, induction in the blood cells of microsomal NADPH neotetrazolium reductase (associated with mixed function oxygenases) and the NADPH generating enzyme glucose-6-phosphate dehydrogenase are considered to be specific biological responses to the presence of aromatic hydrocarbons. The consequences of this detoxication/toxication system for Mytilus edulis are discussed in terms of the formation of toxic electrophilic intermediate metabolites which are highly reactive and can combine with DNA, RNA and proteins with subsequent damage to these cellular constituents. Implications for neoplasms associated with the blood cells are also discussed. Finally, in view of the increased use of mussel species in pollutant monitoring programmes, the induction phenomenon which is associated with microsomal enzymes in the blood cells is considered as a possible tool for the

  10. A stopped-flow kinetic study of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).

    PubMed Central

    Green, J; Dalton, H

    1989-01-01

    1. The roles of the three protein components of soluble methane mono-oxygenase were investigated by the use of rapid-reaction techniques. The transfer of electrons through the enzyme complex from NADH to methane/O2 was also investigated. 2. Electron transfer from protein C, the reductase component, to protein A, the hydroxylase component, was demonstrated. Protein C was shown to undergo a three-electron--one-electron catalytic cycle. The interaction of protein C with NADH was investigated. Reduction of protein C was shown to be rapid, and a charge-transfer interaction between reduced FAD and NAD+ was observed; this intermediate was also found in static titration experiments. Thus the binding of NADH, the reduction of protein C and the intramolecular transfer of electrons through protein C were shown to be much more rapid than the turnover rate of methane mono-oxygenase. 3. The rate of transfer of electrons from protein C to protein A was shown to be lower than the reduction of protein C but higher than the turnover rate of methane mono-oxygenase. Association of the proteins was not rate-limiting. The amount of protein A present in the system had a small effect on the rate of reduction of protein C, indicating some co-operativity between the two proteins. 4. Protein B was shown to prevent electron transfer between protein C and protein A in the absence of methane. On addition of saturating concentrations of methane electron transfer was restored. With saturating concentrations of methane and O2 the observed rate constant for the conversion of methane into methanol was 0.26 s-1 at 18 degrees C. 5. By the use of [2H4]methane it was demonstrated that C-H-bond breakage is likely to be the rate-limiting step in the conversion of methane into methanol. PMID:2497729

  11. Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato.

    PubMed

    Shah, Rashmi; Schwach, Julia; Frankenberg-Dinkel, Nicole; Gärtner, Wolfgang

    2012-06-01

    The plant pathogen Pseudomonas syringae pv. tomato carries two genes encoding bacterial phytochromes. Sequence motifs identify both proteins (PstBphP1 and PstBphP2, respectively) as biliverdin IXα (BV)-binding phytochromes. PstbphP1 is arranged in an operon with a heme oxygenase (PstBphO)-encoding gene (PstbphO), whereas PstbphP2 is flanked downstream by a gene encoding a CheY-type response regulator. Expression of the heme oxygenase PstBphO yielded a green protein (λ(max) = 650 nm), indicative for bound BV. Heterologous expression of PstbphP1 and PstbphP2 and in vitro assembly with BV IXα yielded the apoproteins for both phytochromes, but only in the case of PstBphP1 a light-inducible chromoprotein. Attempts to express the endogenous heme oxygenase BphO and either of the two phytochromes from two plasmids yielded only holo-PstBphP1. Relatively small amounts of soluble holo-PstBphP2 were just obtained upon co-expression with BphO from P. aeruginosa. Expression of the operon containing PstbphO:PstbphP1 led to an improved yield and better photoreactivity for PstBphP1, whereas an identical construct, exchanging PstbphP1 for PstbphP2 (PstbphO:PstbphP2), again yielded only minute amounts of chromophore-loaded BphP2-holoprotein. The improved yield for PstBphP1 from the PstbphO:PstbphP1 operon expression is apparently caused by complex formation between both proteins during biosynthesis as affinity chromatography of either protein using two different tags always co-purified the reaction partner. These results support the importance of protein-protein interactions during tetrapyrrole metabolism and phytochrome assembly. PMID:22415794

  12. Heme oxygenase activity and some indices of antioxidant protection in rat liver and kidney in glycerol model of rhabdomyolysis.

    PubMed

    Kaliman, P A; Strel'chenko, E V; Nikitchenko, I V; Filimonenko, V P

    2003-01-01

    Activity of heme oxygenase, superoxide dismutase, and catalase, the content of reduced glutathione and total heme in the liver and kidneys, and serum absorption spectrum in the Soret band were studied in rats with glycerol-induced rhabdomyolysis. Glycerol increased the content of heme-containing metabolites in the serum and the total heme content in the liver and kidneys, and decreased the content of reduced glutathione and catalase activity in the examined organs. Superoxide dismutase activity increased in the liver and decreased in the kidneys. Heme oxygenase activity increased in the liver and kidneys 2 and 6 h postinjection, respectively. The effects of heme delivered to the liver and kidneys from the vascular bed on the antioxidant defense and heme oxygenase activity were studied. PMID:12717508

  13. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms

    SciTech Connect

    Xu, H.H.; Tabita, F.R.

    1996-06-01

    Carbon dioxide fixation is carried out primarily through the Calvin-Benson-Bassham reductive pentose phosphate cycle, in which rubulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. The primary structure of the large subunit of form I RubisCO is well conserved; however, four distinct types, A, B, C, and D, may be distinguished. To better understand the environmental regulation of RubisCO in Lake Erie phytoplanktonic microorganisms, we have isolated total RNA and DNA from four Lake Erie sampling sites. Probes prepared from RubisCO large-subunit genes (rbcL) of the freshwater cyanobacterium Synechococcus sp. strain PCC6301 (representative of type IB) and the diatom Cylindrotheca sp. strain N1 (representative of type ID) was determined. It appeared that type ID (diatom) rbcL gene expression per gene dose decreased as the sampling sites shifted toward open water. By contrast, a similar trend was not observed for cyanobacterial (type IB) rbcL gene expression per gene dose. Thus far, a total of 21 clones of rbcL genes derived from mRNA have been obtained and completely sequenced from the Ballast Island site. For surface water samples, deduced amino acid sequences of five of six clones appeared to be representative of green algae. In contrast, six of nine sequenced rbcL clones from 10-m-deep samples were a chromophytic and rhodophytic lineages. At 5 m deep, the active CO{sub 2}-fixing planktonic organisms represented a diverse group, including organisms related to Chlorella ellipsoidea, Cylindrotheca sp. strain N1, and Olisthodiscus luteus. Although many more samplings at diverse sites must be accomplished, the discovery of distinctly different sequences of rbcL mRNA at different water depths suggests that there is a stratification of active CO{sub 2}-fixing organisms in western Lake Erie. 54 refs., 7 figs.

  14. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  15. Heme Oxygenase-1 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis by Regulating Th17/Treg Cell Balance*

    PubMed Central

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-01-01

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. PMID:25112868

  16. Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400.

    PubMed Central

    Haddock, J D; Gibson, D T

    1995-01-01

    The iron-sulfur protein of biphenyl 2,3-dioxygenase (ISPBPH) was purified from Pseudomonas sp. strain LB400. The protein is composed of a 1:1 ratio of a large (alpha) subunit with an estimated molecular weight of 53,300 and a small (beta) subunit with an estimated molecular weight of 27,300. The native molecular weight was 209,000, indicating that the protein adopts an alpha 3 beta 3 native conformation. Measurements of iron and acid-labile sulfide gave 2 mol of each per mol of alpha beta heterodimer. The absorbance spectrum showed peaks at 325 and 450 nm with a broad shoulder at 550 nm. The spectrum was bleached upon reduction of the protein with NADPH in the presence of catalytic amounts of ferredoxinBPH and ferredoxinBPH oxidoreductase. The electron paramagnetic resonance spectrum of the reduced protein showed three signals at gx = 1.74, gy = 1.92, and gz = 2.01. These properties are characteristic of proteins that contain a Rieske-type [2Fe-2S] center. Biphenyl was oxidized to cis-(2R,3S)-dihydroxy-1-phenylcyclohexa-4,6-diene by ISPBPH in the presence of ferredoxinBPH, ferredoxinBPH oxidoreductase, NADPH, and ferrous iron. Naphthalene was also oxidized to a cis-dihydrodiol, but only 3% was converted to product under the same conditions that gave 92% oxidation of biphenyl. Benzene, toluene, 2,5-dichlorotoluene, carbazole, and dibenzothiophene were not oxidized. ISPBPH is proposed to be the terminal oxygenase component of biphenyl 2,3-dioxygenase where substrate binding and oxidation occur via addition of molecular oxygen and two reducing equivalents. PMID:7592331

  17. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases*

    PubMed Central

    Martinez, Salette; Hausinger, Robert P.

    2015-01-01

    Mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases comprise a large family of enzymes that utilize an Fe(IV)-oxo intermediate to initiate diverse oxidative transformations with important biological roles. Here, four of the major types of Fe(II)/2OG-dependent reactions are detailed: hydroxylation, halogenation, ring formation, and desaturation. In addition, an atypical epimerization reaction is described. Studies identifying several key intermediates in catalysis are concisely summarized, and the proposed mechanisms are explained. In addition, a variety of other transformations catalyzed by selected family members are briefly described to further highlight the chemical versatility of these enzymes. PMID:26152721

  18. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase from leaves.

    PubMed

    Carmo-Silva, A Elizabete; Barta, Csengele; Salvucci, Michael E

    2011-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multifunctional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a viable strategy for increasing plant productivity. Advances in biotechnology have made this goal more attainable by making it possible to modify Rubisco in planta. To properly evaluate the properties of Rubisco, it is necessary to isolate the enzyme in pure form. This chapter describes procedures for rapid and efficient purification of Rubisco from leaves of several species. PMID:20960141

  19. Posttranslational Modifications in the Amino- Terminal Region of the Large Subunit of Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase from Several Plant Species 1

    PubMed Central

    Houtz, Robert L.; Poneleit, Loelle; Jones, Samantha B.; Royer, Malcolm; Stults, John T.

    1992-01-01

    A combination of limited tryptic proteolysis, reverse phasehigh performance liquid chromatography, Edman degradative sequencing, amino acid analysis, and fast-atom bombardment mass-spectrometry was used to remove and identify the first 14 to 18 N-terminal amino acid residues of the large subunit of higher plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Chlamydomonas reinhardtii, Marchantia polymorpha, pea (Pisum sativum), tomato (Lycopersicon esculentum), potato (Solanum tuberosum), pepper (Capsicum annuum), soybean (Glycine max), petunia (Petunia x hybrida), cowpea (Vigna sinensis), and cucumber (Cucumis sativus) plants. The N-terminal tryptic peptide from acetylated Pro-3 to Lys-8 of the large subunit of Rubisco was identical in all species, but the amino acid sequence of the penultimate N-terminal tryptic peptide varied. Eight of the 10 species examined contained a trimethyllysyl residue at position 14 in the large subunit of Rubisco, whereas Chlamydomonas and Marchantia contained an unmodified lysyl residue at this position. ImagesFigure 1 PMID:16668742

  20. [Heme oxygenase induction in rat heart and vessels and peroxidative resistance of erythrocytes during hemolytic anemia development].

    PubMed

    Kaliman, P A; Pavychenko, O V

    2005-01-01

    The hemolytic anemia development caused by phenylhydrazine injection (7 mg/100 g b.w.) was shown to be caused by the decreasing of both catalase activity and glutathione content in erythrocytes, and by the increasing of spontaneouse hemolysis level of these cells in blood stream. The increasing of heme oxygenase activity and TBA-active products in rat heart and vessels were revealed 24 hrs after phenylhydrazine injection. Possible mechanisms of heme oxygenase-1 induction under hypoxia as response to the hemolytic anemia development and it's role in defense of the cells from damage are discussed. PMID:16329389

  1. Analysis of Carotenoid Isomerase Activity in a Prototypical Carotenoid Cleavage Enzyme, Apocarotenoid Oxygenase (ACO)*

    PubMed Central

    Sui, Xuewu; Kiser, Philip D.; Che, Tao; Carey, Paul R.; Golczak, Marcin; Shi, Wuxian; von Lintig, Johannes; Palczewski, Krzysztof

    2014-01-01

    Carotenoid cleavage enzymes (CCEs) constitute a group of evolutionarily related proteins that metabolize a variety of carotenoid and non-carotenoid substrates. Typically, these enzymes utilize a non-heme iron center to oxidatively cleave a carbon-carbon double bond of a carotenoid substrate. Some members also isomerize specific double bonds in their substrates to yield cis-apocarotenoid products. The apocarotenoid oxygenase from Synechocystis has been hypothesized to represent one such member of this latter category of CCEs. Here, we developed a novel expression and purification protocol that enabled production of soluble, native ACO in quantities sufficient for high resolution structural and spectroscopic investigation of its catalytic mechanism. High performance liquid chromatography and Raman spectroscopy revealed that ACO exclusively formed all-trans products. We also found that linear polyoxyethylene detergents previously used for ACO crystallization strongly inhibited the apocarotenoid oxygenase activity of the enzyme. We crystallized the native enzyme in the absence of apocarotenoid substrate and found electron density in the active site that was similar in appearance to the density previously attributed to a di-cis-apocarotenoid intermediate. Our results clearly demonstrated that ACO is in fact a non-isomerizing member of the CCE family. These results indicate that careful selection of detergent is critical for the success of structural studies aimed at elucidating structures of CCE-carotenoid/retinoid complexes. PMID:24648526

  2. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    SciTech Connect

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  3. Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells

    SciTech Connect

    Applegate, L.A.; Luscher, P.; Tyrrell, R.M. )

    1991-02-01

    Accumulation of heme oxygenase mRNA is strongly stimulated by treatment of cultured human skin fibroblasts with ultraviolet radiation, hydrogen peroxide, or the sulfhydryl reagent sodium arsenite. Since this will result in a transient reduction in the prooxidant state of cells, the phenomenon may represent an important inducible antioxidant defense mechanism. To examine the generality of the response, we have measured the accumulation of the specific mRNA in a variety of human and mammalian cell types after inducing treatments. Induction by sodium arsenite is observed in all additional human cell types tested. This includes primary epidermal keratinocytes and lung and colon fibroblasts as well as established cell lines such as HeLa, TK6 lymphoblastoid, and transformed fetal keratinocytes. Strong induction of heme oxygenase mRNA is also observed following sodium arsenite treatment of cell lines of rat, hamster, mouse, monkey, and marsupial origin. The agents which lead to induction in cultured human skin fibroblasts fall into two categories: (a) those which are oxidants or can generate active intermediates (ultraviolet A radiation, hydrogen peroxide, menadione, and the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate); (b) agents which are known to interact with or modify cellular glutathione levels (buthionine sulfoximine, sodium arsenite, iodoacetamide, diamide, and cadmium chloride). These observations strongly support the hypothesis that induction of the enzyme is a general response to oxidant stress in mammalian cells and are consistent with the possibility that the cellular redox state plays a key role.

  4. Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates

    PubMed Central

    Williams, Sophie T; Walport, Louise J; Hopkinson, Richard J; Madden, Sarah K; Chowdhury, Rasheduzzaman; Schofield, Christopher J; Kawamura, Akane

    2014-01-01

    The JmjC-domain-containing 2-oxoglutarate-dependent oxygenases catalyze protein hydroxylation and Nε-methyllysine demethylation via hydroxylation. A subgroup of this family, the JmjC lysine demethylases (JmjC KDMs) are involved in histone modifications at multiple sites. There are conflicting reports as to the substrate selectivity of some JmjC oxygenases with respect to KDM activities. In this study, a panel of modified histone H3 peptides was tested for demethylation against 15 human JmjC-domain-containing proteins. The results largely confirmed known Nε-methyllysine substrates. However, the purified KDM4 catalytic domains showed greater substrate promiscuity than previously reported (i.e., KDM4A was observed to catalyze demethylation at H3K27 as well as H3K9/K36). Crystallographic analyses revealed that the Nε-methyllysine of an H3K27me3 peptide binds similarly to Nε-methyllysines of H3K9me3/H3K36me3 with KDM4A. A subgroup of JmjC proteins known to catalyze hydroxylation did not display demethylation activity. Overall, the results reveal that the catalytic domains of the KDM4 enzymes may be less selective than previously identified. They also draw a distinction between the Nε-methyllysine demethylation and hydroxylation activities within the JmjC subfamily. These results will be of use to those working on functional studies of the JmjC enzymes. PMID:25625844

  5. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).

    PubMed Central

    Green, J; Dalton, H

    1986-01-01

    A steady-state kinetic analysis of purified soluble methane mono-oxygenase of Methylococcus capsulatus (Bath) was performed. The enzyme was found to follow a concerted-substitution mechanism. Methane binds to the enzyme followed by NADH, which reacts to yield reduced enzyme and NAD+. The reduced enzyme-methane complex binds O2 to give a second ternary complex, which breaks down to release water and methanol. In this way the enzyme can control the supply of electrons to the active site to coincide with the arrival of methane. Product-inhibition studies (with propylene as substrate) supported the reaction mechanism proposed. Ki values for NAD+ and propylene oxide are reported. The Km for NADH varied from 25 microM to 300 microM, depending on the nature of the hydrocarbon substrate, and thus supports the proposed reaction sequence. With methane as substrate the Km values for methane, NADH and O2 were shown to be 3 microM, 55.8 microM and 16.8 microM respectively. With propylene as substrate the Km values for propylene, NADH and O2 were 0.94 microM, 25.2 microM and 12.7-15.9 microM respectively. Methane mono-oxygenase was shown to be well adapted to the oxidation of methane compared with other straight-chain alkanes. PMID:3098230

  6. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  7. A Novel, ;Double-Clamp; Binding Mode for Human Heme Oxygenase-1 Inhibition

    SciTech Connect

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-08-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be {approx}15 times more potent (IC{sub 50} = 0.27{+-}0.07 {mu}M) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC{sub 50} = 4.0{+-}1.8 {mu}M). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This 'double-clamp' binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  8. Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y

    SciTech Connect

    Hoffmann, Maren; Braaz, Reinhard; Jendrossek, Dieter; Einsle, Oliver

    2008-02-01

    The extracellular rubber-degrading enzyme rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y has been crystallized and diffraction data have been collected to high resolution. Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P2{sub 1}, with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 Å, β = 98.39°, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 Å. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion.

  9. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    PubMed Central

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  10. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    PubMed

    Rahman, Mona N; Vlahakis, Jason Z; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50) = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50) = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  11. Biosynthesis of piperazic acid via N5-hydroxy-ornithine in Kutzneria spp. 744.

    PubMed

    Neumann, Christopher S; Jiang, Wei; Heemstra, John R; Gontang, Erin A; Kolter, Roberto; Walsh, Christopher T

    2012-05-01

    Which came first? We have investigated the biosynthesis of the piperazic acid (Piz) building blocks in the kutzneride family of metabolites. The flavin-dependent oxygenase KtzI was shown to convert ornithine to N(5)-OH-Orn. LC-MS/MS showed (13)C(5)-labeled versions of these two amino acids to be direct precursors of piperazic acid in vivo. PMID:22522643

  12. Time-resolved Studies of IsdG Protein Identify Molecular Signposts along the Non-canonical Heme Oxygenase Pathway.

    PubMed

    Streit, Bennett R; Kant, Ravi; Tokmina-Lukaszewska, Monika; Celis, Arianna I; Machovina, Melodie M; Skaar, Eric P; Bothner, Brian; DuBois, Jennifer L

    2016-01-01

    IsdGs are heme monooxygenases that break open the tetrapyrrole, releasing the iron, and thereby allowing bacteria expressing this protein to use heme as a nutritional iron source. Little is currently known about the mechanism by which IsdGs degrade heme, although the products differ from those generated by canonical heme oxygenases. A synthesis of time-resolved techniques, including in proteo mass spectrometry and conventional and stopped-flow UV/visible spectroscopy, was used in conjunction with analytical methods to define the reaction steps mediated by IsdG from Staphylococcus aureus and their time scales. An apparent meso-hydroxyheme (forming with k = 0.6 min(-1), pH 7.4, 10 mm ascorbate, 10 μm IsdG-heme, 22 °C) was identified as a likely common intermediate with the canonical heme oxygenases. Unlike heme oxygenases, this intermediate does not form with added H2O2 nor does it convert to verdoheme and CO. Rather, the next observable intermediates (k = 0.16 min(-1)) were a set of formyloxobilin isomers, similar to the mycobilin products of the IsdG homolog from Mycobacterium tuberculosis (MhuD). These converted in separate fast and slow phases to β-/δ-staphylobilin isomers and formaldehyde (CH2O). Controlled release of this unusual C1 product may support IsdG's dual role as both an oxygenase and a sensor of heme availability in S. aureus. PMID:26534961

  13. Regulation of heme oxygenase activity in rat liver during oxidative stress induced by cobalt chloride and mercury chloride.

    PubMed

    Kaliman, P A; Nikitchenko, I V; Sokol, O A; Strel'chenko, E V

    2001-01-01

    Activities of heme oxygenase and tryptophan-2,3-dioxygenase and cytochrome P450 content in liver as well as absorption of the Soret band and optical density at 280 nm in serum were determined 2 and 24 h after administration of HgCl(2) and CoCl(2) and after co-administration of the metal salts with alpha-tocopherol. Administration of HgCl(2) and CoCl(2) increased the contents of hemolysis products in the serum, induced heme oxygenase, and decreased cytochrome P450 content in the liver. Injection of HgCl(2) increased the activity of tryptophan-2,3-dioxygenase holoenzyme and enzyme saturation with the heme, but administration of CoCl(2) decreased these parameters. Pretreatment with alpha-tocopherol completely blocked the changes induced by HgCl(2) after 24 h. Induction of heme oxygenase induced by CoCl(2) was not blocked by alpha-tocopherol, but this antioxidant normalized the increase in the level of hemolysis products in the serum and decrease in tryptophan-2,3-dioxygenase holoenzyme activity and cytochrome P450 content. Mechanisms of regulation of heme oxygenase by mercury and cobalt ions are discussed. PMID:11240397

  14. Bilberry (Vaccinium myrtillus) Anthocyanins Modulate Heme Oxygenase-1 and Glutathione S-Transferase-pi Expression in the ARPE-19 Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE. To determine whether anthocyanin-enriched bilberry extracts modulate pre- or post-translational levels of oxidative stress defense enzymes heme-oxygenase (HO)-1 and glutathione S-transferase-pi (GST-pi) in cultured human retinal pigment epithelial (RPE) cells. METHODS. Confluent ARPE-19 c...

  15. Isolation and sequencing of an active-site peptide from Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase after affinity labeling with 2-((Bromoacetyl)amino)pentitol 1,5-bisphosphate

    SciTech Connect

    Fraij, B.; Hartman, F.C.

    1983-01-01

    2-((Bromoacetyl)amino)pentitol 1,5-bisphosphate was reported to be a highly selective affinity label for ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. The enzyme has now been inactivated with a /sup 14/C-labeled reagent in order to identify the target residue at the sequence level. Subsequent to inactivation, the enzyme was carboxymethylated with iodoacetate and then digested with trypsin. The only radioactive peptide in the digest was obtained at a high degree of purity by successive chromatography on DEAE-cellulose, SP-Sephadex, and Sephadex G-25. On the basis of amino acid analysis of the purified peptide, the derivatized residue was a methionyl sulfonium salt. Automated Edman degradation confirmed the purity of the labeled peptide and established its sequence as Leu-Gln-Gly-Ala-Ser-Gly-Ile-His-Thr-Gly-Thr-Met-Gly-Phe-Gly-Lys-Met-Glu-Gly-Glu-Ser-Ser-Asp-Arg. Cleavage of this peptide with cyanogen bromide showed that the reagent moiety was covalently attached to the second methionyl residue. Sequence homology with the carboxylase/oxygenase from spinach indicates that the lysyl residue immediately preceding the alkylated methionine corresponds to Lys-334, a residue previously implicated at the active site. 31 references, 4 figures, 3 tables.

  16. Induction of heme oxygenase-1 attenuates chemotherapy-induced pulmonary toxicity in rats: A possible link between heme oxygenase-1 and NF-κB.

    PubMed

    Abdel-Raheem, Ihab Talat; Omran, Gamal Abd El-Hay

    2016-03-01

    A critical restriction in the use of bleomycin (BLM) is development of pulmonary fibrosis via oxidative and inflammatory mechanisms. Drugs that induce heme oxygenase-1 (HO-1) like hemin (HEM), have anti-inflammatory, antioxidant, and immunomodulatory effects. Accordingly, it is worth to test HEM against BLM-induced lung Injury. Four groups of rats were used: control group; HEM group (50 mg/kg, i.p.); BLM group (5 mg/kg, intratracheal single injection) and HEM+BLM group (HEM administered 1 day before BLM injection and continued for 14 days). At the end of experiment, lactate dehydrogenase (LDH) and NO levels were estimated in bronchoalveolar lavage fluid (BALF). Hydroxyproline (HP), myeloperoxidase (MPO), IL-6, GSH, MDA levels and SOD activity were determined in lung tissues. In addition, expression of HO-1 and NF-κB protein in lung tissues was determined using both western blot and immunohistochemical techniques. Also lung tissues were investigated histopathologically. BLM produced lung damage as indicated from the elevation in LDH and NO, perturbation in lung oxidative stress indicators, increased HP, MPO, IL-6 contents and NF-κB expression. On the other side, HEM, reduced BLM harmful effects as noticed from amelioration of biochemical markers and histopathological lesions, which is concomitant with over-expression of HO-1. Therefore, induction of HO-1 in lung by HEM may alleviate the lung damaging effects of BLM. PMID:27113308

  17. Isotetrandrine ameliorates tert-butyl hydroperoxide-induced oxidative stress through upregulation of heme oxygenase-1 expression.

    PubMed

    Wang, Lidong; Ci, Xinxin; Lv, Hongming; Wang, Xiaosong; Qin, F Xiaofeng; Cheng, Genhong

    2016-08-01

    1R, 1'S-isotetrandrine, a naturally occurring plant alkaloid found in Mahonia of Berberidaceae, possesses anti-inflammatory, antibacterial, and antiviral properties, but the antioxidative activity and mechanism action remain unclear. In this study, we demonstrated the antioxidative effect and mechanism of 1R, 1'S-isotetrandrine against tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. We found that 1R, 1'S-isotetrandrine suppressed cytotoxicity, reactive oxygen species generation, and glutathione depletion. Additionally, our study confirmed that 1R, 1'S-isotetrandrine significantly increased the antioxidant enzyme heme oxygenase-1 expression and nuclear translocation of factor-erythroid 2 p45-related factor 2 (Nrf2). Specifically, the nuclear translocation of Nrf2 induced by 1R, 1'S-isotetrandrine was associated with Nrf2 negative regulatory protein Keap1 inactivation and phosphorylation of both extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase. Preincubation with thiol-reducing agents reduced 1R, 1'S-isotetrandrine-induced heme oxygenase-1 expression, and treatment with either extracellular signal-regulated protein kinase or c-Jun NH2-terminal kinase inhibitors attenuated the levels of 1R, 1'S-isotetrandrine-induced Nrf2 activation and heme oxygenase-1 expression. Furthermore, the cytoprotective effect of 1R, 1'S-isotetrandrine was abolished by heme oxygenase-1, extracellular signal-regulated protein kinase, and c-Jun NH2-terminal kinase inhibitors. These results indicated that the 1R, 1'S-isotetrandrine ameliorated tert-butyl hydroperoxide-induced oxidative damage through upregulation of heme oxygenase-1 expression by the dissociation of Nrf2 from Nrf2-Keap1 complex via extracellular signal-regulated protein kinase and c-Jun NH2-terminal kinase activation and Keap1 inactivation. PMID:27190261

  18. Cloning and characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) cDNA from green microalga Ankistrodesmus convolutus.

    PubMed

    Thanh, Tran; Chi, Vu Thi Quynh; Abdullah, Mohd Puad; Omar, Hishamuddin; Noroozi, Mostafa; Napis, Suhaimi

    2011-11-01

    An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit. PMID:21287365

  19. Potential therapeutic applications of aspirin and other cyclo-oxygenase inhibitors

    PubMed Central

    Farah, A. E.; Rosenberg, F.

    1980-01-01

    1 The ubiquitous actions of the cyclo-oxygenase inhibitors are described. 2 These include the inhibitory effect on prostaglandin synthesis and the direct effect of aspirin on lymphocytes and their ability to produce lymphokines. 3 Aspirin reduces some types of platelet aggregation possibly involving inhibition of the precursors of thromboxane A2 and prostacyclin. 4 The therapeutic implications in relation to transient ischaemic attacks, coronary artery disease and reno-allograft rejection are discussed. 5 The beneficial and adverse effects on the gastro-intestinal tract are described. 6 The effects of aspirin-like drugs on the genito-urinary tract are described with particular reference to their adverse effects on labour and their therapeutic effect on dysmenorrhoea. PMID:6776977

  20. Mutation in bovine beta-carotene oxygenase 2 affects milk color.

    PubMed

    Berry, S D; Davis, S R; Beattie, E M; Thomas, N L; Burrett, A K; Ward, H E; Stanfield, A M; Biswas, M; Ankersmit-Udy, A E; Oxley, P E; Barnett, J L; Pearson, J F; van der Does, Y; Macgibbon, A H K; Spelman, R J; Lehnert, K; Snell, R G

    2009-07-01

    beta-Carotene biochemistry is a fundamental process in mammalian biology. Aberrations either through malnutrition or potentially through genetic variation may lead to vitamin A deficiency, which is a substantial public health burden. In addition, understanding the genetic regulation of this process may enable bovine improvement. While many bovine QTL have been reported, few of the causative genes and mutations have been identified. We discovered a QTL for milk beta-carotene and subsequently identified a premature stop codon in bovine beta-carotene oxygenase 2 (BCO2), which also affects serum beta-carotene content. The BCO2 enzyme is thereby identified as a key regulator of beta-carotene metabolism. PMID:19398771

  1. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes

    NASA Astrophysics Data System (ADS)

    Sydor, Paulina K.; Barry, Sarah M.; Odulate, Olanipekun M.; Barona-Gomez, Francisco; Haynes, Stuart W.; Corre, Christophe; Song, Lijiang; Challis, Gregory L.

    2011-05-01

    Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered carbocyclic rings in the key steps of the biosynthesis of the antibiotics streptorubin B and metacycloprodigiosin, respectively. These reactions represent the first examples of oxidative carbocyclizations catalysed by non-haem iron-dependent oxidases and define a novel type of catalytic activity for Rieske enzymes. A better understanding of how these enzymes achieve such remarkable regio- and stereocontrol in the functionalization of unactivated hydrocarbon chains will greatly facilitate the development of selective man-made C-H activation catalysts.

  2. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    PubMed Central

    Schipper, Hyman M.; Song, Wei

    2015-01-01

    Heme oxygenase-1 (HO-1) is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders. PMID:25761244

  3. Positive and negative regulation of the human heme oxygenase-1 gene expression in cultured cells.

    PubMed

    Takahashi, S; Takahashi, Y; Ito, K; Nagano, T; Shibahara, S; Miura, T

    1999-10-28

    To elucidate the regulation of the human heme oxygenase-1 (hHO-1) gene expression, we assessed approximately 4 kb of the 5'-flanking region of the hHO-1 gene for basal promoter activity and sequenced approximately 2 kb of the 5'-flanking region. A series of deletion mutants of the 5'-flanking region linked to the luciferase gene was constructed. Basal level expression of these constructs was tested in HepG2 human hepatoma cells and HeLa cervical cancer cells. By measuring luciferase activity, which was transiently expressed in the transfected cells, we found a positive regulatory region at position -1976 to -1655 bp. This region functions in HepG2 cells but not in HeLa cells. A negative regulatory region was also found at position -981 to -412 bp that functions in both HepG2 cells and HeLa cells. PMID:10542320

  4. Measurement of membrane-bound human heme oxygenase-1 activity using a chemically defined assay system.

    PubMed

    Huber, Warren J; Marohnic, Christopher C; Peters, Michelle; Alam, Jawed; Reed, James R; Masters, Bettie Sue Siler; Backes, Wayne L

    2009-04-01

    Heme oxygenase (HO) catalyzes heme degradation in a reaction requiring NADPH-cytochrome P450 reductase (CPR). Although most studies with HO used a soluble 30-kDa form, lacking the C-terminal membrane-binding region, recent reports show that the catalytic behavior of this enzyme is very different if this domain is retained; the overall activity was elevated 5-fold, and the K(m) for CPR decreased approximately 50-fold. The goal of these studies was to accurately measure HO activity using a coupled assay containing purified biliverdin reductase (BVR). This allows measurement of bilirubin formation after incorporation of full-length CPR and heme oxygenase-1 (HO-1) into a membrane environment. When rat liver cytosol was used as the source of partially purified BVR, the reaction remained linear for 2 to 3 min; however, the reaction was only linear for 10 to 30 s when an equivalent amount of purified, human BVR (hBVR) was used. This lack of linearity was not observed with soluble HO-1. Optimal formation of bilirubin was achieved with concentrations of bovine serum albumin (0.25 mg/ml) and hBVR (0.025-0.05 microM), but neither supplement increased the time that the reaction remained linear. Various concentrations of superoxide dismutase had no effect on the reaction; however, when catalase was included, the reactions were linear for at least 4 to 5 min, even at high CPR levels. These results not only show that HO-1-generated hydrogen peroxide leads to a decrease in HO-1 activity but also provide for a chemically defined system to be used to examine the function of full-length HO-1 in a membrane environment. PMID:19131520

  5. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing

    PubMed Central

    Bellner, Lars; Marrazzo, Giuseppina; van Rooijen, Nico; Dunn, Michael W.; Abraham, Nader G.; Schwartzman, Michal L.

    2015-01-01

    Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2−/− and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2−/− mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2−/− macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2−/− mice. These findings indicate that HO-2–deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2−/− cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.—Bellner, L., Marrazzo, G., van Rooijen, N., Dunn, M. W., Abraham, N. G., Schwartzman, M. L. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing. PMID:25342128

  6. Substrate Specificity of Purified Recombinant Chicken β-Carotene 9',10'-Oxygenase (BCO2).

    PubMed

    Dela Seña, Carlo; Sun, Jian; Narayanasamy, Sureshbabu; Riedl, Kenneth M; Yuan, Yan; Curley, Robert W; Schwartz, Steven J; Harrison, Earl H

    2016-07-01

    Provitamin A carotenoids are oxidatively cleaved by β-carotene 15,15'-dioxygenase (BCO1) at the central 15-15' double bond to form retinal (vitamin A aldehyde). Another carotenoid oxygenase, β-carotene 9',10'-oxygenase (BCO2) catalyzes the oxidative cleavage of carotenoids at the 9'-10' bond to yield an ionone and an apo-10'-carotenoid. Previously published substrate specificity studies of BCO2 were conducted using crude lysates from bacteria or insect cells expressing recombinant BCO2. Our attempts to obtain active recombinant human BCO2 expressed in Escherichia coli were unsuccessful. We have expressed recombinant chicken BCO2 in the strain E. coli BL21-Gold (DE3) and purified the enzyme by cobalt ion affinity chromatography. Like BCO1, purified recombinant chicken BCO2 catalyzes the oxidative cleavage of the provitamin A carotenoids β-carotene, α-carotene, and β-cryptoxanthin. Its catalytic activity with β-carotene as substrate is at least 10-fold lower than that of BCO1. In further contrast to BCO1, purified recombinant chicken BCO2 also catalyzes the oxidative cleavage of 9-cis-β-carotene and the non-provitamin A carotenoids zeaxanthin and lutein, and is inactive with all-trans-lycopene and β-apocarotenoids. Apo-10'-carotenoids were detected as enzymatic products by HPLC, and the identities were confirmed by LC-MS. Small amounts of 3-hydroxy-β-apo-8'-carotenal were also consistently detected in BCO2-β-cryptoxanthin reaction mixtures. With the exception of this activity with β-cryptoxanthin, BCO2 cleaves specifically at the 9'-10' bond to produce apo-10'-carotenoids. BCO2 has been shown to function in preventing the excessive accumulation of carotenoids, and its broad substrate specificity is consistent with this. PMID:27143479

  7. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction.

    PubMed

    Navarro, Elisa; Buendia, Izaskun; Parada, Esther; León, Rafael; Jansen-Duerr, Pidder; Pircher, Haymo; Egea, Javier; Lopez, Manuela G

    2015-10-15

    Subchronic oxidative stress and inflammation are being increasingly implicated in the pathogenesis of numerous diseases, such as Alzheimer's or Parkinson's disease. This study was designed to evaluate the potential protective role of α7 nicotinic receptor activation in an in vitro model of neurodegeneration based on subchronic oxidative stress. Rat organotypic hippocampal cultures (OHCs) were exposed for 4 days to low concentration of lipopolysaccharide (LPS) and the complex III mitochondrial blocker, antimycin-A. Antimycin-A (0.1μM) and lipopolysaccharide (1ng/ml) caused low neurotoxicity on their own, measured as propidium iodide fluorescence in CA1 and CA3 regions. However, their combination (LPS/AA) caused a greater detrimental effect, in addition to mitochondrial depolarization, overproduction of reactive oxygen species (ROS) and Nox4 overexpression. Antimycin-A per se increased ROS and mitochondrial depolarization, although these effects were significantly higher when combined with LPS. More interesting was the finding that exposure of OHCs to the combination of LPS/AA triggered aberrant protein aggregation, measured as thioflavin S immunofluorescence. The α7 nicotinic receptor agonist, PNU282987, prevented the neurotoxicity and the pathological hallmarks observed in the LPS/AA subchronic toxicity model (oxidative stress and protein aggregates); these effects were blocked by α-bungarotoxin and tin protoporphyrin, indicating the participation of α7 nAChRs and heme-oxygenase I induction. In conclusion, subchronic exposure of OHCs to low concentration of antimycin-A plus LPS reproduced pathological features of neurodegenerative disorders. α7 nAChR activation ameliorated these alterations by a mechanism involving heme-oxygenase I induction. PMID:26212551

  8. Expression and activity analysis reveal that heme oxygenase (decycling) 1 is associated with blue egg formation.

    PubMed

    Wang, Z P; Liu, R F; Wang, A R; Li, J Y; Deng, X M

    2011-04-01

    Biliverdin is responsible for the coloration of blue eggs and is secreted onto the eggshell by the shell gland. Previous studies confirmed that a significant difference exists in biliverdin content between blue eggs and brown eggs, although the reasons are still unknown. Because the pigment is derived from oxidative degradation of heme catalyzed by heme oxygenase (HO), this study compared heme oxygenase (decycling) 1 (HMOX1), the gene encoding HO expression and HO activity, in the shell glands of the Dongxiang blue-shelled chicken (n = 12) and the Dongxiang brown-shelled chicken (n = 12). Results showed that HMOX1 was highly expressed at the mRNA (1.58-fold; P < 0.05) and protein levels in blue-shelled chickens compared with brown-shelled chickens. At the functional level, blue-shelled chickens also showed 1.40-fold (P < 0.05) higher HO activity than brown-shelled chickens. To explore the reasons for the differential expression of HMOX1, an association study of 6 SNP capturing the majority of HMOX1 variants with the blue egg coloration was performed. Results showed no significant association between SNP and the blue egg coloration in HMOX1 (P > 0.05). Taken together, these results show that blue egg formation is associated with high expression of HMOX1 in the shell gland of Dongxiang blue-shelled chickens, and suggest that differential expression of HMOX1 in the 2 groups of chickens is most likely to arise from an alteration in the trans-acting factor. PMID:21406370

  9. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    PubMed

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries. PMID:10022513

  10. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  11. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms.

    PubMed

    Xu, H H; Tabita, F R

    1996-06-01

    Carbon dioxide fixation is carried out primarily through the Calvin-Benson-Bassham reductive pentose phosphate cycle, in which ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. The primary structure of the large subunit of form I RubisCO is well conserved; however, four distinct types, A, B, C, and D, may be distinguished, with types A and B and types C and D more closely related to one another. To better understand the environmental regulation of RubisCO in Lake Erie phytoplanktonic microorganisms, we have isolated total RNA and DNA from four Lake Erie sampling sites. Probes prepared from RubisCO large-subunit genes (rbcL) of the freshwater cyanobacterium Synechococcus sp. strain PCC6301 (representative of type IB) and the diatom Cylindrotheca sp. strain N1 (representative of type ID) were hybridized to the isolated RNA and DNA. To quantitate rbcL gene expression for each sample, the amount of gene expression per gene dose (i.e., the amount of mRNA divided by the amount of target DNA) was determined. With a limited number of sampling sites, it appeared that type ID (diatom) rbcL gene expression per gene dose decreased as the sampling sites shifted toward open water. By contrast, a similar trend was not observed for cyanobacterial (type IB) rbcL gene expression per gene dose. Complementary DNA specific for rbcL was synthesized from Lake Erie RNA samples and used as a template for PCR amplification of portions of various rbcL genes. Thus far, a total of 21 clones of rbcL genes derived from mRNA have been obtained and completely sequenced from the Ballast Island site. For surface water samples, deduced amino acid sequences of five of six clones appeared to be representative of green algae. In contrast, six of nine sequenced rbcL clones from 10-m-deep samples were of chromophytic and rhodophytic lineages. At 5 m deep, the active CO2-fixing planktonic organisms represented a diverse group, including organisms related to Chlorella ellipsoidea

  12. Human mesenchymal stem cells elevate CD4+CD25+CD127low/- regulatory T cells of asthmatic patients via heme oxygenase-1.

    PubMed

    Li, Jian-guo; Zhuan-sun, Yong-xun; Wen, Bing; Wu, Hao; Huang, Feng-ting; Ghimire, Hridaya bibhu; Ran, Pi-xin

    2013-09-01

    Up-regulation of CD4+CD25+CD127low/- regulatory T cells (Tregs) is a new target in the treatment of asthma. Human bone marrow mesenchymal stem cells can up-regulate CD4+CD25+CD127low/- regulatory T cells in vitro, meanwhile, heme oxygenase-1 (HO-1) plays an important role in the development and maintenance of CD4+CD25+ regulatory T cells. However the mechanism has not yet been adequately understood. Hence, we wondered what effect of Heme Oxygenase-1 made on regulation of CD4+CD25+CD127low/- regulatory T cells mediated by mesenchymal stem cells. Peripheral blood mononuclear cells isolated from asthmatic patients and healthy controls were co-cultured with human bone marrow mesenchymal stem cells which were pretreated with Hemin (the revulsive of Heme Oxygenase-1), Protoporphyrin Ⅸ zinc (the inhibitor of Heme Oxygenase-1) and saline. The expression of Heme Oxygenase-1 in MSCs was enhanced by Hemin and inhibited by Protoporphyrin  zinc in vitro. Overexpression of Heme Oxygenase-1 elevated the proportion of CD4+CD25+CD127low/- regulatory T cells in CD4+ T cells, meanwhile, inhibition of Heme Oxygenase-1 decreased the proportion of CD4+CD25+CD127low/- regulatory T cells in CD4+ T cells as compared with mesenchymal stem cells alone. Taken together, these data demonstrated that Heme Oxygenase-1 contributed to the up-regulation of CD4+CD25+CD127low/- regulatory T cells mediated by mesenchymal stem cells in asthma.  PMID:23893806

  13. Serum Heme Oxygenase-1 and BMP-7 Are Potential Biomarkers for Bone Metabolism in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis

    PubMed Central

    Yuan, Tong-ling; Chen, Jin; Tong, Yan-li; Zhang, Yan; Liu, Yuan-yuan; Wei, James Cheng-Chung; Liu, Yi; Herrmann, Martin

    2016-01-01

    Backgrounds. Heme oxygenase-1 (HO-1) has been reported to play a regulatory role in osteoclastogenesis. Bone morphogenetic protein (BMP) pathways induce osteoblastic differentiation and bone remodeling. Aims. To identify serum levels of HO-1, BMP-7, and Runt related-transcription factor 2 (Runx2) in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to investigate the relationships between HO-1, BMP-7, Runx2, and other common biomarkers for bone metabolism. Results. Serum levels of HO-1 and BMP-7 were revealed to be significantly higher in patients with RA or AS than in healthy controls (p < 0.01). In RA group, HO-1 was positively correlated with BMP-7, Runx2, and tartrate-resistant acid phosphatase-5b (TRAP-5b) (p < 0.05, resp.), BMP-7 was positively correlated with Runx2 and TRAP-5b (p < 0.05, resp.), and Runx2 was negatively correlated with N-terminal midfragment of osteocalcin (NMID) (p < 0.05). In AS group, we observed identical correlation between HO-1 and BMP-7, but opposite correlations between BMP-7 and TRAP-5b and between Runx2 and NMID, when comparing with the RA cohort. Conclusion. Our findings suggest that HO-1 and BMP-7 are potential biomarkers for bone metabolism in patients with RA and AS. The different correlations between the bone markers point to distinct differences in bone remodeling pathways in the two types of arthritis. PMID:27314037

  14. Expression of L-ornithine Ndelta-oxygenase (PvdA) in fluorescent Pseudomonas species: an immunochemical and in silico study.

    PubMed

    Putignani, Lorenza; Ambrosi, Cecilia; Ascenzi, Paolo; Visca, Paolo

    2004-01-01

    Omega-amino acid monooxygenases (EC 1.14.13.-), catalysing the formation of hydroxamate precursors of microbial siderophores (e.g., pyoverdine), have so far eluded structural and biochemical characterisation. Here, the expression of recombinant L-ornithine-Ndelta-oxygenase (PvdA) from Pseudomonas aeruginosa PAO1 is reported. A library of eight monoclonal antibodies (MAbs) directed against PvdA has been generated. Two MAb families recognising the N- and C-terminal regions of PvdA were identified. The MAbs made it possible to demonstrate that 45-48 kDa PvdA homologues are expressed in response to iron limitation by different species and strains of fluorescent pseudomonads. Despite the different degrees in sequence similarity between P. aeruginosa PvdA and putative homologues from Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae, Burkholderia cepacia, and Ralstonia solanacearum, in silico domain scanning predicts an impressive conservation of putative cofactor and substrate binding domains. The MAb library was also used to monitor PvdA expression during the transition of P. aeruginosa from iron-sufficient to iron-deficient growth. PMID:14684153

  15. Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath).

    PubMed Central

    Colby, J; Dalton, H

    1979-01-01

    1. A new two-step purification is described that routinely yields 100mg quantities of component C for biochemical studies. 2. Chemical analyses show component C purified by this procedure to contain 2 g-atoms of iron, 2 mol of acid-labile sulphide (S) and 1 mol of FAD per mol of protein. 3. The Fe-S core of component C was extruded by treating the protein with p-methoxybenzenethiol in hexamethyl phosphoramide/50mM-Tris/HCl buffer, pH 8.5 (4:1, v/v), under anaerobic conditions. The spectral properties of the extruded core suggest that component C contains 1 mol of [2Fe-2S(S-Cys)4] centre per mol of protein. 4. E.p.r. spectroscopy confirms the presence of a Fe-S centre in component C. 5. Component C catalyses the reduction by NADH of ferricyanide, 2,6-dichlorophenol-indophenol or horse heart cytochrome c, with specific activities of 50--230 units/mg of protein. 6. The optimum pH for the NADH-acceptor reductase activity is 8.5--9.0, and the apparent Km values for NADH and NADPH are 0.05mM and 15.5mM respectively. 7. Unlike methane mono-oxygenase activity, NADH-acceptor reductase activity of component C is not inhibited by 8-hydroxyquinoline or by acetylene. PMID:220953

  16. Effect of Nd{sup 3+} ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach

    SciTech Connect

    Liu Chao; Hong Fashui . E-mail: Hongfsh_cn@sina.com; Wu Kang; Ma, Hong-bing; Zhang Xueguang; Hong Chengjiao; Wu Cheng; Gao Fengqing; Yang Fan; Zheng Lei; Wang Xuefeng; Liu Tao; Xie Yaning; Xu Jianhua; Li Zhongrui

    2006-03-31

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.

  17. Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure

    SciTech Connect

    Fitchen, J.H.; McIntosh, L. ); Knight, S.; Andersson, I.; Branden, C.I. )

    1990-08-01

    To explore the role of individual residues in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, small subunits with single amino acid substitutions in three regions of relative sequence conservation were produced by directed mutagenesis of the rbcS gene from Anabaena 7120. These altered small subunits were cosythesized with large subunits (from an expressed Anabaena rbcL gene) in Escherichia coli. Mutants were analyzed for effects on quaternary structure and catalytic activity. Changing Glu-13S (numbering used is that of the spinach enzyme) to Val, Trp-67S to Arg, Pro-73S to His, or Tyr-98S to Asn prevented accumulation of stable holoenzyme. Interpretation of these results using a model for the three-dimensional structure of the spinach enzyme based on x-ray crystallographic data suggests that our small subunit mutants containing substitutions at positions 13S and 67S probably do not assemble because of mispairing or nonpairing of charged residues on the interfacing surfaces of the large and small subunits. The failure of small subunits substituted at positions 73S or 98S to assemble correctly may result from disruption of intersubunit or intrasubunit hydrophobic pockets, respectively.

  18. Cobalt Alleviates GA-Induced Programmed Cell Death in Wheat Aleurone Layers via the Regulation of H2O2 Production and Heme Oxygenase-1 Expression

    PubMed Central

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-01-01

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes. PMID:25405743

  19. Glutamine synthetase in ribulose 1,5-bisphosphate carboxylase/oxygenase deficient tobacco mutants in cell suspension culture.

    PubMed

    Hirel, B; Nato, A; Martin, F

    1984-06-01

    In two tobacco mutants lacking ribulose, 1,5-bisphosphate carboxylase/oxygenase the amount of glutamine synthetase and its activity were determined and compared with the wild type green cells. It was shown that in these two mutants glutamine synthetase protein content was six times lower than in the wild type. This situation was comparable to that found in etiolated cells where ribulose 1,5-bisphosphate carboxylase/oxygenase was absent. These observations suggest that a common regulatory mechanism might control the dual light dependent biosynthesis of both enzymes. The results have also implications concerning the efficiency of the reassimilation of ammonia by chloroplastic glutamine synthetase during the photorespiratory process. PMID:24253436

  20. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice.

    PubMed

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-03-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. PMID:26709310

  1. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice

    PubMed Central

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-01-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. PMID:26709310

  2. Caffeine Junkie: an Unprecedented Glutathione S-Transferase-Dependent Oxygenase Required for Caffeine Degradation by Pseudomonas putida CBB5

    PubMed Central

    Summers, Ryan M.; Seffernick, Jennifer L.; Quandt, Erik M.; Yu, Chi Li; Barrick, Jeffrey E.

    2013-01-01

    Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners. PMID:23813729

  3. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    SciTech Connect

    Sun, Gui-bo; Sun, Xiao; Wang, Min; Ye, Jing-xue; Si, Jian-yong; Xu, Hui-bo; Meng, Xiang-bao; Qin, Meng; Sun, Jing; Wang, Hong-wei; Sun, Xiao-bo

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  4. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  5. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    PubMed Central

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of potently inducing the synthesis of heme oxygenase protein in liver cells while, concurrently, completely inhibiting the activity of the newly formed enzyme. Substitution of tin for the central iron atom of heme thus leads to the formation of a synthetic heme analogue that regulates heme oxygenase by a dual mechanism, which involves competitive inhibition of the enzyme for the natural substrate heme and simultaneous enhancement of new enzyme synthesis. Cobaltic(III)-protoporphyrin (Co-protoporphyrin) also inhibits heme oxygenase activity in vitro, but unlike Sn-protoporphyrin it greatly enhances the activity of the enzyme in the whole animal. Co-protoporphyrin also acts as an in vivo inhibitor of heme oxygenase; however, its inducing effect on heme oxygenase synthesis is so pronounced as to prevail in vivo over its inhibitory effect on the enzyme. These studies show that certain synthetic heme analogues possess the ability to simultaneously inhibit as well as induce the enzyme heme oxygenase in liver. The net balance between these two actions, as reflected in the rate of heme oxidation activity in the whole animal, appears to be influenced by the nature of the central metal atom of the synthetic metalloporphyrin. Images PMID:3470805

  6. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  7. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice's brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  8. Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: Implications for mitochondrial ferritin.

    PubMed

    Yu, Xiaojun; Song, Ning; Guo, Xinli; Jiang, Hong; Zhang, Haoyun; Xie, Junxia

    2016-01-01

    Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) was observed in both astrocytes and neurons in the substantia nigra of patients with Parkinson's disease (PD). In the current study, we investigated whether HO-1 behaves differently between neurons and astrocytes under the condition of neurotoxicity related to PD. The results showed a time-dependent HO-1 upregulation in primary cultured ventral mesencephalon neurons and astrocytes treated with the mitochondria complex I inhibitor 1-methyl-4-phenylpyridinium (MPP(+)) or recombinant α-synuclein. However, HO-1 upregulation appeared much later in neurons than in astrocytes. The HO-1 inhibitor zinc protoporphyrin (ZnPP) aggravated MPP(+)- or α-synuclein-induced oxidative damage in both astrocytes and neurons, indicating that this HO-1 response was cytoprotective. For neurons, the HO-1 activator cobalt protoporphyrin IX (CoPPIX) exerted protective effects against MPP(+) or α-synuclein during moderate HO-1 upregulation, but it aggravated damage at the peak of the HO-1 response. For astrocytes, CoPPIXalways showed protective effects. Higher basal and CoPPIX-induced mitochondrial ferritin (MtFt) levels were detected in astrocytes. Lentivirus-mediated MtFt overexpression rescued the neuronal damage induced by CoPPIX, indicating that large MtFt buffering capacity contributes to pronounced HO-1 tolerance in astrocytes. Such findings suggest that astrocyte-targeted HO-1 interventions and MtFt modulations have potential as novel pharmacological strategies in PD. PMID:27097841

  9. Heme Oxygenase-1 and 2 Common Genetic Variants and Risk for Restless Legs Syndrome

    PubMed Central

    García-Martín, Elena; Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Ortega-Cubero, Sara; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A.G.

    2015-01-01

    Abstract Several neurochemical, neuropathological, neuroimaging, and experimental data, suggest that iron deficiency plays an important role in the pathophysiology of restless legs syndrome (RLS). Heme-oxygenases (HMOX) are an important defensive mechanism against oxidative stress, mainly through the degradation of heme to biliverdin, free iron, and carbon monoxide. We analyzed whether HMOX1 and HMOX2 genes are related with the risk to develop RLS. We analyzed the distribution of genotypes and allelic frequencies of the HMOX1 rs2071746, HMOX1 rs2071747, HMOX2 rs2270363, and HMOX2 rs1051308 SNPs, as well as the presence of Copy number variations (CNVs) of these genes in 205 subjects RLS and 445 healthy controls. The frequencies of rs2071746TT genotype and rs2071746T allelic variant were significantly lower in RLS patients than that in controls, although the other 3 studied SNPs did not differ between RLS patients and controls. None of the studied polymorphisms influenced the disease onset, severity of RLS, family history of RLS, serum ferritin levels, or response to dopaminergic agonist, clonazepam or GABAergic drugs. The present study suggests a weak association between HMOX1 rs2071746 polymorphism and the risk to develop RLS in the Spanish population. PMID:26313808

  10. Heme Oxygenase-1 and 2 Common Genetic Variants and Risk for Restless Legs Syndrome.

    PubMed

    García-Martín, Elena; Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Ortega-Cubero, Sara; Pastor, Pau; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; Agúndez, José A G

    2015-08-01

    Several neurochemical, neuropathological, neuroimaging, and experimental data, suggest that iron deficiency plays an important role in the pathophysiology of restless legs syndrome (RLS). Heme-oxygenases (HMOX) are an important defensive mechanism against oxidative stress, mainly through the degradation of heme to biliverdin, free iron, and carbon monoxide. We analyzed whether HMOX1 and HMOX2 genes are related with the risk to develop RLS.We analyzed the distribution of genotypes and allelic frequencies of the HMOX1 rs2071746, HMOX1 rs2071747, HMOX2 rs2270363, and HMOX2 rs1051308 SNPs, as well as the presence of Copy number variations (CNVs) of these genes in 205 subjects RLS and 445 healthy controls.The frequencies of rs2071746TT genotype and rs2071746T allelic variant were significantly lower in RLS patients than that in controls, although the other 3 studied SNPs did not differ between RLS patients and controls. None of the studied polymorphisms influenced the disease onset, severity of RLS, family history of RLS, serum ferritin levels, or response to dopaminergic agonist, clonazepam or GABAergic drugs.The present study suggests a weak association between HMOX1 rs2071746 polymorphism and the risk to develop RLS in the Spanish population. PMID:26313808

  11. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena.

    PubMed

    Huang, Fong-Chin; Horváth, Györgyi; Molnár, Péter; Turcsi, Erika; Deli, József; Schrader, Jens; Sandmann, Gerhard; Schmidt, Holger; Schwab, Wilfried

    2009-03-01

    Several of the key flavor compounds in rose essential oil are C(13)-norisoprenoids, such as beta-damascenone, beta-damascone, and beta-ionone which are derived from carotenoid degradation. To search for genes putatively responsible for the cleavage of carotenoids, cloning of carotenoid cleavage (di-)oxygenase (CCD) genes from Rosa damascena was carried out by a degenerate primer approach and yielded a full-length cDNA (RdCCD1). The RdCCD1 gene was expressed in Escherichia coli and recombinant protein was assayed for its cleavage activity with a multitude of carotenoid substrates. The RdCCD1 protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrates. RdCCD1 could also cleave lycopene at the 5-6 and 5'-6' positions to produce 6-methyl-5-hepten-2-one. Expression of RdCCD1 was studied by real-time PCR in different tissues of rose. The RdCCD1 transcript was present predominantly in rose flower, where high levels of volatile C(13)-norisoprenoids are produced. Thus, the accumulation of C(13)-norisoprenoids in rose flower is correlated to the expression of RdCCD1. PMID:19264332

  12. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  13. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines.

    PubMed

    Vural, Filiz; Ozcan, Mehmet Ali; Ozsan, Güner Hayri; Ateş, Halil; Demirkan, Fatih; Pişkin, Ozden; Undar, Bülent

    2005-05-01

    The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines. PMID:16019514

  14. Heme Catabolism by Heme Oxygenase-1 Confers Host Resistance to Mycobacterium Infection

    PubMed Central

    Silva-Gomes, Sandro; Appelberg, Rui; Larsen, Rasmus; Soares, Miguel Parreira

    2013-01-01

    Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (Mϕ) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1−/−) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1+/+) controls. Furthermore, Hmox1−/− mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1−/− versus Hmox1+/+ SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected Mϕ, an effect mimicked by exogenous heme administration to M. avium-infected wild-type Mϕ in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in Mϕ, contributing critically to host resistance to Mycobacterium infection. PMID:23630967

  15. Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y

    PubMed Central

    Hoffmann, Maren; Braaz, Reinhard; Jendrossek, Dieter; Einsle, Oliver

    2008-01-01

    Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P21, with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 Å, β = 98.39°, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 Å. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion. PMID:18259065

  16. Heme oxygenases from Arabidopsis thaliana reveal different mechanisms of carbon monoxide binding

    NASA Astrophysics Data System (ADS)

    Gisk, Björn; Molitor, Bastian; Frankenberg-Dinkel, Nicole; Kötting, Carsten

    2012-03-01

    Heme oxygenases (HO) are widely distributed enzymes involved in the degradation of heme to biliverdin, carbon monoxide and Fe2+. The model plant Arabidopsis thaliana possesses three functional HOs (HY1, HO3 and HO4) which are thus far biochemically indistinguishable. Here, we investigate binding of the reaction product and putative inhibitor CO to these three HOs with various spectroscopic techniques: Nanosecond time-resolved absorption, millisecond time-resolved multi-wavelength absorption and Fourier-transform-infrared difference spectroscopy. Kinetics of CO rebinding were found to differ substantially among the HOs. At low CO concentrations a novel intermediate was identified for HO3 and HO4, substantially slowing down rebinding. All HOs show relatively slow geminate rebinding of CO indicating the existence of an additional transient binding niche for CO. The positions found for the IR absorptions of νCO and νFeC suggest a nonpolar distal binding site for all three HOs. The frequency of the νFeC vibration was calculated by a combination band on which we report here for the first time. Another band in the FTIR difference spectrum could be assigned to a histidine residue, probably the proximal ligand of the heme-iron. The observed different rebinding kinetics among the HOs could indicate adaptation of the HOs to different environments.

  17. Heme oxygenases from Arabidopsis thaliana reveal different mechanisms of carbon monoxide binding.

    PubMed

    Gisk, Björn; Molitor, Bastian; Frankenberg-Dinkel, Nicole; Kötting, Carsten

    2012-03-01

    Heme oxygenases (HO) are widely distributed enzymes involved in the degradation of heme to biliverdin, carbon monoxide and Fe(2+). The model plant Arabidopsis thaliana possesses three functional HOs (HY1, HO3 and HO4) which are thus far biochemically indistinguishable. Here, we investigate binding of the reaction product and putative inhibitor CO to these three HOs with various spectroscopic techniques: Nanosecond time-resolved absorption, millisecond time-resolved multi-wavelength absorption and Fourier-transform-infrared difference spectroscopy. Kinetics of CO rebinding were found to differ substantially among the HOs. At low CO concentrations a novel intermediate was identified for HO3 and HO4, substantially slowing down rebinding. All HOs show relatively slow geminate rebinding of CO indicating the existence of an additional transient binding niche for CO. The positions found for the IR absorptions of ν(CO) and ν(FeC) suggest a nonpolar distal binding site for all three HOs. The frequency of the ν(FeC) vibration was calculated by a combination band on which we report here for the first time. Another band in the FTIR difference spectrum could be assigned to a histidine residue, probably the proximal ligand of the heme-iron. The observed different rebinding kinetics among the HOs could indicate adaptation of the HOs to different environments. PMID:22204880

  18. Palbinone from Paeonia suffruticosa protects hepatic cells via up-regulation of heme oxygenase-1.

    PubMed

    Ha, Do Thi; Phuong, Tran Thi; Oh, Joonseok; Bae, Kihwan; Thuan, Nguyen Duy; Na, Minkyun

    2014-02-01

    Paeonia suffruticosa has been traditionally employed for vitalizing blood circulation and alleviating liver and inflammatory diseases. The pathways by which palbinone (PB) isolated from P. suffruticosa mediates heme oxygenase-1 (HO-1) induction were investigated using the specific inhibitors for PI3K and mitogen activated protein kinases pathways. The effect of PB-treatment on Nrf2 translocalization and HO-1-antioxidant response element (ARE) regulation was examined employing Western blot and luciferase assays. PB induced HO-1 expression via the activation of Nrf2 in the hepatic cells, and ARE-dependent genes were stimulated via the PB-mediated Nrf2 activation. PB-mediated HO-1 expression could be involved with PI3K/Akt and ERK1/2 pathways. Our study suggests the mechanism by which PB induces HO-1 expression in the hepatic cells. This might substantiate the traditional applications of P. suffruticosa for the treatment of oxidative stress-related diseases including oxidant and inflammatory-mediated vascular and liver diseases. PMID:23595773

  19. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1

    PubMed Central

    Schallner, Nils; Pandit, Rambhau; LeBlanc, Robert; Thomas, Ajith J.; Ogilvy, Christopher S.; Zuckerbraun, Brian S.; Gallo, David; Otterbein, Leo E.; Hanafy, Khalid A.

    2015-01-01

    Subarachnoid hemorrhage (SAH) carries a 50% mortality rate. The extravasated erythrocytes that surround the brain contain heme, which, when released from damaged red blood cells, functions as a potent danger molecule that induces sterile tissue injury and organ dysfunction. Free heme is metabolized by heme oxygenase (HO), resulting in the generation of carbon monoxide (CO), a bioactive gas with potent immunomodulatory capabilities. Here, using a murine model of SAH, we demonstrated that expression of the inducible HO isoform (HO-1, encoded by Hmox1) in microglia is necessary to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral blood burden. Initiation of CO inhalation after SAH rescued the absence of microglial HO-1 and reduced injury by enhancing erythrophagocytosis. Evaluation of correlative human data revealed that patients with SAH have markedly higher HO-1 activity in cerebrospinal fluid (CSF) compared with that in patients with unruptured cerebral aneurysms. Furthermore, cisternal hematoma volume correlated with HO-1 activity and cytokine expression in the CSF of these patients. Collectively, we found that microglial HO-1 and the generation of CO are essential for effective elimination of blood and heme after SAH that otherwise leads to neuronal injury and cognitive dysfunction. Administration of CO may have potential as a therapeutic modality in patients with ruptured cerebral aneurysms. PMID:26011640

  20. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization.

    PubMed

    Cunnington, Aubrey J; de Souza, J Brian; Walther, Michael; Riley, Eleanor M

    2012-01-01

    In sub-Saharan Africa, invasive nontyphoid Salmonella (NTS) infection is a common and often fatal complication of Plasmodium falciparum infection. Induction of heme oxygenase-1 (HO-1) mediates tolerance to the cytotoxic effects of heme during malarial hemolysis but might impair resistance to NTS by limiting production of bactericidal reactive oxygen species. We show that co-infection of mice with Plasmodium yoelii 17XNL (Py17XNL) and Salmonella enterica serovar Typhimurium 12023 (Salmonella typhimurium) causes acute, fatal bacteremia with high bacterial load, features reproduced by phenylhydrazine-induced hemolysis or hemin administration. S. typhimurium localized predominantly in granulocytes. Py17XNL, phenylhydrazine and hemin caused premature mobilization of granulocytes from bone marrow with a quantitative defect in the oxidative burst. Inhibition of HO by tin protoporphyrin abrogated the impairment of resistance to S. typhimurium by hemolysis. Thus, a mechanism of tolerance to one infection, malaria, impairs resistance to another, NTS. Furthermore, HO inhibitors may be useful adjunctive therapy for NTS infection in the context of hemolysis. PMID:22179318

  1. Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance.

    PubMed

    Riquelme, Sebastián A; Carreño, Leandro J; Espinoza, Janyra A; Mackern-Oberti, Juan Pablo; Alvarez-Lobos, Manuel M; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M

    2016-09-01

    Haem-oxygenase-1 (HO-1) is an enzyme responsible for the degradation of haem that can suppress inflammation, through the production of carbon monoxide (CO). It has been shown in several experimental models that genetic and pharmacological induction of HO-1, as well as non-toxic administration of CO, can reduce inflammatory diseases, such as endotoxic shock, type 1 diabetes and graft rejection. Recently, it was shown that the HO-1/CO system can alter the function of antigen-presenting cells (APCs) and reduce T-cell priming, which can be beneficial during immune-driven inflammatory diseases. The molecular mechanisms by which the HO-1 and CO reduce both APC- and T-cell-driven immunity are just beginning to be elucidated. In this article we discuss recent findings related to the immune regulatory capacity of HO-1 and CO at the level of recognition of pathogen-associated molecular patterns and T-cell priming by APCs. Finally, we propose a possible regulatory role for HO-1 and CO over the recently described mitochondria-dependent immunity. These concepts could contribute to the design of new therapeutic tools for inflammation-based diseases. PMID:26938875

  2. Electron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276.

    PubMed Central

    Gallagher, S C; Cammack, R; Dalton, H

    1999-01-01

    Nocardia corallina B-276 possesses a multi-component enzyme, alkene mono-oxygenase (AMO), that catalyses the stereoselective epoxygenation of alkenes. The reductase component of this system has been shown by EPR and fluorescence spectroscopy to contain two prosthetic groups, an FAD centre and a [2Fe-2S] cluster. The role of these centres in the epoxygenation reaction was determined by midpoint potential measurements and electron transfer kinetics. The order of potentials of the prosthetic groups of the reductase were FAD/FAD.=-216 mV, [2Fe-2S]/[2Fe-2S].=-160 mV and FAD./FAD.=-134 mV. Combined, these data implied that the reductase component supplied the energy required for the epoxygenation reaction and allowed a prediction of the mechanism of electron transfer within the AMO complex. The FAD moiety was reduced by bound NADH in a two-electron reaction. The electrons were then transported to the [2Fe-2S] centre one at a time, which in turn reduced the di-iron centre of the epoxygenase. Reduction of the di-iron centre is required for oxygen binding and substrate oxidation. PMID:10085230

  3. Modulation of Melanogenesis by Heme Oxygenase-1 via p53 in Normal Human Melanocytes

    PubMed Central

    Lim, Hee-Sun; Jin, Suna

    2016-01-01

    As a key regulator of melanogenesis, p53 controls microphthalmia-associated transcription factor (MITF) and tyrosinase expression. The anti-oxidant enzyme heme oxygenase-1 (HO-1) is induced by various forms of cellular stress and diverse oxidative stimuli. However, few studies have examined the role of HO-1 in melanogenesis. Therefore, the aim of this study was to determine the role of HO-1 in melanogenesis and the mechanism underlying this relationship. Cultures of normal human melanocytes were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) or the HO-1 inhibitor zinc protoporphyrin (ZnPP). We then measured the melanin content of the cells. Additional analyses consisted of Western blotting and RT-PCR. The results showed that the cellular melanin content was increased by CoPP and decreased by ZnPP. The Western blot and RT-PCR analyses showed that CoPP increased p53, MITF and tyrosinase levels, and ZnPP reduced all of them. The knockdown of p53 by siRNA transfection was followed by large decreases in the expression levels of p53, MITF and tyrosinase at 3 h of transfection. The presence of CoPP or ZnPP had no significant increased or decreased effects on MITF and tyrosinase levels from 15 h in the siRNA transfectants. Our results suggest that HO-1 modulates melanogenesis in human melanocytes via a p53-dependent pathway. PMID:26865999

  4. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  5. Dynamic ruffling distortion of the heme substrate in non-canonical heme oxygenase enzymes.

    PubMed

    Graves, Amanda B; Horak, Erik H; Liptak, Matthew D

    2016-06-14

    Recent work by several groups has established that MhuD, IsdG, and IsdI are non-canonical heme oxygenases that induce significant out-of-plane ruffling distortions of their heme substrates enroute to mycobilin or staphylobilin formation. However, clear explanations for the observations of "nested" S = ½ VTVH MCD saturation magnetization curves at cryogenic temperatures, and exchange broadened (1)H NMR resonances at physiologically-relevant temperatures have remained elusive. Here, MCD and NMR data have been acquired for F23A and F23W MhuD-heme-CN, in addition to MCD data for IsdI-heme-CN, in order to complete assembly of a library of spectroscopic data for cyanide-inhibited ferric heme with a wide range of ruffling deformations. The spectroscopic data were used to evaluate a number of computational models for cyanide-inhibited ferric heme, which ultimately led to the development of an accurate NEVPT2/CASSCF model. The resulting model has a shallow, double-well potential along the porphyrin ruffling coordinate, which provides clear explanations for the unusual MCD and NMR data. The shallow, double-well potential also implies that MhuD-, IsdG-, and IsdI-bound heme is dynamic, and the functional implications of these dynamics are discussed. PMID:27273757

  6. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection.

    PubMed

    Scharn, Caitlyn R; Collins, Angela C; Nair, Vidhya R; Stamm, Chelsea E; Marciano, Denise K; Graviss, Edward A; Shiloh, Michael U

    2016-06-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is responsible for 1.5 million deaths annually. We previously showed that M. tuberculosis infection in mice induces expression of the CO-producing enzyme heme oxygenase (HO1) and that CO is sensed by M. tuberculosis to initiate a dormancy program. Further, mice deficient in HO1 succumb to M. tuberculosis infection more readily than do wild-type mice. Although mouse macrophages control intracellular M. tuberculosis infection through several mechanisms, such as NO synthase, the respiratory burst, acidification, and autophagy, how human macrophages control M. tuberculosis infection remains less well understood. In this article, we show that M. tuberculosis induces and colocalizes with HO1 in both mouse and human tuberculosis lesions in vivo, and that M. tuberculosis induces and colocalizes with HO1 during primary human macrophage infection in vitro. Surprisingly, we find that chemical inhibition of HO1 both reduces inflammatory cytokine production by human macrophages and restricts intracellular growth of mycobacteria. Thus, induction of HO1 by M. tuberculosis infection may be a mycobacterial virulence mechanism to enhance inflammation and bacterial growth. PMID:27183573

  7. A knockdown with smoke model reveals FHIT as a repressor of Heme oxygenase 1

    PubMed Central

    Boylston, Jennifer A; Brenner, Charles

    2014-01-01

    Fragile histidine triad (FHIT) gene deletions are among the earliest and most frequent events in carcinogenesis, particularly in carcinogen-exposed tissues. Though FHIT has been established as an authentic tumor suppressor, the mechanism underlying tumor suppression remains opaque. Most experiments designed to clarify FHIT function have analyzed the consequence of re-expressing FHIT in FHIT-negative cells. However, carcinogenesis occurs in cells that transition from FHIT-positive to FHIT-negative. To better understand cancer development, we induced FHIT loss in human bronchial epithelial cells with RNA interference. Because FHIT is a demonstrated target of carcinogens in cigarette smoke, we combined FHIT silencing with cigarette smoke extract (CSE) exposure and measured gene expression consequences by RNA microarray. The data indicate that FHIT loss enhances the expression of a set of oxidative stress response genes after exposure to CSE, including the cytoprotective enzyme heme oxygenase 1 (HMOX1) at the RNA and protein levels. Data are consistent with a mechanism in which Fhit protein is required for accumulation of the transcriptional repressor of HMOX1, Bach1 protein. We posit that by allowing superinduction of oxidative stress response genes, loss of FHIT creates a survival advantage that promotes carcinogenesis. PMID:25486479

  8. Discovery and characterization of a new family of lytic polysaccharide mono-oxygenases

    PubMed Central

    Hemsworth, Glyn R.; Henrissat, Bernard; Davies, Gideon J.; Walton, Paul H.

    2014-01-01

    Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They currently attract much attention due to their potential use in biomass conversion, notably in the production of biofuels. Past work has identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the 3-D structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active centre featuring the histidine brace active site, but is distinct in terms of its active site details and its EPR spectroscopy. The new AA11 family expands the LPMO clan with the potential to broaden both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs. PMID:24362702

  9. The sublethal effects of petroleum refinery effluents: Mixed function oxygenase (MFO) induction in rainbow trout

    SciTech Connect

    Sherry, J.; Scott, B.; Parrott, J.; Hodson, P.; Rao, S.

    1995-12-31

    Canada uses a single biological parameter which is based on the ability of rainbow trout (Oncorhynchus mykiss) to survive a 24 hour exposure to assess and regulate the toxicity of refinery effluents. The acute toxicity of Canadian refinery effluents is generally well controlled. Long term exposures to sublethal toxicants, which are not covered by the current regulations, could have adverse ecological effects. Since PAHs, such as benzo(a)pyrene, can occur in refinery effluents, the authors tested the hypothesis that refinery effluents can induce mixed-function oxygenase measured as ethoxyresorufin-O-deethylase activity (EROD) activity in fish. Two end of pipe effluent samples were collected from each of four Ontario refineries. All effluents induced EROD activity in young trout in a dose dependent manner. The EROD parameter has potential as a bioindicator of exposure to refinery effluents. The samples were also tested for toxicity to fathead minnow (Pimephales promelas) larvae and to a fish cell line (Ictalurus nebulosus). Fathead minnow growth was significantly reduced by six out of eight samples, and larval survival was affected by one sample. The in vitro data were less consistent: weak toxicity was detected in some samples but the dose response relationship was poor. Direct acting mutagens were detected in two effluents using the Ames Fluctuation assay.

  10. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice.

    PubMed

    Cummins, Nathan W; Weaver, Eric A; May, Shannon M; Croatt, Anthony J; Foreman, Oded; Kennedy, Richard B; Poland, Gregory A; Barry, Michael A; Nath, Karl A; Badley, Andrew D

    2012-07-01

    Underlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase-1 (HO-1) expression on vaccine response and outcome of influenza infection. HO-1-deficient and wild-type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adenoviral-based influenza vaccine. A genome-wide association study evaluated the expression of single-nucleotide polymorphisms (SNPs) in the HO-1 gene and the response to influenza vaccination in healthy humans. HO-1-deficient mice had decreased survival after influenza infection compared to WT mice (median survival 5.5 vs. 6.5 d, P=0.016). HO-1-deficient mice had impaired production of antibody following influenza vaccination compared to WT mice (mean antibody titer 869 vs. 1698, P=0.02). One SNP in HO-1 and one SNP in the constitutively expressed isoform HO-2 were independently associated with decreased antibody production after influenza vaccination in healthy human volunteers (P=0.017 and 0.014, respectively). HO-1 deficient mice were paired with sex- and age-matched WT controls. HO-1 affects the immune response to both influenza infection and vaccination, suggesting that therapeutic induction of HO-1 expression may represent a novel adjuvant to enhance influenza vaccine effectiveness. PMID:22490782

  11. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice.

    PubMed

    Kovtunovych, Gennadiy; Ghosh, Manik C; Ollivierre, Wade; Weitzel, R Patrick; Eckhaus, Michael A; Tisdale, John F; Yachie, Akihiro; Rouault, Tracey A

    2014-08-28

    Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans. PMID:24963040

  12. Myelodysplastic syndrome macrophages have aberrant iron storage and heme oxygenase-1 expression.

    PubMed

    Nybakken, Grant; Gratzinger, Dita

    2016-08-01

    Iron overload and transfusion dependance portend poor risk in myelodysplastic syndromes (MDS); bone marrow macrophages store iron and limit oxidative damage through heme oxygenase-1 (HO1). We assessed iron stores and macrophage HO1 expression in MDS using image analysis of intact diagnostic bone marrow biopsies and qualitative scoring of marrow aspirate iron among 129 cytopenic patients, 67 with MDS and 62 similarly aged patients with benign cytopenias. Using double immunofluorescence and sequential iron and immunohistochemistry staining, we showed that marrow iron colocalizes with HO1 and H-ferritin to CD163 + macrophages. Marrow iron was elevated in MDS independent of transfusion status, a finding of potential utility in distinguishing benign cytopenia from MDS. Among MDS patients only, CD163 + macrophage density and HO1 and H-ferritin expression by CD163 + macrophages increased in tandem with marrow iron. High HO1 was significantly associated with shorter overall survival among MDS patients independent of IPSSR and history of transfusion. PMID:26758041

  13. Heme oxygenase-1 promotes tumor progression and metastasis of colorectal carcinoma cells by inhibiting antitumor immunity

    PubMed Central

    Seo, Geom Seog; Jiang, Wen-Yi; Chi, Jin Hua; Jin, Hao; Park, Won-Chul; Sohn, Dong Hwan; Park, Pil-Hoon; Lee, Sung Hee

    2015-01-01

    Heme oxygenase-1 (HO-1) is upregulated in colorectal carcinoma (CRC) cells. However, the role of HO-1 in the metastatic potential of CRC remains to be elucidated. In this study, we investigated the potential of HO-1 to control the antitumor immunity of CRC. Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the immune surveillance system. Hemin-induced HO-1 expression suppressed the expression of ICAM-1 in human CRC cells. HO-1 regulated ICAM-1 expression via tristetraprolin, an mRNA-binding protein, at the posttranscriptional level in CRC cells. The upregulated HO-1 expression in CRC cells markedly decreased the adhesion of peripheral blood mononuclear lymphocytes (PBMLs) to CRC cells and PBML-mediated cytotoxicity against CRC cells. Production of CXCL10, an effector T cell-recruiting chemokine, was significantly reduced by the increased HO-1 expression. The expression of the CXCL10 receptor, CXCR3, decreased significantly in PBMLs that adhered to CRC cells. HO-1 expression correlated negatively, although nonsignificantly, with ICAM-1 and CXCL10 expression in xenograft tumors. Taken together, our data suggest that HO-1 expression is functionally linked to the mediation of tumor progression and metastasis of CRC cells by inhibiting antitumor immunity. PMID:26087182

  14. Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders

    PubMed Central

    Gill, Alexander J.; Kovacsics, Colleen E.; Cross, Stephanie A.; Vance, Patricia J.; Kolson, Lorraine L.; Jordan-Sciutto, Kelly L.; Gelman, Benjamin B.; Kolson, Dennis L.

    2014-01-01

    Heme oxygenase-1 (HO-1) is an inducible, detoxifying enzyme that is critical for limiting oxidative stress, inflammation, and cellular injury within the CNS and other tissues. Here, we demonstrate a deficiency of HO-1 expression in the brains of HIV-infected individuals. This HO-1 deficiency correlated with cognitive dysfunction, HIV replication in the CNS, and neuroimmune activation. In vitro analysis of HO-1 expression in HIV-infected macrophages, a primary CNS HIV reservoir along with microglia, demonstrated a decrease in HO-1 as HIV replication increased. HO-1 deficiency correlated with increased culture supernatant glutamate and neurotoxicity, suggesting a link among HIV infection, macrophage HO-1 deficiency, and neurodegeneration. HO-1 siRNA knockdown and HO enzymatic inhibition in HIV-infected macrophages increased supernatant glutamate and neurotoxicity. In contrast, increasing HO-1 expression through siRNA derepression or with nonselective pharmacologic inducers, including the CNS-penetrating drug dimethyl fumarate (DMF), decreased supernatant glutamate and neurotoxicity. Furthermore, IFN-γ, which is increased in CNS HIV infection, reduced HO-1 expression in cultured human astrocytes and macrophages. These findings indicate that HO-1 is a protective host factor against HIV-mediated neurodegeneration and suggest that HO-1 deficiency contributes to this degeneration. Furthermore, these results suggest that HO-1 induction in the CNS of HIV-infected patients on antiretroviral therapy could potentially protect against neurodegeneration and associated cognitive dysfunction. PMID:25202977

  15. Effects of heme oxygenase-1 expression on sterol homeostasis in rat astroglia.

    PubMed

    Vaya, Jacob; Song, Wei; Khatib, Soliman; Geng, Guoyan; Schipper, Hyman M

    2007-03-15

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol metabolism are characteristic of Alzheimer-diseased (AD) neural tissues. Central oxidation of cholesterol to oxysterols has been implicated in neuroembryogenesis, synaptic plasticity, and membrane repair. In the current study, we demonstrated that transient transfection of rat astroglia with human (h)ho-1 cDNA for 3 days significantly decreased intracellular cholesterol concentrations and increased levels of four oxysterol species (measured by GC/MS) compared to untreated control cultures and HO-1-transfected cells exposed to the HO inhibitor, tin mesoporphyrin (SnMP). Relative to control preparations, oxidative stress was augmented in mitochondria (isolated by subcellular fractionation) and culture media derived from HO-1-transfected astrocytes, as evidenced by enhanced oxidation of the synthetic reporter molecules, linoleoyl tyrosine (LT), linoleoyl tyrosine cholesterol ester (LTC), or linoleoyl tyrosine deoxyguanosyl ester (LTG; measured by GC/MS and LC/MS/MS). We also observed enhanced oxidation of exogenous LTC in human neuroblastoma (M17) cells exposed for 18 h to conditioned media collected from HO-1-transfected astrocytes relative to control media. In AD and other pathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g., beta-amyloid) into altered patterns of glial sterol metabolism which, in turn, may affect neuronal membrane turnover, survival, and adaptability. PMID:17320768

  16. The role of Bach1 in the induction of heme oxygenase by tin mesoporphyrin.

    PubMed

    Abate, Aida; Zhao, Hui; Wong, Ronald J; Stevenson, David K

    2007-03-16

    Tin mesoporphyrin (SnMP), a competitive heme oxygenase (HO) inhibitor, also induces HO-1 mRNA and protein expression by a mechanism that is not fully understood. We examined whether the induction by SnMP is mediated by a de-repression of Bach1, a transcription factor that suppresses the HO-1 gene. Incubation of NIH3T3-HO-1-luc cells with SnMP attenuated HO activity with a concomitant increase in HO-1 mRNA and protein and a decrease in Bach1 and HO-2 proteins, which was not due to transcriptional down-regulation, but accelerated protein decay. Similarly, HO-1 protein degradation was increased by SnMP, despite of an elevation in HO-1 transcription. Transfection of Bach1 shRNA in Hepa cells raised basal HO-1 expression significantly, and SnMP treatment further increased HO-1 mRNA. In conclusion, SnMP induces HO-1 expression not only by de-repressing the HO-1 promoter by binding Bach1, but also by accelerating Bach1 degradation. PMID:17257585

  17. Tumoral Immune Suppression by Macrophages Expressing Fibroblast Activation Protein-Alpha and Heme Oxygenase-1

    PubMed Central

    Arnold, James N.; Magiera, Lukasz; Kraman, Matthew; Fearon, Douglas T.

    2013-01-01

    The depletion of tumor stromal cells that are marked by their expression of the membrane protein fibroblast activation protein-α (FAP) overcomes immune suppression and allows an anti-cancer cell immune response to control tumor growth. In subcutaneous tumors established with immunogenic Lewis lung carcinoma cells expressing ovalbumin (LL2/OVA), the FAP+ population comprises CD45+ and CD45− cells. In the present study, we further characterize the tumoral FAP+/CD45+ population as a minor sub-population of F4/80hi/CCR2+/CD206+ M2 macrophages. Using bone marrow chimeric mice in which the primate diphtheria toxin receptor (DTR) is restricted either to the FAP+/CD45+ or to the FAP+/CD45− subset, we demonstrate by conditionally depleting each subset that both independently contribute to the immune suppressive tumor microenvironment. A basis for the function of the FAP+/CD45+ subset is shown to be the immune inhibitory enzyme, heme oxygenase-1 (HO-1). The FAP+/CD45+ cells are the major tumoral source of HO-1, and an inhibitor of HO-1, Sn mesoporphyrin, causes the same extent of immune-dependent arrest of LL2/OVA tumor growth as does the depletion of these cells. Since this observation of immune suppression by HO-1 expressed by the FAP+/CD45+ stromal cell is replicated in a transplanted model of pancreatic ductal adenocarcinoma, we conclude that pharmacologically targeting this enzyme may improve cancer immunotherapy. PMID:24778275

  18. Renal Inhibition of Heme Oxygenase-1 Increases Blood Pressure in Angiotensin II-Dependent Hypertension.

    PubMed

    Csongradi, Eva; Storm, Megan V; Stec, David E

    2012-01-01

    The goal of this study was to test the hypothesis that renal medullary heme oxygenase (HO) acts as a buffer against Ang-II dependent hypertension. To test this hypothesis, renal medullary HO activity was blocked using QC-13, an imidazole-dioxolane HO-1 inhibitor, or SnMP, a classical porphyrin based HO inhibitor. HO inhibitors were infused via IRMI catheters throughout the study starting 3 days prior to implantation of an osmotic minipump which delivered Ang II or saline vehicle. MAP was increased by Ang II infusion and further increased by IRMI infusion of QC-13 or SnMP. MAP averaged 113 ± 3, 120 ± 7, 141 ± 2, 153 ± 2, and 154 ± 3 mmHg in vehicle, vehicle + IRMI QC-13, Ang II, Ang II + IRMI QC-13, and Ang II + IRMI SnMP treated mice, respectively (n = 6). Inhibition of renal medullary HO activity with QC-13 in Ang II infused mice was also associated with a significant increase in superoxide production as well as significant decreases in antioxidant enzymes catalase and MnSOD. These results demonstrate that renal inhibition of HO exacerbates Ang II dependent hypertension through a mechanism which is associated with increases in superoxide production and decreases in antioxidant enzymes. PMID:22164328

  19. Unconjugated bilirubin mediates heme oxygenase-1-induced vascular benefits in diabetic mice.

    PubMed

    Liu, Jian; Wang, Li; Tian, Xiao Yu; Liu, Limei; Wong, Wing Tak; Zhang, Yang; Han, Quan-Bin; Ho, Hing-Man; Wang, Nanping; Wong, Siu Ling; Chen, Zhen-Yu; Yu, Jun; Ng, Chi-Fai; Yao, Xiaoqiang; Huang, Yu

    2015-05-01

    Heme oxygenase-1 (HO-1) exerts vasoprotective effects. Such benefit in diabetic vasculopathy, however, remains unclear. We hypothesize that bilirubin mediates HO-1-induced vascular benefits in diabetes. Diabetic db/db mice were treated with hemin (HO-1 inducer) for 2 weeks, and aortas were isolated for functional and molecular assays. Nitric oxide (NO) production was measured in cultured endothelial cells. Hemin treatment augmented endothelium-dependent relaxations (EDRs) and elevated Akt and endothelial NO synthase (eNOS) phosphorylation in db/db mouse aortas, which were reversed by the HO-1 inhibitor SnMP or HO-1 silencing virus. Hemin treatment increased serum bilirubin, and ex vivo bilirubin treatment improved relaxations in diabetic mouse aortas, which was reversed by the Akt inhibitor. Biliverdin reductase silencing virus attenuated the effect of hemin. Chronic bilirubin treatment improved EDRs in db/db mouse aortas. Hemin and bilirubin reversed high glucose-induced reductions in Akt and eNOS phosphorylation and NO production. The effect of hemin but not bilirubin was inhibited by biliverdin reductase silencing virus. Furthermore, bilirubin augmented EDRs in renal arteries from diabetic patients. In summary, HO-1-induced restoration of endothelial function in diabetic mice is most likely mediated by bilirubin, which preserves NO bioavailability through the Akt/eNOS/NO cascade, suggesting bilirubin as a potential therapeutic target for clinical intervention of diabetic vasculopathy. PMID:25475440

  20. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism

    SciTech Connect

    Meng Dan; Wang Xin; Chang Qingshan; Hitron, Andrew; Zhang Zhuo; Xu Mei; Chen Gang; Luo Jia; Jiang Binghua; Fang Jing; Shi Xianglin

    2010-05-01

    Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.

  1. Kidney injury accelerates cystogenesis via pathways modulated by heme oxygenase and complement.

    PubMed

    Zhou, Juling; Ouyang, Xiaosen; Schoeb, Trenton R; Bolisetty, Subhashini; Cui, Xiangqin; Mrug, Sylvie; Yoder, Bradley K; Johnson, Martin R; Szalai, Alexander J; Mrug, Michal

    2012-07-01

    AKI accelerates cystogenesis. Because cystogenic mutations induce strong transcriptional responses similar to those seen after AKI, these responses may accelerate the progression of cystic renal disease. Here, we modulated the severity of the AKI-like response in Cys1(cpk/cpk) mice, a model that mimics autosomal recessive polycystic kidney disease. Specifically, we induced or inhibited activity of the renoprotective enzyme heme oxygenase (HO) and determined the effects on renal cystogenesis. We found that induction of HO attenuated both renal injury and the rate of cystogenesis, whereas inhibition of HO promoted cystogenesis. HO activity mediated the response of NFκB, which is a hallmark transcriptional feature common to both cystogenesis and AKI. Among the HO-modulated effects we measured, expression of complement component 3 (C3) strongly correlated with cystogenesis, a functionally relevant association as suggested by Cys1(cpk/cpk) mice with genetically induced C3 deficiency. Because both C3 deficiency and HO induction reduce cyst number and cyst areas, these two factors define an injury-stimulated cystogenic pathway that may provide therapeutic targets to slow the formation of new renal cysts and the growth of existing cysts. PMID:22518005

  2. Heme Oxygenase Activity Correlates with Serum Indices of Iron Homeostasis in Healthy Nonsmokers

    PubMed Central

    Ghio, Andrew J.; Schreinemachers, Dina M.

    2016-01-01

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirmed such participation of HO in iron homeostasis of humans. Carbon monoxide produced through HO activity will bind to hemoglobin in circulating erythrocytes, and therefore, blood carboxyhemoglobin (COHb) can be used as an index of HO activity. Using the second National Health and Nutrition Examination Survey, we tested the postulate that HO activity correlates with serum indices of iron homeostasis in healthy nonsmokers. The investigation included 844 lifetime nonsmokers (586 females) 18 years of age and older in the study population. Significant correlations were demonstrated between COHb and several indices of iron homeostasis including serum levels of both ferritin and iron and percentage iron saturation of transferrin. There was no significant association between COHb and hemoglobin, the largest repository of heme in the human body, which functions as the substrate for HO. We conclude that HO activity contributes to human iron homeostasis with significant correlations between COHb and serum ferritin and iron levels and percentage iron saturation of transferrin. PMID:27199547

  3. Heme Oxygenase-1 Dysregulation in the Brain: Implications for HIV-Associated Neurocognitive Disorders

    PubMed Central

    Ambegaokar, Surendra S; Kolson, Dennis L

    2014-01-01

    Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed. PMID:24862327

  4. Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

    PubMed Central

    Jung, Sung-Hyun; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Subin; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2014-01-01

    Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation. PMID:24642709

  5. Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: Implications for mitochondrial ferritin

    PubMed Central

    Yu, Xiaojun; Song, Ning; Guo, Xinli; Jiang, Hong; Zhang, Haoyun; Xie, Junxia

    2016-01-01

    Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) was observed in both astrocytes and neurons in the substantia nigra of patients with Parkinson’s disease (PD). In the current study, we investigated whether HO-1 behaves differently between neurons and astrocytes under the condition of neurotoxicity related to PD. The results showed a time-dependent HO-1 upregulation in primary cultured ventral mesencephalon neurons and astrocytes treated with the mitochondria complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+) or recombinant α-synuclein. However, HO-1 upregulation appeared much later in neurons than in astrocytes. The HO-1 inhibitor zinc protoporphyrin (ZnPP) aggravated MPP+- or α-synuclein-induced oxidative damage in both astrocytes and neurons, indicating that this HO-1 response was cytoprotective. For neurons, the HO-1 activator cobalt protoporphyrin IX (CoPPIX) exerted protective effects against MPP+ or α-synuclein during moderate HO-1 upregulation, but it aggravated damage at the peak of the HO-1 response. For astrocytes, CoPPIXalways showed protective effects. Higher basal and CoPPIX-induced mitochondrial ferritin (MtFt) levels were detected in astrocytes. Lentivirus-mediated MtFt overexpression rescued the neuronal damage induced by CoPPIX, indicating that large MtFt buffering capacity contributes to pronounced HO-1 tolerance in astrocytes. Such findings suggest that astrocyte-targeted HO-1 interventions and MtFt modulations have potential as novel pharmacological strategies in PD. PMID:27097841

  6. Carbon monoxide mediates heme oxygenase 1 induction via Nrf2 activation in hepatoma cells

    SciTech Connect

    Lee, Bok-Soo; Heo, JungHee; Kim, Yong-Man; Shim, Sang Moo; Pae, Hyun-Ock; Kim, Young-Myeong; Chung, Hun-Taeg . E-mail: htchung@wonkwang.ac.kr

    2006-05-12

    Carbon monoxide (CO) and nitric oxide (NO) are two gas molecules which have cytoprotective functions against oxidative stress and inflammatory responses in many cell types. Currently, it is known that NO produced by nitric oxide synthase (NOS) induces heme oxygenase 1 (HO1) expression and CO produced by the HO1 inhibits inducible NOS expression. Here, we first show CO-mediated HO1 induction and its possible mechanism in human hepatocytes. Exposure of HepG2 cells or primary hepatocytes to CO resulted in dramatic induction of HO1 in dose- and time-dependent manner. The CO-mediated HO1 induction was abolished by MAP kinase inhibitors (MAPKs) but not affected by inhibitors of PI3 kinase or NF-{kappa}B. In addition, CO induced the nuclear translocation and accumulation of Nrf2, which suppressed by MAPKs inhibitors. Taken together, we suggest that CO induces Nrf2 activation via MAPKs signaling pathways, thereby resulting in HO1 expression in HepG2 cells.

  7. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate

    SciTech Connect

    Igarashi, Y.; McFadden, B.A.; el-Gul, T.

    1985-07-16

    (TH) Diethyl pyrocarbonate was synthesized from (TH) ethanol prepared by the reduction of acetaldehyde by NaB3H4. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach was inactivated with this reagent at pH 7.0 the presence of 20 mM MgS , and tryptic peptides that contained modified histidine residues were isolated by reverse-phase high-performance liquid chromatography. Labeling of the enzyme was conducted in the presence and absence of the competitive inhibitor sedoheptulose 1,7-bisphosphate. The amount of one peptide that was heavily labeled in the absence of this compound was reduced 10-fold in its presence. The labeled residue was histidine-298. This result, in combination with earlier experiments, suggests that His-298 in spinach RuBisCO is located in the active site domain and is essential to enzyme activity. This region of the primary structure is strongly conserved in seven other ribulosebisphosphate carboxylases from divergent sources.

  8. Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin

    PubMed Central

    Galeotti, Caroline; Hegde, Pushpa; Das, Mrinmoy; Stephen-Victor, Emmanuel; Canale, Fernando; Muñoz, Marcos; Sharma, Varun K.; Dimitrov, Jordan D.; Kaveri, Srini V.; Bayry, Jagadeesh

    2016-01-01

    Intravenous immunoglobulin G (IVIG) is used in the therapy of various autoimmune and inflammatory conditions. The mechanisms by which IVIG exerts anti-inflammatory effects are not completely understood. IVIG interacts with numerous components of the immune system including dendritic cells, macrophages, T and B cells and modulate their functions. Recent studies have reported that heme oxygenase-1 (HO-1) pathway plays an important role in the regulation of inflammatory response in several pathologies. Several therapeutic agents exert anti-inflammatory effects via induction of HO-1. Therefore, we aimed at exploring if anti-inflammatory effects of IVIG are mediated via HO-1 pathway. Confirming the previous reports, we report that IVIG exerts anti-inflammatory effects on innate cells as shown by the inhibitory effects on IL-6 and nitric oxide production and confers protection in experimental autoimmune encephalomyelitis (EAE) model. However, these effects were not associated with an induction of HO-1 either in innate cells such as monocytes, dendritic cells and macrophages or in the kidneys and liver of IVIG-treated EAE mice. Also, inhibition of endogenous HO-1 did not modify anti-inflammatory effects of IVIG. These results thus indicate that IVIG exerts anti-inflammatory effects independent of HO-1 pathway. PMID:26796539

  9. Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia.

    PubMed

    Fernandez-Gonzalez, Angeles; Alex Mitsialis, S; Liu, Xianlan; Kourembanas, Stella

    2012-04-15

    Bronchopulmonary dysplasia (BPD) is characterized by simplified alveolarization and arrested vascular development of the lung with associated evidence of endothelial dysfunction, inflammation, increased oxidative damage, and iron deposition. Heme oxygenase-1 (HO-1) has been reported to be protective in the pathogenesis of diseases of inflammatory and oxidative etiology. Because HO-1 is involved in the response to oxidative stress produced by hyperoxia and is critical for cellular heme and iron homeostasis, it could play a protective role in BPD. Therefore, we investigated the effect of HO-1 in hyperoxia-induced lung injury using a neonatal transgenic mouse model with constitutive lung-specific HO-1 overexpression. Hyperoxia triggered an increase in pulmonary inflammation, arterial remodeling, and right ventricular hypertrophy that was attenuated by HO-1 overexpression. In addition, hyperoxia led to pulmonary edema, hemosiderosis, and a decrease in blood vessel number, all of which were markedly improved in HO-1 overexpressing mice. The protective vascular response may be mediated at least in part by carbon monoxide, due to its anti-inflammatory, antiproliferative, and antiapoptotic properties. HO-1 overexpression, however, did not prevent alveolar simplification nor altered the levels of ferritin and lactoferrin, proteins involved in iron binding and transport. Thus the protective mechanisms elicited by HO-1 overexpression primarily preserve vascular growth and barrier function through iron-independent, antioxidant, and anti-inflammatory pathways. PMID:22287607

  10. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2.

    PubMed

    Alam, Jawed; Killeen, Erin; Gong, Pengfei; Naquin, Ryan; Hu, Bin; Stewart, Daniel; Ingelfinger, Julie R; Nath, Karl A

    2003-04-01

    The mechanism of heme oxygenase-1 gene (ho-1) activation by heme in immortalized rat proximal tubular epithelial cells was examined. Analysis of the ho-1 promoter identified the heme-responsive sequences as the stress-response element (StRE), multiple copies of which are present in two enhancer regions, E1 and E2. Electrophoretic mobility shift assays identified Nrf2, MafG, ATF3, and Jun and Fos family members as StRE-binding proteins; binding of Nrf2, MafG, and ATF3 was increased in response to heme. Dominant-negative mutants of Nrf2 and Maf, but not of c-Fos and c-Jun, inhibited basal and heme-induced expression of an E1-controlled luciferase gene. Heme did not affect the transcription activity of Nrf2, dimerization between Nrf2 and MafG, or the level of MafG, but did stimulate expression of Nrf2. Heme did not influence the level of Nrf2 mRNA but increased the half-life of Nrf2 protein from approximately 10 min to nearly 110 min. These results indicate that heme promotes stabilization of Nrf2, leading to accumulation of Nrf2. MafG dimers that bind to StREs to activate the ho-1 gene. PMID:12453873

  11. An Oxygenase-Independent Cholesterol Catabolic Pathway Operates under Oxic Conditions

    PubMed Central

    Ismail, Wael; Tsai, Ching-Yen; Lin, Ching-Wen; Tsai, Yu-Wen; Chiang, Yin-Ru

    2013-01-01

    Cholesterol is one of the most ubiquitous compounds in nature. The 9,10-seco-pathway for the aerobic degradation of cholesterol was established thirty years ago. This pathway is characterized by the extensive use of oxygen and oxygenases for substrate activation and ring fission. The classical pathway was the only catabolic pathway adopted by all studies on cholesterol-degrading bacteria. Sterolibacterium denitrificans can degrade cholesterol regardless of the presence of oxygen. Here, we aerobically grew the model organism with 13C-labeled cholesterol, and substrate consumption and intermediate production were monitored over time. Based on the detected 13C-labeled intermediates, this study proposes an alternative cholesterol catabolic pathway. This alternative pathway differs from the classical 9,10-seco-pathway in numerous important aspects. First, substrate activation proceeds through anaerobic C-25 hydroxylation and subsequent isomerization to form 26-hydroxycholest-4-en-3-one. Second, after the side chain degradation, the resulting androgen intermediate is activated by adding water to the C-1/C-2 double bond. Third, the cleavage of the core ring structure starts at the A-ring via a hydrolytic mechanism. The 18O-incorporation experiments confirmed that water is the sole oxygen donor in this catabolic pathway. PMID:23826110

  12. Heme Oxygenase-1 and 2 Common Genetic Variants and Risk for Multiple Sclerosis

    PubMed Central

    Agúndez, José A. G.; García-Martín, Elena; Martínez, Carmen; Benito-León, Julián; Millán-Pascual, Jorge; Díaz-Sánchez, María; Calleja, Patricia; Pisa, Diana; Turpín-Fenoll , Laura; Alonso-Navarro, Hortensia; Pastor, Pau; Ortega-Cubero, Sara; Ayuso-Peralta, Lucía; Torrecillas, Dolores; García-Albea, Esteban; Plaza-Nieto, José Francisco; Jiménez-Jiménez, Félix Javier

    2016-01-01

    Several neurochemical, neuropathological, and experimental data suggest a possible role of oxidative stress in the ethiopathogenesis of multiple sclerosis(MS). Heme-oxygenases(HMOX) are an important defensive mechanism against oxidative stress, and HMOX1 is overexpressed in the brain and spinal cord of MS patients and in experimental autoimmune encephalomyelitis(EAE). We analyzed whether common polymorphisms affecting the HMOX1 and HMOX2 genes are related with the risk to develop MS. We analyzed the distribution of genotypes and allelic frequencies of the HMOX1 rs2071746, HMOX1 rs2071747, HMOX2 rs2270363, and HMOX2 rs1051308 SNPs, as well as the presence of Copy number variations(CNVs) of these genes in 292 subjects MS and 533 healthy controls, using TaqMan assays. The frequencies of HMOX2 rs1051308AA genotype and HMOX2 rs1051308A and HMOX1 rs2071746A alleles were higher in MS patients than in controls, although only that of the SNP HMOX2 rs1051308 in men remained as significant after correction for multiple comparisons. None of the studied polymorphisms was related to the age at disease onset or with the MS phenotype. The present study suggests a weak association between HMOX2 rs1051308 polymorphism and the risk to develop MS in Spanish Caucasian men and a trend towards association between the HMOX1 rs2071746A and MS risk. PMID:26868429

  13. Heme Oxygenase 1 and 2 Common Genetic Variants and Risk for Essential Tremor

    PubMed Central

    Ayuso, Pedro; Agúndez, José A.G.; Alonso-Navarro, Hortensia; Martínez, Carmen; Benito-León, Julián; Ortega-Cubero, Sara; Lorenzo-Betancor, Oswaldo; Pastor, Pau; López-Alburquerque, Tomás; García-Martín, Elena; Jiménez-Jiménez, Félix J.

    2015-01-01

    Abstract Several reports suggested a role of heme oxygenase genes 1 and 2 (HMOX1 and HMOX2) in modifying the risk to develop Parkinson disease (PD). Because essential tremor (ET) and PD share phenotypical and, probably, etiologic factors of the similarities, we analyzed whether such genes are related with the risk to develop ET. We analyzed the distribution of allelic and genotype frequencies of the HMOX1 rs2071746, HMOX1 rs2071747, HMOX2 rs2270363, and HMOX2 rs1051308 single nucleotide polymorphisms, as well as the presence of copy number variations of these genes in 202 subjects with familial ET and 747 healthy controls. Allelic frequencies of rs2071746T and rs1051308G were significantly lower in ET patients than in controls. None of the studied polymorphisms influenced the disease onset. The present study suggests a weak association between HMOX1 rs2071746 and HMOX2 rs1051308 polymorphisms and the risk to develop ET in the Spanish population.

  14. Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene

    SciTech Connect

    Kaneoka, Hidenori; Miyake, Katsuhide; Iijima, Shinji

    2009-10-02

    The gene for tryptophan oxygenase (TO) is expressed in adult hepatocytes in a tissue- and differentiation-specific manner. The TO promoter has two glucocorticoid-responsive elements (GREs), and its expression is regulated by glucocorticoid hormone in the liver. We found a novel GRE in close proximity to a scaffold/matrix attachment region (S/MAR) that was located around -8.5 kb from the transcriptional start site of the TO gene by electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays. A combination of nuclear fractionation and quantitative PCR analysis showed that the S/MAR was tethered to the nuclear matrix in both fetal and adult hepatocytes. ChIP assay showed that, in adult hepatocytes, the S/MAR-GRE and the promoter proximal regions interacted with lamin and heterogeneous nuclear ribonucleoprotein U in a dexamethasone dependent manner, but this was not the case in fetal cells, suggesting that developmental stage-specific expression of the TO gene might rely on the binding of the enhancer (the -8.5 kb S/MAR-GRE) and the promoter to the inner nuclear matrix.

  15. Effect of the heme oxygenase inducer hemin on blood haemostasis measured by high-frequency ultrasound.

    PubMed

    Rochefort, Gaël Y; Libgot, Rachel; Desbuards, Nicolas; Schlecht, Deborah; Halimi, Jean-Michel; Ossant, Frederic; Eder, Veronique; Antier, Daniel

    2007-12-01

    1. Heme compounds, like hemin, a heme oxygenase-1 inducer, are used in the treatment of acute porphyria treatment. The side-effects of hemin on haemostasis have been reported. To address those effects, in the present study we used a sensitive, high-frequency ultrasound technique to record acoustic velocity and to investigate whole blood clotting in Wistar rats treated chronically with hemin (50 mg/kg per day). 2. The hemin-induced disturbances in haemostasis measured were comparable to the heparin reference treatment, with a significant decrease in clotting velocity in both groups compared with controls (e.g. the time to clot was 40 +/- 5, 53 +/- 13 and 10 +/- 2 min, respectively; P < 0.05). Precautions must be taken when using high doses of hemin or in the treatment of bleeding diseases. 3. Further investigations are required to explore the effects of hemin in thrombosis models, because it could be a promising 'old drug' for the treatment of venous thrombosis in patients. PMID:17973866

  16. NMI-1182, a gastro-protective cyclo-oxygenase-inhibiting nitric oxide donor.

    PubMed

    Ellis, James L; Augustyniak, Michael E; Cochran, Edward D; Earl, Richard A; Garvey, David S; Gordon, Laura J; Janero, David R; Khanapure, Subhash P; Letts, L Gordon; Melim, Terry L; Murty, Madhavi G; Schwalb, David J; Shumway, Matthew J; Selig, William M; Trocha, A Mark; Young, Delano V; Zemtseva, Irina S

    2005-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and to provide pain relief but suffer from a major liability concerning their propensity to cause gastric damage. As nitric oxide (NO) is known to be gastro-protective we have synthesized a NO-donating prodrug of naproxen named NMI-1182. We evaluated two cyclo-oxygenase (COX)-inhibiting nitric oxide donors (CINODs), NMI-1182 and AZD3582, for their ability to be gastro-protective compared to naproxen and for their anti-inflammatory activity. NMI-1182 and AZD3582 were found to produce similar inhibition of COX activity to that produced by naproxen. Both NMI-1182 and AZD3582 produced significantly less gastric lesions after oral administration than naproxen. All three compounds effectively inhibited paw swelling in the rat carrageenan paw edema model. In the carrageenan air pouch model all three compounds significantly reduced PGE2 levels in the pouch exudate but only NMI-1182 and naproxen inhibited leukocyte influx. These data demonstrate that NMI-1182 has comparable anti-inflammatory activity to naproxen but with a much reduced likelihood to cause gastric damage. PMID:16259719

  17. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells

    PubMed Central

    Gueron, Geraldine; Giudice, Jimena; Valacco, Pia; Paez, Alejandra; Elguero, Belen; Toscani, Martin; Jaworski, Felipe; Leskow, Federico Coluccio; Cotignola, Javier; Marti, Marcelo; Binaghi, Maria; Navone, Nora; Vazquez, Elba

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and β-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/β-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and β-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa. PMID:24961479

  18. Butylated Hydroxyanisole Stimulates Heme Oxygenase-1 Gene Expression and Inhibits Neointima Formation in Rat Arteries

    PubMed Central

    Liu, Xiao-ming; Azam, Mohammed A.; Peyton, Kelly J.; Ensenat, Diana; Keswani, Amit N.; Wang, Hong; Durante, William

    2007-01-01

    Objective Butylated hydroxyanisole (BHA) is a synthetic phenolic compound that is a potent inducer of phase II genes. Since heme oxygenase-1 (HO-1) is a vasoprotective protein that is upregulated by phase II inducers, the present study examined the effects of BHA on HO-1 gene expression and vascular smooth muscle cell proliferation. Methods The regulation of HO-1 gene expression and vascular cell growth by BHA was studied in cultured rat aortic smooth muscle cells and in balloon injured rat carotid arteries. Results Treatment of cultured smooth muscle cells with BHA stimulated the expression of HO-1 protein, mRNA and promoter activity in a time- and concentration-dependent manner. BHA-mediated HO-1 expression was dependent on the activation of NF-E2-related factor-2 by p38 mitogen-activated protein kinase. BHA also inhibited cell cycle progression and DNA synthesis in a HO-1-dependent manner. In addition, the local perivascular delivery of BHA immediately after arterial injury of rat carotid arteries induced HO-1 protein expression and markedly attenuated neointima formation. Conclusions These studies demonstrate that BHA stimulates HO-1 gene expression in vascular smooth muscle cells, and that the induction of HO-1 contributes to the antiproliferative actions of this phenolic antioxidant. BHA represents a potentially novel therapeutic agent in treating or preventing vasculoproliferative disease. PMID:17320844

  19. Induction of heme oxygenase-1 by chamomile protects murine macrophages against oxidative stress

    PubMed Central

    Bhaskaran, Natarajan; Shukla, Sanjeev; Kanwal, Rajnee; Srivastava, Janmejai K; Gupta, Sanjay

    2012-01-01

    Aims Protection of cells from oxidative insult may be possible through direct scavenging of reactive oxygen species, or through stimulation of intracellular antioxidant defense mechanisms by induction of antioxidant gene expression. In this study we investigated the cytoprotective effect of chamomile and elucidated the underlying mechanisms. Main Methods The cytoprotective effect of chamomile was examined on H2O2-induced cellular stress in RAW 264.7 murine macrophages. Key Findings RAW 264.7 murine macrophages treated with chamomile were protected from cell death caused by H2O2. Treatment with 50 μM H2O2 for 6 h caused significant increase in cellular stress accompanied by cell death in RAW 264.7 macrophages. Pretreatment with chamomile at 10-20 μg/mL for 16 h followed by H2O2 treatment protected the macrophages against cell death. Chamomile exposure significantly increased the expression of antioxidant enzymes viz. heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), and thioredoxin-1 (Trx-1) in a dose-dependent manner, compared with their respective controls. Chamomile increased nuclear translocation of Nrf2 with increased phosphorylated Nrf2 levels, and binding to the antioxidant response element in the nucleus. Significance These molecular findings for the first time provide insights into the mechanisms underlying the induction of phase 2 enzymes through the Keap1-Nrf2 signaling pathway by chamomile, and provide evidence that chamomile possesses antioxidant and cytoprotective properties. PMID:22683429

  20. Heme Oxygenase, Inflammation, and Fibrosis: The Good, the Bad, and the Ugly?

    PubMed Central

    Lundvig, Ditte M. S.; Immenschuh, Stephan; Wagener, Frank A. D. T. G.

    2012-01-01

    Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative properties, and may act as a danger signal. Effects of free heme may be counteracted by heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase (HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin. HO deficiency in mouse and man leads to exaggerated inflammation following mild insults, and accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and its effector molecules. In this review, we address the potential effects of targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets in fibrotic conditions to counteract inflammatory and oxidative insults. This is exemplified by various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation. PMID:22586396

  1. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  2. Small Oligomers of Ribulose-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Are Required for Biological Activity

    PubMed Central

    Keown, Jeremy R.; Griffin, Michael D. W.; Mertens, Haydyn D. T.; Pearce, F. Grant

    2013-01-01

    Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase uses the energy from ATP hydrolysis to remove tight binding inhibitors from Rubisco, thus playing a key role in regulating photosynthesis in plants. Although several structures have recently added much needed structural information for different Rubisco activase enzymes, the arrangement of these subunits in solution remains unclear. In this study, we use a variety of techniques to show that Rubisco activase forms a wide range of structures in solution, ranging from monomers to much higher order species, and that the distribution of these species is highly dependent on protein concentration. The data support a model in which Rubisco activase forms an open spiraling structure rather than a closed hexameric structure. At protein concentrations of 1 μm, corresponding to the maximal activity of the enzyme, Rubisco activase has an oligomeric state of 2–4 subunits. We propose a model in which Rubisco activase requires at least 1 neighboring subunit for hydrolysis of ATP. PMID:23720775

  3. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    PubMed

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. PMID:19917515

  4. Human Heme Oxygenase-1 Efficiently Catabolizes Heme in the Absence of Biliverdin Reductase

    PubMed Central

    Huber, Warren J.; Backes, Wayne L.

    2010-01-01

    Heme oxygenase 1 (HO-1) uses molecular oxygen and electrons from NADPH cytochrome P450 reductase to convert heme to CO, ferrous iron, and biliverdin (BV). Enzymatic studies with the purified 30-kDa form of HO-1 routinely use a coupled assay containing biliverdin reductase (BVR), which converts BV to bilirubin (BR). BVR is believed to be required for optimal HO-1 activity. The goal of this study was to determine whether HO-1 activity could be monitored directly by following BV generation or iron release (using the ferrous iron chelator, ferrozine) in the absence of BVR. Using assays for each of the three end products, we found that HO-1 activity was stimulated in the presence of catalase and comparable rates were measured with each assay. Absorbance scans revealed characteristic spectra for BR, BV, and/or the ferrozine-iron complex. The optimal conditions were slightly different for the direct and coupled assays. BSA activated the coupled but inhibited the direct assays, and the assays had different pH optima. By measuring the activity of BVR directly using BV as a substrate, these differences were attributed to different enzymatic properties of BVR and HO-1. Thus, BVR is not needed to measure the activity of HO-1 when catalase is present. In fact, the factors affecting catalysis by HO-1 are better understood using the direct assays because the coupled assay can be influenced by properties of BVR. PMID:20679134

  5. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation.

    PubMed

    Zhang, Min; Zhang, Bao Hui; Chen, Li; An, Wei

    2002-06-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation. PMID:12118938

  6. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds

    PubMed Central

    Rahman, Mona N.; Vukomanovic, Dragic; Vlahakis, Jason Z.; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2013-01-01

    The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. PMID:23097500

  7. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    PubMed

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders. PMID:19046352

  8. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis

    PubMed Central

    Dey, Souvik; Sayers, Carly M.; Verginadis, Ioannis I.; Lehman, Stacey L.; Cheng, Yi; Cerniglia, George J.; Tuttle, Stephen W.; Feldman, Michael D.; Zhang, Paul J.L.; Fuchs, Serge Y.; Diehl, J. Alan; Koumenis, Constantinos

    2015-01-01

    The integrated stress response (ISR) is a critical mediator of cancer cell survival, and targeting the ISR inhibits tumor progression. Here, we have shown that activating transcription factor 4 (ATF4), a master transcriptional effector of the ISR, protects transformed cells against anoikis — a specialized form of apoptosis — following matrix detachment and also contributes to tumor metastatic properties. Upon loss of attachment, ATF4 activated a coordinated program of cytoprotective autophagy and antioxidant responses, including induced expression of the major antioxidant enzyme heme oxygenase 1 (HO-1). HO-1 upregulation was the result of simultaneous activation of ATF4 and the transcription factor NRF2, which converged on the HO1 promoter. Increased levels of HO-1 ameliorated oxidative stress and cell death. ATF4-deficient human fibrosarcoma cells were unable to colonize the lungs in a murine model, and reconstitution of ATF4 or HO-1 expression in ATF4-deficient cells blocked anoikis and rescued tumor lung colonization. HO-1 expression was higher in human primary and metastatic tumors compared with noncancerous tissue. Moreover, HO-1 expression correlated with reduced overall survival of patients with lung adenocarcinoma and glioblastoma. These results establish HO-1 as a mediator of ATF4-dependent anoikis resistance and tumor metastasis and suggest ATF4 and HO-1 as potential targets for therapeutic intervention in solid tumors. PMID:26011642

  9. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases. PMID:12626517

  10. In vivo regulation of the heme oxygenase-1 gene in humanized transgenic mice

    PubMed Central

    Kim, Junghyun; Zarjou, Abolfazl; Traylor, Amie M.; Bolisetty, Subhashini; Jaimes, Edgar A.; Hull, Travis D.; George, James F.; Mikhail, Fady M.; Agarwal, Anupam

    2012-01-01

    Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation producing equimolar amounts of carbon monoxide, iron, and biliverdin. Induction of HO-1 is a beneficial response to tissue injury in diverse animal models of diseases including acute kidney injury. In vitro analysis has shown that the human HO-1 gene is transcriptionally regulated by changes in chromatin conformation but whether such control occurs in vivo is not known. To enable such analysis, we generated transgenic mice, harboring an 87-kb bacterial artificial chromosome expressing human HO-1 mRNA and protein and bred these mice with HO-1 knockout mice to generate humanized BAC transgenic mice. This successfully rescued the phenotype of the knockout mice including reduced birth rates, tissue iron overload, splenomegaly, anemia, leukocytosis, dendritic cell abnormalities and survival after acute kidney injury induced by rhabdomyolysis or cisplatin nephrotoxicity. Transcription factors such as USF1/2, JunB, Sp1, and CTCF were found to associate with regulatory regions of the human HO-1 gene in the kidney following rhabdomyolysis. Chromosome Conformation Capture and ChIP-loop assays confirmed this in the formation of chromatin looping in vivo. Thus, these bacterial artificial chromosome humanized HO-1 mice are a valuable model to study the human HO-1 gene providing insight to the in vivo architecture of the gene in acute kidney injury and other diseases. PMID:22495295

  11. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. PMID:26471299

  12. Structure of the processive rubber oxygenase RoxA from Xanthomonas sp

    PubMed Central

    Seidel, Julian; Schmitt, Georg; Hoffmann, Maren; Jendrossek, Dieter; Einsle, Oliver

    2013-01-01

    Rubber oxygenase A (RoxA) is one of only two known enzymes able to catalyze the oxidative cleavage of latex for biodegradation. RoxA acts as a processive dioxygenase to yield the predominant product 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a tri-isoprene unit. Here we present a structural analysis of RoxA from Xanthomonas sp. strain 35Y at a resolution of 1.8 Å. The enzyme is a 75-kDa diheme c-type cytochrome with an unusually low degree of secondary structure. Analysis of the heme group arrangement and peptide chain topology of RoxA confirmed a distant kinship with diheme peroxidases of the CcpA family, but the proteins are functionally distinct, and the extracellular RoxA has evolved to have twice the molecular mass by successively accumulating extensions of peripheral loops. RoxA incorporates both oxygen atoms of its cosubstrate dioxygen into the rubber cleavage product ODTD, and we show that RoxA is isolated with O2 stably bound to the active site heme iron. Activation and cleavage of O2 require binding of polyisoprene, and thus the substrate needs to use hydrophobic access channels to reach the deeply buried active site of RoxA. The location and nature of these channels support a processive mechanism of latex cleavage. PMID:23922395

  13. A continuous-wave electron-nuclear double resonance (X-band) study of the Cu2+ sites of particulate methane mono-oxygenase of Methylococcus capsulatus (strain M) in membrane and pure dopamine beta-mono-oxygenase of the adrenal medulla.

    PubMed

    Katterle, Bettina; Gvozdev, Rudolf I; Abudu, Ntei; Ljones, Torbjørn; Andersson, K Kristoffer

    2002-05-01

    All methanotrophic bacteria express a membrane-bound (particulate) methane mono-oxygenase (pMMO). In the present study, we have investigated pMMO in membrane fragments from Methylococcus capsulatus (strain M). pMMO contains a typical type-2 Cu(2+) centre with the following EPR parameters: g(z) 2.24, g(x,y) 2.06, A(Cu)(z) 19.0 mT and A(Cu)(x,y) 1.0 mT. Simulation of the Cu(2+) spectrum yielded a best match by using four equivalent nitrogens (A(N)=1.5 mT, 42 MHz). Incubation with ferricyanide neither changed nor increased the amount of EPR-active Cu(2+), in contrast with other reports. The EPR visible copper seems not to be part of any cluster, as judged from the microwave power saturation behaviour. Continuous-wave electron-nuclear double resonance (CW ENDOR; 9.4 GHz, 5-20 K) experiments at g( perpendicular) of the Cu(II) spectrum show a weak coupling to protons with an A(H) of 2.9 MHz that corresponds to a distance of 3.8 A (1 A identical with 0.1 nm), assuming that it is a purely dipolar coupling. Incubation in (2)H(2)O leads to a significant decrease in these (1)H-ENDOR intensities, showing that these protons are exchangeable. This result strongly suggests that the EPR visible copper site of pMMO is accessible to solvent, which was confirmed by the chelation of the Cu(2+) by diethyldithiocarbamic acid. The (1)H and (14)N hyperfine coupling constants confirm a histidine ligation of the EPR visible copper site in pMMO. The hyperfine structure in the ENDOR or EPR spectra of pMMO is not influenced by the inhibitors azide, cyanide or ammonia, indicating that they do not bind to the EPR visible copper. We compared pMMO with the type-2 Cu(2+) enzyme, dopamine beta-mono-oxygenase (DbetaM). For DbetaM, it is assumed that the copper site is solvent-accessible. CW ENDOR shows similar weakly coupled and (2)H(2)O-exchangeable protons (2.9 MHz), as observed in pMMO, as well as the strongly coupled nitrogens (40 MHz) from the co-ordinating N of the histidines in DbetaM. In

  14. A continuous-wave electron-nuclear double resonance (X-band) study of the Cu2+ sites of particulate methane mono-oxygenase of Methylococcus capsulatus (strain M) in membrane and pure dopamine beta-mono-oxygenase of the adrenal medulla.

    PubMed Central

    Katterle, Bettina; Gvozdev, Rudolf I; Abudu, Ntei; Ljones, Torbjørn; Andersson, K Kristoffer

    2002-01-01

    All methanotrophic bacteria express a membrane-bound (particulate) methane mono-oxygenase (pMMO). In the present study, we have investigated pMMO in membrane fragments from Methylococcus capsulatus (strain M). pMMO contains a typical type-2 Cu(2+) centre with the following EPR parameters: g(z) 2.24, g(x,y) 2.06, A(Cu)(z) 19.0 mT and A(Cu)(x,y) 1.0 mT. Simulation of the Cu(2+) spectrum yielded a best match by using four equivalent nitrogens (A(N)=1.5 mT, 42 MHz). Incubation with ferricyanide neither changed nor increased the amount of EPR-active Cu(2+), in contrast with other reports. The EPR visible copper seems not to be part of any cluster, as judged from the microwave power saturation behaviour. Continuous-wave electron-nuclear double resonance (CW ENDOR; 9.4 GHz, 5-20 K) experiments at g( perpendicular) of the Cu(II) spectrum show a weak coupling to protons with an A(H) of 2.9 MHz that corresponds to a distance of 3.8 A (1 A identical with 0.1 nm), assuming that it is a purely dipolar coupling. Incubation in (2)H(2)O leads to a significant decrease in these (1)H-ENDOR intensities, showing that these protons are exchangeable. This result strongly suggests that the EPR visible copper site of pMMO is accessible to solvent, which was confirmed by the chelation of the Cu(2+) by diethyldithiocarbamic acid. The (1)H and (14)N hyperfine coupling constants confirm a histidine ligation of the EPR visible copper site in pMMO. The hyperfine structure in the ENDOR or EPR spectra of pMMO is not influenced by the inhibitors azide, cyanide or ammonia, indicating that they do not bind to the EPR visible copper. We compared pMMO with the type-2 Cu(2+) enzyme, dopamine beta-mono-oxygenase (DbetaM). For DbetaM, it is assumed that the copper site is solvent-accessible. CW ENDOR shows similar weakly coupled and (2)H(2)O-exchangeable protons (2.9 MHz), as observed in pMMO, as well as the strongly coupled nitrogens (40 MHz) from the co-ordinating N of the histidines in DbetaM. In

  15. Sn-protoporphyrin inhibition of fetal and neonatal brain heme oxygenase. Transplacental passage of the metalloporphyrin and prenatal suppression of hyperbilirubinemia in the newborn animal.

    PubMed Central

    Drummond, G S; Kappas, A

    1986-01-01

    Sn(tin)-protoporphyrin, a potent competitive inhibitor of heme oxygenase, can suppress hyperbilirubinemia in animal neonates and significantly reduce plasma bilirubin levels in animals and man. To further explore the biological actions and metabolic disposition of Sn-protoporphyrin, we have examined its effect in the suckling neonate when administered to the mother either 24-48 h before or immediately after birth. Sn-protoporphyrin, when administered before birth, crossed the placental membranes, inhibited fetal heme oxygenase, and suppressed the transient hyperbilirubinemia that occurs in the neonate after birth in a dose-dependent manner. Tissue heme oxygenase activity in the neonate was also lowered in a dose-dependent manner. The blood-brain barrier of the neonate was permeable to Sn-protoporphyrin for a period of between 20-28 d of postnatal life. Sn-protoporphyrin, however, was not retained in brain, but left the brain space with a t1/2 of 1.7 d. In addition, Sn-protoporphyrin administered once at birth to neonates inhibited brain heme oxygenase in a dose-dependent manner. The results of this study demonstrate that Sn-protoporphyrin can cross the placental membranes, inhibit tissue heme oxygenase activity in the fetus, and can also, following such prenatal treatment, suppress the hyperbilirubinemia of the newborn animal. PMID:3753986

  16. Heme oxygenase: the physiological role of one of its metabolites, carbon monoxide and interactions with zinc protoporphyrin, cobalt protoporphyrin and other metalloporphyrins.

    PubMed

    Marks, G S

    1994-11-01

    In 1991, we postulated that carbon monoxide, which is formed endogenously from heme catabolism catalyzed by heme oxygenase and shares some of the chemical and biological properties of nitric oxide, may play a role similar to that of nitric oxide as a widespread signal transduction mechanism for the regulation of cell function and communication. We review the experimental evidence that tests this postulate. Carbon monoxide appears to be involved in the neurophysiological phenomenon of long-term potentiation, which appears to play a key role in memory and learning. Zinc protoporphyrin, an inhibitor of heme oxygenase, prevents induction of long-term potentiation. Zinc protoporphyrin is an endogenous substance, the levels of which are increased in iron deficiency states and in lead poisoning, and by inhibiting heme oxygenase may modulate long-term potentiation and memory. It has been shown that, when cobalt protoporphyrin is injected into the medial nuclei of the rat hypothalamus, weight loss occurs. These nuclei contain heme oxygenase, and we postulate that weight loss is due to cobalt protoporphyrin induction of heme oxygenase and increased formation of carbon monoxide, which serves as a signal transduction mechanism in the medial hypothalamus to suppress appetite. PMID:7849553

  17. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  18. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    SciTech Connect

    Creelman, R.A.; Zeevaart, J.A.D.

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% /sup 18/O/sub 2/ and 80% N/sub 2/ indicates that one atom of /sup 18/O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing /sup 18/O/sub 2/ indicates that one atom of /sup 18/O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables.

  19. Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis?

    PubMed Central

    Hanselmann, C; Mauch, C; Werner, S

    2001-01-01

    Haem oxygenase (HO) is the rate-limiting enzyme in the degradation of haem. In addition to its obvious role in iron metabolism, a series of findings indicate an important role for HO in cellular protection against oxidative stress. This effect might be of particular importance during wound healing and also in inflammatory disease. Therefore we determined the expression of the two HO isoenzymes, HO-1 and HO-2, during the healing process of full-thickness excisional wounds in mice. We show a remarkable induction of HO-1 mRNA and protein expression within three days after skin injury. After completion of wound healing, HO-1 expression declined to basal levels. By contrast, expression of HO-2 was not significantly modulated by skin injury. In situ hybridization and immunohistochemistry revealed high HO-1 expression in inflammatory cells of the granulation tissue and in keratinocytes of the hyperproliferative epithelium. A strong overexpression of HO-1 was also observed in the skin of patients suffering from the inflammatory skin disease psoriasis. In addition, HO-2 mRNA levels were increased in the skin of psoriatic patients. Similar to wounded skin, inflammatory cells and keratinocytes of the hyperthickened epidermis were the major producers of HO-1 in psoriatic skin. In vitro studies with cultured keratinocytes revealed a potential role for reactive oxygen species (ROS), but not for growth factors and pro-inflammatory cytokines, as inducers of HO-1 expression in inflamed skin. Our findings suggest a novel role for HO in wound healing and inflammatory skin disease, where it might be involved in haem degradation and in the protection of cells from the toxic effects of ROS. PMID:11171041

  20. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes

    PubMed Central

    Suliman, Hagir B.; Zobi, Fabio

    2016-01-01

    Abstract Aims: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. Results: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. Innovation: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. Conclusion: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as

  1. Role of heme oxygenase-1 in the pathogenesis and tumorigenicity of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Dai, Lu; Qiao, Jing; Nguyen, David; Struckhoff, Amanda P; Doyle, Lisa; Bonstaff, Karlie; Del Valle, Luis; Parsons, Chris; Toole, Bryan P; Renne, Rolf; Qin, Zhiqiang

    2016-03-01

    Kaposi's Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of several malignancies, including Kaposi's Sarcoma (KS), which preferentially arise in immunocompromised patients such as HIV+ subpopulation and lack effective therapeutic options. Heme oxygenase-1 (HO-1) has been reported as an important regulator of endothelial cell cycle control, proliferation and angiogenesis. HO-1 has also been found to be highly expressed in KSHV-infected endothelial cells and oral AIDS-KS lesions. We previously demonstrate that the multifunctional glycoprotein CD147 is required for KSHV/LANA-induced endothelial cell invasiveness. During the identification of CD147 controlled downstream genes by microarray analysis, we found that the expression of HO-1 is significantly elevated in both CD147-overexpressing and KSHV-infected HUVEC cells when compared to control cells. In the current study, we further identify the regulation of HO-1 expression and mediated cellular functions by both CD147 and KSHV-encoded LANA proteins. Targeting HO-1 by either RNAi or the chemical inhibitor, SnPP, effectively induces cell death of KSHV-infected endothelial cells (the major cellular components of KS) through DNA damage and necrosis process. By using a KS-like nude mouse model, we found that SnPP treatment significantly suppressed KSHV-induced tumorigenesis in vivo. Taken together, our data demonstrate the important role of HO-1 in the pathogenesis and tumorigenesis of KSHV-infected endothelial cells, the underlying regulatory mechanisms for HO-1 expression and targeting HO-1 may represent a promising therapeutic strategy against KSHV-related malignancies. PMID:26859574

  2. Heme oxygenase-1 determines the differential response of breast cancer and normal cells to piperlongumine.

    PubMed

    Lee, Ha-Na; Jin, Hyeon-Ok; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, BoRa; Kim, Wonki; Hong, Sung-Eun; Lee, Yun-Han; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Surh, Young-Joon; Lee, Jin Kyung

    2015-04-01

    Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic α,β-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine. PMID:25813625

  3. Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine

    PubMed Central

    Lee, Ha-Na; Jin, Hyeon-Ok; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, BoRa; Kim, Wonki; Hong, Sung-Eun; Lee, Yun-Han; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Surh, Young-Joon; Lee, Jin Kyung

    2015-01-01

    Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells. However, the molecular mechanism underlying piperlongumine-induced selective killing of cancer cells remains unclear. In the present study, we observed that human breast cancer MCF-7 cells are sensitive to piperlongumine-induced apoptosis relative to human MCF-10A breast epithelial cells. Interestingly, this opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1). Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells. However, knockdown of HO-1 expression and pharmacological inhibition of its activity abolished the ability of piperlongumine to induce apoptosis in MCF-7 cells, whereas those promoted apoptosis in MCF-10A cells, indicating that HO-1 has anti-tumor functions in cancer cells but cytoprotective functions in normal cells. Moreover, it was found that piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species. Instead, piperlongumine, which bears electrophilic α,β-unsaturated carbonyl groups, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1) through thiol modification, thereby activating the Nrf2/HO-1 pathway and subsequently upregulating HO-1 expression, which accounts for piperlongumine-induced apoptosis in cancer cells. Taken together, these findings suggest that direct interaction of piperlongumine with Keap1 leads to the upregulation of Nrf2-mediated HO-1 expression, and HO-1 determines the differential response of breast normal cells and cancer cells to piperlongumine. PMID:25813625

  4. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    SciTech Connect

    Nakao, Atsunori; Kaczorowski, David J.; Zuckerbraun, Brian S.; Lei Jing; Faleo, Gaetano; Deguchi, Kentaro; McCurry, Kenneth R.; Billiar, Timothy R.; Kanno, Shinichi

    2008-03-14

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.

  5. Comparative transcriptional and translational analysis of heme oxygenase expression in response to sulfur mustard.

    PubMed

    Nourani, Mohammad Reza; Mahmoodzadeh Hosseini, Hamideh; Imani Fooladi, Abbas Ali

    2015-01-01

    Sulfur mustard (SM) is a potent alkylating agent which reacts with nucleophilic groups on DNA, RNA and proteins. It is capable of inducing cellular toxicity and oxidative stress via production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The accumulation of high amounts of the reactive species causes harmful effects such as DNA damage, lipid peroxidation, protein oxidation, inflammation and apoptosis. Although SM (also known as mustard gas) and its derivatives are rapidly removed from the body, long-term damages are much more serious than the short-term effects and may be correlated with the subsequent changes occurred on the genome. In order to defend against oxidative properties of this toxic molecule, cells trigger several anti-oxidant pathways through up-regulating the corresponding genes. Enzymes like heme oxygenase-1, superoxide dismutase and glutathione-S-transferase are the examples of such genes. These enzymes produce anti-oxidant substances that are able to scavenge the reactive species, alleviate their noxious effects and protect the cells. Following SM gas exposure, gene transcription (mRNA levels) of these enzymes are ramped up to help detoxify the cells. Yet, some studies have reported that the up-regulated transcription does not necessarily translate into higher protein expression levels. The exact reason why this phenomenon happens is not clear. Creation of mutations in the genome sequence may lead to protein structure changes. Phosphorylation or other post-translational alterations of proteins upon SM exposure are also considered as possible causes. In addition, alterations in some microRNAs responsible for regulating post-translation events may inhibit the expression of the anti-oxidant proteins in the poisoned cells at translational level. PMID:26096165

  6. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation

    PubMed Central

    Vijayan, Vijith; Hiller, Oliver; Figueiredo, Constanca; Aljabri, Abid; Blasczyk, Rainer; Theilmeier, Gregor; Becker, Jan Ulrich; Larmann, Jan; Immenschuh, Stephan

    2015-01-01

    Antibody-mediated rejection (AMR) is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA) class I (HLA I) antibodies (Abs) play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs). The antioxidant enzyme heme oxygenase (HO)-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]). Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO)-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation. PMID:26690352

  7. Stable Carbon Isotope Fractionation in Chlorinated Ethene Degradation by Bacteria Expressing Three Toluene Oxygenases

    PubMed Central

    Clingenpeel, Scott R.; Moan, Jaina L.; McGrath, Danielle M.; Hungate, Bruce A.; Watwood, Mary E.

    2012-01-01

    One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant. This study examined bacterial strains expressing three aerobic enzymes for their effect on the 13C/12C ratio when degrading both trichloroethene (TCE) and cis-1,2-dichloroethene (c-DCE): toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase. We found no significant differences in fractionation among the three enzymes for either compound. Aerobic degradation of c-DCE occurred with low fractionation producing δ13C enrichment factors of −0.9 ± 0.5 to −1.2 ± 0.5, in contrast to reported anaerobic degradation δ13C enrichment factors of −14.1 to −20.4‰. Aerobic degradation of TCE resulted in δ13C enrichment factors of −11.6 ± 4.1 to −14.7 ± 3.0‰ which overlap reported δ13C enrichment factors for anaerobic TCE degradation of −2.5 to −13.8‰. The data from this study suggest that stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites. PMID:22363335

  8. Heme Oxygenase-1 Dysregulates Macrophage Polarization and the Immune Response to Helicobacter pylori

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; Asim, Mohammad; Barry, Daniel P.; Piazuelo, M. Blanca; de Sablet, Thibaut; Delgado, Alberto G.; Bravo, Luis E.; Correa, Pelayo; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2014-01-01

    Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during Helicobacter pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/nuclear factor (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA+ H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased Mreg response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decreased of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1. PMID:25108023

  9. Endotoxin-induced down-regulation of Elk-3 facilitates heme oxygenase-1 induction in macrophages.

    PubMed

    Chung, Su Wol; Chen, Yen-Hsu; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A

    2006-02-15

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that is acutely induced by inflammatory stimuli, and the products of HO-1-mediated heme degradation have anti-inflammatory properties. In many different pathophysiologic states, the up-regulation of HO-1 has been shown to be beneficial in combating the detrimental consequences of increased inflammation. Ets transcription factors are known to be important mediators of inflammatory responses, and the ternary complex factor subfamily of Ets proteins has both transcriptional activation and repression activity. The present study demonstrates that of several ternary complex factor subfamily members, only Elk-3 represses HO-1 promoter activity in macrophages. Endotoxin administration to macrophages led to a dose-dependent decrease in endogenous Elk-3 mRNA levels, and this reduction in Elk-3 preceded the LPS-mediated up-regulation of HO-1 message. Analogous results also occurred in lung tissue of mice exposed to endotoxin. Two putative Ets binding sites (EBS1 and EBS2) are present in the downstream region of the murine HO-1 promoter (bp -125 and -93, respectively), and we recently showed that the EBS2 site is essential for HO-1 induction by endotoxin. In contrast, the present study demonstrates that the repressive effect of Elk-3 on HO-1 promoter activity is dependent on the EBS1 site. Taken together, our data reveal that Elk-3 serves as an important repressor of HO-1 gene transcription and contributes to the tight control of HO-1 gene regulation in the setting of inflammatory stimuli. PMID:16456000

  10. An association study between Heme oxygenase-1 genetic variants and Parkinson's disease.

    PubMed

    Ayuso, Pedro; Martínez, Carmen; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Luengo, Antonio; Jiménez-Jiménez, Félix J; Alonso-Navarro, Hortensia; Agúndez, José A G; García-Martín, Elena

    2014-01-01

    The blood-brain barrier (BBB) supplies brain tissues with nutrients, filters harmful compounds from the brain back to the bloodstream, and plays a key role in iron homeostasis in the human brain. Disruptions of the BBB are associated with several neurodegenerative conditions including Parkinson's disease (PD). Oxidative stress, iron deposition and mitochondrial impaired function are considered as risk factors for degeneration of the central nervous system. Heme oxygenase (HMOX) degrades heme ring to biliverdin, free ferrous iron and carbon monoxide being the rate-limiting activity in heme catabolism. The isoform HMOX1 is highly inducible in response to reactive oxygen species, which induce an increase in BBB permeability and impair its pathophysiology. Consequently, an over- expression of this enzyme may contribute to the marked iron deposition found in PD. We analyzed the HMOX1 SNPs rs2071746, rs2071747, and rs9282702, a microsatellite (GT) n polymorphism and copy number variations in 691 patients suffering from PD and 766 healthy control individuals. Copy number variations in the HMOX1 gene exist, but these do not seem to be associated with PD risk. In contrast two polymorphisms that modify the transcriptional activity of the gene, namely a VNTR (GT) n and the SNP rs2071746, are strongly associated with PD risk, particularly with the classic PD phenotype and with early onset of the disease. This study indicates that HMOX1 gene variants are associated to the risk of developing some forms of PD, thus adding new information that supports association of HMOX gene variations with PD risk. PMID:25309329

  11. Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011.

    PubMed

    Park, Ae Kyung; Kim, Il-Sup; Jeon, Byung Wook; Roh, Soo Jung; Ryu, Min-Young; Baek, Hae-Ri; Jo, Seoung-Woo; Kim, Young-Saeng; Park, Hyun; Lee, Jun Hyuck; Yoon, Ho-Sung; Kim, Han-Woo

    2016-08-26

    The cyanobacterial aldehyde deformylating oxygenase (cADO) is a key enzyme that catalyzes the unusual deformylation of aliphatic aldehydes for alkane biosynthesis and can be applied to the production of biofuel in vitro and in vivo. In this study, we determined crystal structures of two ADOs from Limnothrix sp. KNUA012 (LiADO) and Oscillatoria sp. KNUA011 (OsADO). The structures of LiADO and OsADO resembled those of typical cADOs, consisting of eight α-helices found in ferritin-like di-iron proteins. However, structural comparisons revealed that while the LiADO active site was vacant of iron and substrates, the OsADO active site was fully occupied, containing both a coordinated metal ion and substrate. Previous reports indicated that helix 5 is capable of adopting two distinct conformations depending upon the existence of bound iron. We observed that helix 5 of OsADO with an iron bound in the active site presented as a long helix, whereas helix 5 of LiADO, which lacked iron in the active site, presented two conformations (one long and two short helices), indicating that an equilibrium exists between the two states in solution. Furthermore, acquisition of a structure having a fully occupied active site is unique in the absence of higher iron concentrations as compared with other cADO structures, wherein low affinity for iron complicates the acquisition of crystal structures with bound iron. An in-depth analysis of the ADO apo-enzyme, the enzyme with substrate bound, and the enzyme with both iron and substrate bound provided novel insight into substrate-binding modes in the absence of a coordinated metal ion and suggested a separate two-step binding mechanism for substrate and iron co-factors. Moreover, our results provided a comprehensive structural basis for conformational changes induced by binding of the substrate and co-factor. PMID:27329814

  12. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury.

    PubMed

    Bolisetty, Subhashini; Traylor, Amie; Joseph, Reny; Zarjou, Abolfazl; Agarwal, Anupam

    2016-03-01

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that catalyzes the breakdown of heme to biliverdin, carbon monoxide, and iron. The beneficial effects of HO-1 expression are not merely due to degradation of the pro-oxidant heme but are also credited to the by-products that have potent, protective effects, including antioxidant, anti-inflammatory, and prosurvival properties. This is well reflected in the preclinical animal models of injury in both renal and nonrenal settings. However, excessive accumulation of the by-products can be deleterious and lead to mitochondrial toxicity and oxidative stress. Therefore, use of the HO system in alleviating injury merits a targeted approach. Based on the higher susceptibility of the proximal tubule segment of the nephron to injury, we generated transgenic mice using cre-lox technology to enable manipulation of HO-1 (deletion or overexpression) in a cell-specific manner. We demonstrate the validity and feasibility of these mice by breeding them with proximal tubule-specific Cre transgenic mice. Similar to previous reports using chemical modulators and global transgenic mice, we demonstrate that whereas deletion of HO-1, specifically in the proximal tubules, aggravates structural and functional damage during cisplatin nephrotoxicity, selective overexpression of HO-1 in proximal tubules is protective. At the cellular level, cleaved caspase-3 expression, a marker of apoptosis, and p38 signaling were modulated by HO-1. Use of these transgenic mice will aid in the evaluation of the effects of cell-specific HO-1 expression in response to injury and assist in the generation of targeted approaches that will enhance recovery with reduced, unwarranted adverse effects. PMID:26672618

  13. Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis.

    PubMed

    Andrade, Bruno B; Pavan Kumar, Nathella; Amaral, Eduardo P; Riteau, Nicolas; Mayer-Barber, Katrin D; Tosh, Kevin W; Maier, Nolan; Conceição, Elisabete L; Kubler, Andre; Sridhar, Rathinam; Banurekha, Vaithilingam V; Jawahar, Mohideen S; Barbosa, Theolis; Manganiello, Vincent C; Moss, Joel; Fontana, Joseph R; Marciano, Beatriz E; Sampaio, Elizabeth P; Olivier, Kenneth N; Holland, Steven M; Jackson, Sharon H; Moayeri, Mahtab; Leppla, Stephen; Sereti, Irini; Barber, Daniel L; Nutman, Thomas B; Babu, Subash; Sher, Alan

    2015-09-15

    Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients. PMID:26268658

  14. Modulation of heme oxygenase-1 by metalloporphyrins increases anti-viral T cell responses.

    PubMed

    Bunse, C E; Fortmeier, V; Tischer, S; Zilian, E; Figueiredo, C; Witte, T; Blasczyk, R; Immenschuh, S; Eiz-Vesper, B

    2015-02-01

    Heme oxygenase (HO)-1, the inducible isoform of HO, has immunomodulatory functions and is considered a target for therapeutic interventions. In the present study, we investigated whether modulation of HO-1 might have regulatory effects on in-vitro T cell activation. The study examined whether: (i) HO-1 induction by cobalt-protoporphyrin (CoPP) or inhibition by tin-mesoporphyrin (SnMP) can affect expansion and function of virus-specific T cells, (ii) HO-1 modulation might have a functional effect on other cell populations mediating effects on proliferating T cells [e.g. dendritic cells (DCs), regulatory T cells (T(regs)) and natural killer cells] and (iii) HO-1-modulated anti-viral T cells might be suitable for adoptive immunotherapy. Inhibition of HO-1 via SnMP in cytomegalovirus (CMV)pp65-peptide-pulsed peripheral blood mononuclear cells (PBMCs) led to increased anti-viral T cell activation and the generation of a higher proportion of effector memory T cells (CD45RA(-) CD62L(-)) with increased capability to secrete interferon (IFN)-γ and granzyme B. T(reg) depletion and SnMP exposure increased the number of anti-viral T cells 15-fold. To test the possibility that HO-1 modulation might be clinically applicable in conformity with good manufacturing practice (GMP), SnMP was tested in isolated anti-viral T cells using the cytokine secretion assay. Compared to control, SnMP treatment resulted in higher cell counts and purity without negative impact on quality and effector function [CD107a, IFN-γ and tumour necrosis factor (TNF)-α levels were stable]. These results suggest an important role of HO-1 in the modulation of adaptive immune responses. HO-1 inhibition resulted in markedly more effective generation of functionally active T cells suitable for adoptive T cell therapy. PMID:25196646

  15. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury.

    PubMed

    Origassa, Clarice Silvia Taemi; Câmara, Niels Olsen Saraiva

    2013-10-27

    The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury. PMID:24179613

  16. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.

    2013-01-01

    Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711

  17. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin

    PubMed Central

    Müllebner, Andrea; Moldzio, Rudolf; Redl, Heinz; Kozlov, Andrey V.; Duvigneau, J. Catharina

    2015-01-01

    Heme oxygenase (HO), in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR); the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER). The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted by BR still have

  18. Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species.

    PubMed Central

    Li, L A; Tabita, F R

    1994-01-01

    The gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activase (rca) was uniformly localized downstream from the genes encoding the large and small subunits of RubisCO (rbcL and rbcS) in three strains of Anabaena species. However, two open reading frames (ORF1 and ORF2), situated between rbcS and rca in Anabaena sp. strain CA, were not found in the intergenic region of Anabaena variabilis and Anabaena sp. strain PCC 7120. During autotrophic growth of Anabaena cells, rca and rbc transcripts accumulated in the light and diminished in the dark; light-dependent expression of these genes was not affected by the nitrogen source and the concentration of exogenous CO2 supplied to the cells. When grown on fructose, rca- and rbc-specific transcripts accumulated in A. variabilis regardless of whether the cells were illuminated. Transcript levels, however, were much lower in dark-grown heterotrophic cultures than in photoheterotrophic cultures. In photoheterotrophic cultures, the expression of the rca and rbc genes was similar to that in cultures grown with CO2 as the sole source of carbon. Although the rbcL-rbcS and rca genes are linked and are in the same transcriptional orientation in Anabaena strains, hybridization of rbc and rca to distinct transcripts suggested that these genes are not cotranscribed, consistent with the results of primer extension and secondary structure analysis of the nucleotide sequence. Transcription from ORF1 and ORF2 was not detected under the conditions examined, and the function of these putative genes remains unknown. Images PMID:7961423

  19. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction

    PubMed Central

    Li, Jian-Si; Zhang, Qing-Fang; Wang, Yu-Xiao; Zhao, Shi-Lei; Yu, Jing; Wang, Chang; Qin, Ying; Wei, Qiu-Ju; Lv, Gui-Xiang; Li, Bing

    2016-01-01

    Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1) is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG) mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO) model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT) mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis. PMID:26765329

  20. Astrocyte Overexpression of Heme Oxygenase-1 Improves Outcome after Intracerebral Hemorrhage

    PubMed Central

    Chen-Roetling, Jing; Song, Wei; Schipper, Hyman M.; Regan, Christopher S.; Regan, Raymond F.

    2015-01-01

    Background and Purpose Heme oxygenase-1 (HO-1) catalyzes the rate-limiting reaction of heme breakdown, and may have both antioxidant and pro-oxidant effects. In prior studies, HO-1 overexpression protected astrocytes from heme-mediated injury in vitro. In the present study, we tested the hypothesis that selective astrocyte overexpression of HO-1 improves outcome after intracerebral hemorrhage (ICH). Methods Male and female transgenic mice overexpressing human HO-1 driven by the GFAP promoter (GFAP.HMOX1) and wild-type controls received striatal injections of autologous blood (25 μl). Blood-brain barrier disruption was assessed by Evans blue assay and striatal cell viability by MTT assay. Neurological deficits were quantified by digital analysis of spontaneous cage activity, adhesive removal, and elevated body swing tests. Results Mortality rate for wild-type mice was 34.8% and was similar for males and females; all GFAP.HMOX1 mice survived. Striatal Evans blue leakage at 24 hours was 23.4+/−3.2 ng in surviving WT mice, compared with 10.9+/−1.8 ng in transgenics. Peri-hematomal cell viability was reduced to 61±4% of contralateral at 3 days in WT mice, v. 80±4% in transgenics. Focal neurological deficits were significantly reduced in GFAP.HMOX1 mice, and spontaneous cage activity was increased. Conclusions Selective HO-1 overexpression in astrocytes reduces mortality, blood-brain barrier disruption, peri-hematomal cell injury, and neurological deficits in an autologous blood injection ICH model. Genetic or pharmacologic therapies that acutely increase astrocyte HO-1 may be beneficial after ICH. PMID:25690543

  1. Role of heme-oxygenase pathway on vasopressin deficiency during endotoxemic shock-like conditions.

    PubMed

    Moreto, Viviana; Stabile, Angelita Maria; Antunes-Rodrigues, José; Carnio, Evelin Capellari

    2006-11-01

    The septic shock is characterized by decrease in median arterial pressure; many researchers have been related a deficiency in vasopressin release during the septic shock. Lipopolysaccharide administration is used to induce septic shock model in animals. We investigated the heme-oxygenase (HO) inhibition during the endotoxemic shock-like conditions. The LPS administration induced a significant decrease in MAP (-15.4 +/- 1.2 mmHg at second hour, -25.8 +/- 8.7 mmHg at fourth hour, and -22.3 +/- 8.6 mmHg at sixth hour) with a concomitant increase in heart rate (486.3 +/- 55.0, 531.8 +/- 53.8, and 510.0 +/- 55.3 bpm, respectively), a significant decrease in diuresis (from 1.1 +/- 0.7 to 0.4 +/- 0.3/100g body weight at fourth hour), and a transitory decrease in body temperature (from 37.0 +/- 0.5 to 35.4 +/- 0.8 degrees C at second hour). An increase in plasma arginine vasopressin (AVP) concentration (from 3.2 +/- 0.9 to 19.0 +/- 5.7 pg/mL at the first hour) occurred in these animals and was present for 2 h after LPS administration, returning close to basal levels thereafter and remaining unchanged until the end of the experiment. When LPS was combined with the i.c.v. administration of HO inhibitor, we observed a sustained increase in plasma AVP concentration, attenuation in the drop of MAP, and increase in antidiuresis induced by LPS treatment. These data suggest that central HO pathway may activate a control mechanism that attenuates AVP secretion during endotoxemia and may consequently regulate the MAP and diuretic output. PMID:17047517

  2. Heme Oxygenase-1 Protects Corexit 9500A-Induced Respiratory Epithelial Injury across Species

    PubMed Central

    Oliva, Octavio M.; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R. Douglas; Thannickal, Victor J.; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B.

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  3. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis.

    PubMed

    Mehindate, K; Sahlas, D J; Frankel, D; Mawal, Y; Liberman, A; Corcos, J; Dion, S; Schipper, H M

    2001-06-01

    Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines. PMID:11389189

  4. Isoflurane post-treatment improves pulmonary vascular permeability via upregulation of heme oxygenase-1.

    PubMed

    Dong, Xiang; Hu, Rong; Sun, Yu; Li, Qifang; Jiang, Hong

    2013-09-01

    Isoflurane (ISO) has been shown to attenuate acute lung injury (ALI). Induction of heme oxygenase-1 (HO-1) and suppression of inducible nitric oxide synthase (iNOS) expression provide cytoprotection in lung and vascular injury. The aim of this study was to investigate the effect of post-treatment with isoflurane on lung vascular permeability and the role of HO-1 in an ALI rat model induced by cecal ligation and puncture (CLP). Male Sprague-Dawley rats were randomly assigned to one of four groups: sham group, sham rats post-treated with vehicle (Sham); CLP group, CLP rats post-treated with vehicle (CLP); ISO group, CLP rats post-treated with isoflurane (ISO); and ZnPP group, CLP rats injected with zinc protoporphyrin IX (ZnPP), a competitive inhibitor of HO-1, 1 hour before the operation, and post-treated with isoflurane (ZnPP). Isoflurane (1.4%) was administered 2 hour after CLP. At 24 hour after CLP, the extent of ALI was evaluated by lung wet/dry ratio, Evans blue dye (EBD) extravasation, lung permeability index (LPI), as well as histological and immunohistochemical examinations. We also determined pulmonary iNOS and HO-1 expression. Compared with the CLP group, the isoflurane post-treatment group showed improved pulmonary microvascular permeability as detected by EBD extravasation, LPI, as well as histological and immunohistochemical examinations. Furthermore, isoflurane decreased iNOS and increased HO-1 expression in lung tissue. Pretreatment with ZnPP prevented the protective effects of isoflurane in rats. These findings indicate that the protective role of isoflurane post-conditioning against CLP-induced lung injury may be associated with its role in upregulating HO-1 in ALI. PMID:23919323

  5. PECAM-1-dependent heme oxygenase-1 regulation via an Nrf2-mediated pathway in endothelial cells.

    PubMed

    Saragih, Hendry; Zilian, Eva; Jaimes, Yarúa; Paine, Ananta; Figueiredo, Constanca; Eiz-Vesper, Britta; Blasczyk, Rainer; Larmann, Jan; Theilmeier, Gregor; Burg-Roderfeld, Monika; Andrei-Selmer, Luminita-Cornelia; Becker, Jan Ulrich; Santoso, Sentot; Immenschuh, Stephan

    2014-06-01

    The antioxidant enzyme heme oxygenase (HO)-1, which catalyses the first and rate-limiting step of heme degradation, has major anti-inflammatory and immunomodulatory effects via its cell-type-specific functions in the endothelium. In the current study, we investigated whether the key endothelial adhesion and signalling receptor PECAM-1 (CD31) might be involved in the regulation of HO-1 gene expression in human endothelial cells (ECs). To this end PECAM-1 expression was down-regulated in human umbilical vein ECs (HUVECs) by an adenoviral vector-based knockdown approach. PECAM-1 knockdown markedly induced HO-1, but not the constitutive HO isoform HO-2. Nuclear translocation of the transcription factor NF-E2-related factor-2 (Nrf2), which is a master regulator of the inducible antioxidant cell response, and intracellular levels of reactive oxygen species (ROS) were increased in PECAM-1-deficient HUVECs, respectively. PECAM-1-dependent HO-1 regulation was also examined in PECAM-1 over-expressing Chinese hamster ovary and murine L-cells. Endogenous HO-1 gene expression and reporter gene activity of transiently transfected luciferase HO-1 promoter constructs with Nrf2 target sequences were decreased in PECAM-1 over-expressing cells. Moreover, a regulatory role of ROS for HO-1 regulation in these cells is demonstrated by studies with the antioxidant N-acetylcysteine and exogenous hydrogenperoxide. Finally, direct interaction of PECAM-1 with a native complex of its binding partner NB1 (CD177) and serine proteinase 3 (PR3) from human neutrophils, markedly induced HO-1 expression in HUVECs. Taken together, we demonstrate a functional link between HO-1 gene expression and PECAM-1 in human ECs, which might play a critical role in the regulation of inflammation. PMID:24500083

  6. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    PubMed Central

    Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402

  7. Heme oxygenase-1 induction modulates hypoxic pulmonary vasoconstriction through upregulation of ecSOD.

    PubMed

    Ahmad, Mansoor; Zhao, Xiangmin; Kelly, Melissa R; Kandhi, Sharath; Perez, Oscar; Abraham, Nader G; Wolin, Michael S

    2009-10-01

    Endothelium-denuded bovine pulmonary arteries (BPA) contract to hypoxia through a mechanism potentially involving removing a superoxide-derived hydrogen peroxide-mediated relaxation. BPA organ cultured for 24 h with 0.1 mM cobalt chloride (CoCl(2)) to increase the expression and activity of heme oxygenase-1 (HO-1) is accompanied by a decrease in 5 microM lucigenin-detectable superoxide and an increase in horseradish peroxidase-luminol detectable peroxide levels. Force development to KCl in BPA was not affected by increases in HO-1, but the hypoxic pulmonary vasoconstriction (HPV) response was decreased. Organ culture with a HO-1 inhibitor (10 microM chromium mesoporphyrin) reversed the effects of HO-1 on HPV and peroxide. Treatment of HO-1-induced BPA with extracellular catalase resulted in reversal of the attenuation of HPV without affecting the force development to KCl. Increasing intracellular peroxide scavenging with 0.1 mM ebselen increased force development to KCl and partially reversed the decrease in HPV seen on induction of HO-1. HO-1 induction increases extracellular (ec) superoxide dismutase (SOD) expression without changing Cu,Zn-SOD and Mn-SOD levels. HO-1-induced BPA rings treated with the copper chelator 10 mM diethyldithiocarbamate to inactivate ecSOD and Cu,Zn-SOD showed increased superoxide and decreased peroxide to levels equal to non-HO-1-induced rings, whereas the addition of SOD to freshly isolated BPA rings attenuated HPV similar to HO-1 induction with CoCl(2). Therefore, HO-1 induction in BPA increases ecSOD expression associated with enhanced generation of peroxide in amounts that may not be adequately removed during hypoxia, leading to an attenuation of HPV. PMID:19666846

  8. The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath).

    PubMed

    Baxter, Nardia J; Hirt, Robert P; Bodrossy, Levente; Kovacs, Kornel L; Embley, T Martin; Prosser, James I; Murrell, J Colin

    2002-04-01

    The genes encoding the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Methylococcus capsulatus (Bath) were localised to an 8.3-kb EcoRI fragment of the genome. Genes encoding the large subunit ( cbbL), small subunit ( cbbS) and putative regulatory gene ( cbbQ) were shown to be located on one cluster. Surprisingly, cbbO, a second putative regulatory gene, was not located in the remaining 1.2-kb downstream (3') of cbbQ. However, probing of the M. capsulatus (Bath) genome with cbbO from Nitrosomonas europaea demonstrated that a cbbO homologue was contained within a separate 3.0-kb EcoRI fragment. Instead of a cbbR ORF being located upstream (5') of cbbL, there was a moxR-like ORF that was transcribed in the opposite direction to cbbL. There were three additional ORFs within the large 8.3-kb EcoRI fragment: a pyrE-like ORF, an rnr-like ORF and an incomplete ORF with no sequence similarity to any known protein. Phylogenetic analysis of cbbL from M. capsulatus (Bath) placed it within clade A of the green-type Form 1 Rubisco. cbbL was expressed in M. capsulatus (Bath) when grown with methane as a sole carbon and energy source under both copper-replete and copper-limited conditions. M. capsulatus (Bath) was capable of autotrophic growth on solid medium but not in liquid medium. Preliminarily investigations suggested that other methanotrophs may also be capable of autotrophic growth. Rubisco genes were also identified, by PCR, in Methylococcus-like strains and Methylocaldum species; however, no Rubisco genes were found in Methylomicrobium album BG8, Methylomonas methanica S1, Methylomonas rubra, Methylosinus trichosporium OB3b or Methylocystis parvus OBBP. PMID:11889481

  9. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K

    2016-01-01

    The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection. PMID:26166253

  10. Change in renal heme oxygenase expression in cyclosporine A-induced injury.

    PubMed

    Rezzani, Rita; Rodella, Luigi; Buffoli, Barbara; Goodman, Alvin A; Abraham, Nader G; Lianos, Elias A; Bianchi, Rossella

    2005-01-01

    Cyclosporine A (CsA) is the first immunosuppressant used in allotransplantation. Its use is associated with side effects that include nephrotoxicity. This study explored the anatomic structures involved in CsA nephrotoxicity and the effect of heme oxygenase (HO) in preventing CsA injury. Rats were divided into four groups, which were treated with olive oil, CsA (15 mg/kg/day), CsA plus the HO inhibitor (SnMP; 30 microM/kg/day), and with the HO inducer (CoPP; 5 mg/100 g bw). Renal tissue was treated for morphological, biochemical, and immunohistochemical studies. CsA-treated rats showed degenerative changes with renal fibrosis localized mainly around proximal tubules. Collapsed vessels were sometimes seen in glomeruli. No HO-1 expression and increased expression of endothelin-1 (ET-1) were observed in CsA-treated rats compared with controls. In CsA plus SnMP-treated rats, HO-1 expression was further reduced and the morphology was not changed compared to the CsA group, whereas CsA plus CoPP-treated animals again showed normal morphology and with restoration and an increase in HO-1 levels. HO activity and immunohistochemical data showed similar alterations as HO expression. No changes were observed for HO-2 analysis. The observations indicate that HO-1 downregulation and ET-1 upregulation by CsA might be one mechanism underlying CsA-induced nephrotoxicity. Therefore, attempts to preserve HO levels attenuate CsA nephrotoxicity. PMID:15637343

  11. Heme oxygenase and the immune system in normal and pathological pregnancies

    PubMed Central

    Ozen, Maide; Zhao, Hui; Lewis, David B.; Wong, Ronald J.; Stevenson, David K.

    2015-01-01

    Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity. PMID

  12. Protective effects of heme-oxygenase expression in cyclosporine A--induced injury.

    PubMed

    Rezzani, Rita; Rodella, Luigi; Bianchi, Rossella; Goodman, Alvin I; Lianos, Elias A

    2005-04-01

    Cyclosporine A (CsA) is the immunosuppressant of first choice in allotransplantation. Its use is associated with side effects of nephrotoxicity and neurotoxicity, which are among the most prominent. This study was undertaken to explore whether expression and activity of heme oxygenase (HO), the rate-limiting enzyme in heme degradation, is altered in a rat model of CsA-induced injury. Male Sprague Dawley rats were divided into four groups and treated for 21 days. Group I (control) was injected with olive oil (vehicle), group II with CsA (15 mg/kg/day), group III with CsA and the HO inhibitor stannous mesoporphyrin (SnMP) (30 micromol/kg/day) and group IV with one dose of the HO inducer cobalt protoporphyrin (CoPP) 5 mg/100 or heme (10 mg/kg body weight), three days after onset of CsA treatment. Renal tissue was processed for light microscopy, and for HO-1 enzyme activity, assay and for Western blot analysis. In CsA-treated rats there was histological evidence of tubulointerstitial scarring. HO-1 was undetectable in CsA-treated rats compared to control while there was no change in HO-2. In animals treated with a combination of CsA and SnMP, HO-1 activity was further reduced. In animals treated with a combination of CsA and CoPP, HO-1 protein levels were partially restored. These observations indicate that downregulation of HO-1 expression by CsA could be one mechanism underlying CsA-induced toxicity. The CsA-induced decrease in HO-1 expression is partial and restorable, and attempts to preserve HO levels may attenuate CsA toxicity. PMID:16181108

  13. Sexual dimorphism in renal heme-heme oxygenase system in the streptozotocin diabetic rats.

    PubMed

    Bonacasa, Bárbara; Pérez, Cayetano; Salom, Miguel G; López, Bernardo; Sáez-Belmonte, Fara; Martinez, Pedro; Casas, Teresa; Fenoy, Fráncisco J; Rodriguez, Francisca

    2013-01-01

    Heme Oxygenase (HO) -1 and -2 exert antioxidant, cytoprotective and vascular actions in male diabetic rats. However, there is no information about the expression and functional significance of the renal HO system in diabetic females. The present study tested the hypothesis that the HO system is differentially regulated in the kidney of female Sprague Dawley diabetic rats, protecting it from nitrosative and glomerular functional damage. Two weeks after the administration of streptozotocin (STZ; 65 mg/kg. i.p), males (DM) and females (DF) showed hyperglycemia, polyuria and elevated kidney/body weight ratio, compared to their control males (CM) and females (CF). In conscious animals, creatinine clearance was higher (0.5 ± 00 vs. 0.3 ± 00; ml/min/100g BW; p<0.05) and urinary albumin excretion was lower (0.7 ± 0.3 vs 3.1 ± 0.7; mg/day) in DF compared to DM. Acute administration of a HO inhibitor stannous mesoporphyrin (SnMP 40 mol/kg, i.v.) induced a greater renal vasoconstrictor response in DF than in DM. Western blot analysis of renal tissue revealed higher renal cortex HO-1 protein levels in DF compared to all other groups; by immunohistochemistry this induction of HO-1 in DF was localized in tubular segments and glomeruli. Furthermore, renal cortical concentration of nitrosylated protein was higher in DM than in DF animals and inversely related with HO-1 levels in both renal cortex and medulla. These data demonstrate that the HO-1 protein is induced in females, associated with renal vasodilation, decreased renal nitrosative stress and reduced albuminuria, indicating that the HO system is protecting the kidney from diabetes-induced damage specifically in females. PMID:23092315

  14. Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes.

    PubMed

    Di Noia, Maria Antonietta; Van Driesche, Sarah; Palmieri, Ferdinando; Yang, Li-Ming; Quan, Shuo; Goodman, Alvin I; Abraham, Nader G

    2006-06-01

    Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity. PMID:16595661

  15. Modulation of heme oxygenase-1 by metalloporphyrins increases anti-viral T cell responses

    PubMed Central

    Bunse, C E; Fortmeier, V; Tischer, S; Zilian, E; Figueiredo, C; Witte, T; Blasczyk, R; Immenschuh, S; Eiz-Vesper, B

    2015-01-01

    Heme oxygenase (HO)-1, the inducible isoform of HO, has immunomodulatory functions and is considered a target for therapeutic interventions. In the present study, we investigated whether modulation of HO-1 might have regulatory effects on in-vitro T cell activation. The study examined whether: (i) HO-1 induction by cobalt-protoporphyrin (CoPP) or inhibition by tin-mesoporphyrin (SnMP) can affect expansion and function of virus-specific T cells, (ii) HO-1 modulation might have a functional effect on other cell populations mediating effects on proliferating T cells [e.g. dendritic cells (DCs), regulatory T cells (Tregs) and natural killer cells] and (iii) HO-1-modulated anti-viral T cells might be suitable for adoptive immunotherapy. Inhibition of HO-1 via SnMP in cytomegalovirus (CMV)pp65-peptide-pulsed peripheral blood mononuclear cells (PBMCs) led to increased anti-viral T cell activation and the generation of a higher proportion of effector memory T cells (CD45RA− CD62L−) with increased capability to secrete interferon (IFN)-γ and granzyme B. Treg depletion and SnMP exposure increased the number of anti-viral T cells 15-fold. To test the possibility that HO-1 modulation might be clinically applicable in conformity with good manufacturing practice (GMP), SnMP was tested in isolated anti-viral T cells using the cytokine secretion assay. Compared to control, SnMP treatment resulted in higher cell counts and purity without negative impact on quality and effector function [CD107a, IFN-γ and tumour necrosis factor (TNF)-α levels were stable]. These results suggest an important role of HO-1 in the modulation of adaptive immune responses. HO-1 inhibition resulted in markedly more effective generation of functionally active T cells suitable for adoptive T cell therapy. PMID:25196646

  16. Renal Heme Oxygenase-1 Induction with Hemin Augments Renal Hemodynamics, Renal Autoregulation, and Excretory Function

    PubMed Central

    Botros, Fady T.; Dobrowolski, Leszek; Navar, L. Gabriel

    2012-01-01

    Heme oxygenases (HO-1; HO-2) catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n = 7) and hemin-treated rats (n = 6) were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF) was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115 ± 5 mmHg versus 112 ± 4 mmHg and 331 ± 16 versus 346 ± 10 bpm). However, RBF was significantly higher (9.1 ± 0.8 versus 7.0 ± 0.5 mL/min/g, P < 0.05), and renal vascular resistance was significantly lower (13.0 ± 0.9 versus 16.6 ± 1.4 [mmHg/(mL/min/g)], P < 0.05). Likewise, glomerular filtration rate was significantly elevated (1.4 ± 0.2 versus 1.0 ± 0.1 mL/min/g, P < 0.05), and urine flow and sodium excretion were also higher (18.9 ± 3.9 versus 8.2 ± 1.0 μL/min/g, P < 0.05 and 1.9 ± 0.6 versus 0.2 ± 0.1 μmol/min/g, P < 0.05, resp.). The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models. PMID:22518281

  17. Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species.

    PubMed

    Li, Fu Jun; Duggal, Ryan N; Oliva, Octavio M; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R Douglas; Thannickal, Victor J; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  18. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation.

    PubMed

    Adamiak, Mateusz; Moore, Joseph B; Zhao, John; Abdelbaset-Ismail, Ahmed; Grubczak, Kamil; Rzeszotek, Sylwia; Wysoczynski, Marcin; Ratajczak, Mariusz Z

    2016-01-01

    Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood). PMID:27412411

  19. Identification of heme oxygenase-1–specific regulatory CD8+ T cells in cancer patients

    PubMed Central

    Andersen, Mads Hald; Sørensen, Rikke Bæk; Brimnes, Marie K.; Svane, Inge Marie; Becker, Jürgen C.; thor Straten, Per

    2009-01-01

    Treg deficiencies are associated with autoimmunity. Conversely, CD4+ and CD8+ Tregs accumulate in the tumor microenvironment and are associated with prevention of antitumor immunity and anticancer immunotherapy. Recently, CD4+ Tregs have been much studied, but little is known about CD8+ Tregs and the antigens they recognize. Here, we describe what we believe to be the first natural target for CD8+ Tregs. Naturally occurring HLA-A2–restricted CD8+ T cells specific for the antiinflammatory molecule heme oxygenase-1 (HO-1) were able to suppress cellular immune responses with outstanding efficacy. HO-1–specific CD8+ T cells were detected ex vivo and in situ among T cells from cancer patients. HO-1–specific T cells isolated from the peripheral blood of cancer patients inhibited cytokine release, proliferation, and cytotoxicity of other immune cells. Notably, the inhibitory effect of HO-1–specific T cells was far more pronounced than that of conventional CD4+CD25+CD127– Tregs. The inhibitory activity of HO-1–specific T cells seemed at least partly to be mediated by soluble factors. Our data link the cellular stress response to the regulation of adaptive immunity, expand the role of HO-1 in T cell–mediated immunoregulation, and establish a role for peptide-specific CD8+ T cells in regulating cellular immune responses. Identification of potent antigen-specific CD8+ Tregs may open new avenues for therapeutic interventions in both autoimmune diseases and cancer. PMID:19662679

  20. Lipoxygenase and cyclo-oxygenase products in the control of regional kidney blood flow in rabbits.

    PubMed

    Oliver, Jeremy J; Eppel, Gabriela A; Rajapakse, Niwanthi W; Evans, Roger G

    2003-11-01

    1. The aim of the present study was to examine the roles of cyclo-oxygenase (COX)- and lipoxygenase (LOX)-dependent arachidonate signalling cascades in the control of regional kidney blood flow. 2. In pentobarbitone-anaesthetized rabbits treated with NG-nitro-l-arginine and glyceryl trinitrate to 'clamp' nitric oxide, we determined the effects of ibuprofen (a COX inhibitor) and esculetin (a LOX inhibitor) on resting systemic and renal haemodynamics and responses to renal arterial infusions of vasoconstrictors. 3. Ibuprofen increased mean arterial pressure (14 +/- 5%) and reduced medullary laser Doppler flux (MLDF; 26 +/- 6%) when administered with esculetin. A similar pattern of responses was observed when ibuprofen was given alone, although the reduction in MLDF was not statistically significant. Esculetin tended to increase renal blood flow (RBF; 16 +/- 7%) and MLDF (28 +/- 13%) when given alone, but not when combined with ibuprofen. 4. After vehicle, renal arterial infusions of noradrenaline, angiotensin II and endothelin-1 reduced RBF and cortical laser Doppler flux (CLDF), but not MLDF. In contrast, renal arterial [Phe2,Ile3,Orn8]-vasopressin reduced MLDF but not RBF or CLDF. Ibuprofen alone did not significantly affect these responses. Esculetin, when given alone, but not when combined with ibuprofen, enhanced noradrenaline-induced renal vasoconstriction. In contrast, esculetin did not significantly affect responses to [Phe2,Ile3,Orn8]-vasopressin, angiotensin II or endothelin-1. 5. We conclude that COX products contribute to the maintenance of arterial pressure and renal medullary perfusion under 'nitric oxide clamp' conditions, but not to renal haemodynamic responses to the vasoconstrictors we tested. Lipoxygenase products may blunt noradrenaline-induced vasoconstriction, but our observations may, instead, reflect LOX-independent effects of esculetin. PMID:14678242

  1. Cyclo-oxygenase-2 inhibition and endothelium-dependent vasodilation in younger vs. older healthy adults

    PubMed Central

    Eisenach, John H; Gullixson, Leah R; Allen, Alexander R; Kost, Susan L; Nicholson, Wayne T

    2014-01-01

    Aim A major feature of endothelial dysfunction is reduced endothelium-dependent vasodilation, which in ageing may be due to decreased production of endothelial prostacyclin, or nitric oxide (NO), or both. Method We tested this hypothesis in 12 younger (age 18–38 years, six women) and 12 older healthy adults (age 55–73 years, six post-menopausal women). Endothelium-dependent vasodilation was assessed by the forearm vascular conductance (FVC) response to intra-arterial acetylcholine (ACh) (0.5, 1.0, 2.0, 4.0 μg dl−1 forearm tissue min−1) before and 90 min after inhibition of the enzyme cyclo-oxygenase-2 (COX-2) with oral celecoxib (400 mg), followed by the addition of endothelial NO synthase inhibition with intra-arterial NG-monomethyl-l arginine acetate (L-NMMA). Results Ageing was associated with a significantly reduced FVC response to ACh (P = 0.009, age-by-dose interaction; highest dose FVC ± SEM in ageing: 11.2 ± 1.4 vs. younger: 17.7 ± 2.4 units, P = 0.02). Celecoxib did not reduce resting FVC or the responses to ACh in any group. L-NMMA significantly reduced resting FVC and the responses to ACh in all groups, and absolute FVC values following L-NMMA were similar between groups. Conclusion In healthy normotensive younger and older adults, there is minimal contribution of prostacyclin to ACh-mediated vasodilation, yet the NO component of vasodilation is reduced with ageing. In the clinical context, these findings suggest that acute administration of medications that inhibit prostacyclin (i.e. COX-2 inhibitors) evoke modest vascular consequences in healthy persons. Additional studies are necessary to test whether chronic use of COX-2 medications reduces endothelium dependent vasodilation in older persons with or without cardiovascular risk factors. PMID:24698105

  2. An association study between Heme oxygenase-1 genetic variants and Parkinson's disease

    PubMed Central

    Ayuso, Pedro; Martínez, Carmen; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Luengo, Antonio; Jiménez-Jiménez, Félix J.; Alonso-Navarro, Hortensia; Agúndez, José A. G.; García-Martín, Elena

    2014-01-01

    The blood-brain barrier (BBB) supplies brain tissues with nutrients, filters harmful compounds from the brain back to the bloodstream, and plays a key role in iron homeostasis in the human brain. Disruptions of the BBB are associated with several neurodegenerative conditions including Parkinson's disease (PD). Oxidative stress, iron deposition and mitochondrial impaired function are considered as risk factors for degeneration of the central nervous system. Heme oxygenase (HMOX) degrades heme ring to biliverdin, free ferrous iron and carbon monoxide being the rate-limiting activity in heme catabolism. The isoform HMOX1 is highly inducible in response to reactive oxygen species, which induce an increase in BBB permeability and impair its pathophysiology. Consequently, an over- expression of this enzyme may contribute to the marked iron deposition found in PD. We analyzed the HMOX1 SNPs rs2071746, rs2071747, and rs9282702, a microsatellite (GT)n polymorphism and copy number variations in 691 patients suffering from PD and 766 healthy control individuals. Copy number variations in the HMOX1 gene exist, but these do not seem to be associated with PD risk. In contrast two polymorphisms that modify the transcriptional activity of the gene, namely a VNTR (GT)n and the SNP rs2071746, are strongly associated with PD risk, particularly with the classic PD phenotype and with early onset of the disease. This study indicates that HMOX1 gene variants are associated to the risk of developing some forms of PD, thus adding new information that supports association of HMOX gene variations with PD risk. PMID:25309329

  3. Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction.

    PubMed

    Liu, Xiao-Ming; Durante, Zane E; Peyton, Kelly J; Durante, William

    2016-05-01

    The use of HIV protease inhibitors (PIs) has extended the duration and quality of life for HIV-positive individuals. However there is increasing concern that this antiviral therapy may promote premature cardiovascular disease by impairing endothelial cell (EC) function. In the present study, we investigated the effect of HIV PIs on EC function and determined if the enzyme heme oxygenase (HO-1) influences the biological action of these drugs. We found that three distinct PIs, including ritonavir, atazanavir, and lopinavir, stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). PIs also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the PI-mediated induction of HO-1 was abolished by N-acetyl-l-cysteine and rotenone. Furthermore, PIs blocked EC proliferation and migration and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition of HO-1 activity or expression potentiated the anti-proliferative and inflammatory actions of PIs which was reversed by bilirubin but not carbon monoxide. Alternatively, adenovirus-mediated overexpression of HO-1 attenuated the growth-inhibitory and inflammatory effect of PIs. In contrast, blocking HO-1 activity failed to modify the anti-migratory effect of the PIs. Thus, induction of HO-1 via the ROS-Nrf2 pathway in human ECs counteracts the anti-proliferative and inflammatory actions of PIs by generating bilirubin. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing EC dysfunction and vascular disease in HIV-infected patients undergoing antiretroviral therapy. PMID:26968795

  4. Heme oxygenase/carbon monoxide pathway inhibition plays a role in ameliorating fibrosis following splenectomy.

    PubMed

    Wang, Qiu-Ming; Duan, Zhi-Jun; Du, Jian-Ling; Guo, Shi-Bin; Sun, Xiao-Yu; Liu, Zhen

    2013-05-01

    Splenectomy is a recognized therapy for liver cirrhosis with splenomegaly, since it decreases free iron concentration that accompanies the destruction of red blood cells. Heme oxygenase (HO)-1 and its by-products, iron and carbon monoxide (CO), play crucial roles in hepatic fibrosis. The aim of the present study was to determine whether splenectomy in cirrhotic rats induced by bile duct ligation (BDL), through the HO/CO pathway, could slow down the development of liver fibrosis. Male Sprague-Dawley rats were divided randomly into the sham, BDL, splenectomy, Fe, zinc protoporphyrin (Znpp) and cobalt protoporphyrin (Copp) treatment groups, for inhibiting and inducing HO-1 expression. The level of HO-1 was detected by western blot analysis and reverse transcription-polymerase chain reaction. Serum carboxyhemoglobin (COHb), iron and portal vein pressure (PVP) were also quantified. Liver iron was measured by atomic absorption spectrometry with acetylene-air flame atomization. HO-1 and α-smooth muscle actin (α-SMA) were localized by immunohistochemistry. Liver and spleen iron were visualized by Perls' Prussian blue staining. Hepatic fibrosis was assessed using hematoxylin and eosin (H&E) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum transforming growth factor-β1 (TGF-β1). The results showed that liver, spleen and serum levels of HO-1, COHb and iron were greatly enhanced in the BDL group compared with the sham group; they were reduced following splenectomy and Znpp treatment, but were elevated in the Copp and Fe groups. Hydroxyproline, TGF-β1, α-SMA, PVP and malonaldehyde levels were lower in the splenectomy and Znpp groups compared to BDL, while higher levels were observed in the Copp and Fe-treated groups. Our study shows that splenectomy reduces iron and CO levels in part by reducing HO-1 expression, and it decreases portal pressure and slightly decreases hepatic fibroproliferation. PMID:23525258

  5. Heme Oxygenase-1 Protects Endothelial Cells from the Toxicity of Air Pollutant Chemicals

    PubMed Central

    Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-01-01

    Diesel exhaust particles (DEP) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEP on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMEC) were treated with an organic extract of DEP from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 hours. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and UPR gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or Tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or Cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but in a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMEC from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. PMID:25620054

  6. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    SciTech Connect

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  7. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals.

    PubMed

    Lawal, Akeem O; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. PMID:25620054

  8. Role of heme oxygenase-1 in the pathogenesis and tumorigenicity of Kaposi's sarcoma-associated herpesvirus

    PubMed Central

    Nguyen, David; Struckhoff, Amanda P.; Doyle, Lisa; Bonstaff, Karlie; Del Valle, Luis; Parsons, Chris; Toole, Bryan P.; Renne, Rolf; Qin, Zhiqiang

    2016-01-01

    Kaposi's Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of several malignancies, including Kaposi's Sarcoma (KS), which preferentially arise in immunocompromised patients such as HIV+ subpopulation and lack effective therapeutic options. Heme oxygenase-1 (HO-1) has been reported as an important regulator of endothelial cell cycle control, proliferation and angiogenesis. HO-1 has also been found to be highly expressed in KSHV-infected endothelial cells and oral AIDS-KS lesions. We previously demonstrate that the multifunctional glycoprotein CD147 is required for KSHV/LANA-induced endothelial cell invasiveness. During the identification of CD147 controlled downstream genes by microarray analysis, we found that the expression of HO-1 is significantly elevated in both CD147-overexpressing and KSHV-infected HUVEC cells when compared to control cells. In the current study, we further identify the regulation of HO-1 expression and mediated cellular functions by both CD147 and KSHV-encoded LANA proteins. Targeting HO-1 by either RNAi or the chemical inhibitor, SnPP, effectively induces cell death of KSHV-infected endothelial cells (the major cellular components of KS) through DNA damage and necrosis process. By using a KS-like nude mouse model, we found that SnPP treatment significantly suppressed KSHV-induced tumorigenesis in vivo. Taken together, our data demonstrate the important role of HO-1 in the pathogenesis and tumorigenesis of KSHV-infected endothelial cells, the underlying regulatory mechanisms for HO-1 expression and targeting HO-1 may represent a promising therapeutic strategy against KSHV-related malignancies. PMID:26859574

  9. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    PubMed

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-01

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin. PMID:11593038

  10. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase

    PubMed Central

    Hull, Travis D.; Bolisetty, Subashini; DeAlmeida, Angela; Litovsky, Silvio H.; Prabhu, Sumanth D.; Agarwal, Anupam; George, James F.

    2013-01-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (MHC-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice) with mice containing an hHO-1 transgene preceded by a floxed stop signal (CBA-flox mice). MHC-HO-1 overexpress the HO-1 gene and enzymatically protein following TAM administration (40 mg/kg body weight on two consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity and also because inflammation is an important pathological component of many human cardiovascular diseases. PMID:23732814

  11. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system.

    PubMed

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2004-04-01

    Although human heme oxygenase-1 (hHO-1) could provide a useful approach for cellular protection in the ischemic heart, constitutive overexpression of hHO-1 may lead to unwanted side effects. To avoid this, we designed a hypoxia-regulated hHO-1 gene therapy system that can be switched on and off. This vigilant plasmid system is composed of myosin light chain-2v promoter and a gene switch that is based on an oxygen-dependent degradation domain from the hypoxia inducible factor-1-alpha. The vector can sense ischemia and switch on the hHO-1 gene system, specifically in the heart. In an in vivo experiment, the vigilant hHO-1 plasmid or saline was injected intramyocardially into myocardial infarction mice or sham operation mice. After gene transfer, expression of hHO-1 was only detected in the ischemic heart treated with vigilant hHO-1 plasmids. Masson trichrome staining showed significantly fewer fibrotic areas in vigilant hHO-1 plasmids-treated mice compared with saline control (43.0%+/-4.8% versus 62.5%+/-3.3%, P<0.01). The reduction of interstitial fibrosis is accompanied by an increase in myocardial hHO-1 expression in peri-infarct border areas, concomitant with higher Bcl-2 levels and lower Bax, Bak, and caspase 3 levels in the ischemic myocardium compared with saline control. By use of a cardiac catheter, heart from vigilant hHO-1 plasmids-treated mice showed improved recovery of contractile and diastolic performance after myocardial infarction compared with saline control. This study documents the beneficial regulation and therapeutic potential of vigilant plasmid-mediated hHO-1 gene transfer. This novel gene transfer strategy can provide cardiac-specific protection from future repeated bouts of ischemic injury. PMID:14981066

  12. Reduction of bilirubin by targeting human heme oxygenase-1 through siRNA.

    PubMed

    Xia, Zhen-Wei; Li, Chun-E; Jin, You-Xin; Shi, Yi; Xu, Li-Qing; Zhong, Wen-Wei; Li, Yun-Zhu; Yu, Shan-Chang; Zhang, Zi-Li

    2007-04-01

    Neonatal hyperbilirubinemia is a common clinical condition caused mainly by the increased production and decreased excretion of bilirubin. Current treatment is aimed at reducing the serum levels of bilirubin. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that generates bilirubin. In this study we intended to suppress HO-1 using the RNA interference technique. Small interfering RNA (siRNA)-A, -B, and -C were designed based on human HO-1 (hHO-1) mRNA sequences. siRNA was transfected into a human hepatic cell line (HL-7702). hHO-1 transcription and protein levels were then determined. In addition, the inhibitory effect of siRNA on hHO-1 was assessed in cells treated with hemin or transfected with an hHO-1 plasmid. siRNA-C showed the most potent suppressive effect on hHO-1. This inhibition is dose and time dependent. Compared with control, both hemin and hHO-1 plasmids up-regulated hHO-1 expression in HL-7702 cells. However, the up-regulation was significantly attenuated by siRNA-C. Furthermore, the decrease in hHO-1 activity was coincident with the suppression of its transcription. Finally, siRNA-C was shown to reduce hHO-1 enzymatic activity and bilirubin levels. Thus, this study provides a novel therapeutic rationale by blocking bilirubin formation via siRNA for preventing and treating neonatal hyperbilirubinemia and bilirubin encephalopathy at an early clinical stage. PMID:17392485

  13. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    PubMed

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases. PMID:23732814

  14. The role of propionates in substrate binding to heme oxygenase from Neisseria meningitidis; A NMR study†

    PubMed Central

    Peng, Dungeng; Ma, Li-Hua; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.

    2012-01-01

    Heme oxygenase, HO, cleaves hemin into biliverdin, iron and CO. For mammalian HOs, both native hemin propionates are required for substrate binding and activity. The HO from the pathogenic bacterium Neisseria meningitidis, NmHO, possesses a crystallographically undetected C-terminal fragment that by solution 1H NMR is found to fold and interact with the active site. One of the substrate propionates has been proposed to form a salt bridge to the C-terminus rather than to the conventional buried cationic side chain in other HOs. Moreover, the C-terminal dipeptide Arg208His209 cleaves spontaneously over ~24 hours at a rate dependent on substituent size. 2D 1H NMR of NmHO azide complexes with hemins with selectively deleted or rearranged propionates all bind to NmHO with a structurally conserved active site as reflected in optical spectra and NMR NOESY cross peak and hyperfine shift patterns. In contrast to mammalian HOs, NmHO requires only a single propionate interacting with the buried terminus of Lys16 to exhibit full activity and tolerates the existence of a propionate at the exposed 8-position. The structure of the C-terminus is qualitatively retained upon deletion of the 7-propionate but a dramatic change in the 7-propionate carboxylate 13C chemical shift upon C-terminal cleavage confirms its role in the interaction with the C-terminus. The stronger hydrophobic contacts between pyrroles A and B with NmHO contribute more substantially to the substrate binding free energy than in mammalian HOs, “liberating” one propionate to stabilize the C-terminus. The functional implications of the C-terminus in product release are discussed. PMID:22913621

  15. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    PubMed

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. PMID:17526019

  16. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function.

    PubMed

    Liu, Xiaoli; Pachori, Alok S; Ward, Christopher A; Davis, J Paul; Gnecchi, Massimiliano; Kong, Deling; Zhang, Lunan; Murduck, Jared; Yet, Shaw-Fang; Perrella, Mark A; Pratt, Richard E; Dzau, Victor J; Melo, Luis G

    2006-02-01

    We reported previously that predelivery of the anti-oxidant gene heme oxygenase-1 (HO-1) to the heart by adeno associated virus (AAV) markedly reduces injury after acute myocardial infarction (MI). However, the effect of HO-1 gene delivery on postinfarction recovery has not been investigated. In the current study, we assessed the effect of HO-1 gene delivery on post-MI left ventricle (LV) remodeling and function using echocardiographic imaging and histomorphometric approaches. Two groups of Sprague-Dawley rats were injected with 4 x 10(11) particles of AAV-LacZ (control) or AAV-hHO-1 in the LV wall. Eight wk after gene transfer, the animals were subjected to 30 min of ischemia by ligation of left anterior descending artery (LAD) followed by reperfusion. Echocardiographic measurements were obtained in a blinded fashion prior and at 1.5 and 3 months after I/R. Ejection fraction (EF) was reduced by 13% and 40% in the HO-1 and LacZ groups, respectively at 1.5 months after MI. Three months after MI, EF recovered fully in the HO-1, but only partially in the LacZ-treated animals. Post-MI LV dimensions were markedly increased and the anterior wall was markedly thinned in the LacZ-treated animals compared with the HO-1-treated animals. Significant myocardial scarring and fibrosis were observed in the LacZ-group in association with elevated levels of interstitial collagen I and III and MMP-2 activity. Post-MI myofibroblast accumulation was reduced in the HO-1-treated animals, and retroviral overexpression of HO-1 reduced proliferation of isolated cardiac fibroblasts. Our data indicate that rAAV-HO-1 gene transfer markedly reduces fibrosis and ventricular remodeling and restores LV function and chamber dimensions after myocardial infarction. PMID:16449792

  17. Role of the heme oxygenases in abnormalities of the mesenteric circulation in cirrhotic rats.

    PubMed

    Sacerdoti, David; Abraham, Nader G; Oyekan, Adebayo O; Yang, Liming; Gatta, Angelo; McGiff, John C

    2004-02-01

    Carbon monoxide (CO), a product of heme metabolism by heme-oxygenase (HO), has biological actions similar to those of nitric oxide (NO). The role of CO in decreasing vascular responses to constrictor agents produced by experimental cirrhosis induced by carbon tetrachloride was evaluated before and after inhibition of HO with tin-mesoporphyrin (SnMP) in the perfused superior mesenteric vasculature (SMV) of cirrhotic and normal rats and in normal rats transfected with the human HO-1 (HHO-1) gene. Perfusion pressure and vasoconstrictor responses of the SMV to KCl, phenylephrine (PE), and endothelin-1 (ET-1) were decreased in cirrhotic rats. SnMP increased SMV perfusion pressure and restored the constrictor responses of the SMV to KCl, PE, and ET-1 in cirrhotic rats. The relative roles of NO and CO in producing hyporeactivity of the SMV to PE in cirrhotic rats were examined. Vasoconstrictor responses to PE were successively augmented by stepwise inhibition of CO and NO production, suggesting a complementary role for these gases in the regulation of reactivity of the SMV. Expression of constitutive but not of inducible HO (HO-1) was increased in the SMV of cirrhotic rats as was HO activity. Administration of adenovirus containing HHO-1 gene produced detection of HHO-1 RNA and increased HO activity in the SMV within 7 days. Rats transfected with HO-1 demonstrated reduction in both perfusion pressure and vasoconstrictor responses to PE in the SMV. We propose that HO is an essential component in mechanisms that modulate reactivity of the mesenteric circulation in experimental hepatic cirrhosis in rats. PMID:14600247

  18. Induction of heme oxygenase-1 protects against nutritional fibrosing steatohepatitis in mice

    PubMed Central

    2011-01-01

    Background Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced liver injury. However, its role on liver fibrosis remains unclear. This study aims to elucidate the effect and the mechanism of HO-1 in nutritional fibrosing steatohepatitis in mice. Methods Male C57BL/6J mice were fed with a methionine-choline deficient (MCD) diet for eight weeks to induce hepatic fibrosis. HO-1 chemical inducer (hemin), HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX) and/or adenovirus carrying HO-1 gene (Ad-HO-1) were administered to mice, respectively. Liver injury was assessed by serum ALT, AST levels and histological examination; hepatic lipid peroxides levels were determined; the expression levels of several fibrogenic related genes were assayed by real-time quantitative PCR and Western blot. Results MCD feeding mice showed progressive hepatic injury including hepatic steatosis, inflammatory infiltration and fibrosis. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver injury. This effect was associated with the up-regulation of HO-1, reduction of hepatic lipid peroxides levels, down-regulation of inflammatory factors tumor necrosis factor-alpha, interleukin-6 and suppressor of cytokine signaling-1 as well as the pro-fibrotic genes alpha-smooth muscle actin, transforming growth factor-β1, matrix metallopeptidase-2 and matrix metallopeptidase-9. A contrary effect was observed in mice treated with ZnPP-IX. Conclusions The present study provided the evidence for the protective role of HO-1 in ameliorating MCD diet-induced fibrosing steatohepatitis. Modulation of HO-1 expression might serve as a therapeutic approach for fibrotic steatohepatitis. PMID:21314960

  19. Heme oxygenase and the immune system in normal and pathological pregnancies.

    PubMed

    Ozen, Maide; Zhao, Hui; Lewis, David B; Wong, Ronald J; Stevenson, David K

    2015-01-01

    Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity. PMID

  20. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    SciTech Connect

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  1. Activation of locus coeruleus heme oxygenase-carbon monoxide pathway promoted an anxiolytic-like effect in rats

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2016-01-01

    The heme oxygenase-carbon monoxide pathway has been shown to play an important role in many physiological processes and is capable of altering nociception modulation in the nervous system by stimulating soluble guanylate cyclase (sGC). In the central nervous system, the locus coeruleus (LC) is known to be a region that expresses the heme oxygenase enzyme (HO), which catalyzes the metabolism of heme to carbon monoxide (CO). Additionally, several lines of evidence have suggested that the LC can be involved in the modulation of emotional states such as fear and anxiety. The purpose of this investigation was to evaluate the activation of the heme oxygenase-carbon monoxide pathway in the LC in the modulation of anxiety by using the elevated plus maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on adult male Wistar rats weighing 250-300 g (n=182). The results showed that the intra-LC microinjection of heme-lysinate (600 nmol), a substrate for the enzyme HO, increased the number of entries into the open arms and the percentage of time spent in open arms in the elevated plus maze test, indicating a decrease in anxiety. Additionally, in the LDB test, intra-LC administration of heme-lysinate promoted an increase on time spent in the light compartment of the box. The intracerebroventricular microinjection of guanylate cyclase, an sGC inhibitor followed by the intra-LC microinjection of the heme-lysinate blocked the anxiolytic-like reaction on the EPM test and LDB test. It can therefore be concluded that CO in the LC produced by the HO pathway and acting via cGMP plays an anxiolytic-like role in the LC of rats. PMID:27074170

  2. Crystallization and preliminary X-ray diffraction studies of the terminal oxygenase component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177

    SciTech Connect

    Inoue, Kengo; Ashikawa, Yuji; Usami, Yusuke; Noguchi, Haruko; Fujimoto, Zui; Yamane, Hisakazu; Nojiri, Hideaki

    2006-12-01

    The terminal oxygenase component of carbazole 1,9a-dioxygenase from N. aromaticivorans IC177 was crystallized and diffraction data were collected to 2.30 Å resolution. Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular-position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. CARDO consists of a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. The terminal oxygenase component (43.9 kDa) of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 8000 as the precipitant. The crystals diffract to 2.3 Å resolution and belong to space group C2.

  3. Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism.

    PubMed

    Rajakovich, Lauren J; Nørgaard, Hanne; Warui, Douglas M; Chang, Wei-chen; Li, Ning; Booker, Squire J; Krebs, Carsten; Bollinger, J Martin; Pandelia, Maria-Eirini

    2015-09-16

    Aldehyde-deformylating oxygenase (ADO) is a ferritin-like nonheme-diiron enzyme that catalyzes the last step in a pathway through which fatty acids are converted into hydrocarbons in cyanobacteria. ADO catalyzes conversion of a fatty aldehyde to the corresponding alk(a/e)ne and formate, consuming four electrons and one molecule of O2 per turnover and incorporating one atom from O2 into the formate coproduct. The source of the reducing equivalents in vivo has not been definitively established, but a cyanobacterial [2Fe-2S] ferredoxin (PetF), reduced by ferredoxin-NADP(+) reductase (FNR) using NADPH, has been implicated. We show that both the diferric form of Nostoc punctiforme ADO and its (putative) diferric-peroxyhemiacetal intermediate are reduced much more rapidly by Synechocystis sp. PCC6803 PetF than by the previously employed chemical reductant, 1-methoxy-5-methylphenazinium methyl sulfate. The yield of formate and alkane per reduced PetF approaches its theoretical upper limit when reduction of the intermediate is carried out in the presence of FNR. Reduction of the intermediate by either system leads to accumulation of a substrate-derived peroxyl radical as a result of off-pathway trapping of the C2-alkyl radical intermediate by excess O2, which consequently diminishes the yield of the hydrocarbon product. A sulfinyl radical located on residue Cys71 also accumulates with short-chain aldehydes. The detection of these radicals under turnover conditions provides the most direct evidence to date for a free-radical mechanism. Additionally, our results expose an inefficiency of the enzyme in processing its radical intermediate, presenting a target for optimization of bioprocesses exploiting this hydrocarbon-production pathway. PMID:26284355

  4. Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response.

    PubMed

    Zhang, Yanjie; Zhang, Liya; Wu, Jinhong; Di, Caixia; Xia, Zhenwei

    2013-11-29

    Allergic asthma is conventionally considered as a Th2 immune response characterized by eosinophilic inflammation. Recent investigations revealed that Th17 cells play an important role in the pathogenesis of non-eosinophilic asthma (NEA), resulting in steroid-resistant neutrophilic airway inflammation. Heme oxygenase-1 (HO-1) has anti-inflammation, anti-oxidation, and anti-apoptosis functions. However, its role in NEA is still unclear. Here, we explore the role of HO-1 in a mouse model of NEA. HO-1 inducer hemin or HO-1 inhibitor tin protoporphyrin IX was injected intraperitoneally into ovalbumin-challenged DO11.10 mice. Small interfering RNA (siRNA) was delivered into mice to knock down HO-1 expression. The results show that induction of HO-1 by hemin attenuated airway inflammation and decreased neutrophil infiltration in bronchial alveolar lavage fluid and was accompanied by a lower proportion of Th17 cells in mediastinal lymph nodes and spleen. More importantly, induction of HO-1 down-regulated Th17-related transcription factor retinoic acid-related orphan receptor γt (RORγt) expression and decreased IL-17A levels, all of which correlated with a decrease in phosphorylated STAT3 (p-STAT3) level and inhibition of Th17 cell differentiation. Consistently, the above events could be reversed by tin protoporphyrin IX. Also, HO-1 siRNA transfection abolished the effect of hemin induced HO-1 in vivo. Meanwhile, the hemin treatment promoted the level of Foxp3 expression and enhanced the proportion of regulatory T cells (Tregs). Collectively, our findings indicate that HO-1 exhibits anti-inflammatory activity in the mouse model of NEA via inhibition of the p-STAT3-RORγt pathway, regulating kinetics of RORγt and Foxp3 expression, thus providing a possible novel therapeutic target in asthmatic patients. PMID:24097973

  5. Functional Characterization of Premnaspirodiene Oxygenase, a Cytochrome P450 Catalyzing Regio- and Stereo-specific Hydroxylations of Diverse Sesquiterpene Substrates*s

    PubMed Central

    Takahashi, Shunji; Yeo, Yun-Soo; Zhao, Yuxin; O’Maille, Paul E.; Greenhagen, Bryan T.; Noel, Joseph P.; Coates, Robert M.; Chappell, Joe

    2009-01-01

    Solavetivone, a potent antifungal phytoalexin, is derived from a vetispirane-type sesquiterpene, premnaspirodiene, by a putative regio- and stereo-specific hydroxylation, followed by a second oxidation to yield the α,β-unsaturated ketone. Mechanistically, these reactions could occur via a single, multifunctional cytochrome P450 or some combination of cytochrome P450s and a dehydrogenase. We report here the characterization of a single cytochrome P450 enzyme, Hyoscyamus muticus premna-spirodiene oxygenase (HPO), that catalyzes these successive reactions at carbon 2 (C-2) of the spirane substrate. HPO also catalyzes the equivalent regio-specific (C-2) hydroxylation of several eremophilane-type (decalin ring system) sesquiterpenes, such as with 5-epi-aristolochene. Moreover, HPO displays interesting comparisons to other sesquiterpene hydroxylases. 5-Epi-aristolochene di-hydroxylase (EAH) differs catalytically from HPO by introducing hydroxyl groups first at C-1, then C-3 of 5-epi-aristolochene. HPO and EAH also differ from one another by 91-amino acid differences, with four of these differences mapping to putative substrate recognition regions 5 and 6. These four positions were mutagenized alone and in various combinations in both HPO and EAH and the mutant enzymes were characterized for changes in substrate selectivity, reaction product specificity, and kinetic properties. These mutations did not alter the regio- or stereo-specificity of either HPO or EAH, but specific combinations of the mutations did improve the catalytic efficiencies 10–15-fold. Molecular models and comparisons between HPO and EAH provide insights into the catalytic properties of these enzymes of specialized metabolism in plants. PMID:17715131

  6. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases.

    PubMed Central

    Neidle, E L; Hartnett, C; Ornston, L N; Bairoch, A; Rekik, M; Harayama, S

    1991-01-01

    The nucleotide sequences of the Acinetobacter calcoaceticus benABC genes encoding a multicomponent oxygenase for the conversion of benzoate to a nonaromatic cis-diol were determined. The enzyme, benzoate 1,2-dioxygenase, is composed of a hydroxylase component, encoded by benAB, and an electron transfer component, encoded by benC. Comparison of the deduced amino acid sequences of BenABC with related sequences, including those for the multicomponent toluate, toluene, benzene, and naphthalene 1,2-dioxygenases, indicated that the similarly sized subunits of the hydroxylase components were derived from a common ancestor. Conserved cysteine and histidine residues may bind a [2Fe-2S] Rieske-type cluster to the alpha-subunits of all the hydroxylases. Conserved histidines and tyrosines may coordinate a mononuclear Fe(II) ion. The less conserved beta-subunits of the hydroxylases may be responsible for determining substrate specificity. Each dioxygenase had either one or two electron transfer proteins. The electron transfer component of benzoate dioxygenase, encoded by benC, and the corresponding protein of the toluate 1,2-dioxygenase, encoded by xylZ, were each found to have an N-terminal region which resembled chloroplast-type ferredoxins and a C-terminal region which resembled several oxidoreductases. These BenC and XylZ proteins had regions similar to certain monooxygenase components but did not appear to be evolutionarily related to the two-protein electron transfer systems of the benzene, toluene, and naphthalene 1,2-dioxygenases. Regions of possible NAD and flavin adenine dinucleotide binding were identified. PMID:1885518

  7. Characterization of ribulose-1, 5-bisphosphate carboxylase/oxygenase and transcriptional analysis of its related genes in Saccharina japonica (Laminariales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Shao, Zhanru; Liu, Fuli; Li, Qiuying; Yao, Jianting; Duan, Delin

    2014-03-01

    Saccharina japonica is a common macroalga in sublittoral communities of cold seawater environments, and consequently may have highly efficient ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activity for carbon assimilation. In our study, we cloned the full-length Rubisco gene from S. japonica ( SJ-rbc). It contained an open reading frame for a large subunit gene ( SJ — rbcL) of 1 467 bp, a small subunit gene ( SJ-rbcS) of 420 bp, and a SJ-rbcL/S intergenic spacer of 269 bp. The deduced peptides of SJ-rbcL and SJ-rbcS were 488 and 139 amino acids with theoretical molecular weights and isoelectric points of 53.97 kDa, 5.81 and 15.84 kDa, 4.71, respectively. After induction with 1 mmol/L isopropyl- β-D-thiogalactopyranoside for 5 h and purification by Ni2+ affinity chromatography, electrophoresis and western blot detection demonstrated successful expression of the 55 kDa SJ-rbcL protein. Real-time quantitative PCR showed that the mRNA levels of SJ-rbcL in gametophytes increased when transferred into normal growth conditions and exhibited diurnal variations: increased expression during the day but suppressed expression at night. This observation implied that Rubisco played a role in normal gametophytic growth and development. In juvenile sporophytes, mRNA levels of SJ-rbcL, carbonic anhydrase, Calvin-Benson-Bassham cycle-related enzyme, and chloroplast light-harvesting protein were remarkably increased under continuous light irradiance. Similarly, expression of these genes was up-regulated under blue light irradiance at 350 μmol/(m2·s). Our results indicate that long-term white light and short-term blue light irradiance enhances juvenile sporophytic growth by synergistic effects of various photosynthetic elements.

  8. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    PubMed Central

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  9. Applicability of fluorescence-based sensors to the determination of kinetic parameters for O2 in oxygenases

    PubMed Central

    Di Russo, Natali V.; Bruner, Steven D.; Roitberg, Adrian E.

    2015-01-01

    Optical methods for O2 determination based on dynamic fluorescence quenching have been applied to measure oxygen uptake rates in cell culture, and to determine intracellular oxygen levels. Here we demonstrate the applicability of fluorescence-based probes in determining kinetic parameters for O2 using as an example catalysis by a cofactor-independent oxygenase (DpgC). Fluorescence-based sensors provide a direct assessment of enzyme-catalyzed O2 consumption using commercially available, low-cost instrumentation that is easily customizable and thus constitute a convenient alternative to the widely-used Clark-type electrode, especially in cases where chemical interference is expected to be problematic. PMID:25637681

  10. Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase

    SciTech Connect

    Matsuzawa, Jun; Aikawa, Hiroki; Umeda, Takashi; Ashikawa, Yuji; Suzuki-Minakuchi, Chiho; Kawano, Yoshiaki; Fujimoto, Zui; Okada, Kazunori; Yamane, Hisakazu; Nojiri, Hideaki

    2014-09-25

    A crystal was obtained of the complex between reduced terminal oxygenase and oxidized ferredoxin components of carbazole 1,9a-dioxygenase. The crystal belonged to space group P2{sub 1} and diffracted to 2.25 Å resolution. The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P2{sub 1}, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, β = 100.1°. The V{sub M} value is 2.85 Å{sup 3} Da{sup −1}, indicating a solvent content of 56.8%.

  11. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  12. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    PubMed

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes. PMID:17915953

  13. Arsenic Trioxide Activate Transcription of Heme Oxygenase-1 by Promoting Nuclear Translocation of NFE2L2

    PubMed Central

    Yue, Zhen; Zhong, Lingzhi; Mou, Yan; Wang, Xiaotong; Zhang, Haiying; Wang, Yang; Xia, Jianxin; Li, Ronggui; Wang, Zonggui

    2015-01-01

    In a previous study, we found that induced expression of Heme Oxygenase-1 (HO-1) is responsible for the resistance of human osteosarcoma MG63 cells to the chemotherapeutic agent arsenic trioxide (ATO). The present study was aimed at investigating the molecular mechanisms underlying the induction of HO-1 that occurs after exposure of MG63 cells to ATO. First, using RT-QPCT and Western-blot, we found that ATO strongly induced the expression of heme oxygenase-1 (HO-1) in these human osteosarcoma cells. Then by analyzing HO-1 mRNA of MG63 cells exposed to ATO in the presence and absence of a transcription inhibitor Actinomycin-D (Act-D), we demonstrated that ATO activates HO-1 expression in MG63 cells by regulating the transcription of the gene. Finally, through the analysis of the NFE2L2 protein levels among the total cellular and nuclear proteins by Western-blot and Immunocytochemical staning, we determined that ATO enhanced the nuclear translocation of nuclear factor erythroid 2-like 2 (NFE2L2), also known as Nrf2. From these results we have concluded that transcription activation of HO-1 resulting from the nuclear translocation of NFE2L2 is the underlying molecular mechanism for its high induction, which, in turn, is responsible for the resistance of human osteosarcoma cells to ATO treatment. PMID:26283888

  14. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity

    PubMed Central

    Cikala, Mihai; Alexandrova, Olga; David, Charles N; Pröschel, Matthias; Stiening, Beate; Cramer, Patrick; Böttger, Angelika

    2004-01-01

    Background Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR) and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Results We have cloned the PSR receptor from Hydra in order to investigate its function in this early metazoan. Bioinformatic analysis of the Hydra PSR protein structure revealed the presence of three nuclear localisation signals, an AT-hook like DNA binding motif and a putative 2-oxoglutarate (2OG)-and Fe(II)-dependent oxygenase activity. All of these features are conserved from human PSR to Hydra PSR. Expression of GFP tagged Hydra PSR in hydra cells revealed clear nuclear localisation. Deletion of one of the three NLS sequences strongly diminished nuclear localisation of the protein. Membrane localisation was never detected. Conclusions Our results suggest that Hydra PSR is a nuclear 2-oxoglutarate (2OG)-and Fe(II)-dependent oxygenase. This is in contrast with the proposed function of Hydra PSR as a cell surface receptor involved in the recognition of apoptotic cells displaying phosphatidylserine on their surface. The conservation of the protein from Hydra to human infers that our results also apply to PSR from higher animals. PMID:15193161

  15. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b.

    PubMed Central

    Tonge, G M; Harrison, D E; Higgins, I J

    1977-01-01

    1. A three-component enzyme system that catalyses the oxidation of methane to methanol has been highly purified from Methylosinus trichosporium. 2. The components are (i) a soluble CO-binding cytochrome c, (ii) a copper-containing protein and (iii) a small protein; the mol. wts. are 13 000, 47 000 and 9400 respectively. The cytochrome component cannot be replaced by similar cytochrome purified from Pseudomonas extorquens or by horse heart cytochrome c. 3. The stoicheiometry suggests a mono-oxygenase mechanism and the specific activity with methane as substrate is 6 micronmol/min per mg of protein. 4. Other substrates rapidly oxidized are ethane, n-propane, n-butane and CO. Dimethyl ether is not a substrate. 5. The purified enzyme system utilizes ascorbate or, in the presence of partially purified M. trichosporium methanol dehydrogenase, methanol as electron donor but not NADH or NADPH. 6. Activity is highly sensitive to low concentrations of a variety of chelating agents, cyanide, 2-mercaptoethanol and dithiothreitol. 7. Activity is highly pH-dependent (optimum 6.9-7.0) and no component of the enzyme is stable to freezing. 8. The soluble CO-binding cytochrome c shows oxidase acitivity and the relationship between this and the oxygenase activity is discussed. Images Fig. 3. PMID:15544

  16. Heme oxygenase inhibition enhances neutrophil migration into the bronchoalveolar spaces and improves the outcome of murine pneumonia-induced sepsis.

    PubMed

    Czaikoski, Paula Giselle; Nascimento, Daniele Carvalho; Sônego, Fabiane; de Freitas, Andressa; Turato, Walter Miguel; de Carvalho, Michel A; Santos, Raquel Souza; de Oliveira, Gisele Pena; dos Santos Samary, Cynthia; Tefe-Silva, Cristiane; Alves-Filho, José C; Ferreira, Sérgio Henrique; Rossi, Marcos Antonio; Rocco, Patricia Rieken Macedo; Spiller, Fernando; Cunha, Fernando Queiroz

    2013-04-01

    A reduction of the neutrophil migration into the site of infection during cecal ligation and puncture-induced sepsis increases host mortality. Inhibition of heme oxygenase (HO) prevents this neutrophil paralysis and improves host survival in the cecal ligation and puncture model. Taking into account that almost 50% of all sepsis cases are a consequence of pneumonia, we designed the present study to determine the role of HO in an experimental model of pneumonia-induced sepsis. The objective of this study was to evaluate whether the inhibition of HO improves the outcome and pathophysiologic changes of sepsis induced by an intratracheal instillation of Klebsiella pneumoniae. The pretreatment of mice subjected to pneumonia-induced sepsis with ZnDPBG (zinc deuteroporphyrin 2,4-bis glycol), a nonspecific HO inhibitor, increased the number of neutrophils in the bronchoalveolar spaces, reduced the bacterial load at the site of infection, and prevented the upregulation of CD11b and the downregulation of CXCR2 on blood neutrophils. Moreover, the pretreatment with ZnDPBG decreased alveolar collapse, attenuating the deleterious changes in pulmonary mechanics and gas exchanges and, as a consequence, improved the survival rate of mice from 0% to ∼20%. These results show that heme oxygenase is involved in the pathophysiology of pneumonia-induced sepsis and suggest that HO inhibitors could be helpful for the management of this disease. PMID:23481491

  17. AZD3582 increases heme oxygenase-1 expression and antioxidant activity in vascular endothelial and gastric mucosal cells.

    PubMed

    Berndt, Georg; Grosser, Nina; Hoogstraate, Janet; Schröder, Henning

    2005-06-01

    AZD3582 [4-(nitrooxy)-butyl-(2S)-2-(6-methoxy-2-naphthyl)-propanoate] is a COX-inhibiting nitric oxide donator (CINOD). Incubation of human endothelial cells (derived from umbilical cord) with AZD3582 (10-100muM) led to increased expression of heme oxygenase (HO)-1 mRNA and protein. Heme oxygenase-1 (HO-1) is a crucial mediator of antioxidant and tissue-protective actions. In contrast, naproxen (a non-selective NSAID) and rofecoxib (a selective inhibitor of COX-2), did not affect HO-1 expression. Pre-treating endothelial cells with AZD3582 at concentrations that were effective at inducing HO-1 also reduced NADPH-dependent production of oxygen radicals. Antioxidant activity in the endothelial cells persisted after AZD3582 had been washed out from the incubation medium. When added exogenously to the cells at low micromolar concentrations, the HO-1 metabolite, bilirubin, virtually abolished NADPH-dependent oxidative stress. AZD3582-induced blockade of free-radical formation was reversed in the presence of the HO-1 inhibitor, tin protoporphyrin-IX (SnPP). Similar results were obtained in human gastric mucosal cells (KATO-III). Our results demonstrate that HO-1 is a novel target of AZD3582. PMID:15911218

  18. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    PubMed

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group. PMID:19135260

  19. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    SciTech Connect

    Kang, Su Jin; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are

  20. Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress

    PubMed Central

    Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith

    2014-01-01

    Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by

  1. The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1

    PubMed Central

    Lin, Shao Xia; Lisi, Lucia; Dello Russo, Cinzia; Polak, Paul E; Sharp, Anthony; Weinberg, Guy; Kalinin, Sergey; Feinstein, Douglas L

    2011-01-01

    DMF (dimethyl fumarate) exerts anti-inflammatory and pro-metabolic effects in a variety of cell types, and a formulation (BG-12) is being evaluated for monotherapy in multiple sclerosis patients. DMF modifies glutathione (GSH) levels that can induce expression of the anti-inflammatory protein HO-1 (haem oxygenase-1). In primary astrocytes and C6 glioma cells, BG-12 dose-dependently suppressed nitrite production induced by either LI [LPS (lipopolysaccharide) at 1 μg/ml plus IFNγ (interferon γ) at 20 units/ml] or a mixture of pro-inflammatory cytokines, with greater efficacy in C6 cells. BG-12 reduced NOS2 (nitric oxide synthase 2) mRNA levels and activation of a NOS2 promoter, reduced nuclear levels of NF-κB (nuclear factor κB) p65 subunit and attenuated loss of IκBα (inhibitory κBα) in both cell types, although with greater effects in astrocytes. In astrocytes, LI decreased mRNA levels for GSHr (GSH reductase) and GCL (c-glutamylcysteine synthetase), and slightly suppressed GSHs (GSH synthetase) mRNAs. Co-treatment with BG-12 prevented those decreased and increased levels above control values. In contrast, LI reduced GSHp (GSH peroxidase) and GCL in C6 cells, and BG-12 had no effect on those levels. BG-12 increased nuclear levels of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), an inducer of GSH-related enzymes, in astrocytes but not C6 cells. In astrocytes, GSH was decreased by BG-12 at 2 h and increased at 24 h. Prior depletion of GSH using buthionine-sulfoximine increased the ability of BG-12 to reduce nitrites. In astrocytes, BG-12 increased HO-1 mRNA levels and effects on nitrite levels were blocked by an HO-1 inhibitor. These results demonstrate that BG-12 suppresses inflammatory activation in astrocytes and C6 glioma cells, but with distinct mechanisms, different dependence on GSH and different effects on transcription factor activation. PMID:21382015

  2. Postischemic cardiac recovery in heme oxygenase-1 transgenic ischemic/reperfused mouse myocardium

    PubMed Central

    Juhasz, Bela; Varga, Balazs; Czompa, Attila; Bak, Istvan; Lekli, Istvan; Gesztelyi, Rudolf; Zsuga, Judit; Kemeny-Beke, Adam; Antal, Miklos; Szendrei, Levente; Tosaki, Arpad

    2011-01-01

    Abstract Heme oxygenase-1 (HO-1) transgenic mice (Tg) were created using a rat HO-1 genomic transgene. Transgene expression was detected by RT-PCR and Western blots in the left ventricle (LV), right ventricle (RV) and septum (S) in mouse hearts, and its function was demonstrated by the elevated HO enzyme activity. Tg and non-transgenic (NTg) mouse hearts were isolated and subjected to ischemia/reperfusion. Significant post-ischemic recovery in coronary flow (CF), aortic flow (AF), aortic pressure (AOP) and first derivative of AOP (AOPdp/dt) were detected in the HO-1 Tg group compared to the NTg values. In HO-1 Tg hearts treated with 50 μmol/kg of tin protoporphyrin IX (SnPPIX), an HO enzyme inhibitor, abolished the post-ischemic cardiac recovery. HO-1 related carbon monoxide (CO) production was detected in NTg, HO-1 Tg and HO-1 Tg + SnPPIX treated groups, and a substantial increase in CO production was observed in the HO-1 Tg hearts subjected to ischemia/reperfusion. Moreover, in ischemia/reperfusion-induced tissue Na+ and Ca2+ gains were reduced in HO-1 Tg group in comparison with the NTg and HO-1 Tg + SnPPIX treated groups; furthermore K+ loss was reduced in the HO-1 Tg group. The infarct size was markedly reduced from its NTg control value of 37 ± 4% to 20 ± 6% (P < 0.05) in the HO-1 Tg group, and was increased to 47 ± 5% (P < 0.05) in the HO-1 knockout (KO) hearts. Parallel to the infarct size reduction, the incidence of total and sustained ventricular fibrillation were also reduced from their NTg control values of 92% and 83% to 25% (P < 0.05) and 8% (P < 0.05) in the HO-1 Tg group, and were increased to 100% and 100% in HO-1 KO−/− hearts. Immunohistochemical staining of HO-1 was intensified in HO-1 Tg compared to the NTg myocardium. Thus, the HO-1 Tg mouse model suggests a valuable therapeutic approach in the treatment of ischemic myocardium. PMID:20716121

  3. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer's Disease.

    PubMed

    Sung, Hye Youn; Choi, Byung-Ok; Jeong, Jee Hyang; Kong, Kyoung Ae; Hwang, Jinha; Ahn, Jung-Hyuck

    2016-01-01

    To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer's disease (AD) we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP)-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1), which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located -374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2'-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aβ-induced aberrant hypomethylation of HMOX1 at -374 promoter CpG site was correlated with increased HMOX1 expression. In addition to neuroglioma cells, we also found Aβ-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at -374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI), and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the -374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI patients and control

  4. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    SciTech Connect

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  5. Functional identification of rubber oxygenase (RoxA) in soil and marine myxobacteria.

    PubMed

    Birke, Jakob; Röther, Wolf; Schmitt, Georg; Jendrossek, Dieter

    2013-10-01

    The rubber oxygenase (RoxA) of Xanthomonas sp. strain 35Y (RoxA(Xsp)) is so far the only known extracellular c-type diheme cytochrome that is able to cleave poly(cis-1,4-isoprene). All other rubber-degrading bacteria described are Gram positive and employ a nonheme protein (latex-clearing protein [Lcp]) for the postulated primary attack of polyisoprene. Here, we identified RoxA orthologs in the genomes of Haliangium ochraceum, Myxococcus fulvus, Corallococcus coralloides, and Chondromyces apiculatus. The roxA orthologs of H. ochraceum (RoxA(Hoc)), C. coralloides BO35 (RoxA(Cco)), and M. fulvus (RoxA(Mfu)) were functionally expressed in a ΔroxA Xanthomonas sp. 35Y background. All RoxA orthologs oxidatively cleaved polyisoprene, as revealed by restoration of clearing-zone formation and detection of 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD) as a cleavage product. RoxA(Xsp), RoxA(Mfu), and RoxA(Cco) were purified and biochemically characterized. The optimal temperature of RoxA(Cco) and RoxA(Mfu) was between 22 and 30°C. All RoxA orthologs as isolated showed an oxidized UV-visible spectrum. Chemical reduction of RoxA(Cco) and RoxA(Mfu) indicated the presence of two slightly different heme centers with absorption maxima between 549 and 553 nm, similar to RoxA(Xsp). Sequence analysis and modeling of the three-dimensional structures of the RoxA orthologs revealed a high degree of similarity to the recently solved RoxA(Xsp) structure and included several conserved residues, notably, W302, F317, and a MauG motif at about H517. Lcp-like sequences were not detected in the genomes of the Xanthomonas sp. 35Y, H. ochraceum, M. fulvus, and C. coralloides. No RoxA orthologs were found in Gram-positive bacteria, and this first description of functional RoxA in Gram-negative bacteria other than Xanthomonas proves that RoxA is more common among rubber degraders than was previously assumed. PMID:23934498

  6. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    SciTech Connect

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  7. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli. PMID:15166181

  8. [Heme oxygenase activity in the tissues of the vessels and heart of rats under co-administration of NO-synthase inhibitor and hemin chloride].

    PubMed

    Kaliman, P A; Filimonenko, V P; Nikitchenko, I V

    2008-01-01

    The administration of hemin chloride in a dose of 1.5 mg/100 g of the body weight was found to cause accumulation of the total heme and TBA-reactive products in the rat blood serum and vessels. Pretreatment by N(omega)-nitro-L-arginine (0.5 h before hemin chloride administration) did not affect the dynamics of the total heme and TBA-reacting products accumulation. The increase of heme oxygenase activity was observed in the vessels after hemin chloride administration. This effect was strengthened by N(omega)-nitro-L-arginine pretreatment. The changes of heme oxygenase activity and the total heme level in heart were not observed at any periods studied. The increase of the TBA-reactive products level in the heart after exogenous hemin injection was accompanied by an increase of nitrites content and blocked by pretreatment of NOS inhibitor. The N(omega)-nitro-L-arginine alone caused the accumulation of the total heme, TBA-reacting products and the increase of heme oxygenase activity in the vessels. The role of heme and NO in regulation of the heme oxygenase activity is discussed. PMID:18819384

  9. Cloning and expression in Escherichia coli cells of a plasmid pBS195 gene that determines the activity of oxygenase

    SciTech Connect

    Kozlova, E.V.; Suvorova, E.S.; Romanov, V.P.; Boronin, A.M.

    1995-02-01

    Plasmid pBS195, detected in a strain of Lactobacillus sp. isolated from long-living persons, has a broad host range, including Gram-positive and Gram-negative microorganisms. Plasmid-harboring colonies of the strain Escherichia coli HB101 give a color reaction with catechol. This indicates that genes mediating the activity of oxygenase are present in this plasmid. The high activity level of this enzyme, mediated by pBS195, and substrate specificity, which has not been detected in any known metapyrocatechases, were found in cells of E. coli. Hybridization with a {sup 32}P-labeled fragment containing the NahC gene revealed a region of homology with a 1.6-kb EcoR I-BamH I fragment of plasmid pBS195. Deletion variants of this plasmid that lost oxygenase activity confirmed the location of the oxygenase gene in this region. The gene responsible for oxygenase activity in the plasmid was cloned on the pUC19 vector in E. coli cells. The expression of the cloned gene is controlled by the lac promoter of this vector. Physical, hybridization, and deletion analyses as well as analysis of polypeptides, which are synthesized in E. coli minicells, showed that this activity requires the participation of a polypeptide with molecular mass of 34 kDa. 9 refs., 3 figs., 1 tab.

  10. EFFECTS OF 7,12-DIMETHYLBENZ[A]ANTHRACENE ON IMMUNE FUNCTION AND MIXED-FUNCTION OXYGENASE ACTIVITY IN THE EUROPEAN STARLING

    EPA Science Inventory

    Immune function and hepatic mixed-function oxygenase (MFO) activity were xamined in adult and nestling starlings administered a synthetic PAH, 7,12dimethylbenz[a]anthracene (DMBA). ethods used to examine the starling immune system included immunopathology, macrophage phagocytosis...

  11. Differential Expression of the Demosponge (Suberites domuncula) Carotenoid Oxygenases in Response to Light: Protection Mechanism Against the Self-Produced Toxic Protein (Suberitine)

    PubMed Central

    Müller, Werner E. G.; Wang, Xiaohong; Binder, Michael; von Lintig, Johannes; Wiens, Matthias; Schröder, Heinz C.

    2012-01-01

    The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7–8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15′-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related) carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin. PMID:22363229

  12. Homologues of Neisserial Heme Oxygenase in Gram-Negative Bacteria: Degradation of Heme by the Product of the pigA Gene of Pseudomonas aeruginosa

    PubMed Central

    Ratliff, Melanie; Zhu, Wenming; Deshmukh, Rahul; Wilks, Angela; Stojiljkovic, Igor

    2001-01-01

    The oxidative cleavage of heme to release iron is a mechanism by which some bacterial pathogens can utilize heme as an iron source. The pigA gene of Pseudomonas aeruginosa is shown to encode a heme oxygenase protein, which was identified in the genome sequence by its significant homology (37%) with HemO of Neisseria meningitidis. When the gene encoding the neisserial heme oxygenase, hemO, was replaced with pigA, we demonstrated that pigA could functionally replace hemO and allow for heme utilization by neisseriae. Furthermore, when pigA was disrupted by cassette mutagenesis in P. aeruginosa, heme utilization was defective in iron-poor media supplemented with heme. This defect could be restored both by the addition of exogenous FeSO4, indicating that the mutant did not have a defect in iron metabolism, and by in trans complementation with pigA from a plasmid with an inducible promoter. The PigA protein was purified by ion-exchange chromotography. The UV-visible spectrum of PigA reconstituted with heme showed characteristics previously reported for other bacterial and mammalian heme oxygenases. The heme-PigA complex could be converted to ferric biliverdin in the presence of ascorbate, demonstrating the need for an exogenous reductant. Acidification and high-performance liquid chromatography analysis of the ascorbate reduction products identified a major product of biliverdin IX-β. This differs from the previously characterized heme oxygenases in which biliverdin IX-α is the typical product. We conclude that PigA is a heme oxygenase and may represent a class of these enzymes with novel regiospecificity. PMID:11591684

  13. Cellular localization of β-carotene 15,15′ oxygenase-1 (BCO1) and β-carotene 9′,10′ oxygenase-2 (BCO2) in rat liver and intestine

    PubMed Central

    Raghuvanshi, Shiva; Reed, Vanessa; Blaner, William S.; Harrison, Earl H.

    2015-01-01

    The intestine and liver are crucial organs for vitamin A uptake and storage. Liver accounts for 70% of total body retinoid stores. Vitamin A deficiency (VAD) is a major micronutrient deficiency around the world. The provitamin A carotenoid, β-carotene, is a significant source of vitamin A in the diet. β-Carotene 15,15′ oxygenase-1 (BCO1) and β-carotene 9′,10′ oxygenase-2 (BCO2) are the two known carotenoid cleavage enzymes in humans. BCO1 and BCO2 are highly expressed in liver and intestine. Hepatocytes and hepatic stellate cells are two main cell types involved in the hepatic metabolism of retinoids. Stellate-like cells in the intestine also show ability to store vitamin A. Liver is also known to accumulate carotenoids, however, their uptake, retention and metabolism in specific liver and intestinal cell types is still unknown. Hence, we studied the cellular and subcellular expression and localization of BCO1 and BCO2 proteins in rat liver and intestine. We demonstrate that both BCO1 and BCO2 proteins are localized in hepatocytes and mucosal epithelium. We also show that BCO1 is also highly expressed in hepatic stellate cells (HSC) and portal endothelial cells in liver. At the subcellular level in liver, BCO1 is found in cytosol, while BCO2 is found in mitochondria. In intestine, immunohistochemistry showed strong BCO1 immunoreactivity in the duodenum, particularly in Brunner’s glands. Both BCO1 and BCO2 showed diffuse presence along epithelia with strong immunoreactivity in endothelial cells and in certain epithelial cells which warrant further investigation as possible intestinal retinoid storage cells. PMID:25575786

  14. Correlation Between Cyclo-oxygenase-2 and Vascular Endothelial Growth Factor Expression in Canine and Feline Squamous Cell Carcinomas.

    PubMed

    Millanta, F; Andreani, G; Rocchigiani, G; Lorenzi, D; Poli, A

    2016-05-01

    Overexpression of cyclo-oxygenase (COX)-2 is involved in tumour growth and spread by modulating the production of angiogenic factors such as vascular endothelial growth factor (VEGF). Expression of COX-2 and VEGF was investigated immunohistochemically in 51 canine and feline cutaneous and non-cutaneous squamous cell carcinomas (SCCs) and the correlation between expression of these molecules and clinicopathological variables was evaluated. COX-2 and VEGF expression was not observed in normal skin keratinocytes. COX-2 overexpression occurred in 53% and 61% of the canine and feline SCCs, respectively. The expression of both markers was higher in cutaneous compared with non-cutaneous SCCs. In both species COX-2 and VEGF expression was correlated with the progression of the disease, but not with the presence of lymphatic invasion, tumour grading or tumour classification in the cutaneous tumours. Further study will be required to understand the role of the COX-2 pathway in angiogenesis in SCC. PMID:27012907

  15. In vitro evaluation of mitochondrial-chloroplast subcellular localization of heme oxygenase1 (HO1) in Glycine max.

    PubMed

    Dixit, Shubham; Verma, Khushbu; Shekhawat, Gyan Singh

    2014-05-01

    Heme oxygenase1 (HO1) catalyzes the degradation of heme in to biliverdin, carbon monoxide, and ferrous ions. Its role in higher plants has been found as an antioxidant and precursor of phytochrome synthesis. The present study focuses on subcellular localization of HO1 in leaves of soybean has been investigated. Most activity appeared to be located within chloroplast due to its role in phytochrome synthesis but mitochondria also share its localization. Mitochondrial location of HO1 might be on its inner membranous space due to its role in the synthesis of electron donor species which facilitates HO1 catalyzed reaction. Study reports the co-localization of HO1 in both chloroplast and mitochondria. PMID:24158377

  16. Heme oxygenase-1 alleviates cigarette smoke-induced restenosis after vascular angioplasty by attenuating inflammation in rat model.

    PubMed

    Ni, Leng; Wang, Zhanqi; Yang, Genhuan; Li, Tianjia; Liu, Xinnong; Liu, Changwei

    2016-03-14

    Cigarette smoke is not only a profound independent risk factor of atherosclerosis, but also aggravates restenosis after vascular angioplasty. Heme oxygenase-1 (HO-1) is an endogenous antioxidant and cytoprotective enzyme. In this study, we investigated whether HO-1 upregulating by hemin, a potent HO-1 inducer, can protect against cigarette smoke-induced restenosis in rat's carotid arteries after balloon injury. Results showed that cigarette smoke exposure aggravated stenosis of the lumen, promoted infiltration of inflammatory cells, and induced expression of inflammatory cytokines and adhesion molecules after balloon-induced carotid artery injury. HO-1 upregulating by hemin treatment reduced these effects of cigarette smoke, whereas the beneficial effects were abolished in the presence of Zincprotoporphyrin IX, an HO-1 inhibitor. To conclude, hemin has potential therapeutic applications in the restenosis prevention after the smokers' vascular angioplasty. PMID:26809138

  17. Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model.

    PubMed

    Dey, Mahua; Chang, Alan L; Wainwright, Derek A; Ahmed, Atique U; Han, Yu; Balyasnikova, Irina V; Lesniak, Maciej S

    2014-01-15

    Two characteristic features of malignant gliomas (MG) are the presence of hypoxia and accumulation of regulatory T cells (Tregs). Heme-oxygenase-1 (HO1) is a cytoprotective enzyme expressed in high level by Tregs in glioma. In this study, we show that higher HO1 expression in Tregs is associated with increased survival under hypoxic conditions and that HO1 inhibitor, tin protoporphyrin (SnPP), abrogates the survival benefits. Moreover, SnPP preferentially eliminates Tregs and treatment with SnPP of tumor bearing mice significantly increases survival (23 to 31days (p<0.05)). Thus HO1 inhibition provides another alternative way of therapeutically targeting Tregs in MG. PMID:24268287

  18. Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model

    PubMed Central

    Dey, Mahua; Chang, Alan L.; Wainwright, Derek A.; Ahmed, Atique U.; Han, Yu; Balyasnikova, Irina V.; Lesniak, Maciej S.

    2013-01-01

    Two characteristic features of malignant gliomas (MG) are the presence of hypoxia and accumulation of regulatory T cells (Treg). Heme-oxygenase-1 (HO1) is a cytoprotective enzyme expressed in high level by Tregs in glioma. In this study, we show that higher HO1 expression in Treg is associated with increased survival under hypoxic conditions and that HO1 inhibitor, tin protoporphyrin (SnPP), abrogate the survival benefits. Moreover, SnPP preferentially eliminates Tregs and treatment of tumor bearing mice with SnPP significantly increases survival (23 to 31 days (p < 0.05)). Thus HO1 inhibition provides another alternative way of therapeutically targeting Tregs in MG. PMID:24268287

  19. Non-enzymic nature of the pyridine haemochrome-cleaving activity of mammalian tissue extracts (`haem α-methyl oxygenase')

    PubMed Central

    Colleran, Emer; Carra, P. Ó

    1970-01-01

    1. The pyridine haemochrome-cleaving activity of extracts from mammalian liver and other tissues is shown conclusively to be entirely non-enzymic in nature and attributable to coupled oxidation with ascorbate. 2. Reduced glutathione probably contributes to the activity indirectly by continuously regenerating the ascorbate to the reduced form. 3. The cleavage shows no specificity for the α-methine bridge of pyridine haemochrome. 4. Results are presented suggesting some probable reasons for the erroneous characterization of the activity as an α-methine-specific haem-cleaving enzyme (`haem α-methenyl oxygenase') by Nakajima and co-workers (e.g. Nakajima, Takemura, Nakajima & Yamaoka, 1963; Nakajima & Gray, 1967). PMID:5492854

  20. Dexamethasone-Conjugated Polyamidoamine Dendrimer for Delivery of the Heme Oxygenase-1 Gene into the Ischemic Brain.

    PubMed

    Jeon, Pureum; Choi, Manbok; Oh, Jungju; Lee, Minhyung

    2015-07-01

    Heme oxygenase-1 (HO-1) has anti-apoptotic and anti-inflammatory effects. In this study, the HO-1 gene was delivered into the brain using dexamethasone-conjugated polyamidoamine generation 2 (PAMAM G2-Dexa) for the treatment of ischemic stroke. PAMAM G2-Dexa formed stable complexes with plasmid DNA (pDNA). The pDNA delivery efficiency of PAMAM G2-Dexa was higher than that of polyethylenimine (PEI25k, 25 kDa), dexamethasone-conjugated PEI (PEI-Dexa), and PAMAM G2 in Neuro2A cells. Therapeutic effect of PAMAM G2-Dexa/pHO-1 complexes was evaluated in a stroke animal model. PAMAM G2-Dexa delivered pHO-1 more efficiently into the ischemic brain than PEI25k and PEI-Dexa with higher therapeutic effect. Therefore, PAMAM G2-Dexa/pHO-1 complexes may be useful for ischemic stroke gene therapy. PMID:26033925

  1. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1998-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .epsilon.N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  2. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  3. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1999-02-02

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS){sup {epsilon}}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 8 figs.

  4. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1998-03-03

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) {epsilon}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 5 figs.

  5. Heme oxygenase-1 dependant pathway contributes to protection by tetramethylpyrazine against chronic hypoxic injury on medulla oblongata in rats.

    PubMed

    Ding, Yan; Hou, Xuefei; Chen, Li; Zhou, Hua; Gong, Yanju; Dai, Liqun; Zheng, Yu

    2016-02-15

    Tetramethylpyrazine (TMP), one of the active ingredients of the Chinese herb Lingusticum Wallichii (Chuan Xiong) has been proved to protect the medulla oblongata from chronic hypoxia injury. However, the underlying mechanism remains unclear. The purpose of this study was to determine whether the protective effects of TMP are associated with the heme oxygenase-1 (HO-1) dependant pathway in adult rats. The morphological changes of neurons in the hypoglossal nucleus (12N), the nucleus ambiguus (Amb), the nucleus tractus solitarius (NTS), and the pre-Bötzinger complex (pre-BötC) were investigated by Nissl staining; the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured to evaluate the anti-oxidant effect; some apoptosis parameters, Bax mRNA and Bcl-2 mRNA, were tested; and the double immunochemistry staining of active caspase-3/NeuN was performed. Meanwhile, the HO-1 protein expression and heme oxygenase (HO) activity were examined. Tin-protoporphyrin (SnPP), a potent inhibitor of HO, was used to further confirm the effect of HO-1. We found that TMP ameliorated the neuron loss in 12N, Amb and NTS, the decrease in SOD activity and the increase in MDA content, the decrease in Bcl-2 mRNA of medulla oblongata (P<0.05), and the increase in percentage of apoptotic neurons in Amb (P<0.05) induced by chronic hypoxia. Co-administration with SnPP abolished the beneficial effects above of TMP to some extent (P<0.05). Moreover, TMP significantly increased HO activity and HO-1 protein expression, which was most likely enhanced in the neurons (P<0.05), and co-administration of SnPP reduced these up-regulated effects (P<0.05). This study demonstrated that HO-1 dependant pathway may be involved in the protective action of TMP against chronic hypoxic damage on medulla oblongata in the rats. PMID:26810525

  6. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant

    PubMed Central

    Chen, Linxu; Ren, Yilin; Lin, Jianqun; Liu, Xiangmei; Pang, Xin; Lin, Jianqiang

    2012-01-01

    Background Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. Results An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S0) and tetrathionate (K2S4O6) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S0 and K2S4O6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. Conclusion An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized. PMID:22984393

  7. Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase.

    PubMed

    Liu, Y; Moënne-Loccoz, P; Hildebrand, D P; Wilks, A; Loehr, T M; Mauk, A G; Ortiz de Montellano, P R

    1999-03-23

    The H25C and H25Y mutants of human heme oxygenase-1 (hHO-1), in which the proximal iron ligand is replaced by a cysteine or tyrosine, have been expressed and characterized. Resonance Raman studies indicate that the ferric heme complexes of these proteins, like the complex of the H25A mutant but unlike that of the wild type, are 5-coordinate high-spin. Labeling of the iron with 54Fe confirms that the proximal ligand in the ferric H25C protein is a cysteine thiolate. Resonance-enhanced tyrosinate modes in the resonance Raman spectrum of the H25Y.heme complex provide direct evidence for tyrosinate ligation in this protein. The H25C and H25Y heme complexes are reduced to the ferrous state by cytochrome P450 reductase but do not catalyze alpha-meso-hydroxylation of the heme or its conversion to biliverdin. Exposure of the ferrous heme complexes to O2 does not give detectable ferrous-dioxy complexes and leads to the uncoupled reduction of O2 to H2O2. Resonance Raman studies show that the ferrous H25C and H25Y heme complexes are present in both 5-coordinate high-spin and 4-coordinate intermediate-spin configurations. This finding indicates that the proximal cysteine and tyrosine ligand in the ferric H25C and H25Y complexes, respectively, dissociates upon reduction to the ferrous state. This is confirmed by the spectroscopic properties of the ferrous-CO complexes. Reduction potential measurements establish that reduction of the mutants by NADPH-cytochrome P450 reductase, as observed, is thermodynamically allowed. The two proximal ligand mutations thus destabilize the ferrous-dioxy complex and uncouple the reduction of O2 from oxidation of the heme group. The proximal histidine ligand, for geometric or electronic reasons, is specifically required for normal heme oxygenase catalysis. PMID:10090762

  8. Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type

    PubMed Central

    Belvisi, Maria G; Saunders, Michael A; Haddad, El-Bdaoui; Hirst, Stuart J; Yacoub, Magdi H; Barnes, Peter J; Mitchell, Jane A

    1997-01-01

    Cyclo-oxygenase (COX) is the enzyme that converts arachidonic acid to prostaglandin H2 (PGH2) which can then be further metabolized to prostanoids which modulate various airway functions. COX exists in at least two isoforms. COX-1 is expressed constitutively, whereas COX-2 is expressed in response to pro-inflammatory stimuli. Prostanoids are produced under physiological and pathophysiological conditions by many cell types in the lung. However, the regulation of the different COX isoforms in human airway smooth muscle (HASM) cells has not yet been determined.COX-1 and COX-2 protein were measured by Western blot analysis with specific antibodies for COX-1 and COX-2. COX-2 mRNA levels were assessed by Northern blot analysis by use of a COX-2 cDNA probe. COX activity was determined by measuring conversion of either endogenous or exogenous arachidonic acid to three metabolites, PGE2, thromboxane B2 or 6-ketoPGF1α by radioimmunoassay.Under control culture conditions HASM cells expressed COX-1, but not COX-2, protein. However, a mixture of cytokines (interleukin-1β (IL-1β), tumour necrosis factor α (TNFα) and interferon γ (IFNγ) each at 10 ng ml−1) induced COX-2 mRNA expression, which was maximal at 12 h and inhibited by dexamethasone (1 μM; added 30 min before the cytokines). Furthermore, COX-2 protein was detected 24 h after the cytokine treatment and the expression of this protein was also inhibited by dexamethasone (1 μM) and cyclohexamide (10 μg ml−1; added 30 min before the cytokines).Untreated HASM cells released low or undetectable amounts of all COX metabolites measured over a 24 h period. Incubation of the cells with the cytokine mixture (IL-1β, TNFα, IFNγ each at 10 ng ml−1 for 24 h) caused the accumulation of PGE2 and 6-keto-PGF1α.In experiments where COX-2 metabolized endogenous stores of arachidonic acid, treatment of HASM cells with IL-1β in combination with TNFα caused a similar release of PGE2 to that when

  9. Thirty years of microbial P450 monooxygenase research: Peroxo-heme intermediates-The central bus station in heme oxygenase catalysis

    SciTech Connect

    Sligar, Stephen G. . E-mail: s-sligar@uiuc.edu; Makris, Thomas M.; Denisov, Ilia G.

    2005-12-09

    Oxygen has always been recognized as an essential element of many life forms, initially through its role as a terminal electron acceptor for the energy-generating pathways of oxidative phosphorylation. In 1955, Hayaishi et al. [Mechanism of the pyrocatechase reaction, J. Am. Chem. Soc. 77 (1955) 5450-5451] presented the most important discovery that changed this simplistic view of how Nature uses atmospheric dioxygen. His discovery, the naming and mechanistic understanding of the first 'oxygenase' enzyme, has provided a wonderful opportunity and scientific impetus for four decades of researchers. This volume provides an opportunity to recognize the breakthroughs of the 'Hayaishi School.' Notable have been the prolific contributions of Professor Ishimura et al. [Oxygen and life. Oxygenases, Oxidases and Lipid Mediators, International Congress Series, Elsevier, Amsterdam, 2002], a first-generation Hayaishi product, to characterization of the cytochrome P450 monooxygenases.

  10. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase.

    PubMed

    Berim, Anna; Park, Jeong-Jin; Gang, David R

    2014-11-01

    Most elucidated hydroxylations in plant secondary metabolism are catalyzed by oxoglutarate- or cytochrome P450-dependent oxygenases. Numerous hydroxylations still evade clarification, suggesting that they might be performed by alternative enzyme types. Here, we report the identification of the flavone 8-hydroxylase (F8H) in sweet basil (Ocimum basilicum L.) trichomes as a Rieske-type oxygenase. Several features of the F8H activity in trichome protein extracts helped to differentiate it from a cytochrome P450-catalyzed reaction and identify candidate genes in the basil trichome EST database. The encoded ObF8H proteins share approximately 50% identity with Rieske-type protochlorophyllide a oxygenases (PTC52) from higher plants. Homology cloning and DNA blotting revealed the presence of several PTC52-like genes in the basil genome. The transcripts of the candidate gene designated ObF8H-1 are strongly enriched in trichomes compared to whole young leaves, indicating trichome-specific expression. The full-length ObF8H-1 protein possesses a predicted N-terminal transit peptide, which directs green fluorescent protein at least in part to chloroplasts. The F8H activity in crude trichome protein extracts correlates well with the abundance of ObF8H peptides. The purified recombinant ObF8H-1 displays high affinity for salvigenin and is inactive with other tested flavones except cirsimaritin, which is 8-hydroxylated with less than 0.2% relative activity. The efficiency of in vivo 8-hydroxylation by engineered yeast was improved by manipulation of protein subcellular targeting. blast searches showed that occurrence of several PTC52-like genes is rather common in sequenced plant genomes. The discovery of ObF8H suggests that Rieske-type oxygenases may represent overlooked candidate catalysts for oxygenations in specialized plant metabolism. PMID:25139498

  11. Dynamics of ribulose 1,5-bisphosphate carboxylase/oxygenase gene expression in the coccolithophorid Coccolithus pelagicus during a tracer release experiment in the Northeast Atlantic.

    PubMed

    Wyman, Michael; Davies, John T; Hodgson, Sylvia; Tarran, Glen A; Purdie, Duncan A

    2005-03-01

    We report a pronounced diel rhythm in ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene expression in a natural population of the coccolithophorid Coccolithus pelagicus sampled during a Lagrangian experiment in the Northeast Atlantic. Our observations show that there is greater heterogeneity in the temporal regulation of RubisCO expression among planktonic chromophytes than has been reported hitherto. PMID:15746374

  12. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  13. Identification of the large subunit of Ribulose 1,5-bisphosphate carboxylase/oxygenase as a substrate for transglutaminase in Medicageo sativa L. (alfalfa)

    SciTech Connect

    Margosiak, S.A.; Dharma, A.; Carver, M.R.B.; Gonzales, A.P., Louie, D.; Kuehn, G.D. )

    1990-01-01

    Extract prepared from floral meristematic tissue of alfalfa (Medicago sativa L.) were investigated for expression of the enzyme transglutaminase in order to identify the major protein substrate for transglutaminase-directed modifications among plant proteins. The large polymorphic subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase in alfalfa, with molecular weights of 52,700 and 57,600, are major substrates for transglutaminase in these extracts. This was established by: (a) covalent conjugation of monodansylcadaverine to the large subunit followed by fluorescent detection in SDS-polyacrylamide gels; (b) covalent conjugation of ({sup 14}C)putrescine to the large subunit with detection by autoradiography; (c) covalent conjugation of monodansylcadaverine to the large subunit and demonstration of immunocross-reactivity on nitrocellulose transblot of the modified large subunit with antibody prepared in rabbits against dansylated-ovalbumin; (d) demonstration of a direct dependence of the rate of transglutaminase-mediated, ({sup 14}C)putresciene incorporation upon the concentration of ribulose, 1,5-bisphosphate carboxylase/oxygenase from alfalfa or spinach; and (e) presumptive evidence from size exclusion chromatography that transglutaminase may cofractionate with native molecules of ribulose 1,5-bisphosphate carboxylase/oxygenase in crude extracts.

  14. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds.

    PubMed Central

    Colby, J; Stirling, D I; Dalton, H

    1977-01-01

    1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products; 2-butanone is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor. PMID:411486

  15. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression.

    PubMed

    Putaala, Heli; Salusjärvi, Tuomas; Nordström, Malin; Saarinen, Markku; Ouwehand, Arthur C; Bech Hansen, Egon; Rautonen, Nina

    2008-01-01

    Controversy exists as to whether contact between a probiotic bacterial cell and an epithelial cell in the gut is needed to confer beneficial effects of probiotics, or whether metabolites from probiotics are sufficient to cause this effect. To address this question, Caco-2 cells were treated with cell-free supernatants of four probiotics, Bifidobacterium lactis 420, Bifidobacterium lactis HN019, Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, and by a cell-free supernatant of a pathogenic bacteria, Escherichia coli O157:H7 (EHEC). Tight junction integrity as well as expression of cyclo-oxygenases, which are prostaglandin-producing enzymes, were measured. Probiotic-specific as well as EHEC-specific effects on tight junction integrity and cyclo-oxygenase expression were evident, indicating that live bacterial cells were not necessary for the manifestation of the effects. B. lactis 420 cell-free supernatant increased tight junction integrity, while EHEC cell-free supernatant induced damage on tight junctions. In general, EHEC and probiotics had opposite effects upon cyclo-oxygenase expression. Furthermore, B. lactis 420 cell-free supernatant protected the tight junctions from EHEC-induced damage when administered prior to the cell-free supernatant of EHEC. These results indicate that probiotics produce bioactive metabolites, suggesting that consumption of specific probiotic bacteria might be beneficial in protecting intestinal epithelial cells from the deleterious effects of pathogenic bacteria. PMID:18783733

  16. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  17. Effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage.

    PubMed Central

    Jackson, M J; Wagenmakers, A J; Edwards, R H

    1987-01-01

    The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage. PMID:3109374

  18. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells.

    PubMed

    Min, Kyung-San; Chang, Hoon-Sang; Bae, Ji-Myung; Park, Sang-Hyuk; Hong, Chan-Ui; Kim, Eun-Cheol

    2007-11-01

    The aim of this study was to investigate the cytotoxic and nitric oxide (NO)-inducing effects of bismuth oxide (Bi(2)O(3))-containing Portland cement (BPC) on human dental pulp cells. We also assessed whether heme oxygenase-1 (HO-1) is involved in BPC-induced cytotoxicity in dental pulp cells. Cytotoxicity and NO production induced by BPC were higher than those induced by Portland cement at 12 and 24 hours, and the former gradually decreased to the level observed for PC. HO-1 and inducible nitric oxide synthase messenger RNA expressions in the BPC group showed maximal increase at 24 hours, and it gradually decreased with increasing cultivation time. Hemin treatment reversed the BPC-induced cytotoxicity, whereas zinc protoporphyrin IX treatment increased the cytotoxicity. These results suggested that NO production by BPC correlates with HO-1 expression in dental pulp cells. Moreover, BPC-induced HO-1 expression in dental pulp cells plays a protective role against the cytotoxic effects of BPC. PMID:17963960

  19. The reciprocal relationship between heme oxygenase and nitric oxide synthase in the organs of lipopolysaccharide-treated rodents.

    PubMed

    Furuichi, Masayuki; Yokozuka, Motoi; Takemori, Ken; Yamanashi, Yoshitaka; Sakamoto, Atsuhiro

    2009-08-01

    The production of nitric oxide (NO) by inducible NO synthase (NOS) and carbon monoxide (CO) by inducible heme oxygenase (HO) contributes greatly to endotoxemia. Reciprocal relationships have been proposed between the NO/NOS and CO/HO systems. However, the interaction between these systems during endotoxemia is unclear, and it is unknown whether the interactive behavior differs among organs. Using endotoxic rats, we studied the effects of the inducible NOS (iNOS) inhibitor L-canavanine (CAN), and the HO inhibitor zinc protoporphyrin (ZPP) on gene expression and protein levels of iNOS, endothelial NOS (eNOS), inducible HO (HO-1), and constitutive HO (HO-2) in the brain, lung, heart, liver and kidney tissue. Intravenous injection of LPS significantly increased iNOS and HO-1 gene expression in all organs. The effects of LPS on eNOS gene expression differed among organs, with increased expression in the liver and kidney, and no change in the lung, brain and heart. ZPP administration down-regulated the LPS-induced increase in HO-1 expression and produced a further increase in iNOS expression in all organs. These data suggest that the CO/HO system modifies the NO/NOS system in endotoxic organs, and that there were only minor organ-specific behaviors in terms of the relationship between these systems in the organs examined. PMID:19729854

  20. Induction of heme oxygenase 1 by arsenite inhibits cytokine-induced monocyte adhesion to human endothelial cells

    SciTech Connect

    Sun Xi; Pi Jingbo; Liu Wenlan; Hudson, Laurie G.; Liu Kejian; Feng Changjian

    2009-04-15

    Heme oxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. Arsenite, as an oxidative stressor, is a potent inducer of HO-1 in human and rodent cells. In this study, we investigated the mechanistic role of arsenite-induced HO-1 in modulating tumor necrosis factor {alpha} (TNF-{alpha}) induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC). Arsenite pretreatment, which upregulated HO-1 in a time- and concentration-dependent manner, inhibited TNF-{alpha}-induced monocyte adhesion to HUVEC and intercellular adhesion molecule 1 protein expression by 50% and 40%, respectively. Importantly, knockdown of HO-1 by small interfering RNA abolished the arsenite-induced inhibitory effects. These results indicate that induction of HO-1 by arsenite inhibits the cytokine-induced monocyte adhesion to HUVEC by suppressing adhesion molecule expression. These findings established an important mechanistic link between the functional monocyte adhesion properties of HUVEC and the induction of HO-1 by arsenite.

  1. Disruption of Nitric Oxide Signaling by Helicobacter pylori Results in Enhanced Inflammation by Inhibition of Heme Oxygenase-1

    PubMed Central

    Gobert, Alain P.; Asim, Mohammad; Piazuelo, M. Blanca; Verriere, Thomas; Scull, Brooks P.; de Sablet, Thibaut; Glumac, Ashley; Lewis, Nuruddeen D.; Correa, Pelayo; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2011-01-01

    A strong cellular crosstalk exists between the pathogen Helicobacter pylori and high-output NO production. However, how NO and H. pylori interact to signal in gastric epithelial cells and modulate the innate immune response is unknown. We show that chemical or cellular sources of NO induce the anti-inflammatory effector heme oxygenase-1 (HO-1) in gastric epithelial cells through a pathway that requires NF-κB. However, H. pylori decreases NO-induced NF-κB activation, thereby inhibiting HO-1 expression. This inhibitory effect of H. pylori results from activation of the transcription factor heat shock factor-1 by the H. pylori virulence factor CagA and by the host signaling molecules ERK1/2 and JNK. Consistent with these findings, HO-1 is downregulated in gastric epithelial cells of patients infected with cagA+, but not cagA− H. pylori. Enhancement of HO-1 activity in infected cells or in H. pylori-infected mice inhibits chemokine generation and reduces inflammation. These data define a mechanism by which H. pylori favors its own pathogenesis by inhibiting HO-1 induction through the action of CagA. PMID:21987660

  2. Heme oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; de Sablet, Thibaut; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2012-01-01

    Summary The cytotoxin-associated gene A protein (CagA) plays a pivotal role in the etiology of Helicobacter (H.) pylori-associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c-Src. We previously reported that the enzyme heme oxygenase-1 (HO-1) inhibits IL-8 secretion by H. pylori-infected cells. However, the cellular mechanism by which HO-1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and hemin, two inducers of HO-1, decrease the level of phosphorylated CagA (p-CagA) in H. pylori-infected gastric epithelial cells and this is blocked by either pharmacologic inhibition of HO-1 or siRNA knockdown of hmox-1. Moreover, forced expression of HO-1 by transfection of a plasmid expressing hmox-1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori-induced c-Src phosphorylation/activation by HO-1. Consequently, H. pylori-induced cytoskeletal rearrangements and activation of the pro-inflammatory response mediated by p-CagA are inhibited in HO-1-expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells. PMID:23051580

  3. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway.

    PubMed

    Mandal, Palash; Pritchard, Michele T; Nagy, Laura E

    2010-03-21

    The development of alcoholic liver disease (ALD) is a complex process involving both the parenchymal and non-parenchymal cells in the liver. Enhanced inflammation in the liver during ethanol exposure is an important contributor to injury. Kupffer cells, the resident macrophages in liver, are particularly critical to the onset of ethanol-induced liver injury. Chronic ethanol exposure sensitizes Kupffer cells to activation by lipopolysaccharide via Toll-like receptor 4. This sensitization enhances production of inflammatory mediators, such as tumor necrosis factor-alpha and reactive oxygen species, that contribute to hepatocyte dysfunction, necrosis, apoptosis, and fibrosis. Impaired resolution of the inflammatory process probably also contributes to ALD. The resolution of inflammation is an active, highly coordinated response that can potentially be manipulated via therapeutic interventions to treat chronic inflammatory diseases. Recent studies have identified an adiponectin/interleukin-10/heme oxygenase-1 (HO-1) pathway that is profoundly effective in dampening the enhanced activation of innate immune responses in primary cultures of Kupffer cells, as well as in an in vivo mouse model of chronic ethanol feeding. Importantly, induction of HO-1 also reduces ethanol-induced hepatocellular apoptosis in this in vivo model. Based on these data, we hypothesize that the development of therapeutic agents to regulate HO-1 and its downstream targets could be useful in enhancing the resolution of inflammation during ALD and preventing progression of early stages of liver injury. PMID:20238399

  4. Carbon Monoxide Induces Heme Oxygenase-1 to Modulate STAT3 Activation in Endothelial Cells via S-Glutathionylation

    PubMed Central

    Yang, Yan-Chang; Huang, Yu-Ting; Hsieh, Chia-Wen; Yang, Po-Min; Wung, Being-Sun

    2014-01-01

    IL-6/STAT3 pathway is involved in a variety of biological responses, including cell proliferation, differentiation, apoptosis, and inflammation. In our present study, we found that CO releasing molecules (CORMs) suppress IL-6-induced STAT3 phosphorylation, nuclear translocation and transactivity in endothelial cells (ECs). CO is a byproduct of heme degradation mediated by heme oxygenase (HO-1). However, CORMs can induce HO-1 expression and then inhibit STAT3 phosphorylation. CO has been found to increase a low level ROS and which may induce protein glutathionylation. We hypothesized that CORMs increases protein glutathionylation and inhibits STAT3 activation. We found that CORMs increase the intracellular GSSG level and induce the glutathionylation of multiple proteins including STAT3. GSSG can inhibit STAT3 phosphorylation and increase STAT3 glutathionylation whereas the antioxidant enzyme catalase can suppress the glutathionylation. Furthermore, catalase blocks the inhibition of STAT3 phosphorylation by CORMs treatment. The inhibition of glutathione synthesis by BSO was also found to attenuate STAT3 glutathionylation and its inhibition of STAT3 phosphorylation. We further found that HO-1 increases STAT3 glutathionylation and that HO-1 siRNA attenuates CORM-induced STAT3 glutathionylation. Hence, the inhibition of STAT3 activation is likely to occur via a CO-mediated increase in the GSSG level, which augments protein glutathionylation, and CO-induced HO-1 expression, which may enhance and maintain its effects in IL-6-treated ECs. PMID:25072782

  5. Heme Oxygenase-1 Induction and Organic Nitrate Therapy: Beneficial Effects on Endothelial Dysfunction, Nitrate Tolerance, and Vascular Oxidative Stress

    PubMed Central

    Daiber, Andreas; Oelze, Matthias; Wenzel, Philip; Bollmann, Franziska; Pautz, Andrea; Kleinert, Hartmut

    2012-01-01

    Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction, and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents, and this phenomenon is largely based on induction of oxidative stress with subsequent endothelial dysfunction. We therefore speculated that induction of heme oxygenase-1 (HO-1) could be an efficient strategy to overcome nitrate tolerance and the associated side effects. Indeed, we found that hemin cotreatment prevented the development of nitrate tolerance and vascular oxidative stress in response to chronic nitroglycerin therapy. Vice versa, pentaerithrityl tetranitrate (PETN), a nitrate that was previously reported to be devoid of adverse side effects, displayed tolerance and oxidative stress when the HO-1 pathway was blocked pharmacologically or genetically by using HO-1+/– mice. Recently, we identified activation of Nrf2 and HuR as a principle mechanism of HO-1 induction by PETN. With the present paper, we present and discuss our recent and previous findings on the role of HO-1 for the prevention of nitroglycerin-induced nitrate tolerance and for the beneficial effects of PETN therapy. PMID:22506100

  6. Chlorophyll Deficiency in the Maize elongated mesocotyl2 Mutant Is Caused by a Defective Heme Oxygenase and Delaying Grana Stacking

    PubMed Central

    Shi, Dianyi; Zheng, Xu; Li, Liang; Lin, Wanhuang; Xie, Wenjun; Yang, Jianping; Chen, Shaojiang; Jin, Weiwei

    2013-01-01

    Background Etiolated seedlings initiate grana stacking and chlorophyll biosynthesis in parallel with the first exposure to light, during which phytochromes play an important role. Functional phytochromes are biosynthesized separately for two components. One phytochrome is biosynthesized for apoprotein and the other is biosynthesized for the chromophore that includes heme oxygenase (HO). Methodology/Principal Finding We isolated a ho1 homolog by map-based cloning of a maize elongated mesocotyl2 (elm2) mutant. cDNA sequencing of the ho1 homolog in elm2 revealed a 31 bp deletion. De-etiolation responses to red and far-red light were disrupted in elm2 seedlings, with a pronounced elongation of the mesocotyl. The endogenous HO activity in the elm2 mutant decreased remarkably. Transgenic complementation further confirmed the dysfunction in the maize ho1 gene. Moreover, non-appressed thylakoids were specifically stacked at the seedling stage in the elm2 mutant. Conclusion The 31 bp deletion in the ho1 gene resulted in a decrease in endogenous HO activity and disrupted the de-etiolation responses to red and far-red light. The specific stacking of non-appressed thylakoids suggested that the chlorophyll biosynthesis regulated by HO1 is achieved by coordinating the heme level with the regulation of grana stacking. PMID:24244620

  7. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation.

    PubMed

    Zhang, Fang; Fu, Yanyan; Zhou, Xiaoyan; Pan, Wei; Shi, Yue; Wang, Mei; Zhang, Xunbao; Qi, Dashi; Li, Lei; Ma, Kai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2016-09-15

    Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1β (IL-1β) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1β and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus. PMID:27609268

  8. Tanshinone IIA Induces Heme Oxygenase 1 Expression and Inhibits Cyclic Strain-Induced Interleukin 8 Expression in Vascular Endothelial Cells.

    PubMed

    Zhuang, Shaowei; Cheng, Tzu-Hurng; Shih, Nang-Lang; Liu, Ju-Chi; Chen, Jin-Jer; Hong, Hong-Jye; Chan, Paul

    2016-04-01

    Tanshinone IIA is the main effective component of Salvia miltiorrhiza, known as "Danshen," which has been used in many therapeutic remedies in traditional Chinese medicine. However, the direct effects of tanshinone IIA on vascular endothelial cells have not yet been fully described. In the present study, we demonstrated that tanshinone IIA increased heme oxygenase-1 (HO-1) expression in human umbilical vein endothelial cells. Western blot analyses and experiments with specific inhibitors indicated tanshinone IIA enhanced HO-1 expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt and the subsequent induction of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. In addition, tanshinone IIA inhibited cyclic strain induced interleukin-8 (IL-8) expression. HO-1 silencing significantly abrogated the repressive effects of tanshinone IIA on strain-induced IL-8 expression, which suggests HO-1 has a role in mediating the effects of tanshinone IIA. This study reports for the first time that tanshinone IIA inhibits cyclic strain-induced IL-8 expression via the induction of HO-1 in endothelial cells, providing valuable new insight into the molecular pathways that may contribute to the effects of tanshinone IIA. PMID:27080946

  9. Catalytic roles of flexible regions at the active site of ribulose-bisphosphate carboxylase/oxygenase (Rubisco)

    SciTech Connect

    Hartman, F.C.; Harpel, M.R.; Chen, Yuh-Ru; Larson, E.M.; Larimer, F.W.

    1995-12-31

    Chemical and mutagenesis studies of Rubisco have identified Lys329 and Glu48 as active-site residues that are located in distinct, interacting domains from adjacent subunits. Crystallographic analyses have shown that Lys329 is the apical residue in a 12-residue flexible loop (loop 6) of the {Beta},{alpha}-barrel domain of the active site and that Glu48 resides at the end of helix B of the N-terminal domain of the active site. When phosphorylated ligands are bound by the enzyme, loop 6 adopts a closed conformation and, in concert with repositioning of helix B, thereby occludes the active site from the external environment. In this closed conformation, the {gamma}-carboxylate of Glu48 and the {epsilon}-amino group of Lys329 engage in intersubunit electrostatic interaction. By use of appropriate site-directed mutants of Rhodospirillum rubrum Rubisco, we are addressing several issues: the catalytic roles of Lys329 and Glu48, the functional significance of the intersubunit salt bridge comprised of these two residues, and the roles of loop 6 and helix B in stabilizing labile reaction intermediates. Characterization of novel products derived from misprocessing of D-ribulose-1,5-bisphosphate (RuBP) by the mutant proteins have illuminated the structure of the key intermediate in the normal oxygenase pathway.

  10. Heme oxygenase-1 induction in hepatocytes and non-parenchymal cells protects against liver injury during endotoxemia.

    PubMed

    Dorman, Robert B; Bajt, Mary Lynn; Farhood, Anwar; Mayes, January; Jaeschke, Hartmut

    2004-01-14

    INTRODUCTION: Heme oxygenase-1 (HO-1) is a stress response enzyme, which catalyses the breakdown of heme into biliverdin-IX alpha, carbon monoxide and ferrous iron. Under situations of oxidative stress, heat stress, ischemia/reperfusion injury or endotoxemia, HO-1 has been shown to be induced and to elicit a protective effect. The mechanism of how this protective effect is executed is unknown. RESULTS: HO-1 induction with cobalt protoporphorin (Co-PP) dose-dependently protected against apoptotic cell death as well as neutrophil-mediated oncosis in the galactosamine/endotoxin (Gal/ET) shock model. Induction of HO-1 with Co-PP dose-dependently protected against neutrophil-mediated oncosis as indicated by attenuated ALT release and TNF-mediated apoptotic cell death as indicated by reduced caspase-3 activation. HO-1 induction did not attenuate Gal/ET-induced TNF-alpha formation. Furthermore, a similar protective effect with the high dose of Co-PP was observed when animals were treated with Gal/TNF-alpha. CONCLUSIONS: HO-1 induction attenuates apoptosis and neutrophil-mediated oncosis in the Gal/ET shock model. However, the protective effect is not due to the reduction of TNF-alpha release or the attenuation of neutrophil accumulation in the liver sinusoids. PMID:14960194

  11. Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of Pseudomonas aeruginosa.

    PubMed

    Heinzl, Geoffrey A; Huang, Weiliang; Yu, Wenbo; Giardina, Bennett J; Zhou, Yue; MacKerell, Alexander D; Wilks, Angela; Xue, Fengtian

    2016-07-28

    New therapeutic targets are required to combat multidrug resistant infections, such as the iron-regulated heme oxygenase (HemO) of Pseudomonas aeruginosa, due to links between iron and virulence and dependence on heme as an iron source during infection. Herein we report the synthesis and activity of a series of iminoguanidine-based inhibitors of HemO. Compound 23 showed a binding affinity of 5.7 μM and an MIC50 of 52.3 μg/mL against P. aeruginosa PAO1. An in cellulo activity assay was developed by coupling HemO activity to a biliverdin-IXα-dependent infrared fluorescent protein, in which compound 23 showed an EC50 of 11.3 μM. The compounds showed increased activity against clinical isolates of P. aeruginosa, further confirming the target pathway. This class of inhibitors acts by binding to an allosteric site; the novel binding site is proposed in silico and supported by saturation transfer difference (STD) NMR as well as by hydrogen exchange mass spectrometry (HXMS). PMID:27353344

  12. Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots.

    PubMed

    McConnachie, Lisa A; White, Collin C; Botta, Dianne; Zadworny, Megan E; Cox, David P; Beyer, Richard P; Hu, Xiaoge; Eaton, David L; Gao, Xiaohu; Kavanagh, Terrance J

    2013-03-01

    Because of their unique optical properties, quantum dots (QDs) have become a preferred system for ultrasensitive detection and imaging. However, since QDs commonly contain Cd and other heavy metals, concerns have been raised regarding their toxicity. QDs are thus commonly synthesised with a ZnS cap structure and/or coated with polymeric stabilisers. We recently synthesised amphiphilic polymer-coated tri-n-octylphosphine oxide - poly(maleic anhydride-alt-1-tetradecene (TOPO-PMAT) QDs, which are highly stable in aqueous environments. The effects of these QDs on viability and stress response in five cell lines of mouse and human origins are reported here. Human and mouse macrophages and human kidney cells readily internalised these QDs, resulting in modest toxicity. TOPO-PMAT QD exposure was highly correlated with the induction of the stress response protein heme oxygenase-1 (HMOX1). Other stress biomarkers (glutamate cysteine ligase modifier subunit, NAD(P)H, necrosis) were only moderately affected. HMOX1 may thus be a useful biomarker of TOPO-QDOT QD exposure across cell types and species. PMID:22264017

  13. Pinocembrin attenuates MPP(+)-induced neurotoxicity by the induction of heme oxygenase-1 through ERK1/2 pathway.

    PubMed

    Wang, Hongquan; Wang, Yumin; Zhao, Linan; Cui, Qifu; Wang, Yuehua; Du, Guanhua

    2016-01-26

    Our recent study demonstrated that pinocembrin (PB), the most abundant flavonoid in propolis, has neuroprotective effect against 1-methyl-4-phenylpyridinium (MPP(+))-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study, we demonstrate here that PB increased heme oxygenase-1 (HO-1) expression, which conferred protection against MPP(+)-induced cytotoxicity, because the inhibitor of HO-1 zinc protoporphyrin-IX attenuated the neuroprotection of PB. PB induced the phosphorylation of ERK1/2, and its cytoprotective effect was abolished by ERK1/2 inhibitors. Meanwhile, we have shown that MPP(+) induce the expression in a concentration-dependent manner in SH-SY5Y cells, which was further enhanced by PB. Taken together, the results suggest that PB enhances HO-1 expression to suppress MPP(+)-induced oxidative damage via ERK1/2 signaling pathways. These results revealed the mechanisms of PB enhances HO-1 expression, and contribute to shed some light on the mechanisms whereby PB inhibits the MPP(+)-induced neurotoxicity. These data indicated that PB might provide a valuable therapeutic strategy for the treatment of PD. PMID:26655464

  14. Protein assay for heme oxygenase-1 (HO-1) induced by chemicals in HepG2 cells.

    PubMed

    Miyamoto, Yohei; Ohshida, Keiyu; Sasago, Kaori

    2009-12-01

    Levels of heme oxygenase-1 (HO-1), a stress response protein, were measured to examine oxidative stress induced by several chemicals in HepG2 cells with and without S9mix using an ELISA. CdCl(2), heme, and diclofenac sodium salt (diclofenac) were used as inducers of HO-1. Acetaminophen (AAP) and cyclophosphamide (CP) were used as oxidative stress inducers. Stannic mesoporphyrin (SnMP) was used as an inhibitor of HO activity. Cytotoxicity was determined, and HO-1 levels were measured in HepG2 cells exposed to chemicals other than CP with non-metabolic activation without S9mix, and to diclofenac, AAP and CP with metabolic activation with S9mix. HO-1 levels were increased by CdCl(2) (7.5 microM), heme (10, 100 microM), and stannic mesoporphyrin (SnMP) (10 microM), but were not changed by AAP, and were decreased by diclofenac. HO-1 levels were increased by diclofenac (300 microM), and CP (36 microM), but were unaffected by AAP because of low sensitivity in HepG2 cells. The induction of HO-1 expression was first observed in cultured HepG2 cells treated with CP under conditions involving metabolic activation. These results showed the measurement of HO-1 protein levels in this system is useful when assessing oxidative stress as a tool for detecting drug toxicity. PMID:19952508

  15. Heme oxygenase-1 is critically involved in placentation, spiral artery remodeling, and blood pressure regulation during murine pregnancy

    PubMed Central

    Zenclussen, Maria L.; Linzke, Nadja; Schumacher, Anne; Fest, Stefan; Meyer, Nicole; Casalis, Pablo A.; Zenclussen, Ana C.

    2015-01-01

    The onset of pregnancy implies the appearance of a new organ, the placenta. One main function of the placenta is to supply oxygen to the fetus via hemoproteins. In this review, we highlight the importance of the enzyme heme oxygenase-1 (HO-1) for pregnancy to be established and maintained. HO-1 expression is pivotal to promote placental function and fetal development, thus determining the success of pregnancy. The deletion of the gene Hmox1 in mice leads to inadequate remodeling of spiral arteries and suboptimal placentation followed by intrauterine growth restriction (IUGR) and fetal lethality. A partial Hmox1 deletion leads to IUGR as well, with heterozygote and wild-type fetuses being born, but Hmox1–/– significantly below the expected Mendelian rate. This strong phenotype is associated with diminished number of pregnancy-protective uterine natural killer (uNK) cells. Pregnant heterozygote females develop gestational hypertension. The protective HO-1 effects on placentation and fetal growth can be mimicked by the exogenous administration of carbon monoxide (CO), a product of heme catalyzed by HO-1. CO application promotes the in situ proliferation of uNK cells, restores placentation and fetal growth, while normalizing blood pressure. Similarly, HO-1 inhibition provokes hypertension in pregnant rats. The HO-1/CO axis plays a pivotal role in sustaining pregnancy and aids in the understanding of the biology of pregnancy and reveals a promising therapeutic application in the treatment of pregnancy complications. PMID:25628565

  16. Naive human T cells are activated and proliferate in response to the heme oxygenase-1 inhibitor tin mesoporphyrin.

    PubMed

    Burt, Trevor D; Seu, Lillian; Mold, Jeffrey E; Kappas, Attallah; McCune, Joseph M

    2010-11-01

    Heme oxygenase-1 (HO-1) and its catabolic by-products have potent anti-inflammatory activity in many models of disease. It is not known, however, if HO-1 also plays a role in the homeostatic control of T cell activation and proliferation. We demonstrate here that the HO-1 inhibitor tin mesoporphyrin (SnMP) induces activation, proliferation, and maturation of naive CD4(+) and CD8(+) T cells via interactions with CD14(+) monocytes in vitro. This response is dependent upon interactions of T cells with MHC class I and II on the surface of CD14(+) monocytes. Furthermore, CD4(+)CD25(+)FoxP3(+) regulatory T cells were able to suppress this proliferation, even though their suppressive activity was itself impaired by SnMP. Given the magnitude of the Ag-independent T cell response induced by SnMP, we speculate that HO-1 plays an important role in dampening nonspecific T cell activation. Based on these findings, we propose a potential role for HO-1 in the control of naive T cell homeostatic proliferation. PMID:20921523

  17. Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway.

    PubMed

    Heyninck, Karen; Sabbe, Linde; Chirumamilla, Chandra Sekhar; Szarc Vel Szic, Katarzyna; Vander Veken, Pieter; Lemmens, Kristien J A; Lahtela-Kakkonen, Maija; Naulaerts, Stefan; Op de Beeck, Ken; Laukens, Kris; Van Camp, Guy; Weseler, Antje R; Bast, Aalt; Haenen, Guido R M M; Haegeman, Guy; Vanden Berghe, Wim

    2016-06-01

    Withaferin A (WA), a natural phytochemical derived from the plant Withania somnifera, is a well-studied bioactive compound exerting a broad spectrum of health promoting effects. To gain better insight in the potential therapeutic capacity of WA, we evaluated the transcriptional effects of WA on primary human umbilical vein endothelial cells (HUVECs) and an endothelial cell line (EA.hy926). RNA microarray analysis of WA treated HUVEC cells demonstrated increased expression of the antioxidant gene heme oxygenase (HO-1). Transcriptional regulation of this gene is strongly dependent on the transcription factor NF-E2-related factor 2 (Nrf2), which senses chemical changes in the cell and coordinates transcriptional responses to maintain chemical homeostasis via expression of antioxidant genes and cytoprotective Phase II detoxifying enzymes. Under normal conditions, Nrf2 is kept in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1), an adaptor protein controlling the half-life of Nrf2 via constant proteasomal degradation. In this study we demonstrate that WA time- and concentration-dependently induces HO-1 expression in endothelial cells via upregulation and increased nuclear translocation of Nrf2. According to the crucial negative regulatory role of Keap1 in Nrf2 expression levels, a direct interaction of WA with Keap1 could be demonstrated. In vitro and in silico evaluations suggest that specific cysteine residues in Keap1 might be involved in the interaction with WA. PMID:27045103

  18. Seasonal variation in the mixed-function oxygenase system and antioxidant enzymes of the mussel Mytilus galloprovincialis

    SciTech Connect

    Sole, M.; Porte, C.; Albaiges, J. . Dept. of Environmental Chemistry)

    1995-01-01

    Seasonal variations in the mixed-function oxygenase (MFO) system components (cytochrome P450, 418 peak, and NADPH-cytochrome c[P450] reductase) and antioxidant enzymes (catalase, superoxide dismutase [SOD], glutathione peroxidase [GPX], and DT-diaphorase) of the mussel Mytilus galloprovincialis have been evaluated. Its relation with contaminant body burden (PAHs, PCBs, DDTs, and lindane) as well as environmental parameters (water temperature, salinity, oxygen concentrations, and suspended matter) was determined. As a general trend, low MFO and antioxidant enzyme activities were detected in February--March, a peak in late April, and a gradual decrease with a minimum in June. This pattern was similar to tissue concentrations of PAHs, PCBs, DDTs, and lindate normalized to lipid weight. Cytochrome P450 content, however, exhibited a steady decrease from February to June. The observed seasonal variations are presumably related to the metabolic status of the animal, itself dependent on such factors as gonadal ripening, food availability, and the hydrological cycle, which regulates productivity in the area.

  19. Transduction of PEP-1-heme oxygenase-1 fusion protein reduces myocardial ischemia/reperfusion injury in rats.

    PubMed

    He, Xiang-Hu; Wang, Yun; Yan, Xue-Tao; Wang, Yan-Lin; Wang, Cheng-Yao; Zhang, Zong-Ze; Li, Hui; Jiang, Hai-Xing

    2013-11-01

    Recent studies have uncovered that overexpression of heme oxygenase-1 (HO-1) by induction or gene transfer provides myocardial protection. In the present study, we investigated whether HO-1 protein mediated by cell-penetrating peptide PEP-1 could confer cardioprotection in a rat model of myocardial ischemia/reperfusion (I/R) injury. Male Sprague-Dawley rats were subjected to 30 minutes of ischemia by occluding the left anterior descending coronary artery and to 120 minutes of reperfusion to prepare the model of I/R. Animals were randomized to receive PEP-1-HO-1 fusion protein or saline 30 minutes before a 30-minute occlusion. I/R increased myocardial infarct size and levels of malondialdehyde, serum tumor necrosis factor alpha, and interleukin 6 and reduced myocardial superoxide dismutase activity. Administration of PEP-1-HO-1 reduced myocardial infarct size and levels of malondialdehyde, serum tumor necrosis factor alpha, and interleukin 6 and increased myocardial superoxide dismutase and HO-1 activities. His-probe protein was only detected in PEP-1-HO-1-transduced hearts. In addition, transduction of PEP-1-HO-1 markedly reduced elevated myocardial tissue nuclear factor-κB induced by I/R. The results suggested that transduction of PEP-1-HO-1 fusion protein decreased myocardial reperfusion injury, probably by attenuating the production of oxidants and proinflammatory cytokines regulated by nuclear factor-κB. PMID:23921302

  20. eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells.

    PubMed

    Jun, Young-Jin; Lee, Minsup; Shin, Taisun; Yoon, Nayoung; Kim, Ji-Hoe; Kim, Hyeung-Rak

    2014-01-01

    Eckol isolated from Ecklonia stolonifera was previously reported to exhibit cytoprotective activity with its intrinsic antioxidant activity in in vitro studies. In this study, we characterized the mechanism underlying the eckol-mediated the expression of heme oxygenase-1 (HO-1). Eckol suppressed the production of intracellular reactive oxygen species and increased glutathione level in HepG2 cells. Eckol treatment enhanced the expression of HO-1 at the both level of protein and mRNA in HepG2 cells. Enhanced expression of HO-1 by eckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and increased transcriptional activity. c-Jun NH2-terminal kinases (JNKs) and PI3K/Akt contributed to Nrf2-mediated HO-1 expression. These results demonstrate that the eckol-mediated expression of HO-1 in HepG2 cells is regulated by Nrf2 activation via JNK and PI3K/Akt signaling pathways, suggesting that eckol may be used as a natural antioxidant and cytoprotective agent. PMID:25268719

  1. Heme oxygenase-1 induction attenuates imiquimod-induced psoriasiform inflammation by negative regulation of Stat3 signaling.

    PubMed

    Zhang, Bin; Xie, Sijing; Su, Zhonglan; Song, Shiyu; Xu, Hui; Chen, Gang; Cao, Wangsen; Yin, Shasha; Gao, Qian; Wang, Hongwei

    2016-01-01

    Heme oxygenase-1 (HO-1), a stress-inducible protein with a potential anti-inflammatory effect, plays an important role in skin injury and wound healing. However, the function of HO-1 in cutaneous inflammatory diseases, such as psoriasis, remains unknown. The abnormal activation of Stat3, a known transcription factor that induces inflammation and regulates cell differentiation, is directly involved in the pathogenesis and development of psoriasis. Hence, targeting Stat3 is potentially beneficial in the treatment of psoriasis. In this study, HO-1 activation significantly alleviated the disease-related pathogenesis abnormality. To determine the mechanism by which HO-1 exerts immune protection on Th17-related cytokines, IL6/IL22-induced Stat3 activation was significantly suppressed, accompanied by decreased cell proliferation and reversed abnormal cell proliferation. Importantly, HO-1-induced Stat3 suppression was mediated through the activation of protein tyrosine phosphatase SHP-1. Overall, our study provides direct evidence indicating that HO-1 might be a useful therapeutic target for psoriasis. SHP-1-mediated suppression of Stat3 activation after HO-1 activation is a unique molecular mechanism for the regulation of Stat3 activation. PMID:26893174

  2. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Hayashi, Yuuki; Yasugi, Fumitaka; Arai, Munehito

    2015-01-01

    Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD. PMID:25837679

  3. Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin.

    PubMed

    Lv, Xin; Song, Dong-mei; Niu, Ying-hao; Wang, Bao-shan

    2016-04-01

    It has been previously reported that cisplatin is a well-known anticancer drug being used against a wide range of malignancies including head and neck, ovarian and non-small cell lung carcinoma, and demonstrated its anticancer activity by reacting with DNA or changing cell structure, immune response, reactive oxygen species level (ROS). In this research we proved that cisplatin induced cell injuries and heme oxygenase-1 (HO-1) expression in laryngeal squamous cell cancer Hep-2 cells through ROS generation. The induction of HO-1 clearly protected Hep-2 cells from cisplatin-induced cell death and ROS reaction, and the inhibitor of HO-1 enhanced the cell death and ROS generation induced by cisplatin. Furthermore, the HO-1 expression induced by cisplatin was strongly inhibited by the knockdown of nuclear factor-erythroid-2-related factor-2 (Nrf-2), and the oxidative damages induced by cisplatin were significantly enhanced. Therefore, it may be concluded that the inhibition of HO-1 or the knockdown of Nrf-2 significantly enhanced cisplatin's anticancer effects on Hep-2 cells. In clinic, with the overexpression of HO-1 in laryngeal squamous cancer tissues, the combination of cisplatin with the inhibitor of HO-1 or Nrf-2 siRNA may act as a new method to the treatment of laryngeal squamous cancer. PMID:26801320

  4. Source and identity of compounds in a thermomechanical pulp mill effluent inducing hepatic mixed-function oxygenase activity in fish

    SciTech Connect

    Martel, P.H.; Kovacs, T.G.; O`Connor, B.I.; Voss, R.H.

    1997-11-01

    The source and identity of two mixed-function oxygenase (MFO)-inducing substances present in the primary-treated effluent of a thermomechanical pulp (TMP) mill producing newsprint was determined. The source was pinpointed by exposing rainbow trout (Oncorhynchus mykiss) to various process effluents sampled throughout the mill. Exposure concentrations were based on the flow of these process streams in relation to the final effluent flow. Contaminated TMP steam condensates were identified as the major process source of MFO-inducing substances. Using conventional extraction and fractionation procedures, an MFO-inducing fraction was isolated. The major gas chromatographic peaks in this fraction were identified by gas chromatography/mass spectrometry as juvabione, dehydrojuvabione, and manool, all naturally occurring extractives in balsam fix (Abies balsamea). These substances were extracted and isolated from balsam fir and TMP condensates. Trout exposed to juvabione and dehydrojuvabione responded by exhibiting significant hepatic MFO inductions. No MFO induction was observed for manool. Secondary treatment in an activated sludge system effectively eliminated the MFO-inducing potential of the combined mill effluent consistent with a corresponding 90% reduction of both juvabione and dehydrojuvabione.

  5. Adiponectin-Mediated Heme Oxygenase-1 Induction Protects Against Iron-Induced Liver Injury via a PPARα-Dependent Mechanism

    PubMed Central

    Lin, Heng; Yu, Chun-Hsien; Jen, Chih-Yu; Cheng, Ching-Feng; Chou, Ying; Chang, Chih-Cheng; Juan, Shu-Hui

    2010-01-01

    Protective effects of adiponectin (APN; an adipocytokine) were shown against various oxidative challenges; however, its therapeutic implications and the mechanisms underlying hepatic iron overload remain unclear. Herein, we show that the deleterious effects of iron dextran on liver function and iron deposition were significantly reversed by adiponectin gene therapy, which was accompanied by AMP-activated protein kinase (AMPK) phosphorylation and heme oxygenase (HO)-1 induction. Furthermore, AMPK-mediated peroxisome proliferator-activated receptor-α (PPARα) activation by APN was ascribable to HO-1 induction. Additionally, we revealed direct transcriptional regulation of HO-1 by the binding of PPARα to a PPAR-responsive element (PPRE) by various experimental assessments. Interestingly, overexpression of HO-1 in hepatocytes mimicked the protective effect of APN in attenuating iron-mediated injury, whereas it was abolished by SnPP and small interfering HO-1. Furthermore, bilirubin, the end-product of the HO-1 reaction, but not CO, protected hepatocytes from iron dextran-mediated caspase activation. Herein, we demonstrate a novel functional PPRE in the promoter regions of HO-1, and APN-mediated HO-1 induction elicited an antiapoptotic effect and a decrease in iron deposition in hepatocytes subjected to iron challenge. PMID:20709802

  6. Expression of Heme Oxygenase-1 in Thick Ascending Loop of Henle Attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Drummond, Heather A.; Gousette, Monette U.; Storm, Megan V.; Abraham, Nader G.; Csongradi, Eva

    2012-01-01

    Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139±3 versus 153±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments,. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption. PMID:22323644

  7. An improved method for purification of recombinant truncated heme oxygenase-1 by expanded bed adsorption and gel filtration.

    PubMed

    Hu, Hong-Bo; Wang, Wei; Han, Ling; Zhou, Wen-Pu; Zhang, Xue-Hong

    2007-03-01

    Recombinant truncated human heme oxygenase-1 (hHO-1) expressed in Escherichia coli was efficiently separated and purified from feedstock by DEAE-ion exchange expanded bed adsorption. Protocol optimization of hHO-1 on DEAE adsorbent resulted in adsorption in 0 M NaCl and elution in 150 mM NaCl at a pH of 8.5. The active enzyme fractions separated from the expanded bed column were further purified by a Superdex 75 gel filtration step. The specific hHO-1 activity increased from 0.82 +/- 0.05 to 24.8 +/- 1.8 U/mg during the whole purification steps. The recovery and purification factor of truncated hHO-1 of the whole purification were 72.7 +/- 4.7 and 30.2 +/- 2.3%, respectively. This purification process can decrease the demand on the preparation of feedstock and simplify the purification process. PMID:17160582

  8. Comparison of the crystal structure and function to wild-type and His25Ala mutant human heme oxygenase-1.

    PubMed

    Zhou, Wen-Pu; Zhong, Wen-Wei; Zhang, Xue-Hong; Ding, Jian-Ping; Zhang, Zi-Li; Xia, Zhen-Wei

    2009-03-01

    Human heme oxygenase-1 (hHO-1) is a rate-limiting enzyme in heme metabolism. It regulates serum bilirubin level. Site-directed mutagenesis studies indicate that the proximal residue histidine 25 (His25) plays a key role in hHO-1 activity. A highly purified hHO-1 His25Ala mutant was generated and crystallized with a new expression system. The crystal structure of the mutant was determined by X-ray diffraction technology and molecular replacement at the resolution of 2.8 A, and the model of hHO-1 His25Ala mutant was refined. The final crystallographic and free R factors were 0.245 and 0.283, respectively. The standard bond length deviation was 0.007 A, and the standard bond angle deviation was 1.3 degrees . The mutation of His25 to Ala led to an empty pocket underneath the ferric ion in the heme, leading to loss of binding iron ligand. Although this did not cause an overall structural change, the enzymatic activity of the mutant hHO-1 was reduced by 90%. By supplementing imidazole, the HO-1 activity was restored approximately 90% to its normal level. These data suggest that Ala25 remains unchanged in the structure compared to His25, but the important catalytic function of hHO-1 is lost. Thus, it appears that His25 is a crucial residue for proper hHO-1 catalysis. PMID:19212657

  9. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    PubMed

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury. PMID:15474356

  10. Upregulation of heme oxygenase and collagen type III in the rat bladder after partial bladder outlet obstruction.

    PubMed

    Inaba, Mitsuhiko; Ukimura, Osamu; Yaoi, Takeshi; Kawauchi, Akihiro; Fushiki, Shinji; Miki, Tsuneharu

    2007-01-01

    The objective of the study was to evaluate possible changes of the gene expression and localization of the enzymes, heme oxygenase and nitric oxide synthase (NOS), with reference to increase of collagen type III in response to the partial obstruction of the bladder. Following initial obstruction, whole rat bladders were removed for real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Real-time RT-PCR demonstrated significantly enhanced expression of HO (p < 0.01) and collagen type III (p < 0.001) gene on postoperative day 14. Enhanced expression of NOS gene was seen only on postoperative day 4 (p < 0.01). Immunohistochemistry revealed that immunoreactivity to HO-1 had much in common in neural cells and fibers, although immunoreactivity to HO-2 and iNOS was relatively weak. This study suggested gene expression of HO, especially HO-1, was more dramatically changed than NOS, and was upregulated simultaneously with increase of collagen type III after obstruction. HO systems could be involved in the pathogenesis of bladder dysfunction related to increase of collagen type III after obstruction. PMID:17406140

  11. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1.

    PubMed

    Yang, Haibo; Wang, Qingjun; Li, Sutong

    2016-03-18

    Emerging evidence has demonstrated that microRNAs (miRNAs) play a mediatory role in the pathogenesis of diabetic nephropathy. In this study, we found that miR-218 was upregulated in high glucose (HG) treated podocytes, which are essential components of the glomerular filtration barrier and a major prognostic determinant in diabetic nephropathy. Additionally, up-regulation of miR-218 was accompanied by an increased rate of podocyte death and down-regulation in the level of nephrin, a key marker of podocytes. However, inhibition of miR-218 exerted the opposite effect. In addition, the dual-luciferase reporter assay showed that miR-218 directly targeted the 3'-untranslated region of heme oxygenase-1 (HO-1), and further study confirmed an increase of HO-1 in HG-treated podocytes transfected with anti-miR-218. Knockdown of HO-1 blocked the anti-apoptotic effect of anti-miR-218. Furthermore, inhibition of miR-218 was associated with decreased expression of the known pro-apoptotic molecule p38-mitogen-activated protein kinase (p38-MAPK) activation. Following preconditioning with SB203580, an inhibitor of p38-MAPK, the stimulatory effect of HG on podocyte apoptosis was strikingly ameliorated. These findings suggested that miR-218 accelerated HG-induced podocyte apoptosis through directly down-regulating HO-1 and facilitating p38-MAPK activation. PMID:26876575