Science.gov

Sample records for 2-nitroimidazole hypoxic cell

  1. Detection of hypoxic cells with the 2-nitroimidazole, EF5, correlates with early redox changes in rat brain after perinatal hypoxia-ischemia.

    PubMed

    Bergeron, M; Evans, S M; Sharp, F R; Koch, C J; Lord, E M; Ferriero, D M

    1999-01-01

    The hypoxia-dependent activation of nitroheterocyclic drugs by cellular nitroreductases leads to the formation of intracellular adducts between the drugs and cellular macromolecules. Because this covalent binding is maximal in the absence of oxygen, detection of bound adducts provides an assay for estimating the degree of cellular hypoxia in vivo. Using a pentafluorintated derivative of etanidazole called EF5, we studied the distribution of EF5 adducts in seven-day-old rats subjected to different treatments which decrease the level of oxygen in the brain. EF5 solution was administered intraperitoneally 30 min prior to each treatment. The effect of acute and chronic hypoxia on EF5 adduct formation (binding) was studied in the brain of newborn rats exposed to global hypoxia (8% O2 for 30, 90 or 150 min) and in the brain of chronically hypoxic rat pups with congenital cardiac defects (Wistar Kyoto). The effect of combined hypoxia-ischemia was investigated in rat pups subjected to right carotid coagulation and concurrent exposure to 8% O2 for 30, 90 or 150 min. Brains were frozen immediately at the end of each treatment. Using a Cy3-conjugated monoclonal mouse antibody (ELK3-51) raised against EF5 adducts, hypoxic cells within brain regions were visualized by fluorescence immunocytochemistry. Brains from controls or vehicle-injected animals showed no EF5 binding. Notably, brains from animals which were chronically hypoxemic as a result of congenital cardiac defects also showed no EF5 binding. A short exposure (30 min) to hypoxia or to combined hypoxia-ischemia resulted in increased background stain and few scattered cells with low-intensity immunostaining. Acute hypoxia exposure of at least 90-150 min, which in this age animal does not result in frank cellular damage, produced patchy areas of low- to moderate-intensity fluorescence scattered throughout the brain. In contrast, 90-150 min of hypoxia-ischemia was associated with intense immunofluorescence in the

  2. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    SciTech Connect

    Panicucci, R.; Heal, R.; Laderoute, K.; Cowan, D.; McClelland, R.A.; Rauth, A.M.

    1989-04-01

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 is reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.

  3. Immunocytochemical labelling of aerobic and hypoxic mammalian cells using a platinated derivative of EF5.

    PubMed Central

    Matthews, J.; Adomat, H.; Farrell, N.; King, P.; Koch, C.; Lord, E.; Palcic, B.; Poulin, N.; Sangulin, J.; Skov, K.

    1996-01-01

    The monoclonal antibody ELK3-51 was previously developed to detect adducts of the 2-nitroimidazole EF5. Direct immunofluorescence was used to detect adducts of EF5 or of a platinated derivative cis-[PtCl2(NH3)EF5] in SCCVII cells treated under aerobic or hypoxic conditions. Fluorescence measurements of these cells using both image and flow cytometric methods were compared, giving similar profiles. Platination significantly decreased immunofluorescence levels (approximately 4-fold less than EF5) after 3 h in hypoxia, but also increased levels after exposure in air (approximately 1.5 x) such that the hypoxic ratio decreased from approximately 50 to approximately 13. Platinated EF5 also showed significantly greater cytotoxicity than its parent in both aerobic and hypoxic cells. These results are consistent with targeting of EF5 to DNA, which was confirmed qualitatively by confocal microscopy. Images Figure 1 PMID:8763880

  4. Immunocytochemical labelling of aerobic and hypoxic mammalian cells using a platinated derivative of EF5.

    PubMed

    Matthews, J; Adomat, H; Farrell, N; King, P; Koch, C; Lord, E; Palcic, B; Poulin, N; Sangulin, J; Skov, K

    1996-07-01

    The monoclonal antibody ELK3-51 was previously developed to detect adducts of the 2-nitroimidazole EF5. Direct immunofluorescence was used to detect adducts of EF5 or of a platinated derivative cis-[PtCl2(NH3)EF5] in SCCVII cells treated under aerobic or hypoxic conditions. Fluorescence measurements of these cells using both image and flow cytometric methods were compared, giving similar profiles. Platination significantly decreased immunofluorescence levels (approximately 4-fold less than EF5) after 3 h in hypoxia, but also increased levels after exposure in air (approximately 1.5 x) such that the hypoxic ratio decreased from approximately 50 to approximately 13. Platinated EF5 also showed significantly greater cytotoxicity than its parent in both aerobic and hypoxic cells. These results are consistent with targeting of EF5 to DNA, which was confirmed qualitatively by confocal microscopy. PMID:8763880

  5. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent "Pimonidazole" in Hypoxia.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Feng, Fei; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Kuge, Yuji

    2016-01-01

    Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH. PMID:27580239

  6. Clinical perspectives for the use of new hypoxic cell sensitizers

    SciTech Connect

    Brown, J.M.

    1982-09-01

    Experience with high pressure oxygen in combination with radiotherapy has shown that, for some tumors at least, the presence of hypoxic cells is a limiting factor in the ability to cure these tumors even with conventional daily fractionation. This suggests that hypoxic cell radiosensitizers, of which misonidazole (MISO) is the prototype drug, may play a role in improving the cure-rate of some tumors when combined with daily fractionation. Even for those tumors for which no improvement is seen when combined with daily fractionation, it is likely that there will be an important role for these sensitizers by using them in combination with regimens of only a few dose fractions. Because of the limiting side effects of neuropathy, a less toxic radiosensitizer than MISO is required to gain the full clinical benefit of these drugs. A possible way of achieving this is to reduce the lipid solubility (lipophilicity) of the compounds while still retaining their electron-affinity. This reduces the concentration of drug in the neural tissues (brain, peripheral nerves) without affecting the tumor concentration. However, if the lipophilicity is too low, the drugs are unable to enter the hypoxic cells and hence lose their radiosensitivity efficiency. It would appear that a lipophilicity given by an octanol:water partition coefficient of approximately 0.04 is optimum (cf. MISO = 0.43) with the 2-nitroimidazole amide SR-2508 the best in this series. Tumor levels of this drug of at least 7-8 times those obtained with MISO should be attainable clinically for no increase in neurotoxicity. Another property of electron-affinic sensitizers shows clinical promise. This is their ability to preferentially sensitize tumors compared to normal tissues to the cytotoxic action of several chemotherapeutic agents.

  7. S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid: a model for potential bioreductively activated prodrugs for inhibitors of nitric oxide synthase (NOS) activity.

    PubMed

    Ulhaq, S; Naylor, M A; Chinje, E C; Threadgill, M D; Stratford, I J

    1997-01-01

    Treatment of 1,1-dimethylethyl S-(2-1,1-dimethylethoxycarbonylamino)-5-bromopentanoate with 1-potassio-2-nitroimidazole, followed by deprotection, afforded S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid, which was reduced to S-2-amino-5-(2-aminoimidazol-1-yl)pentanoic acid. This aminoimadazole inhibited rat brain nitric oxide synthase (NOS) activity 3.2 times more potently than did the nitro analogue. Thus S-2-amino-5-(2-nitroimidazol-1-yl)pentanoic acid is a potent prodrug which may be bioreductively activated to a NOS inhibitor in hypoxic solid tumours. PMID:9051114

  8. The Search for New Hypoxic Cell Radiosensitizers

    PubMed Central

    Mansfield, Carl M.; Kimler, Bruce F.; Cheng, C.C.; Abrahams, Iris L.; Podrebarac, Eugene G.; Wittek, Philip J.; Reddy, Eashwer K.

    1980-01-01

    A number of newly synthesized compounds whose chemical structure suggested possible or remotely possible ability to radiosensitize hypoxic mammalian cells were studied in an in-vitro system. Those compounds that were not excluded because of insolubility or extreme cytotoxicity were tested for radiosensitizing ability. The correlation between chemical structure and radiosensitizing ability will be used for the rational design of additional compounds with a high probability of being effective hypoxic cell radiosensitizers. It is hoped that this will contribute to attempts to improve the cure rate of patients with malignant tumors through the use of radiation therapy and hypoxic cell radiosensitizers. PMID:7401185

  9. Activation of radiosensitizers by hypoxic cells.

    PubMed Central

    Olive, P. L.; Durand, R. E.

    1978-01-01

    Hypoxic cells can metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighbouring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitroreductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the "active" specie (s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. PMID:354676

  10. DNA-Targeted 2-Nitroimidazoles: Studies of the Influence of the Phenanthridine-Linked Nitroimidazoles, 2-NLP-3 and 2-NLP-4, on DNA Damage Induced by Ionizing Radiation

    SciTech Connect

    Buchko, Garry W. ); Weinfeld, Michael

    2002-01-01

    The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl1]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine via a 3- and 4-carbon linker, respectively. Previous in vitro assays show both compounds to be 10 - 100 times more efficient as hypoxic cell radiosensitizer, misonidazole[Cowan et al., Radiat. Res. 127, 81-89, 1991]. Here we have used a 32P postlabeling assay and 5'-end labeled oligonucleotide assay to compare the radiogenic DNA damage generated in the presence of 2-NLP-3, 2-NLP-4 compared to irradiation in the presence of misonidazole. This may account, at least in part, for the greater cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole.

  11. Dendritic cell reprogramming by the hypoxic environment.

    PubMed

    Bosco, Maria Carla; Varesio, Luigi

    2012-12-01

    Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined. PMID:22901977

  12. Hypoxic cell turnover in different solid tumor lines

    SciTech Connect

    Ljungkvist, Anna S.E. . E-mail: a.ljungkvist@rther.umcn.nl; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-07-15

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h.

  13. The Effect of Hypoxic Preconditioning on Induced Schwann Cells under Hypoxic Conditions

    PubMed Central

    Chen, Ou; Wu, Miaomiao; Jiang, Liangfu

    2015-01-01

    Object Our objective was to explore the protective effects of hypoxic preconditioning on induced Schwann cells exposed to an environment with low concentrations of oxygen. It has been observed that hypoxic preconditioning of induced Schwann cells can promote axonal regeneration under low oxygen conditions. Method Rat bone marrow mesenchymal stem cells (MSCs) were differentiated into Schwann cells and divided into a normal oxygen control group, a hypoxia-preconditioning group and a hypoxia group. The ultrastructure of each of these groups of cells was observed by electron microscopy. In addition, flow cytometry was used to measure changes in mitochondrial membrane potential. Annexin V-FITC/PI staining was used to detect apoptosis, and Western blots were used to detect the expression of Bcl-2/Bax. Fluorescence microscopic observations of axonal growth in NG-108 cells under hypoxic conditions were also performed. Results The hypoxia-preconditioning group maintained mitochondrial cell membrane and crista integrity, and these cells exhibited less edema than the hypoxia group. In addition, the cells in the hypoxia-preconditioning group were found to be in early stages of apoptosis, whereas cells from the hypoxia group were in the later stages of apoptosis. The hypoxia-preconditioning group also had higher levels of Bcl-2/Bax expression and longer NG-108 cell axons than were observed in the hypoxia group. Conclusion Hypoxic preconditioning can improve the physiological state of Schwann cells in a severe hypoxia environment and improve the ability to promote neurite outgrowth. PMID:26509259

  14. Therapeutic attack of hypoxic cells of solid tumors: presidential address.

    PubMed

    Sartorelli, A C

    1988-02-15

    Hypoxic cells of solid tumors are relatively resistant to therapeutic assault. Studies have demonstrated that oxygen-deficient tumor cells exist in an environment conducive to reductive reactions making hypoxic cells particularly sensitive to bioreductive alkylating agents. Mitomycin C, the prototype bioreductive alkylating agent available for clinical use, is capable of preferentially killing oxygen-deficient cells both in vitro and in vivo. This phenomenon is at least in part the result of differences in the uptake and metabolism of mitomycin C by hypoxic and oxygenated tumor cells, with the ultimate critical lesion being the cross-linking of DNA by the mitomycin antibiotic. The combination of mitomycin C with X-irradiation, to attack hypoxic and oxygenated tumor cell populations, respectively, has led to enhanced antitumor effects in mice bearing solid tumor implants and in patients with cancer of the head and neck. More efficacious kill of hypoxic tumor cells may be possible by the use of dicoumarol in combination with mitomycin or by the use of the related antibiotic porfiromycin. The findings support the use of an agent with specificity for hypoxic tumor cells in potentially curative regimens for solid tumors. PMID:3123053

  15. Tracking hypoxic signaling within encapsulated cell aggregates.

    PubMed

    Skiles, Matthew L; Sahai, Suchit; Blanchette, James O

    2011-01-01

    , is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 10(10) pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion. Western blot analysis of encapsulated cells in 20% and 1% oxygen also

  16. Tracking Hypoxic Signaling within Encapsulated Cell Aggregates

    PubMed Central

    Skiles, Matthew L.; Sahai, Suchit; Blanchette, James O.

    2011-01-01

    nutrients, notably oxygen, is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen11-13. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated14. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling15. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously15. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 1010 pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion15. Western blot analysis of encapsulated

  17. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    PubMed Central

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.

    2013-01-01

    Abstract. Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia. PMID:23764695

  18. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Zanganeh, Saeid; Mohammad, Innus; Aguirre, Andres; Wang, Tianheng; Yang, Yi; Kuhn, Liisa; Smith, Michael B.; Zhu, Quing

    2013-06-01

    Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia.

  19. Development of a real-time imaging system for hypoxic cell apoptosis

    PubMed Central

    Kagiya, Go; Ogawa, Ryohei; Hyodo, Fuminori; Yamashita, Kei; Nakamura, Mizuki; Ishii, Ayumi; Sejimo, Yukihiko; Tominaga, Shintaro; Murata, Masaharu; Tanaka, Yoshikazu; Hatashita, Masanori

    2016-01-01

    Hypoxic regions within the tumor form due to imbalances between cell proliferation and angiogenesis; specifically, temporary closure or a reduced flow due to abnormal vasculature. They create environments where cancer cells acquire resistance to therapies. Therefore, the development of therapeutic approaches targeting the hypoxic cells is one of the most crucial challenges for cancer regression. Screening potential candidates for effective diagnostic modalities even under a hypoxic environment would be an important first step. In this study, we describe the development of a real-time imaging system to monitor hypoxic cell apoptosis for such screening. The imaging system is composed of a cyclic luciferase (luc) gene under the control of an improved hypoxic-responsive promoter. The cyclic luc gene product works as a caspase-3 (cas-3) monitor as it gains luc activity in response to cas-3 activation. The promoter composed of six hypoxic responsible elements and the CMV IE1 core promoter drives the effective expression of the cyclic luc gene in hypoxic conditions, enhancing hypoxic cell apoptosis visualization. We also confirmed real-time imaging of hypoxic cell apoptosis in the spheroid, which shares properties with the tumor. Thus, this constructed system could be a powerful tool for the development of effective anticancer diagnostic modalities. PMID:26966700

  20. Correlation between drug uptake and selective toxicity of porfiromycin to hypoxic EMT6 cells.

    PubMed

    Keyes, S R; Rockwell, S; Sartorelli, A C

    1987-11-01

    Mitomycin C and its methylated analogue porfiromycin (Por) have significant potential as adjuncts to regimens presently used for treating solid tumors because of their preferential toxicity to cells existing in an hypoxic environment. An understanding of the factors producing the differential activity of these drugs under aerobic and hypoxic conditions would facilitate the development of new agents of this class. Previous studies have focused on the enzymes that reductively activate the mitomycins and on the interaction of these drugs with DNA; none of these studies has fully explained the differences in cytotoxicity observed under hypoxic and aerobic conditions. The present investigation demonstrates that the rate of Por uptake is directly correlated with cytotoxicity under both aerobic and hypoxic conditions. Uptake of Por into hypoxic cells is more rapid than into aerobic cells at equal drug concentrations. Hypoxic cells also accumulate drug in concentrations well in excess of those in the extracellular medium; this is apparently a reflection of drug sequestration in these cells. This sequestration of Por, which affects the rate and extent of uptake in hypoxic cells, does not take place in aerobic cells. The failure of aerobic cells to sequester drug is evidenced by the very rapid efflux of Por from these cells upon removal of extracellular Por and by the fact that aerobic cells attain a state of equilibrium between the intracellular and extracellular drug concentrations. The findings demonstrate that differences in the uptake and retention of Por are associated with the preferential toxicity of Por to hypoxic cells. PMID:3664473

  1. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    SciTech Connect

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-16

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2R{gamma}{sup null} (NOG) mice. Hypoxic culture (1% O{sub 2}) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34{sup +}CD38{sup -} cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  2. Some factors affecting the specific toxicity of misonidazole towards hypoxic mammalian cells.

    PubMed Central

    Stratford, I. J.; Gray, P.

    1978-01-01

    The toxic action of misonidazole towards hypoxic mammalian cells has been shown to be a function of serum concentration, with higher serum concentrations enhancing the toxic effect. Added thiols protect cells against misonidazole toxicity. In addition, the action of misonidazole on hypoxic cells labelled with 5-BUdR has been examined. Cells with incroported 5-BUdR are no more sensitive to misonidazole toxicity than are cells without label. PMID:277212

  3. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Gonzales-Portillo, Gabriel S.; Reyes, Stephanny; Aguirre, Daniela; Pabon, Mibel M.; Borlongan, Cesar V.

    2014-01-01

    Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke and providing insights on the potential of cell therapy currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in stem cell therapeutics as an emerging paradigm for stroke or STEPS, which have been recently modified to Baby STEPS to cater for the “neonatal” symptoms of HIE. These guidelines recognized that neonatal HIE exhibit distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE. PMID:25161645

  4. Screening and identification of a specific peptide for targeting hypoxic hepatoma cells.

    PubMed

    Liu, Yiming; Xia, Xiangwen; Wang, Yong; Li, Xin; Zhou, Guofeng; Liang, Huiming; Feng, Gansheng; Zheng, Chuansheng

    2016-08-01

    The biological behaviors of residual hepatoma cells after transarterial embolization therapy, which exist in a hypoxic or even anaerobic tumor microenvironment, differ from the tumor cells under normoxic conditions. This study aimed to use a phage display peptide library for in vivo and in vitro screening to obtain a peptide which could specifically bind to hypoxic hepatoma cells, allowing further targeted diagnosis and treatment for liver cancer. In this study, hypoxic hepatoma cells HepG2 (targeted cells), and normal liver cells HL-7702 (control cells), were utilized to perform three rounds of in vitro screening using a phage-displayed 7-mer peptide library. In addition, hypoxic HepG2 were subcutaneously injected into nude mice to establish a hepatocarcinoma model, followed by performing three rounds of in vivo screening on the phages identified from the in vitro screening. The products from the screening were further identified using ELISA and immunofluorescence staining on cells and tissues. The results indicated that the P11 positive clone had the highest binding effect with hypoxic hepatoma cells. The sequence of the exogenous insert fragment of P11 positive clone was obtained by sequencing: GSTSFSK. The binding assay indicated that GSTSFSK could specifically bind to hypoxic hepatoma cells and hepatocarcinoma tissues. This 7-mer peptide has the potential to be developed as an useful molecular to the targeting diagnosis and treatment of residual hepatoma cells after transarterial chemoembolization. PMID:27381416

  5. Puerarin Induces Mitochondria-Dependent Apoptosis in Hypoxic Human Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Chen, Chan; Chen, Chun; Wang, Zhiyi; Wang, Liangxing; Yang, Lehe; Ding, Minjiao; Ding, Cheng; Sun, Yu; Lin, Quan; Huang, Xiaoying; Du, Xiaohong; Zhao, Xiaowei; Wang, Chuangyi

    2012-01-01

    Background Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH) is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs), and to determine the possible underlying mechanisms. Methodology/Principal Findings HPASMCs were cultured for 24 h in normoxia or hypoxia (5% O2) conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123) fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more) intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. Conclusions/Significance Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension. PMID:22457823

  6. Targeting tumor hypoxia: a third generation 2-nitroimidazole-indocyanine dye-conjugate with improved fluorescent yield.

    PubMed

    Zhou, Feifei; Zanganeh, Saeid; Mohammad, Innus; Dietz, Christopher; Abuteen, Akram; Smith, Michael B; Zhu, Quing

    2015-12-14

    Tumor hypoxia is associated with the rapid proliferation and growth of malignant tumors, and the ability to detect tumor hypoxia is important for predicting tumor response to anti-cancer treatments. We have developed a class of dye-conjugates that are related to indocyanine green (ICG, ) to target tumor hypoxia, based on in vivo infrared fluorescence imaging using nitroimidazole moieties linked to indocyanine fluorescent dyes. We previously reported that linking 2-nitroimidazole to an indocyanine dicarboxylic acid dye derivative () using an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG, ), led to a dye-conjugate that gave promising results for targeting cancer hypoxia in vivo. Structural modification of the dye conjugate replaced the ethanolamine unit with a piperazineacetyl unit and led a second generation dye conjugate, piperzine-2-nitroimidazole-ICG (). This second generation dye-conjugate showed improved targeting of tumor hypoxia when compared with . Based on the hypothesis that molecules with more planar and rigid structures have a higher fluorescence yield, as they could release less absorbed energy through molecular vibration or collision, we have developed a new 2-nitroimidazole ICG conjugate, , with two carbon atoms less in the polyene linker. Dye-conjugate was prepared from our new dye (), and coupled to 2-nitroimidazole using a piperazine linker to produce this third-generation dye-conjugate. Spectral measurements showed that the absorption/emission wavelengths of 657/670 were shifted ∼100 nm from the second-generation hypoxia dye of 755/780 nm. Its fluorescence quantum yield was measured to be 0.467, which is about 5 times higher than that of (0.083). In vivo experiments were conducted with balb/c mice and showed more than twice the average in vivo fluorescence intensity in the tumor beyond two hours post retro-orbital injection as compared with . These initial results suggest that may significantly improve in vivo tumor hypoxia targeting

  7. Selective enhancement of hypoxic cell killing by tempol-regulated suicide gene expression.

    PubMed

    Kagiya, Go; Ogawa, Ryohei; Choudhuri, Rajani; Cook, John A; Hatashita, Masanori; Tanaka, Yoshikazu; Koda, Kana; Yamashita, Kei; Kubo, Makoto; Kawakami, Fumitaka; Mitchell, James B

    2015-08-01

    The presence of hypoxic regions within solid tumors is caused by an imbalance between cell proliferation and angiogenesis. Such regions may facilitate the onset of recurrence after radiation therapy and chemotherapy, as hypoxic cells show resistance to these treatments. We found that tempol, a nitroxide, strongly induces the accumulation of hypoxia-inducible factor (HIF)-1α, particularly under conditions of hypoxia. We, therefore, evaluated whether tempol enhances the gene expression via HIF-1α, potentially leading to various applications for cancer gene therapy targeting hypoxic cells. Consequently, following treatment with tempol under hypoxia, the luciferase (Luc) activity in the cells transfected with the plasmid containing the luc gene with the oxygen-dependent degradation domain and a promoter composed of hypoxia-responsive elements increased up to approximately 10-fold compared to that observed in cells treated identically with the exception of tempol. The plasmid constructed by replacing the luc gene with the fcy::fur fusion gene as a suicide gene, strongly induced the accumulation of the Fcy::Fur fusion protein, only when incubated in the presence of the hypoxic mimic CoCl2 and tempol. The transfected cells were successfully killed with the addition of 5-fluorocytosine to the cell culture according to the fcy::fur fusion gene expression. As similar but lesser enhancement of the Luc activity was also observed in solid tumor tissues in nude mice, this strategy may be applied for hypoxic cancer eradication. PMID:26034980

  8. Characterization of radiation resistant hypoxic cell subpopulations in KHT sarcomas. (II). Cell sorting.

    PubMed Central

    Siemann, D. W.; Keng, P. C.

    1988-01-01

    Hypoxic cells in KHT sarcomas were characterized using fluorescence activated cell sorting based on the diffusion properties of the fluorochrome Hoechst 33342. Tumour-bearing female C3H/HeJ mice were injected i.v. with 10 micrograms g-1 Hoechst 33342 and the cells derived from the tumours sorted on the basis of their staining intensities. For each sorted fraction the DNA histogram was evaluated using FCM analysis. The results indicated that the bright and dim cells were not equally distributed about the cell cycle. For example, a greater proportion of S phase cells were in the bright subpopulations whereas the dim subpopulations contained an increased proportion of cells in G1. When the tumours were irradiated with a single dose of radiation prior to cell sorting, the dim cells survived preferentially. Dose response curves for the 20% most dim and 20% most bright cells, sorted on the basis of fluorescence intensity, then were determined. The survival curves of the dim and bright cells were found to have slopes similar to those of KHT cells irradiated in situ in dead animals or in vitro under fully oxic conditions, respectively. In addition, when KHT sarcoma-bearing mice were given a 2.5 mmol kg-1 dose of misonidazole (MISO) prior to irradiation and cell sorting, the dim subpopulation was sensitized whereas the bright subpopulation was not. These findings suggest that (i) compared to well-oxygenated areas, hypoxic regions of KHT tumours contain a smaller percentage of cells actively proliferating and (ii) Hoechst 33342 sorting may allow the detailed in situ evaluation of agents acting directly against hypoxic cells in solid tumours. PMID:3179180

  9. C-1027, a radiomimetic enediyne anticancer drug, preferentially targets hypoxic cells.

    PubMed

    Beerman, Terry A; Gawron, Loretta S; Shin, Seulkih; Shen, Ben; McHugh, Mary M

    2009-01-15

    The hypoxic nature of cells within solid tumors limits the efficacy of anticancer therapies such as ionizing radiation and conventional radiomimetics because their mechanisms require oxygen to induce lethal DNA breaks. For example, the conventional radiomimetic enediyne neocarzinostatin is 4-fold less cytotoxic to cells maintained in low oxygen (hypoxic) compared with normoxic conditions. By contrast, the enediyne C-1027 was nearly 3-fold more cytotoxic to hypoxic than to normoxic cells. Like other radiomimetics, C-1027 induced DNA breaks to a lesser extent in cell-free, or cellular hypoxic, compared with normoxic environments. However, the unique DNA interstrand cross-linking ability of C-1027 was markedly enhanced under the same hypoxic conditions that reduced its DNA break induction. Although the unique chemistry of C-1027 allows it to concurrently generate both DNA breaks and cross-links in normoxic cells, a low oxygen environment represses the former and promotes the latter. Thus, treatment with C-1027 offers a facile approach for overcoming the radioresistance associated with poorly oxygenated cells. PMID:19147573

  10. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions.

    PubMed

    Dimeloe, Sarah; Mehling, Matthias; Frick, Corina; Loeliger, Jordan; Bantug, Glenn R; Sauder, Ursula; Fischer, Marco; Belle, Réka; Develioglu, Leyla; Tay, Savaş; Langenkamp, Anja; Hess, Christoph

    2016-01-01

    Effector memory (EM) CD4(+) T cells recirculate between normoxic blood and hypoxic tissues to screen for cognate Ag. How mitochondria of these cells, shuttling between normoxia and hypoxia, maintain bioenergetic efficiency and stably uphold antiapoptotic features is unknown. In this study, we found that human EM CD4(+) T cells had greater spare respiratory capacity (SRC) than did naive counterparts, which was immediately accessed under hypoxia. Consequently, hypoxic EM cells maintained ATP levels, survived and migrated better than did hypoxic naive cells, and hypoxia did not impair their capacity to produce IFN-γ. EM CD4(+) T cells also had more abundant cytosolic GAPDH and increased glycolytic reserve. In contrast to SRC, glycolytic reserve was not tapped under hypoxic conditions, and, under hypoxia, glucose metabolism contributed similarly to ATP production in naive and EM cells. However, both under normoxic and hypoxic conditions, glucose was critical for EM CD4(+) T cell survival. Mechanistically, in the absence of glycolysis, mitochondrial membrane potential (ΔΨm) of EM cells declined and intrinsic apoptosis was triggered. Restoring pyruvate levels, the end product of glycolysis, preserved ΔΨm and prevented apoptosis. Furthermore, reconstitution of reactive oxygen species (ROS), whose production depends on ΔΨm, also rescued viability, whereas scavenging mitochondrial ROS exacerbated apoptosis. Rapid access of SRC in hypoxia, linked with built-in, oxygen-resistant glycolytic reserve that functionally insulates ΔΨm and mitochondrial ROS production from oxygen tension changes, provides an immune-metabolic basis supporting survival, migration, and function of EM CD4(+) T cells in normoxic and hypoxic conditions. PMID:26621861

  11. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells.

    PubMed

    Chapman, J D; Lee, J; Meeker, B E

    1989-04-01

    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3[2,2,2-trifluoroethoxy]-2-propanol). PMID:2649465

  12. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells.

    PubMed

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-08-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4-5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba(2+)-sensitive inward rectifier K(+) current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca(2+) imaging study revealed that the hypoxic stress enhanced store-operated Ca(2+) (SOC) entry, which was significantly reduced in the presence of 100 μM Ba(2+). On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba(2+). We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca(2+) entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. PMID:27235552

  13. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  14. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    SciTech Connect

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita; Begg, Adrian C. . E-mail: a.begg@nki.nl

    2006-02-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.

  15. Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells

    PubMed Central

    Kucharzewska, Paulina; Christianson, Helena C.; Belting, Mattias

    2015-01-01

    Oncogenetic events and unique phenomena of the tumor microenvironment together induce adaptive metabolic responses that may offer new diagnostic tools and therapeutic targets of cancer. Hypoxia, or low oxygen tension, represents a well-established and universal feature of the tumor microenvironment and has been linked to increased tumor aggressiveness as well as resistance to conventional oncological treatments. Previous studies have provided important insights into hypoxia induced changes of the transcriptome and proteome; however, how this translates into changes at the metabolite level remains to be defined. Here, we have investigated dynamic, time-dependent effects of hypoxia on the cancer cell metabolome across all families of macromolecules, i.e., carbohydrate, protein, lipid and nucleic acid, in human glioblastoma cells. Using GC/MS and LC/MS/MS, 345 and 126 metabolites were identified and quantified in cells and corresponding media, respectively, at short (6 h), intermediate (24 h), and prolonged (48 h) incubation at normoxic or hypoxic (1% O2) conditions. In conjunction, we performed gene array studies with hypoxic and normoxic cells following short and prolonged incubation. We found that levels of several key metabolites varied with the duration of hypoxic stress. In some cases, metabolic changes corresponded with hypoxic regulation of key pathways at the transcriptional level. Our results provide new insights into the metabolic response of glioblastoma cells to hypoxia, which should stimulate further work aimed at targeting cancer cell adaptive mechanisms to microenvironmental stress. PMID:25633823

  16. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    PubMed Central

    2011-01-01

    Background Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. Methods In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Results Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Conclusion Our

  17. Modification of SR 2508 sensitization in hypoxic V79 cells by manipulation of glutathione levels

    SciTech Connect

    Phillips, T.L.; Mitchell, J.B.; DeGraff, W.G.; Russo, A.; Albright, N.; Rajpal, R.

    1989-05-01

    This series of experiments employed the hypoxic cell sensitizer SR 2508 in concentrations ranging from 0.1 to 10 mM and V-79 cells irradiated in air or made hypoxic in glass syringes, then irradiated with 15 MV X rays. Using a series of survival curves measured at the various concentrations, K curves relating sensitizer enhancement ratio (SER) to SR 2508 concentration were calculated with normal GSH levels or with depletion of GSH to 0% using 1 mM buthionine sulfoximine (BSO) or elevation to 200% of normal using 1 mM oxothiazolidine carboxylate (OTZ). Survival curves were fitted by computer, allowing calculation of standard errors for the SER values. The depletion of GSH by BSO sensitized hypoxic and aerated cells significantly and caused more than additive enhancement of SR 2508 sensitization in hypoxic cells. Elevation of GSH with OTZ protects cells irradiated in air or hypoxia and reduces the SER obtained with SR 2508. The results further support the importance of GSH levels in influencing sensitization by nitroimidazoles.

  18. Killing Hypoxic Cell Populations in a 3D Tumor Model with EtNBS-PDT

    PubMed Central

    Evans, Conor L.; Abu-Yousif, Adnan O.; Park, Yong Jin; Klein, Oliver J.; Celli, Jonathan P.; Rizvi, Imran; Zheng, Xiang; Hasan, Tayyaba

    2011-01-01

    An outstanding problem in cancer therapy is the battle against treatment-resistant disease. This is especially true for ovarian cancer, where the majority of patients eventually succumb to treatment-resistant metastatic carcinomatosis. Limited perfusion and diffusion, acidosis, and hypoxia play major roles in the development of resistance to the majority of front-line therapeutic regimens. To overcome these limitations and eliminate otherwise spared cancer cells, we utilized the cationic photosensitizer EtNBS to treat hypoxic regions deep inside in vitro 3D models of metastatic ovarian cancer. Unlike standard regimens that fail to penetrate beyond ∼150 µm, EtNBS was found to not only penetrate throughout the entirety of large (>200 µm) avascular nodules, but also concentrate into the nodules' acidic and hypoxic cores. Photodynamic therapy with EtNBS was observed to be highly effective against these hypoxic regions even at low therapeutic doses, and was capable of destroying both normoxic and hypoxic regions at higher treatment levels. Imaging studies utilizing multiphoton and confocal microscopies, as well as time-lapse optical coherence tomography (TL-OCT), revealed an inside-out pattern of cell death, with apoptosis being the primary mechanism of cell killing. Critically, EtNBS-based photodynamic therapy was found to be effective against the model tumor nodules even under severe hypoxia. The inherent ability of EtNBS photodynamic therapy to impart cytotoxicity across a wide range of tumoral oxygenation levels indicates its potential to eliminate treatment-resistant cell populations. PMID:21876751

  19. Cyclooxygenase-2 inhibition attenuates hypoxic cancer cells induced m2-polarization of macrophages.

    PubMed

    Dubey, P; Shrivastava, R; Tripathi, C; Jain, N K; Tewari, B N; Lone, M-U-D; Baghel, K S; Kumar, V; Misra, S; Bhadauria, S; Bhatt, M L B

    2014-01-01

    Tumor-associated macrophages (TAMs), represent a major subpopulation of tumor infiltrating immune cells. These alternatively activated M2-polarized macrophages are well known for their pro-tumor functions. Owing to their established role in potentiating tumor-neovasculogenesis and metastasis, TAMs have emerged as promising target for anti-cancer immunotherapy. One of the key TAMs related phenomenon that is amenable to therapeutic intervention is their phenotype switching into alternatively activated M2-polarized macrophages. Hindering macrophage polarization towards a pro-tumor M2 phenotype, or better still reprogramming the M2 like TAMs towards M1 subtype is being considered a beneficial anti-cancer strategy. Hypoxic tumor milieu has been proposed as one of the most plausible factor governing M2-polarization of macrophages. We recently demonstrated that hypoxic tumor cells imparted a pro—angiogenic M2 skewed phenotype to macrophages. Furthermore, sizeable body of data indicates for participation of cyclooxygenase-2 (COX-2) in macrophage polarization. Concordantly, inhibition of COX-2 is associated with impaired macrophage polarization. Prompted by this in the current study we decided to explore if inhibition of COX-2 activity via chemical inhibitors may prevent hypoxic cancer cell induced M2-polarization of macrophages. We observed that treatment with Flunixin meglumine, an established preferential inhibitor of COX-2 activity markedly inhibited hypoxic cancer cell induced of M2-polarization of macrophages thereby indicating for usage of COX-2 inhibition as possible anti-cancer treatment modality. PMID:25210855

  20. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice

    PubMed Central

    Sonveaux, Pierre; Végran, Frédérique; Schroeder, Thies; Wergin, Melanie C.; Verrax, Julien; Rabbani, Zahid N.; De Saedeleer, Christophe J.; Kennedy, Kelly M.; Diepart, Caroline; Jordan, Bénédicte F.; Kelley, Michael J.; Gallez, Bernard; Wahl, Miriam L.; Feron, Olivier; Dewhirst, Mark W.

    2008-01-01

    Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with α-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential. PMID:19033663

  1. Cytotoxicity and DNA crosslinks produced by mitomycin analogs in aerobic and hypoxic EMT6 cells.

    PubMed

    Keyes, S R; Loomis, R; DiGiovanna, M P; Pritsos, C A; Rockwell, S; Sartorelli, A C

    1991-01-01

    Several mitomycin antibiotics were evaluated for their capacities to kill EMT6 tumor cells and to produce DNA crosslinks under conditions of oxygenation and hypoxia. The agents examined included mitomycin C, porfiromycin, and the 7-aminomethyl dithioacetal derivative of mitomycin C (BMY-43324), all of which caused greater kill of hypoxic cells than of their oxygenated counterparts; the N,N'-dimethylaminomethylene derivative of mitomycin C (BMY-25282), which was considerably more cytotoxic under oxygenated conditions than in hypoxia; and the N,N'-dimethylaminomethylene derivative of porfiromycin (BL-6783), which was equal in its toxicity to hypoxic and oxygenated cells. All of these agents produced DNA crosslinks in EMT6 cells, as measured by alkaline elution. The number of crosslinks required to produce a given amount of cell kill was similar, regardless of the mitomycin employed or the degree of oxygenation, suggesting that the crosslinking of DNA was a major lesion in the cytodestructive action of the mitomycins. PMID:1760250

  2. Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Auchinvole, Craig; Fisher, Kate; Campbell, Colin J.

    2014-09-01

    Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER spectrum we can calculate the localised intracellular redox potential from single hypoxic cells in a non-invasive, reversible way.Hypoxia is considered to be a reductive disorder of cells that is caused either by a lack of oxygen or by the dysregulation of metabolic pathways and is thought to play a role in the pathology of diseases including stroke and cancer. One aspect of hypoxia that remains poorly investigated is the dysregulation of cellular redox potential and its role in controlling biological pathway activation. Since there is currently no way of quantitatively measuring the intracellular redox potential of hypoxic cells, this provided us with the motivation to develop optical nanosensors whose Surface-Enhanced Raman (SER) spectrum provides a quantitative measure of redox potential in hypoxic cells. Our nanosensors are made from organic reporter molecules that show oxidation-state-dependent changes in the Raman spectrum and are chemically adsorbed onto gold nanoshells. These nanosensors can be taken up by cells, and by collecting the SER

  3. Stereotactic Ablative Radiotherapy Should Be Combined With a Hypoxic Cell Radiosensitizer

    SciTech Connect

    Brown, J. Martin; Diehn, Maximilian; Loo, Billy W.

    2010-10-01

    Purpose: To evaluate the effect of tumor hypoxia on the expected level of cell killing by regimens of stereotactic ablative radiotherapy (SABR) and to determine the extent to which the negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer. Results and Discussion: We have calculated the expected level of tumor cell killing from regimens of SABR, both with and without the assumption that 20% of the tumor cells are hypoxic, using the standard linear quadratic model and the universal survival curve modification. We compare the results obtained with our own clinical data for lung tumors of different sizes and with published data from other studies. We also have calculated the expected effect on cell survival of adding the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations. Modeling tumor cell killing with any of the currently used regimens of SABR produces results that are inconsistent with the majority of clinical findings if tumor hypoxia is not considered. However, with the assumption of tumor hypoxia, the expected level of cell killing is consistent with clinical data. For only some of the smallest tumors are the clinical data consistent with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the expected level of tumor cell killing from the large radiation doses used in SABR. Conclusions: The presence of tumor hypoxia is a major negative factor in limiting the curability of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the hypoxic cell radiosensitizer etanidazole.

  4. Loss of CSL Unlocks a Hypoxic Response and Enhanced Tumor Growth Potential in Breast Cancer Cells.

    PubMed

    Braune, Eike-Benjamin; Tsoi, Yat Long; Phoon, Yee Peng; Landor, Sebastian; Silva Cascales, Helena; Ramsköld, Daniel; Deng, Qiaolin; Lindqvist, Arne; Lian, Xiaojun; Sahlgren, Cecilia; Jin, Shao-Bo; Lendahl, Urban

    2016-05-10

    Notch signaling is an important regulator of stem cell differentiation. All canonical Notch signaling is transmitted through the DNA-binding protein CSL, and hyperactivated Notch signaling is associated with tumor development; thus it may be anticipated that CSL deficiency should reduce tumor growth. In contrast, we report that genetic removal of CSL in breast tumor cells caused accelerated growth of xenografted tumors. Loss of CSL unleashed a hypoxic response during normoxic conditions, manifested by stabilization of the HIF1α protein and acquisition of a polyploid giant-cell, cancer stem cell-like, phenotype. At the transcriptome level, loss of CSL upregulated more than 1,750 genes and less than 3% of those genes were part of the Notch transcriptional signature. Collectively, this suggests that CSL exerts functions beyond serving as the central node in the Notch signaling cascade and reveals a role for CSL in tumorigenesis and regulation of the cellular hypoxic response. PMID:27066863

  5. Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche

    SciTech Connect

    Kubota, Yoshiaki; Takubo, Keiyo; Suda, Toshio

    2008-02-08

    In response to changing signals, quiescent hematopoietic stem cells (HSCs) can be induced to an activated cycling state and provide multi-lineage hematopoietic cells to the whole body via blood vessels. However, the precise localization of quiescent HSCs in bone marrow microenvironment is not fully characterized. Here, we performed whole-mount immunostaining of bone marrow and found that BrdU label-retaining cells (LRCs) definitively reside in the sinusoidal hypoxic zone distant from the 'vascular niche'. Although LRCs expressed very low level of a well-known HSC marker, c-kit in normal circumstances, myeloablation by 5-FU treatment caused LRCs to abundantly express c-kit and proliferate actively. These results demonstrate that bone marrow LRCs reside in the sinusoidal hypoxic niche, and function as a regenerative cell pool of HSCs.

  6. Beneficial Effects of Hypoxic Preconditioning on Human Umbilical Cord Mesenchymal Stem Cells.

    PubMed

    Zhang, Li; Yang, Jing; Tian, Yan-Ming; Guo, Hui; Zhang, Yi

    2015-10-31

    As human umbilical cord mesenchymal stem cells (hUC-MSCs) transplanation may be promising in heart failure treatment, it is important to know whether hypoxic preconditioning (HP) promote hUC-MSCs proliferation and differentiation and protect them against chemical hypoxic damages. This study aimed to investigate the effects of HP on proliferation and differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The study also aimed to confirm our hypothesis that HP could promote hUC-MSCs proliferation and differentiation to cardiomyocyte-like cells as well as effectively protecting hUC-MSCs and cardiomyocyte-like cells against chemical hypoxic damages. Isolated hUC-MSCs were cultured in hypoxia at 1%, 3% and 5% O₂ for 72 hours. 5-azacytidine (5-AZA) induced differentiation of hUC-MSCs to cardiomyocyte-like cells was determined by streptavidin-perosidase (SP) immunohistochemical staining and the content of troponin (TnI). Flow cytometry was used to measure cell cycle in hUC-MSCs and cardiomyocyte-like cells. The mitochondrial membrane potential (ΔΨ(m)) and mitochondrial Ca²⁺ concentration ([Ca²⁺](m)), were measured in hUC-MSCs and cardiomyocyte-like cells during chemical hypoxia induced by cobalt chloride (100 μmol/L). HP optimally promoted the proliferation of hUC-MSCs at 3% O₂ and enhanced the differentiation of hUC-MSCs to cardiomyocyte-like cells by 5-AZA in a concentration-dependent manner. The cell cycle distribution of cardiomyocyte-like cells, but not hUC-MSCs, was clearly changed by HP. Chemical hypoxic damage, decreased ΔΨ(m) and increased [Ca²⁺](m), were alleviated significantly in HP-treated cells compared with the normaxia-treated cells. The results demonstrate that HP promoted hUC-MSCs proliferation and differentiation to cardiomyocyte-like cells, and protected both cell types against chemical hypoxic damage. PMID:26536910

  7. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing.

    PubMed

    Yu, Wenmin; Li, Yiping; Wang, Zhi; Liu, Lei; Liu, Jing; Ding, Fengan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng; Dou, Jun

    2016-09-01

    Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma. PMID:27432315

  8. An Argonaute 2 Switch Regulates Circulating miR-210 to Coordinate Hypoxic Adaptation across Cells

    PubMed Central

    Hale, Andrew; Lee, Changjin; Annis, Sofia; Min, Pil-Ki; Pande, Reena; Creager, Mark A.; Julian, Colleen G.; Moore, Lorna G.; Mitsialis, S. Alex; Hwang, Sarah J.; Kourembanas, Stella; Chan, Stephen Y.

    2014-01-01

    Complex organisms may coordinate molecular responses to hypoxia by specialized avenues of communication across multiple tissues, but these mechanisms are poorly understood. Plasma-based, extracellular microRNAs have been described, yet, their regulation and biological functions in hypoxia remain enigmatic. We found a unique pattern of release of the hypoxia-inducible microRNA-210 (miR-210) from hypoxic and reoxygenated cells. This microRNA is also elevated in human plasma in physiologic and pathologic conditions of altered oxygen demand and delivery. Released miR-210 can be delivered to recipient cells, and its direct suppression of its direct target ISCU and mitochondrial metabolism is primarily evident in hypoxia. To regulate these hypoxia-specific actions, prolyl-hydroxylation of Argonaute 2 acts as a molecular switch that reciprocally modulates miR-210 release and intracellular activity in source cells as well as regulates intracellular activity in recipient cells after miR-210 delivery. Therefore, Argonaute 2-dependent control of released miR-210 represents a unique communication system that integrates the hypoxic response across anatomically distinct cells, preventing unnecessary activity of delivered miR-210 in normoxia while still preparing recipient tissues for incipient hypoxic stress and accelerating adaptation. PMID:24983771

  9. The Capacity of Red Blood Cells to Reduce Nitrite Determines Nitric Oxide Generation under Hypoxic Conditions

    PubMed Central

    Fens, Marcel H.; Larkin, Sandra K.; Oronsky, Bryan; Scicinski, Jan; Morris, Claudia R.; Kuypers, Frans A.

    2014-01-01

    Nitric oxide (NO) is a key regulator of vascular tone. Endothelial nitric oxide synthase (eNOS) is responsible for NO generation under normoxic conditions. Under hypoxia however, eNOS is inactive and red blood cells (RBC) provide an alternative NO generation pathway from nitrite to regulate hypoxic vasodilation. While nitrite reductase activity of hemoglobin is well acknowledged, little is known about generation of NO by intact RBC with physiological hemoglobin concentrations. We aimed to develop and apply a new approach to provide insights in the ability of RBC to convert nitrite into NO under hypoxic conditions. We established a novel experimental setup to evaluate nitrite uptake and the release of NO from RBC into the gas-phase under different conditions. NO measurements were similar to well-established clinical measurements of exhaled NO. Nitrite uptake was rapid, and after an initial lag phase NO release from RBC was constant in time under hypoxic conditions. The presence of oxygen greatly reduced NO release, whereas inhibition of eNOS and xanthine oxidoreductase (XOR) did not affect NO release. A decreased pH increased NO release under hypoxic conditions. Hypothermia lowered NO release, while hyperthermia increased NO release. Whereas fetal hemoglobin did not alter NO release compared to adult hemoglobin, sickle RBC showed an increased ability to release NO. Under all conditions nitrite uptake by RBC was similar. This study shows that nitrite uptake into RBC is rapid and release of NO into the gas-phase continues for prolonged periods of time under hypoxic conditions. Changes in the RBC environment such as pH, temperature or hemoglobin type, affect NO release. PMID:25007272

  10. Clinical results of hypoxic cell radiosensitisation from hyperbaric oxygen to accelerated radiotherapy, carbogen and nicotinamide.

    PubMed Central

    Saunders, M.; Dische, S.

    1996-01-01

    The 40-year history of hypoxic cell sensitisation can be traced from hyperbaric oxygen to the present clinical studies with carbogen, nicotinamide and accelerated radiotherapy. A meta-analysis by Overgaard (1995) included 10703 cases entered into 83 randomised controlled trials and showed an overall improvement in local tumour control of 4.6% (P = 0.00001) and in survival of 2.8% (P = 0.005). Hyperbaric oxygen gave a 6.6% (P = 0.003) improvement in local control and hypoxic cell sensitisers 3.9% (P = 0.04). Despite this, the only hypoxic cell-sensitising method in routine clinical use is the giving of nimorazole in supraglottic and pharyngeal carcinomas. Acute, as well as chronic hypoxia has been recognised and nicotinamide, the amide derivative of B3 is believed to prevent the former. Thus ARCON (accelerated radiotherapy, carbogen and nicotinamide) has been introduced in the clinic in an effort to overcome tumour proliferation, chronic and acute hypoxia, respectively. The success of future randomised controlled trials would be improved greatly if methods were available to measure the concentration of hypoxic cells in tumours before treatment and thus select those where benefit may be gained. The use of ARCON recognises that tumour cell proliferation is an important cause of failure in addition to hypoxia. However, intrinsic radiosensitivity may also need to be taken into account in the future. Clinical trials aim to improve the therapeutic ratio and thus the study of morbidity is as important as local tumour control. International collaboration is essential if randomised controlled trials are to be carried out within reasonable periods of time. PMID:8763896

  11. ZEB1 Promotes Invasion in Human Fetal Neural Stem Cells and Hypoxic Glioma Neurospheres.

    PubMed

    Kahlert, Ulf D; Suwala, Abigail K; Raabe, Eric H; Siebzehnrubl, Florian A; Suarez, Maria J; Orr, Brent A; Bar, Eli E; Maciaczyk, Jaroslaw; Eberhart, Charles G

    2015-11-01

    Diffuse spread through brain parenchyma and the presence of hypoxic foci rimmed by neoplastic cells are two cardinal features of glioblastoma, and low oxygen is thought to drive movement of malignant gliomas in the core of the lesions. Transcription factors associated with epithelial-to-mesenchymal transition (EMT) have been linked to this invasion, and we found that hypoxia increased in vitro invasion up to fourfold in glioblastoma neurosphere lines and induced the expression of ZEB1. Immunohistochemical assessment of 295 surgical specimens consisting of various types of pediatric and adult brain cancers showed that ZEB1 expression was significantly higher in infiltrative lesions than less invasive tumors such as pilocytic astrocytoma and ependymoma. ZEB1 protein was also present in human fetal periventricular stem and progenitor cells and ZEB1 inhibition impaired migration of in vitro propagated human neural stem cells. The induction of ZEB1 protein in hypoxic glioblastoma neurospheres could be partially blocked by the HIF1alpha inhibitor digoxin. Targeting ZEB1 blocked hypoxia-augmented invasion of glioblastoma cells in addition to slowing them in normoxia. These data support the role for ZEB1 in invasive and high-grade brain tumors and suggest its key role in promoting invasion in the hypoxic tumor core as well as in the periphery. PMID:25521330

  12. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells.

    PubMed

    Shen, Jiangang; Lee, Waisin; Li, Yue; Lau, Chi Fai; Ng, Kwong Man; Fung, Man Lung; Liu, Ke Jian

    2008-10-01

    Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. PMID:18717816

  13. G-CSF and hypoxic conditioning improve the proliferation, neural differentiation and migration of canine bone marrow mesenchymal stem cells

    PubMed Central

    Yu, Jing; Liu, Xing-Long; Cheng, Qi-Guang; Lu, Shan-Shan; Xu, Xiao-Quan; Zu, Qing-Quan; Liu, Sheng

    2016-01-01

    Transplantation using bone marrow mesenchymal stem cells (BMSCs) is emerging as a potential regenerative therapy after ischemic attacks in the brain. However, it has been questioned because very few transplanted BMSCs are detected homing to and survived in the ischemic region. Improving the cell viability and migration ability under the complex ischemic condition seems very important. The aim of our study is to identify whether hypoxic condition and granulocyte colony-stimulating factor (G-CSF) could improve the cell survival and migration ability of transplanted cells or hypoxic condition could promote BMSC's neural differentiation. BMSCs were treated under either normoxic (21% O2) or hypoxic (1% O2) (HP-BMSCs) conditions, no significant apoptosis was observed in hypoxic precondition (HP) group, our study confirmed that HP improves BMSCs proliferation and migration. Meanwhile, neural induction of BMSCs under hypoxic condition exhibited significant superior results than normoxic condition. Additionally, the addition of G-CSF in HP-BMSCs culture media promoted HP efficiency on BMSCs. These findings shed light on novel efficient strategy on the prosperity of BMSCs. Hypoxic preconditioning and cultured with G-CSF may become a promising therapeutics for cell-based therapy in the treatments of ischemia stroke. PMID:27588100

  14. Tirapazamine-induced DNA damage measured using the comet assay correlates with cytotoxicity towards hypoxic tumour cells in vitro.

    PubMed Central

    Siim, B. G.; van Zijl, P. L.; Brown, J. M.

    1996-01-01

    Tirapazamine (SR 4233), a bioreductive drug selectively toxic towards hypoxic cells, is presently in phase II clinical trials. Since it would not be expected that all tumours would respond equally to the drug, we are exploring ways of predicting the response of individual tumours. In this study we have tested whether the comet assay, which measures DNA damage in individual cells, can provide a simple, surrogate end point for cell killing by tirapazamine. We examined the relationship between the cytotoxicity of tirapazamine under hypoxic conditions and tirapazamine-induced DNA strand breaks in murine (SCCVII, EMT6, RIF-1) and human (HT1080, A549, HT29) tumour cell lines. These results were compared with the relationship between tirapazamine cytotoxicity and another measure of the ability of cells to metabolise tirapazamine; high-performance liquid chromatography (HPLC) analysis of tirapazamine loss or formation of the two electron reduction product SR 4317. The correlation between the hypoxic cytotoxic potency of tirapazamine and DNA damage was highly significant (r = 0.905, P = 0.013). A similar correlation was observed for hypoxic potency and tirapazamine loss (r = 0.812, P = 0.050), while the correlation between hypoxic potency and SR 4317 formation was not significant (r = 0.634, P = 0.171). The hypoxic cytotoxicity of tirapazamine in vitro can therefore be predicted by measuring tirapazamine-induced DNA damage using the comet assay. This approach holds promise for predicting the response of individual tumours to tirapazamine in the clinic. PMID:8611431

  15. Preferential kill of hypoxic EMT6 mammary tumor cells by the bioreductive alkylating agent porfiromycin.

    PubMed

    Sartorelli, A C; Belcourt, M F; Hodnick, W F; Keyes, S R; Pritsos, C A; Rockwell, S

    1995-01-01

    Hypoxic cells in solid tumors represent a therapeutically resistant population that limits the curability of many solid tumors by irradiation and by most chemotherapeutic agents. The oxygen deficit, however, creates an environment conducive to reductive processes; this results in a major exploitable difference between normal and neoplastic tissues. The mitomycin antibiotics can be reductively activated by a number of oxidoreductases, in a process required for the production of their therapeutic effects. Preferential activation of these drugs under hypoxia and greater toxicity to oxygen-deficient cells than to their oxygenated counterparts are obtained in most instances. The demonstration that mitomycin C and porfiromycin, used to kill the hypoxic fraction, in combination with irradiation, to eradicate the oxygenated portion of the tumor, produced enhanced cytodestructive effects on solid tumors in animals has led to the clinical evaluation of the mitomycins in combination with radiation therapy in patients with head and neck cancer. The findings from these clinical trials have demonstrated the value of directing a concerted therapeutic attack on the hypoxic fraction of solid tumors as an approach toward enhancing the curability of localized neoplasms by irradiation. PMID:7572339

  16. Down-Regulation of Rad51 and Decreased Homologous Recombination in Hypoxic Cancer Cells

    PubMed Central

    Bindra, Ranjit S.; Schaffer, Paul J.; Meng, Alice; Woo, Jennifer; Måseide, Kårstein; Roth, Matt E.; Lizardi, Paul; Hedley, David W.; Bristow, Robert G.; Glazer, Peter M.

    2004-01-01

    There is an emerging concept that acquired genetic instability in cancer cells can arise from the dysregulation of critical DNA repair pathways due to cell stresses such as inflammation and hypoxia. Here we report that hypoxia specifically down-regulates the expression of RAD51, a key mediator of homologous recombination in mammalian cells. Decreased levels of Rad51 were observed in multiple cancer cell types during hypoxic exposure and were not associated with the cell cycle profile or with expression of hypoxia-inducible factor. Analyses of RAD51 gene promoter activity, as well as mRNA and protein stability, indicate that the hypoxia-mediated regulation of this gene occurs via transcriptional repression. Decreased expression of Rad51 was also observed to persist in posthypoxic cells for as long as 48 h following reoxygenation. Correspondingly, we found reduced levels of homologous recombination in both hypoxic and posthypoxic cells, suggesting that the hypoxia-associated reduction in Rad51 expression has functional consequences for DNA repair. In addition, hypoxia-mediated down-regulation of Rad51 was confirmed in vivo via immunofluorescent image analysis of experimental tumors in mice. Based on these findings, we propose a novel mechanism of genetic instability in the tumor microenvironment mediated by hypoxia-induced suppression of the homologous recombination pathway in cancer cells. The aberrant regulation of Rad51 expression may also create heterogeneity in the DNA damage response among cells within tumors, with implications for the response to cancer therapies. PMID:15367671

  17. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells.

    PubMed

    Semenza, Gregg L

    2012-09-01

    Breast cancers contain regions of intratumoral hypoxia in which reduced O(2) availability activates the hypoxia-inducible factors HIF-1 and HIF-2, which increase the transcription of genes encoding proteins that are required for many important steps in cancer progression. Recently, HIFs have been shown to play critical roles in the metastasis of breast cancer to the lungs through the transcriptional activation of genes encoding angiopoietin-like 4 and L1 cell adhesion molecule, which promote the extravasation of circulating cancer cells from the lung vasculature, and the lysyl oxidase family members LOX, LOXL2, and LOXL4, which promote invasion and metastatic niche formation. Digoxin, a drug that inhibits HIF-1 activity, blocks primary tumor growth, vascularization, invasion, and metastasis in ex vivo and in vivo assays. PMID:22921864

  18. Porfiromycin as a bioreductive alkylating agent with selective toxicity to hypoxic EMT6 tumor cells in vivo and in vitro.

    PubMed

    Keyes, S R; Rockwell, S; Sartorelli, A C

    1985-08-01

    Hypoxic cells may limit the curability of solid tumors by conventional chemotherapeutic agents and radiotherapy. Agents which are preferentially toxic to cells with low oxygen contents could therefore be useful as adjuncts to the regimens now used to treat these cancers. To date, the best agent of this type that we have tested is porfiromycin. Porfiromycin is similar to mitomycin C in its toxicity to hypoxic EMT6 cells in vitro but has much less toxicity than mitomycin C to well-oxygenated EMT6 cells. EMT6 cell sonicates reduce mitomycin C and porfiromycin to reactive electrophiles at similar rates under hypoxic conditions, a finding that correlates with cytotoxicity, whereas the rate of production of reactive species from both drugs is very slow under aerobic conditions. We also show that porfiromycin is capable of killing hypoxic radiation-resistant cells in solid EMT6 tumors. Appropriate regimens combining porfiromycin (which preferentially kills hypoxic cells) and radiation (which preferentially kills aerated cells) may therefore be especially efficacious for the treatment of solid tumors. PMID:3926306

  19. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo.

    PubMed

    Beegle, Julie; Lakatos, Kinga; Kalomoiris, Stefanos; Stewart, Heather; Isseroff, R Rivkah; Nolta, Jan A; Fierro, Fernando A

    2015-06-01

    Mesenchymal stem cells/multipotent stromal cells (MSCs) are promising therapeutics for a variety of conditions. However, after transplantation, cell retention remains extremely challenging. Given that many hypoxic signals are transitory and that the therapeutic administration of MSCs is typically into tissues that are normally hypoxic, we studied the effect of hypoxic preconditioning (HP) prior to new exposure to hypoxia. We show that preincubation for 2 days or more in 1% oxygen reduces serum deprivation-mediated cell death, as observed by higher cell numbers and lower incorporation of EthD-III and Annexin V. Consistently, HP-MSCs expressed significantly lower levels of cytochrome c and heme oxygenase 1 as compared to controls. Most importantly, HP-MSCs showed enhanced survival in vivo after intramuscular injection into immune deficient NOD/SCID-IL2Rgamma(-/-) mice. Interestingly, HP-MSCs consume glucose and secrete lactate at a slower rate than controls, possibly promoting cell survival, as glucose remains available to the cells for longer periods of time. In addition, we compared the metabolome of HP-MSCs to controls, before and after hypoxia and serum deprivation, and identified several possible mediators for HP-mediated cell survival. Overall, our findings suggest that preincubation of MSCs for 2 days or more in hypoxia induces metabolic changes that yield higher retention after transplantation. PMID:25702874

  20. Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats.

    PubMed

    Ducret, Thomas; El Arrouchi, Jalila; Courtois, Arnaud; Quignard, Jean-François; Marthan, Roger; Savineau, Jean-Pierre

    2010-11-01

    Stretch-activated channels (SACs) act as membrane mechanotransducers since they convert physical forces into biological signals and hence into a cell response. Pulmonary arterial smooth muscle cells (PASMCs) are continuously exposed to mechanical stimulations e.g., compression and stretch, that are enhanced under conditions of pulmonary arterial hypertension (PAH). Using the patch-clamp technique (cell-attached configuration) in PASMCs, we showed that applying graded negative pressures (from 0 to -60 mmHg) to the back end of the patch pipette increases occurrence and activity of SACs. The current-voltage relationship (from -80 to +40 mV) was almost linear with a reversal potential of 1 mV and a slope conductance of 34 pS. SACs were inhibited in the presence of GsMTx-4, a specific SACs blocker. Using microspectrofluorimetry (indo-1), we found that hypotonic-induced cell swelling increases intracellular Ca(2+) concentration ([Ca(2+)](i)). This [Ca(2+)](i) increase was markedly inhibited in the absence of external Ca(2+) or in the presence of the following blockers of SACs: gadolinium, streptomycin, and GsMTx-4. Interestingly, in chronically hypoxic rats, an animal model of PAH, SACs were more active and hypotonic-induced calcium response in PASMCs was significantly higher (nearly a two-fold increase). Moreover, unlike in normoxic rats, intrapulmonary artery rings from hypoxic rats mounted in a Mulvany myograph, exhibited a myogenic tone sensitive to SAC blockers. In conclusion, this work demonstrates that SACs in rat PASMCs can be activated by membrane stretch as well as hypotonic stimulation and are responsible for [Ca(2+)](i) increase. The link between SACs activation-induced calcium response and myogenic tone in chronically hypoxic rats suggests that SACs are an important element for the increased pulmonary vascular tone in PAH and that they may represent a molecular target for PAH treatment. PMID:21035852

  1. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. PMID:26558344

  2. The Induction of Metformin Inhibitory Effects on Tumor Cell Growth in Hypoxic Condition.

    PubMed

    Safari, Zohreh; Safaralizadeh, Reza; Seyedzadeh, Mir Hadi; Valinezad Orang, Ayla; Zare, Ahad; Hosseinpour Feizi, Mohammad Ali; Kardar, Gholam Ali

    2015-12-01

    It is aimed to evaluate the actual anti-cancerous effects of metformin on cancer cells in hypoxic condition. Non-cancerous cells (HEK293) and cancer cells (MCF-7) were cultured in both hypoxia and normoxia conditions and treated with different concentrations of metformin. The proliferation, apoptosis, and necrosis rate were assessed using MTT test and Annexin V assay. The S6K1 phosphorylation was assessed using western blotting. Zymography was used to measure the activity of metalloproteinase-9 (MMP-9). Metformin treatment inhibited proliferation of cancer cells in the optimal concentration of 10 mM under hypoxia condition, while it showed no effects on non-cancerous cell viability. The statistical analysis of MTT assay indicated that the pro-apoptotic function of metformin for cancer cells under hypoxia condition compared to normoxia was significant with different metformin concentrations (p<0.01). However, the effect of metformin treatments for non-cancerous cells under hypoxia condition compared to normoxia was not significant. Western-blot analysis indicated a significant decrease in S6K1 phosphorylation in cancer cells under hypoxia condition (p<0.05). Nevertheless, there was no considerable difference between normoxia and hypoxia conditions in non-cancerous cells. MMP-9 zymography analysis revealed that the highest inhibition of MMP-9 activity was observed in hypoxia condition by 20mM of metformin concentration only in cancer cell. The results indicate that in hypoxia condition metformin exerts its anti-cancerous function by inhibiting proliferation and tumor progression and inducing cell apoptosis more effectively than normoxia condition. In line with cancer cell conditions, most importantly hypoxic condition, metformin can be considered as a potential anti-cancerous drug. PMID:26725558

  3. δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy.

    PubMed

    Shibata, Akira; Nakagawa, Kiyotaka; Tsuduki, Tsuyoshi; Miyazawa, Teruo

    2015-08-01

    Tocotrienols, unsaturated forms of vitamin E, inhibit the proliferation of a variety of cancer cells and suppress angiogenesis. However, the mechanisms underlying those effects on cancer cell growth remain unclear especially under hypoxic conditions. In this study, we demonstrated that δ-tocotrienol (δ-T3) could be used as a novel anticancer agent against human colorectal adenocarcinoma (DLD-1) cells under both normoxic and hypoxic conditions. δ-T3 inhibited the growth of DLD-1 cells in a dose-dependent fashion by inducing cell cycle arrest and apoptosis. This effect was more potent under hypoxic than normoxic conditions. The anticancer effect of δ-T3 was achieved by its up-regulation of cyclin-dependent kinase inhibitors (p21 and p27), the activation of caspases and the suppression of phosphorylation of protein kinase B (Akt) at Thr(308) and Ser(473). In in vivo studies, oral administration of rice bran tocotrienol (RBT3, mainly γ-T3) (10 mg/mouse/day) significantly inhibited tumor growth in nude mice. In tumor analyses, RBT3 activated p21, p27, caspase-3 and caspase-9 and decreased Akt phosphorylation. Furthermore, immunostaining revealed that RBT3 decreased the number of cells positive for CD31/platelet endothelial cell adhesion molecule-1 in microvessels in the tumor. Taken together, these data suggest that tocotrienols are potent antitumor agents capable of inducing apoptosis and inhibiting angiogenesis under both hypoxic and normoxic conditions. Tocotrienols could have significant therapeutic potential in the clinical treatment of tumors. PMID:25979648

  4. TAT-ODD-p53 enhances the radiosensitivity of hypoxic breast cancer cells by inhibiting Parkin-mediated mitophagy

    PubMed Central

    Du, Shasha; Ren, Chen; Wang, Yuxia; Yuan, Yawei

    2015-01-01

    Radiation therapy has an important role in the treatment of breast cancer. Dysfunction p53 and hypoxia are typical biological characteristics of breast cancer that constitute barriers to the efficacy of radiotherapy. Mitophagy plays a protective role in cellular homeostasis under hypoxic conditions, while mitophagy is inhibited by p53 in normal cells. We explored the effects of a p53 fusion protein, TAT-ODD-p53, on the radiosensitivity of hypoxic breast cancer cells both in vitro and in vivo, as well as investigating the related molecular mechanisms. We found that selective accumulation of TAT-ODD-p53 occurred under hypoxic conditions and significantly increased tumor cell radiosensitivity both in vitro and in vivo. Mitophagy had an important role in maintaining hypoxia-induced radioresistance. Mitophagy was inhibited by TAT-ODD-p53 and this inhibition was suppressed by over-expression of Parkin in hypoxic irradiated breast cancer cells. In addition, mitophagy was induced by deletion of p53, with this effect being weakened by Parkin knockdown at a low oxygen tension. By interacting with Parkin, p53 inhibited the translocation of Parkin to the mitochondria, disrupting the protective mitophagy process. These results suggest that TAT-ODD-p53 has a significant and preferential radiosensitizing effect on hypoxic breast cancer cells by inhibition of Parkin-mediated mitophagy. PMID:26025927

  5. Chemotherapeutic attack of hypoxic tumor cells by the bioreductive alkylating agent mitomycin C.

    PubMed

    Keyes, S R; Heimbrook, D C; Fracasso, P M; Rockwell, S; Sligar, S G; Sartorelli, A C

    1985-01-01

    Since the cure of solid tumors is limited by the presence of cells with low oxygen contents, we have approached the development of treatment regimens and of new drugs for these tumors by investigating agents which are preferentially bioactivated under hypoxia. Major emphasis has been directed at studying the mode of action of the mitomycin antibiotics, as bioreductive alkylating agents. Using primarily the EMT6 mouse mammary carcinoma as a solid tumor model, we have found that mitomycin C and porfiromycin are preferentially toxic to cells with low oxygen contents. The mitomycin analog BMY-25282 is more toxic to hypoxic cells than are mitomycin C and porfiromycin; however, unlike these antibiotics, BMY-25282 is preferentially toxic to well-oxygenated cells. With these three mitomycins, we have observed a correlation between cytotoxicity to hypoxic cells, the rate of generation of reactive products, and the redox potentials of the drugs. Investigations of the enzymes in EMT6 cells that could possibly activate mitomycin C have revealed that cytochrome P-450 and xanthine oxidase are not present in measurable quantities and therefore are not responsible for activation of mitomycin C. Activities representative of NADPH-cytochrome c reductase and DT-diaphorase are present in these neoplastic cells. Comparison of these enzymatic activities in EMT6, CHO, and V79 cells with the rate of generation of reactive products under hypoxia shows a direct correlation between these two parameters, but there is no quantitative correlation between these two parameters and the amount of cytotoxicity. Use of purified NADPH-cytochrome c reductase and inhibitors of this enzyme demonstrated that NADPH-cytochrome c reductase can activate mitomycin C, but that it is probably not the only enzyme participating in this bioactivation in EMT6 cells. The DT-diaphorase inhibitor dicoumarol was employed to show that this enzyme is not involved in the activation of mitomycin C to a cytotoxic agent

  6. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    PubMed Central

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage. PMID:25206807

  7. Bioactivation of mitomycin antibiotics by aerobic and hypoxic Chinese hamster ovary cells overexpressing DT-diaphorase.

    PubMed

    Belcourt, M F; Hodnick, W F; Rockwell, S; Sartorelli, A C

    1996-06-28

    DT-Diaphorase catalyzes a two-electron reduction of mitomycin C (MC) and porfiromycin (POR) to reactive species. Many cell lines that overexpress DT-diaphorase and are sensitive to the mitomycins are protected from the aerobic cytotoxicity of these drugs by the DT-diaphorase inhibitor dicumarol. The cytoprotective properties of this relatively non-specific inhibitor, however, vanish under hypoxic conditions. To ascertain the role of DT-diaphorase in mitomycin bioactivation and cytotoxicity in living cells, a rat liver DT-diaphorase cDNA was transfected into Chinese hamster ovary cells. MC was equitoxic to the parental cells under oxygenated and hypoxic conditions. In contrast, POR was less toxic than MC to these cells under aerobic conditions, but significantly more toxic than MC under hypoxia. Two DT-diaphorase-transfected clones displayed increases in DT-diaphorase activity of 126- and 133-fold over parental cells. The activities of other oxidoreductases implicated in mitomycin bioreduction were unchanged. MC was more toxic to both DT-diaphorase-transfected lines than to parental cells; the toxicity of MC to the transfected lines was similar in air and hypoxia. POR was also more toxic to the DT-diaphorase-elevated clones than to parental cells under oxygenated conditions. Under hypoxia, however, the toxicity of POR to the transfected clones was unchanged from that of parental cells. The findings implicate DT-diaphorase in mitomycin bioactivation in living cells, but suggest that this enzyme does not contribute to the differential toxicity of MC or POR in air and hypoxia. PMID:8687482

  8. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Tolba, Emad; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2016-01-01

    Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a 'metabolic fuel' for the cells to grow. PMID:26453899

  9. Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress

    PubMed Central

    Hasmim, Meriem; Messai, Yosra; Ziani, Linda; Thiery, Jerome; Bouhris, Jean-Henri; Noman, Muhammad Zaeem; Chouaib, Salem

    2015-01-01

    Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells, a key component of the innate immunity, are recognized as potent anticancer mediators. Extensive studies have been detailed on how NK cells get activated and recognize cancer cells. In contrast, few studies have been focused on how tumor microenvironment-mediated immunosubversion and immunoselection of tumor-resistant variants may impair NK cell function. Accumulating evidences indicate that several cell subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor microenvironment and are able to condition NK cells to become anergic. In this review, we will describe how NK cells react with different stromal cells in the tumor microenvironment. This will be followed by a discussion on the role of hypoxic stress in the regulation of NK cell functions. The aim of this review is to provide a better understanding of how the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK cell-based therapy, and we will attempt to suggest more efficient tools to establish a more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor progression. PMID:26441986

  10. Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress.

    PubMed

    Hasmim, Meriem; Messai, Yosra; Ziani, Linda; Thiery, Jerome; Bouhris, Jean-Henri; Noman, Muhammad Zaeem; Chouaib, Salem

    2015-01-01

    Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells, a key component of the innate immunity, are recognized as potent anticancer mediators. Extensive studies have been detailed on how NK cells get activated and recognize cancer cells. In contrast, few studies have been focused on how tumor microenvironment-mediated immunosubversion and immunoselection of tumor-resistant variants may impair NK cell function. Accumulating evidences indicate that several cell subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor microenvironment and are able to condition NK cells to become anergic. In this review, we will describe how NK cells react with different stromal cells in the tumor microenvironment. This will be followed by a discussion on the role of hypoxic stress in the regulation of NK cell functions. The aim of this review is to provide a better understanding of how the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK cell-based therapy, and we will attempt to suggest more efficient tools to establish a more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor progression. PMID:26441986

  11. Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-01

    Hypoxia in tumors contributes to overall tumor progression by assisting in epithelial-to-mesenchymal transition, angiogenesis, and metastasis of cancer. In this study, we have synthesized a hypoxia-responsive, diblock copolymer poly(lactic acid)-azobenzene-poly(ethylene glycol), which self-assembles to form polymersomes in an aqueous medium. The polymersomes did not release any encapsulated contents for 50 min under normoxic conditions. However, under hypoxia, 90% of the encapsulated dye was released in 50 min. The polymersomes encapsulated the combination of anticancer drugs gemcitabine and erlotinib with entrapment efficiency of 40% and 28%, respectively. We used three-dimensional spheroid cultures of pancreatic cancer cells BxPC-3 to demonstrate hypoxia-mediated release of the drugs from the polymersomes. The vesicles were nontoxic. However, a significant decrease in cell viability was observed in hypoxic spheroidal cultures of BxPC-3 cells in the presence of drug encapsulated polymersomes. These polymersomes have potential for future applications in imaging and treatment of hypoxic tumors. PMID:27303825

  12. Increased calcium loading and inotropy without greater cell death in hypoxic rat cardiomyocytes.

    PubMed

    Kondo, R P; Apstein, C S; Eberli, F R; Tillotson, D L; Suter, T M

    1998-12-01

    To test whether contractile function in "hypoxic" myocytes treated with high glucose (19.5 mM) can be improved by increasing intracellular Ca2+ without accelerating cell contracture or death, we challenged metabolically inhibited, paced myocytes with high extracellular Ca2+ concentration ([Ca2+]o) and measured simultaneously cell shortening and intracellular Ca2+ concentration ([Ca2+]i). NaCN exposure at a physiological [Ca2+]o level (1.2 mM) caused a decline of contractile function to 58 +/- 8% of the pre-NaCN value (P < 0.001) but increased systolic and diastolic [Ca2+]i by 104 +/- 17 and 37 +/- 9% above baseline (P < 0.01), respectively. Consequent doubling of [Ca2+]o to 2.4 mM, in the presence of NaCN, immediately restored contractile function, and twitch amplitude after 18 min was 123 +/- 14% (P < 0.001) of baseline pre-NaCN values, whereas systolic [Ca2+]i increased further to 225 +/- 63% (P < 0.05) and diastolic [Ca2+]i to 73 +/- 16% above baseline (P < 0.01). This marked increase in [Ca2+]i had no deleterious effect on myocyte diastolic function or survival. These results suggest that if adequate metabolic substrate is provided, contractile function in metabolically inhibited, hypoxic myocytes can be restored by increasing [Ca2+]i without causing short-term cell injury. PMID:9843829

  13. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    SciTech Connect

    Rauth, A.M.; Mohindra, J.K.

    1981-12-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, high drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC.

  14. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  15. Radiosensitization of EMT6 cells by four platinum complexes.

    PubMed

    Teicher, B A; Rockwell, S; Lee, J B

    1985-05-01

    The greatest research effort in producing radiation sensitizers has been directed toward organic compounds. However, platinum complexes also have radiosensitizing capabilities, perhaps because they bind to DNA. The compound described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 microM and 400 microM trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 microM and 1.8 at 400 microM. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes, (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 microM Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 microM and 400 microM Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 microM PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands. PMID:4039304

  16. SP1 and USF differentially regulate ADAMTS1 gene expression under normoxic and hypoxic conditions in hepatoma cells.

    PubMed

    Turkoglu, Sumeyye Aydogan; Kockar, Feray

    2016-01-01

    ADAM metallopeptidase with thrombospondin type I motif, 1 (ADAMTS1) that has both antiangiogenic and aggrecanase activity was dysregulated in many pathophysiologic circumstances. However, there is limited information available on the transcriptional regulation of ADAMTS1 gene. Therefore, this study mainly aimed to identify regulatory regions important for the regulation of ADAMTS1 gene under normoxic and hypoxic conditions in human hepatoma cells (HEP3B). Cultured HEP3B cells were exposed to normal oxygen condition, and Cobalt chloride (CoCl2) induced the hypoxic condition, which is an HIF-1 inducer. The cocl2-induced hypoxic condition led to the induced ADAMTS1 mRNA and protein expression in Hepatoma cells. Differential regulation of SP1 and USF transcription factors on ADAMTS1 gene expression was determined by transcriptional activity, mRNA and protein level of ADAMTS1 gene. Ectopic expression of SP1 and USF transcription factors resulted in the decrease in ADAMTS1 transcriptional activity of all promoter constructs consistent with mRNA and protein level in normoxic condition. However, overexpression of SP1 and USF led to the increase of ADAMTS1 gene expressions at mRNA and protein level in hypoxic condition. On the other hand, C/EBPα transcription factor didn't show any statistically significant effect on ADAMTS1 gene expression at mRNA, protein and transcriptional level under normoxic and hypoxic condition. PMID:26299656

  17. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment.

    PubMed

    Elkashef, Sara M; Allison, Simon J; Sadiq, Maria; Basheer, Haneen A; Ribeiro Morais, Goreti; Loadman, Paul M; Pors, Klaus; Falconer, Robert A

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  18. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    PubMed Central

    Elkashef, Sara M.; Allison, Simon J.; Sadiq, Maria; Basheer, Haneen A.; Ribeiro Morais, Goreti; Loadman, Paul M.; Pors, Klaus; Falconer, Robert A.

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  19. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

    PubMed

    Yadav, Vishal R; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min; Wang, Yong-Xiao

    2013-02-01

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs. PMID:23204067

  20. Hypoxic preconditioning increases the protective effect of bone marrow mesenchymal stem cells on spinal cord ischemia/reperfusion injury.

    PubMed

    Wang, Zhilin; Fang, Bo; Tan, Zhibin; Zhang, Dong; Ma, Hong

    2016-03-01

    Transplantation of bone marrow mesenchymal stem cells (BMSCs) protect against spinal cord ischemia/reperfusion injury (SCIRI). However, a large number of transplanted BMSCs often undergo apoptosis, which severely affects the treatment outcome. Previous studies have demonstrated that hypoxic preconditioning effectively increases the survival rate of BMSCs following transplantation, and increases their protective effect on injured tissues. However, there have been few reports regarding roles of hypoxic preconditioning in SCIRI. The present study isolated rat BMSCs and separately transplanted hypoxia‑ and non‑hypoxia‑preconditioned BMSCs into the spinal cord tissues of rats with SCIRI. The role of hypoxic preconditioning in the promotion of the protective effect of BMSCs on SCIRI was investigated using neurological function scores, Evans blue staining, hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling. In addition, reverse transcription‑quantitative polymerase chain reaction and western blotting were used to detect the expression levels of hypoxia‑inducible factor 1α (HIF‑1α), and to investigate its possible underlying mechanism of action. The results indicated that hypoxic preconditioning effectively increased the protective effects of BMSCs on neurological function, blood spinal cord barrier and tissue damage following SCIRI, and inhibited apoptosis. Furthermore, hypoxic preconditioned BMSCs upregulated the expression of HIF‑1α in spinal cord tissues. Therefore, hypoxic preconditioning effectively increased the protective effect of BMSCs on SCIRI and may be associated with upregulation of the expression of HIF‑1α. Hypoxic preconditioning may serve as an effective means of increasing the protective effect of BMSCs on SCIRI. PMID:26783161

  1. Loss of Interleukin-21 Receptor Activation in Hypoxic Endothelial Cells Impairs Perfusion Recovery after Hindlimb Ischemia

    PubMed Central

    Wang, Tao; Cunningham, Alexis; Dokun, Ayotunde O; Hazarika, Surovi; Houston, Kevin; Chen, Lingdan; Lye, R. John; Spolski, Rosanne; Leonard, Warren J.; Annex, Brian H.

    2016-01-01

    Objective Surgical hindlimb ischemia (HLI) in mice has become a valuable preclinical model to study peripheral arterial disease (PAD). We previously identified that the different phenotypical outcomes following HLI across inbred mouse strains is related a region on the short arm of mouse chromosome 7. The gene coding the interleukin-21 receptor (IL-21R) lies at the peak of association in this region. Approach and Results With quantitative RT-PCR, we found that a mouse strain with a greater ability to up-regulate IL-21R following HLI had better perfusion recovery than a strain with no up-regulation after HLI. Immunofluorescent staining of ischemic hind-limb tissue showed IL-21R expression on endothelial cells (EC) from these C57BL/6 mice. An EC-enriched fraction isolated from ischemic hind-limb muscle showed higher Il-21R levels than an EC-enriched fraction from non-ischemic limbs. In-vitro, human umbilical vein EC (HUVEC) showed elevated IL-21R expression after hypoxia and serum starvation. Under these conditions, IL-21 treatment increased cell viability, decreased cell apoptosis, and augmented tube formation. In-vivo, either knockout Il21r or blocking IL-21 signaling by treating with IL-21R-Fc (fusion protein that blocks IL-21 binding to its receptor) in C57BL/6 mice resulted in less perfusion recovery after HLI. Both in-vitro and in-vivo modulation of the IL-21/IL-21R axis under hypoxic conditions resulted in increasedSTAT3 phosphorylation and a subsequent increase in the BCL-2/BAX ratio. Conclusion Our data indicate that IL-21R up-regulation and ligand activation in hypoxic endothelial cells may help perfusion recovery by limiting/preventing apoptosis and/or favoring cell survival and angiogenesis through the STAT3 pathway. PMID:25838422

  2. Synthesis and evaluation of two novel 2-nitroimidazole derivatives as potential PET radioligands for tumor imaging

    PubMed Central

    Zha, Zhihao; Zhu, Lin; Liu, Yajing; Du, Fenghua; Gan, Hongmei; Qiao, Jinpin; Kung, Hank F.

    2011-01-01

    Introduction Nitroimidazole (azomycin) derivatives labeled with radioisotopes have been developed as cancer imaging and radiotherapeutic agents based on the oncological hypoxic mechanism. By attaching nitroimidazole core with different functional groups, we synthesized new nitroimidazole derivatives, and evaluated their potentiality as tumor imaging agents. Methods Starting with commercially available 2-nitroimdazole, 2-fluoro-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)acetamide (NEFA, [19F]7) and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl 2-fluoroacetate (NEFT, [19F]8), as well as radiolabeling precursors - the bromo substituted analogs were quickly synthesized through a three-step synthetic pathway. The precursors were radiolabeled with [18F]F-/18-crown-6/KHCO3 in DMSO at 90 °C for 10 min followed by purification with an Oasis HLB cartridge. Biodistribution studies were carried out in EMT-6 tumor-bearing mice. The uptake (%ID/g) in tumors and normal tissues were measured at 30 min post injection. Liquid chromatography-electrospray ionization mass spectrometry (LC/MS) was used to distinguish metabolites from parent drugs in urine and plasma of rat injected with “cold” NEFA ([19F]7) and NEFT ([19F]8). Results Two radiotracers, [18F]NEFA ([18F]7) and [18F]NEFT ([18F]8), were prepared with average yields of 6-7% and 9-10% (no decay corrected). Radiochemical purity for both tracers was >95% as determined by HPLC. Biodistribution studies in EMT-6 tumor-bearing mice indicated that the tumor to blood and tumor to liver ratios of both [18F]7 (0.96, 0.98) and [18F]8 (0.61,1.10) at 30 min were higher than those observed for [18F]FMISO (1) (0.91, 0.59), a well-investigated azomycin type hypoxia radiotacer. LC/MS analysis demonstrated that fluoroacetate was the main in vivo metabolite for both NEFA ([19F]7) and NEFT ([19F]8). Conclusions In this research, two new fluorine-18 labeled 2-nitroimdazole derivatives, [18F]7 and [18F]8, both of which containing in vivo hydrolyzable

  3. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  4. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury.

    PubMed

    Itoh, Kanako; Maki, Takakuni; Shindo, Akihiro; Egawa, Naohiro; Liang, Anna C; Itoh, Naoki; Lo, Eng H; Lok, Josephine; Arai, Ken

    2016-05-01

    Hypoxic-ischemic (HI) brain injury in newborns results in serious damage. Magnesium sulfate has been clinically used as a cyto-protective agent against HI brain injury in newborns in some countries, including Japan. However, it is not clear how magnesium exerts this effect and how it acts on the individual types of cells within the newborn brain. In this study, we exposed cultured rat oligodendrocyte precursor cells to magnesium sulfate during the period when they differentiate into oligodendrocytes, and showed that magnesium-exposed oligodendrocytes exhibited more resistance to HI injury. Our data may support the use of magnesium sulfate in the clinical setting. PMID:26699082

  5. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device.

    PubMed

    Germain, Todd; Ansari, Megan; Pappas, Dimitri

    2016-09-14

    Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. PMID:27566353

  6. Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer

    NASA Astrophysics Data System (ADS)

    Tuckwell, W.; Bezak, E.; Yeoh, E.; Marcu, L.

    2008-09-01

    A Monte Carlo tumour model has been developed to simulate tumour cell propagation for head and neck squamous cell carcinoma. The model aims to eventually provide a radiobiological tool for radiation oncology clinicians to plan patient treatment schedules based on properties of the individual tumour. The inclusion of an oxygen distribution amongst the tumour cells enables the model to incorporate hypoxia and other associated parameters, which affect tumour growth. The object oriented program FORTRAN 95 has been used to create the model algorithm, with Monte Carlo methods being employed to randomly assign many of the cell parameters from probability distributions. Hypoxia has been implemented through random assignment of partial oxygen pressure values to individual cells during tumour growth, based on in vivo Eppendorf probe experimental data. The accumulation of up to 10 million virtual tumour cells in 15 min of computer running time has been achieved. The stem cell percentage and the degree of hypoxia are the parameters which most influence the final tumour growth rate. For a tumour with a doubling time of 40 days, the final stem cell percentage is approximately 1% of the total cell population. The effect of hypoxia on the tumour growth rate is significant. Using a hypoxia induced cell quiescence limit which affects 50% of cells with and oxygen levels less than 1 mm Hg, the tumour doubling time increases to over 200 days and the time of tumour growth for a clinically detectable tumour (109 cells) increases from 3 to 8 years. A biologically plausible Monte Carlo model of hypoxic head and neck squamous cell carcinoma tumour growth has been developed for real time assessment of the effects of multiple biological parameters which impact upon the response of the individual patient to fractionated radiotherapy.

  7. Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer.

    PubMed

    Tuckwell, W; Bezak, E; Yeoh, E; Marcu, L

    2008-09-01

    A Monte Carlo tumour model has been developed to simulate tumour cell propagation for head and neck squamous cell carcinoma. The model aims to eventually provide a radiobiological tool for radiation oncology clinicians to plan patient treatment schedules based on properties of the individual tumour. The inclusion of an oxygen distribution amongst the tumour cells enables the model to incorporate hypoxia and other associated parameters, which affect tumour growth. The object oriented program FORTRAN 95 has been used to create the model algorithm, with Monte Carlo methods being employed to randomly assign many of the cell parameters from probability distributions. Hypoxia has been implemented through random assignment of partial oxygen pressure values to individual cells during tumour growth, based on in vivo Eppendorf probe experimental data. The accumulation of up to 10 million virtual tumour cells in 15 min of computer running time has been achieved. The stem cell percentage and the degree of hypoxia are the parameters which most influence the final tumour growth rate. For a tumour with a doubling time of 40 days, the final stem cell percentage is approximately 1% of the total cell population. The effect of hypoxia on the tumour growth rate is significant. Using a hypoxia induced cell quiescence limit which affects 50% of cells with and oxygen levels less than 1 mm Hg, the tumour doubling time increases to over 200 days and the time of tumour growth for a clinically detectable tumour (10(9) cells) increases from 3 to 8 years. A biologically plausible Monte Carlo model of hypoxic head and neck squamous cell carcinoma tumour growth has been developed for real time assessment of the effects of multiple biological parameters which impact upon the response of the individual patient to fractionated radiotherapy. PMID:18677039

  8. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    PubMed Central

    Morgan, J. Brian; Liu, Yang; Coothankandaswamy, Veena; Mahdi, Fakhri; Jekabsons, Mika B.; Gerwick, William H.; Valeriote, Frederick A.; Zhou, Yu-Dong; Nagle, Dale G.

    2015-01-01

    The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells. PMID:25803180

  9. Hypoxic Culture Conditions as a Solution for Mesenchymal Stem Cell Based Regenerative Therapy

    PubMed Central

    Haque, Nazmul; Rahman, Mohammad Tariqur; Abu Kasim, Noor Hayaty; Alabsi, Aied Mohammed

    2013-01-01

    Cell-based regenerative therapies, based on in vitro propagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability during in vitro expansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter- and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O2 concentration (20%) in contrast to their niche where they usually reside in 2–9% O2. Notably, O2 plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O2) and hypoxia (2–9% O2) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors during in vitro expansion and eventually can increase efficiency of MSC-based regenerative therapies. PMID:24068884

  10. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype.

    PubMed

    Li, Ling; Li, Chao; Wang, Shaoxin; Wang, Zhaohui; Jiang, Jian; Wang, Wei; Li, Xiaoxia; Chen, Jin; Liu, Kun; Li, Chunhua; Zhu, Guiquan

    2016-04-01

    Hypoxia is a common feature of solid tumors and is associated with aggressiveness and poor patient outcomes. Exosomes, initially considered to be cellular "garbage dumpsters," are now implicated in mediating interactions with the cellular environment. However, the mechanisms underlying the association between exosomes and hypoxia during cancer progression remain poorly understood. In this study, we found that exosomes derived from hypoxic oral squamous cell carcinoma (OSCC) cells increased the migration and invasion of OSCC cells in a HIF-1α and HIF-2α-dependent manner. Given that exosomes have been shown to transport miRNAs to alter cellular functions, we performed miRNA sequencing of normoxic and hypoxic OSCC-derived exosomes. Of the 108 miRNAs that were differentially expressed, miR-21 stood out as one of the most significantly upregulated miRNAs under hypoxic conditions. miR-21 depletion in hypoxic OSCC cells led to decreased miR-21 levels in exosomes and significantly reduced cell migration and invasion. Conversely, restoration of miR-21 expression in HIF-1α and HIF-2α-depleted exosomes rescued OSCC cell migration and invasion. Moreover, exosomal miR-21 markedly enhanced snail and vimentin expression, while significantly decreasing E-cadherin levels in OSCC cells, in vitro and in vivo Finally, circulating exosomal miR-21 levels were closely associated with HIF-1α/HIF-2α expression, T stage, and lymph node metastasis in patients with OSCC. In conclusion, our findings suggest that the hypoxic microenvironment may stimulate tumor cells to generate miR-21-rich exosomes that are delivered to normoxic cells to promote prometastatic behaviors and prompt further investigation into the therapeutic value of exosome inhibition for cancer treatment. Cancer Res; 76(7); 1770-80. ©2016 AACR. PMID:26992424

  11. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2

  12. Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions.

    PubMed

    Guimaraes, Talita A; Farias, Lucyana C; Fraga, Carlos A; Feltenberger, John D; Melo, Geraldo A; Coletta, Ricardo D; Souza Santos, Sergio H; de Paula, Alfredo M B; Guimaraes, Andre L

    2016-06-01

    The purpose of the current study was to develop and test a theoretical model that could explain the mechanism of action of gallic acid (GA) in the oral squamous cell carcinoma context for the first time. The theoretical model was developed using bioinformatics and interaction network analysis to evaluate the effect of GA on oral squamous cell carcinoma. In a second step to confirm theoretical results, migration, invasion, proliferation, and gene expression (Col1A1, E-cadherin, HIF-1α, and caspase-3) were performed under normoxic and hypoxic conditions. Our study indicated that treatment with GA resulted in the inhibition of cell proliferation, migration, and invasion in neoplastic cells. Observation of the molecular mechanism showed that GA upregulates E-cadherin expression and downregulates Col1A1 and HIF-1α expression, suggesting that GA might be a potential anticancer compound. In conclusion, the present study demonstrated that GA significantly reduces cell proliferation, invasion, and migration by increasing E-cadherin and repressing Col1A1. PMID:26849170

  13. Metabolic potentiation of the radiosensitization of hypoxic bacterial cells afforded by nitroaromatic compounds.

    PubMed

    Anderson, R F; Patel, K B

    1983-03-01

    Prolonged preirradiation incubation of nitroaromatic radiosensitizers with Escherichia coli cells has been found to increase the degree of radiosensitization of the cells in anoxia. Studies with E. coli strains which differ in their nitroreductase activity indicate that the increase in sensitization arises from the action of metabolites produced by the nitroreductase system of the cell. The metabolites alone appear to decrease the extrapolation number of irradiated hypoxic cells and when combined with the parent compound give a biphasic survival curve. The combination of misonidazole (1 mmole dm-3) and its metabolites (1 mmole dm-3) gave initial and final enhancement ratios of 2.4 and 1.4, respectively. The final enhancement ratio is that expected for 1 mmole dm-3 misonidazole alone, whereas the initial enhancement ratio indicates that the metabolites potentiate the action of misonidazole. The preirradiation incubation effect is removed by dithiothreitol at concentrations which do not affect the radiosensitization level of the nitroaromatic sensitizer. This result indicates that the active metabolite probably depletes a certain amount of the free-thiol compounds inside the cell which assist in the repair of radiation-induced damage. PMID:6344127

  14. Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells.

    PubMed

    Kowalski, Tomasz J; Leong, Natalie L; Dar, Ayelet; Wu, Ling; Kabir, Nima; Khan, Adam Z; Eliasberg, Claire D; Pedron, Andrew; Karayan, Ashant; Lee, Siyoung; Di Pauli von Treuheim, Theodor; Jiacheng, Jin; Wu, Ben M; Evseenko, Denis; McAllister, David R; Petrigliano, Frank A

    2016-06-01

    There has been substantial effort directed toward the application of bone marrow and adipose-derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue-specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)-derived cell populations with the potential for ligament regeneration: ligament-forming fibroblasts (LFF: CD146(neg) , CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ), ligament perivascular cells (LPC: CD146(pos) CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ) and ligament interstitial cells (LIC: CD34(pos) CD146(neg) , CD44(pos) , CD31(neg) , CD45(neg) )-and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8- and 3.3-fold, respectively) and LFFs (by 3- and 3.5-fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4- and 3.5-fold, respectively), LFFs (by 5.5- and 3-fold, respectively), LPCs (by 10- and 4.5-fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  15. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration.

    PubMed

    Lee, Jung-Seok; Park, Jung-Chul; Kim, Tae-Wan; Jung, Byung-Joo; Lee, Youngseok; Shim, Eun-Kyung; Park, Soyon; Choi, Eun-Young; Cho, Kyoo-Sung; Kim, Chang-Sung

    2015-09-01

    Human bone marrow mesenchymal stem cells (hBMSCs) were isolated from bone marrow of the vertebral body. The hBMSCs were cultured under either hypoxic (1% O2) or normoxic (21% O2; control) conditions and the characteristics as mesenchymal stem cells were compared. Results revealed that hypoxia reduced proliferative potential and colony-forming efficiency of hBMSCs, and significantly enhanced osteogenic and chondrogenic differentiation. The hBMSCs enhanced the regenerative potential of bone in vivo. In vitro synthesis of soluble and insoluble collagen was significantly increased in the hypoxic condition. In vivo collagen tissue regeneration was also enhanced under the hypoxic condition, with concomitant increased expressions of various subtypes of collagen and lysyl-oxidase family mRNA. MicroRNA assays revealed that miR-155-5p, which negatively regulates HIF-1α, was significantly highly expressed. These observations demonstrate that hBMSCs obtained from human vertebrae exhibit altered characteristics under hypoxic conditions, and each factor contributing to hBMSC-mediated tissue healing should be evaluated with the goal of allowing their clinical application. PMID:25952967

  16. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells.

    PubMed

    Li, Mingchuan; Wang, Yong Xing; Luo, Yong; Zhao, Jiahui; Li, Qing; Zhang, Jiao; Jiang, Yongguang

    2016-07-01

    Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death. Hypoxia is an environmental stimulus that plays an important role in the development and cancer progression especially for solid tumors. The key regulator under hypoxic conditions is stabilized hypoxia-inducible factor (HIF)-1α. In the present study, immune-fluorescent staining, siRNAs, qRT-PC, immunoblotting, cell migration and invasion assays were carried out to test typical epithelial to mesenchymal transition under hypoxia and the key regulators of this process in PC3, a human prostate cancer cell line. Our data demonstrated that hypoxia induces diverse molecular, phenotypic and functional changes in prostate cancer cells that are consistent with EMT. We also showed that a cell signal factor such as HIF-1α, which might be stabilized under hypoxic environment, is involved in EMT and cancer cell invasive potency. The induced hypoxia could be blocked by HIF-1α gene silencing and reoxygenation of EMT in prostate cancer cells, hypoxia partially reversed accompanied by a process of mesenchymal-epithelial reverting transition (MErT). EMT might be induced by activation of HIF-1α-dependent cell signaling in hypoxic prostate cancer cells. PMID:27108616

  17. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells.

    PubMed

    Curran, Colleen S; Carrillo, Esteban R; Ponik, Suzanne M; Keely, Patricia J

    2015-01-01

    Breast density, where collagen I is the dominant component, is a significant breast cancer risk factor. Cell surface integrins interact with collagen, activate focal adhesion kinase (FAK), and downstream cell signals associated with xenobiotics (AhR, ARNT) and hypoxia (HIF-1α, ARNT). We examined if mammary cells cultured in high density (HD) or low density (LD) collagen gels affected xenobiotic or hypoxic responses. ARNT production was significantly reduced by HD culture and in response to a FAK inhibitor. Consistent with a decrease in ARNT, AhR and HIF-1α reporter activation and VEGF production was lower in HD compared to LD. However, P450 production was enhanced in HD and induced by AhR and HIF-1α agonists, possibly in response to increased NF-κB activaton. Thus, collagen density differentially regulates downstream cell signals of AhR and HIF-1α by modulating the activity of FAK, the release of NF-κB transcriptional factors, and the levels of ARNT. PMID:25481308

  18. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells

    PubMed Central

    Curran, Colleen S.; Carrillo, Esteban R.; Ponik, Suzanne M.; Keely, Patricia J.

    2014-01-01

    Breast density, where collagen I is the dominant component, is a significant breast cancer risk factor. Cell surface integrins interact with collagen, activate focal adhesion kinase (FAK), and downstream cell signals associated with xenobiotics (AhR, ARNT) and hypoxia (HIF-1α, ARNT). We examined if mammary cells cultured in high density (HD) or low density (LD) collagen gels affected xenobiotic or hypoxic responses. ARNT production was significantly reduced by HD culture and in response to a FAK inhibitor. Consistent with a decrease in ARNT, AhR and HIF-1α reporter activation and VEGF production was lower in HD compared to LD. However, P450 production was enhanced in HD and induced by AhR and HIF-1α agonists, possibly in response to increased NF-kB activaton. Thus, collagen density differentially regulates downstream cell signals of AhR and HIF-1α by modulating the activity of FAK, the release of NF-kB transcriptional factors, and the levels of ARNT. PMID:25481308

  19. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment.

    PubMed

    Rausch, Vanessa; Liu, Li; Apel, Anja; Rettig, Theresa; Gladkich, Jury; Labsch, Sabrina; Kallifatidis, Georgios; Kaczorowski, Adam; Groth, Ariane; Gross, Wolfgang; Gebhard, Martha M; Schemmer, Peter; Werner, Jens; Salnikov, Alexei V; Zentgraf, Hanswalter; Büchler, Markus W; Herr, Ingrid

    2012-07-01

    Involvement of dysregulated autophagy in cancer growth and progression has been shown in different tumour entities, including pancreatic ductal adenocarcinoma (PDA). PDA is an extremely aggressive tumour characterized by a small population of highly therapy-resistant cancer stem cells (CSCs) capable of self-renewal and migration. We examined whether autophagy might be involved in the survival of CSCs despite nutrition and oxygen deprivation typical for the hypoxic tumour microenvironment of PDA. Immunohistochemistry revealed that markers for hypoxia, CSCs and autophagy are co-expressed in patient-derived tissue of PDA. Hypoxia starvation (H/S) enhanced clonogenic survival and migration of established pancreatic cancer cells with stem-like properties (CSC(high)), while pancreatic tumour cells with fewer stem cell markers (CSC(low)) did not survive these conditions. Electron microscopy revealed more advanced autophagic vesicles in CSC(high) cells, which exhibited higher expression of autophagy-related genes under normoxic conditions and relative to CSC(low) cells, as found by RT-PCR and western blot analysis. LC3 was already fully converted to the active LC3-II form in both cell lines, as evaluated by western blot and detection of accumulated GFP-LC3 protein by fluorescence microscopy. H/S increased formation of autophagic and acid vesicles, as well as expression of autophagy-related genes, to a higher extent in CSC(high) cells. Modulation of autophagy by inhibitors and activators resensitized CSC(high) to apoptosis and diminished clonogenicity, spheroid formation, expression of CSC-related genes, migratory activity and tumourigenicity in mice. Our data suggest that enhanced autophagy levels may enable survival of CSC(high) cells under H/S. Interference with autophagy-activating or -inhibiting drugs disturbs the fine-tuned physiological balance of enhanced autophagy in CSC and switches survival signalling to suicide. PMID:22262369

  20. Quantitative Imaging of Hematopoietic Stem and Progenitor Cell localization and hypoxic status in the Bone Marrow microenvironment

    PubMed Central

    Nombela-Arrieta, César; Pivarnik, Gregory; Winkel, Beatrice; Canty, Kimberly J.; Harley, Brendan; Mahoney, John E.; Park, Shin-Young; Lu, Jiayun; Protopopov, Alexei; Silberstein, Leslie E.

    2014-01-01

    The existence of a hematopoietic stem cell niche as a spatially confined regulatory entity relies on the notion that hematopoietic stem and progenitor cells (HSPCs) are strategically positioned in unique bone marrow (BM) microenvironments with defined anatomical and functional features. Here, we employ a powerful imaging cytometry platform to perform a comprehensive quantitative analysis of HSPC distribution in BM cavities of femoral bones. We find that HSPCs preferentially localize in endosteal zones, where the majority closely interacts with sinusoidal and non-sinusoidal BM microvessels, which form a distinctive circulatory system. In situ tissue analysis reveals that HSPCs exhibit a hypoxic profile, defined by strong retention of pimonidazole and expression of HIF-1α, regardless of localization throughout the BM, adjacency to vascular structures or cell cycle status. These studies argue that the characteristic hypoxic state of HSPCs is not solely the result of a minimally oxygenated niche but may be partially regulated by cell-specific mechanisms. PMID:23624405

  1. Mild hypothermia combined with neural stem cell transplantation for hypoxic-ischemic encephalopathy: neuroprotective effects of combined therapy

    PubMed Central

    Wang, Lin; Jiang, Feng; Li, Qifeng; He, Xiaoguang; Ma, Jie

    2014-01-01

    Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27–28°C) can increase the survival rate of neural stem cells (1.0 × 105/μL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hypothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our findings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inflammatory and anti-apoptotic mechanisms. PMID:25422635

  2. Cytotoxic Activity of Anticancer Drugs on Hepatocellular Carcinoma Cells in Hypoxic-Hyponutritional Culture

    PubMed Central

    Li, Qiang; Zhu, Lin-Zhong; Yang, Ren-Jie; Zhu, Xu

    2014-01-01

    To investigate which anticancer drugs and combination of dual drugs could further promote the inhibition of cell growth in vitro against HCC cell line (HepG2) in the hypoxic and hyponutritional culture medium (HHCM) mimicked the different scenarios of transcatheter arterial chemoembolization (TACE). The cells of hepatocellular carcinoma (HCC) treated by TACE suffered various hypoxia and hyponutrition. The cells were treated for 2 hours, 4 hours, 6 hours, and 24 hours, respectively, using 10 drugs including epirubicin (EPI), cisplatin (DDP), mitomycin-C (MMC), oxaliplatin (OXA), hydroxycamptothecin (HCPT), 5-fluorouracil (5-FU), gemcitabine (GEM), docetaxel (DTX), thiotepa (TSPA), and pemetrexed disodium (PEM) in 4 concentrations of HHCM (5%, 10%, 25%, and 50%, respectively) mimicking the scenario of TACE and were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells treated with combinations of dual drugs for 24 hours were also tested. The sensitive drugs with inhibition rates more than 30% were EPI, MMC, HCPT, OXA, and PEM in 4 types of HHCMs. The sensitivity of the cells to treatment with drugs for 24 hours was significantly higher than the sensitivity of the cells to treatment with drugs for 2 hours in 5%, 10%, and 25% HHCM. The sensitivity of the combination of dual drugs was no more than the sensitivity of the single drug with higher sensitivity in 4 concentrations of HHCM. EPI, MMC, HCPT, OXA, and PEM exhibited cytotoxic activity against HepG2 cells in various hypoxia and hyponutrition states. Prolonging the time of exposure could increase the sensitivity of drug, and the combination of dual drugs cannot enhance the cytotoxic effect. PMID:25437582

  3. Cytotoxic activity of anticancer drugs on hepatocellular carcinoma cells in hypoxic-hyponutritional culture.

    PubMed

    Li, Qiang; Zhu, Lin-Zhong; Yang, Ren-Jie; Zhu, Xu

    2014-01-01

    To investigate which anticancer drugs and combination of dual drugs could further promote the inhibition of cell growth in vitro against HCC cell line (HepG2) in the hypoxic and hyponutritional culture medium (HHCM) mimicked the different scenarios of transcatheter arterial chemoembolization (TACE). The cells of hepatocellular carcinoma (HCC) treated by TACE suffered various hypoxia and hyponutrition. The cells were treated for 2 hours, 4 hours, 6 hours, and 24 hours, respectively, using 10 drugs including epirubicin (EPI), cisplatin (DDP), mitomycin-C (MMC), oxaliplatin (OXA), hydroxycamptothecin (HCPT), 5-fluorouracil (5-FU), gemcitabine (GEM), docetaxel (DTX), thiotepa (TSPA), and pemetrexed disodium (PEM) in 4 concentrations of HHCM (5%, 10%, 25%, and 50%, respectively) mimicking the scenario of TACE and were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells treated with combinations of dual drugs for 24 hours were also tested. The sensitive drugs with inhibition rates more than 30% were EPI, MMC, HCPT, OXA, and PEM in 4 types of HHCMs. The sensitivity of the cells to treatment with drugs for 24 hours was significantly higher than the sensitivity of the cells to treatment with drugs for 2 hours in 5%, 10%, and 25% HHCM. The sensitivity of the combination of dual drugs was no more than the sensitivity of the single drug with higher sensitivity in 4 concentrations of HHCM. EPI, MMC, HCPT, OXA, and PEM exhibited cytotoxic activity against HepG2 cells in various hypoxia and hyponutrition states. Prolonging the time of exposure could increase the sensitivity of drug, and the combination of dual drugs cannot enhance the cytotoxic effect. PMID:25437582

  4. Studies on the mechanism of the cytotoxic action of the mitomycin antibiotics in hypoxic and oxygenated EMT6 cells.

    PubMed

    Sartorelli, A C; Tomasz, M; Rockwell, S

    1993-01-01

    The mitomycin antibiotics, because of their preferential toxicities for hypoxic cells, have significant potential as adjuncts to ionizing radiation in the treatment of solid tumors. To gain information on the mechanism by which these agents exert their cytotoxicities to hypoxic and aerobic cells, the effects of MC, POR and several of their analogs were studied in EMT6 mammary carcinoma cells. The rate of uptake of POR by these cells was directly correlated with the cytotoxicity produced by this agent under both hypoxia and aeration. At equivalent concentrations, uptake of POR into hypoxic cells was more rapid than into aerobic cells. Hypoxic cells also accumulated the antibiotic in concentrations well in excess of that present in the extracellular medium, presumably as a result of reductive activation and covalent binding of POR to cellular structures. Such activation and binding occur to a much lesser degree in aerated cells, resulting in the rapid efflux of POR from these cells when the antibiotic is removed from the extracellular environment. To gain information on the reaction of POR with DNA, mono- and bis-adducts formed in EMT6 cells exposed to this agent were measured. Three major adducts were formed. Two were mono-adducts consisting of deoxyguanosine linked at its N2-position to the C-1 of POR and of 10-decarbamoyl POR. The third was a bis-adduct in which POR was cross-linked to two deoxyguanosines at their N2-positions. More adducts were formed in hypoxia than in air, and more bis-adducts were present in hypoxic cells. Simultaneous exposure of cells to both POR and DIC reduced the total adduct level and a new unknown adduct was formed, primarily under hypoxia. Several mitomycins were evaluated for their capacity to kill EMT6 cells and to produce DNA cross-links in both hypoxia and aeration. The number of cross-links required to produce a given amount of cell kill was similar, regardless of the mitomycin employed or the degree of oxygenation. The findings

  5. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78.

    PubMed

    Miharada, Kenichi; Karlsson, Göran; Rehn, Matilda; Rörby, Emma; Siva, Kavitha; Cammenga, Jörg; Karlsson, Stefan

    2011-10-01

    Hematopoietic stem cells (HSCs) are maintained in hypoxic niches in endosteal regions of bones. Here we demonstrate that Cripto and its receptor GRP78 are important regulators of HSCs in the niche. Flow cytometry analyses revealed two distinct subpopulations of CD34(-)KSL cells based on the expression of GRP78, and these populations showed different reconstitution potential in transplantation assays. GRP78(+)HSCs mainly reside in the endosteal area, are more hypoxic, and exhibit a lower mitochondrial potential, and their HSC capacity was maintained in vitro by Cripto through induction of higher glycolytic activity. Additionally, HIF-1α KO mice have decreased numbers of GRP78(+)HSCs and reduced expression of Cripto in the endosteal niche. Furthermore, blocking GRP78 induced a movement of HSCs from the endosteal to the central marrow area. These data suggest that Cripto/GRP78 signaling is an important pathway that regulates HSC quiescence and maintains HSCs in hypoxia as an intermediary of HIF-1α. PMID:21982233

  6. PIM Kinase Inhibitors Kill Hypoxic Tumor Cells by Reducing Nrf2 Signaling and Increasing Reactive Oxygen Species.

    PubMed

    Warfel, Noel A; Sainz, Alva G; Song, Jin H; Kraft, Andrew S

    2016-07-01

    Intratumoral hypoxia is a significant obstacle to the successful treatment of solid tumors, and it is highly correlated with metastasis, therapeutic resistance, and disease recurrence in cancer patients. As a result, there is an urgent need to develop effective therapies that target hypoxic cells within the tumor microenvironment. The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases represent a prosurvival pathway that is upregulated in response to hypoxia, in a HIF-1-independent manner. We demonstrate that pharmacologic or genetic inhibition of PIM kinases is significantly more toxic toward cancer cells in hypoxia as compared with normoxia. Xenograft studies confirm that PIM kinase inhibitors impede tumor growth and selectively kill hypoxic tumor cells in vivo Experiments show that PIM kinases enhance the ability of tumor cells to adapt to hypoxia-induced oxidative stress by increasing the nuclear localization and activity of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), which functions to increase the expression of antioxidant genes. Small molecule PIM kinase inhibitors prevent Nrf2 from accumulating in the nucleus, reducing the transcription of cytoprotective genes and leading to the build-up of intracellular reactive oxygen species (ROS) to toxic levels in hypoxic tumor cells. This toxic effect of PIM inhibitors can be successfully blocked by ROS scavengers, including N-acetyl cystine and superoxide dismutase. Thus, inhibition of PIM kinases has the potential to oppose hypoxia-mediated therapeutic resistance and induce cell death in the hypoxic tumor microenvironment. Mol Cancer Ther; 15(7); 1637-47. ©2016 AACR. PMID:27196781

  7. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    SciTech Connect

    Pilgaard, L.; Lund, P.; Duroux, M.; Lockstone, H.; Taylor, J.; Emmersen, J.; Fink, T.; Ragoussis, J.; Zachar, V.

    2009-07-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  8. The radiomimetic enediyne, 20'-deschloro-C-1027 induces inter-strand DNA crosslinks in hypoxic cells and overcomes cytotoxic radioresistance.

    PubMed

    Beerman, Terry A; Gawron, Loretta S; Shen, Ben; Kennedy, Daniel R

    2014-09-01

    The ability of the radiomimetic anti-tumor enediyne C-1027 to induce DNA inter-strand crosslinks (ICLs), in addition to the expected DNA strand breaks, is unique among traditional DNA targeted cancer therapies. Importantly, radiation therapy and most radiomimetic drugs have diminished effect in hypoxic environments due to decreased induction of DNA strand breaks, which is an oxygen requiring process. However, C-1027's induction of ICLs is enhanced under hypoxia and it is actually more potent against hypoxic cells, overcoming this common tumor resistance mechanism. In this study, an analog of C-1027, 20'-deschloro-C-1027 was examined for its ability to induce DNA ICLs under hypoxic conditions. Deschloro-induced ICLs were detected under hypoxic cell-free conditions, with a concomitant reduction in the induction of DNA strand breaks. In cells deschloro behaved similarly, inducing cellular ICLs under hypoxic conditions with a reduction in DNA breaks. The cytotoxicity of deschloro treatment was similar in normoxic and hypoxic cells, suggesting that the ICL induction allows deschloro to retain its cytotoxic activity under hypoxia. It appears that rational engineering of the C-1027 family of radiomimetics holds promise toward overcoming the radioresistance associated with the hypoxic environment associated with solid tumors. PMID:24986640

  9. The radiomimetic enediyne, 20′-deschloro-C-1027 induces inter-strand DNA crosslinks in hypoxic cells and overcomes cytotoxic radioresistance

    PubMed Central

    Beerman, Terry A.; Gawron, Loretta S.; Shen, Ben; Kennedy, Daniel R.

    2014-01-01

    The ability of the radiomimetic anti-tumor enediyne C-1027 to induce DNA inter-strand crosslinks (ICLs), in addition to the expected DNA strand breaks, is unique among traditional DNA targeted cancer therapies. Importantly, radiation therapy and most radiomimetic drugs have diminished effect in hypoxic environments due to decreased induction of DNA strand breaks, which is an oxygen requiring process. However, C-1027’s induction of ICLs is enhanced under hypoxia and it is actually more potent against hypoxic cells, overcoming this common tumor resistance mechanism. In this study, an analog of C-1027, 20′deschloro-C-1027 was examined for its ability to induce DNA ICLs under hypoxic conditions. Deschloro-induced ICLs were detected under hypoxic cell-free conditions, with a concomitant reduction in the induction of DNA strand breaks. In cells deschloro behaved similarly, inducing cellular ICLs under hypoxic conditions with a reduction in DNA breaks. The cytotoxicity of deschloro treatment was similar in normoxic and hypoxic cells, suggesting that the ICL induction allows deschloro to retain its cytotoxic activity under hypoxia. It appears that rational engineering of the C-1027 family of radiomimetics holds promise toward overcoming the radioresistance associated with the hypoxic environment associated with solid tumors. PMID:24986640

  10. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke

    PubMed Central

    2014-01-01

    Background Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP specifically recruited B cells into the protected ischemic hemisphere, and whether RHP could phenotypically alter B cells prior to stroke onset. Methods Adult, male SW/ND4 mice received RHP (nine exposures over 2 weeks; 8 to 11 % O2; 2 to 4 hours) or identical exposures to 21 % O2 as control. Two weeks following RHP, a 60-minute transient middle cerebral artery occlusion was induced. Standard techniques quantified CXCL13 mRNA and protein expression. Two days after stroke, leukocytes were isolated from brain tissue (70:30 discontinuous Percoll gradient) and profiled on a BD-FACS Aria flow cytometer. In a separate cohort without stroke, sorted splenic CD19+ B cells were isolated 2 weeks after RHP and analyzed on an Illumina MouseWG-6 V2 Bead Chip. Final gene pathways were determined using Ingenuity Pathway Analysis. Student’s t-test or one-way analysis of variance determined significance (P < 0.05). Results CXCL13, a B cell-specific chemokine, was upregulated in post-stroke cortical vessels of both groups. In the ischemic hemisphere, RHP increased B cell representation by attenuating the diapedesis of monocyte, macrophage, neutrophil and T cells, to quantities indistinguishable from the uninjured, contralateral hemisphere. Pre-stroke splenic B cells isolated from RHP-treated mice had >1,900 genes differentially expressed by microarray analysis. Genes related to B-T cell interactions, including antigen presentation, B cell differentiation and antibody production, were profoundly downregulated. Maturation and activation were arrested in a cohort of B cells from pre-stroke RHP-treated mice while

  11. HIF1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes

    PubMed Central

    Guimarães-Camboa, Nuno; Stowe, Jennifer; Aneas, Ivy; Sakabe, Noboru; Cattaneo, Paola; Henderson, Lindsay; Kilberg, Michael S.; Johnson, Randall S.; Chen, Ju; McCulloch, Andrew D.; Nobrega, Marcelo A.; Evans, Sylvia M.; Zambon, Alexander C.

    2015-01-01

    Summary Transcriptional mediators of cell stress pathways, including HIF1α, ATF4, and p53, are key to normal development and play critical roles in disease, including ischemia and cancer. Despite their importance, mechanisms by which pathways mediated by these transcription factors interact with each other are not fully understood. In addressing the controversial role of HIF1α in cardiomyocytes (CMs) during heart development, we have discovered a mid-gestational requirement for HIF1α for proliferation of hypoxic CMs, involving metabolic switching and a complex interplay between HIF1α, ATF4 and p53. Loss of HIF1α resulted in activation of ATF4 and p53, the latter inhibiting CM proliferation. Bioinformatic and biochemical analyses revealed unexpected mechanisms by which HIF1α intersects with ATF4 and p53 pathways. Our results highlight previously undescribed roles of HIF1α and interactions between major cell stress pathways that could be targeted to enhance proliferation of CMs in ischemia, and may have relevance to other diseases, including cancer. PMID:26028220

  12. Ultrasound-mediated destruction of oxygen and paclitaxel loaded lipid microbubbles for combination therapy in hypoxic ovarian cancer cells.

    PubMed

    Sun, Jiangchuan; Yin, Mingyue; Zhu, Shenyin; Liu, Li; Zhu, Yi; Wang, Zhigang; Xu, Ronald X; Chang, Shufang

    2016-01-01

    We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm(2), 15s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells. PMID:26384914

  13. Embryonic stem cells conditioned medium enhances Wharton's jelly-derived mesenchymal stem cells expansion under hypoxic condition.

    PubMed

    Prasajak, Patcharee; Rattananinsruang, Piyaporn; Chotinantakul, Kamonnaree; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat

    2015-05-01

    Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco's modified Eagle's medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29(+), CD44(+), CD90(+), CD34(-), CD45(-)) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the

  14. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy

    PubMed Central

    Xie, Bingchuan; Gu, Ping; Wang, Wenting; Dong, Ci; Zhang, Lina; Zhang, Jun; Liu, Huimiao; Qiu, Fucheng; Han, Rui; Zhang, Zhenqing; Yan, Baoyong

    2016-01-01

    Objective: Human umbilical cord mesenchymal stem cells (hUC-MSCs) hold substantial promise for the treatment of ischemic neurological disease, but few clinical data are currently available about its therapeutic effects in hypoxic ischemic encephalopathy (HIE). This study is to evaluate the effects of hUC-MSCs transplantation on patients with HIE. Methods A total 22 patients with HIEwere randomly divided into hUC-MSCs transplantation group (n = 12) and control group (n = 10). After isolation, hUC-MSCs were cultured for 3 to 5 passages in vitro and then intravenously administered to HIE patients in the transplantation group, while the control group received routine treatment only. The outcomes of HIE patients were evaluated at designated time points by clinical assessment scales, including NIHSS, Barthel Index, MMSE, HAMA24, HAMD14 and UPDRS. Results: hUC-MSCs were identified by morphological analysis and flow cytometry assays before clinic transplantation. No significant differences of demographic characteristics were observed between the two groups of subjects. Compared to the control group, hUC-MSCs transplantation markedly improved the outcomes of HIE patients leading to better recovery of neurological function, cognition ability, emotional reaction and extrapyramidal function. No significant adverse effects were found in subjects with hUC-MSCs transplantation during a 180-day follow-up period. Conclusion: These data suggest that hUC-MSCs therapy markedly improves the outcomes of patients with HIE, which is potential for the routine treatment of ischemic neurological disease. PMID:27508046

  15. Continuous Hypoxic Culturing of Human Embryonic Stem Cells Enhances SSEA-3 and MYC Levels

    PubMed Central

    Laiho, Asta; Rahkonen, Nelly; Emani, Maheswara Reddy; Viitala, Miro; Laurila, Kirsti; Sahla, Roosa; Lund, Riikka; Lähdesmäki, Harri; Jaakkola, Panu; Lahesmaa, Riitta

    2013-01-01

    Low oxygen tension (hypoxia) contributes critically to pluripotency of human embryonic stem cells (hESCs) by preventing spontaneous differentiation and supporting self-renewal. However, it is not well understood how hESCs respond to reduced oxygen availability and what are the molecular mechanisms maintaining pluripotency in these conditions. In this study we characterized the transcriptional and molecular responses of three hESC lines (H9, HS401 and HS360) on short (2 hours), intermediate (24 hours) and prolonged (7 days) exposure to low oxygen conditions (4% O2). In response to prolonged hypoxia the expression of pluripotency surface marker SSEA-3 was increased. Furthermore, the genome wide gene-expression analysis revealed that a substantial proportion (12%) of all hypoxia-regulated genes in hESCs, were directly linked to the mechanisms controlling pluripotency or differentiation. Moreover, transcription of MYC oncogene was induced in response to continuous hypoxia. At the protein level MYC was stabilized through phosphorylation already in response to a short hypoxic exposure. Total MYC protein levels remained elevated throughout all the time points studied. Further, MYC protein expression in hypoxia was affected by silencing HIF2α, but not HIF1α. Since MYC has a crucial role in regulating pluripotency we propose that induction of sustained MYC expression in hypoxia contributes to activation of transcriptional programs critical for hESC self-renewal and maintenance of enhanced pluripotent state. PMID:24236059

  16. Regulation of angiogenin expression and epithelial-mesenchymal transition by HIF-1α signaling in hypoxic retinal pigment epithelial cells.

    PubMed

    Lai, Kairan; Luo, Chenqi; Zhang, Xiaobo; Ye, Panpan; Zhang, Yidong; He, Jiliang; Yao, Ke

    2016-09-01

    Choroidal neovascularization (CNV) is a major cause of vision loss in many retinal diseases. Hypoxia is determined to be a key inducer of CNV and hypoxia-inducible factor-1 (HIF-1) is an important transcription factor. Epithelial-mesenchymal transition (EMT) and the synthesis of proangiogenic cytokines make great contributions to the development of CNV. In the present study, the role of HIF-1α signaling in the regulation of angiogenin (ANG) expression and EMT in hypoxic retinal pigment epithelial cells was investigated. A significant elevation expression of ANG expression level in a mouse model of laser-induced CNV was demonstrated. In a hypoxic model of ARPE-19, an increased expression level of ANG and induction of EMT accompanied with stabilization and nucleus translocation of HIF-1α. Blockage of HIF-1α signaling resulted in inhibition of high expression of ANG and EMT features. The direct interaction between HIF-1α and ANG promoter region was identified by ChIP-qPCR. The association of RNase 4 mRNA level with HIF-1α signaling was also clarified in APRE-19. Moreover, the exogenous ANG translocated into the nucleus, enhanced 45S rRNA transcription, promoted cell proliferation and tube formation in human retinal microvascular endothelial cells. In conclusion, the hypoxic conditions regulate the expression of ANG and EMT via an activation of HIF-1α signaling. It provides molecular evidence for potential therapy strategies of treating CNV. PMID:27259982

  17. Synthesis and Biological Evaluation of Iodoglucoazomycin (I-GAZ), an Azomycin-Glucose Adduct with Putative Applications in Diagnostic Imaging and Radiotherapy of Hypoxic Tumors.

    PubMed

    Kumar, Piyush; Elsaidi, Hassan R H; Zorniak, Bohdarianna; Laurens, Evelyn; Yang, Jennifer; Bacchu, Veena; Wang, Monica; Wiebe, Leonard I

    2016-08-01

    Iodoglucoazomycin (I-GAZ; N-(2-iodo-3-(6-O-glucosyl)propyl)-2-nitroimidazole), a non-glycosidic nitroimidazole-6-O-glucose adduct, was synthesized, radioiodinated, and evaluated as a substrate of glucose transporter 1 (GLUT1) for radiotheranostic (therapy+diagnostic) management of hypoxic tumors. Nucleophilic iodination of the nosylate synthon of I-GAZ followed by deprotection afforded I-GAZ in 74 % overall yield. I-GAZ was radioiodinated via 'exchange' labeling using [(123/131) I]iodide (50-70 % RCY) and then purified by Sep-Pak™ (>96 % RCP). [(131) I]I-GAZ was stable in 2 % ethanolic solution in sterile water for 14 days when stored at 5 °C. In cell culture, I-GAZ was found to be nontoxic to EMT-6 cells at concentrations <0.5 mm, and weakly radiosensitizing (SER 1.1 at 10 % survival of EMT-6 cells; 1.2 at 0.1 % survival in MCF-7 cells). The hypoxic/normoxic uptake ratio of [(123) I]I-GAZ in EMT-6 cells was 1.46 at 2 h, and under normoxic conditions the uptake of [(123) I]I-GAZ by EMT-6 cells was unaltered in the presence of 5 mm glucose. The biodistribution of [(131) I]I-GAZ in EMT-6 tumor-bearing Balb/c mice demonstrated rapid clearance from blood and extensive renal and hepatic excretion. Tumor/blood and tumor/muscle ratios reached ∼3 and 8, respectively, at 4 h post-injection. Regression analysis of the first order polynomial plots of the blood and tumor radioactivity concentrations supported a perfusion-excretion model with low hypoxia-dependent binding. [(131) I]I-GAZ was found to be stable in vivo, and did not deiodinate. PMID:27377671

  18. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways.

    PubMed

    Son, Jang-Ho; Cho, Yeong-Cheol; Sung, Iel-Yong; Kim, In-Ryoung; Park, Bong-Soo; Kim, Yong-Deok

    2014-11-01

    Osteoblastic differentiation and bone-forming capacity are known to be suppressed under hypoxic conditions. Melatonin has been shown to influence cell differentiation. A number of in vitro and in vivo studies have suggested that melatonin also has an anabolic effect on bone, by promoting osteoblastic differentiation. However, the precise mechanisms and the signaling pathways involved in this process, particularly under hypoxic conditions, are unknown. This study investigated whether melatonin could promote osteoblastic differentiation and mineralization of preosteoblastic MC3T3-E1 cells under hypoxic conditions. Additionally, we examined the molecular signaling pathways by which melatonin mediates this process. We found that melatonin is capable of promoting differentiation and mineralization of MC3T3-E1 cells cultured under hypoxic conditions. Melatonin upregulated ALP activity and mRNA levels of Alp, Osx, Col1, and Ocn in a time- and concentration-dependent manner. Alizarin red S staining showed that the mineralized matrix in hypoxic MC3T3-E1 cells formed in a manner that was dependent on melatonin concentration. Moreover, melatonin stimulated phosphorylation of p38 Mapk and Prkd1 in these MC3T3-E1 cells. We concluded that melatonin promotes osteoblastic differentiation of MC3T3-E1 cells under hypoxic conditions via the p38 Mapk and Prkd1 signaling pathways. PMID:25250639

  19. Loss of cell adhesion molecule CHL1 improves homeostatic adaptation and survival in hypoxic stress.

    PubMed

    Huang, X; Sun, J; Rong, W; Zhao, T; Li, D H; Ding, X; Wu, L Y; Wu, K; Schachner, M; Xiao, Z C; Zhu, L L; Fan, M

    2013-01-01

    Close homologue of L1 (CHL1) is a transmembrane cell adhesion molecule that is critical for brain development and for the maintenance of neural circuits in adults. Recent studies revealed that CHL1 has diverse roles and is involved in the regulation of recovery after spinal cord injury. CHL1 expression was downregulated in the cerebral cortex, hypothalamus, and brain stem after the induction of acute hypoxia (AH). In the current study, we sought to address the role of CHL1 in regulating homeostasis responses to hypoxia using CHL1-knockout (CHL1(-/-)) mice. We found that, compared with wild-type littermates, CHL1(-/-) mice showed a dramatically lower mortality rate and an augmented ventilatory response after they were subjected to AH. Immunofluorescence staining revealed that CHL1 was expressed in the carotid body (CB), the key oxygen sensor in rodents, and CHL1 expression level in the CB as assayed by western blot was decreased after hypoxic exposure. The number of glomus cells and the expression of tyrosine hydroxylase (a marker for glomus cells) in the CB of CHL1(-/-) mice appeared to be increased compared with CHL1(+/+) mice. In addition, in the ex vivo CB preparation, hypoxia induced a significantly greater afferent nerve discharge in CHL1(-/-) mice compared with CHL1(+/+) mice. Furthermore, the arterial blood pressure and plasma catecholamine levels of CHL1(-/-) mice were also significantly higher than those of CHL1(+/+) mice. Our findings first demonstrate that CHL1 is a novel intrinsic factor that is involved in CB function and in the ventilatory response to AH. PMID:23949217

  20. Modification of the metabolism and cytotoxicity of bioreductive alkylating agents by dicoumarol in aerobic and hypoxic murine tumor cells.

    PubMed

    Keyes, S R; Rockwell, S; Sartorelli, A C

    1989-06-15

    We have demonstrated previously that dicoumarol (DIC) increased the generation of reactive metabolites from mitomycin C (MC) in EMT6 cells under hypoxic conditions in vitro. This increased reaction rate was associated with an increased toxicity of MC to hypoxic EMT6 cells. In contrast, aerobic cells treated with DIC in vitro were protected from MC toxicity. We now demonstrate that DIC sensitizes EMT6 cells to two MC analogues, porfiromycin (POR) and the 7-N-dimethylaminomethylene analogue of mitomycin C (BMY-25282), in hypoxia and protects cells from these agents in air, despite the fact that POR is preferentially toxic to hypoxic cells and BMY-25282 is preferentially toxic to aerobic cells. In contrast, DIC increases menadione cytotoxicity in both air and hypoxia and has no effect on the cytotoxicity of Adriamycin. We have also shown previously that the preferential toxicity of POR to hypoxic cells is associated with an increased rate of drug uptake. In the present study, DIC had no measurable effect on the uptake of [3H]POR but increased the extent of efflux of this agent. MC-induced DNA cross-links, which have been proposed as the lesions responsible for the lethality of MC, are decreased by DIC in air and increased by DIC in hypoxia, in concert with the observed modifications of MC cytotoxicity by DIC. However, in aerobic cells treated with DIC and MC, the decrease in DNA interstrand cross-links is not directly associated with a decrease in cytotoxicity. L1210 cells, which have no measurable quinone reductase activity, demonstrate increased toxicity when treated with DIC and MC in hypoxia, as observed with EMT6 cells. Unlike EMT6 cells, however, L1210 cells are not protected by DIC from MC toxicity in air. Taken together, these findings suggest that DIC is altering the intracellular metabolism of MC and that quinone reductase or another, unidentified, enzyme sensitive to DIC may be involved in activating MC to a toxic product in aerobic EMT6 cells. PMID:2470504

  1. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy.

    PubMed

    Garhyan, Jaishree; Bhuyan, Seema; Pulu, Ista; Kalita, Deepjyoti; Das, Bikul; Bhatnagar, Rakesh

    2015-07-01

    Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype. PMID:26066709

  2. The Transcription Factor ZNF395 Is Required for the Maximal Hypoxic Induction of Proinflammatory Cytokines in U87-MG Cells

    PubMed Central

    Herwartz, Christine; Castillo-Juárez, Paola; Schröder, Linda; Barron, Blanca L.; Steger, Gertrud

    2015-01-01

    Hypoxia activates the expression of proangiogenic and survival promoting factors as well as proinflammatory cytokines that support tissue inflammation. Hypoxia and inflammation are associated with tumor progression. The identification of the factors participating in the hypoxia associated inflammation is essential to develop strategies to control tumor hypoxia. The transcription factor ZNF395 was found to be overexpressed in various tumors including glioblastomas particularly in the network of a hypoxic response pointing to a functional role of ZNF395. On the other hand, ZNF395 was suggested to have tumor suppressor activities which may rely on its repression of proinflammatory factors. To address these conflictive observations, we investigated the role of ZNF395 in the expression of proinflammatory cytokines in the astrocytoma cell line U87-MG under hypoxia. We show that ZNF395 is a target gene of the hypoxia inducible factor HIF-1α. By gene expression analysis, RT-PCR and ELISA, we demonstrated that the siRNA-mediated suppression of ZNF395 impairs the hypoxic induction of IL-1β, IL-6, IL-8, and LIF in U87-MG cells. At ambient oxygen concentrations, ZNF395 had no enhancing effect, indicating that this transcriptional activation by ZNF395 is restricted to hypoxic conditions. Our results suggest that ZNF395 contributes to hypoxia associated inflammation by superactivating proinflammatory cytokines. PMID:26229239

  3. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

    PubMed

    Marshall, R S; Paterson, M C; Rauth, A M

    1989-03-01

    Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells. PMID:2467684

  4. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

    PubMed Central

    Marshall, R. S.; Paterson, M. C.; Rauth, A. M.

    1989-01-01

    Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells. PMID:2467684

  5. BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury

    PubMed Central

    Bartley, John; Soltau, Thomas; Wimborne, Hereward; Kim, Sunjun; Martin-Studdard, Angeline; Hess, David; Hill, William; Waller, Jennifer; Carroll, James

    2005-01-01

    Background Mechanisms that affect recovery from fetal and neonatal hypoxic-ischemic (H-I) brain injury have not been fully elucidated. The incidence of intrapartum asphyxia is approximately 2.5%, but the occurrence of adverse clinical outcome is much lower. One of the factors which may account for this relatively good outcome is the process of neurogenesis, which has been described in adult animals. We used a neonatal mouse model to assess new cells in the hippocampus after H-I injury. Results Neonatal mice underwent permanent unilateral carotid ligation on the seventh postnatal day followed by exposure to 8% hypoxia for 75 minutes. The presence of new cells was determined by bromodeoxyuridine (BrdU) incorporation into cells with sacrifice of the animals at intervals. Brain sections were stained for BrdU in combination with neuronal, glial, endothelial and microglial stains. We found a significant increase in BrdU-positive cells in the neonatal mouse hippocampus in the injured area compared to the non-injured area, most prominent in the dentate gyrus (DG) (154.5 ± 59.6 v. 92.9 ± 32.7 at 3 days after injury; 68.9 ± 23.4 v. 52.4 ± 17.1 at 35 days after injury, p < 0.0011). Among the cells which showed differentiation, those which were stained as either microglial or endothelial cells showed a peak increase at three days after the injury in the DG, injured versus non-injured side (30.5 ± 17.8 v. 2.7 ± 2.6, p < 0.0002). As in the adult animal, neurogenesis was significantly increased in the DG with injury (15.0 ± 4.6 v. 5.2 ± 1.6 at 35 days after injury, p < 0.0002), and this increase was subsequent to the appearance of the other dividing cells. Numbers of new oligodendrocytes were significantly higher in the DG on the non-injured side (7.0 ± 24.2 v. 0.1 ± 0.3, p < 0.0002), suggesting that oligodendrocyte synthesis was reduced in the injured hippocampus. Conclusion These findings demonstrate that the neonatal animal responds to brain injury with neurogenesis

  6. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    SciTech Connect

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  7. Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells.

    PubMed

    Fracasso, P M; Sartorelli, A C

    1986-08-01

    Solid neoplasms may contain deficient or poorly functional vascular beds, a property that leads to the formation of hypoxic tumor cells, which form a therapeutically resistant cell population within the tumor that is difficult to eradicate by ionizing irradiation and most existing chemotherapeutic agents. As an approach to the therapeutic attack of hypoxic cells, we have measured the cytotoxicity and DNA lesions produced by the bioreductive alkylating agents mitomycin C and porfiromycin, two structurally similar antibiotics, in oxygen-deficient and aerobic cells. Mitomycin C and porfiromycin were preferentially cytotoxic to hypoxic EMT6 cells in culture, with porfiromycin producing a greater differential kill of hypoxic EMT6 cells relative to their oxygenated counterparts than did mitomycin C. Chinese hamster ovary cells were more resistant to these quinone antibiotics; although in this cell line, porfiromycin was significantly more cytotoxic to hypoxic cells than to aerobic cells, and the degree of oxygenation did not affect the toxicity of mitomycin C. Alkaline elution methodology was utilized to study the formation of DNA single-strand breaks and DNA interstrand cross-links produced by mitomycin C and porfiromycin in both EMT6 and Chinese hamster ovary cells. A negligible quantity of DNA single-strand breaks and DNA interstrand cross-links were produced in hypoxic and aerobic Chinese hamster ovary cells by exposure to mitomycin C or porfiromycin, a finding consistent with the considerably lower sensitivity of this cell line to these agents. In EMT6 tumor cells, no single-strand breaks appeared to be produced by these antitumor antibiotics under both hypoxic and aerobic conditions; however, a significant number of DNA interstrand cross-links were formed in this cell line following drug treatment, with substantially more DNA interstrand cross-linking being produced under hypoxic conditions. Mitomycin C and porfiromycin caused the same amount of cross-linking under

  8. Activity of C-7 substituted cyclic acetal derivatives of mitomycin C and porfiromycin against hypoxic and oxygenated EMT6 carcinoma cells in vitro and in vivo.

    PubMed

    Rockwell, S; Keyes, S R; Loomis, R; Kelley, M; Vyas, D M; Wong, H; Doyle, T W; Sartorelli, A C

    1991-06-01

    A series of cyclic acetal derivatives of mitomycin C (MC) and porfiromycin (POR) were tested for their ability to kill hypoxic and oxygenated EMT6 tumor cells. Amino methyl acetal and thioacetal substitutions at C-7 of MC and POR dramatically increased the cytotoxicity of the compounds to hypoxic EMT6 tumor cells in vitro but had little effect on the aerobic toxicities. In contrast, a methyl substitution at N1a markedly decreased the aerobic cytotoxicities of the compounds but did not alter the hypoxic cytotoxicities. The POR acetal, BMY-42355, had the largest differential between hypoxic and aerobic cytotoxicities yet observed among MC analogs. Preliminary studies in mice showed that BMY-42355 had good antineoplastic activity when used alone or in combination with radiation and was less toxic than POR; the therapeutic ratio of this compound in these initial studies was higher than those of either MC or POR. PMID:2049227

  9. Protection of Cardiomyocytes from Ischemic/Hypoxic Cell Death via Drbp1 and pMe2GlyDH in Cardio-specific ARC Transgenic Mice*

    PubMed Central

    Pyo, Jong-Ok; Nah, Jihoon; Kim, Hyo-Jin; Chang, Jae-Woong; Song, Young-Wha; Yang, Dong-Kwon; Jo, Dong-Gyu; Kim, Hyung-Ryong; Chae, Han-Jung; Chae, Soo-Wan; Hwang, Seung-Yong; Kim, Seung-Jun; Kim, Hyo-Joon; Cho, Chunghee; Oh, Chang-Gyu; Park, Woo Jin; Jung, Yong-Keun

    2008-01-01

    The ischemic death of cardiomyocytes is associated in heart disease and heart failure. However, the molecular mechanism underlying ischemic cell death is not well defined. To examine the function of apoptosis repressor with a caspase recruitment domain (ARC) in the ischemic/hypoxic damage of cardiomyocytes, we generated cardio-specific ARC transgenic mice using a mouse α-myosin heavy chain promoter. Compared with the control, the hearts of ARC transgenic mice showed a 3-fold overexpression of ARC. Langendoff preparation showed that the hearts isolated from ARC transgenic mice exhibited improved recovery of contractile performance during reperfusion. The cardiomyocytes cultured from neonatal ARC transgenic mice were significantly resistant to hypoxic cell death. Furthermore, the ARC C-terminal calcium-binding domain was as potent to protect cardiomyocytes from hypoxic cell death as ARC. Genome-wide RNA expression profiling uncovered a list of genes whose expression was changed (>2-fold) in ARC transgenic mice. Among them, expressional regulation of developmentally regulated RNA-binding protein 1 (Drbp1) or the dimethylglycine dehydrogenase precursor (pMe2GlyDH) affected hypoxic death of cardiomyocytes. These results suggest that ARC may protect cardiomyocytes from hypoxic cell death by regulating its downstream, Drbp1 and pMe2GlyDH, shedding new insights into the protection of heart from hypoxic damages. PMID:18782777

  10. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2.

    PubMed

    de Jong, Olivier G; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C

    2016-02-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome-ECM interactions is limited. Here, we investigate whether the exosome-associated lysyl oxidase family member lysyl oxidase-like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)-derived exosomes, placing it in direct vicinity of the ECM. It is up-regulated twofold in EC-derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome-producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC-derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia-regulated focal ECM remodelling, a key process in both fibrosis and wound healing. PMID:26612622

  11. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  12. Factors associated with the preincubation effect of hypoxic cell sensitizers in vitro and their possible implications in chemosensitization

    SciTech Connect

    Roizin-Towle, L.; Biaglow, J.E.; Meltzer, H.L.; Varnes, M.E.

    1984-06-01

    The enhancement of melphalan toxicity was observed by preincubation of V-79-379A cells in spinner culture with multiple doses of misonidazole (miso) or SR-2508 under hypoxic conditions. Chemosensitization was shown to be a function of sensitizer concentration and duration of exposure to the alkylating agent. Cells preincubated with miso not only had lower levels of nonprotein thiols, but also were shown to have altered levels of intracellular calcium and a lower threshold to oxidative stress as measured by toxicity to cysteamine or H/sub 2/O/sub 2/. Preincubated cells, hypoxic cells, and cells receiving moderate hyperthermia (42.5/sup 0/C for 3 hr) all showed increased sensitivity to either cysteamine or H/sub 2/O/sub 2/. The increased killing of preincubated cells by cysteamine was shown to be similar to that of H/sub 2/O/sub 2/, and the dramatic reduction of cysteamine toxicity by catalase indicated H/sub 2/O/sub 2/ was the major reaction associated with this effect. These results indicate that preincubated cells exhibit a variety of biological effects that may significantly influence their response to further treatment with drugs or radiation, especially where peroxidative and free radical mechanisms are involved.

  13. Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells

    SciTech Connect

    Horsman, M.R.; Chaplin, D.J.; Overgaard, J. )

    1990-12-01

    The interaction among nicotinamide, radiation, and heat was studied in vivo using a C3H mouse mammary carcinoma grown in the feet of CDF1 mice. Response following local tumor treatment was assessed by tumor control and regrowth delay. Nicotinamide (1000 mg/kg i.p.) produced maximal radiosensitization when injected 30 min to 2 h before irradiation (enhancement ratios (ERs), 1.2-1.5). Radiation damage was also increased by heating tumors (43.5 degrees C for 60 min) 4 h after irradiation (ERs = 1.6-2.6). This combined radiation and heat treatment was enhanced by nicotinamide but the effect depended on the assay procedure, such that although a significant increase was observed with the tumor control assay, only a slight increase was seen using regrowth delay as the end point. The development of moist desquamation in normal feet was used to estimate skin damage after irradiation. Nicotinamide and heat both resulted in a small yet significant increase in skin damage (ERs less than 1.2 and 1.1, respectively). A combined treatment resulted in a greater ER of 1.7, but when compared to the tumor response it still gave a therapeutic gain. A histological fluorescent staining technique was used to assess functional tumor vasculature at two periods in time separated by 20 min. Under normal conditions 7.7% of the vessels in this tumor were functional at one time but not the other. This value was reduced to 2.8% after nicotinamide administration. Since these fluctuations in blood flow can result in acute hypoxia we conclude that while heat eliminates chronically hypoxic tumor cells, nicotinamide probably removes the presence of acute hypoxia.

  14. Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes.

    PubMed

    Dirmeier, Reinhard; O'Brien, Kristin M; Engle, Marcella; Dodd, Athena; Spears, Erick; Poyton, Robert O

    2002-09-20

    The mitochondrial respiratory chain is required for the induction of some yeast hypoxic nuclear genes. Because the respiratory chain produces reactive oxygen species (ROS), which can mediate intracellular signal cascades, we addressed the possibility that ROS are involved in hypoxic gene induction. Recent studies with mammalian cells have produced conflicting results concerning this question. These studies have relied almost exclusively on fluorescent dyes to measure ROS levels. Insofar as ROS are very reactive and inherently unstable, a more reliable method for measuring changes in their intracellular levels is to measure their damage (e.g. the accumulation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in DNA, and oxidative protein carbonylation) or to measure the expression of an oxidative stress-induced gene, e.g. SOD1. Here we used these approaches as well as a fluorescent dye, carboxy-H(2)-dichloro-dihydrofluorescein diacetate (carboxy-H(2)-DCFDA), to determine whether ROS levels change in yeast cells exposed to anoxia. These studies reveal that the level of mitochondrial and cytosolic protein carbonylation, the level of 8-OH-dG in mitochondrial and nuclear DNA, and the expression of SOD1 all increase transiently during a shift to anoxia. These studies also reveal that carboxy-H(2)-DCFDA is an unreliable reporter of ROS levels in yeast cells shifted to anoxia. By using two-dimensional electrophoresis and mass spectrometry (matrix-assisted laser desorption ionization time-of-flight), we have found that specific proteins become carbonylated during a shift to anoxia and that some of these proteins are the same proteins that become carbonylated during peroxidative stress. The mitochondrial respiratory chain is responsible for much of this carbonylation. Together, these findings indicate that yeast cells exposed to anoxia experience transient oxidative stress and raise the possibility that this initiates the induction of hypoxic genes. PMID:12089150

  15. Correlation between radiosensitivity, percentage hypoxic cells and pO2 measurements in one rodent and two human tumor xenografts.

    PubMed

    Thomas, C D; Chavaudra, N; Martin, L; Guichard, M

    1994-07-01

    Computerized pO2 histography has been used to measure the intratumor pO2 in patients for the past few years, and there is now evidence that these tumors contain hypoxic cells. One of the major questions that remains to be answered is the relevance of such data to radiosensitivity. The present study looks for a correlation between intratumor pO2, the percentage of hypoxic cells in the tumor and the radiosensitization induced by carbogen and/or the oxygen carrier, perflubron emulsion. Two human tumor xenografts (HRT18, Na11+) and one rodent tumor (EMT6) were used. The radiosensitivity (clonogenic assay) and the oxygen tension (computerized pO2 histography) were measured. All experiments were performed under similar conditions. Carbogen increased tumor radiosensitivity; sensitization was greatest when 4 ml/kg perflubron emulsion was used in conjunction with carbogen. The pO2 distribution was shifted to higher pO2 values in the tumors whatever the treatment; the shift was greater for perflubron emulsion plus carbogen. The low pO2 values (< 0.4 kPa) were lost for the HRT18 cells. A correlation (EMT6, HRT18) or a link (Na11+) between the radiosensitization and the oxygen tension measurements was found for values below 1.07 or 1.33 kPa. A trend between the percentage of hypoxic cells and pO2 measurements was found taking into account pO2 measurements comprised between 0.27 and 0.67 kPa. PMID:8016297

  16. The PI3K/Akt/mTOR pathway mediates retinal progenitor cell survival under hypoxic and superoxide stress.

    PubMed

    Sanghera, Karan P; Mathalone, Nurit; Baigi, Ramteen; Panov, Elan; Wang, Dan; Zhao, Xu; Hsu, Howard; Wang, Hai; Tropepe, Vincent; Ward, Michael; Boyd, Shelley R

    2011-06-01

    Oxygen (O₂) tension has emerged as a major regulator of stem cell (SC) biology. Low O₂ concentrations that are toxic to mature cells can confer advantage to stem and early progenitors, while superoxide stress remains a constant threat in aerobic biology and may be partially avoided through sequestration of SCs in the relatively hypoxic stem or regenerative niche. Using primary retina-derived retinal progenitor cells (RPCs) and the R28 progenitor cell line in vitro, we show that RPCs are sensitive to hydrogen peroxide (H₂O₂) induced damage and resistant to moderate levels of low oxygen stress (1% O₂). Under hypoxic conditions, multipotent RPCs upregulate Epo receptors, and Epo, along with insulin, protects against both superoxide- and severe hypoxia- (0.25% O₂) induced apoptosis through activation of the canonical PI3K/Akt/mTOR pathway. This survival advantage is sensitive to inhibitors of PI3K and mTOR. We further demonstrate phosphorylation of the p70S6 ribosomal kinase, a downstream mediator of PI3K/Akt/mTOR and translational activator. Overall, these data confirm that RPCs are sensitive to superoxide stress and resistant to hypoxia and that this resistance is mediated in part by Epo. They further suggest that manipulation of RPCs ex vivo prior to ocular delivery, or the in vivo delivery of exogenous survival factors at the time of cell implantation, could enhance the success of regenerative therapies aimed to restore sight. PMID:21463685

  17. 1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions.

    PubMed

    Coviello, Vito; Marchi, Beatrice; Sartini, Stefania; Quattrini, Luca; Marini, Anna Maria; Simorini, Francesca; Taliani, Sabrina; Salerno, Silvia; Orlandi, Paola; Fioravanti, Anna; Desidero, Teresa Di; Vullo, Daniela; Da Settimo, Federico; Supuran, Claudiu T; Bocci, Guido; La Motta, Concettina

    2016-07-14

    Three novel series of 1,2-benzisothiazole derivatives have been developed as inhibitors of carbonic anhydrase isoform IX. Compounds 5c and 5j, tested in vitro on the human colon cell line HT-29, blocked the growth of cells cultured under chemically induced hypoxic conditions, displaying a specific activity against cancer cells characterized by CAIX up-regulation. Moreover, a synergistic activity of 5c with SN-38 (the active metabolite of irinotecan) and 5-fluorouracil on cell proliferation under hypoxic conditions was demonstrated. PMID:27305384

  18. Role of the ERK1/2 Signaling Pathway in Osteogenesis of Rat Tendon-Derived Stem Cells in Normoxic and Hypoxic Cultures

    PubMed Central

    Li, Pei; Xu, Yuan; Gan, Yibo; Song, Lei; Zhang, Chengmin; Wang, Liyuan; Zhou, Qiang

    2016-01-01

    Background: Ectopic ossification and increased vascularization are two common phenomena in the chronic tendinopathic tendon. The increased vascularization usually leads to an elevated local oxygen tension which is one of micro-environments that can influence differentiate status of stem cells. Objective: This study aimed to investigate the osteogenesis capacity of rat tendon-derived stem cells TDSCs (rTDSCs) in normoxic and hypoxic cultures, and to study the role of ERK1/2 signaling pathway in this process. Methods: rTDSCs were subjected to osteogenesis inductive culture in hypoxic (3% O2) and normoxic (20% O2) conditions. The inhibitor U0126 was added along with culture medium to determine the role of ERK1/2 signaling pathway. Cell viability, cell proliferation, alizarin red staining, alkaline phosphatase (AKP) activity, gene expression (ALP, osteocalcin, collagen I and RUNX2) and protein expression (p-ERK1/2 and RUNX2) of osteogenic-cultured rTSDCs were analyzed in this study. Results: Hypoxic and normoxic culture had no effects on cell viability of rTDSCs, whereas the proliferation potential of rTDSCs was significantly increased in hypoxic culture. The osteogenesis capacity of rTDSCs in normoxic culture was significantly promoted compared with hypoxic culture, which was reflected by an increased alizarin red staining intensity, an elevated ALP activity, and the up-regulated gene (ALP, osteocalcin, collagen I and RUNX2) or protein (RUNX2) expression of osteogenic makers. However, the osteogenesis capacity of rTDSCs in both hypoxic and normoxic cultures was attenuated by the inhibitor U0126. Conclusion: Normoxic culture promotes osteogenic differentiation of rTDSCs compared with the hypoxic culture, and the ERK1/2 signaling pathway is involved in this process. PMID:27499695

  19. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    SciTech Connect

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  20. Vitamin D Prevents Endothelial Progenitor Cell Dysfunction Induced by Sera from Women with Preeclampsia or Conditioned Media from Hypoxic Placenta

    PubMed Central

    Myerski, Ashley C.; von Kaisenberg, Constantin S.; Grundmann, Magdalena; Hubel, Carl A.; von Versen-Höynck, Frauke

    2014-01-01

    Context Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors–preeclampsia serum or hypoxic placental conditioned medium– in a fashion reversed by vitamin D. Design, Setting, Patients ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. PMID:24887145

  1. Cardiac Stem Cell Secretome Protects Cardiomyocytes from Hypoxic Injury Partly via Monocyte Chemotactic Protein-1-Dependent Mechanism

    PubMed Central

    Park, Chi-Yeon; Choi, Seung-Cheol; Kim, Jong-Ho; Choi, Ji-Hyun; Joo, Hyung Joon; Hong, Soon Jun; Lim, Do-Sun

    2016-01-01

    Cardiac stem cells (CSCs) were known to secrete diverse paracrine factors leading to functional improvement and beneficial left ventricular remodeling via activation of the endogenous pro-survival signaling pathway. However, little is known about the paracrine factors secreted by CSCs and their roles in cardiomyocyte survival during hypoxic condition mimicking the post-myocardial infarction environment. We established Sca-1+/CD31− human telomerase reverse transcriptase-immortalized CSCs (Sca-1+/CD31− CSCshTERT), evaluated their stem cell properties, and paracrine potential in cardiomyocyte survival during hypoxia-induced injury. Sca-1+/CD31− CSCshTERT sustained proliferation ability even after long-term culture exceeding 100 population doublings, and represented multi-differentiation potential into cardiomyogenic, endothelial, adipogenic, and osteogenic lineages. Dominant factors secreted from Sca-1+/CD31− CSCshTERT were EGF, TGF-β1, IGF-1, IGF-2, MCP-1, HGF R, and IL-6. Among these, MCP-1 was the most predominant factor in Sca-1+/CD31− CSCshTERT conditioned medium (CM). Sca-1+/CD31− CSCshTERT CM increased survival and reduced apoptosis of HL-1 cardiomyocytes during hypoxic injury. MCP-1 silencing in Sca-1+/CD31− CSCshTERT CM resulted in a significant reduction in cardiomyocyte apoptosis. We demonstrated that Sca-1+/CD31− CSCshTERT exhibited long-term proliferation capacity and multi-differentiation potential. Sca-1+/CD31− CSCshTERT CM protected cardiomyocytes from hypoxic injury partly via MCP-1-dependent mechanism. Thus, they are valuable sources for in vitro and in vivo studies in the cardiovascular field. PMID:27231894

  2. Cardiac Stem Cell Secretome Protects Cardiomyocytes from Hypoxic Injury Partly via Monocyte Chemotactic Protein-1-Dependent Mechanism.

    PubMed

    Park, Chi-Yeon; Choi, Seung-Cheol; Kim, Jong-Ho; Choi, Ji-Hyun; Joo, Hyung Joon; Hong, Soon Jun; Lim, Do-Sun

    2016-01-01

    Cardiac stem cells (CSCs) were known to secrete diverse paracrine factors leading to functional improvement and beneficial left ventricular remodeling via activation of the endogenous pro-survival signaling pathway. However, little is known about the paracrine factors secreted by CSCs and their roles in cardiomyocyte survival during hypoxic condition mimicking the post-myocardial infarction environment. We established Sca-1+/CD31- human telomerase reverse transcriptase-immortalized CSCs (Sca-1+/CD31- CSCs(hTERT)), evaluated their stem cell properties, and paracrine potential in cardiomyocyte survival during hypoxia-induced injury. Sca-1+/CD31- CSCs(hTERT) sustained proliferation ability even after long-term culture exceeding 100 population doublings, and represented multi-differentiation potential into cardiomyogenic, endothelial, adipogenic, and osteogenic lineages. Dominant factors secreted from Sca-1+/CD31- CSCs(hTERT) were EGF, TGF-β1, IGF-1, IGF-2, MCP-1, HGF R, and IL-6. Among these, MCP-1 was the most predominant factor in Sca-1+/CD31- CSCs(hTERT) conditioned medium (CM). Sca-1+/CD31- CSCs(hTERT) CM increased survival and reduced apoptosis of HL-1 cardiomyocytes during hypoxic injury. MCP-1 silencing in Sca-1+/CD31- CSCs(hTERT) CM resulted in a significant reduction in cardiomyocyte apoptosis. We demonstrated that Sca-1+/CD31- CSCs(hTERT) exhibited long-term proliferation capacity and multi-differentiation potential. Sca-1+/CD31- CSCs(hTERT) CM protected cardiomyocytes from hypoxic injury partly via MCP-1-dependent mechanism. Thus, they are valuable sources for in vitro and in vivo studies in the cardiovascular field. PMID:27231894

  3. Hypoxic Preconditioning Differentially Affects GABAergic and Glutamatergic Neuronal Cells in the Injured Cerebellum of the Neonatal Rat

    PubMed Central

    Patterson, Sean I.; Muñoz, Estela M.; Seltzer, Alicia M.

    2014-01-01

    In this study we examined cerebellar alterations in a neonatal rat model of hypoxic-ischemic brain injury with or without hypoxic preconditioning (Pc). Between postnatal days 7 and 15, the cerebellum is still undergoing intense cellular proliferation, differentiation and migration, dendritogenesis and synaptogenesis. The expression of glutamate decarboxylase 1 (GAD67) and the differentiation factor NeuroD1 were examined as markers of Purkinje and granule cells, respectively. We applied quantitative immunohistochemistry to sagittal cerebellar slices, and Western blot analysis of whole cerebella obtained from control (C) rats and rats submitted to Pc, hypoxia-ischemia (L) and a combination of both treatments (PcL). We found that either hypoxia-ischemia or Pc perturbed the granule cells in the posterior lobes, affecting their migration and final placement in the internal granular layer. These effects were partially attenuated when the Pc was delivered prior to the hypoxia-ischemia. Interestingly, whole nuclear NeuroD1 levels in Pc animals were comparable to those in the C rats. However, a subset of Purkinje cells that were severely affected by the hypoxic-ischemic insult—showing signs of neuronal distress at the levels of the nucleus, cytoplasm and dendritic arborization—were not protected by Pc. A monoclonal antibody specific for GAD67 revealed a three-band pattern in cytoplasmic extracts from whole P15 cerebella. A ∼110 kDa band, interpreted as a potential homodimer of a truncated form of GAD67, was reduced in Pc and L groups while its levels were close to the control animals in PcL rats. Additionally we demonstrated differential glial responses depending on the treatment, including astrogliosis in hypoxiated cerebella and a selective effect of hypoxia-ischemia on the vimentin-immunolabeled intermediate filaments of the Bergmann glia. Thus, while both glutamatergic and GABAergic cerebellar neurons are compromised by the hypoxic-ischemic insult, the former are

  4. NQDI-1, an inhibitor of ASK1 attenuates acute perinatal hypoxic-ischemic cerebral injury by modulating cell death

    PubMed Central

    HAO, HU; LI, SITAO; TANG, HUI; LIU, BINGQING; CAI, YAO; SHI, CONGCONG; XIAO, XIN

    2016-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed protein kinase, which regulates cell fate in numerous injury conditions. Therefore, ASK1 may be a promising novel therapeutic target for injury. However, the expression and distribution of ASK1 in the perinatal brain following hypoxia-ischemia (HI) remains to be elucidated. In the present study, western blotting and immunofluorescence were used to determine the expression and distribution of ASK1 and any associated downstream targets in the perinatal rat brain following HI. NQDI-1, a specific inhibitor of ASK1 was intracerebroventricularly injected following neonatal rats brain insult for neuroprotection. The results revealed an increased expression of ASK1 and this expression was localized to the neurons and astrocytes, compared with the sham controls. Additionally, it was demonstrated that the ASK1/c-Jun N-terminal kinases (JNK) pathway was involved in the brain damage following HI in neonatal rats. Notably, NQDI-1 significantly inhibited the in vivo expression levels of ASK1, phosphorylated (p-)JNK, p-c-Jun, p53 and caspase 3. Reduced acute hypoxic-ischemic cerebral injury and cell apoptosis was observed following the injection of NQDI-1. Collectively, NQDI-1 attenuated acute perinatal hypoxic-ischemic cerebral injury by inhibiting the expression of ASK1 and cell apoptosis. This may be a promising novel neuroprotective inhibitor for perinatal cerebra injury. PMID:27081917

  5. Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells.

    PubMed

    Elanchezhian, R; Palsamy, P; Madson, C J; Mulhern, M L; Lynch, D W; Troia, A M; Usukura, J; Shinohara, T

    2012-01-01

    Aging is enhanced by hypoxia and oxidative stress. As the lens is located in the hypoglycemic environment under hypoxia, aging lens with diabetes might aggravate these stresses. This study was designed to examine whether low glucose under hypoxic conditions induces the unfolded protein response (UPR), and also if the UPR then generates the reactive oxygen species (ROS) in lens epithelial cells (LECs). The UPR was activated within 1 h by culturing the human LECs (HLECs) and rat LECs in <1.5 mM glucose under hypoxic conditions. These conditions also induced the Nrf2-dependent antioxidant-protective UPR, production of ROS, and apoptosis. The rat LECs located in the anterior center region were the least susceptible to the UPR, whereas the proliferating LECs in the germinative zone were the most susceptible. Because the cortical lens fiber cells are differentiated from the LECs after the onset of diabetes, we suggest that these newly formed cortical fibers have lower levels of Nrf2, and are then oxidized resulting in cortical cataracts. Thus, low glucose and oxygen conditions induce the UPR, generation of ROS, and expressed the Nrf2 and Nrf2-dependent antioxidant enzymes at normal levels. But these cells eventually lose reduced glutathione (GSH) and induce apoptosis. The results indicate a new link between hypoglycemia under hypoxia and impairment of HLEC functions. PMID:22513875

  6. Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells

    PubMed Central

    Elanchezhian, R; Palsamy, P; Madson, C J; Mulhern, M L; Lynch, D W; Troia, A M; Usukura, J; Shinohara, T

    2012-01-01

    Aging is enhanced by hypoxia and oxidative stress. As the lens is located in the hypoglycemic environment under hypoxia, aging lens with diabetes might aggravate these stresses. This study was designed to examine whether low glucose under hypoxic conditions induces the unfolded protein response (UPR), and also if the UPR then generates the reactive oxygen species (ROS) in lens epithelial cells (LECs). The UPR was activated within 1 h by culturing the human LECs (HLECs) and rat LECs in <1.5 mM glucose under hypoxic conditions. These conditions also induced the Nrf2-dependent antioxidant-protective UPR, production of ROS, and apoptosis. The rat LECs located in the anterior center region were the least susceptible to the UPR, whereas the proliferating LECs in the germinative zone were the most susceptible. Because the cortical lens fiber cells are differentiated from the LECs after the onset of diabetes, we suggest that these newly formed cortical fibers have lower levels of Nrf2, and are then oxidized resulting in cortical cataracts. Thus, low glucose and oxygen conditions induce the UPR, generation of ROS, and expressed the Nrf2 and Nrf2-dependent antioxidant enzymes at normal levels. But these cells eventually lose reduced glutathione (GSH) and induce apoptosis. The results indicate a new link between hypoglycemia under hypoxia and impairment of HLEC functions. PMID:22513875

  7. [Lycium barbarum polysaccharides enhances SIRT1 expression and decreases MMP-9 and HIF-1α expressions in hypoxic pulmonary vascular smooth muscle cells].

    PubMed

    Zhu, Yanni; Sun, Yuning; Guan, Wenxia; Yan, Yan; Zhang, Wei; Bai, Lugen; Kong, Haitao; Li, Fang

    2016-07-01

    Objective To investigate the expressions of silent mating type information regulation 2 homolog-1 (SIRT1), matrix metalloproteinase-9 (MMP-9) and hypoxia inducible factor 1α (HIF-1α) in hypoxic pulmonary vascular smooth muscle cells (PVSMCs) treated with Lycium barbarum polysaccharides (LBP). Methods PVSMCs were divided into 10 groups: normal oxygen (200 mL/L oxygen) cells, 2 μmol/mL LBP-treated normal oxygen cells, DMSO-treated normal oxygen cells, DMSO-treated hypoxic (100 mL/L oxygen) cells, (0.5, 1, 2) μmol/mL LBP-treated hypoxic cells; SIRT1 agonist (resveratrol or SRT-1720)-treated hypoxic cells, SIRT1 inhibitor EX-527-treated hypoxic cells. After 6, 12, 24 hours, the mRNA and protein expressions of SIRT1, MMP-9 and HIF-1α were measured by real-time quantitative PCR and Western blotting, respectively. In LBP-treated groups, the expressions of SIRT1, MMP-9 and HIF-1α mRNA and protein were detected 12 hours after LBP treatment. Results Under the condition of hypoxia, the expression levels of SIRT1 mRNA and protein in PVSMCs decreased, while MMP-9 and HIF-1α mRNA increased. Under hypoxia, SIRT1 expression was raised and MMP-9, HIF-1α were reduced by LBP treatment in a dose-dependent manner. Morever, resveratrol could inhibit the expression of MMP-9. Conclusion LBP can enhance the expression of SIRT1 and decrease the expression of MMP-9 and HIF-1α in hypoxic PVSMCs. PMID:27363270

  8. c-kit-Positive Cardiac Stem Cells Nested in Hypoxic Niches are Activated by Stem Cell Factor Reversing the Aging Myopathy

    PubMed Central

    Sanada, Fumihiro; Kim, Junghyun; Czarna, Anna; Chan, Noel Yan-Ki; Signore, Sergio; Ogórek, Barbara; Isobe, Kazuya; Wybieralska, Ewa; Borghetti, Giulia; Pesapane, Ada; Sorrentino, Andrea; Mangano, Emily; Cappetta, Donato; Mangiaracina, Chiara; Ricciardi, Mario; Cimini, Maria; Ifedigbo, Emeka; Perrella, Mark A.; Goichberg, Polina; Choi, Augustine; Kajstura, Jan; Hosoda, Toru; Rota, Marcello; Anversa, Piero; Leri, Annarosa

    2014-01-01

    Rationale Hypoxia favors stem cell quiescence, while normoxia is required for their activation; but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. Objective A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. Methods and Results Here we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot reenter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. Conclusions Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggests that a pool of functionally-competent CSCs persists in the senescent heart and this stem cell compartment can promote myocyte regeneration effectively, correcting partly the aging myopathy. PMID:24170267

  9. Tanshinone IIA Pretreatment Renders Free Flaps against Hypoxic Injury through Activating Wnt Signaling and Upregulating Stem Cell-Related Biomarkers

    PubMed Central

    Xu, Zihan; Zhang, Zhenxin; Wu, Lijun; Sun, Yaowen; Guo, Yadong; Qin, Gaoping; Mu, Shengzhi; Fan, Ronghui; Wang, Benfeng; Gao, Wenjie

    2014-01-01

    Partial or total flap necrosis after flap transplantation is sometimes clinically encountered in reconstructive surgery, often as a result of a period of hypoxia that exceeds the tolerance of the flap tissue. In this study, we determine whether tanshinone IIA (TSA) pretreatment can protect flap tissue against hypoxic injury and improve its viability. Primary epithelial cells isolated from the dorsal skin of mice were pretreated with TSA for two weeks. Cell counting kit-8 and Trypan Blue assays were carried out to examine the proliferation of TSA-pretreated cells after exposure to cobalt chloride. Then, Polymerase chain reaction and Western blot analysis were used to determine the expression of β-catenin, GSK-3β, SOX2, and OCT4 in TSA-treated cells. In vivo, after mice were pretreated with TSA for two weeks, a reproducible ischemic flap model was implemented, and the area of surviving tissue in the transplanted flaps was measured. Immunohistochemistry was also conducted to examine the related biomarkers mentioned above. Results show that epidermal cells, pretreated with TSA, showed enhanced resistance to hypoxia. Activation of the Wnt signaling pathway in TSA-pretreated cells was characterized by the upregulation of β-catenin and the downregulation of GSK-3β. The expression of SOX2 and OCT4 controlled by Wnt signaling were also found higher in TSA pretreated epithelial cells. In the reproducible ischaemic flap model, pretreatment with TSA enhanced resistance to hypoxia and increased the area of surviving tissue in transplanted flaps. The expression of Wnt signaling pathway components, stem-cell related biomarkers, and CD34, which are involved in the regeneration of blood vessels, was also upregulated in TSA-pretreated flap tissue. The results show that TSA pretreatment protects free flaps against hypoxic injury and increases the area of surviving tissue by activating Wnt signaling and upregulating stem cell-related biomarkers. PMID:25302618

  10. Modulation of p75 neurotrophin receptor under hypoxic conditions induces migration and invasion of C6 glioma cells.

    PubMed

    Wang, Ting-Chung; Luo, Sheng-Jie; Lin, Chun-Liang; Chang, Pey-Jium; Chen, Miao-Fen

    2015-01-01

    p75 neurotrophin receptor (p75NTR) has been reported to play important roles in various cancer types. However, the exact mechanism of tumorigenesis involving p75NTR is unknown. In this study, we investigated the relationship between the expression of p75NTR in malignant glioma and the impact on tumor cell migration and invasion. p75NTR and hypoxia-inducible factor-1α (HIF-1α) expression was down-regulated by short-hairpin RNA and up-regulated with expression vectors. By immunohistochemical staining and Western blot analysis, we found that p75NTR was expressed in both human and rat malignant gliomas. Knockdown of p75NTR increased the expression of vimentin, vascular endothelial growth factor, Matrix metalloproteinase 9, and TWIST, and enhanced the invasion and migration abilities assessed by transwell assay in the C6 tumor cells. Inverse expressions of p75NTR and HIF-1α were detected in glioma cell lines under hypoxic conditions, while increased HIF-1α significantly downregulated the expression of p75NTR, suggesting a HIF-1α-p75NTR-EMT pathway that may regulate glioma cells invasion and migration. Downregulation of p75NTR increased phosphorylation of Src, focal adhesion kinase (FAK) and paxillin. Knockdown of p75NTR also dysregulated β-catenin-mediated cell junctions, and up-regulated the expressions of fibronectin and L1CAM in the cell-cell junctions, thus suggesting that p75NTR knockdown contributed to a more aggressive migration phenotype via FAK signaling pathway. Our studies suggested that modulation of p75NTR under hypoxic condition could enhance C6 cells migration and invasion by induction of EMT, and activation of the FAK pathway. The HIF-1α-p75NTR-EMT axis may play a central role in glioma tumorigenesis. PMID:25527128

  11. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting.

    PubMed

    Sun, Wenjing; Chu, Taiwei

    2015-10-15

    The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents. PMID:26358160

  12. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  13. Developing a New Two-Step Protocol to Generate Functional Hepatocytes from Wharton's Jelly-Derived Mesenchymal Stem Cells under Hypoxic Condition

    PubMed Central

    Prasajak, Patcharee

    2013-01-01

    The shortage of donor livers and hepatocytes is a major limitation of liver transplantation. Thus, generation of hepatocyte-like cells may provide alternative choice for therapeutic applications. In this study, we developed a new method to establish hepatocytes from Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) cell lines named WJMSCs-SUT1 and WJMSCs-SUT2 under hypoxic condition. This new method could rapidly drive both WJ-MSCs cell lines into hepatic lineage within 18 days. The achievement of hepatogenic differentiation was confirmed by the characterization of both phenotypes and functions. More than 80% MSCs-derived hepatocyte-like cells (MSCDHCs) achieved functional hepatocytes including hepatic marker expressions both at gene and protein levels, glycogen storage, low-density lipoprotein uptake, urea production, and albumin secretion. This study highlights the establishment of new hepatogenic induction protocol under hypoxic condition in order to mimic hypoxic microenvironment in typical cell physiology. In conclusion, we present a simple, high-efficiency, and time saving protocol for the generation of functional hepatocyte-like cells from WJ-MSCs in hypoxic condition. The achievement of this method may overcome the limitation of donor hepatocytes and provides a new avenue for therapeutic value in cell-based therapy for life-threatening liver diseases, regenerative medicine, toxicity testing for pharmacological drug screening, and other medical related applications. PMID:23818908

  14. Effect of deficiencies in DNA repair on the toxicity of mitomycin C and porfiromycin to CHO cells under aerobic and hypoxic conditions.

    PubMed

    Hughes, C S; Irvin, C G; Rockwell, S

    1991-02-01

    A wild type Chinese hamster cell line (AA8) and three repair-deficient sublines of AA8 (EM9, UV4, and UV5) were used to study the nature of the cytotoxic lesions produced by the bioreductive alkylating agents mitomycin C and porfiromycin under aerobic and hypoxic conditions. The sensitivities of the repair-deficient sublines to the drugs varied markedly: EM9 was similar to AA8, whereas UV4 was exquisitely sensitive and UV5 was of intermediate sensitivity. Moreover, both the relative toxicities of the two drugs and the relative toxicities of each drug under aerobic and hypoxic conditions varied for the different cell lines. These data suggest that there are differences in the spectra of toxic lesions produced by mitomycin and porfiromycin and that there are differences in the lesions produced by these drugs under aerobic and hypoxic conditions. PMID:1899798

  15. Inhibition of protein synthesis by imexon reduces HIF-1alpha expression in normoxic and hypoxic pancreatic cancer cells.

    PubMed

    Samulitis, Betty K; Landowski, Terry H; Dorr, Robert T

    2009-02-01

    Hypoxia-inducing factor-1 alpha (HIF-1alpha), is a major survival factor for tumor cells growing in a low oxygen environment. The anti-cancer agent imexon binds thiols and causes accumulation of reactive oxygen species (ROS) in pancreatic cancer cells. Unlike many cytotoxic agents, imexon is equi-cytotoxic in human MiaPaCa-2 and Panc-1 cells grown in normoxic (21% O(2)) and hypoxic (1% O(2)) conditions. Western blot analyses of imexon-treated cells demonstrated that imexon reduces HIF-1alpha protein levels in both normoxic and hypoxic conditions in a time- and concentration-dependant fashion. Gemcitabine did not similarly affect HIF-1alpha levels. Imexon did not reduce transcription of new HIF-1alpha mRNA, but did reduce the synthesis of new proteins, including HIF-1alpha, measured by (35)S methionine/cysteine (Met/Cys) incorporation. Concurrently, the half-life of existing HIF-1alpha protein was increased by imexon, in association with a marked inhibition of chymotryptic activity in the 20S proteasome. The inhibition of HIF-1alpha translation was not specific, rather it was part of a general decrease in protein translation caused by imexon. This inhibitory effect on translation did not involve phosphorylation of eukaryotic initiation factor-2alpha (eIF-2alpha) and was not closely correlated to cell growth inhibition by imexon, suggesting that mechanisms other than protein synthesis inhibition contribute to the drug's cytotoxic effects. In summary, imexon blocks the translation of new proteins, including HIF-1alpha, and this effect overcomes an increase in the stability of preformed HIF-1alpha due to proteasome inhibition by imexon. Because net HIF-1alpha levels are reduced by imexon, combination studies with other drugs affected by HIF-1alpha survival signaling are warranted. PMID:18607542

  16. Inhibition of protein synthesis by imexon reduces HIF-1α expression in normoxic and hypoxic pancreatic cancer cells

    PubMed Central

    Samulitis, Betty K.; Landowski, Terry H.; Dorr, Robert T.

    2008-01-01

    Summary Hypoxia-inducing factor-1 alpha (HIF-1α), is a major survival factor for tumor cells growing in a low oxygen environment. The anti-cancer agent imexon binds thiols and causes accumulation of reactive oxygen species (ROS) in pancreatic cancer cells. Unlike many cytotoxic agents, imexon is equi-cytotoxic in human MiaPaCa-2 and Panc-1 cells grown in normoxic (21% O2) and hypoxic (1% O2) conditions. Western blot analyses of imexon treated cells demonstrated that imexon reduces HIF-1α protein levels in both normoxic and hypoxic conditions in a time- and concentration-dependant fashion. Gemcitabine did not similarly affect HIF-1α levels. Imexon did not reduce transcription of new HIF-1α mRNA, but did reduce the synthesis of new proteins, including HIF-1α, measured by 35S methionine/cysteine (Met/Cys) incorporation. Concurrently, the half-life of existing HIF-1α protein was increased by imexon, in association with a marked inhibition of chymotryptic activity in the 20S proteasome. The inhibition of HIF-1α translation was not specific, rather it was part of a general decrease in protein translation caused by imexon. This inhibitory effect on translation did not involve phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and was not closely correlated to cell growth inhibition by imexon, suggesting that mechanisms other than protein synthesis inhibition contribute to the drug’s cytotoxic effects. In summary, imexon blocks the translation of new proteins, including HIF-1α, and this effect overcomes an increase in the stability of preformed HIF-1α due to proteasome inhibition by imexon. Because net HIF-1α levels are reduced by imexon, combination studies with other drugs affected by HIF-1α survival signaling are warranted. PMID:18607542

  17. The effects of short-term hypoxia on human mesenchymal stem cell proliferation, viability and p16INK4A mRNA expression: Investigation using a simple hypoxic culture system with a deoxidizing agent

    PubMed Central

    Ito, Akira; Aoyama, Tomoki; Yoshizawa, Makoto; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    A hypoxic environment is thought to be important for the maintenance of stemness and suppressing cell senescence, in stem cells. Therefore, a hypoxic condition is induced during cell expansion and/or induction of intended differentiation. However, the induction of these conditions requires a specially equipped hypoxia chamber and expensive gas mixtures, which are expensive and space-consuming. Owing to these restrictions, appropriate hypoxic conditions cannot be provided during cell transportation, which is increasingly required for regenerative medicine. Hence, a simple and economical culture system is required. The purpose of this study was to investigate the effects of short-term hypoxic conditions on human mesenchymal stem cell (MSC) proliferation, viability, and senescence, utilizing the CulturePal system (CulturePal-Zero and CulturePal-Five), a novel and simple hypoxic culture system with a built-in deoxidizing agent. The O2 concentration in the CulturePal-Zero was observed to reduce to <0.1% within 1 h, and to 5% within 24h in the CulturePal-Five system. Cell proliferation under these hypoxic conditions showed a sharp increase at 5% O2 concentration, and no noticeable cell death was observed even at severe hypoxic conditions (<0.1% O2) up to 72h. The p16INK4A (cell senescence marker) mRNA expression was retained under hypoxic conditions up to 72h, but it was up-regulated under normoxic conditions. Interestingly, the p16INK4A expression altered proportionately to the O2 concentration. These results indicated that the short-term hypoxic condition, at an approximate O2 concentration of 5%, would be suitable for promoting cell proliferation and repressing cell senescence, without aggravating the MSC viability. Therefore, the CulturePal systems may be suitable for providing an appropriate hypoxic condition in stem cell research and transportation. PMID:26195892

  18. Lecithin-Bound Iodine Prevents Disruption of Tight Junctions of Retinal Pigment Epithelial Cells under Hypoxic Stress

    PubMed Central

    Sugimoto, Masahiko; Kondo, Mineo

    2016-01-01

    Aim. We investigated whether lecithin-bound iodine (LBI) can protect the integrity of tight junctions of retinal pigment epithelial cells from hypoxia. Method. Cultured human retinal pigment epithelial (ARPE-19) cells were pretreated with LBI. To mimic hypoxic conditions, cells were incubated with CoCl2. We compared the integrity of the tight junctions (TJs) of control to cells with either LBI alone, CoCl2 alone, or LBI + CoCl2. The levels of cytokines in the conditioned media were also determined. Results. Significant decrease in the zonula occludens-1 (ZO-1) intensity in the CoCl2 group compared to the control (5787.7 ± 4126.4 in CoCl2 group versus 29244.6 ± 2981.2 in control; average ± standard deviation). But the decrease was not significant in the LBI + CoCl2 (27189.0 ± 11231.1). The levels of monocyte chemoattractant protein-1 (MCP-1) and Chemokine (C-C Motif) Ligand 11 (CCL-11) were significantly higher in the CoCl2 than in the control (340.8 ± 43.3 versus 279.7 ± 68.3 pg/mL for MCP-1, and 15.2 ± 12.9 versus 12.5 ± 6.1 pg/mL for CCL-11. With LBI pretreatment, the levels of both cytokines were decreased to 182.6 ± 23.8 (MCP-1) and 5.46 ± 1.9 pg/mL for CCL-11). Blockade of MCP-1 or CCL-11 also shows similar result representing TJ protection from hypoxic stress. Conclusions. LBI results in a protective action from hypoxia. PMID:27340563

  19. Addition of a hypoxic cell selective cytotoxic agent (mitomycin C or porfiromycin) to Fluosol-DA/carbogen/radiation.

    PubMed

    Holden, S A; Herman, T S; Teicher, B A

    1990-05-01

    In an effort to develop effective combination treatments for use with radiation against solid tumors, the cytotoxic effects of the addition of mitomycin C or porfiromycin on treatment with Fluosol-DA/carbogen (95% O2/5% CO2) breathing and radiation in the FSaIIC tumor system were studied. In vitro mitomycin C and porfiromycin were both preferentially cytotoxic toward hypoxic FSaIIC cells. After in vivo exposure, however, the cytotoxicity of mitomycin C toward single cell tumor suspensions obtained from whole tumors was exponential over the dose range studied, but for porfiromycin a plateau in cell killing was observed. With Fluosol-DA/carbogen breathing and single dose radiation, addition of either mitomycin C or porfiromycin increased the tumor cell kill achieved at 5 Gy by approximately 1.2 and 1.0 logs, respectively. Less effect was seen with addition of the drugs at the 10 and 15 Gy radiation doses. In tumor growth delay experiments, the addition of either mitomycin C or porfiromycin to Fluosol-DA/carbogen breathing and radiation resulted in primarily an additive increase in tumor growth delay. The survival of Hoechst 33342 dye-selected tumor cell subpopulations indicated that Fluosol-DA/carbogen breathing increased the cytotoxicity of radiation (10 Gy) more in the bright cell subpopulation (4-fold) than in the dim cell subpopulation (2-fold) resulting in an overall 4-fold sparing of the dim subpopulation. Mitomycin C and porfiromycin were both more toxic toward the dim cell subpopulations. Addition of mitomycin C or porfiromycin to Fluosol-DA/carbogen breathing and radiation (10 Gy) resulted in a primarily additive effect of the drugs and radiation killing in both tumor cell subpopulations. Thus, with mitomycin C/Fluosol-DA/carbogen and radiation there was a 2-fold sparing of dim cells and with porfiromycin in the combined treatment a 1.6-fold sparing of the dim cell population. Our results indicate that treatment strategies directed against both oxic and

  20. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS.

    PubMed

    Rouschop, Kasper M; Dubois, Ludwig J; Keulers, Tom G; van den Beucken, Twan; Lambin, Philippe; Bussink, Johan; van der Kogel, Albert J; Koritzinsky, Marianne; Wouters, Bradly G

    2013-03-19

    Hypoxia is a common feature of tumors and an important contributor to malignancy and treatment resistance. The ability of tumor cells to survive hypoxic stress is mediated in part by hypoxia-inducible factor (HIF)-dependent transcriptional responses. More severe hypoxia activates endoplasmatic reticulum stress responses, including the double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)-dependent arm of the unfolded protein response (UPR). Although several studies implicate important roles for HIF and UPR in adaption to hypoxia, their importance for hypoxic cells responsible for therapy resistance in tumors is unknown. By using isogenic models, we find that HIF and eIF2α signaling contribute to the survival of hypoxic cells in vitro and in vivo. However, the eIF2α-dependent arm of the UPR is uniquely required for the survival of a subset of hypoxic cells that determine tumor radioresistance. We demonstrate that eIF2α signaling induces uptake of cysteine, glutathione synthesis, and protection against reactive oxygen species produced during periods of cycling hypoxia. Together these data imply that eIF2α signaling is a critical contributor to the tolerance of therapy-resistant cells that arise as a consequence of transient changes in oxygenation in solid tumors and thus a therapeutic target in curative treatments for solid cancers. PMID:23471998

  1. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients

    NASA Astrophysics Data System (ADS)

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G.; McGuigan, Alison P.

    2016-02-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.

  2. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients.

    PubMed

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G; McGuigan, Alison P

    2016-02-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia. PMID:26595121

  3. Hypoxic Tumor Cell Modulates Its Microenvironment to Enhance Angiogenic and Metastatic Potential by Secretion of Proteins and Exosomes*

    PubMed Central

    Park, Jung Eun; Tan, Hon Sen; Datta, Arnab; Lai, Ruenn Chai; Zhang, Huoming; Meng, Wei; Lim, Sai Kiang; Sze, Siu Kwan

    2010-01-01

    Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 × g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis. PMID:20124223

  4. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells.

    PubMed

    Yeh, Tzyy-Harn; Chen, Yun-Ru; Chen, Szu-Ying; Shen, Wei-Chiang; Ann, David K; Zaro, Jennica L; Shen, Li-Jiuan

    2016-01-01

    Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with p

  5. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells

    PubMed Central

    Armitage, Emily G.; Kotze, Helen L.; Allwood, J. William; Dunn, Warwick B.; Goodacre, Royston; Williams, Kaye J.

    2015-01-01

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments. PMID:26508589

  6. Mammea E/BB, An Isoprenylated Dihydroxycoumarin Protonophore that Potently Uncouples Mitochondrial Electron Transport Disrupts Hypoxic Signaling in Tumor Cells

    PubMed Central

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    The mammea-type coumarin mammea E/BB (1) was found to inhibit both hypoxia-induced and iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in human breast tumor T47D cells with IC50 values of 0.96 and 0.89 µM, respectively. Compound 1 suppressed the hypoxic induction of secreted VEGF protein (T47D cells) and inhibited cell viability/proliferation in four human tumor cell lines. Compound 1 (at 5 and 20 µM) inhibited human breast tumor MDA-MB-231 cell migration. While the mechanisms that underlay their biological activities have remained unknown, prenylated mammea coumarins have been shown to be cytotoxic to human tumor cells, suppress tumor growth in animal models, and display a wide variety of antimicrobial effects. Mechanistic studies revealed that 1 appears to exert an assemblage of cellular effects by functioning as an anionic protonophore that potently uncouples mitochondrial electron transport and disrupts mitochondrial signaling in human tumor cell lines. PMID:20929261

  7. The current status of drug development of hypoxic cell radiosensitizers and their potential role in gynecologic oncology

    SciTech Connect

    Coleman, C.N.; Ballon, S.C.; Howes, A.E.; Martinez, A.; Halsey, J.; Hirst, V.K.

    1984-05-01

    Both laboratory and clinical data suggest that hypoxia contributes to the failure of radiotherapy to achieve local control of bulky gynecologic tumors. As part of a Phase I trial of hypoxic cell radiosensitizers, 19 women at Stanford University with advanced (n . 6) or recurrent (n . 13) pelvic neoplasms were treated with radiotherapy plus desmethylmisonidazole. Complete or partial response occurred in 42% of patients with some patients achieving local control for over 1 year. It is unknown if the sensitizer added to the results of radiotherapy alone. A Phase I trial of a theoretically superior sensitizer, SR-2508, is soon to begin. It is anticipated that the dose-limiting neurotoxicity seen with misonidazole and desmethylmisonidazole will either be eliminated or will occur at a much higher total dose of drug. Many patients with gynecologic tumors could potentially benefit from participation in the new drug trials.

  8. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein.

    PubMed

    Guitart, Kathrin; Loers, Gabriele; Buck, Friedrich; Bork, Ute; Schachner, Melitta; Kleene, Ralf

    2016-06-01

    Prion protein (PrP) protects neural cells against oxidative stress, hypoxia, ischemia, and hypoglycemia. In the present study we confirm that cultured PrP-deficient neurons are more sensitive to oxidative stress than wild-type neurons and present the novel findings that wild-type, but not PrP-deficient astrocytes protect wild-type cerebellar neurons against oxidative stress and that exosomes released from stressed wild-type, but not from stressed PrP-deficient astrocytes reduce neuronal cell death induced by oxidative stress. We show that neuroprotection by exosomes of stressed astrocytes depends on exosomal PrP but not on neuronal PrP and that astrocyte-derived exosomal PrP enters into neurons, suggesting neuronal uptake of astrocyte-derived exosomes. Upon exposure of wild-type astrocytes to hypoxic or ischemic conditions PrP levels in exosomes were increased. By mass spectrometry and Western blot analysis, we detected increased levels of 37/67 kDa laminin receptor, apolipoprotein E and the ribosomal proteins S3 and P0, and decreased levels of clusterin/apolipoprotein J in exosomes from wild-type astrocytes exposed to oxygen/glucose deprivation relative to exosomes from astrocytes maintained under normoxic conditions. The levels of these proteins were not altered in exosomes from stressed PrP-deficient astrocytes relative to unstressed PrP-deficient astrocytes. These results indicate that PrP in astrocytes is a sensor for oxidative stress and mediates beneficial cellular responses, e.g. release of exosomes carrying PrP and other molecules, resulting in improved survival of neurons under hypoxic and ischemic conditions. GLIA 2016;64:896-910. PMID:26992135

  9. Does nitric oxide allow endothelial cells to sense hypoxia and mediate hypoxic vasodilatation? in vivo and in vitro studies

    PubMed Central

    Edmunds, Nicholas J; Moncada, Salvador; Marshall, Janice M

    2003-01-01

    Hypoxia-evoked vasodilatation is a fundamental regulatory mechanism that is often attributed to adenosine. The identity of the O2 sensor is unknown. Nitric oxide (NO) inhibits endothelial mitochondrial respiration and ATP generation by competing with O2 for its binding site on cytochrome oxidase. We proposed that in vivo this interaction allows endothelial cells to release adenosine when O2 tension falls or NO concentration increases. Using anaesthetised rats, we confirmed that the increase in femoral vascular conductance (FVC, hindlimb vasodilatation) evoked by systemic hypoxia is attenuated by NO synthesis blockade with l-NAME, but restored when baseline FVC is restored by infusion of NO donor. This ‘restored’ hypoxic response, like the control hypoxic response, is inhibited by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Similarly, the FVC increase evoked by adenosine infusion was attenuated by l-NAME but restored by infusion of NO donor. However, when baseline FVC was restored after l-NAME with 8-bromo-cGMP, the FVC increase evoked by adenosine infusion was restored, but not in response to systemic hypoxia, suggesting that adenosine was no longer released by hypoxia. Infusion of NO donor at a given rate after treatment with l-NAME evoked a greater FVC increase during systemic hypoxia than during normoxia, both responses being reduced by 8-cyclopentyl-1,3-dipropylxanthine. Finally, both bradykinin and NO donor released adenosine from superfused endothelial cells in vitro; l-NAME attenuated only the former response. We propose that in vivo, shear-released NO increases the apparent Km of endothelial cytochrome oxidase for O2, allowing the endothelium to act as an O2 sensor, releasing adenosine in response to moderate falls in O2. PMID:12527738

  10. Serum- and Stromal Cell-Free Hypoxic Generation of Embryonic Stem Cell-Derived Hematopoietic Cells In Vitro, Capable of Multilineage Repopulation of Immunocompetent Mice

    PubMed Central

    Lesinski, Dietrich Armin; Heinz, Niels; Pilat-Carotta, Sandra; Rudolph, Cornelia; Jacobs, Roland; Schlegelberger, Brigitte

    2012-01-01

    Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4+ embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM+ (CD150+CD48−CD45+CD201+) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro. PMID:23197864

  11. miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function.

    PubMed

    Noman, Muhammad Zaeem; Janji, Bassam; Berchem, Guy; Chouaib, Salem

    2016-09-28

    It has become clear that tumor stroma components are engaged in an active and complex molecular cross-talk that has serious implications for immunological recognition of tumor cells in shaping the microenvironment. Hypoxia which is a major component of tumor microenvironment influences the characteristics of neoplasia by favoring heterogeneity, invasiveness, metastatic potency and tumor progression. In this regard, an important mode of communication between carcinoma cells and immune cells may involve tumor-derived microvesicles, which are able to carry lipids, proteins, mRNAs and miRNAs. This review covers new evidence indicating that the efficacy of the cell-mediated cytotoxicity (CTLs and NK) may be dependent on hypoxia induced miRNA and microvesicles in the tumor microenvironment by inhibiting the efficacy of natural host anti-tumor immune response and improving the ability of tumors to avoid immunosurveillance. This emphasizes that hypoxic tumors actively develop additional mechanisms to suppress the sensing of the immunologic danger signals in order to survive and propagate without inciting anti-tumor immunity. PMID:26523672

  12. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury

    PubMed Central

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-01-01

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage. PMID:26447335

  13. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury.

    PubMed

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-01-01

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage. PMID:26447335

  14. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  15. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    PubMed Central

    Lee, Hyo-Jeong; Jung, Deok-Beom; Sohn, Eun Jung; Kim, Hanna Hyun; Park, Moon Nyeo; Lew, Jae-Hwan; Lee, Seok Geun; Kim, Bonglee; Kim, Sung-Hoon

    2012-01-01

    Although cryptotanshinone (CT) was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent. PMID:23243443

  16. Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

    PubMed Central

    Trisciuoglio, Daniela; Gabellini, Chiara; Desideri, Marianna; Ziparo, Elio; Zupi, Gabriella; Del Bufalo, Donatella

    2010-01-01

    Background Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1α, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis. Methodology/Principal Findings By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1α protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1α protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1α protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1α stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1α degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1α protein. We also showed that bcl-2, HIF-1α and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1α protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1α protein during hypoxia, and in particular the isoform HSP90β is the main player in this phenomenon. Conclusions/Significance We identified the stabilization of HIF-1α protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the

  17. Hypoxic stress triggers a programmed cell death pathway to induce vascular cavity formation in Pisum sativum roots.

    PubMed

    Sarkar, Purbasha; Gladish, Daniel K

    2012-12-01

    Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity-forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20-30 kb were detected by pulse-field gel electrophoresis, but no low-molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria-dependent PCD pathways, was detected in the cavity-forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia-induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system. PMID:22486732

  18. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogs with improved tissue penetration and hypoxic cell killing in tumors

    PubMed Central

    Hicks, Kevin O.; Siim, Bronwyn G.; Jaiswal, Jagdish K.; Pruijn, Frederik B.; Fraser, Annie M.; Patel, Rita; Hogg, Alison; Liyanage, H.D. Sarath; Jo Dorie, Mary; Brown, J. Martin; Denny, William. A.; Hay, Michael P.; Wilson, William R.

    2012-01-01

    Purpose Tirapazamine (TPZ) has attractive features for targeting hypoxic cells in tumors but limited clinical activity, in part because of poor extravascular penetration. Here we identify improved TPZ analogs by using a spatially resolved pharmacokinetic/pharmacodynamic (SR-PKPD) model that considers tissue penetration explicitly during lead optimization. Experimental design The SR-PKPD model was used to guide progression of 281 TPZ analogs through a hierarchical screen. For compounds exceeding hypoxic selectivity thresholds in single cell cultures, SR-PKPD model parameters (kinetics of bioreductive metabolism, clonogenic cell killing potency, diffusion coefficients in multicellular layers, plasma pharmacokinetics at well tolerated doses in mice) were measured to prioritize testing in xenograft models in combination with radiation. Results SR-PKPD-guided lead optimization identified SN29751 and SN30000 as the most promising hypoxic cytotoxins from two different structural subseries. Both were reduced to the corresponding 1-oxide selectively under hypoxia by HT29 cells, with an oxygen dependence quantitatively similar to that of TPZ. SN30000, in particular, showed higher hypoxic potency and selectivity than TPZ in tumor cell cultures and faster diffusion through HT29 and SiHa multicellular layers. Both compounds also provided superior plasma PK in mice and rats at equivalent toxicity. In agreement with SR-PKPD predictions, both were more active than TPZ with single dose or fractionated radiation against multiple human tumor xenografts. Conclusions SN30000 and SN29751 are improved TPZ analogs with potential for targeting tumor hypoxia in humans, and illustrate the utility of novel SR-PKPD modeling approaches for lead optimization during anticancer drug development. PMID:20732963

  19. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    PubMed

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways. PMID:21576354

  20. Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase.

    PubMed

    Belcourt, M F; Hodnick, W F; Rockwell, S; Sartorelli, A C

    1996-01-01

    Purified NADPH:cytochrome c (P-450) reductase (FpT; NADPH-ferrihemoprotein oxidoreductase, EC 1.6.2.4) can reductively activate mitomycin antibiotics through a one-electron reduction to species that alkylate DNA. To assess the involvement of FpT in the intracellular activation of the mitomycins, transfectants overexpressing a human FpT cDNA were established from a Chinese hamster ovary cell line deficient in dihydrofolate reductase (CHO-K1/dhfr-). The parental cell line was equisensitive to the cytotoxic action of mitomycin C under oxygenated and hypoxic conditions. In contrast, porfiromycin was considerably less cytotoxic to wild-type parental cells than was mitomycin C in air and markedly more cytotoxic under hypoxia. Two FpT-transfected clones were selected that expressed 19- and 27-fold more FpT activity than the parental line. Levels of other oxidoreductases implicated in the activation of the mitomycins were unchanged. Significant increases in sensitivity to mitomycin C and porfiromycin in the two FpT-transfected clones were seen under both oxygenated and hypoxic conditions, with the increases in toxicity being greater under hypoxia than in air. These findings demonstrate that FpT can bioreductively activate the mitomycins in living cells and implicate FpT in the differential aerobic/hypoxic toxicity of the mitomycins. PMID:8552660

  1. Final report on the United States phase I clinical trial of the hypoxic cell radiosensitizer, misonidazole (Ro-07-0582; NSC No. 261037

    SciTech Connect

    Phillips, T.L.; Wasserman, T.H.; Johnson, R.J.; Levin, V.A.; VanRaalte, G.

    1981-10-15

    The hypoxic cell sensitizer misonidazole began phase I evaluation in the United States in July 1977. One hundred two patients received 104 individual courses of drug. Drug was administered from once to five times per week over time spans from one to six weeks. The individual doses ranged 1 to 5 g/m. The major toxicity noted was neurologic; 49% of evaluable courses showed peripheral neuropathy, and 9% of evaluable courses showed central nervous system effects and/or ototoxicity. In addition, 48 of 102 patients exhibited some degree of nausea and vomiting. The concomitant administration of dexamethasone and phenytoin sodium appeared to lower the incidence of neuropathy. Observations of efficacy were made comparatively in five patients who had multiple lesions treated with and without misonidazole. All five showed increased response in the lesions treated with misonidazole. It is concluded that misonidazole is a reasonably safe and potentially effective hypoxic cell sensitizer whose dose-limiting toxicity is neurologic.

  2. Amperometric sensing of HIF1α expressed in cancer cells and the effect of hypoxic mimicking agents.

    PubMed

    Hussain, Khalil K; Gurudatt, N G; Mir, Tanveer Ahmad; Shim, Yoon-Bo

    2016-09-15

    Hypoxia inducible factor 1 alpha (HIF1α) overexpression was detected in cancerous cells using an amperometric immunosensor with a nano-bioconjugate. The sensor probe was fabricated by covalently immobilizing the antibody (anti-HIF1α) onto a composite layer of functionalized conducting polymer [2,2:5,2-terthiophene-3-(p-benzoic acid)] (pTTBA) formed on a layer of gold nanoparticles (AuNPs). A nano-bioconjugate with hydrazine and a secondary antibody of HIF1α (sec-Ab2) attached on AuNPs reveals the immunoreaction at the sensor probe through the catalytic reduction of H2O2 by hydrazine at -0.35V vs. Ag/AgCl. Morphology and performance of the sensor probe were characterized using FE-SEM, XPS, EIS, and cyclic voltammetry. The calibration plot at optimized experimental conditions shows a dynamic range of 25-350pM/mL with a detection limit of 5.35±0.02pM/mL. The reliability of the sensor was evaluated using non-cancerous Vero and cancerous MCF-7 cell lysates, where the HIF1α expression was compared with three cancerous cell lines MCF-7, PC-3, and A549. Furthermore, the sensor probe confirms the stable expression of HIF1α in the A549 lung cancer cells when exposing them to hypoxic mimicking agents Co, Ni, and Mn ions. Of these, Co ions show the highest stabilization effect on HIF1α followed by Ni and Mn ions, respectively. PMID:27132006

  3. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells

    PubMed Central

    Neelam, Sudha; Brooks, Morgan M.

    2015-01-01

    Purpose The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. Methods HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. Results SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed

  4. Upregulation of miRNA3195 and miRNA374b Mediates the Anti-Angiogenic Properties of Melatonin in Hypoxic PC-3 Prostate Cancer Cells

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Lee, Sangyoon; Kim, Sung-hoon

    2015-01-01

    Recently microRNAs (miRNAs) have been attractive targets with their key roles in biological regulation through post-transcription to control mRNA stability and protein translation. Though melatonin was known as an anti-angiogenic agent, the underlying mechanism of melatonin in PC-3 prostate cancer cells under hypoxia still remains unclear. Thus, in the current study, we elucidated the important roles of miRNAs in melatonin-induced anti-angiogenic activity in hypoxic PC-3 cells. miRNA array revealed that 33 miRNAs (>2 folds) including miRNA3195 and miRNA 374b were significantly upregulated and 16 miRNAs were downregulated in melatonin-treated PC-3 cells under hypoxia compared to untreated control. Melatonin significantly attenuated the expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha and vascular endothelial growth factor (VEGF) at mRNA level in hypoxic PC-3 cells. Consistently, melatonin enhanced the expression of miRNA3195 and miRNA 374b in hypoxic PC-3 cells by qRT-PCR analysis. Of note, overexpression of miRNA3195 and miRNA374b mimics attenuated the mRNA levels of angiogenesis related genes such as HIF-1alpha, HIF-2 alpha and VEGF in PC-3 cells under hypoxia. Furthermore, overexpression of miRNA3195 and miRNA374b suppressed typical angiogenic protein VEGF at the protein level and VEGF production induced by melatonin, while antisense oligonucleotides against miRNA 3195 or miRNA 374b did not affect VEGF production induced by melatonin. Also, overexpression of miR3195 or miR374b reduced HIF-1 alpha immunofluorescent expression in hypoxic PC-3 compared to untreated control. Overall, our findings suggest that upregulation of miRNA3195 and miRNA374b mediates anti-angiogenic property induced by melatonin in hypoxic PC-3 cells. PMID:25553085

  5. Hypergravity and hypobaric hypoxic conditions promote endothelial cell and platelet activation.

    PubMed

    Rubenstein, David A; Yin, Wei

    2014-09-01

    Cardiovascular disease risk is heightened during exposure to altered gravity and/or altered barometric conditions. Previous work has suggested that this heightened cardiovascular risk is due to enhancements of endothelial cell inflammatory and/or thrombogenic responses. In recent work, the role of platelets on instigating or inhibiting endothelial cell responses associated with cardiovascular disease has been found to be dependent on both biochemical and biophysical factors. In this work, we aimed to determine how two biophysical forces, gravity and atmospheric pressure, alter endothelial cell and platelet functions and their interactions to instigate or inhibit cardiovascular disease responses. To address this aim, endothelial cells and platelets were subjected to a force 8 times greater than the normal gravitational force, for up to 30 minutes. In separate experiments, endothelial cells and platelets were subjected to 50% of normal atmospheric pressure. Endothelial cell and platelet responses, associated with cardiovascular diseases, were measured as a time course during exposure. In general, the exposure of endothelial cells to either hypergravity or hypobaric conditions enhanced cardiovascular disease responses. However, the presence of platelets generally inhibited endothelial cell responses. Platelet activation was, however, somewhat enhanced under both hypergravity and hypobaric conditions. Our data suggest that altered biophysical forces can modulate endothelial cell and platelet responses that are salient for cardiovascular disease progression. However, the interaction of these two cells tends to restrain the progression of the pro-cardiovascular disease responses. PMID:25211651

  6. Epithelial-mesenchymal transition of A549 cells is enhanced by co-cultured with THP-1 macrophages under hypoxic conditions.

    PubMed

    Sueki, Akane; Matsuda, Kazuyuki; Iwashita, Chinami; Taira, Chiaki; Ishimine, Nau; Shigeto, Shohei; Kawasaki, Kenji; Sugano, Mitsutoshi; Yamamoto, Hiroshi; Honda, Takayuki

    2014-10-31

    Epithelial-mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis. PMID:25445593

  7. Study of the mechanism underlying the inhibitory effects of transglutaminase II on apoptosis in the osteosarcoma MG-63 cell line under hypoxic conditions

    PubMed Central

    WANG, GUOBIN; FU, LIMEI; CHEN, FANGMIN

    2015-01-01

    The aim of the present study was to investigate the association between the apoptosis phenomenon in the MG-63 osteosarcoma cell line, and transglutaminase II (TG2) expression. The relationship between the anti-apoptotic mechanism of TG2 and the expression of cytochrome c as well as caspase-3 under hypoxic conditions was also verified. A hypoxic culture of MG-63 cells was prepared. The hypoxia and TG2 siRNA hypoxia groups were established, and the cultures were incubated for 12 h under hypoxic conditions. TG2 activity, TG2 protein expression and its mRNA level were investigated. Cytochrome c and caspase-3 protein levels in the TG2 nucleus and cytoplasm were measured. The apoptotic rate was also monitored. The results showed that TG2 activity, TG2 protein expression and its mRNA level in the hypoxia group were significantly higher than those of the siRNA hypoxia group. The results showed statistically insignificant differences (P<0.05). By contrast, a comparison of the two groups in the cytoplasm yielded no statistically significant differences (P>0.05). Cytochrome c and caspase-3 protein levels in the hypoxia group were significantly higher than those of the TG2 siRNA hypoxia group. The results showed statistically significant differences (P<0.05). By contrast, the protein levels in the cytoplasm were significantly lower than those of the TG2 siRNA hypoxia group, with differences being statistically significant (P<0.05). The differences in apoptotic rates between the hypoxia and TG2 siRNA hypoxia groups were also statistically significant (P<0.05). Under hypoxic conditions, a high TG2 expression inhibited the apoptosis of the MG-63 osteosarcoma cell line. This effect was probably associated with its suppressive activity on the transportation of cytochrome c and caspase-3 from nucleus to cytoplasm. PMID:26788145

  8. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy

    PubMed Central

    Qiu, Yu; Li, Peng; Ji, Chunyan

    2015-01-01

    Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy. PMID:26512660

  9. Up-Regulation of ENO1 by HIF-1α in Retinal Pigment Epithelial Cells after Hypoxic Challenge Is Not Involved in the Regulation of VEGF Secretion

    PubMed Central

    Zheng, Feihui; Jang, Wai-Chi; Fung, Frederic K. C.; Lo, Amy C. Y.; Wong, Ian Y. H.

    2016-01-01

    Purpose Alpha-enolase (ENO1), a major glycolytic enzyme, is reported to be over-expressed in various cancer tissues. It has been demonstrated to be regulated by the Hypoxia-inducible factor 1-α (HIF-1α), a crucial transcriptional factor implicated in tumor progression and cancer angiogenesis. Choroidal neovascularization (CNV), which is a leading cause of severe vision loss caused by newly formed blood vessels in the choroid, is also engendered by hypoxic stress. In this report, we investigated the expression of ENO1 and the effects of its down-regulation upon cobalt (II) chloride-induced hypoxia in retinal pigment epithelial cells, identified as the primary source of ocular angiogenic factors. Methods HIF-1α-diminished retinal pigment epithelial cells were generated by small interfering RNA (siRNA) technology in ARPE-19 cells, a human retinal pigment epithelial cell line. Both normal and HIF-1α-diminished ARPE-19 cells were then subjected to hypoxic challenge using cobalt (II) chloride (CoCl2) or anaerobic chamber. The relation between ENO1 expression and vascular endothelial growth factor (VEGF) secretion by retinal pigment epithelial cells were examined. Protein levels of HIF-1α and ENO1 were analyzed using Western Blot, while VEGF secretion was essayed by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity after hypoxia was detected by Lactate Dehydrogenase (LDH) Assay. Results Upon 24 hr of CoCl2-induced hypoxia, the expression levels of ENO1 and VEGF were increased along with HIF-1α in ARPE-19 cells, both of which can in turn be down-regulated by HIF-1α siRNA application. However, knockdown of ENO1 alone or together with HIF-1α did not help suppress VEGF secretion in hypoxic ARPE-19 cells. Conclusion ENO1 was demonstrated to be up-regulated by HIF-1α in retinal pigment epithelial cells in response to hypoxia, without influencing VEGF secretion. PMID:26882120

  10. Hypoxic control of metastasis

    PubMed Central

    Rankin, Erinn B.; Giaccia, Amato J.

    2016-01-01

    Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease. PMID:27124451

  11. Hypoxic control of metastasis.

    PubMed

    Rankin, Erinn B; Giaccia, Amato J

    2016-04-01

    Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease. PMID:27124451

  12. Multiparameter digitized video microscopy of toxic and hypoxic injury in single cells.

    PubMed Central

    Lemasters, J J; Gores, G J; Nieminen, A L; Dawson, T L; Wray, B E; Herman, B

    1990-01-01

    There is no clear picture of the critical events that lead to the transition from reversible to irreversible injury. Many studies have suggested that a rise in cytosolic free Ca2+ initiates plasma membrane bleb formation and a sequence of events that lead ultimately to cell death. In recent studies, we have measured changes in cytosolic free Ca2+, mitochondrial membrane potential, cytosolic pH, and cell surface blebbing in relation to the onset of irreversible injury and cell death following anoxic and toxic injury to single hepatocytes by using multiparameter digitized video microscopy (MDVM). MDVM is an emerging new technology that permits single living cells to be labeled with multiple probes whose fluorescence is responsive to specific cellular parameters of interest. Fluorescence images specific for each probe are collected over time, digitized, and stored. Image analysis and processing then permits quantitation of the spatial distribution of the various parameters with the single living cells. Our results indicate the following: The formation of plasma membrane blebs accompanies all types of injury in hepatocytes. Cell death is a rapid event initiated by rupture of a plasma membrane bleb, and it is coincident with the onset of irreversible injury. An increase of cytosolic free Ca2+ is not the stimulus for bleb formation or the final common pathway leading to cell death. A decrease of mitochondrial membrane potential precedes the loss of cell viability. Cytosolic pH falls by more than 1 pH unit during chemical hypoxia. This acidosis protects against the onset of cell death. Images FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 10. FIGURE 13. FIGURE 15. PMID:2190822

  13. Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

    PubMed Central

    Chang, Woochul; Kim, Ran; Park, Sang In; Jung, Yu Jin; Ham, Onju; Lee, Jihyun; Kim, Ji Hyeong; Oh, Sekyung; Lee, Min Young; Kim, Jongmin; Park, Moon-Seo; Chung, Yong-An; Hwang, Ki-Chul; Maeng, Lee-So

    2015-01-01

    The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects. PMID:26062554

  14. Hypoxic conditions increases H₂S-induced ER stress in A2870 cells.

    PubMed

    Lencesova, Lubomira; Vlcek, Miroslav; Krizanova, Olga; Hudecova, Sona

    2016-03-01

    Hypoxia - a state of lower oxygen demand-is responsible for a higher aggressiveness of tumors and therefore a worse prognosis. During hypoxia, several metabolic pathways are re-organized, e.g., energetic metabolism, modulation of pH, and calcium transport. Calcium is an important second messenger that regulates variety of processes in the cell. Thus, aim of this work was to compare H2S modulation of the intracellular calcium transport systems in hypoxia and in cells grown in standard culture conditions. For all experiments, we used ovarian cancer cell line (A2780). H2S is a novel gasotransmitter, known to be involved in a modulation of several calcium transport systems, thus resulting in altered calcium signaling. Two models of hypoxia were used in our study-chemical (induced by dimethyloxallyl glycine) and 2 % O2 hypoxia, both combined with a treatment using a slow H2S donor GYY4137. In hypoxia, we observed rapid changes in cytosolic and reticular calcium levels compared to cells grown in standard culture conditions, and these changes were even more exagerrated when combined with the GYY4137. Changes in a calcium homeostasis result from IP3 receptor´s up-regulation and down-regulation of the SERCA 2, which leads to a development of the endoplasmic reticulum stress. Based on our results, we propose a higher vulnerability of calcium transport systems to H2S regulation under hypoxia. PMID:26868821

  15. Expression and significance of hypoxia-inducible factor-1α and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells

    PubMed Central

    XIE, JIN; LI, DA-WEI; CHEN, XIN-WEI; WANG, FEI; DONG, PIN

    2013-01-01

    The present study aimed to evaluate the expression of hypoxia-inducible factor-1α (HIF-1α) and MDR1/P-glycoprotein (P-gp) in human laryngeal squamous cell carcinoma (LSCC) tissues, and also to investigate the regulation of MDR1 gene expression by HIF-1α in Hep-2 cells under hypoxic conditions. The expression of HIF-1α and MDR1/P-gp in human LSCC tissues was examined using immunohistochemistry. The HIF-1α and MDR1 gene expression in the Hep-2 cells was detected using real-time quantitative reverse transcription (QRT)-PCR and western blot analysis under normoxic and hypoxic conditions. In hypoxia, HIF-1α expression was inhibited by RNA interference. HIF-1α and MDR1/P-gp expression was high in the LSCC tissues and was associated with the clinical stage and lymph node metastasis (P<0.05). HIF-1α expression was positively correlated with MDR1/P-gp expression (P<0.01). In the Hep-2 cells, HIF-1α and MDR1/P-gp expression significantly increased in response to hypoxia. The inhibition of HIF-1α expression synergistically downregulated the expression of the MDR1 gene in hypoxic Hep-2 cells. HIF-1α expression is positively correlated with MDR1/P-gp expression in LSCC, and the two proteins may be able to serve as potential biomarkers for predicting the malignant progression and metastasis of LSCC. HIF-1α may be critical for the upregulation of MDR1 gene expression induced by hypoxia in Hep-2 cells. PMID:23946810

  16. Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance

    SciTech Connect

    Rockwell, S.; Kapp, D.S.

    1982-06-01

    The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazoles - the inhibition of cell-mediated immune responses. (JMT)

  17. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K+ channels

    PubMed Central

    ZHANG, SHUAI; LIU, BO; FAN, ZAIWEN; WANG, DONG; LIU, YING; LI, JIAN; WANG, NING; LIU, YI; ZHANG, BO

    2016-01-01

    Hypoxic pulmonary hypertension (PH) is a common disease characterized by a disturbance to the balance of apoptosis and cell proliferation in pulmonary artery smooth muscle cells (PASMCs). The anti-apoptotic protein, survivin, has been observed to be upregulated in pulmonary arteries (PAs) of chronic hypoxia-induced PH rats. The present study aimed to investigate the therapeutic potential of sepantronium bromide (YM155), a selective survivin inhibitor, on hypoxic human PASMCs and examine the potential underlying mechanisms. Cultured human PASMCs (HPASMCs) were randomly divided into the following groups: i) Normoxia (N); ii) normoxia + 100 nmol/l YM155 (NY100); iii) hypoxia (H); iv) hypoxia + 1 nmol/l YM155 (HY1); v) hypoxia + 10 nmol/l YM155 (HY10); and hypoxia + 100 nmol/l YM155 (HY100) groups. The cells were exposed to the different conditions for 24 h, according to the group. Cell viability was then determined using a Cell Counting Kit-8 assay, and apoptosis was detected using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. The expression levels of survivin were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunocytochemistry and Western blot analyses. The expression levels of the voltage-dependent K+ (Kv) channels, Kv1.5 and Kv2.1, were measured using RT-qPCR and Western blotting. Cell proliferation in the hypoxic PASMCs was significantly increased by hypoxia, however, apoptosis of the HPASMCs was suppressed, the expression of survivin were upregulated and the expression levels of Kv1.5 and Kv2.1 were downregulated. YM155 treatment ameliorated the hypoxia-induced increase in cell proliferation and expression of survivin in a concentration-dependent manner, increased apoptosis, and increased the expression levels of Kv1.5 and Kv2.1 (P<0.05). By contrast, YM155 treatment in normoxic HPASMCs had no significant effects on proliferation, apop-tosis, or the expression

  18. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K⁺ channels.

    PubMed

    Zhang, Shuai; Liu, Bo; Fan, Zaiwen; Wang, Dong; Liu, Ying; Li, Jian; Wang, Ning; Liu, Yi; Zhang, Bo

    2016-04-01

    Hypoxic pulmonary hypertension (PH) is a common disease characterized by a disturbance to the balance of apoptosis and cell proliferation in pulmonary artery smooth muscle cells (PASMCs). The anti-apoptotic protein, survivin, has been observed to be upregulated in pulmonary arteries (PAs) of chronic hypoxia-induced PH rats. The present study aimed to investigate the therapeutic potential of sepantronium bromide (YM155), a selective survivin inhibitor, on hypoxic human PASMCs and examine the potential underlying mechanisms. Cultured human PASMCs (HPASMCs) were randomly divided into the following groups: i) Normoxia (N); ii) normoxia + 100 nmol/l YM155 (NY100); iii) hypoxia (H); iv) hypoxia + 1 nmol/l YM155 (HY1); v) hypoxia + 10 nmol/l YM155 (HY10); and hypoxia + 100 nmol/l YM155 (HY100) groups. The cells were exposed to the different conditions for 24 h, according to the group. Cell viability was then determined using a Cell Counting Kit‑8 assay, and apoptosis was detected using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. The expression levels of survivin were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunocytochemistry and Western blot analyses. The expression levels of the voltage-dependent K+ (Kv) channels, Kv1.5 and Kv2.1, were measured using RT-qPCR and Western blotting. Cell proliferation in the hypoxic PASMCs was significantly increased by hypoxia, however, apoptosis of the HPASMCs was suppressed, the expression of survivin were upregulated and the expression levels of Kv1.5 and Kv2.1 were downregulated. YM155 treatment ameliorated the hypoxia‑induced increase in cell proliferation and expression of survivin in a concentration‑dependent manner, increased apoptosis, and increased the expression levels of Kv1.5 and Kv2.1 (P<0.05). By contrast, YM155 treatment in normoxic HPASMCs had no significant effects on proliferation, apoptosis, or the expression

  19. Neutrophils Oppose Uterine Epithelial Carcinogenesis via Debridement of Hypoxic Tumor Cells.

    PubMed

    Blaisdell, Adam; Crequer, Amandine; Columbus, Devin; Daikoku, Takiko; Mittal, Khush; Dey, Sudhansu K; Erlebacher, Adrian

    2015-12-14

    Polymorphonuclear neutrophils (PMNs) are largely considered to foster cancer development despite wielding an arsenal of cytotoxic agents. Using a mouse model of PTEN-deficient uterine cancer, we describe a surprising inhibitory role for PMNs in epithelial carcinogenesis. By inducing tumor cell detachment from the basement membrane, PMNs impeded early-stage tumor growth and retarded malignant progression. Unexpectedly, PMN recruitment and tumor growth control occurred independently of lymphocytes and cellular senescence and instead ensued as part of the tumor's intrinsic inflammatory response to hypoxia. In humans, a PMN gene signature correlated with improved survival in several cancer subtypes, including PTEN-deficient uterine cancer. These findings provide insight into tumor-associated PMNs and reveal a context-specific capacity for PMNs to directly combat tumorigenesis. PMID:26678340

  20. Diffuse-type gastric cancer cells switch their driver pathways from FGFR2 signaling to SDF1/CXCR4 axis in hypoxic tumor microenvironments.

    PubMed

    Kinoshita, Haruhito; Yashiro, Masakazu; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Morisaki, Tamami; Kasashima, Hiroaki; Masuda, Go; Noda, Satoru; Hirakawa, Kosei

    2015-12-01

    Cancer-associated fibroblasts (CAFs) have been considered to play an important role for tumor progression of cancer. Solid tumors contain heterogeneous distribution of oxygen in their microenvironments. This study investigated the growth signaling of gastric cancer (GC) cells in focus on the interaction with CAFs and GC cells under normoxia and hypoxia. Four diffuse-type GC cell lines, two intestinal-type GC cell lines and three CAF cell lines were used. Cells were examined for expression of C-X-C chemokine receptor 4 (CXCR4), fibroblast growth factor receptor 2 (FGFR2) and stromal-derived factor 1 (SDF1) by RT-PCR, western blot, ELISA and immunohistochemical staining of xenografted tumors. GC cell proliferation was examined under hypoxia in the presence or absence of CAFs, a FGFR2 inhibitor, a CXCR4 inhibitor and HIF1α siRNA. Proliferation of diffuse-type GC cells, but not intestinal-type GC cells, was significantly increased by CAFs. CXCR4 expression by diffuse-type GC cells was significantly increased in hypoxia, while FGFR2 expression was decreased. CXCR4 expression was correlated with hypoxic microenvironment of xenografted tumor, but FGFR2 expression was not. FGFR2 inhibition significantly decreased the growth-stimulating activity of CAFs for diffuse-type GC cells in normoxia. In contrast, CXCR4 inhibition significantly decreased the growth-stimulating activity of CAFs in hypoxia. SDF1 production by CAFs was increased in hypoxia, while cancer cells did not produce SDF1. HIF1 siRNA significantly decreased both CXCR4 expression by diffuse-type GC cells and SDF1 production by CAFs. These findings suggest that diffuse-type GC cells might switch their driver pathways from FGFR2 signaling to SDF1/CXCR4 axis through HIF1 in hypoxic tumor microenvironments. PMID:26385890

  1. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway.

    PubMed

    Zhang, Zheng; Yang, Ming; Wang, Yabin; Wang, Le; Jin, Zhitao; Ding, Liping; Zhang, Lijuan; Zhang, Lina; Jiang, Wei; Gao, Guojie; Yang, Junke; Lu, Bingwei; Cao, Feng; Hu, Taohong

    2016-06-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been demonstrated as an ideal autologous stem cells source for cell-based therapy for myocardial infarction (MI). However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency, whereas the underlying mechanism is still poorly understood. Autophagy, a highly conserved process of cellular degradation, is required for maintaining homeostasis and normal function. Here, we investigated the potential role of autophagy on apoptosis in BM-MSCs induced by hypoxic injury. BM-MSCs, isolated from male C57BL/6 mice, were subjected to hypoxia and serum deprivation (H/SD) injury for 6, 12, and 24 h, respectively. The autophagy state was regulated by 3-methyladenine (3MA) and rapamycin administration. Furthermore, compound C was administrated to inhibit AMPK. The apoptosis induced by H/SD was determined by TUNEL assays. Meanwhile, autophagy was measured by GFP-LC3 plasmids transfection and transmission electron microscope. Moreover, protein expressions were evaluated by Western blot assay. In the present study, we found that hypoxic stress increased autophagy and apoptosis in BM-MSCs time dependently. Meanwhile, hypoxia increased the activity of AMPK/mTOR signal pathway. Moreover, increased apoptosis in BM-MSCs under hypoxia was abolished by 3-MA, whereas was aggravated by rapamycin. Furthermore, the increased autophagy and apoptosis in BM-MSCs induced by hypoxia were abolished by AMPK inhibitor compound C. These data provide evidence that hypoxia induced AMPK/mTOR signal pathway activation which regulated the apoptosis and autophagy in BM-MSCs. Furthermore, the apoptosis of BM-MSCs under hypoxic condition was regulated by autophagy via AMPK/mTOR pathway. PMID:27005844

  2. Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells

    PubMed Central

    Zhou, Tian-yi; Zhuang, Lin-han; Hu, Yan; Zhou, Yu-lu; Lin, Wen-kai; Wang, Dan-dan; Wan, Zi-qian; Chang, Lin-lin; Chen, Ying; Ying, Mei-dan; Chen, Zi-bo; Ye, Song; Lou, Jian-shu; He, Qiao-jun; Zhu, Hong; Yang, Bo

    2016-01-01

    Sorafenib is a multikinase inhibitor used as a first-line treatment for advanced hepatocellular carcinoma (HCC), but it has shown modest to low response rates. The characteristic tumour hypoxia of advanced HCC maybe a major factor underlying hypoxia-mediated treatment failure. Thus, it is urgent to elucidate the mechanisms of hypoxia-mediated sorafenib resistance in HCC. In this study, we found that hypoxia induced the nuclear translocation of Yes associate-Protein (YAP) and the subsequent transactivation of target genes that promote cell survival and escape apoptosis, thereby leading to sorafenib resistance. Statins, the inhibitors of hydroxymethylglutaryl-CoA reductase, could ameliorate hypoxia-induced nuclear translocation of YAP and suppress mRNA levels of YAP target genes both in vivo and in vitro. Combined treatment of statins with sorafenib greatly rescued the loss of anti-proliferative effects of sorafenib under hypoxia and improved the inhibitory effects on HepG2 xenograft tumour growth, accompanied by enhanced apoptosis as evidenced by the increased sub-G1 population and PARP cleavage. The expression levels of YAP and its target genes were highly correlated with poor prognosis and predicted a high risk of HCC patients. These findings collectively suggest that statins utilization maybe a promising new strategy to counteract hypoxia-mediated resistance to sorafenib in HCC patients. PMID:27476430

  3. Effect of hypoxic cell radiosensitizers on glutathione level and related enzyme activities in isolated rat hepatocytes

    SciTech Connect

    Noguchi, K.; Hattori, T.; Igarashi, T.; Ueno, K.; Satoh, T.; Kitagawa, H.; Hori, H.; Shibata, T.; Inayama, S.

    1985-08-19

    A comparative study of the effect of misonidazole and novel radiosensitizers on glutathione (GSH) levels and related enzyme activities in isolated rat hepatocytes was performed. Incubation of hepatocytes with 5 mM radiosensitizers led to a decrease in the intracellular GSH level. The most pronounced decrease in cellular GSH was evoked by 2,4-dinitromidazole-1-ethanol (DNIE); after incubation for only 15 min, GSH was hardly detected. DNIE-mediated GSH loss was dependent upon its concentration. DNIE reacted with GSH nonenzymatically as well as with diethylmaleate, while misonidazole and 1-methyl-2-methyl-sulfinyl-5-methoxycarbonylimidazole (KIH-3) did not. Addition of partially purified glutathione S-transferase (GST) did not enhance DNIE-mediated GSH loss in a cell-free system. DNIE inhibited glutathione peroxidase (GSH-Px), GST, and glutathione reductase (GSSG-R) activities in hepatocytes, while misonidazole and KIH-3 did not. GSH-Px activity assayed with H/sub 2/O/sub 2/ as substrate was the most inhibited. Inhibition of GSH-Px activity assayed with cumene hydroperoxide as substrate and GST was less than that of GSH-Px assayed with H/sub 2/O/sub 2/ as substrate. GSSG-R activity was decreased by DNIE, but not significantly. Incubation of purified GSH-Px with DNIE resulted in a little change in the activity when assayed with H/sub 2/O/sub 2/ as substrate. 26 references, 2 figures, 4 tables.

  4. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    SciTech Connect

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine; Grechez-Cassiau, Aline; Filipski, Elisabeth; Li, Xiao-Mei; Levi, Francis; Berra, Edurne; Delaunay, Franck; Teboul, Michele

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled gene Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.

  5. Laurenditerpenol, a New Diterpene from the Tropical Marine Alga Laurencia intricata Potently Inhibits HIF-1 Mediated Hypoxic Signaling in Breast Tumor Cells

    PubMed Central

    Mohammed, Kaleem A.; Hossain, Chowdhury Faiz; Zhang, Lei; Bruick, Richard K.; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The degree of tumor hypoxia correlates with advanced disease stages and treatment resistance. The transcription factor hypoxia-inducible factor-1 (HIF-1) promotes tumor cell adaptation and survival under hypoxic conditions. Therefore, specific HIF-1 inhibitors represent an important new class of potential tumor-selective therapeutic agents. A T47D human breast tumor cell-based reporter assay was used to examine extracts of plants and marine organisms for inhibitors of HIF-1 activation. Bioassay-guided fractionation of the lipid extract of the red alga Laurencia intricata yielded a structurally novel diterpene laurenditerpenol (1). The structure of 1 was determined spectroscopically. The relative configurations of the substituents of each ring system were assigned based on NOESY correlations. The absolute configurations of positions C-1 was determined by the modified Mosher ester procedure (directly in NMR tubes). Compound 1 potently inhibited hypoxia-activated HIF-1 (IC50: 0.4 μM) and hypoxia-induced VEGF (a potent angiogenic factor) in T47D cells. Compound 1 selectively inhibits HIF-1 activation by hypoxia but not iron chelator induced activation. Further, 1 suppresses tumor cell survival under hypoxic conditions without affecting normoxic cell growth. Compound 1 inhibits HIF-1 by blocking the induction of the oxygen-regulated HIF-1α protein. Mitochondrial respiration studies revealed that 1 suppresses oxygen consumption. PMID:15620241

  6. Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells

    PubMed Central

    Fierro, Fernando A.; O'Neal, Adam J.; Beegle, Julie R.; Chávez, Myra N.; Peavy, Thomas R.; Isseroff, Roslyn R.; Egaña, José T.

    2015-01-01

    Many therapies using mesenchymal stem cells (MSC) rely on their ability to produce and release paracrine signals with chemotactic and pro-angiogenic activity. These characteristics, however, are mostly studied under standard in vitro culture conditions. In contrast, various novel cell-based therapies imply pre-seeding MSC into bio-artificial scaffolds. Here we describe human bone marrow-derived MSC seeded in Integra matrices, a common type of scaffold for dermal regeneration (SDR). We show and measured the distribution of MSC within the SDR, where cells clearly establish physical interactions with the scaffold, exhibiting constant metabolic activity for at least 15 days. In the SDR, MSC secrete VEGF and SDF-1α and induce transwell migration of CD34+ hematopoietic/endothelial progenitor cells, which is inhibited in the presence of a CXCR4/SDF-1α antagonist. MSC in SDR respond to hypoxia by altering levels of angiogenic signals such as Angiogenin, Serpin-1, uPA, and IL-8. Finally, we show that MSC-containing SDR that have been pre-incubated in hypoxia show higher infiltration of endothelial cells after implantation into immune deficient mice. Our data show that MSC are fully functional ex vivo when implanted into SDR. In addition, our results strongly support the notion of hypoxic pre-conditioning MSC-containing SDR, in order to promote angiogenesis in the wounds. PMID:26579521

  7. Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells

    PubMed Central

    Liu, Liang; Jin, Xian; Zhou, Zhong’e; Shen, Chengxing

    2016-01-01

    Background: Most mesenchymal stem cells (MSCs) die shortly after transplantation into a myocardial infarcted area. Dead MSCs (dMSCs) are phagocytized by macrophages (pMΦ) in vivo and in vitro; however, the effects of pMΦ on cardiac stem cells (CSCs) remain unknown. Methods: MSCs, CSCs, and macrophages were obtained from bone marrow, hearts, and peritoneal cavity of mice, respectively. dMSCs were harvested after hypoxia for 24 h, and incubated with macrophages (2:1) for another 2 days with or without lipopolysaccharide (LPS, 50 ng/mL) and sorted by flow cytometry to obtain pMΦ. Viability and apoptosis of CSCs were respectively evaluated with the cell counting kit-8 (CCk-8) assay and Annexin V-PE/7-AAD staining at 0, 6, 12, and 24 h of culture with supernatant fluids from macrophages (MΦ), LPS-stimulated macrophages (LPS-pMΦ), pMΦ, and MSCs. GATA-4 and c-TnI expression was measured by flow cytometry on the seventh day. Expression of inflammation and growth factors was assessed by real-time polymerase chain reaction (RT-PCR) in MΦ, LPS-pMΦ, and pMΦ cells. Results: pMΦ expressed higher levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β)and lower levels of tumor necrosis factor-α(TNF-α)and IL-6 than LPS-pMΦ, higher levels of growth factors and of GATA-4 and c-TnI at the 7th day, which were similar to those in MSCs. CSCs cultured with supernatant fluids of pMΦ exhibited higher proliferative, anti-hypoxic, and differentiation activities. Conclusion: The supernatant fluids of macrophages that had phagocytized dead MSCs encouraged changes in phenotype and growth factor expression, enhanced proliferation, differentiation, and anti-hypoxic activity of CSCs, which is relevant to understanding the persistent therapeutic effect of MSCs after their massive demise upon transplantation in myocardial infarction. Furthermore, some miRNAs or proteins which were extracted from the supernatant fluids may give us a new insight into the treatment of

  8. Bidirectional signalling between EphA2 and ephrinA1 increases tubular cell attachment, laminin secretion and modulates erythropoietin expression after renal hypoxic injury.

    PubMed

    Rodriguez, Stéphane; Rudloff, Stefan; Koenig, Katrin Franziska; Karthik, Swapna; Hoogewijs, David; Huynh-Do, Uyen

    2016-08-01

    Acute kidney injury (AKI) is common in hospitalized patients and has a poor prognosis, the severity of AKI being linked to progression to chronic kidney disease. This stresses the need to search for protective mechanisms during the acute phase. We investigated kidney repair after hypoxic injury using a rat model of renal artery branch ligation, which led to an oxygen gradient vertical to the corticomedullary axis. Three distinct zones were observed: tubular necrosis, infarction border zone and preserved normal tissue. EphA2 is a receptor tyrosine kinase with pivotal roles in cell architecture, migration and survival, upon juxtacrine contact with its membrane-bound ligand EphrinA1. Following hypoxia, EphA2 was up-regulated in cortical and medullary tubular cells, while EphrinA1 was up-regulated in interstitial cells adjacent to peritubular capillaries. Moreover, erythropoietin (EPO) messenger RNA (mRNA) was strongly expressed in the border zone of infarcted kidney within the first 6 h. To gain more insight into the biological impact of EphA2 and EphrinA1 up-regulation, we activated the signalling pathways in vitro using recombinant EphrinA1/Fc or EphA2/Fc proteins. Stimulation of EphA2 forward signalling in the proximal tubular cell line HK2 increased cell attachment and laminin secretion at the baso-lateral side. Conversely, activation of reverse signalling through EphrinA1 expressed by Hep3B cells promoted EPO production at both the transcriptional and protein level. Strikingly, in co-culture experiments, juxtacrine contact between EphA2 expressing MDCK and EphrinA1 expressing Hep3B was sufficient to induce a significant up-regulation of EPO mRNA production in the latter cells, even in the absence of hypoxic conditions. The synergistic effects of EphA2 and hypoxia led to a 15-20-fold increase of EPO expression. Collectively, our results suggest an important role of EphA2/EphrinA1 signalling in kidney repair after hypoxic injury through stimulation of (i) tubular

  9. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  10. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.

    PubMed

    Plecitá-Hlavatá, Lydie; Engstová, Hana; Alán, Lukáš; Špaček, Tomáš; Dlasková, Andrea; Smolková, Katarína; Špačková, Jitka; Tauber, Jan; Strádalová, Vendula; Malínský, Jan; Lessard, Mark; Bewersdorf, Joerg; Ježek, Petr

    2016-05-01

    The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J

  11. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches.

    PubMed

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K; Lyons, Shawn M; Ivanov, Pavel; Ansari, Khairul I; Nakano, Ichiro; Chiocca, E Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-06-14

    Long non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs' speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. PMID:27264189

  12. The long non-coding RNA – HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches

    PubMed Central

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K.; Lyons, Shawn M.; Ivanov, Pavel; Ansari, Khairul I.; Nakano, Ichiro; Chiocca, E. Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-01-01

    Long-non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia inducible lncRNA, up-regulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal and hypoxia-dependent molecular reprogramming. Amongst the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Down-regulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome/targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. PMID:27264189

  13. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer

    PubMed Central

    Garon, Edward B.; Christofk, Heather R.; Hosmer, Wylie; Britten, Carolyn D; Bahng, Agnes; Crabtree, Matthew J; Hong, Candice Sun; Kamranpour, Naeimeh; Pitts, Sharon; Kabbinavar, Fairooz; Patel, Cecil; von Euw, Erika; Black, Alexander; Michelakis, Evangelos D.; Dubinett, Steven M.; Slamon, Dennis J.

    2014-01-01

    Objectives Dichloroacetate (DCA) is a highly bioavailable small molecule that inhibits pyruvate dehydrogenase kinase, promoting glucose oxidation and reversing the glycolytic phenotype in preclinical cancer studies. We designed this open label phase II trial to determine the response rate, safety, and tolerability of oral DCA in patients with metastatic breast cancer and advanced stage NSCLC. Materials and Methods This trial was conducted with DCA 6.25 mg/kg orally twice daily in previously treated stage IIIB/IV non-small cell lung cancer (NSCLC) or stage IV breast cancer. Growth inhibition by DCA was also evaluated in a panel of 54 NSCLC cell lines with and without cytotoxic chemotherapeutics (cisplatin and docetaxel) in normoxic and hypoxic conditions. Results and Conclusions Under normoxic conditions in vitro, single agent IC50 was > 2 mM for all evaluated cell lines. Synergy with cisplatin was seen in some cell lines under hypoxic conditions. In the clinical trial, after seven patients were enrolled, the study was closed based on safety concerns. The only breast cancer patient had stable disease after 8 weeks, quickly followed by progression in the brain. Two patients withdrew consent within a week of enrollment. Two patients had disease progression prior to the first scheduled scans. Within one week of initiating DCA, one patient died suddenly of unknown cause, and one experienced a fatal pulmonary embolism. We conclude that patients with previously treated advanced NSCLC did not benefit from oral DCA. In the absence of a larger controlled trial, firm conclusions regarding the association between these adverse events and DCA are unclear. Further development of DCA should be in patients with longer life expectancy, in whom sustained therapeutic levels can be achieved, and potentially in combination with cisplatin. PMID:24442098

  14. Patterns and Levels of Hypoxia in Head and Neck Squamous Cell Carcinomas and Their Relationship to Patient Outcome

    SciTech Connect

    Evans, Sydney M. V. Du, Kevin L.; Chalian, Ara A.; Mick, Rosemarie; Zhang, Paul J.; Hahn, Stephen M.; Quon, Harry; Lustig, Robert; Weinstein, Gregory S.; Koch, Cameron J.

    2007-11-15

    Purpose: EF5, a 2-nitroimidazole hypoxia marker, was used to study the presence, levels, and prognostic significance of hypoxia in primary head and neck squamous cell tumors. Methods and Materials: Twenty-two patients with newly diagnosed squamous cell carcinoma of the oral cavity, oropharynx, or larynx with at least 2 years of clinical follow-up were included in this study. Quantitative analyses of EF5 immunofluorescence was carried out, and these data were compared with patient outcome. Results: EF5 immunostaining showed substantial intra- and intertumoral hypoxic heterogeneity. The majority of cells in all tumors were well oxygenated. Three patterns of EF5 binding in cells were identified using criteria based on the cellular region that was stained (peripheral or central) and the relationship of binding to necrosis. We tested the association between EF5-binding levels with event-free and overall survival irrespective of the pattern of cellular binding or treatment regimen. Patients with tumors containing EF5-binding regions corresponding to severe hypoxia ({<=}0.1% oxygen) had a shorter event-free survival time than patients with pO{sub 2} values greater than 0.1% (p = 0.032). Nodal status was also predictive for outcome. Conclusions: These data illustrate the potential utility of EF5 binding based on quantitative immunohistochemistry of tissue pO{sub 2} and provide support for the development of noninvasive hypoxia positron emission tomographic studies with fluorine 18-labeled EF5.

  15. Factors influencing survival of mammalian cells exposed to hypothermia. VI. Effects of prehypothermic hypoxia followed by aerobic or hypoxic storage at various hypothermic temperatures.

    PubMed

    Kruuv, J; Lepock, J R

    1995-04-01

    The Arrhenius plot of inactivation (killing) rates of V-79 Chinese hamster cells exposed to hypothermia in air-equilibrated (aerobic) medium contains a break at about 8 degrees C, which corresponds to the minimum inactivation rate, implying that there are distinct hypothermic damage mechanisms above (range I, 8 to 25 degrees C) and below (range II, 0 to 8 degrees C) 8 degrees C. Prehypothermic hypoxia (PHH) for 75 min at room temperature sensitizes cells to subsequent aerobic hypothermia at both 5 and 10 degrees C (range II and I). However, PHH followed by severe hypoxia (0.03 microM oxygen in the medium) protected cells during 10 degrees C (range I) storage by increasing the shoulder, but not the slope, of the cell survival curve compared to the PHH plus 10 degrees C aerobic hypothermia case. On the other hand, PHH plus severe hypoxia during 5 degrees C storage (range II) protected cells by decreasing the slope, but not the shoulder, of the cell survival curve compared to the PHH plus 5 degrees C aerobic hypothermia case. Furthermore, PHH plus severe hypoxia during 5 degrees C storage was not significantly worse than aerobic storage without PHH at 5 degrees C. With or without severe hypoxia, 10 degrees C storage is preferable to 5 degrees C storage in this cell line. Extrapolated to organ storage, the results may imply that if warm ischemia (PHH) has occurred, subsequent hypoxic hypothermic perfusion storage may be preferable to aerobic hypothermic perfusion storage. PMID:7743821

  16. Kinetics of a putative hypoxic tissue marker, Technetium-99m-nitroimidazole (BMS181321), in normoxic, hypoxic, ischemic and stunned myocardium

    SciTech Connect

    Kusuoka, Hideo; Hashimoto, Katsuji; Fukuchi, Kazuki

    1994-08-01

    This study focused on the kinetics of the newly developed {sup 99m}TTc-nitroimidazole, propyleneamine oxime-1,2-nitroimidazole (BMS181321) in the different setting of myocardial perfusion states and oxygenation levels, and compared the kinetics of BMS181321 with those of other technetium analogues. The kinetics of BMS181321 were evaluated in isolated perfused rat hearts. Technetium-99m-hexamethyl propyleneamine oxime (HMPAO) and a non-nitroimidazole-containing analogue of BMS 181321 (6-methyl propyleneamine oxime; PAO-6-Me) were used to compare their kinetics with those of BMS181321. BMS181321 cleared quickly from normoxic hearts and the retention in the myocardium 10 min after injection was 0.84% {plus_minus} 0.04% ID/g wet wt (mean {plus_minus} s.e.m.). In contrast, BMS181321 was retained after reperfusion when it was injected before ischemia; the uptake in the myocardium 10 min after reperfusion was significantly greater than in controls (23.9% {plus_minus} 3.9%ID/g wt, p<0.05). These results indicate that {sup 99m}Tc-BMS181321 is well trapped in ischemic myocardium and moderately trapped in hypoxic myocardium, but washed out quickly in stunned myocardium. The residence time influences the amount retained. 14 refs., 7 figs., 1 tab.

  17. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    NASA Astrophysics Data System (ADS)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  18. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling.

    PubMed

    Huang, Chia-Wei; Huang, Chao-Ching; Chen, Yuh-Ling; Fan, Shih-Chen; Hsueh, Yuan-Yu; Ho, Chien-Jung; Wu, Chia-Ching

    2015-01-01

    Neonatal hypoxic-ischemic (HI) brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs) from adipose-derived stem cells (ASCs) and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1) and vascular endothelial growth factor receptor 2 (VEGFR2) was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment. PMID:26509169

  19. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    PubMed Central

    Huang, Chia-Wei; Huang, Chao-Ching; Chen, Yuh-Ling; Fan, Shih-Chen; Hsueh, Yuan-Yu; Ho, Chien-Jung; Wu, Chia-Ching

    2015-01-01

    Neonatal hypoxic-ischemic (HI) brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs) from adipose-derived stem cells (ASCs) and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1) and vascular endothelial growth factor receptor 2 (VEGFR2) was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment. PMID:26509169

  20. Expression of angiopoietin-1 in hypoxic pericytes: Regulation by hypoxia-inducible factor-2α and participation in endothelial cell migration and tube formation.

    PubMed

    Park, Yoon Shin; Kim, Gyungah; Jin, Yoon Mi; Lee, Jee Young; Shin, Jong Wook; Jo, Inho

    2016-01-01

    We previously reported that hypoxia increases angiopoietin-1 (Ang1), but not Ang2, mRNA expression in bovine retinal pericytes (BRP). However, the mechanism underlying Ang1 expression is unknown. Here, we report that Ang1 protein expression increased in hypoxic BRP in a dose- and time-dependent manner. This increase was accompanied by an increase in hypoxia-inducible factor-2α (HIF2α) expression. Transfection with an antisense oligonucleotide for HIF2α partially inhibited the hypoxia-induced increase in Ang1 expression. HIF2α overexpression further potentiated hypoxia-stimulated Ang1 expression, suggesting that HIF2α plays an important role in Ang1 regulation in BRP. When fused the Ang1 promoter (-3040 to +199) with the luciferase reporter gene, we found that hypoxia significantly increased promoter activity by 4.02 ± 1.68 fold. However, progressive 5'-deletions from -3040 to -1799, which deleted two putative hypoxia response elements (HRE), abolished the hypoxia-induced increase in promoter activity. An electrophoretic mobility shift assay revealed that HIF2α was predominantly bound to a HRE site, located specifically at nucleotides -2715 to -2712. Finally, treatment with conditioned medium obtained from hypoxic pericytes stimulated endothelial cell migration and tube formation, which was completely blocked by co-treatment with anti-Ang1 antibody. This study is the first to demonstrate that hypoxia upregulates Ang1 expression via HIF2α-mediated transcriptional activation in pericytes, which plays a key role in angiogenesis. PMID:26655815

  1. Differential hypoxic regulation of the microRNA-146a/CXCR4 pathway in normal and leukemic monocytic cells: impact on response to chemotherapy

    PubMed Central

    Spinello, Isabella; Quaranta, Maria Teresa; Paolillo, Rosa; Pelosi, Elvira; Cerio, Anna Maria; Saulle, Ernestina; Coco, Francesco Lo; Testa, Ugo; Labbaye, Catherine

    2015-01-01

    High expression of the chemokine receptor 4, CXCR4, associated with a negative prognosis in acute myeloid leukemia, is related to hypoxia. Because CXCR4 expression is under the post-transcriptional control of microRNA-146a in normal and leukemic monocytic cells, we first investigated the impact of hypoxia on microRNA-146a and CXCR4 expression during monocytopoiesis and in acute monocytic leukemia. We then analyzed the effects of hypoxia on drug sensitivity of CXCR4-expressing leukemic cells. We found that microRNA-146a is a target of hypoxia-inducible factor-1α or -2α in relation to the stage of monocytopoiesis and the level of hypoxia, and demonstrated the regulation of the microRNA-146a/CXCR4 pathway by hypoxia in monocytes derived from CD34+ cells. Thus, in myeloid leukemic cell lines, hypoxia-mediated control of the microRNA-146a/CXCR4 pathway depends only on the capacity of hypoxia-inducible factor-1α to up-regulate microRNA-146a, which in turn decreases CXCR4 expression. However, at variance with normal monocytic cells and leukemic cell lines, in acute monocytic leukemia overexpressing CXCR4, hypoxia up-modulates microRNA-146a but fails to down-modulate CXCR4 expression. We then investigated the effect of hypoxia on the response of leukemic cells to chemotherapy alone or in combination with stromal-derived factor-1α. We found that hypoxia increases stromal-derived factor-1α-induced survival of leukemic cells by decreasing their sensitivity to anti-leukemic drugs. Altogether, our results demonstrate that hypoxia-mediated regulation of microRNA-146a, which controls CXCR4 expression in monocytic cells, is lost in acute monocytic leukemia, thus contributing to maintaining CXCR4 overexpression and protecting the cells from anti-leukemic drugs in the hypoxic bone marrow microenvironment. PMID:26045293

  2. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway

    PubMed Central

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen–serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  3. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Park, Dongsun; Shin, Kyungha; Choi, Ehn-Kyoung; Choi, Youngjin; Jang, Ja-Young; Kim, Jihyun; Jeong, Heon-Sang; Lee, Wooryoung; Lee, Yoon-Bok; Kim, Seung Up; Joo, Seong Soo; Kim, Yun-Bae

    2015-01-01

    Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects of N-acetyl-l-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases. PMID:25918547

  4. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway.

    PubMed

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen-serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  5. Avian embryos in hypoxic environments.

    PubMed

    León-Velarde, F; Monge-C, C

    2004-08-12

    Avian embryos at high altitude do not benefit of the maternal protection against hypoxia as in mammals. Nevertheless, avian embryos are known to hatch successfully at altitudes between 4,000 and 6,500 m. This review considers some of the processes that bring about the outstanding modifications in the pressure differences between the environment and mitochondria of avian embryos in hypoxic environments. Among species, some maintain normal levels of oxygen consumption ( VO2) have a high oxygen carrying capacity, lower the air cell-arterial pressure difference ( PAO2 - PaO2 ) with a constant pH. Other species decrease VO2, increase only slightly the oxygen carrying capacity, have a higher PAO2 - PaO2 difference than sea-level embryos and lower the PCO2 and pH. High altitude embryos, and those exposed to hypoxia have an accelerated decline of erythrocyte ATP levels during development and an earlier stimulation of 2,3-BPG synthesis. A higher Bohr effect may ensure high tissue PO2 in the presence of the high-affinity hemoglobin. Independently of the strategy used, they serve together to promote suitable rates of development and successful hatching of high altitude birds in hypoxic environments. PMID:15288603

  6. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    PubMed Central

    Ushijima, Hiroki; Suzuki, Yoshiyuki; Oike, Takahiro; Komachi, Mayumi; Yoshimoto, Yuya; Ando, Ken; Okonogi, Noriyuki; Sato, Hiro; Noda, Shin-ei; Saito, Jun-ichi; Nakano, Takashi

    2015-01-01

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. PMID:25887043

  7. Combination treatment with hypoxia-activated prodrug evofosfamide (TH-302) and mTOR inhibitors results in enhanced antitumor efficacy in preclinical renal cell carcinoma models

    PubMed Central

    Sun, Jessica D; Ahluwalia, Dharmendra; Liu, Qian; Li, Wenwu; Wang, Yan; Meng, Fanying; Bhupathi, Deepthi; Matteucci, Mark D; Hart, Charles P

    2015-01-01

    Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase mTOR plays a key role in multiple pathways which are important in cancer progression. Here we investigated the enhanced efficacy profile and possible mechanisms of evofosfamide in combination with mTOR inhibitor (mTORi) everolimus or temsirolimus in renal cell carcinoma (RCC) xenograft models. The antitumor activities of the mTORi everolimus or temsirolimus alone, evofosfamide alone, or the combination were investigated in the 786-O and Caki-1 RCC cells in vitro and in vivo xenograft models. Two schedules were tested in which evofosfamide was started on the same day as the mTORi or 1 week after. Combination mechanisms were investigated by measuring a panel of pharmacodynamic biomarkers by immunohistochemistry. Antitumor efficacy in both RCC xenograft models was enhanced by the combination of evofosfamide and mTORi. Evofosfamide reduced the increased hypoxia induced by mTORi. Combination treatment induced increased DNA damage, decreased cell proliferation, and decreased survivin. Addition of mTORi did not change evofosfamide-mediated cytotoxicity in 786-O or Caki-1 cells in vitro which might suggest cell non-autonomous effects, specifically increased tumor hypoxia, are important for the in vivo combination activity. Taken together, evofosfamide potentiates the antitumor efficacy of mTOR inhibitors and inhibits the increased tumor hypoxia caused by mTOR inhibition. These studies provide a translational rationale for combining evofosfamide with mTOR inhibitors in clinical studies. PMID:26328245

  8. Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: role of Hsp70 in HIF-1α degradation.

    PubMed

    Gogate, Shilpa S; Fujita, Nobuyuki; Skubutyte, Renata; Shapiro, Irving M; Risbud, Makarand V

    2012-05-01

    The objective of our study was to examine the regulation of hypoxic expression of heat shock protein 70 (Hsp70) in nucleus pulposus cells and to determine if Hsp70 promoted hypoxia-inducible factor (HIF)-1α degradation. Rat nucleus pulposus cells were maintained in culture in either 21% or 1% oxygen. To determine the regulation of Hsp70 expression by tonicity enhancer binding protein (TonEBP) and HIF-1/2, loss-of-function and gain-of-function experiments and mutational analysis of the Hsp70 promoter were performed. Hypoxia increased Hsp70 expression in nucleus pulposus cells. Noteworthy, hypoxia increased TonEBP transactivation and mutation of TonE motifs blocked hypoxic induction of the Hsp70 promoter. In contrast, mutation of hypoxia response element (HRE) motifs coupled with loss-of-function experiments suggested that HIF-1 and HIF-2 suppressed Hsp70 promoter activity and transcription. Interestingly, HIF-α interferes with TonEBP function and suppresses the inductive effect of TonEBP on the Hsp70 promoter. In terms of Hsp70 function, when treated with Hsp70 transcriptional inhibitor, KNK437, there was an increase in HIF-1α protein stability and transcriptional activity. Likewise, when Hsp70 was overexpressed, the stability of HIF-1α and its transcriptional activity decreased. Hsp70 interacted with HIF-1α under hypoxic conditions and evidenced increased binding when treated with MG132, a proteasomal inhibitor. These results suggest that Hsp70 may promote HIF-1α degradation through the proteasomal pathway in nucleus pulposus cells. In hypoxic and hyperosmolar nucleus pulposus cells, Hsp70, TonEBP, and HIFs form a regulatory loop. We propose that the positive regulation by TonEBP and negative regulation of Hsp70 by HIF-1 and HIF-2 may serve to maintain Hsp70 levels in these cells, whereas Hsp70 may function in controlling HIF-1α homeostasis. PMID:22322648

  9. AMP-activated protein kinase (AMPK)–dependent and –independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells

    PubMed Central

    Tan, CD; Smolenski, RT; Harhun, MI; Patel, HK; Ahmed, SG; Wanisch, K; Yáñez-Muñoz, RJ; Baines, DL

    2012-01-01

    BACKGROUND AND PURPOSE Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions. PMID:22509822

  10. Vasoreparative Dysfunction of CD34+ Cells in Diabetic Individuals Involves Hypoxic Desensitization and Impaired Autocrine/Paracrine Mechanisms

    PubMed Central

    Jarajapu, Yagna P. R.; Hazra, Sugata; Segal, Mark; LiCalzi, Sergio; Jhadao, Chandra; Qian, Kevin; Mitter, Sayak K.; Raizada, Mohan K.; Boulton, Michael E.; Grant, Maria B.

    2014-01-01

    We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia. PMID:24713821

  11. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  12. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage

    PubMed Central

    Yang, L.; Hei, M.Y.; Dai, J.J.; Hu, N.; Xiang, X.Y.

    2016-01-01

    The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI. PMID:27119428

  13. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage.

    PubMed

    Yang, L; Hei, M Y; Dai, J J; Hu, N; Xiang, X Y

    2016-01-01

    The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI. PMID:27119428

  14. T Helper Cell Activation and Expansion Is Sensitive to Glutaminase Inhibition under Both Hypoxic and Normoxic Conditions.

    PubMed

    Sener, Zeynep; Cederkvist, Fritjof H; Volchenkov, Roman; Holen, Halvor L; Skålhegg, Bjørn S

    2016-01-01

    Immune responses often take place where nutrients and O2 availability are limited. This has an impact on T cell metabolism and influences activation and effector functions. T cell proliferation and expansion are associated with increased consumption of glutamine which is needed in a number of metabolic pathways and regulate various physiological processes. The first step in endogenous glutamine metabolism is reversible and is regulated by glutaminase (GLS1 and GLS2) and glutamine synthase (GLUL). There are two isoforms of GLS1, Kidney type glutaminase (KGA) and Glutaminase C (GAC). The aim of this study is to investigate the expression, localization and role of GLS1 and GLUL in naïve and activated human CD4+ T cells stimulated through the CD3 and CD28 receptors under normoxia and hypoxia. In proliferating cells, GAC was upregulated and KGA was downregulated, and both enzymes were located to the mitochondria irrespective of O2 levels. By contrast GLUL is localized to the cytoplasm and was upregulated under hypoxia. Proliferation was dependent on glutamine consumption, as glutamine deprivation and GLS1 inhibition decreased proliferation and expression of CD25 and CD226, regardless of O2 availability. Again irrespective of O2, GLS1 inhibition decreased the proportion of CCR6 and CXCR3 expressing CD4+ T cells as well as cytokine production. We propose that systemic Th cell activation and expansion might be dependent on glutamine but not O2 availability. PMID:27467144

  15. T Helper Cell Activation and Expansion Is Sensitive to Glutaminase Inhibition under Both Hypoxic and Normoxic Conditions

    PubMed Central

    Sener, Zeynep; Cederkvist, Fritjof H.; Volchenkov, Roman; Holen, Halvor L.; Skålhegg, Bjørn S.

    2016-01-01

    Immune responses often take place where nutrients and O2 availability are limited. This has an impact on T cell metabolism and influences activation and effector functions. T cell proliferation and expansion are associated with increased consumption of glutamine which is needed in a number of metabolic pathways and regulate various physiological processes. The first step in endogenous glutamine metabolism is reversible and is regulated by glutaminase (GLS1 and GLS2) and glutamine synthase (GLUL). There are two isoforms of GLS1, Kidney type glutaminase (KGA) and Glutaminase C (GAC). The aim of this study is to investigate the expression, localization and role of GLS1 and GLUL in naïve and activated human CD4+ T cells stimulated through the CD3 and CD28 receptors under normoxia and hypoxia. In proliferating cells, GAC was upregulated and KGA was downregulated, and both enzymes were located to the mitochondria irrespective of O2 levels. By contrast GLUL is localized to the cytoplasm and was upregulated under hypoxia. Proliferation was dependent on glutamine consumption, as glutamine deprivation and GLS1 inhibition decreased proliferation and expression of CD25 and CD226, regardless of O2 availability. Again irrespective of O2, GLS1 inhibition decreased the proportion of CCR6 and CXCR3 expressing CD4+ T cells as well as cytokine production. We propose that systemic Th cell activation and expansion might be dependent on glutamine but not O2 availability. PMID:27467144

  16. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions

    PubMed Central

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  17. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress.

    PubMed

    Hoffmann, Brian R; Wagner, Jordan R; Prisco, Anthony R; Janiak, Agnieszka; Greene, Andrew S

    2013-11-01

    Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration. PMID:24022223

  18. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress

    PubMed Central

    Hoffmann, Brian R.; Wagner, Jordan R.; Prisco, Anthony R.; Janiak, Agnieszka

    2013-01-01

    Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration. PMID:24022223

  19. Understanding Hypoxic Drive and the Release of Hypoxic Vasoconstriction.

    PubMed

    Inkrott, Jon C

    2016-01-01

    Understanding the hypoxic drive and release of hypoxic vasoconstriction in the chronic obstructive pulmonary disease population can be somewhat confusing and misunderstood. Furthermore, the hypoxic drive theory is one in which there really is no scientific evidence to support and yet continues to prosper in every aspect of care in regard to the chronic lung patient, from prehospital all the way to intensive care unit and home care therapy. This subject review will hopefully enhance some understanding of what exactly goes on with these patients and the importance of providing oxygen when it is desperately needed. PMID:27393755

  20. [Hypoxic lung failure].

    PubMed

    David, S; Wiesner, O

    2016-04-01

    Hypoxic lung failure is among the major indications for patients' referral to intensive care units either for surveillance or if necessary therapy. There are a vast number of pathophysiological causes of lung failure and the optimal treatment highly depends on the underlying pathology; therefore, no standard algorithm exists. So-called acute respiratory distress syndrome (ARDS) represents a very severe manifestation of hypoxemic lung failure that is of particular relevance for intensivists and is therefore the focus of this review. In addition to fundamental pathophysiology of lung injury, the article also focuses on established and modern treatment strategies. Moreover, we will briefly highlight innovative concepts of ARDS treatment that might become relevant in the future. PMID:27084180

  1. Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE.

    PubMed

    Kizub, Igor V; Lakhkar, Anand; Dhagia, Vidhi; Joshi, Sachindra R; Jiang, Houli; Wolin, Michael S; Falck, John R; Koduru, Sreenivasulu Reddy; Errabelli, Ramu; Jacobs, Elizabeth R; Schwartzman, Michal L; Gupte, Sachin A

    2016-04-15

    In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18β-glycyrrhetinic acid (18β-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18β-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18β-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18β-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and

  2. Phase I study of the combination of two hypoxic cell radiosensitizers, Ro 03-8799 and SR-2508: toxicity and pharmacokinetics

    SciTech Connect

    Newman, H.F.; Bleehen, N.M.; Workman, P.

    1986-07-01

    The hypoxic cell radiosensitizer Ro 03-8799 produces acute central nervous system toxicity which limits repeated doses of the drug to 0.75 g/m/sup 2/, but peripheral neuropathy does not occur. SR-2508 causes no acute effects at doses greater than 3.0 g/m/sup 2/, but causes peripheral neuropathy at cumulative doses of 30 g/m/sup 2/. By combining maximum tolerated doses of each agent, it may be possible to increase efficacy, but not toxicity. Escalating single doses of Ro 03-8799 and SR-2508 were administered to 10 patients. The drugs were infused together in 50 ml of 0.9% saline over 10 min, beginning at 0.5 g/m/sup 2/ of each agent, and proceeding to a fixed dose of 0.75 g/m/sup 2/ Ro 03-8799 with 0.5, 1.0, 2.0, and 3.0 g/m/sup 2/ SR-2508. Four patients experienced the expected acute syndrome related to Ro 03-8799, but the incidence was not increased by escalating doses of SR-2508, and no peripheral neuropathy was seen. Plasma and urine pharmacokinetic studies showed that no drug interaction occurred. Six patients have been given a 9-dose regime over a 3 week period, using 0.75 g/m/sup 2/ Ro 03-8799 and escalating doses of 0.5, 1.0, and 1.5 g/m2 SR-2508. All exhibited the expected acute side effects related to Ro 03-8799, but with no increase at the higher doses of SR-2508. No other toxicity was seen. Plasma pharmacokinetics performed at the beginning and end of the schedule were similar. Biopsies were taken from six superficial tumors following combined radiosensitizer administration. Mean tumor concentrations over the 30 min following the end of infusion were 30 and 72 micrograms/g for Ro 03-8799 and SR-2508, respectively. These values would be expected to translate into an approximate single dose sensitizer enhancement ratio of 1.5 to 1.6, offering a significant gain over the enhancement possible with the drugs given alone.

  3. Hypoxic apnea and gasping.

    PubMed Central

    Guntheroth, W G; Kawabori, I

    1975-01-01

    We have tested the hypothesis that severe lypoxia causes apnea, regardless of the arterial CO2 and pH, and that extreme hypoxia causes gasping. Acute experiments with airway occlusion and with low inspired oxygen (FIo2) were performed on anesthetized adult dogs and monkeys. Arterial oxygen saturation was recorded continuously with fiberoptic oximetry, and Pco2 by an electrode catheter. In addition, blood samples were obtained for Po2, Pco2, and pH. Apnea was induced regularly when the Pao2 fell below 10 torr, whether the Paco2 was high with asphyxia (63 torr) or low (26 torr) with low FIo2. Similarly, the Pao2 at apnea was the same whether the pH was 7.17 with asphyxic hypoxia or 7.46 with hypoxic hypoxia. Gasping occurred at even lower Pao2 (below 5 torr) after 1 or 2 min of apnea. Gasping promptly restored the Pao2 to levels of moderate hypoxia (over 30 torr) which permitted resumption of regular respiration, with gradual elimination of the gasping. Fetal monkeys at term were studied in a similar manner from the moment of cord clamping. Their blood gases with apnea were quite similar to adult values in the narrow range of Pao2 and the wide range of Paco2 and pH. In the fetus, gasping was less immediately effective in improving arterial oxygen, but more persistent than in the adult. Regular respirations would not develop in the absence of oxygen in either the fetus or adult animal. Images PMID:811688

  4. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions.

    PubMed

    Paeng, Sung Hwa; Jung, Won-Kyo; Park, Won Sun; Lee, Dae-Sung; Kim, Gi-Young; Choi, Yung Hyun; Seo, Su-Kil; Jang, Won Hee; Choi, Jung Sik; Lee, Young-Min; Park, Saegwang; Choi, Il-Whan

    2015-05-01

    Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV. PMID:25738890

  5. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions

    SciTech Connect

    Mandl, Markus Kapeller, Barbara; Lieber, Roman; Macfelda, Karin

    2013-04-26

    Highlights: •HIF-1β is a hypoxia-responsive protein in 518A2 human melanoma cells. •HIF-1β is upregulated in a HIF-1α-dependent manner under hypoxic conditions. •HIF-1β is not elevated due to heterodimerization with HIF-1α per se. •HIF-1β inducibility has a biological relevance as judged in Het-CAM model. -- Abstract: Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this pathway consists of HIF-1α and HIF-1β. The alpha subunit is continuously degraded under normoxia and becomes stabilized under reduced oxygen supply. In contrast, HIF-1β is generally regarded as constitutively expressed and being present in excess within the cell. However, there is evidence that the expression of this subunit is more complex. The aim of this study was to investigate the role of HIF-1β in human melanoma cells. Among a panel of five different cell lines, in 518A2 cells exposed to the hypoxia-mimetic cobalt chloride HIF-1β was rapidly elevated on protein level. Knockdown experiments performed under cobalt chloride-exposure and hypoxia revealed that this effect was mediated by HIF-1α. The non-canonical relationship between these subunits was further confirmed by pharmacologic inhibition of HIF-1α and by expression of a dominant-negative HIF mutant. Overexpression of HIF-1α showed a time delay in HIF-1β induction, thus arguing for HIF-1β de novo synthesis rather than protein stabilization by heterodimerization. A Hen’s egg test-chorioallantoic membrane model of angiogenesis and invasion indicated a local expression of HIF-1β and implies a biological relevance of these findings. In summary, this study demonstrates the HIF-1α-dependent regulation of HIF-1β under hypoxic conditions for the first time. The

  6. Hypoxic adipocytes pattern early heterotopic bone formation.

    PubMed

    Olmsted-Davis, Elizabeth; Gannon, Francis H; Ozen, Mustafa; Ittmann, Michael M; Gugala, Zbigniew; Hipp, John A; Moran, Kevin M; Fouletier-Dilling, Christine M; Schumara-Martin, Shannon; Lindsey, Ronald W; Heggeness, Michael H; Brenner, Malcolm K; Davis, Alan R

    2007-02-01

    The factors contributing to heterotopic ossification, the formation of bone in abnormal soft-tissue locations, are beginning to emerge, but little is known about microenvironmental conditions promoting this often devastating disease. Using a murine model in which endochondral bone formation is triggered in muscle by bone morphogenetic protein 2 (BMP2), we studied changes near the site of injection of BMP2-expressing cells. As early as 24 hours later, brown adipocytes began accumulating in the lesional area. These cells stained positively for pimonidazole and therefore generated hypoxic stress within the target tissue, a prerequisite for the differentiation of stem cells to chondrocytes and subsequent heterotopic bone formation. We propose that aberrant expression of BMPs in soft tissue stimulates production of brown adipocytes, which drive the early steps of heterotopic endochondral ossification by lowering oxygen tension in adjacent tissue, creating the correct environment for chondrogenesis. Results in misty gray lean mutant mice not producing brown fat suggest that white adipocytes convert into fat-oxidizing cells when brown adipocytes are unavailable, providing a compensatory mechanism for generation of a hypoxic microenvironment. Manipulation of the transcriptional control of adipocyte fate in local soft-tissue environments may offer a means to prevent or treat development of bone in extraskeletal sites. PMID:17255330

  7. Hypoxic Pulmonary Vasoconstriction in Humans

    PubMed Central

    Loubani, Mahmoud; Morice, Alyn H.

    2013-01-01

    Hypoxic pulmonary vasoconstriction is the elegant theory put forward more than six decades ago to explain regional variations in perfusion within the lung in certain animal species in response to localised restrictions in oxygenation. Although considerable progress has been made to describe the phenomenon at the macroscopic level and explain it at the microscopic level, we are far from a universal agreement about the process in humans. This review attempts to highlight some of the important evidence bases of hypoxic pulmonary vasoconstriction in humans and the significant gaps in our knowledge that would need bridging. PMID:24024204

  8. Targeting hypoxic response for cancer therapy

    PubMed Central

    Paolicchi, Elisa; Gemignani, Federica; Krstic-Demonacos, Marija; Dedhar, Shoukat; Mutti, Luciano; Landi, Stefano

    2016-01-01

    Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells. PMID:26859576

  9. Hypoxic Tumor Environments Exhibit Disrupted Collagen I Fibers and Low Macromolecular Transport

    PubMed Central

    Kakkad, Samata M.; Penet, Marie-France; Akhbardeh, Alireza; Pathak, Arvind P.; Solaiyappan, Meiyappan; Raman, Venu; Leibfritz, Dieter; Glunde, Kristine; Bhujwalla, Zaver M.

    2013-01-01

    Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM) in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1) fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions. PMID:24349142

  10. Hypoxic turtles keep their cool

    PubMed Central

    Madsen, Jesper G; Wang, Tobias; Madsen, Peter T

    2015-01-01

    Several species of freshwater turtles spend the winter submerged in ice-covered lakes in a state of severe metabolic depression. It has been proposed that the hibernating turtles are comatose and entirely unresponsive, which raises the question of how they detect the arrival of spring and whether they respond to sensory information during hibernation. Using evoked potential studies in cold hypoxic turtles exposed to light and vibration, we show that hibernating turtles maintain neural responsiveness to light stimuli during prolonged hypoxia, while responsiveness to vibration is lost. This reveals a state of differential neural shutdown, in different sensory systems in the cold hypoxic turtle brain. In behavioral studies we show that turtles held for 14 days in hibernation increase locomotor activity in response to light or elevated temperatures, but not to vibration or increased oxygen. We conclude that hibernating freshwater turtles are not comatose, but remain vigilant during overwintering in cold hypoxia.