Science.gov

Sample records for 2-way crossover phase

  1. Crossover design and its application in late-phase diabetes studies.

    PubMed

    Wang, Tao; Malone, James; Fu, Haoda; Heilmann, Cory; Qu, Yongming; Huster, William J

    2016-09-01

    Crossover design has been widely used in late-phase clinical studies, as well as in pharmacokinetic and pharmacodynamic, bioequivalence, and medical device studies; however, its interpretability and applicability continue to be debated. Herein we provide discussions around a crossover design's scientific benefit, applicability, and how it can be implemented in late-phase diabetes studies by properly handling key issues: carryover effect, washout period, and baseline selection. Specifically, detailed considerations are provided about the validity and situations of having appropriate length of study duration to deal with carryover effects so that a washout period may not be needed. A simulation study and data mining results on 12 crossover late-phase insulin clinical trials are presented to examine the discussion points and proposals. PMID:27100270

  2. Examining the Crossover from the Hadronic to Partonic Phase in QCD

    SciTech Connect

    Xu Mingmei; Yu Meiling; Liu Lianshou

    2008-03-07

    A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.

  3. Analysis of phase transitions in spin-crossover compounds by using atom - phonon coupling model

    NASA Astrophysics Data System (ADS)

    Gîndulescu, A.; Rotaru, A.; Linares, J.; Dimian, M.; Nasser, J.

    2011-01-01

    The spin - crossover compounds (SCO) have become of great interest recently due to their potential applications in memories, sensors, switches, and display devices. These materials are particularly interesting because upon application of heat, light, pressure or other physical stimulus, they feature a phase transition between a low-spin (LS) diamagnetic ground state and a high-spin (HS) paramagnetic state, accompanied in some cases by color change. The phase transition can be discontinuous (with hysteresis), in two steps or gradual. Our analysis is performed by using the atom - phonon coupling (APC) model which considers that neighboring molecules are connected through a spring characterized by an elastic constant depending on molecules electronic state. By associating a fictitious spin to each molecule that has -1 and +1 eigenvalues corresponding to LS and HS levels respectively, an Ising type model can be developed for the analysis of metastable states and phase transitions in spin-crossover compounds. This contribution is aimed at providing a review of our recent results in this area, as well as novel aspects related to SCO compounds behavior at low temperature. In the framework of the APC model, we will discuss about the existence of metastable and unstable states, phase transitions and hysteresis phenomena, as well as their dependence on sample size.

  4. BCS-BEC crossover and phase structure of relativistic systems: A variational approach

    SciTech Connect

    Chatterjee, Bhaswar; Mishra, Hiranmaya; Mishra, Amruta

    2009-01-01

    We investigate here the BCS-BEC crossover in relativistic systems using a variational construct for the ground state and the minimization of the thermodynamic potential. This is first studied in a four-fermion point interaction model and with a BCS type ansatz for the ground state with fermion pairs. It is shown that the antiparticle degrees of freedom play an important role in the BCS-BEC crossover physics, even when the ratio of Fermi momentum to the mass of the fermion is small. We also consider the phase structure for the case of fermion pairing with imbalanced populations. Within the ansatz, thermodynamically stable gapless modes for both fermions and antifermions are seen for strong coupling in the Bose-Einstein condensation (BEC) regime. We further investigate the effect of fluctuations of the condensate field by treating it as a dynamical field and generalize the BCS ansatz to include quanta of the condensate field also in a boson-fermion model with quartic self-interaction of the condensate field. It is seen that the critical temperature decreases with inclusion of fluctuations.

  5. Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Nevidomskyy, Andriy H.

    2015-12-01

    The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.

  6. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Lan, S.; Blodgett, M.; Kelton, K. F.; Ma, J. L.; Fan, J.; Wang, X.-L.

    2016-05-01

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ˜1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  7. Dynamics of social contagions with heterogeneous adoption thresholds: crossover phenomena in phase transition

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Tang, Ming; Shu, Panpan; Wang, Zhen

    2016-01-01

    Heterogeneous adoption thresholds exist widely in social contagions, such as behavior spreading, but were always neglected in previous studies. To this end, we introduce heterogeneous adoption threshold distribution into a non-Markovian spreading threshold model, in which an individual adopts a behavior only when the received cumulative pieces of behavioral information from neighbors exceeds his adoption threshold. In order to understand the effects of heterogeneous adoption thresholds quantitatively, an edge-based compartmental theory is developed. A two-state spreading threshold model is taken as an example, in which some individuals have a low adoption threshold (i.e., activists) while the remaining ones hold a relatively higher adoption threshold (i.e., bigots). We find a hierarchical characteristic in adopting behavior, i.e., activists first adopt the behavior and then stimulate bigots to adopt the behavior. Interestingly, two types of crossover phenomena in phase transition occur: for a relatively low adoption threshold of bigots, a change from first-order to second-order phase transition can be triggered by increasing the fraction of activists; for a relatively higher adoption threshold of bigots, a change from hybrid to second-order phase transition can be induced by varying the fraction of activists, decreasing mean degree or enhancing network heterogeneity. The theoretical predictions based on the suggested theory agree very well with the simulation results.

  8. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over.

    PubMed

    Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji

    2014-11-18

    Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime. PMID:25378706

  9. Phase diagram of mixtures of colloids and polymers in the thermal crossover from good to θ solvent

    NASA Astrophysics Data System (ADS)

    D'Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo

    2014-07-01

    We determine the phase diagram of mixtures of spherical colloids and neutral nonadsorbing polymers in the thermal crossover region between the θ point and the good-solvent regime. We use the generalized free-volume theory, which takes into account the polymer-concentration dependence of the depletion thickness and of the polymer compressibility. This approach turns out to be quite accurate as long as q = Rg/Rc ≲ 1 (Rg is the radius of gyration of the polymer and Rc is the colloid radius). We find that, close to the θ point, the phase diagram is not very sensitive to solvent quality, while, close to the good-solvent region, changes of the solvent quality modify significantly the position of the critical point and of the binodals. We also analyze the phase behavior of aqueous solutions of charged colloids and polymers, using the approach proposed by Fortini et al. [J. Phys.: Condens. Matter 17, 7783 (2005)].

  10. Phase diagram of mixtures of colloids and polymers in the thermal crossover from good to θ solvent.

    PubMed

    D'Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo

    2014-07-14

    We determine the phase diagram of mixtures of spherical colloids and neutral nonadsorbing polymers in the thermal crossover region between the θ point and the good-solvent regime. We use the generalized free-volume theory, which takes into account the polymer-concentration dependence of the depletion thickness and of the polymer compressibility. This approach turns out to be quite accurate as long as q = Rg/Rc ≲ 1 (Rg is the radius of gyration of the polymer and Rc is the colloid radius). We find that, close to the θ point, the phase diagram is not very sensitive to solvent quality, while, close to the good-solvent region, changes of the solvent quality modify significantly the position of the critical point and of the binodals. We also analyze the phase behavior of aqueous solutions of charged colloids and polymers, using the approach proposed by Fortini et al. [J. Phys.: Condens. Matter 17, 7783 (2005)]. PMID:25028041

  11. BCS-BEC crossover and quantum hydrodynamics in p-wave superfluids with a symmetry of the A1 phase

    SciTech Connect

    Kagan, M. Yu. Efremov, D. V.

    2010-03-15

    We solve the Leggett equations for the BCS-BEC crossover in a three dimensional resonance p-wave superfluid with the symmetry of the A1 phase. We calculate the sound velocity, the normal density, and the specific heat for the BCS domain ({mu} > 0), for the BEC domain ({mu} < 0), and close to the important point {mu} = 0 in the 100% polarized case. We find the indications of a quantum phase transition close to the point {mu}(T = 0) = 0. Deep in the BCS and BEC domains, the crossover ideas of Leggett, Nozieres, and Schmitt-Rink work quite well. We discuss the spectrum of orbital waves, the paradox of intrinsic angular momentum and the complicated problem of chiral anomaly in the BCS A1 phase at T = 0. We present two different approaches to the chiral anomaly, based on supersymmetric hydrodynamics and on the formal analogy with the Dirac equation in quantum electrodynamics. We evaluate the damping of nodal fermions due to different decay processes in the superclean case at T = 0 and find that a ballistic regime {omega}{tau} >> 1 occurs. We propose to use aerogel or nonmagnetic impurities to reach the hydrodynamic regime {omega}{tau} << 1 at T = 0. We discuss the concept of the spectral flow and exact cancelations between time derivatives of anomalous and quasiparticle currents in the equation for the total linear momentum conservation. We propose to derive and solve the kinetic equation for the nodal quasiparticles in both the hydrodynamic and ballistic regimes to demonstrate this cancelation explicitly. We briefly discuss the role of the other residual interactions different from damping and invite experimentalists to measure the spectrum and damping of orbital waves in the A phase of {sup 3}He at low temperatures.

  12. Lattice crossover and phase transitions in NdAlO3-GdAlO3 system

    NASA Astrophysics Data System (ADS)

    Vasylechko, L.; Shmanko, H.; Ohon, N.; Prots, Yu.; Hoffmann, S.; Ubizskii, S.

    2013-02-01

    Phase and structural behaviour in the (1-x)NdAlO3-xGdAlO3 system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd1-xGdxAlO3 have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x≥0.20) symmetry. A morphotropic phase transition occurs at x≈0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm↔R3¯с has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3¯с↔Pm3¯m above 2140 K has been predicted for Nd-rich sample Nd0.85Gd0.15AlO3 from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO3-GdAlO3 has been constructed.

  13. Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Dingding; Zhu, Xun; Liao, Qiang; Li, Jun; Fu, Qian

    A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.

  14. A randomized phase II crossover study of imatinib or rituximab for cutaneous sclerosis after hematopoietic cell transplantation

    PubMed Central

    Arai, Sally; Pidala, Joseph; Pusic, Iskra; Chai, Xiaoyu; Jaglowski, Samantha; Khera, Nandita; Palmer, Jeanne; Chen, George L; Jagasia, Madan H; Mayer, Sebastian A; Wood, William A; Green, Michael; Hyun, Teresa S.; Inamoto, Yoshihiro; Storer, Barry E; Miklos, David B; Shulman, Howard M.; Martin, Paul J; Sarantopoulos, Stefanie; Lee, Stephanie J; Flowers, Mary E D

    2015-01-01

    Purpose Cutaneous sclerosis (CS) occurs in 20% of patients with chronic graft-versus-host disease (GVHD) and can compromise mobility and quality of life. Experimental design We conducted a prospective, multi-center, randomized, two-arm phase II crossover trial of imatinib (200 mg daily) or rituximab (375 mg/m2 intravenously weekly × 4 doses, repeatable after 3 months) for treatment of CS diagnosed within 18 months (NCT01309997). The primary endpoint was significant clinical response (SCR) at 6 months, defined as quantitative improvement in skin sclerosis or joint range of motion. Treatment success was defined as SCR at 6 months without crossover, recurrent malignancy or death. Secondary end points included changes of B cell profiles in blood (BAFF levels and cellular subsets), patient-reported outcomes, and histopathology between responders and non-responders with each therapy. Results SCR was observed in 9 of 35 (26%, 95% CI 13-43%) participants randomized to imatinib and 10 of 37 (27%, 95% CI 14-44%) randomized to rituximab. Six (17%, 95% CI 7-34%) patients in the imatinib arm and 5 (14%, 95% CI 5-29%) in the rituximab arm had treatment success. Higher percentages of activated B cells (CD27+) were seen at enrollment in rituximab-treated patients who had treatment success (p = 0.01), but not in imatinib-treated patients. Conclusion These results support the need for more effective therapies for CS and suggest that activated B cells define a subgroup of patients with CS who are more likely to respond to rituximab. PMID:26378033

  15. Pressure driven spin crossover and isostructural phase transition in LaFeO{sub 3}

    SciTech Connect

    Javaid, Saqib; Javed Akhtar, M. Younas, Muhammad; Ahmad, Irfan; Shah, Shafqat H.; Ahmad, Iftikhar

    2013-12-28

    We have studied the behavior of LaFeO{sub 3} under pressure (P) using density functional theory (DFT) and atomistic simulations. Ground state structural properties of LaFeO{sub 3} are correctly described by atomistic simulations. The effect of high pressure shows that there is an isotropic compression up to 100 GPa. However, DFT calculations show that within pressure range 0 < P < 32.4 GPa, LaFeO{sub 3} retains its ground state electronic structure. On the other hand, at P ∼32.4 GPa high to low spin magnetic phase transition is observed, which is accompanied by 6.9% volume collapse of LaFeO{sub 3} unit cell, while retaining the ground state orthorhombic crystal structure, i.e., isostructural phase transition. Furthermore, the band gap is closed leading insulator to metal transition. This differing behavior observed by the two techniques can be attributed to the omission of magnetic effects in static simulations. The simultaneous magnetic, electrical, and structural (volume collapse) phase transitions of LaFeO{sub 3} under compression as revealed by DFT calculations corroborate experimental findings. From these results, we can elaborate the mechanism of phase transition in LaFeO{sub 3}: increasing crystal field induces a high spin to low spin transition, which in turn drives the electrical transitions and volume collapse.

  16. Dimensional crossover in a spin liquid to helimagnet quantum phase transition.

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Habicht, Klaus; Meissner, Michael; Grenier, B.; Regnault, L.-P.; Ressouche, E.

    2009-01-01

    Neutron scattering is used to study magnetic field induced ordering in the quasi-1D quantum spin-tube compound Sul-Cu2Cl4 that in zero field has a non-magnetic spin-liquid ground state. The experiments reveal an incommensurate chiral high-field phase stabilized by a geometric frustration of the magnetic interactions. The measured critical exponents \\beta= 0.235 and \

  17. Robust spin crossover platforms with synchronized spin switch and polymer phase transition

    PubMed Central

    Novio, F.; Evangelio, E.; Vazquez-Mera, N.; González-Monje, P.; Bellido, E.; Mendes, S.; Kehagias, N.; Ruiz-Molina, D.

    2013-01-01

    The idea of developing magnetic molecular materials into real functional electronic devices with low-cost and scalable techniques appeared with the emergence of the field several years ago. Today, even though great advances have been done with this aim, the promise of a functional device working at the micro-/nanoscale and at room temperature has unfortunately not completely materialized yet, as their use still strongly depends on the fabrication methodology of a robust device that can be handled and integrated without compromising their functionality. Here we propose the use of polymeric matrices as a platform for the development of such robust switchable structures exhibiting reproducible results independently of the dimension -from macro to micro-/nanoscale- and morphology -from thin-films to nanoparticles and nanoimprinted motives- while allowing to induce an irreversible hysteresis, reminiscent of a non-volatile memory, by synchronization with the polymer phase transition.

  18. Antithrombotic properties of rafigrelide: a phase 1, open-label, non-randomised, single-sequence, crossover study.

    PubMed

    Balasubramaniam, K; Viswanathan, G; Dragone, J; Grose-Hodge, R; Martin, P; Troy, S; Preston, P; Zaman, A G

    2014-07-01

    Platelets play a central role in atherothrombotic events. We investigated the effect of a novel platelet-lowering agent, rafigrelide, on thrombus formation and characteristics. In this phase 1, open-label, non-randomised, single-sequence, crossover study, healthy male volunteers received rafigrelide for 14 days (Period 1). Following a ≥6-week washout period, they then received rafigrelide + acetylsalicylic acid (ASA) for 14 days (Period 2). Thrombus formation was assessed ex vivo using the Badimon perfusion chamber, and thrombus characteristics were assessed using thromboelastography. A total of 15 volunteers were enrolled in the study and were assigned to Panel A or Panel B, which had different schedules of assessments. In Panel A, after treatment with rafigrelide alone (Period 1), mean (± standard deviation) platelet count was reduced from 283 (± 17) × 10⁹/l at Day 1, to 125 (± 47) × 10⁹/l at Day 14 (n=6) and thrombus area reduced under high and low shear conditions. Reductions in thrombus area under high shear conditions correlated with reductions in platelet count (r²=0.11, p=0.022; n=12). Rafigrelide treatment prolonged clot formation time and reduced clot strength. The addition of ASA to rafigrelide (Period 2) had no additional effect on platelet count or thrombus area under high or low shear conditions. Similar results were seen in Panel B for all parameters. The most common adverse events (≥3 participants per period) were thrombocytopenia and headache. While confirming the platelet-lowering effects of rafigrelide, this early phase study also indicates that rafigrelide has antithrombotic properties under both high and low shear conditions. PMID:24553755

  19. Crossover Phase Diagram and Electronic State in the Heavy-Fermion Metamagnets UIr2Zn20 and UCo2Zn20

    NASA Astrophysics Data System (ADS)

    Hirose, Yusuke; Takeuchi, Tetsuya; Honda, Fuminori; Yoshiuchi, Shingo; Hagiwara, Masayuki; Yamamoto, Etsuji; Haga, Yoshinori; Settai, Rikio; Ōnuki, Yoshichika

    2015-07-01

    Crossover phase diagrams in the magnetic field versus temperature (H-T) plane of the nonmagnetic heavy-fermion metamagnets UT2Zn20 (T:Ir, Co) are studied by measuring the magnetic and electronic transport properties. The crossover phase diagrams of UIr2Zn20 and UCo2Zn20 are composed of a low-magnetic-field region (LFR) and a high-magnetic-field region (HFR), which are characterized by magnetic properties and the Hall effect, respectively. The LFR is found to form a closed area in the H-T plane, which is a quite different feature from the conventional uranium heavy-fermion compounds and the first observation in uranium compounds. From the drastic anomaly in the Hall effect at a metamagnetic field of UIr2Zn20, it is found that the metamagnetic behavior in UIr2Zn20 corresponds to a crossover from the heavy-fermion state to the field-induced ferromagnetic or polarized paramagnetic state accompanied by the reconstruction or topology change of Fermi surfaces. In UCo2Zn20, on the other hand, no sign of abrupt change in the electronic state at the metamagnetic field is observed. These contrastive crossover phase diagrams and the electronic state changes at the metamagnetic field are due to the different hybridization strengths between the 5f electrons of U atoms and the d electrons of Ir and Co atoms, leading to the differences in magnetic correlation and crystalline electric field ground state or the degree of itinerancy of 5f electrons.

  20. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  1. Crossover from crossing to tilted vortex phase in Bi2Sr2CaCu2O8+δ single crystals near ab-plane

    NASA Astrophysics Data System (ADS)

    Mirkovic, Jovan; Buzdin, Alexandre; Kashiwagi, Takanari; Yamamoto, Takashi; Kadowaki, Kazuo

    2013-01-01

    In extremely anisotropic layered superconductors of Bi2Sr2CaCu2O8+δ the stacks of vortex pancakes (PV) and the Josephson vortex (JV) interpenetrate, and due to PV-JV mutual pinning energy, weakly interact and form various tilted and crossing lattice structures including vortex chains, stripes, mixed chain + lattice phases, etc. In order to study these phenomena, it is decisive to have excellent quality of samples and the ideal experimental techniques. The vortex phases in high-quality Bi2Sr2CaCu2O8+δ single crystals were studied by in-plane resistivity measurement and local ac magnetic permeability. The sharp crossover was shown by both techniques, deep in the vortex solid state separating the Abrikosov dominant ‘strong pinning’ phase from the Josephson dominant ‘weak pinning’ phase. Those two vortex states were recognized as the mixed chain + lattice vortex phase and chains (tilted) vortex phase, respectively.

  2. Crossover between two-dimensional surface state and three-dimensional bulk phase in Fe-doped Bi2Te3

    NASA Astrophysics Data System (ADS)

    Jo, Na Hyun; Lee, Kyujoon; Kim, Jinsu; Jang, Jungwon; Kim, Jinhee; Jung, Myung-Hwa

    2014-06-01

    In Fe-doped Bi2Te3, we have observed higher mobility, larger linear magnetoresistance, and anomalous quantum oscillations. The angle dependence of Shubnikov-de Haas (SdH) oscillations gives two different periodicities depending on the angle from the c-axis. The low-angle SdH period is identified with a surface origin, while the high-angle period is against the surface origin. The high-angle SdH period well agrees with the de Haas-van Alphen (dHvA) period with a bulk origin. The physical parameters obtained from the quantum oscillations support the crossover between two-dimensional surface state and three-dimensional bulk phase by Fe doping in Bi2Te3.

  3. Crossover between two-dimensional surface state and three-dimensional bulk phase in Fe-doped Bi{sub 2}Te{sub 3}

    SciTech Connect

    Jo, Na Hyun; Lee, Kyujoon; Jung, Myung-Hwa; Kim, Jinsu; Jang, Jungwon; Kim, Jinhee

    2014-06-23

    In Fe-doped Bi{sub 2}Te{sub 3}, we have observed higher mobility, larger linear magnetoresistance, and anomalous quantum oscillations. The angle dependence of Shubnikov-de Haas (SdH) oscillations gives two different periodicities depending on the angle from the c-axis. The low-angle SdH period is identified with a surface origin, while the high-angle period is against the surface origin. The high-angle SdH period well agrees with the de Haas-van Alphen (dHvA) period with a bulk origin. The physical parameters obtained from the quantum oscillations support the crossover between two-dimensional surface state and three-dimensional bulk phase by Fe doping in Bi{sub 2}Te{sub 3}.

  4. Population-imbalanced lattice fermions near the BCS-BEC crossover: Thermal physics of the breached pair and Fulde-Ferrell-Larkin-Ovchinnikov phases

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna; Majumdar, Pinaki

    2016-05-01

    We study s -wave superconductivity in the two-dimensional attractive Hubbard model in an applied magnetic field, assume the extreme Pauli limit, and examine the role of spatial fluctuations in the coupling regime corresponding to BCS-BEC crossover. We use a decomposition of the interaction in terms of an auxiliary pairing field, retain the static mode, and sample the pairing field via a Monte Carlo approach. The method requires iterative solution of the Bogoliubov-de-Gennes equations for amplitude- and phase-fluctuating configurations of the pairing field. We establish the full thermal phase diagram of this strong-coupling problem. At low field we observe the magnetized but homogeneous "breached pair" superfluid phase. It reveals that Tc scales an order of magnitude below the mean-field estimate, spontaneous inhomogeneity in the field-induced magnetization, and a strong nonmonotonicity in the temperature dependence of the low-energy density of states. We compare our results to the experimental phase diagram of the imbalanced Fermi gas at unitarity. At higher field we obtain the modulated Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases. The thermal transition from the FFLO phases to the normal state is strongly first order. We track the fermionic momentum distribution, the density of states, and the pairing structure factor deep into the normal state. The pairing structure factor retains weak signature of finite momentum pairing to a high temperature despite the low Tc itself, while the spin-resolved density of states changes from the "pseudogapped" FFLO character to gapless and pseudogapped again with increasing temperature.

  5. Crossover of persistent photoconductivity in a phase-separated La0.325Pr0.3Ca0.375MnO3 thin film

    NASA Astrophysics Data System (ADS)

    Hu, Ling; Sheng, Zhigao; Luo, Xuan; Liu, Yu; Huang, Zhonghao; Song, Wenhai; Sun, Yuping

    2013-05-01

    A crossover from positive to negative persistent photoconductivity (PPC) has been observed in the thermal hysteresis region of a La0.325Pr0.3Ca0.375MnO3 thin film. In the cooling process, the resistance shows downward relaxation in darkness. Light illumination induces a resistance drop and positive PPC is observed. However, upon warming, the resistance exhibits upward relaxation without illumination. Moreover, the response of the film to light illumination shows distinct behavior. The resistance decreases to a lower value when the illumination is switched on and then shows upward relaxation during illumination. It recovers to a higher value when the illumination is stopped, which characterizes negative PPC. The PPC ratio is -30.2% at 125 K with a light intensity of 3.06 mW mm-2. These results are discussed based on the phase competition and phase stability switch between ferromagnetic metal and charge/orbital-ordered insulator states. The results may be important for practical applications in photoelectric devices.

  6. Superfluid phase transition and effects of mass imbalance in the BCS-BEC crossover regime of an ultracold Fermi gas: A self-consistent T-matrix theory

    NASA Astrophysics Data System (ADS)

    Hanai, Ryo; Ohashi, Yoji

    2014-03-01

    We investigate a two-component Fermi gas with mass imbalance (m↑ ≠m↓ , where mσ is an atomic mass in the σ-component) in the BCS-BEC crossover region. Including pairing fluctuations within a self-consistent T-matrix theory, we examine how the superfluid instability is affected by the presence of mass imbalance. We determine the superfluid region in the phase diagram of a Fermi gas in terms of the temperature, the strength of a pairing interaction, and the ratio of mass imbalance. The superfluid phase transition is shown to always occur even when m↑ ≠m↓ .[2] This behavior of Tc is quite different from the previous result in an extended T-matrix theory,[3] where Tc vanishes at a certain value of m↑ /m↓ > 0 in the BCS regime. Since Fermi condensates with mass imbalance have been discussed in various systems, such as a cold Fermi gas, an exciton(polariton) condensate, as well as color superconductivity, our results would be useful for further understandings of these novel Fermi superfluids. R.H. was supported by Graduate School Doctoral Student Aid Program, Keio University.

  7. Magnetic first-order phase transition and crossover associated with random anisotropy in crystalline Dy[sub [ital x

    SciTech Connect

    del Moral, A.; Arnaudas, J.I. ); Gehring, P.M. ); Salamon, M.B. ); Ritter, C. ); Joven, E. ); Cullen, J. (Magnetics Group, Naval Surface Warfare Center, 10901 New Hampshire Avenue, White Oak, Silver Spring, Maryland 20903-5000 (United State

    1993-04-01

    The low-temperature ([ital T]=0 K) first-order phase transition, predicted to drive systems with both weak random and uniform cubic anisotropy from a correlated spin glass to a ferromagnet, has been observed. At higher temperatures the transition is to a quasi- or random ferromagnet. The transition occurs at a concentration [ital x][sub [ital t

  8. Microscopic analysis of the superconducting quantum critical point: Finite-temperature crossovers in transport near a pair-breaking quantum phase transition

    NASA Astrophysics Data System (ADS)

    Shah, Nayana; Lopatin, Andrei

    2007-09-01

    A microscopic analysis of the superconducting quantum critical point realized via a pair-breaking quantum phase transition is presented. Finite-temperature crossovers are derived for the electrical conductivity, which is a key probe of superconducting fluctuations. By using the diagrammatic formalism for disordered systems, we are able to incorporate the interplay between fluctuating Cooper pairs and electrons, that is outside the scope of a time-dependent Ginzburg-Landau or effective bosonic action formalism. It is essential to go beyond the standard approximation in order to capture the zero-temperature correction which results purely from the (dynamic) quantum fluctuations and dictates the behavior of the conductivity in an entire low-temperature quantum regime. All dynamic contributions are of the same order and conspire to add up to a negative total, thereby inhibiting the conductivity as a result of superconducting fluctuations. On the contrary, the classical and the intermediate regimes are dominated by the positive bosonic channel. Our theory is applicable in one, two, and three dimensions and is relevant for experiments on superconducting nanowires, doubly connected cylinders, thin films, and bulk in the presence of magnetic impurities, magnetic field, or other pair breakers. A window of nonmonotonic behavior is predicted to exist as either the temperature or the pair-breaking parameter is swept.

  9. Enhanced cooperative interactions at the nanoscale in spin-crossover materials with a first-order phase transition.

    PubMed

    Félix, Gautier; Nicolazzi, William; Salmon, Lionel; Molnár, Gábor; Perrier, Marine; Maurin, Guillaume; Larionova, Joulia; Long, Jérôme; Guari, Yannick; Bousseksou, Azzedine

    2013-06-01

    We analyzed the size effect on a first-order spin transition governed by elastic interactions. This study was performed in the framework of a nonextensive thermodynamic core-shell model. When decreasing the particle size, differences in surface energies between the two phases lead to the shrinking of the thermal hysteresis width, the lowering of the transition temperature, and the increase of residual fractions at low temperature, in good agreement with recent experimental observations on spin transition nanomaterials. On the other hand, a modification of the particle-matrix interface may allow for the existence of the hysteresis loop even at very low sizes. In addition, an unexpected reopening of the hysteresis, when the size decreases, is also possible due to the hardening of the nanoparticles at very small sizes, which we deduced from the size dependence of the Debye temperature of a series of coordination nanoparticles. PMID:25167512

  10. Enhanced Cooperative Interactions at the Nanoscale in Spin-Crossover Materials with a First-Order Phase Transition

    NASA Astrophysics Data System (ADS)

    Félix, Gautier; Nicolazzi, William; Salmon, Lionel; Molnár, Gábor; Perrier, Marine; Maurin, Guillaume; Larionova, Joulia; Long, Jérôme; Guari, Yannick; Bousseksou, Azzedine

    2013-06-01

    We analyzed the size effect on a first-order spin transition governed by elastic interactions. This study was performed in the framework of a nonextensive thermodynamic core-shell model. When decreasing the particle size, differences in surface energies between the two phases lead to the shrinking of the thermal hysteresis width, the lowering of the transition temperature, and the increase of residual fractions at low temperature, in good agreement with recent experimental observations on spin transition nanomaterials. On the other hand, a modification of the particle-matrix interface may allow for the existence of the hysteresis loop even at very low sizes. In addition, an unexpected reopening of the hysteresis, when the size decreases, is also possible due to the hardening of the nanoparticles at very small sizes, which we deduced from the size dependence of the Debye temperature of a series of coordination nanoparticles.

  11. A randomized, double-blind, cross-over, phase IV trial of oros-methylphenidate (CONCERTA®) and generic novo-methylphenidate ER-C (NOVO-generic)

    PubMed Central

    Fallu, Angelo; Dabouz, Farida; Furtado, Melissa; Anand, Leena; Katzman, Martin A.

    2016-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) is a common neurobehavioral disorder with onset during childhood. Multiple aspects of a child’s development are hindered, in both home and school settings, with negative impacts on social, emotional, and cognitive functioning. If left untreated, ADHD is commonly associated with poor academic achievement and low occupational status, as well as increased risk of substance abuse and delinquency. The objective of this study was to evaluate adult ADHD subject reported outcomes when switched from a stable dose of CONCERTA® to the same dose of generic Novo-methylphenidate ER-C®. Methods: Randomized, double-blind, cross-over, phase IV trial consisted of two phases in which participants with a primary diagnosis of ADHD were randomized in a 1:1 ratio to 3 weeks of treatment with CONCERTA or generic Novo-Methylphenidate ER-C. Following 3 weeks of treatment, participants were crossed-over to receive the other treatment for an additional 3 weeks. Primary efficacy was assessed through the use of the Treatment Satisfaction Questionnaire for Medication, Version II (TSQM-II). Results: Participants with ADHD treated with CONCERTA were more satisfied in terms of efficacy and side effects compared to those receiving an equivalent dose of generic Novo-Methylphenidate ER-C. All participants chose to continue with CONCERTA treatment at the conclusion of the study. Conclusion: Although CONCERTA and generic Novo-Methylphenidate ER-C have been deemed bioequivalent, however the present findings demonstrate clinically and statistically significant differences between generic and branded CONCERTA. Further investigation of these differences is warranted. PMID:27536342

  12. Unexpected Spin-Crossover and a Low-Pressure Phase Change in an Iron(II)/Dipyrazolylpyridine Complex Exhibiting a High-Spin Jahn- Teller Distortion.

    PubMed

    Kershaw Cook, Laurence J; Thorp-Greenwood, Flora L; Comyn, Tim P; Cespedes, Oscar; Chastanet, Guillaume; Halcrow, Malcolm A

    2015-07-01

    The synthesis of 4-methyl-2,6-di(pyrazol-1-yl)pyridine (L) and four salts of [FeL2]X2 (X– = BF(4)(–), 1; X– = ClO(4)(–), 2; X– = PF(6)(–), 3; X– = CF3SO(3)(–), 4) are reported. Powder samples of 1 and 2 both exhibit abrupt, hysteretic spin-state transitions on cooling, with T(1/2)↓ = 204 and T(1/2)↑ = 209 K (1), and T(1/2)↓ = 175 and T(1/2)↑ = 193 K (2). The 18 K thermal hysteresis loop for 2 is unusually wide for a complex of this type. Single crystal structures of 2 show it to exhibit a Jahn–Teller-distorted six-coordinate geometry in its high-spin state, which would normally inhibit spin-crossover. Bulk samples of 1 and 2 are isostructural by X-ray powder diffraction, and undergo a crystallographic phase change during their spin-transitions. At temperatures below T(1/2), exposing both compounds to 10(–5) Torr pressure inside the powder diffractometer causes a reversible transformation back to the high-temperature crystal phase. Consideration of thermodynamic data implies this cannot be accompanied by a low → high spin-state change, however. Both compounds also exhibit the LIESST effect, with 2 exhibiting an unusually high T(LIESST) of 112 K. The salts 3 and 4 are respectively high-spin and low-spin between 3 and 300 K, with crystalline 3 exhibiting a more pronounced version of the same Jahn–Teller distortion. PMID:26351707

  13. Unexpected Spin-Crossover and a Low-Pressure Phase Change in an Iron(II)/Dipyrazolylpyridine Complex Exhibiting a High-Spin Jahn-Teller Distortion.

    PubMed

    Kershaw Cook, Laurence J; Thorp-Greenwood, Flora L; Comyn, Tim P; Cespedes, Oscar; Chastanet, Guillaume; Halcrow, Malcolm A

    2015-07-01

    The synthesis of 4-methyl-2,6-di(pyrazol-1-yl)pyridine (L) and four salts of [FeL2]X2 (X(-) = BF4(-), 1; X(-) = ClO4(-), 2; X(-) = PF6(-), 3; X(-) = CF3SO3(-), 4) are reported. Powder samples of 1 and 2 both exhibit abrupt, hysteretic spin-state transitions on cooling, with T1/2↓ = 204 and T1/2↑ = 209 K (1), and T1/2↓ = 175 and T1/2↑ = 193 K (2). The 18 K thermal hysteresis loop for 2 is unusually wide for a complex of this type. Single crystal structures of 2 show it to exhibit a Jahn-Teller-distorted six-coordinate geometry in its high-spin state, which would normally inhibit spin-crossover. Bulk samples of 1 and 2 are isostructural by X-ray powder diffraction, and undergo a crystallographic phase change during their spin-transitions. At temperatures below T1/2, exposing both compounds to 10(-5) Torr pressure inside the powder diffractometer causes a reversible transformation back to the high-temperature crystal phase. Consideration of thermodynamic data implies this cannot be accompanied by a low → high spin-state change, however. Both compounds also exhibit the LIESST effect, with 2 exhibiting an unusually high T(LIESST) of 112 K. The salts 3 and 4 are respectively high-spin and low-spin between 3 and 300 K, with crystalline 3 exhibiting a more pronounced version of the same Jahn-Teller distortion. PMID:26052980

  14. Systolic s/sup 2/-way merge sort is optimal

    SciTech Connect

    Schmeck, H.; Schroder, H.; Starke, C.

    1989-07-01

    The time complexity of Thompson and Kun's s/sup 2/-way merge sort is analyzed and shown to be asymptotically optimal with respect to the recently improved lower bound on sorting on a mesh-connected n x n array. Furthermore, new lower bounds for systolic sorting are derived. A systolic version of s/sup 2/-way merge sort is systematically constructed and shown to be asymptotically optimal as well.

  15. Standard model cross-over on the lattice

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Michela; Rummukainen, Kari

    2016-01-01

    With the physical Higgs mass the standard model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU (2 )×U (1 ) gauge+Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only ˜5 GeV . We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result Tc=159.5 ±1.5 GeV . Outside of the narrow cross-over region the perturbative results agree well with nonperturbative ones.

  16. Dimensional crossover of nonrelativistic bosons

    NASA Astrophysics Data System (ADS)

    Lammers, Soeren; Boettcher, Igor; Wetterich, Christof

    2016-06-01

    We investigate how confining a transverse spatial dimension influences the few- and many-body properties of nonrelativistic bosons with pointlike interactions. Our main focus is on the dimensional crossover from three to two dimensions, which is of relevance for ultracold-atom experiments. Using functional-renormalization-group equations and T -matrix calculations we study how the phase transition temperature changes as a function of the spatial extent of the transverse dimension and relate the three- and two-dimensional s -wave scattering lengths. The analysis reveals how the properties of the lower-dimensional system are inherited from the higher-dimensional one during renormalization-group evolution. We limit the discussion to confinements in a potential well with periodic boundary conditions and argue why this qualitatively captures the physics of other compactifications such as transverse harmonic confinement as in cold-atom experiments.

  17. Structural crossover from nonmodulated to long-period modulated tetragonal phase and anomalous change in ferroelectric properties in the lead-free piezoelectric N a1 /2B i1 /2Ti O3-BaTi O3

    NASA Astrophysics Data System (ADS)

    Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-06-01

    The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].

  18. A Phase 1, Randomized, Single-Dose Crossover Pharmacokinetic Study to Investigate the Effect of Food Intake on Absorption of Orteronel (TAK-700) in Healthy Male Subjects.

    PubMed

    Suri, Ajit; Pham, Theresa; MacLean, David B

    2016-05-01

    This study aimed to determine the impact of food on the pharmacokinetics of orteronel, an investigational nonsteroidal, reversible selective inhibitor of 17,20-lyase. In this open-label, randomized crossover study, healthy subjects received single doses of orteronel 400 mg with a low-fat meal, a high-fat meal, and under fasting conditions in a randomized sequence. Plasma concentrations of orteronel and its primary M-I metabolite were determined by ultra-performance liquid chromatography, and pharmacokinetic parameters were evaluated using mixed-effects analysis of variance model. Compared with fasting conditions, the oral bioavailability of orteronel was increased under fed conditions. The least-squares mean ratio for area under the plasma concentration-time curve after a low-fat breakfast was 135% (90% confidence interval [CI], 126%-145%) compared with fasting conditions. Similarly, after a high-fat breakfast, the corresponding value was 142% (90%CI, 132%-152%). No unexpected safety concerns were raised with orteronel 400 mg administered in the fasted state or after either a high-fat or a low-fat meal; mild adverse events were experienced by 36% of the healthy male subjects. PMID:27163497

  19. A crossover in the mechanical response of nanocrystalline ceramics.

    PubMed

    Szlufarska, Izabela; Nakano, Aiichiro; Vashishta, Priya

    2005-08-01

    Multimillion-atom molecular dynamics simulation of indentation of nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, resulting from the coexistence of brittle grains and soft amorphous grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth. The crossover arises from the interplay between cooperative grain sliding, grain rotations, and intergranular dislocation formation similar to stick-slip behavior. The crossover is also manifested in switching from deformation dominated by indentation-induced crystallization to deformation dominated by disordering, leading to amorphization. This interplay between deformation mechanisms is critical for the design of ceramics with superior mechanical properties. PMID:16081730

  20. Crossover sexual offenses.

    PubMed

    Heil, Peggy; Ahlmeyer, Sean; Simons, Dominique

    2003-10-01

    Crossover sexual offenses are defined as those in which victims are from multiple age, gender, and relationship categories. This study investigates admissions of crossover sexual offending from sex offenders participating in treatment who received polygraph testing. For 223 incarcerated and 266 paroled sexual offenders, sexual offenses were recorded from criminal history records and admissions during treatment coupled with polygraph testing. The majority of incarcerated offenders admitted to sexually assaulting both children and adults from multiple relationship types. In addition, there was a substantial increase in offenders admitting to sexually assaulting victims from both genders. In a group of incarcerated offenders who sexually assaulted children, the majority of offenders admitted to sexually assaulting both relatives and nonrelatives, and there was a substantial increase in the offenders admitting to assaulting both male and female children. Although similar trends were observed for the sample of parolees, the rates were far less dramatic. Parolees appeared to have greater levels of denial, had participated in fewer treatment sessions, and perceived greater supervision restrictions as a result of admitting additional offenses. These findings support previous research indicating that many sexual offenders do not exclusively offend against a preferred victim type. PMID:14571530

  1. The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing—is the evidence for compositional convection definitive? New results from a Yin-Yang overset grid-based control volume model

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Peltier, W. R.

    2015-08-01

    High-resolution seismic tomographic images from several subduction zones provide evidence for the inhibition of the downwelling of subducting slabs at the level of the 660 km depth seismic discontinuity. Furthermore, the inference of old (~140 Myr) sinking slabs below fossil subduction zones in the lower mantle has yet to be explained. We employ a control volume methodology to develop a new anelastically compressible model of three-dimensional thermal convection in the "mantle" of a terrestrial planet that fully incorporates the influence of large variations in material properties. The model also incorporates the influence of (1) multiple solid-solid pressure-induced phase transitions, (2) transformational superplasticity at 660 km depth, and (3) the high spin-low spin iron spin transition in ferropericlase at midmantle pressures. The message passing interface-parallelized code is successfully tested against previously published benchmark results. The high-resolution control volume models exhibit the same degree of radial layering as previously shown to be characteristic of otherwise identical 2-D axisymmetric spherical models. The layering is enhanced by the presence of moderate transformational superplasticity, and in the presence of the spin crossover in ferropericlase, stagnation of cold downwellings occurs in the range of spin crossover depths (~1700 km). Although this electronic spin transition has been suggested to be invisible seismically, recent high-pressure ab initio calculations suggest it to have a clear signature in body wave velocities which could provide an isochemical explanation of a seismological signature involving the onset of decorrelation between Vp and Vs that has come to be interpreted as requiring compositional layering.

  2. Hysteretic behavior of spin-crossover noise driven system

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Maksymov, Artur; Dimian, Mihai

    2016-04-01

    The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker-Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.

  3. Critical behavior of La0.7Ca0.3Mn1-xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Tran, Q. T.; Thanh, P. Q.; Yen, P. D. H.; Thanh, T. D.; Yu, S. C.

    2014-04-01

    We used Banerjee's criteria, modified Arrott plots, and the scaling hypothesis to analyze magnetic-field dependences of magnetization near the ferromagnetic-paramagnetic (FM-PM) phase-transition temperature (TC) of perovskite-type manganites La0.7Ca0.3Mn1-xNixO3 (x=0.09, 0.12 and 0.15). In the FM region, experimental results for the critical exponent β (=0.171 and 0.262 for x=0.09 and 0.12, respectively) reveal two first samples exhibiting tricriticality associated with the crossover of first- and second-order phase transitions. Increasing Ni-doping content leads to the shift of the β value (=0.320 for x=0.15) towards that expected for the 3D Ising model (β=0.325). This is due to the fact that the substitution of Ni ions into the Mn site changes structural parameters and dilutes the FM phase, which act as fluctuations and influence the FM-interaction strength of double-exchange Mn3+-Mn4+ pairs, and the phase-transition type. For the critical exponent γ (=0.976-0.990), the stability in its value demonstrates the PM behavior above TC of the samples. Particularly, around TC of La0.7Ca0.3Mn1-xNixO3 compounds, magnetic-field dependences of the maximum magnetic-entropy change can be described by a power law of |ΔSmax|∝Hn, where values n=0.55-0.77 are quite far from those (n=0.33-0.48) calculated from the theoretical relation n=1+(β-1)/(β+γ). This difference is related to the use of the mean-field theory for the samples exhibiting the magnetic inhomogeneity.

  4. Crossover studies with survival outcomes.

    PubMed

    Buyze, Jozefien; Goetghebeur, Els

    2013-12-01

    Crossover designs are well known to have major advantages when comparing the effect of two treatments which do not interact. With a right-censored survival endpoint, however, this design is quickly abandoned in favour of the more costly parallel design. Motivated by human immunodeficiency virus (HIV) prevention studies which lacked power, we evaluate what may be gained in this setting and compare parallel with crossover designs. In a heterogeneous population, we find and explain a substantial increase in power for the crossover study using a non-parametric logrank test. With frailties in a proportional hazards model, crossover designs equally lead to substantially smaller variance for the subject-specific hazard ratio (HR), while the population-averaged HR sees negligible gain. Its efficiency benefit is recovered when the population-averaged HR is reconstructed from estimated subject-specific hazard rates. We derive the time point for treatment crossover that optimizes efficiency and end with the analysis of two recent HIV prevention trials. We find that a Cellulose sulphate trial could have hardly gained efficiency from a crossover design, while a Nonoxynol-9 trial stood to gain substantial power. We conclude that there is a role for effective crossover designs in important classes of survival problems. PMID:21715438

  5. Evaluation of the effect of food and age on the pharmacokinetics of oral netupitant and palonosetron in healthy subjects: A randomized, open-label, crossover phase 1 study.

    PubMed

    Calcagnile, Selma; Lanzarotti, Corinna; Gutacker, Michaela; Jakob-Rodamer, Verena; Peter Kammerer, Klaus; Timmer, Wolfgang

    2015-09-01

    Antiemetic treatment compliance is important to prevent chemotherapy-induced nausea and vomiting, a feared chemotherapy side effect. NEPA, a new oral fixed combination of netupitant, a highly selective NK1 receptor antagonist (RA), and palonosetron, a second-generation 5-HT3 RA, targets dual antiemetic pathways with a single dose. This study investigated the effect of food intake and age on NEPA pharmacokinetics (PK) and safety. In this open-label, single-center, randomized, phase 1 study, 24 adults (18-45 years) received NEPA in a fed or fasted state during the first treatment period and in the alternative state in the next treatment period. Twelve elderly subjects (≥65 years) received NEPA in a fasted state. Blood samples were taken for netupitant and palonosetron PK analysis. In the fed condition, netupitant plasma exposure increased, whereas palonosetron PK parameters were not affected. Furthermore, elderly subjects showed increased netupitant and palonosetron exposure compared with adults. All adverse events were mild/moderate, with constipation and headache the most common. Although food intake and age altered NEPA PK, dose adjustments were not needed, as netupitant and palonosetron exposure increases did not lead to safety concerns in healthy subjects. PMID:27137147

  6. Y-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions

    SciTech Connect

    Phan, The-Long; Jung, C. U.; Lee, B. W.; Ho, T. A.; Manh, T. V.; Dang, N. T.; Thanh, T. D.

    2015-10-14

    We prepared orthorhombic La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} samples (x = 0, 0.04, 0.06, and 0.08) by conventional solid-state reaction and then studied their magnetic properties and magnetocaloric (MC) effect based on magnetization versus temperature and magnetic-field measurements, M(T, H). The experimental results revealed that an x increase in La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} reduced the ferromagnetic-paramagnetic transition temperature (T{sub C}) from 260 K (for x = 0) to ∼126 K (for x = 0.08). Around the T{sub C}, maximum magnetic-entropy changes for a magnetic-field variation interval H = 50 kOe are about 10.7, 8.5, 7.4, and 5.8 J·kg{sup −1}·K{sup −1} for x = 0, 0.04, 0.06, and 0.08, respectively, corresponding to refrigerant capacities RC = 250–280 J·kg{sup −1}. These values are comparable to those of some conventional MC materials, revealing the applicability of La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} in magnetic refrigeration. Using the Arrott method and scaling hypothesis as analyzing high-field M(H, T) data, and the universal-curve construction of the magnetic entropy change, we found a magnetic-phase separation. While the samples x = 0−0.06 exhibit a first-order magnetic phase transition, x = 0.08 exhibits the crossover of the first-to-second-order phase transformation (with its critical-exponent values close to those expected for the tricritical mean-field theory) and has the presence of ferromagnetic clusters even above the T{sub C}. Such the variations in the magnetism and MC effect are related to the changes in structural parameters caused by the Y substitution for La because Y doping does not change the concentration ratio of Mn{sup 3+}/Mn{sup 4+}.

  7. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  8. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, Frederick C.; Kingston, John J.; Clarke, John

    1994-01-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions.

  9. The BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Parish, Meera M.

    2015-09-01

    This chapter presents the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly correlated pairs of fermions to the Bose-Einstein condensation (BEC) of diatomic molecules in the atomic Fermi gas. Our aim is to provide a pedagogical review of the BCS-BEC crossover, with an emphasis on the basic concepts, particularly those that are not generally known or are difficult to find in the literature. We shall not attempt to give an exhaustive survey of current research in the limited space here; where possible, we will direct the reader to more extensive reviews.

  10. Crossover scaling for moments in multifractal systems

    NASA Astrophysics Data System (ADS)

    Alstrom, Preben; Hansen, Lars K.; Rasmussen, Dan R.

    1987-07-01

    Invoking the formalism known from second-order phase transitions and thermodynamics, we analyze the step structure obtained at transitions to chaos in dynamical systems or where Cantor sets evolve in general. As examples, we treat the skew tent map analytically and Arnold's sine map numerically, but the presented formalism employed for embedding dimension d=1 is readily extended to higher dimensions. We outline the scaling behavior for the counting, the measure, and higher moments. In particular, we consider the crossover exponent ν which enters the scaling functions and for the measure is related to the critical exponent β and fractal dimension D. We emphasize that the general presence of a multifractal structure results in a value of ν which depends on from which moment it is defined, and deduce the saturation value of ν in the high-moment limit. Also, we derive the connection to thermodynamical functions as pressure, entropy, and escape rate. Finally, we examine the scaling behavior of the moments and scaling relations for exponents when either a ``ghost'' field or noise is introduced as a conjugated field involving the critical exponents α, γ, and δ as well as the crossover exponent μ.

  11. Multiferroic crossover in perovskite oxides

    NASA Astrophysics Data System (ADS)

    Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-04-01

    The coexistence of ferroelectricity and magnetism in A B O3 perovskite oxides is rare, a phenomenon that has become known as the ferroelectric "d0 rule." Recently, the perovskite BiCoO3 has been shown experimentally to be isostructural with PbTiO3, while simultaneously the d6Co3 + ion has a high-spin ground state with C -type antiferromagnetic ordering. It has been suggested that the hybridization of Bi 6 s states with the O 2 p valence band stabilizes the polar phase, however, we have recently demonstrated that Co3 + ions in the perovskite structure can facilitate a ferroelectric distortion via the Co 3 d -O 2 p covalent interaction [L. Weston, et al., Phys. Rev. Lett. 114, 247601 (2015), 10.1103/PhysRevLett.114.247601]. In this paper, using accurate hybrid density functional calculations, we investigate the atomic, electronic, and magnetic structure of BiCoO3 to elucidate the origin of the multiferroic state. To begin with, we perform a more general first-principles investigation of the role of d electrons in affecting the tendency for perovskite materials to exhibit a ferroelectric distortion; this is achieved via a qualitative trend study in artificial cubic and tetragonal La B O3 perovskites. We choose La as the A cation so as to remove the effects of Bi 6 s hybridization. The lattice instability is identified by the softening of phonon modes in the cubic phase, as well as by the energy lowering associated with a ferroelectric distortion. For the La B O3 series, where B is a d0-d8 cation from the 3 d block, the trend study reveals that increasing the d orbital occupation initially removes the tendency for a polar distortion, as expected. However, for high-spin d5-d7 and d8 cations a strong ferroelectric instability is recovered. This effect is explained in terms of increased pseudo-Jahn-Teller (PJT) p -d vibronic coupling. The PJT effect is described by the competition between a stabilizing force (K0) that favors the cubic phase, and a vibronic term that

  12. Dimensional crossover in semiconductor nanostructures.

    PubMed

    McDonald, Matthew P; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-01-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies. PMID:27577091

  13. The dynamical crossover in attractive colloidal systems

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  14. The dynamical crossover in attractive colloidal systems

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-01

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T - ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  15. The dynamical crossover in attractive colloidal systems.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-01

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (φ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T - φ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and φ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of φ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects. PMID:24320386

  16. An Analysis of Semantic Aware Crossover

    NASA Astrophysics Data System (ADS)

    Uy, Nguyen Quang; Hoai, Nguyen Xuan; O'Neill, Michael; McKay, Bob; Galván-López, Edgar

    It is well-known that the crossover operator plays an important role in Genetic Programming (GP). In Standard Crossover (SC), semantics are not used to guide the selection of the crossover points, which are generated randomly. This lack of semantic information is the main cause of destructive effects from SC (e.g., children having lower fitness than their parents). Recently, we proposed a new semantic based crossover known GP called Semantic Aware Crossover (SAC) [25]. We show that SAC outperforms SC in solving a class of real-value symbolic regression problems. We clarify the effect of SAC on GP search in increasing the semantic diversity of the population, thus helping to reduce the destructive effects of crossover in GP.

  17. Reversible Photoswitching of a Spin-Crossover Molecular Complex in the Solid State at Room Temperature.

    PubMed

    Rösner, Benedikt; Milek, Magdalena; Witt, Alexander; Gobaut, Benoît; Torelli, Piero; Fink, Rainer H; Khusniyarov, Marat M

    2015-10-26

    Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be switched between paramagnetic high-spin and diamagnetic low-spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level. PMID:26480333

  18. Becoming a crossover-competent DSB.

    PubMed

    Lake, Cathleen M; Hawley, R Scott

    2016-06-01

    The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs. PMID:26806636

  19. Flow equations for the BCS-BEC crossover

    SciTech Connect

    Diehl, S.; Gies, H.; Pawlowski, J. M.; Wetterich, C.

    2007-08-15

    The functional renormalization group is used for the BCS-BEC crossover in gases of ultracold fermionic atoms. In a simple truncation, we see how universality and an effective theory with composite bosonic diatom states emerge. We obtain a unified picture of the whole phase diagram. The flow reflects different effective physics at different scales. In the BEC limit as well as near the critical temperature, it describes an interacting bosonic theory.

  20. Direct observation in 3d of structural crossover in binary hard sphere mixtures

    NASA Astrophysics Data System (ADS)

    Statt, Antonia; Pinchaipat, Rattachai; Turci, Francesco; Evans, Robert; Royall, C. Patrick

    2016-04-01

    For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303 (2007)], where a correspondence was drawn between crossover and percolation of both species, in our 3d study we find that structural crossover is unrelated to percolation.

  1. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-03-01

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) "CRover", which interpolates the two phases at around 3 times the nuclear matter density (ρ0, it is found that the cold NSs with the gravitational mass larger than 2M_{odot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ0 and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M_{odot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated.

  2. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  3. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  4. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  5. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  6. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  7. BCS to Bose crossover: Broken-symmetry state

    SciTech Connect

    Engelbrecht, J.R. |; Randeria, M. |; Sa de Melo, C.A.

    1997-06-01

    A functional integral formulation, used previously to calculate T{sub c} and describe normal state properties of the BCS-Bose crossover, is extended to T{lt}T{sub c}. The saddle point approximation is shown to be qualitatively correct for T{lt}T{sub c} for {ital all} couplings, in contrast to the situation above T{sub c}. Several features of the crossover are described. The difference between the T=0 {open_quotes}pair size{close_quotes} and the (prefactor of the T dependent) Ginzburg-Landau coherence length is pointed out: the two quantities are the same only in the BCS limit. The evolution of the collective modes from the BCS to the Bose regime is discussed together with the mixing of the amplitude and phase in the absence of a particle-hole symmetry. {copyright} {ital 1997} {ital The American Physical Society}

  8. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle.

    PubMed

    Wu, Zhongqing; Wentzcovitch, Renata M

    2014-07-22

    Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂ ln VS/∂ ln VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle. PMID:25002507

  9. Standard Model thermodynamics across the electroweak crossover

    SciTech Connect

    Laine, M.; Meyer, M.

    2015-07-22

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.

  10. Dynamical and orientational structural crossovers in low-temperature glycerol

    NASA Astrophysics Data System (ADS)

    Seyedi, Salman; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations.

  11. Universal crossovers between entanglement entropy and thermal entropy

    NASA Astrophysics Data System (ADS)

    Swingle, Brian; Senthil, T.

    2013-01-01

    We postulate the existence of universal crossover functions connecting the universal parts of the entanglement entropy to the low-temperature thermal entropy in gapless quantum many-body systems. These scaling functions encode the intuition that the same low-energy degrees of freedom which control low-temperature thermal physics are also responsible for the long-range entanglement in the quantum ground state. We demonstrate the correctness of the proposed scaling form and determine the scaling function for certain classes of gapless systems whose low-energy physics is described by a conformal field theory. We also use our crossover formalism to argue that local systems which are “natural” can violate the boundary law at most logarithmically. In particular, we show that several non-Fermi-liquid phases of matter have entanglement entropy that is at most of order Ld-1log(L) for a region of linear size L thereby confirming various earlier suggestions in the literature. We also briefly apply our crossover formalism to the study of fluctuations in conserved quantities and discuss some subtleties that occur in systems that spontaneously break a continuous symmetry.

  12. Dynamical and orientational structural crossovers in low-temperature glycerol.

    PubMed

    Seyedi, Salman; Martin, Daniel R; Matyushov, Dmitry V

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations. PMID:27575188

  13. Crossover from superdiffusive to diffusive dynamics in fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Marqués, Manuel I.

    2016-06-01

    The expressions for the optical drag force, the equilibrium kinetic energy, and the diffusion constant of an electric dipole in a light field consisting of electromagnetic plane waves with polarizations randomly distributed and fluctuating phases are obtained. The drag force is proportional to the extinction cross section of the dipole and to the intensity. The diffusion constant does not depend on the amplitude of the electromagnetic field and is proportional to the time interval between fluctuations. Numerical simulations for the dynamics of a resonant dipole, initially at rest, show the crossover between the superdiffusive and the diffusive regimes theoretically predicted.

  14. An open-label, phase 2, single centre, randomized, crossover design bioequivalence study of AndroForte 5 testosterone cream and Testogel 1% testosterone gel in hypogonadal men: study LP101.

    PubMed

    Wittert, G A; Harrison, R W; Buckley, M J; Wlodarczyk, J

    2016-01-01

    We compared a novel 5% testosterone (T) cream (AndroForte 5, Lawley Pharmaceuticals, Australia) with a 1% T gel (Testogel, Besins Healthcare, Australia). Using an open-label crossover design, subjects were randomized to one of two treatment sequences using either the T gel or T cream first in a 1 : 1 ratio. Each treatment period was 30 days with a 7-14 days washout period between them. On Days 1 and 30 of each treatment period blood was sampled at -15, -5 min, 0, 2, 4, 5, 6, 7, 8, 9, 10, 12 and 16 h post study drug administration. Sixteen men with established androgen deficiency aged between 29 and 73 years, who had undertaken a washout from prior testosterone therapy participated in the study. One subject failed to complete both arms and another was excluded post-completion because of a major protocol violation. Bioequivalence was established based on key pharmacokinetic (PK) variables: AUC, C(avg), C(max), T(max), % fluctuation (with and without baseline correction) for the two formulations of testosterone on Day 1 and Day 30. The ratio and 90% CI of AUC 0.99 (0.86-1.14), C(max) 1.02 (0.84-1.24) and C(avg) 0.99 (0.86-1.14) for T cream/T gel were within the predetermined bio-equivalence criteria of 80% to 125% at Day 30. There were no statistically significant differences between secondary biochemical markers: serum dihydrotestosterone (DHT), oestradiol (E2), sex hormone-binding globulin (SHBG), luteinizing hormone (LH) and (FSH). The two testosterone formulations were shown to be bioequivalent. PMID:26754331

  15. Spin-crossover molecule based thermoelectric junction

    SciTech Connect

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  16. Modeling the covariance structure in pharmacokinetic crossover trials.

    PubMed

    Lindsey, J K; Wang, J; Byrom, W D; Jones, B

    1999-08-01

    Pharmacokinetic studies of drug and metabolite concentrations in the blood are usually conducted as crossover trials, especially in phases I and II. A longitudinal series of measurements is collected on each subject within each period. However, much of the dependence among such observations, within and between periods, is generally ignored in analyzing this type of data. Usually, only a random coefficient model is fitted for the parameters in the nonlinear mean function, along with allowing the variance to depend on the mean so that it changes over time. Here, we develop models to allow more fully for the structure of the crossover study. We introduce two levels of variance components, for the subjects and for the periods within subjects, and also an autocorrelation within periods. We also retain the time-varying variance, using a separate variance function for this, different from that for the mean. We apply this model to a phase I study of the drug flosequinan and its metabolite. This drug was developed for the treatment of heart failure. Because the metabolite also exhibits an active pharmacologic effect, study of both the parent drug and the metabolite is of interest. We find that the autocorrelation is the element in the covariance structure that most improves the fit of the model but that two levels of variance components can also be necessary. PMID:10473030

  17. Spin Crossover in Ferropericlase From First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Holmstrom, E.; Stixrude, L. P.

    2013-12-01

    Ferropericlase is believed to be the second-most abundant mineral of the lower mantle of the Earth. It is experimentally known that with increasing pressure, the iron ions in the mineral begin to collapse from a high-spin to low-spin state. This spin crossover looks certain to have geophysical effects, and hence a good theoretical understanding of the phenomenon is necessary. Using first-principles molecular dynamics simulations in conjunction with thermodynamic integration, we construct a phase diagram of the spin crossover as a function of pressure and temperature. In addition, we predict that the mineral loses its electrically insulating character within the lower mantle.

  18. Crossover Pedagogy: The Collaborative Search for Meaning

    ERIC Educational Resources Information Center

    Nash, Robert J.

    2009-01-01

    This article describes the author's cross-pedagogical approach to co-teaching with student affairs colleagues. The central goal of this approach is to help students create meaning for their lives. The author also gives an account of an incident that occurred in one seminar and illustrates the benefits of a crossover approach.

  19. The Design of Cluster Randomized Crossover Trials

    ERIC Educational Resources Information Center

    Rietbergen, Charlotte; Moerbeek, Mirjam

    2011-01-01

    The inefficiency induced by between-cluster variation in cluster randomized (CR) trials can be reduced by implementing a crossover (CO) design. In a simple CO trial, each subject receives each treatment in random order. A powerful characteristic of this design is that each subject serves as its own control. In a CR CO trial, clusters of subjects…

  20. Cedarwood: cross-over pressure research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to determine the cross-over pressure for cedarwood oil in carbon dioxide. A closed stirrer reactor with an in-line loop connected to the injector of a GC was used to measure the concentration of cedarwood oil in the carbon dioxide. Both neat cedarwood oil as ...

  1. Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer

    NASA Astrophysics Data System (ADS)

    Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J.; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent

    2016-07-01

    Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers.

  2. Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer.

    PubMed

    Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent

    2016-01-01

    Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers. PMID:27425776

  3. Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer

    PubMed Central

    Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent

    2016-01-01

    Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers. PMID:27425776

  4. Superconductor-Insulator Transition and Fermi-Bose Crossovers

    NASA Astrophysics Data System (ADS)

    Trivedi, Nandini; Loh, Yen Lee; Randeria, Mohit; Chang, Chia-Chen; Scalettar, Richard

    The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally-invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-like SC, with an energy gap for fermions that remains finite across the SIT. The energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insights into important questions about the SIT in solid state systems, our model should be experimentally realizable using ultracold fermions in optical lattices. Ref: arXiv:1507.05641 We gratefully acknowledge support from NSF DMR-1410364 (MR), DOE DE-FG02-07ER46423 (NT), and from the UC Office of the President (CC, RTS).

  5. Superconductor-Insulator Transition and Fermi-Bose Crossovers

    NASA Astrophysics Data System (ADS)

    Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini; Chang, Chia-Chen; Scalettar, Richard

    2016-04-01

    The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-like SC, with an energy gap for fermions that remains finite across the SIT. The energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.

  6. Crossover from quantum to classical transport

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.

    2016-01-01

    Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.

  7. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (<100°C) by separating its vapor from the liquid phase by evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different

  8. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  9. Stress- and pressure-induced iron spin-state crossover in lower mantle minerals

    NASA Astrophysics Data System (ADS)

    Glazyrin, K.; Miyajima, N.; Smith, J.; Lee, K. K.

    2013-12-01

    The spin-state crossover of ferric and ferrous iron is an important feature of major lower mantle minerals, namely magnesium silicate perovskite (Pv) and ferropericlase (Fp). This electronic transition observed in compressed Pv and Fp was initially discovered at ambient temperatures, however it is also expected for the extreme high pressure-high temperature (HP-HT) conditions endemic to planetary interiors, in particular to the Earth's lower mantle. The pressure-induced spin-state crossover of iron in Pv and Fp has been under focus of many studies, however, some aspects have not been explored in great detail. One of these aspects is the influence of non-hydrostatic macro and micro stresses on the spin-state transitions. Hydrostatic pressure is the important thermodynamic property and distinguishing effects of undesirable stresses is important from both a theoretical and experimental point of view. In this work we compress a two-phase polycrystalline mixture containing magnesium silicate Pv (Fe, Al bearing) and Fp. Using high-resolution synchrotron diffraction on laser-heated diamond-anvil cell samples, we explore characteristic signatures for non-hydrostatic stresses and their influence on the spin-state crossover of ferrous and ferric iron in Pv and Fp. We demonstrate how non-hydrostatic stresses affect the starting pressure and width of the ferrous iron spin-state crossover in Fp and compare available literature data with our results with powder and single crystal diffraction data. Finally, we use the dependence of high-spin to low-spin crossover on the ferrous iron concentration in Fp to support a recently predicted gradual decrease of ferrous iron partitioning coefficient value for Pv and Fp under compression. Our results suggest that this change occurs at HP-HT conditions even before the actual spin-state crossover of ferrous iron in Fp.

  10. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wentzcovitch, R. M.

    2014-12-01

    Ferropericlase (Fp) is believed to be the second most abundant phase in the lower mantle. Since the discovery of the high spin (HS) to low spin (LS) crossover in iron in Fp [1], this phenomenon has been investigated extensively experimentally and theoretically. This is a broad and smooth crossover that takes place throughout most of the lower mantle and does not produce an obvious signature in radial velocity or density profiles [2]. Therefore, the spin transition has been generally considered to be invisible to seismic waves. This study, however, shows that it can produce a peculiar effect on lateral velocity heterogeneities at certain depths[3]. Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron introduces unfamiliar effects on seismic velocities. First principles calculations indicate that anti-correlation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in VP but not in VS. This effect is observed in tomographic models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P () heterogeneity ratio might be a useful "fingerprint" to detect the presence of Fp in the lower mantle. [1] Badro J, et al. (2003) Science 300(5620):789-791. [2] Wu Z, Justo J. F., and Wentzcovitch R. M., (2013). Phys. Rev. Lett. 110. 228501-5 [3]Wu Z., and Wentzcovitch R. M., (2014) Proc Natl Acad Sci USA. www.pnas.org/cgi/doi/10.1073/pnas.1322427111

  11. Quantum-classical crossover in electrodynamics

    SciTech Connect

    Polonyi, Janos

    2006-09-15

    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of the quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.

  12. Dynamical Landau theory of the glass crossover

    NASA Astrophysics Data System (ADS)

    Rizzo, Tommaso

    2016-07-01

    I introduce a dynamical field theory to describe the glassy behavior in supercooled liquids. The mean-field approximation of the theory predicts a dynamical arrest transition, as in the ideal mode-coupling theory and mean-field discontinuous spin-glass models. Instead, beyond the mean-field approximation, the theory predicts that the transition is avoided and transformed into a crossover, as observed in experiments and simulations. To go beyond mean-field, a standard perturbative loop expansion is performed at first. Approaching the ideal critical point this expansion is divergent at all orders and I show that the leading divergent term at any given order is the same as a dynamical stochastic equation, called stochastic-beta relaxation (SBR) in Europhys. Lett. 106, 56003 (2014), 10.1209/0295-5075/106/56003. At variance with the original theory, SBR can be studied beyond mean-field directly, without the need to resort to a perturbative expansion. Thus it provides a qualitative and quantitative description of the dynamical crossover. For consistency reasons, it is important to establish the connection between the dynamical field theory and SBR beyond perturbation theory. This can be done with the help of a stronger result: the dynamical field theory is exactly equivalent to a theory with quenched disorder. Qualitatively, the nonperturbative mechanism leading to the crossover is therefore the same as the mechanism of SBR. Quantitatively, SBR is equivalent to making the mean-field approximation once the quenched disorder has been generated.

  13. Observing the 1D-3D Crossover in a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-05-01

    Trapped two-component Fermi gases phase separate into superfluid and normal phases when their spin populations are imbalanced. In 3D, a balanced superfluid core is surrounded by shells of partially polarized and normal phases, while in 1D, the balanced superfluid occupies the low density wings. We explored the crossover from 3D to 1D using a two-spin component ultracold atomic gas of 6 Li prepared in the lowest two hyperfine sublevels, where the interactions are tuned by a Feshbach resonance. The atoms are confined to 1D tubes where the tunneling rate t between tubes is varied by changing the depth of a 2D optical lattice. We observe the transition from 1D to 3D-like phase separation by varying t and interaction strength which changes the pair binding energy ɛB. We find a universal scaling of the dimensional crossover with t /ɛB , in agreement with previous theory. The crossover region is believed to be the most promising to find the exotic FFLO superfluid phase. Supported by the NSF and the Welch Foundation.

  14. Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice

    SciTech Connect

    Small, Eran; Pugatch, Rami; Silberberg, Yaron

    2011-01-15

    We show that a periodic two-dimensional (2D) photonic lattice with Kerr nonlinearity exhibits a Berezinskii-Kosterlitz-Thouless (BKT) crossover associated with a vortex-unbinding transition. We find that averaging over random initial conditions is equivalent to Boltzmann thermal averaging with the discrete nonlinear Schro{center_dot}{center_dot}dinger Hamiltonian. By controlling the initial randomness we can continuously vary the effective temperature. Since this Hamiltonian is in the 2D XY universality class, a BKT transition ensues. We verify this prediction using experimentally accessible observables and find good agreement between theory and simulations. This opens the possibility of experimental access to interesting phase transitions known in condensed matter using nonlinear optics.

  15. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-07-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation

  16. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots.

    PubMed

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-08-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously. PMID:27396603

  17. Crossover from first-order to second-order phase transitions and magnetocaloric effect in La{sub 0.7}Ca{sub 0.3}Mn{sub 0.91}Ni{sub 0.09}O{sub 3}

    SciTech Connect

    Phan, The-Long; Zhang, P.; Yu, S. C.; Thanh, T. D.

    2014-05-07

    We have prepared La{sub 0.7}Ca{sub 0.3}Mn{sub 0.91}Ni{sub 0.09}O{sub 3} and then studied its critical behavior and magnetocaloric effect. Analyzing temperature and field dependences of magnetization around the ferromagnetic-paramagnetic transition reveals the sample undergoing the second-order magnetic phase transition with the critical parameters T{sub C} ≈ 199.4 K, β = 0.171 ± 0.006, and γ = 0.976 ± 0.012. A considerable difference of these critical exponents compared with those expected for the standard models is due to the sample exhibiting the crossover property (tricriticality); its exponent values are more close to those expected for the tricritical mean-field theory with β = 0.25 and γ = 1. Under the field 40 kOe, the maximum magnetic entropy change (−ΔS{sub max}) around T{sub C} is about 7.1 J·kg{sup −1}·K{sup −1}, corresponding to a refrigerant capacity RC ≈ 170 J/kg. Particularly, its magnetic-field dependence obeys a power law |ΔS{sub max}| ∝ H{sup n}, where n = 0.55 is quite far from the value calculated from the relation n = 1 + (β − 1)/(β + γ)

  18. Crossover Equation of State Models Applied to the Critical Behavior of Xenon

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Guillaument, R.; Beysens, D.; Hahn, I.

    2015-03-01

    The turbidity () measurements of Güttinger and Cannell (Phys Rev A 24:3188-3201, 1981) in the temperature range along the critical isochore of homogeneous xenon are reanalyzed. The singular behaviors of the isothermal compressibility () and the correlation length () predicted from the master crossover functions are introduced in the turbidity functional form derived by Puglielli and Ford (Phys Rev Lett 25:143-146, 1970). We show that the turbidity data are thus well represented by the Ornstein-Zernike approximant, within 1 % precision. We also introduce a new crossover master model (CMM) of the parametric equation of state for a simple fluid system with no adjustable parameter. The CMM model and the phenomenological crossover parametric model are compared with the turbidity data and the coexisting liquid-gas density difference (). The excellent agreement observed for , , , and in a finite temperature range well beyond the Ising-like preasymptotic domain confirms that the Ising-like critical crossover behavior of xenon can be described in conformity with the universal features estimated by the renormalization-group methods. Only 4 critical coordinates of the vapor-liquid critical point are needed in the (pressure, temperature, molecular volume) phase surface of xenon.

  19. Spin crossover in liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Holmström, E.; Stixrude, L.

    2016-05-01

    We use first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O, whereby the magnetic moments of Fe ions vanish gradually over a range of hundreds of GPa. Because electronic entropy strongly favors the nonmagnetic low-spin state of Fe, the crossover has a negative effective Clapeyron slope, in stark contrast to the crystalline counterpart of this transition-metal oxide. Diffusivity of liquid (Mg,Fe)O is similar to that of MgO, displaying a weak dependence on element and spin state. Fe-O and Mg-O coordination increases from approximately 4 to 7 as pressure goes from 0 to 200 GPa. We find partitioning of Fe to induce a density inversion between the crystal and melt, implying separation of a basal magma ocean from a surficial one in the early Earth. The spin crossover induces an anomaly into the density contrast, and the oppositely signed Clapeyron slopes for the crossover in the liquid and crystalline phases imply that the solid-liquid transition induces a spin transition in (Mg,Fe)O.

  20. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle

    PubMed Central

    Wu, Zhongqing; Wentzcovitch, Renata M.

    2014-01-01

    Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂⁡ln⁡VS/∂⁡ln⁡VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle. PMID:25002507

  1. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions.

    PubMed

    Wu, Zhongqing; Justo, João F; Wentzcovitch, Renata M

    2013-05-31

    The discovery of a pressure induced iron-related spin crossover in Mg((1-x))Fe(x)O ferropericlase (Fp) and Mg-silicate perovskite, the major phases of Earth's lower mantle, has raised new questions about mantle properties which are of central importance to seismology. Despite extensive experimental work on the anomalous elasticity of Fp throughout the crossover, inconsistencies reported in the literature are still unexplained. Here we introduce a formulation for thermoelasticity of spin crossover systems, apply it to Fp by combining it with predictive first principles density-functional theory with on-site repulsion parameter U calculations, and contrast results with available data on samples with various iron concentrations. We explain why the shear modulus of Fp should not soften along the crossover, as observed in some experiments, predict its velocities at lower mantle conditions, and show the importance of constraining the elastic properties of minerals without extrapolations for analyses of the thermochemical state of this region. PMID:23767753

  2. The joy of six: how to control your crossovers.

    PubMed

    Globus, Samuel T; Keeney, Scott

    2012-03-30

    Meiotic cells tightly regulate the number and distribution of crossovers to promote accurate chromosome segregation. Yokoo and colleagues uncover a metazoan-specific, cyclin-like protein that is crucial for crossover formation. They utilize this protein's unique properties to explore a remarkable example of biological numerology, whereby nearly every meiotic cell in C. elegans makes precisely six crossovers, one for each of its six chromosome pairs. PMID:22464316

  3. Modified Fermi sphere, pairing gap, and critical temperature for the BCS-BEC crossover

    SciTech Connect

    Floerchinger, S.; Wetterich, C.; Scherer, M. M.

    2010-06-15

    We investigate the phase diagram of two-component fermions in the BCS-BEC (Bose-Einstein condensate) crossover. Using functional renormalization-group equations we calculate the effect of quantum fluctuations on the fermionic self-energy parametrized by a wave-function renormalization, an effective Fermi radius, and the gap. This allows us to follow the modifications of the Fermi surface and the dispersion relation for fermionic excitations throughout the whole crossover region. We also determine the critical temperature of the second-order phase transition to superfluidity. Our results are in agreement with BCS theory including Gorkov's correction for a small negative scattering length a and with an interacting Bose gas for a small positive a. At the unitarity point the result for the gap at zero temperature agrees well with quantum Monte Carlo simulations, while the critical temperature differs.

  4. Design and numerical characterization of a crossover EBIS

    SciTech Connect

    Geyer, Sabrina Langbein, A. Meusel, Oliver; Kester, Oliver

    2015-01-09

    For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10{sup −7} A/V{sup 3/2} for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm{sup 2} and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×10{sup 8} charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar{sup 16+}, Kr{sup 30+} and Xe{sup 35+}. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.

  5. Regulation of Spatial Selectivity by Crossover Inhibition

    PubMed Central

    Cafaro, Jon; Rieke, Fred

    2013-01-01

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or “crossover” inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell’s spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs. PMID:23575830

  6. Universal entanglement crossover of coupled quantum wires

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Jacobsen, Jesper; Saleur, Hubert

    2014-03-01

    We consider the entanglement between two one-dimensional quantum wires (Luttinger Liquids) coupled by tunneling through a quantum impurity. The physics of the system involves a crossover between weak and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical studies, but has remained little understood, analytically or even qualitatively. This is, in part, due to the fact that the entanglement in this case is non-perturbative in the tunneling amplitude. We argue that the correct universal scaling form of the entanglement entropy S (for an arbitrary interval containing the impurity) is ∂S / ∂lnL = f(LTB) . In the special case where the coupling to the impurity can be refermionized, we show how the universal function f(LTB) can be obtained analytically using recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are carefully checked against numerical simulations. This work was supported by the the French ANR (ANR Projet 2010 Blanc SIMI 4 : DIME), the US DOE (grant number DE-FG03-01ER45908), the Quantum Materials program of LBNL (RV) and the Institut Universitaire de France (JLJ).

  7. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover.

    PubMed

    Orava, J; Weber, H; Kaban, I; Greer, A L

    2016-05-21

    The temperature-dependent viscosity η(T) is measured for the equilibrium liquid of the chalcogenide Ag-In-Sb-Te (AIST), the first time this has been reported for a material of actual interest for phase-change memory. The measurements, in the range 829-1254 K, are made using an oscillating-crucible viscometer, and show a liquid with high fragility and low viscosity, similar to liquid pure metals. Combining the high-temperature viscosity measurements with values inferred from crystal growth rates in the supercooled liquid allows the form of η(T) to be estimated over the entire temperature range from above the melting point down to the glass transition. It is then clear that η(T) for liquid AIST cannot be described with a single fragility value, unlike other phase-change chalcogenides such as liquid Ge-Sb-Te. There is clear evidence for a fragile-to-strong crossover on cooling liquid AIST, similar to that analyzed in Te85Ge15. The change in fragility associated with the crossover in both these cases is rather weak, giving a broad temperature range over which η(T) is near-Arrhenius. We discuss how such behavior may be beneficial for the performance of phase-change memory. Consideration of the fragile-to-strong crossover in liquid chalcogenides may be important in tuning compositions to optimize the device performance. PMID:27208954

  8. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover

    NASA Astrophysics Data System (ADS)

    Orava, J.; Weber, H.; Kaban, I.; Greer, A. L.

    2016-05-01

    The temperature-dependent viscosity η(T) is measured for the equilibrium liquid of the chalcogenide Ag-In-Sb-Te (AIST), the first time this has been reported for a material of actual interest for phase-change memory. The measurements, in the range 829-1254 K, are made using an oscillating-crucible viscometer, and show a liquid with high fragility and low viscosity, similar to liquid pure metals. Combining the high-temperature viscosity measurements with values inferred from crystal growth rates in the supercooled liquid allows the form of η(T) to be estimated over the entire temperature range from above the melting point down to the glass transition. It is then clear that η(T) for liquid AIST cannot be described with a single fragility value, unlike other phase-change chalcogenides such as liquid Ge-Sb-Te. There is clear evidence for a fragile-to-strong crossover on cooling liquid AIST, similar to that analyzed in Te85Ge15. The change in fragility associated with the crossover in both these cases is rather weak, giving a broad temperature range over which η(T) is near-Arrhenius. We discuss how such behavior may be beneficial for the performance of phase-change memory. Consideration of the fragile-to-strong crossover in liquid chalcogenides may be important in tuning compositions to optimize the device performance.

  9. Electromagnetic pump stator frame having power crossover struts

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1995-01-01

    A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

  10. Crossover ensembles of random matrices and skew-orthogonal polynomials

    SciTech Connect

    Kumar, Santosh; Pandey, Akhilesh

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  11. Stress Crossover in Newlywed Marriage: A Longitudinal and Dyadic Perspective

    ERIC Educational Resources Information Center

    Neff, Lisa A.; Karney, Benjamin R.

    2007-01-01

    Studies of stress and marital quality often assess stress as an intrapersonal phenomenon, examining how spouses' stress may influence their own relationship well-being. Yet spouses' stress also may influence partners' relationship evaluations, a phenomenon referred to as stress crossover. This study examined stress crossover, and conditions that…

  12. Density response of a trapped Fermi gas: A crossover from the pair vibration mode to the Goldstone mode

    SciTech Connect

    Korolyuk, A.; Kinnunen, J. J.; Toermae, P.

    2011-09-15

    We consider the density response of a trapped two-component Fermi gas. Combining the Bogoliubov-deGennes method with the random phase approximation allows the study of both collective and single-particle excitations. Calculating the density response across a wide range of interactions, we observe a crossover from a weakly interacting pair vibration mode to a strongly interacting Goldstone mode. The crossover is associated with a depressed collective mode frequency and an increased damping rate, in agreement with density response experiments performed in strongly interacting atomic gases.

  13. Crossover from Classical to Quantum Kibble-Zurek Scaling

    NASA Astrophysics Data System (ADS)

    Silvi, Pietro; Morigi, Giovanna; Calarco, Tommaso; Montangero, Simone

    2016-06-01

    The Kibble-Zurek (KZ) hypothesis identifies the relevant time scales in out-of-equilibrium dynamics of critical systems employing concepts valid at equilibrium: It predicts the scaling of the defect formation immediately after quenches across classical and quantum phase transitions as a function of the quench speed. Here, we study the crossover between the scaling dictated by a slow quench, which is ruled by the critical properties of the quantum phase transition, and the excitations due to a faster quench, where the dynamics is often well described by the classical model. We estimate the value of the quench rate that separates the two regimes and support our argument using numerical simulations of the out-of-equilibrium many-body dynamics. For the specific case of a ϕ4 model we demonstrate that the two regimes exhibit two different power-law scalings, which are in agreement with the KZ theory when applied to the quantum and classical cases. This result contributes to extending the prediction power of the Kibble-Zurek mechanism and to providing insight into recent experimental observations in systems of cold atoms and ions.

  14. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  15. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  16. Neutrino dynamics below the electroweak crossover

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Laine, M.

    2016-07-01

    We estimate the thermal masses and damping rates of active (m < eV) and sterile (M ~ GeV) neutrinos with thermal momenta k~ 3T at temperatures below the electroweak crossover (5 GeV < T < 160 GeV) . These quantities fix the equilibration or ``washout'' rates of Standard Model lepton number densities. Sterile neutrinos interact via direct scatterings mediated by Yukawa couplings, and via their overlap with active neutrinos. Including all leading-order reactions we find that the washout rate generally exceeds the Hubble rate for 5 GeV < T < 30 GeV . Therefore it is challenging to generate a large lepton asymmetry facilitating dark matter computations operating at T < 5 GeV, whereas the generation of a baryon asymmetry at T > 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.

  17. Shocks generate crossover behavior in lattice avalanches.

    PubMed

    Burridge, James

    2013-11-22

    A spatial avalanche model is introduced, in which avalanches increase stability in the regions where they occur. Instability is driven globally by a driving process that contains shocks. The system is typically subcritical, but the shocks occasionally lift it into a near- or supercritical state from which it rapidly retreats due to large avalanches. These shocks leave behind a signature-a distinct power-law crossover in the avalanche size distribution. The model is inspired by landslide field data, but the principles may be applied to any system that experiences stabilizing failures, possesses a critical point, and is subject to an ongoing process of destabilization that includes occasional dramatic destabilizing events. PMID:24313528

  18. Nonequilibrium spin crossover in copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena

    2016-03-01

    We demonstrate the nonequilibrium tip induced control of the spin state of copper phthalocyanine on an insulator coated substrate. We find that, under the condition of energetic proximity of many-body neutral excited states to the anionic ground state, the system can undergo a population inversion towards these excited states. The resulting state of the system is accompanied by a change in the total spin quantum number. Experimental signatures of the crossover are the appearance of additional nodal planes in the topographical scanning tunneling microscopy images as well as a strong suppression of the current near the center of the molecule. The robustness of the effect against moderate charge conserving relaxation processes has also been tested.

  19. Lattice thermal conductivity crossovers in semiconductor nanowires.

    PubMed

    Mingo, N; Broido, D A

    2004-12-10

    For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites. PMID:15697834

  20. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Lü, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia-Ji

    2015-08-01

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2 D. We find aB≃0.56 a2 D , in good agreement with the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  1. Motion of a Solitonic Vortex in the BEC-BCS Crossover

    NASA Astrophysics Data System (ADS)

    Ku, Mark J. H.; Ji, Wenjie; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Cheuk, Lawrence W.; Yefsah, Tarik; Zwierlein, Martin W.

    2014-08-01

    We observe a long-lived solitary wave in a superfluid Fermi gas of Li6 atoms after phase imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover.

  2. Nucleation of spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC crossover.

    SciTech Connect

    Glatz, A.; Roberts, H.; Aranson, I. S.; Levin, K.

    2011-01-01

    We study the spontaneous formation of vortices during the superfluid condensation in a trapped fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the numerical solution of the time-dependent crossover Ginzburg-Landau equation coupled to the heat diffusion equation. We quantify the evolution of condensate density and vortex length as a function of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat nearer to the BEC regime and should be experimentally observable; during the propagation of the cold front, the increase in condensate density leads to the formation of supercurrents toward the center of the condensate as well as possible condensate volume oscillations.

  3. Spin crossover in ferropericlase from first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Holmstrom, Eero; Stixrude, Lars

    2014-05-01

    Ferropericlase is the second-most abundant mineral of the lower mantle of the Earth. It is experimentally known that with increasing pressure, the iron ions in the mineral begin to collapse from a high-spin to low-spin state. This spin crossover alters various properties of the material, and hence a good theoretical understanding of the phenomenon is necessary. Using first-principles molecular dynamics simulations in conjunction with thermodynamic integration, we construct a phase diagram of the spin crossover as a function of pressure and temperature. In addition, we present the thermal equation of state of the mineral up to 140 GPa and 4000 K, and predict that the electrical conductivity of ferropericlase reaches semi-metallic values within the lower mantle.

  4. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    PubMed Central

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-01-01

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. PMID:26848663

  5. Hydration-dependent dynamic crossover phenomenon in protein hydration water

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fratini, Emiliano; Li, Mingda; Le, Peisi; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2014-10-01

    The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.

  6. Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials.

    SciTech Connect

    Yamakov, V.; Wolf, D.; Phillpot, S. R.; Mukherjee, A. K.; Gleiter, H.; Materials Science Division; Univ. of California-Davis; Forschungszentrum Karlsruhe

    2003-06-01

    We use molecular dynamics simulations to elucidate the transition with decreasing grain size from a dislocation- to a grain-boundary-based deformation mechanism in nanocrystalline fcc metals. Our simulations reveal that this crossover is accompanied by a pronounced transition in the mechanical behaviour of the material; namely, at the grain size where the crossover occurs (the 'strongest size'), the strain rate under tensile elongation goes through a minimum. This simultaneous transition in both the deformation mechanism and the corresponding mechanical behaviour offers an explanation for the experimentally observed crossover in the yield strength of nanocrystalline materials, from Hall-Petch hardening to 'inverse Hall-Petch' softening.

  7. Quantum-to-classical crossover near quantum critical point

    DOE PAGESBeta

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  8. Quantum-to-classical crossover near quantum critical point

    NASA Astrophysics Data System (ADS)

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  9. Quantum-to-classical crossover near quantum critical point

    PubMed Central

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-01-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102

  10. Quantum-to-classical crossover near quantum critical point

    SciTech Connect

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  11. Crystallography and spin-crossover. A view of breathing materials.

    PubMed

    Guionneau, Philippe

    2014-01-14

    The spin-crossover phenomenon (SCO) is a fascinating field that potentially concerns any material containing a (d(4)-d(7)) transition metal complex finding therefore an echo in as diverse research fields as chemistry, physics, biology and geology. Particularly, molecular and coordination-polymers SCO solids are thoroughly investigated since their bistability promises new routes towards a large panel of potential applications including smart pigments, optical switches or memory devices. Notwithstanding these motivating applicative targets, numerous fundamental aspects of SCO are still debated. Among them, the investigation of the structure-property relationships is unfailingly at the heart of the SCO research field. All the facets of the richness of the structural behaviors shown by SCO compounds are only revealed when exploring the whole sample scales -from atomic to macroscopic- all the external stimuli-temperature, pressure, light and any combinations and derived perturbations- and the various forms of the SCO compounds in the solid state -crystalline powders, single-crystals, poorly crystalline or nano-sized particles. Crystallography allows investigating all these aspects of SCO solids. In the past few years, crystallography has certainly been in a significant phase of development pushing the frontiers of investigations, in particular thanks to the progress in X-ray diffraction techniques. The encounter between SCO materials and crystallography is captivating, taking advantages from each other. In this paper, a personal account mainly based on our recent results provides perspectives and new approaches that should be developed in the investigation of SCO materials. PMID:24201509

  12. Vortices and flux tubes: The crossover

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Spiegel, E. A.

    2012-12-01

    The sun has magnetic flux tubes that cause sunspots by locally inhibiting convection near its surface. Jupiter has vortices that make the great red spot and other such blemishes. Why are there no similar vortices on the sun? How is the difference in the two kinds of system controlled by the magnetic Prandtl number? What happens at the crossover between the two behaviors? The transition between velocity and magnetically dominated regimes is the driving question of this work. It should occur somewhere in the enormous range in Prandtl number between the sun and planets like Jupiter. Objects that lie in between these vastly different extremes are Brown Dwarfs that have such low mass that they do not burn hydrogen in their cores. These objects are now being actively observed though there is as yet no direct evidence bearing on the present calculations. Other possibly interesting conditions may arise in certain disks around newborn stars where planetary systems are thought to be forming. These may be cool enough to place them in an interesting parameter range for the competition we describe. Using 2D calculations, we seek a quantitative measure of the relative importance of the two vector fields seen in the calculations, statistical or spectral, topological or structural.

  13. Microelectromechanical systems integrating molecular spin crossover actuators

    NASA Astrophysics Data System (ADS)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  14. Electrostatically-tuned dimensional crossover in nanowires

    NASA Astrophysics Data System (ADS)

    Tomczyk, Michelle; Cheng, Guanglei; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    The electron system at the interface of two complex oxides, LaAlO3 and SrTiO3, exhibits a number of interesting strongly-correlated electronic properties, such as superconductivity and spin-orbit coupling. Reduced dimensionality is made accessible through nanowire devices created with conducting AFM lithography. Here, we describe an electrostatically-controlled dimensionality crossover in weak antilocalization behavior of LaAlO3/SrTiO3 nanowires at low temperature. These measurements give insight to the interplay of spin-orbit coupling and dimensionality. Characterizing the behavior of the strongly-correlated electronic properties in these reduced dimensions is necessary in order to develop this system as a multifunctional nanoelectronics platform. We gratefully acknowledge financial support from the following agencies and grants: ARO (W911NF-08-1-0317), AFOSR FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE), and NSF (DMR-1104191, DMR-1124131 (JL), ONR N00014-15-1-2847 (JL) and DMR-1234096 (CBE).

  15. Laser frequency stabilization using bichromatic crossover spectroscopy

    SciTech Connect

    Jeong, Taek; Seb Moon, Han

    2015-03-07

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S{sub 1/2} → 5P{sub 1/2} transition of {sup 87}Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S{sub 1/2} → 5P{sub 1/2} transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S{sub 1/2}(F = 1 and 2) → 5P{sub 1/2}(F′ = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10{sup −10} at 1 s.

  16. Electronic Spin Crossover of Iron in Ferroperclase in Earth?s Lower Mantle

    SciTech Connect

    Lin, J F; Vanko, G; Jacobsen, S D; Iota, V; Struzhkin, V V; Prakapenka, V B; Kuznetsov, A; Yoo, C S

    2007-01-25

    Pressure-induced electronic spin-pairing transitions of iron and associated effects on the physical properties have been reported to occur in the lower-mantle ferropericlase, silicate perosvkite, and perhaps in post silicate perovskite at high pressures and room temperature. These recent results are motivating geophysicists and geodynamicists to reevaluate the implications of spin transitions on the seismic heterogeneity, composition, as well as the stability of the thermal upwellings of the Earth's lower mantle. Here we have measured the spin states of iron in ferropericlase and its crystal structure up to 95 GPa and 2000 K using a newly constructed X-ray emission spectroscopy and diffraction with the laser-heated diamond cell. Our results show that an isosymmetric spin crossover occurs over a pressure-temperature range extending from the upper part to the lower part of the lower mantle, and low-spin ferropericlase likely exists in the lowermost mantle. Although continuous changes in physical and chemical properties are expected to occur across the spin crossover, the spin crossover results in peculiar behavior in the thermal compression and sound velocities. Therefore, knowledge of the fraction of the spin states in the lower-mantle phases is thus essential to correctly evaluate the composition, geophysics, and dynamics of the Earth's lower mantle.

  17. Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, Lars; Holmstrom, Eero

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).

  18. High-order jamming crossovers and density anomalies.

    PubMed

    Pica Ciamarra, Massimo; Sollich, Peter

    2013-10-28

    We demonstrate that particles interacting via core-softened potentials exhibit a series of successive density anomalies upon isothermal compression, leading to oscillations in the diffusivity and thermal expansion coefficient, with the latter reaching negative values. These finite-temperature density anomalies are then shown to correspond to zero-temperature high-order jamming crossovers. These occur when particles are forced to come into contact with neighbours in successive coordination shells upon increasing the density. The crossovers induce anomalous behavior of the bulk modulus, which oscillates with density. We rationalize the dependence of these crossovers on the softness of the interaction potential, and relate the jamming crossovers and the anomalous diffusivity via the properties of the vibrational spectrum. PMID:26029762

  19. MS-Electronic Nose Performance Improvement Using GC Retention Times And 2-Way And 3-Way Data Processing Methods

    SciTech Connect

    Burian, Cosmin; Llobet, Eduard; Vilanova, Xavier; Canellas, Nicolau; Brezmes, Jesus; Vinaixa, Maria; Correig, Xavier

    2009-05-23

    We have designed a challenging experimental sample set in the form of 20 solutions with a high degree of similarity in order to study whether the addition of chromatographic separation information improves the performance of regular MS based electronic noses. In order to make an initial study of the approach, two different chromatographic methods were used. By processing the data of these experiments with 2 and 3-way algorithms, we have shown that the addition of chromatographic separation information improves the results compared to the 2-way analysis of mass spectra or total ion chromatogram treated separately. Our findings show that when the chromatographic peaks are resolved (longer measurement times), 2-way methods work better than 3-way methods, whereas in the case of a more challenging measurement (more coeluted chromatograms, much faster GC-MS measurements) 3-way methods work better.

  20. Spin-Crossover Molecular Solids Beyond Rigid Crystal Approximation.

    PubMed

    Gudyma, Iurii V; Ivashko, Victor V

    2016-12-01

    The qualitative analysis of the spin-crossover molecular solid with distortion effect is presented. A spin-crossover solid with effect of distortion is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on inter-ion interaction is considered. These considerations lead to examination of the relation between the primary and secondary order parameters during temperature and pressure changes. PMID:27075338

  1. Spin-Crossover Molecular Solids Beyond Rigid Crystal Approximation

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii V.; Ivashko, Victor V.

    2016-04-01

    The qualitative analysis of the spin-crossover molecular solid with distortion effect is presented. A spin-crossover solid with effect of distortion is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on inter-ion interaction is considered. These considerations lead to examination of the relation between the primary and secondary order parameters during temperature and pressure changes.

  2. The kinetochore prevents centromere-proximal crossover recombination during meiosis.

    PubMed

    Vincenten, Nadine; Kuhl, Lisa-Marie; Lam, Isabel; Oke, Ashwini; Kerr, Alastair Rw; Hochwagen, Andreas; Fung, Jennifer; Keeney, Scott; Vader, Gerben; Marston, Adèle L

    2015-01-01

    During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes. PMID:26653857

  3. The kinetochore prevents centromere-proximal crossover recombination during meiosis

    PubMed Central

    Vincenten, Nadine; Kuhl, Lisa-Marie; Lam, Isabel; Oke, Ashwini; Kerr, Alastair RW; Hochwagen, Andreas; Fung, Jennifer; Keeney, Scott; Vader, Gerben; Marston, Adèle L

    2015-01-01

    During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10850.001 PMID:26653857

  4. A Placebo-Controlled, Multicenter, Randomized, Double-Blind, Flexible-Dose, Two-Way Crossover Study to Evaluate the Efficacy and Safety of Sildenafil in Men With Traumatic Spinal Cord Injury and Erectile Dysfunction

    PubMed Central

    Ergin, Sureyya; Gunduz, Berrin; Ugurlu, Hatice; Sivrioglu, Koncuy; Oncel, Sema; Gok, Haydar; Erhan, Belgin; Levendoglu, Funda; Senocak, Ozlem

    2008-01-01

    Background/Objective: To show the efficacy, safety, and tolerability of sildenafil in men with erectile dysfunction (ED) associated with complete or incomplete spinal cord injury (SCI) and to assess its effects on quality of life (QoL) using the Life-Satisfaction Check List. Methods: This was a placebo-controlled, multicenter, randomized, double-blind, flexible-dose, 2-way crossover study with a 2-week washout period between each phase. Patients with ED attributable to SCI (Sexual Health Inventory—Male score ≤21) received 50 to 100 mg sildenafil (n = 24) or placebo (n = 26). Results: Compared with placebo, sildenafil produced higher levels of successful sexual stimulation, intercourse success, satisfaction with sexual life and sexual relationship, erectile function, overall sexual satisfaction, and an improved Erectile Dysfunction Inventory of Treatment Satisfaction score, with no clinically relevant effects on vital signs. Sildenafil seemed more effective in patients with incomplete SCI than in those with complete SCI, producing significant improvements, compared with placebo, in a number of measures only in patients with incomplete SCI. All patients who expressed a preference selected sildenafil over placebo, although the drug had no effect on patient QoL. Sildenafil was well tolerated, with a profile comparable to that of placebo. Conclusions: Compared with placebo, treatment with oral sildenafil safely and effectively improved erectile function in patients with ED attributable to SCI, especially in those with incomplete injury, and was the agent of choice in those who expressed a preference. PMID:19086709

  5. Crossover Cutting During Hamstring Fatigue Produces Transverse Plane Knee Control Deficits

    PubMed Central

    Nyland, John A.; Caborn, David N.M.; Shapiro, Robert; Johnson, Darren L.

    1999-01-01

    Objective: To assess the effects of eccentric work-induced hamstring fatigue on sagittal and transverse plane (axial) knee and ankle biodynamics and kinetics during a running crossover cut directional change (functional pivot shift). Design and Setting: A pretest-posttest, single-group intervention experimental design was employed. All data were collected in a biodynamics laboratory. Subjects: Twenty healthy athletic females were trained for 3 weeks in crossover cutting before testing. Measurements: Data were sampled during 3 unfatigued and 3 fatigued (20% eccentric isokinetic knee-flexor torque reduction) crossover cut trials. Three-dimensional kinematic and ground reaction-force data were sampled at 200 Hz and 1000 Hz, respectively, and joint moment estimates were calculated. Data were standardized to initial force-plate heelstrike for comparisons of mean differences between conditions using paired t tests with Bonferroni adjustments. Pearson product-moment correlations compared kinematic and eccentric hamstring-torque relationships. Results: During internal rotation phase 1, between heelstrike and impact absorption, mean internal rotation velocity increased by 21.2°/s ± 114°/s. During internal rotation phase II, mean peak transverse plane knee rotation during propulsion decreased by 3.1° ± 9°. During internal rotation phase II, mean peak ankle plantar flexor moment onsets occurred 12.7 ± 53 milliseconds earlier, and this activation demonstrated a moderately positive relationship with the onset of mean peak knee internal rotation during propulsion and a weak negative relationship with mean peak hamstring torque/lean body weight. Conclusions: The increased knee internal rotation velocity during phase I indicates transverse plane dynamic knee-control deficits during hamstring fatigue. Earlier peak ankle plantar-flexor moments and decreased internal rotation during phase II in the presence of hamstring fatigue may represent compensatory attempts at dynamic

  6. Exotic superfluid of trapped Fermi gases with spin–orbit coupling in dimensional crossover

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Shi, Cheng; Zhou, Xiang-Fa; Wen, Lin; Chen, Peng; Li, Deng-Feng

    2016-06-01

    We investigate the ground state properties of Fermi gases in a planar array of one-dimensional potential tubes with spin–orbit coupling where the motion of atoms is free in the \\hat{{x}}-direction and the tunneling between nearest tubes in the \\hat{{y}}-direction is permitted. By using the mean-field method, the phase diagrams of the system at the dimensional crossover from quasi-one dimension to quasi-two dimensions is obtained. We find the existence of the topological state and Majorana mode in the weak tunneling case, and a rich phase diagram including two kinds of nodal superfluid phase and gapped superfluid phase, in the opposite case. The results show that topological pairing is favored in quasi-one dimension while nodal pairing state is favored in quasi-two dimensions.

  7. Transient regimes and crossover for epitaxial surfaces.

    PubMed

    Haselwandter, Christoph A; Vvedensky, Dimitri D

    2010-02-01

    We apply a formalism for deriving stochastic continuum equations associated with lattice models to obtain equations governing the transient regimes of epitaxial growth for various experimental scenarios and growth conditions. The first step of our methodology is the systematic transformation of the lattice model into a regularized stochastic equation of motion that provides initial conditions for differential renormalization-group (RG) equations for the coefficients in the regularized equation. The solutions of the RG equations then yield trajectories that describe the original model from the transient regimes, which are of primary experimental interest, to the eventual crossover to the asymptotically stable fixed point. We first consider regimes defined by the relative magnitude of deposition noise and diffusion noise. If the diffusion noise dominates, then the early stages of growth are described by the Mullins-Herring (MH) equation with conservative noise. This is the classic regime of molecular-beam epitaxy. If the diffusion and deposition noise are of comparable magnitude, the transient equation is the MH equation with nonconservative noise. This behavior has been observed in a recent report on the growth of aluminum on silicone oil surfaces [Z.-N. Fang, Thin Solid Films 517, 3408 (2009)]. Finally, the regime where deposition noise dominates over diffusion noise has been observed in computer simulations, but does not appear to have any direct experimental relevance. For initial conditions that consist of a flat surface, the Villain-Lai-Das Sarma (VLDS) equation with nonconservative noise is not appropriate for any transient regime. If, however, the initial surface is corrugated, the relative magnitudes of terms can be altered to the point where the VLDS equation with conservative noise does indeed describe transient growth. This is consistent with the experimental analysis of growth on patterned surfaces [H.-C. Kan, Phys. Rev. Lett. 92, 146101 (2004); T

  8. Long-wavelength fluctuations lead to a model of the glass crossover

    NASA Astrophysics Data System (ADS)

    Rizzo, Tommaso

    2014-06-01

    The effect of long-wavelength fluctuations on the Mode-Coupling-Theory (MCT) dynamical singularity at Tc in the β-regime is studied by means of the standard field-theoretical procedure for a genuine second-order phase transition. The resulting perturbative loop expansion can be resummed leading to an extension of the MCT equation for the critical correlator with local random fluctuations of the separation parameter. The corresponding model explains both qualitatively and quantitatively why the MCT dynamical singularity is transformed into a crossover from relaxational to activated dynamics. Dynamical Heterogeneities emerge naturally as the ergodicity-restoring mechanism instead of ad hoc hopping processes.

  9. Josephson effect in fermionic superfluids across the BEC-BCS crossover

    NASA Astrophysics Data System (ADS)

    Valtolina, Giacomo; Burchianti, Alessia; Amico, Andrea; Neri, Elettra; Xhani, Klejdja; Seman, Jorge Amin; Trombettoni, Andrea; Smerzi, Augusto; Zaccanti, Matteo; Inguscio, Massimo; Roati, Giacomo

    2015-12-01

    The Josephson effect is a macroscopic quantum phenomenon that reveals the broken symmetry associated with any superfluid state. Here we report on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We show that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids.

  10. Josephson effect in fermionic superfluids across the BEC-BCS crossover.

    PubMed

    Valtolina, Giacomo; Burchianti, Alessia; Amico, Andrea; Neri, Elettra; Xhani, Klejdja; Seman, Jorge Amin; Trombettoni, Andrea; Smerzi, Augusto; Zaccanti, Matteo; Inguscio, Massimo; Roati, Giacomo

    2015-12-18

    The Josephson effect is a macroscopic quantum phenomenon that reveals the broken symmetry associated with any superfluid state. Here we report on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We show that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids. PMID:26680193

  11. [Case-crossover design: Basic essentials and applications].

    PubMed

    Carracedo-Martínez, Eduardo; Tobías, Aurelio; Saez, Marc; Taracido, Margarita; Figueiras, Adolfo

    2009-01-01

    Case-crossover analysis is an observational epidemiological design that was proposed by Maclure in 1991 to assess whether a given intermittent or unusual exposure may have triggered an immediate short-term, acute event. The present article outlines the basics of case-crossover designs, as well as their applications and limitations. The case-crossover design is based on exclusively selecting case subjects. To calculate relative risk, exposure during the period of time prior to the event (case period) is compared against the same subject's exposure during one or more control periods. This method is only appropriate when the exposures are transient in time and have acute short-term effects. For exposures in which there is no trend, a unidirectional approach is the most frequent and consists of selecting one or more control periods prior to the case period. When the exposure displays a time trend (e.g., air pollution), a unidirectional approach will yield biased estimates, and therefore bidirectional case-crossover designs are used, which select control time intervals preceding and subsequent to that of the event. The case-crossover design is being increasingly used across a wide range of fields, including factors triggering traffic, occupational and domestic accidents and acute myocardial infarction, and those involved in air pollution and health and pharmacoepidemiology, among others. Insofar as data-analysis is concerned, case-crossover designs can generally be regarded as matched case-control studies and consequently conditional logistic regression can be applied. Lastly, this study analyzes practical examples of distinct applications of the case-crossover design. PMID:19303669

  12. Electronic structure in the crossover regimes in lower dimensional structures

    NASA Astrophysics Data System (ADS)

    Batabyal, R.; Dev, B. N.

    2014-11-01

    Modern growth and fabrication techniques can produce lower dimensional structures in the crossover regimes. Such structures in the crossover regimes can provide tunability of various properties of materials. For example, a zero-dimensional (0-D) structure (quantum dot) evolving towards a 3-D structure (bulk) shows electronic structure, which is neither 0-D-like, nor 3-D-like in the dimensional crossover regime. Within the crossover regime the electronic density of states (DOS) at Fermi level (Ef) keeps on changing as the size of the system changes. DOS at Ef determines many properties of materials, such as electronic specific heat, spin susceptibility, etc. Such properties can be tuned by controlling the size of the system in the crossover regimes. Keeping the importance of DOS at Ef in mind, we determine their values and other details of electronic structure of lower dimensional structures, in the 0-D to 1-D, 1-D to 2-D, 2-D to 3-D, 0-D to 2-D, 0-D to 3-D and 1-D to 3-D crossover regimes, in a simple free electron model. We compare our results with analytical theory and experimental results, wherever available. We also present some results obtained by scanning tunneling spectroscopy measurements on Ag islands on Si(1 1 1) substrates evolving from a 0-D to a 2-D structure. This simple model is quite useful in understanding lower dimensional structures in the crossover regimes and, in general, in nanoscale science. Fabrication of such structures would provide control on materials properties.

  13. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  14. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    SciTech Connect

    Suzuki, Atsushi; Iguchi, Motoi; Oku, Takeo; Fujiwara, Motoyasu

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.

  15. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W.

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  16. Temperature dependence of the pair coherence and healing lengths for a fermionic superfluid throughout the BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Palestini, F.; Strinati, G. C.

    2014-06-01

    We calculate the pair correlation function and the order parameter correlation function, which probe, respectively, the intrapair and interpair correlations of a Fermi gas with attractive interparticle interaction, in terms of a diagrammatic approach as a function of coupling throughout the BCS-Bose-Einstein condensation (BEC) crossover and of temperature, both in the superfluid and normal phase across the critical temperature Tc. Several physical quantities are obtained from this calculation, including the pair coherence and healing lengths, the Tan's contact, the crossover temperature T* below which interpair correlations begin to build up in the normal phase, and the signature for the disappearance of the underlying Fermi surface which tends to survive in spite of pairing correlations. A connection is also made with recent experimental data on the temperature dependence of the normal coherence length as extracted from the proximity effect measured in high-temperature (cuprate) superconductors.

  17. A Link between Meiotic Prophase Progression and CrossoverControl

    SciTech Connect

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  18. A Link between Meiotic Prophase Progression and Crossover Control

    PubMed Central

    Carlton, Peter M; Farruggio, Alfonso P; Dernburg, Abby F

    2006-01-01

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency. PMID:16462941

  19. The first jamming crossover: geometric and mechanical features.

    PubMed

    Pica Ciamarra, Massimo; Sollich, Peter

    2013-03-28

    The jamming transition characterizes athermal systems of particles interacting via finite range repulsive potentials, and occurs on increasing the density when particles cannot avoid making contacts with those of their first coordination shell. We have recently shown [M. Pica Ciamarra and P. Sollich, e-print arXiv:1209.3334] that the same systems are also characterized by a series of jamming crossovers. These occur at higher volume fractions as particles are forced to make contact with those of subsequent coordination shells. At finite temperature, the crossovers give rise to dynamic and thermodynamic density anomalies, including a diffusivity anomaly and a negative thermal expansion coefficient. Density anomalies may therefore be related to structural changes occurring at the jamming crossovers. Here we elucidate these structural changes, investigating the evolution of the structure and of the mechanical properties of a jammed system as its volume fraction varies from the jamming transition to and beyond the first jamming crossover. We show that the first jamming crossover occurs at a well defined volume fraction, and that it induces a rearrangement of the force network causing a softening of the system. It also causes qualitative changes in the normal mode density of states and the spatial properties of the normal mode vectors. PMID:23556780

  20. The first jamming crossover: Geometric and mechanical features

    NASA Astrophysics Data System (ADS)

    Ciamarra, Massimo Pica; Sollich, Peter

    2013-03-01

    The jamming transition characterizes athermal systems of particles interacting via finite range repulsive potentials, and occurs on increasing the density when particles cannot avoid making contacts with those of their first coordination shell. We have recently shown [M. Pica Ciamarra and P. Sollich, e-print arXiv:1209.3334] that the same systems are also characterized by a series of jamming crossovers. These occur at higher volume fractions as particles are forced to make contact with those of subsequent coordination shells. At finite temperature, the crossovers give rise to dynamic and thermodynamic density anomalies, including a diffusivity anomaly and a negative thermal expansion coefficient. Density anomalies may therefore be related to structural changes occurring at the jamming crossovers. Here we elucidate these structural changes, investigating the evolution of the structure and of the mechanical properties of a jammed system as its volume fraction varies from the jamming transition to and beyond the first jamming crossover. We show that the first jamming crossover occurs at a well defined volume fraction, and that it induces a rearrangement of the force network causing a softening of the system. It also causes qualitative changes in the normal mode density of states and the spatial properties of the normal mode vectors.

  1. Crossover Analysis of CHANG'E-1 Laser Altimeter Data

    NASA Astrophysics Data System (ADS)

    Hu, W.; Yue, Z.; Di, K.

    2011-08-01

    This paper presents a preliminary result of crossover analysis and adjustment of Chang'E-1(CE-1) Laser Altimeter (LAM) data of the Moon for global and regional mapping applications. During the operation of Chang'E-1 from November 28, 2007 to December 4, 2008, the laser altimeter acquired 1400 orbital profiles with about 9.12 million altimetric points. In our experiment, we derived more than 1.38 million crossovers from 1395 ground tracks covering the entire lunar surface after eliminating outliers of orbits and altimetric points. A method of least-squares crossover adjustment with a series of basis functions of time (trigonometric functions and polynomials) is developed to reconcile the LAM data by minimizing the crossover residuals globally. The normal equations are very large but sparse; therefore they are stored and solved using sparse matrix technique. In a test area (0°N~60°N, 50°W~0°W), the crossover residuals are reduced from 62.1m to 32.8m, and the quality of the DEM generated from the adjusted LAM data is improved accordingly. We will optimize the method for the global adjustment to generate a high precision consistent global DEM, which can be used as absolute control for lunar mapping with orbital images.

  2. Orbital Transfer Vehicle Engine Technology High Velocity Ratio Diffusing Crossover

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.

  3. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  4. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE PAGESBeta

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  5. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    SciTech Connect

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  6. Hadron-quark crossover and hot neutron stars at birth

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-02-01

    We construct a new isentropic equation of state (EOS) at finite temperature, "Rover," on the basis of the hadron-quark crossover at high density. By using the new EOS, we study the structure of hot neutron stars at birth with typical lepton fraction (Y_l=0.3-0.4) and typical entropy per baryon (hat {S}=1{-}2). Due to the gradual appearance of quark degrees of freedom at high density, the temperature T and the baryon density ρ at the center of hot neutron stars with hadron-quark crossover are found to be smaller than those without the crossover by a factor of two or more. Typical energy release due to the contraction of a hot neutron star to a cold neutron star with mass M=1.4 M_{⊙} is shown to be about 0.04 M_{⊙}, with a spin-up rate of about 14%.

  7. Licensing MLH1 sites for crossover during meiosis.

    PubMed

    Martín, Azahara C; Shaw, Peter; Phillips, Dylan; Reader, Steve; Moore, Graham

    2014-01-01

    During meiosis, homologous chromosomes synapse and recombine at sites marked by the binding of the mismatch repair protein MLH1. In hexaploid wheat, the Ph1 locus has a major effect on whether crossover occurs between homologues or between related homoeologues. Here we report that--in wheat-rye hybrids where homologues are absent--Ph1 affects neither the level of synapsis nor the number of MLH1. Thus in the case of wheat-wild relative hybrids, Ph1 must affect whether MLH1 sites are able to progress to crossover. The observed level of synapsis implies that Ph1 functions to promote homologue pairing rather than suppress homoeologue pairing in wheat. Therefore, Ph1 stabilises polyploidy in wheat by both promoting homologue pairing and preventing MLH1 sites from becoming crossovers on paired homoeologues during meiosis. PMID:25098240

  8. Interpretation and bias in case-crossover studies.

    PubMed

    Redelmeier, D A; Tibshirani, R J

    1997-11-01

    The case-crossover design is an innovative epidemiologic technique with distinct strengths and limitations. We review the fundamental logic of this self-matching non-randomized design and direct attention to 15 concerns related to the available data, unavailable data, analytic technique, quantitative statistics, and etiologic model. Implications for each concern are discussed in the context of a recent report on whether cellular telephone calls are associated with an increased risk of a motor vehicle collision. We suggest that an understanding of the case-crossover design may help investigators explore selected questions in behavioral medical research. PMID:9393384

  9. Sound modes at the BCS-BEC crossover

    SciTech Connect

    Heiselberg, H.

    2006-01-15

    First and second sound speeds are calculated for a uniform superfluid gas of Fermi atoms as a function of temperature, density, and interaction strength. The second sound speed is of particular interest as it is a clear signal of a superfluid component and it determines the critical temperature. The sound modes and their dependence on density, scattering length, and temperature are calculated in the BCS, molecular Bose-Einstein condensate (BEC), and unitarity limits and a smooth crossover is extrapolated. It is found that first and second sounds undergo avoided crossing on the BEC side due to mixing. Consequently, they are detectable at crossover both as density and thermal waves in traps.

  10. Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Konabe, Satoru; Shiomi, Junichiro; Maruyama, Shigeo

    2009-09-01

    We present a theoretical scheme that seamlessly handles the crossover from fully ballistic to diffusive thermal transport regimes and apply it to carbon nanotubes. At room temperature, micrometer-length nanotubes belong to the intermediate regime in which ballistic and diffusive phonons coexist. According to our scheme, the thermal conductance of these nanotubes exhibit anomalous nonlinear dependence of tube length due to this coexistence. This result is in excellent agreement with molecular-dynamics simulation results showing the nonlinear thermal conductance. Additionally, we clarify the mechanism of crossover in terms of the length-dependent characteristic frequency.

  11. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments.

    PubMed

    Corradini, D; Rovere, M; Gallo, P

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones. PMID:26395714

  12. Spin-Polarized Fermi Gases in 1D, 3D, and Crossover Regimes

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Olsen, Ben A.; Hulet, Randall G.

    2015-05-01

    We report recent results on mapping the superfluid transition as a function of atomic interaction and global spin polarization in a two-component, 3D gas of fermionic lithium. The atomic interactions are controlled using a Feshbach resonance to tune between the strongly interacting BEC regime and the weakly interacting BCS regime. Previously, a 3D gas was found to have an unpolarized superfluid core that is enclosed by polarized shells. By applying a 2D optical lattice we confine our gas in one-dimensional tubes. In this 1D gas, in contrast to the 3D gas, we found a partially polarized superfluid core and either fully polarized or fully paired wings depending on the overall spin polarization. In the current experiment, we have mapped the phase diagram of the 1D/3D crossover by increasing the inter-tube coupling. The exotic superfluid state, FFLO, is predicted to occupy a large portion of the phase diagram in the crossover regime, making it an ideal location in parameter space for its detection. ARO, NSF, ONR, and The Welch Foundation.

  13. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    SciTech Connect

    Corradini, D.; Rovere, M.; Gallo, P.

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  14. Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.

    PubMed

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-21

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis. PMID:25479506

  15. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    NASA Astrophysics Data System (ADS)

    Corradini, D.; Rovere, M.; Gallo, P.

    2015-09-01

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  16. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    dynamics of the water molecules in the solution is observed in the single-particle relaxational dynamics in the μeV (nanosecond) time scale, but not in the collective dynamics on the meV (picosecond) time scale. Mallamace et al discuss the dynamic crossover phenomenon in both bulk water and protein hydration water. They collect previous and new experimental data from different experimental techniques and molecular dynamic simulations, and are able to develop a unified picture for the different dynamical findings. Gallo et al present a MD study of confined water in MCM-41S-15 in order to test the applicability of Mode Coupling Theory (MCT) to the dynamics of the hydration water confined in the cylindrical pores of nominal diameter 15 Å. They find that the self dynamics of the hydration water is well described by MCT down to the crossover temperature TC. However, below TC the predictions of idealized MCT no longer apply, since hopping processes intervene and water turns into a strong liquid. Soper raises some questions as to the validity of the analysis method employed to determine the density of water confined in porous silica material MCM-41-S15 from recent neutron scattering experiments. Professors Stanley, Franzese and his collaborators describe an efficient Monte Carlo simulation of a coarse-grained model of water to study the phase diagram of a water monolayer confined in a fixed disordered matrix of hydrophobic nanoparticles between two hydrophobic plates. They find a drastic change of phase behavior of the confined water, such as shortening of the liquid-liquid phase transition line, upon increasing the concentration of the hydrophobic nano-particles. Sciortino and collaborators compute the equilibrium phase diagram of two simple models for patchy particles with three and five patches in a very broad range of pressure and temperature. The three-patch model produces a stable gas-liquid critical point. Yun Liu et al investigate, via small angle neutron scattering and

  17. Estimating crossover frequencies and testing for numerical interference with highly polymorphic markers

    SciTech Connect

    Ott, J.

    1996-12-31

    Interference maybe viewed as having two aspects, numerical interference referring to the numbers of crossovers occurring, and positional interference referring to the positions of crossovers. Here, the focus is on numerical interference and on methods of testing for its presence. A dense map of highly polymorphic markers is assumed so that each crossover can be observed. General relationships are worked out between crossover distributions and underlying chiasma distributions. It is shown that crossover distributions may be invalid, and methods are developed to estimate valid crossover distributions from observed counts of crossovers. Based on valid estimates of crossover distributions, tests for interference and development of empirical map functions are outlined. The methods are applied to published data on human chromosomes 9 and 19. 16 refs., 1 fig., 3 tabs.

  18. Crossover dynamics at large metastability in gas-liquid nucleation.

    PubMed

    Santra, Mantu; Bagchi, Biman

    2011-03-01

    We have developed an alternate description of dynamics of nucleation in terms of an extended set of order parameters. The order parameters consist of an ordered set of kth largest clusters, ordered such that k= 1 is the largest cluster in the system, k= 2 is the second largest cluster, and so on. We have derived an analytic expression for the free energy for the kth largest cluster, which is in excellent agreement with the simulated results. At large supersaturation, the free energy barrier for the growth of the kth largest cluster disappears and the nucleation becomes barrierless. The major success of this extended theoretical formalism is that it can clearly explain the observed change in mechanism at large metastability [P. Bhimalapuram et al., Phys. Rev. Lett. 98, 206104 (2007)] and the associated dynamical crossover. The classical nucleation theory cannot explain this crossover. The crossover from activated to barrierless nucleation is found to occur at a supersaturation where multiple clusters cross the critical size. We attribute the crossover as the onset of the kinetic spinodal. We have derived an expression for the rate of nucleation in the barrierless regime by modeling growth as diffusion on the free energy surface of the largest cluster. The model reproduces the slower increase in the rate of growth as a function of supersaturation, as observed in experiments. PMID:21517508

  19. Ligand Induced Spin Crossover in Penta-Coordinated Ferric Dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Ganguli, P.; Iyer, R. M.

    1981-09-01

    On addition of lewis bases to Fe(dtc)2X, ligand exchange takes place through a SN2 mechanism, with a parallel spin crossover in the ferric ion. The two species (S = 3/2 and S = 5/2) formed are in dynamic chemical equilibrium, and a slow decomposition is then initiated.

  20. 50 CFR 660.120 - Trawl fishery-crossover provisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Trawl fishery-crossover provisions. 660.120 Section 660.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West...

  1. 50 CFR 660.120 - Trawl fishery-crossover provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Trawl fishery-crossover provisions. 660.120 Section 660.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West...

  2. 50 CFR 660.120 - Trawl fishery-crossover provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Trawl fishery-crossover provisions. 660.120 Section 660.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West...

  3. 50 CFR 660.120 - Trawl fishery-crossover provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Trawl fishery-crossover provisions. 660.120 Section 660.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West...

  4. 50 CFR 660.120 - Trawl fishery-crossover provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Trawl fishery-crossover provisions. 660.120 Section 660.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West...

  5. Crossover between work and home in dyadic partner relationships.

    PubMed

    Dikkers, Josje S E; Geurts, Sabine A E; Kinnunen, Ulla; Kompier, Michiel A J; Taris, Toon W

    2007-12-01

    This study aimed at providing insight into the processes underlying crossover between "work" and "home" in dyadic partner relationships. Specifically, we examined to what extent husbands' work demands (work load and overtime hours) and psychological health (fatigue and depressive symptoms) "cross over" to their wives' home demands (home load) and psychological health. These associations were investigated among three couple groups, based on wives' working hours (i.e., more than 20 hours per week, from 1 to 20 hours per week, and not engaged in paid work) (253 couples in total). All husbands worked for at least 35 hours a week. Three possible crossover mechanisms were hypothesized: (i) time-based, (ii) strain-based, and (iii) empathy-based crossover. The results partially supported mechanisms (i) and (ii): when husbands reported higher work load (mechanism i) and more psychological health complaints (mechanism ii), their wives experienced higher home load. The results further supported mechanism (iii) that wives' and husbands' psychological health were associated. It is concluded that crossover from husbands to wives may occur through various mechanisms. PMID:18028075

  6. Crossover Improvement for the Genetic Algorithm in Information Retrieval.

    ERIC Educational Resources Information Center

    Vrajitoru, Dana

    1998-01-01

    In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…

  7. Academic Crossover Study, University of Hawaii Community Colleges, Fall 1999.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Office of the Chancellor for Community Colleges.

    The academic crossover study was developed to answer two questions: (1) What is the course-taking pattern of the different groups of academic majors? (e.g. what is proportion of academic load taken outside the major); and (2) What is the client-serving pattern of the different subject disciplines? (e.g. what are the groups of students served by…

  8. Size-dependent dielectrophoretic crossover frequency of spherical particles.

    PubMed

    Weng, Ping-You; Chen, I-An; Yeh, Che-Kai; Chen, Pin-Yi; Juang, Jia-Yang

    2016-01-01

    Dielectrophoresis (DEP) has been extensively used in lab-on-a-chip systems for trapping, separating, and manipulating of micro particles suspended in a liquid medium. The most widely used analytic model, the dipole model, provides an accurate prediction on the crossover frequency of submicron particles, but cannot explain the significant drop in crossover frequency of larger particles. Here, we present numerical simulations using the Maxwell stress tensor (MST) and finite element method to study the size effect of the DEP crossover frequency of spherical polystyrene particles suspended in de-ionized water. Our results show that the surface conductance due to the electrical double layer plays a key role, and the size dependency of crossover frequency obtained by the MST method agrees reasonably well with published experimental data. The exponents of the power law are approximately -1.0 and -4.3 for smaller (diameter < 4.6 μm) and larger particles (diameter  > 4.6 μm), respectively. The free surface charge distribution reveals that the charge begins accumulating on the particle equator for particle diameters larger than a critical diameter of 4.6 μm, a result not captured by the dipolar approximation. This method may be extended to analyze bioparticles with complex shapes and composition, and provides new insights into the interpretation of dielectrophoresis applications using lab-on-a-chip systems. PMID:26909121

  9. Ergodic crossover in partially self-avoiding stochastic walks

    NASA Astrophysics Data System (ADS)

    Berbert, Juliana M.; González, Rodrigo Silva; Martinez, Alexandre Souto

    2013-09-01

    Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs in one dimension at a well-defined memory value μ1=log2N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (Np) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters μ, T, and Np. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms.

  10. Ergodic crossover in partially self-avoiding stochastic walks.

    PubMed

    Berbert, Juliana M; González, Rodrigo Silva; Martinez, Alexandre Souto

    2013-09-01

    Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs in one dimension at a well-defined memory value μ_{1}=log_{2}N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (N_{p}) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters μ, T, and N_{p}. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms. PMID:24125225

  11. Uniform spin susceptibility and spin-gap phenomenon in the BCS-BEC-crossover regime of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Kashimura, Takashi; Hanai, Ryo; Watanabe, Ryota; Ohashi, Yoji

    2014-03-01

    We investigate the uniform spin susceptibility χs in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an ultracold Fermi gas. Including pairing fluctuations within the framework of an extended T-matrix approximation, we show that χs exhibits nonmonotonic temperature dependence in the normal state. In particular, χs is suppressed near the superfluid phase transition temperature Tc due to strong pairing fluctuations. To characterize this anomalous behavior, we introduce the spin-gap temperature Ts as the temperature at which χs takes a maximum value. Determining Ts in the whole BCS-BEC crossover region, we identify the spin-gap regime in the phase diagram of a Fermi gas in terms of the temperature and the strength of a pairing interaction. We also clarify how the spin-gap phenomenon is related to the pseudogap phenomenon appearing in the single-particle density of states. Our results indicate that an ultracold Fermi gas in the BCS-BEC crossover region is a very useful system to examine the pseudogap phenomenon and the spin-gap phenomenon in a unified manner.

  12. Spin susceptibility and effects of fluctuating Cooper pairs in the BCS-BEC crossover regime of a superfluid Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji

    2015-03-01

    We theoretically discuss the spin susceptibility χ and effects of strong-coupling corrections in the BCS-BEC crossover regime of an ultracold Fermi gas. Using an extended T-matrix approximation, we calculate χ over the entire BCS-BEC crossover region, showing that this magnetic quantity is very sensitive to pairing fluctuations in both the normal and the superfluid phase. In the normal state, it is suppressed by preformed singlet Cooper pairs near Tc, being similar to the spin-gap phenomenon in high-Tc cuprates. Below Tc, on the other hand, pairing fluctuations enhance χ, in the sense that the suppression of this quantity by the superfluid order is weakened due to partial dissociation of Cooper pairs. From these, we determine the region where pairing fluctuations strongly affect spin excitations in the phase diagram of a Fermi gas with respect to the temperature and the strength of a pairing interaction. We also compare our results with the recent experiments on a 6Li Fermi gas. Our results indicate that the spin susceptibility is a useful observable in understanding strong-coupling properties of an ultracold Fermi gas in the BCS-BEC crossover region. H. T. was supported by Graduate School Doctoral Student Aid Program from Keio University.

  13. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia

    PubMed Central

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  14. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    PubMed

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  15. Estimating the sea state bias of the Jason-1 altimeter from Jason/TOPEX tandem mission dual crossovers

    NASA Astrophysics Data System (ADS)

    Beckley, B.

    2003-04-01

    Resolving the sea state bias for the Jason-1 altimeter is an essential component in achieving a seamless transition from the decade-long sea surface height time series provided by TOPEX/POSEIDON (T/P) for climate research. The initial calibration phase of Jason-1 flying in a tandem configuration with T/P separated by only 72 seconds has provided a unique data set of dual crossovers spanning over 200 days. Employment of these dual crossovers within a parametric model (Gaspar, et al., 1992) based on significant wave height and wind speed, further minimizes ocean dynamics and geoid induced errors, as well as avoiding geophysical and range correction inconsistencies between the two missions. In this presentation, we compute the sea state bias for both TOPEX and Jason-1 and examine the extent of the reduction in sea surface height variance and the relative bias between the two altimeters.

  16. Smooth crossover transition from the {delta}-string to the Y-string three-quark potential

    SciTech Connect

    Dmitrasinovic, V.; Sato, Toru; Suvakov, Milovan

    2009-09-01

    We comment on the assertion made by Caselle et al.[M. Caselle, G. Delfino, P. Grinza, O. Jahn, and N. Magnoli, J. Stat. Mech. (2006) P008.] that the confining (string) potential for three quarks 'makes a smooth crossover transition from the {delta}-string to the Y-string configuration at interquark distances of around 0.8 fm'. We study the functional dependence of the three-quark confining potentials due to a Y-string, and the {delta} string and show that they have different symmetries, which lead to different constants of the motion (i.e. they belong to different 'universality classes' in the parlance of the theory of phase transitions). This means that there is no 'smooth crossover' between the two, when their string tensions are identical, except at the vanishing hyper-radius. We also comment on a certain two-body potential approximation to the Y-string potential.

  17. Sources and Structures of Mitotic Crossovers That Arise When BLM Helicase Is Absent in Drosophila

    PubMed Central

    LaFave, Matthew C.; Andersen, Sabrina L.; Stoffregen, Eric P.; Holsclaw, Julie K.; Kohl, Kathryn P.; Overton, Lewis J.; Sekelsky, Jeff

    2014-01-01

    The Bloom syndrome helicase, BLM, has numerous functions that prevent mitotic crossovers. We used unique features of Drosophila melanogaster to investigate origins and properties of mitotic crossovers that occur when BLM is absent. Induction of lesions that block replication forks increased crossover frequencies, consistent with functions for BLM in responding to fork blockage. In contrast, treatment with hydroxyurea, which stalls forks, did not elevate crossovers, even though mutants lacking BLM are sensitive to killing by this agent. To learn about sources of spontaneous recombination, we mapped mitotic crossovers in mutants lacking BLM. In the male germline, irradiation-induced crossovers were distributed randomly across the euchromatin, but spontaneous crossovers were nonrandom. We suggest that regions of the genome with a high frequency of mitotic crossovers may be analogous to common fragile sites in the human genome. Interestingly, in the male germline there is a paucity of crossovers in the interval that spans the pericentric heterochromatin, but in the female germline this interval is more prone to crossing over. Finally, our system allowed us to recover pairs of reciprocal crossover chromosomes. Sequencing of these revealed the existence of gene conversion tracts and did not provide any evidence for mutations associated with crossovers. These findings provide important new insights into sources and structures of mitotic crossovers and functions of BLM helicase. PMID:24172129

  18. What's Mine Is Yours: The Crossover of Day-Specific Self-Esteem

    ERIC Educational Resources Information Center

    Neff, Angela; Sonnentag, Sabine; Niessen, Cornelia; Unger, Dana

    2012-01-01

    This diary study examines the daily crossover of self-esteem within working couples. By integrating self-esteem research into the crossover framework, we hypothesized that the day-specific self-esteem experienced by one partner after work crosses over to the other partner. Furthermore, we proposed that this daily crossover process is moderated by…

  19. 49 CFR 236.203 - Hand operated crossover between main tracks; protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand operated crossover between main tracks..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.203 Hand operated crossover between main tracks; protection. At hand-operated crossover between main tracks, protection shall be provided by...

  20. 49 CFR 236.203 - Hand operated crossover between main tracks; protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand operated crossover between main tracks..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.203 Hand operated crossover between main tracks; protection. At hand-operated crossover between main tracks, protection shall be provided by...

  1. 49 CFR 236.203 - Hand operated crossover between main tracks; protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand operated crossover between main tracks..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.203 Hand operated crossover between main tracks; protection. At hand-operated crossover between main tracks, protection shall be provided by...

  2. 49 CFR 236.203 - Hand operated crossover between main tracks; protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand operated crossover between main tracks..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.203 Hand operated crossover between main tracks; protection. At hand-operated crossover between main tracks, protection shall be provided by...

  3. Thermo- and photoswitchable spin-crossover nanoparticles of an iron(II) complex trapped in transparent silica thin films.

    PubMed

    Tissot, Antoine; Bardeau, Jean-François; Rivière, Eric; Brisset, François; Boillot, Marie-Laure

    2010-09-01

    The elaboration and study of hybrid nanocomposites based on photoswitchable spin-crossover nanoparticles is reported. A silica polymeric gel is used as the confining medium to control the kinetics of nucleation and growth of a molecular spin-crossover prototype [Fe((mepy)(3)tren)](PF(6))(2). The precipitation of nanoparticles in the matrix is triggered by spin-coating of the doped gel on a convenient substrate. This process leads to spherical particles of controlled size from 730 (+/- 80) to 47 (+/- 10) nm homogeneously dispersed in transparent silica thin films. The chemical integrity of the coordination compound is checked by EDS and Raman spectroscopies. UV-Vis measurements confirm the persistence of a spin-crossover regime for these nanocomposites. Indeed, the MLCT absorption features are typical of the molecules being in the high-spin state at high temperature and in the low-spin state at low temperature. With respect to the microcrystalline parent compound, the spin-crossover curves afforded by the nanoparticles do not significantly vary over the explored size range. In addition, they are strongly shifted toward lower temperatures. This feature is accounted for by the in-silica formation of a quenched product which behaves like a new phase generated by sudden precipitation of [Fe((mepy)(3)tren)](PF(6))(2). Indeed the precipitated bulk phase, characterized by powder XRD, exhibits both magnetic and optical characteristics very close to those of the nanoparticles. The photoswitching properties based on light-induced excited spin-state trapping (LIESST) are probed by UV-Vis and magnetic measurements. The complexes embedded in silica thin films can be efficiently photoexcited and evidences are provided for the formation of a metastable HS state. PMID:20652206

  4. Velocity Crossover Between Hydrous and Anhydrous Forsterite at High Pressures

    SciTech Connect

    Mao, Z.; Jacobsen, S; Smyth, R; Holl, C; Frost, D; Duffy, T

    2010-01-01

    The elastic properties of hydrous forsterite, Mg{sub 2-x}SiO{sub 4}H{sub 2x}, are relevant to interpreting seismic velocity anomalies in the Earth's mantle. In this study, we used Brillouin scattering to determine the single-crystal elasticity of forsterite with 0.9(1) wt.% H{sub 2}O (x = 0.14) to 14 GPa. Aggregate bulk and shear moduli of hydrous forsterite increase with pressure at a greater rate than those of the corresponding anhydrous phase. Compared with anhydrous forsterite, we observe a 7% increase in the pressure derivative of the bulk modulus (K{prime}{sub S0} = 4.50(5)), and a 25% increase in the pressure derivative of the shear modulus (G{prime}{sub 0} = 1.75(5)) for forsterite with near maximum possible water content. Using our results, we calculated the compressional, V{sub P}, and shear, V{sub S}, velocities of forsterite as a function of pressure at 300 K. Whereas V{sub P} and V{sub S} of hydrous forsterite are 0.6% and 0.4% slower than those of anhydrous forsterite at ambient pressure, velocity crossovers at {approx} 3-4 GPa result in higher hydrous forsterite velocities at pressures corresponding to depths below {approx} 120 km. At the pressure of the 410-km discontinuity, V{sub P} and V{sub S} of hydrous forsterite exceed those of anhydrous forsterite by 1.1(1)% and 1.9(1)%, respectively. This implies that incorporation of water could decrease the magnitude of the velocity contrast at 410-km depth between forsterite and wadsleyite. Although the effects of hydration on temperature derivatives of the elastic moduli of forsterite and wadsleyite are not yet known, from the current data we estimate that the presence of {approx} 0.4 wt.% H{sub 2}O in forsterite (at 60 mol%) could lower the P and S velocity contrast at 410-km depth to 3.8(4)% and 4.8(6)%, respectively. At high pressures, hydration also decreases the V{sub P}/V{sub S} ratio of forsterite, and lowers the maximum P wave azimuthal anisotropy and S wave splitting of forsterite.

  5. Critical Crossover Functions for Simple Fluids: Non-Analytical Scaling Determination of the Ising-Like Crossover Parameter

    NASA Astrophysics Data System (ADS)

    Garrabos, Yves; Lecoutre, Carole; Marre, Samuel; LeNeindre, Bernard

    2016-08-01

    A non-analytical scaling determination of the Ising-like crossover parameter is proposed considering the critical isochore of a simple fluid at finite distance from its critical temperature. The mean crossover functions, estimated from the bounded results of the massive renormalization scheme in field theory applied to the ( Φ 2) d2( n) model in three dimensions (d=3) and scalar order parameter (n=1), are used to formulate the corresponding scaling equations valid in two well-defined temperature ranges from the critical temperature. The validity range and the Ising-like nature of the corresponding crossover description are discussed in terms of a single Ising-like scale factor characterizing the critical isochore. The asymptotic value of this scale factor can be predicted within the Ising-like preasymptotic domain. Unfortunately, the absence of precise experimental data in such a close vicinity of the critical point leads the direct testing impossible. A contrario, from our scaling equations and the use of precise measurements performed at finite distance from the critical point, its local value can be estimated beyond the Ising-like preasymptotic domain. This non-analytical scaling determination only needs to make reference to the universal features estimated from the mean crossover functions and to introduce a single master dimensionless length common to all the simple fluids. This latter parameter guaranties the uniqueness of the physical length unit used for the theoretical crossover functions and the fluid singular properties when the generalized critical coordinates of the vapor-liquid critical point of each fluid are known. Xenon case along its critical isochore is considered as a typical example to demonstrate the singleness of the Ising-like crossover parameter. With the measurements at finite temperature range of the effective singular behaviors of the isothermal compressibility in the homogeneous domain, and the vapor-liquid coexisting densities in the

  6. Two-dimensional metal-insulator transition as a strong localization induced crossover phenomenon

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.

    2014-06-01

    Low-disorder and high-mobility two-dimensional (2D) electron (or hole) systems confined in semiconductor heterostructures undergo an apparent metal-insulator transition (MIT) at low temperatures as the carrier density (n) is varied. In some situations, the 2D MIT can be caused at a fixed low carrier density by changing an externally applied in-plane magnetic field parallel to the 2D layer. The goal of the current work is to obtain the critical density (nc) for the 2D MIT with the system being an effective metal (Anderson insulator) for density n above (below) nc. We study the 2D MIT phenomenon theoretically as a possible strong localization induced crossover process controlled by the Ioffe-Regel criterion, kFl=1, where kF(n) is the 2D Fermi wave vector and l (n) is the disorder-limited quantum mean free path on the metallic side. Calculating the quantum mean free path in the effective metallic phase from a realistic Boltzmann transport theory including disorder scattering effects, we solve the integral equation (with l depending on n through multidimensional integrals) defined by the Ioffe-Regel criterion to obtain the nonuniversal critical density nc as a function of the applicable physical experimental parameters including disorder strength, in-plane magnetic field, spin and valley degeneracy, background dielectric constant and carrier effective mass, and temperature. The key physics underlying the nonuniversal parameter dependence of the critical density is the density dependence of the screened Coulomb disorder. Our calculated results for the crossover critical density nc appear to be in qualitative and semiquantitative agreement with the available experimental data in different 2D semiconductor systems lending credence to the possibility that the apparent 2D MIT signals the onset of the strong localization crossover in disordered 2D systems. We also compare the calculated critical density obtained from the Ioffe-Regel criterion with that obtained from a

  7. Comparison of different pairing fluctuation approaches to BCS-BEC crossover

    SciTech Connect

    Levin, Kathryn Chen Qijin Chien, C.-C. He Yan

    2010-02-15

    The subject of BCS-Bose-Einstein condensation (BEC) crossover is particularly exciting because of its realization in ultracold atomic Fermi gases and its possible relevance to high temperature superconductors. In this paper we review the body of theoretical work on this subject, which represents a natural extension of the seminal papers by Leggett and by Nozieres and Schmitt-Rink (NSR). The former addressed only the ground state, now known as the 'BCS-Leggett' wave-function, and the key contributions of the latter pertain to calculations of the superfluid transition temperature T{sub c}. These two papers have given rise to two main and, importantly, distinct, theoretical schools in the BCS-BEC crossover literature. The first of these extends the BCS-Leggett ground state to finite temperature and the second extends the NSR scheme away from T{sub c} both in the superfluid and normal phases. It is now rather widely accepted that these extensions of NSR produce a different ground state than that first introduced by Leggett. This observation provides a central motivation for the present paper which seeks to clarify the distinctions in the two approaches. Our analysis shows how the NSR-based approach views the bosonic contributions more completely but treats the fermions as 'quasi-free'. By contrast, the BCS-Leggett based approach treats the fermionic contributions more completely but treats the bosons as 'quasi-free'. In a related fashion, the NSR-based schemes approach the crossover between BCS and BEC by starting from the BEC limit and the BCS-Leggett based scheme approaches this crossover by starting from the BCS limit. Ultimately, one would like to combine these two schemes. There are, however, many difficult problems to surmount in any attempt to bridge the gap in the two theory classes. In this paper we review the strengths and weaknesses of both approaches. The flexibility of the BCS-Leggett based approach and its ease of handling make it widely used in T=0

  8. Crossover Fields in Grain-Boundary Flux Pinning in Magnesium Diboride Films with Columnar Grains

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Hwang, T. J.; Seong, W. K.; Kang, W. N.

    We studied temperature and magnetic-field dependence of grain boundary pinning effect in MgB2 films with columnar grains by measuring the angular dependence of the resistivity and the critical current density (Jc). MgB2 films grown by using a hybrid physical chemical vapor deposition method under appropriate conditions exhibit a peculiar columnar growth with their columns oriented along the c axis. The pinning effect by grain boundaries was manifested in the comparable or even higher Jc for magnetic fields (H) parallel to the c axis (H‖c) than that for fields parallel to the ab plane (H‖ab) below certain temperature-dependent crossover fields. The crossover field, Bcr, was around 1.6 T at 5 K and decreased to around 0.9 T at 30 K depending weakly on the sample characters, and Bcr lay well below the upper critical fields in the phase diagram. Above Bcr, Jc for H‖c decreased very rapidly. The vortex spacing at Bcr was closely correlated with the temperature dependence of the penetration depth, indicating that the degree of the vortex-vortex overlap is an important parameter to determine the number of vortices allowed per unit length of grain boundaries. Thus, Bcr was thought to demarcate the accommodation capability of flux lines by the grain boundaries, and a rapid decrease of Jc above Bcr was ascribed to flux motion of the less strongly pinned vortices located away from the grain boundaries.

  9. Numerical Evidence of Quantum Melting of Spin Ice: Quantum-to-Classical Crossover.

    PubMed

    Kato, Yasuyuki; Onoda, Shigeki

    2015-08-14

    Unbiased quantum Monte Carlo simulations are performed on the nearest-neighbor spin-1/2 pyrochlore XXZ model with an antiferromagnetic longitudinal and the weak ferromagnetic transverse exchange couplings, J and J_{⊥}. The specific heat exhibits a broad peak at T_{CSI}~0.2J associated with a crossover to a classical Coulomb liquid regime showing a suppressed spin-ice monopole density, a broadened pinch-point singularity, and the Pauling entropy for |J_{⊥}|≪J, as in classical spin ice. On further cooling, the entropy restarts decaying for J_{⊥}>J_{⊥c}∼-0.104J, producing another broad specific heat peak for a crossover to a bosonic quantum Coulomb liquid, where the spin correlation contains both photon and quantum spin-ice monopole contributions. With negatively increasing J_{⊥} across J_{⊥c}, a first-order thermal phase transition occurs from the quantum Coulomb liquid to an XY ferromagnet. Relevance to magnetic rare-earth pyrochlore oxides is discussed. PMID:26317744

  10. A real space auxiliary field approach to the BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Tarat, Sabyasachi; Majumdar, Pinaki

    2015-03-01

    The BCS to BEC crossover in attractive Fermi systems is a prototype of weak to strong coupling evolution in many body physics. While extensive numerical results are available, and several approximate methods have been developed, most of these schemes are unsuccessful in the presence of spatial inhomogeneity. Such situations call for a real space approach that can handle large spatial scales and retain the crucial thermal fluctuations. With this in mind we present comprehensive results of a real space auxiliary field approach to the BCS to BEC crossover in the attractive Hubbard model in two dimensions. The scheme reproduces the Hartree-Fock-Bogoliubov ground state, and leads to a T c scale that agrees with quantum Monte Carlo estimates to within a few percent. We provide results on the T c , amplitude and phase fluctuations, density of states, and the momentum resolved spectral function, over the entire interaction and temperature window. We suggest how the method generalises successfully to the presence of disorder, trapping, and population imbalance.

  11. Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata M.

    2016-06-01

    We report ab initio (LDA + Usc) calculations of thermoelastic properties of ferric iron (Fe3+)- and aluminum (Al)-bearing bridgmanite (MgSiO3 perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Three coupled substitutions, namely, [Al]Mg-[Al]Si, [Fe3+]Mg-[Fe3+]Si, and [Fe3+]Mg-[Al]Si have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental data available. In the case of [Fe3+]Mg-[Fe3+]Si substitution, the high-spin (S = 5/2) to low-spin (S = 1/2) crossover in [Fe3+]Si induces a volume collapse and elastic anomalies across the transition region. However, the associated anomalies should disappear in the presence of aluminum in the most favorable substitution, i.e., [Fe3+]Mg-[Al]Si. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe2O3 and Al2O3 in equal proportions or with Al2O3 in excess should be similar to that of (Mg,Fe2+)SiO3 bridgmanite. However, excess of Fe2O3 should produce elastic anomalies in the crossover pressure region.

  12. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  13. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    dynamics of the water molecules in the solution is observed in the single-particle relaxational dynamics in the μeV (nanosecond) time scale, but not in the collective dynamics on the meV (picosecond) time scale. Mallamace et al discuss the dynamic crossover phenomenon in both bulk water and protein hydration water. They collect previous and new experimental data from different experimental techniques and molecular dynamic simulations, and are able to develop a unified picture for the different dynamical findings. Gallo et al present a MD study of confined water in MCM-41S-15 in order to test the applicability of Mode Coupling Theory (MCT) to the dynamics of the hydration water confined in the cylindrical pores of nominal diameter 15 Å. They find that the self dynamics of the hydration water is well described by MCT down to the crossover temperature TC. However, below TC the predictions of idealized MCT no longer apply, since hopping processes intervene and water turns into a strong liquid. Soper raises some questions as to the validity of the analysis method employed to determine the density of water confined in porous silica material MCM-41-S15 from recent neutron scattering experiments. Professors Stanley, Franzese and his collaborators describe an efficient Monte Carlo simulation of a coarse-grained model of water to study the phase diagram of a water monolayer confined in a fixed disordered matrix of hydrophobic nanoparticles between two hydrophobic plates. They find a drastic change of phase behavior of the confined water, such as shortening of the liquid-liquid phase transition line, upon increasing the concentration of the hydrophobic nano-particles. Sciortino and collaborators compute the equilibrium phase diagram of two simple models for patchy particles with three and five patches in a very broad range of pressure and temperature. The three-patch model produces a stable gas-liquid critical point. Yun Liu et al investigate, via small angle neutron scattering and

  14. Stochastic Resonance Crossovers in Complex Networks

    PubMed Central

    Pinamonti, Giovanni; Marro, J.; Torres, Joaquín J.

    2012-01-01

    Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual interactions or “synapses” varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have technological application. We also present here a first contact between the model behavior and psychotechnical data. PMID:23272090

  15. Growth Performance, Carcass Yield, and Quality and Chemical Traits of Meat from Commercial Korean Native Ducks with 2-Way Crossbreeding

    PubMed Central

    Heo, K. N.; Hong, E. C.; Kim, C. D.; Kim, H. K.; Lee, M. J.; Choo, H. J.; Choi, H. C.; Mushtaq, M. M. H.; Parvin, R.; Kim, J. H.

    2015-01-01

    This work was conducted to investigate the performance and meat characteristics of commercial Korean native duck (KND). A total of 180 1-d-old ducklings of 2-way crossbreds from A and B lines (from National Institute of Animal Science) were used in this work and divided into 4 groups (3 replicates/group, 15 birds/replicate). The four groups were 4 crossbreds as AA (A line [♀]×A line [♂]), AB (A line [♀]×B line [♂]), BB (Pure line B strains) and BA (B strains [♀]×A strain [♂]). Ducks were fed diets based on corn-soybean meal for 0 to 3 wk (22.4% crude protein [CP], 2,945 kcal/kg metabolizable energy [ME]) and 3 to 8 wk (18.4% CP, 3,047 kcal/kg ME). As a result of this study, average body weight of 4 crossbreds were 625, 1,617, 2,466, and 2,836 g at 2, 4, 6, and 8 weeks, respectively, and significantly increased over the period of time (p<0.05). Body weight of BB group was greater than other crossbreds at the age of 6 weeks (p<0.05). There was a significant difference in weekly body weight gains (p<0.05), which were 573, 991, 850, and 371 g at 2, 4, 6, and 8 weeks old, respectively. Uniformity of 4 crossbreds was 84.9%, 80.5%, and 72.5% at 6, 7, and 8 weeks, respectively, and there was no difference among crossbreds. Body weight gain of BB crossbred was highest among crossbreds (p<0.05). Weekly feed intake significantly increased with weeks as 669, 1,839, 2,812, and 3,381 g at 2, 4, 6, and 8 weeks respectively (p<0.05). Feed intakes of AA and BB crossbreds were higher at 2 to 4 weeks old than others and that of BB crossbred was highest at 4 to 6 weeks old (p<0.05). Weekly feed conversion ratios were 1.17, 1.86, 3.32, and 9.37 at 0 to 2, 2 to 4, 4 to 6, and 6 to 8 weeks old, respectively, and it increased with age (p<0.05). There was no significant difference in feed conversion ratio among crossbreds. Carcass yields of 4 crossbreds were 73.6%, 71.6%, 73.5%, and 71.7%, respectively, so there was no significant difference among crossbreds. There was no

  16. Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans.

    PubMed

    Yu, Zhouliang; Kim, Yumi; Dernburg, Abby F

    2016-06-01

    During meiotic prophase, chromosomes pair and synapse with their homologs and undergo programmed DNA double-strand break (DSB) formation to initiate meiotic recombination. These DSBs are processed to generate a limited number of crossover recombination products on each chromosome, which are essential to ensure faithful segregation of homologous chromosomes. The nematode Caenorhabditis elegans has served as an excellent model organism to investigate the mechanisms that drive and coordinate these chromosome dynamics during meiosis. Here we focus on our current understanding of the regulation of DSB induction in C. elegans. We also review evidence that feedback regulation of crossover formation prolongs the early stages of meiotic prophase, and discuss evidence that this can alter the recombination pattern, most likely by shifting the genome-wide distribution of DSBs. PMID:27013114

  17. Stress-Based Crossover Operator for Structural Topology Optimization

    NASA Astrophysics Data System (ADS)

    Li, Cuimin; Hiroyasu, Tomoyuki; Miki, Mitsunori

    In this paper, we propose a stress-based crossover (SX) operator to solve the checkerboard-like material distributation and disconnected topology that is common for simple genetic algorithm (SGA) to structural topology optimization problems (STOPs). A penalty function is defined to evaluate the fitness of each individual. A number of constrained problems are adopted to experiment the effectiveness of SX for STOPs. Comparison of 2-point crossover (2X) with SX indicates that SX can markedly suppress the checkerboard-like material distribution phenomena. Comparison of evolutionary structural optimization (ESO) and SX demonstrates the global search ability and flexibility of SX. Experiments of a Michell-type problem verifies the effectiveness of SX for STOPs. For a multi-loaded problem, SX searches out alternate solutions on the same parameters that shows the global search ability of GA.

  18. Strategy Uniform Crossover Adaptation Evolution in a Minority Game

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Song; Wang, Bing-Hong; Quan, Hong-Jun; Hu, Chin-Kun

    2003-10-01

    We propose and study a new adaptation minority game for understanding of the complex dynamical behaviour characterized by agent interactions competing limited resource in many natural and social systems. Intelligent agents may modify a part of strategies held by them periodically, depending on the strategy performances. In the new model, the strategies will be updated according to uniform-crossover variation process inspired by genetic evolution algorithm in biology. The performances of the agents in the new model are calculated for different parameter conditions. It has been found that the new system may evolve via the strategy uniform crossover adaptation mechanism into a frozen equilibrium state in which the performance of the system may reach the best limit, implying the strongest cooperation among agents and the most effective utilization of the social resources.

  19. Particle-hole fluctuations in BCS-BEC crossover

    SciTech Connect

    Floerchinger, S.; Scherer, M.; Wetterich, C.; Diehl, S.

    2008-11-01

    The effect of particle-hole fluctuations for the BCS-BEC crossover is investigated by use of functional renormalization. We compute the Gorkov effect and the critical temperature for the whole range in the scattering length a. On the BCS side for small negative a we recover the Gorkov approximation, while on the BEC side of small positive a the particle-hole fluctuations play no important role, and we find a system of interacting bosons. In the unitarity limit of infinite scattering length our quantitative estimate yields T{sub c}/T{sub F}=0.264. We also investigate the crossover from broad to narrow Feshbach resonances - for the latter we obtain T{sub c}/T{sub F}=0.204 for a{sup -1}=0. A key ingredient for our treatment is the computation of the momentum dependent four-fermion vertex and its bosonization in terms of an effective bound-state exchange.

  20. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  1. Crossover behavior in hydrogen sensing mechanism for palladium ultrathin films.

    SciTech Connect

    Darling, S. B.; Ramanathan, M.; Skudlarek, G.; Wang, H. H.; Illinois Math and Science Academy

    2010-01-01

    Palladium has been extensively studied as a material for hydrogen sensors because of the simplicity of its reversible resistance change when exposed to hydrogen gas. Various palladium films and nanostructures have been used, and different responses have been observed with these diverse morphologies. In some cases, such as with nanowires, the resistance will decrease, whereas in others, such as with thick films, the resistance will increase. Each of these mechanisms has been explored for several palladium structures, but the crossover between them has not been systematically investigated. Here we report on a study aimed at deciphering the nanostructure-property relationships of ultrathin palladium films used as hydrogen gas sensors. The crossover in these films is observed at a thickness of {approx} 5 nm. Ramifications for future sensor developments are discussed.

  2. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Le, Peisi; Ito, Kanae; Leão, Juscelino B.; Tyagi, Madhusudan; Chen, Sow-Hsin

    2015-09-01

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  3. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    SciTech Connect

    Wang, Zhe; Le, Peisi; Ito, Kanae; Chen, Sow-Hsin; Leão, Juscelino B.; Tyagi, Madhusudan

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  4. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis.

    PubMed

    Wang, Zhe; Le, Peisi; Ito, Kanae; Leão, Juscelino B; Tyagi, Madhusudan; Chen, Sow-Hsin

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis. PMID:26395720

  5. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multicomponent metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamical aspects of a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulations with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (self diffusion coefficient, self relaxation time, and shear viscosity) bordered at Tx˜1300 K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs well above the melting point of the system (Tm˜900 K) in the equilibrium liquid state; and the crossover temperature Tx is roughly twice of the glass-transition temperature of the system (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a nonparametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter α2 and the four-point correlation function χ4.

  6. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGESBeta

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  7. Analysis of first order reversal curves in the thermal hysteresis of spin-crossover nanoparticles within the mechanoelastic model

    SciTech Connect

    Stoleriu, Laurentiu E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru; Enachescu, Cristian E-mail: cristian.enachescu@uaic.ro; Chakraborty, Pradip; Hauser, Andreas

    2015-05-07

    The recently obtained spin-crossover nanoparticles are possible candidates for applications in the recording media industry as materials for data storage, or as pressure and temperature sensors. For these applications, the intermolecular interactions and interactions between spin-crossover nanoparticles are extremely important, as they may be essential factors in triggering the transition between the two stable phases: the high-spin and low-spin ones. In order to find correlations between the distributions in size and interactions and the transition temperatures distribution, we apply the FORC (First Order Reversal Curves) method, using simulations based on a mechanoelastic model applied to 2D triangular lattices composed of molecules linked by springs and embedded in a surfactant. We consider two Gaussian distributions: one is the size of the nanoparticles and another is the elastic interactions between edge spin-crossover molecules and the surfactant molecules. In order to disentangle the kinetic and non-kinetic parts of the FORC distributions, we compare the results obtained for different temperature sweeping rates. We also show that the presence of few larger particles in a distribution centered around much smaller particles dramatically increases the hysteresis width.

  8. Crossover from percolation to self-organized criticality

    NASA Astrophysics Data System (ADS)

    Drossel, Barbara; Clar, Siegfried; Schwabl, Franz

    1994-10-01

    We include immunity against fire into the self-organized critical forest-fire model. When the immunity assumes a critical value, clusters of burnt trees are identical to percolation clusters of random bond percolation. As long as the immunity is below its critical value, the asymptotic critical exponents are those of the original self-organized critical model, i.e., the system performs a crossover from percolation to self-organized criticality. We present a scaling theory and computer simulation results.

  9. Nanoparticles of iron(II) spin-crossover.

    PubMed

    Forestier, Thibaut; Mornet, Stéphane; Daro, Nathalie; Nishihara, Taishi; Mouri, Shin-ichiro; Tanaka, Koichiro; Fouché, Olivier; Freysz, Eric; Létard, Jean-François

    2008-09-28

    We report the synthesis of spin crossover 69 nm spherical nanoparticles of [Fe(NH2-trz)3](Br)2.3H2O.0.03(surfactant) (NH2trz = 4-amino-1,2,4-triazole, surfactant = Lauropal), prepared by the reverse micelle technique, which exhibit at room temperature a thermal hysteresis characterized by magnetic, diffuse reflectivity and Raman studies. PMID:18802559

  10. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    PubMed Central

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  11. Automatic identification of vessel crossovers in retinal images

    NASA Astrophysics Data System (ADS)

    Sánchez, L.; Barreira, N.; Penedo, M. G.; Cancela, B.

    2015-02-01

    Crossovers and bifurcations are interest points of the retinal vascular tree useful to diagnose diseases. Specifically, detecting these interest points and identifying which of them are crossings will give us the opportunity to search for arteriovenous nicking, this is, an alteration of the vessel tree where an artery is crossed by a vein and the former compresses the later. These formations are a clear indicative of hypertension, among other medical problems. There are several studies that have attempted to define an accurate and reliable method to detect and classify these relevant points. In this article, we propose a new method to identify crossovers. Our approach is based on segmenting the vascular tree and analyzing the surrounding area of each interest point. The minimal path between vessel points in this area is computed in order to identify the connected vessel segments and, as a result, to distinguish between bifurcations and crossovers. Our method was tested using retinographies from public databases DRIVE and VICAVR, obtaining an accuracy of 90%.

  12. Nematic Crossover in BaFe(2)As(2) under Uniaxial Stress.

    PubMed

    Ren, Xiao; Duan, Lian; Hu, Yuwen; Li, Jiarui; Zhang, Rui; Luo, Huiqian; Dai, Pengcheng; Li, Yuan

    2015-11-01

    Raman scattering can detect spontaneous point-group symmetry breaking without resorting to single-domain samples. Here, we use this technique to study BaFe(2)As(2), the parent compound of the "122" Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature T(s) into a crossover that spans a considerable temperature range above T(s). Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above T(s). Our results are consistent with an onset of spontaneous nematicity only below T(s). PMID:26588407

  13. Role of surface vibrational properties on cooperative phenomena in spin-crossover nanomaterials

    NASA Astrophysics Data System (ADS)

    Mikolasek, Mirko; Félix, Gautier; Molnár, Gábor; Terki, Férial; Nicolazzi, William; Bousseksou, Azzedine

    2014-08-01

    The influence of surface/interface on the lattice dynamics of spin crossover nanoparticles has been investigated by a spring-ball model solved by Monte Carlo methods. The bond cohesion energy of the model has been extracted from Mössbauer spectroscopy measurements performed on the model compound Ni3[Fe(CN)6]. We show that the coupling between bulk and surface vibrational properties, which drastically affects the mechanical properties of the whole particle below a characteristic size, has a major impact on the phase stability of the particles. In the case of free surfaces, the Debye temperature decreases with the size and the first-order nature of the spin transition disappears. On the other hand, a hardening of the surface bonds leads to increasing particle stiffness with the size reduction. In this case, a persistence of the hysteretic behavior in the spin transition curve is also predicted in good agreement with previous theoretical and experimental results.

  14. Nanoporosity, Inclusion Chemistry, and Spin Crossover in Orthogonally Interlocked Two-Dimensional Metal-Organic Frameworks.

    PubMed

    Romero-Morcillo, Tania; De la Pinta, Noelia; Callejo, Lorena M; Piñeiro-López, Lucía; Muñoz, M Carmen; Madariaga, Gotzon; Ferrer, Sacramento; Breczewski, Tomasz; Cortés, Roberto; Real, José A

    2015-08-17

    [Fe(tvp)2 (NCS)2 ] (1) (tvp=trans-(4,4'-vinylenedipyridine)) consists of two independent perpendicular stacks of mutually interpenetrated two-dimensional grids. This uncommon supramolecular conformation defines square-sectional nanochannels (diagonal≈2.2 nm) in which inclusion molecules are located. The guest-loaded framework 1@guest displays complete thermal spin-crossover (SCO) behavior with the characteristic temperature T1/2 dependent on the guest molecule, whereas the guest-free species 1 is paramagnetic whatever the temperature. For the benzene-guest derivatives, the characteristic SCO temperature T1/2 decreases as the Hammet σp parameter increases. In general, the 1@guest series shows large entropy variations associated with the SCO and conformational changes of the interpenetrated grids that leads to a crystallographic-phase transition when the guest is benzonitrile or acetonitrile/H2 O. PMID:26178258

  15. Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop

    SciTech Connect

    Galle, G.; Degert, J.; Freysz, E.; Etrillard, C.; Letard, J.-F.; Guillaume, F.

    2013-02-11

    We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz){sub 2} trz](BF{sub 4}){sub 2}-H{sub 2}O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 {mu}s and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

  16. Nematic Crossover in BaFe2As2 under Uniaxial Stress

    NASA Astrophysics Data System (ADS)

    Ren, Xiao; Duan, Lian; Hu, Yuwen; Li, Jiarui; Zhang, Rui; Luo, Huiqian; Dai, Pengcheng; Li, Yuan

    2015-11-01

    Raman scattering can detect spontaneous point-group symmetry breaking without resorting to single-domain samples. Here, we use this technique to study BaFe2As2 , the parent compound of the "122" Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature Ts into a crossover that spans a considerable temperature range above Ts. Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above Ts. Our results are consistent with an onset of spontaneous nematicity only below Ts.

  17. Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    PubMed Central

    Bessoltane, Nadia; Toffano-Nioche, Claire; Solignac, Michel; Mougel, Florence

    2012-01-01

    Background Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. Methodology We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. Conclusions Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals. PMID:22567142

  18. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome.

    PubMed

    Bernstein, Max R; Rockman, Matthew V

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  19. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome

    PubMed Central

    Bernstein, Max R.; Rockman, Matthew V.

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  20. Dimer Involvement and Origin of Crossover in Nickel-Catalyzed Aldehyde–Alkyne Reductive Couplings

    PubMed Central

    2015-01-01

    The mechanism of nickel(0)-catalyzed reductive coupling of aldehydes and alkynes has been studied. Extensive double-labeling crossover studies have been conducted. While previous studies illustrated that phosphine- and N-heterocyclic carbene-derived catalysts exhibited differing behavior, the origin of these effects has now been evaluated in detail. Many variables, including ligand class, sterics of the ligand and alkyne, temperature, and ring size being formed in intramolecular versions, all influence the extent of crossover observed. A computational evaluation of these effects suggests that dimerization of a key metallacyclic intermediate provides the origin of crossover. Protocols that proceed with crossover are typically less efficient than those without crossover given the thermodynamic stability and low reactivity of the dimeric metallacycles involved in crossover pathways. PMID:25401337

  1. Crossover of marital dissatisfaction during military downsizing among Russian army officers and their spouses.

    PubMed

    Westman, Mina; Vinokur, Amiram D; Hamilton, V Lee; Roziner, Ilan

    2004-10-01

    This study examined mechanisms of strain crossover within couples and the moderating role of gender. Data were collected at a time of military downsizing from a sample of 1,250 Russian army officers and their spouses. The authors tested a model that incorporated 3 mechanisms for the crossover of marital dissatisfaction among dual-earner couples. The model provided support for 2 suggested crossover mechanisms: direct reactions of crossover and indirect mediated effects through social undermining. Strong evidence was also provided for gender asymmetry in the crossover process. Marital dissatisfaction crossed over from husbands to wives but not vice versa, and social undermining behavior played a role in the process of crossover of marital dissatisfaction for husbands but not for wives. PMID:15506859

  2. Crossover from anomalous to normal diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; di Caprio, Dung

    2014-06-01

    Random walks (RW) of particles adsorbed in the internal walls of porous deposits produced by ballistic-type growth models are studied. The particles start at the external surface of the deposits and enter their pores in order to simulate an external flux of a species towards a porous solid. For short times, the walker concentration decays as a stretched exponential of the depth z, but a crossover to long-time normal diffusion is observed in most samples. The anomalous concentration profile remains at long times in very porous solids if the walker steps are restricted to nearest neighbors and is accompanied with subdiffusion features. These findings are correlated with a decay of the explored area with z. The study of RW of tracer particles left at the internal part of the solid rules out an interpretation by diffusion equations with position-dependent coefficients. A model of RW in a tube of decreasing cross section explains those results by showing long crossovers from an effective subdiffusion regime to an asymptotic normal diffusion. The crossover position and density are analytically calculated for a tube with area decreasing exponentially with z and show good agreement with numerical data. The anomalous decay of the concentration profile is interpreted as a templating effect of the tube shape on the total number of diffusing particles at each depth, while the volumetric concentration in the actually explored porous region may not have significant decay. These results may explain the anomalous diffusion of metal atoms in porous deposits observed in recent works. They also confirm the difficulty in interpreting experimental or computational data on anomalous transport reported in recent works, particularly if only the concentration profiles are measured.

  3. Computational approach to the study of thermal spin crossover phenomena

    SciTech Connect

    Rudavskyi, Andrii; Broer, Ria; Sousa, Carmen

    2014-05-14

    The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T{sub 1/2}, is estimated for different compounds.

  4. Meige syndrome: double-blind crossover study of sodium valproate.

    PubMed Central

    Snoek, J W; van Weerden, T W; Teelken, A W; van den Burg, W; Lakke, J P

    1987-01-01

    A double-blind crossover study of sodium valproate and placebo was conducted in five patients with Meige syndrome. CSF neurotransmitter studies were performed at the end of each treatment period. GABA levels were not influenced by the administration of sodium valproate. An increase in HVA levels was observed in every patient, which may reflect an increase in central dopaminergic activity. This finding may explain the trend towards clinical deterioration which was observed during treatment with sodium valproate. Sodium valproate appears to be ineffective in Meige syndrome. PMID:3121795

  5. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis

    PubMed Central

    Yelina, Nataliya E.; Lambing, Christophe; Hardcastle, Thomas J.; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R.

    2015-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes. PMID:26494791

  6. Hot Regions of Noninterfering Crossovers Coexist with a Nonuniformly Interfering Pathway in Arabidopsis thaliana

    PubMed Central

    Basu-Roy, Sayantani; Gauthier, Franck; Giraut, Laurène; Mézard, Christine; Falque, Matthieu; Martin, Olivier C.

    2013-01-01

    In most organisms that have been studied, crossovers formed during meiosis exhibit interference: nearby crossovers are rare. Here we provide an in-depth study of crossover interference in Arabidopsis thaliana, examining crossovers genome-wide in >1500 backcrosses for both male and female meiosis. This unique data set allows us to take a two-pathway modeling approach based on superposing a fraction p of noninterfering crossovers and a fraction (1 − p) of interfering crossovers generated using the gamma model characterized by its interference strength nu. Within this framework, we fit the two-pathway model to the data and compare crossover interference strength between chromosomes and then along chromosomes. We find that the interfering pathway has markedly higher interference strength nu in female than in male meiosis and also that male meiosis has a higher proportion p of noninterfering crossovers. Furthermore, we test for possible intrachromosomal variations of nu and p. Our conclusion is that there are clear differences between left and right arms as well as between central and peripheral regions. Finally, statistical tests unveil a genome-wide picture of small-scale heterogeneities, pointing to the existence of hot regions in the genome where crossovers form preferentially without interference. PMID:24026099

  7. Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis

    PubMed Central

    Ziolkowski, Piotr A; Berchowitz, Luke E; Lambing, Christophe; Yelina, Nataliya E; Zhao, Xiaohui; Kelly, Krystyna A; Choi, Kyuha; Ziolkowska, Liliana; June, Viviana; Sanchez-Moran, Eugenio; Franklin, Chris; Copenhaver, Gregory P; Henderson, Ian R

    2015-01-01

    During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference, and non-interfering repair is inefficient in heterozygous regions. As a consequence, heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination. DOI: http://dx.doi.org/10.7554/eLife.03708.001 PMID:25815584

  8. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator. PMID:16343847

  9. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree

    PubMed Central

    Qvarnström, Anna; Ellegren, Hans

    2016-01-01

    Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb) than in female meiosis (2.28 cM/Mb), and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18) in favour of ‘strong’ (G, C) over ‘weak’ (A, T) alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups. PMID:27219623

  10. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree.

    PubMed

    Smeds, Linnéa; Mugal, Carina F; Qvarnström, Anna; Ellegren, Hans

    2016-05-01

    Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb) than in female meiosis (2.28 cM/Mb), and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18) in favour of 'strong' (G, C) over 'weak' (A, T) alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups. PMID:27219623

  11. Baclofen reduces binge eating in a double-blind, placebo-controlled, crossover study.

    PubMed

    Corwin, Rebecca L; Boan, Jarol; Peters, Kathryn F; Ulbrecht, Jan S

    2012-09-01

    Baclofen has shown promise in treating substance use disorders and also reduced binge frequency in an open-label trial. This placebo-controlled, double-blind, crossover study further assessed the effects of baclofen on binge eating. Twelve individuals who self-reported binge eating completed the study. Data were collected during a run-in period (no drug or placebo), placebo phase (48 days), and baclofen phase (titrated up to 60 mg daily or the maximum tolerated dose, 48 days). All the participants were exposed to all conditions. Participants completed a binge diary daily, and the Binge Eating Scale (BES), Food Craving Inventory-II (FCI-II), and Hospital Anxiety and Depression Scale (HADS) at regular intervals throughout the study. Baclofen significantly reduced binge frequency relative to placebo and run-in (P<0.05). This confirms results from the previous open-label trial. Baclofen also produced slight, but significant, increases in depression symptomatology as assessed by the HADS. Binge severity (BES scores) and craving (FCI-II scores) were significantly reduced during placebo and baclofen phases, that is both measures exhibited significant placebo effects. Tiredness, fatigue, and upset stomach were the most commonly reported side-effects. These results indicate that baclofen may be a useful treatment for binge eating in some patients. PMID:22854310

  12. Direct Probing of the Mott Crossover in the SU (N ) Fermi-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Hofrichter, Christian; Riegger, Luis; Scazza, Francesco; Höfer, Moritz; Fernandes, Diogo Rio; Bloch, Immanuel; Fölling, Simon

    2016-04-01

    We report on a detailed experimental investigation of the equation of state (EoS) of the three-dimensional Fermi-Hubbard model (FHM) in its generalized SU (N ) -symmetric form, using a degenerate ytterbium gas in an optical lattice. In its more common spin-1 /2 form, the FHM is a central model of condensed-matter physics. The generalization to N >2 was first used to describe multi-orbital materials and is expected to exhibit novel many-body phases in a complex phase diagram. By realizing and locally probing the SU (N ) FHM with ultracold atoms, we obtain model-free access to thermodynamic quantities. The measurement of the EoS and the local compressibility allows us to characterize the crossover from a compressible metal to an incompressible Mott insulator. We reach specific entropies above Néel order but below that of uncorrelated spins. Having access to the EoS of such a system represents an important step towards probing predicted novel SU (N ) phases.

  13. Dimensional crossover and cold-atom realization of topological Mott insulators

    PubMed Central

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-01-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431

  14. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept.

    PubMed

    Rodriguez, Carolyn I; Kegeles, Lawrence S; Levinson, Amanda; Feng, Tianshu; Marcus, Sue M; Vermes, Donna; Flood, Pamela; Simpson, Helen B

    2013-11-01

    Serotonin reuptake inhibitors (SRIs), the first-line pharmacological treatment for obsessive-compulsive disorder (OCD), have two limitations: incomplete symptom relief and 2-3 months lag time before clinically meaningful improvement. New medications with faster onset are needed. As converging evidence suggests a role for the glutamate system in the pathophysiology of OCD, we tested whether a single dose of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, could achieve rapid anti-obsessional effects. In a randomized, double-blind, placebo-controlled, crossover design, drug-free OCD adults (n=15) with near-constant obsessions received two 40-min intravenous infusions, one of saline and one of ketamine (0.5 mg/kg), spaced at least 1-week apart. The OCD visual analog scale (OCD-VAS) and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) were used to assess OCD symptoms. Unexpectedly, ketamine's effects within the crossover design showed significant (p<0.005) carryover effects (ie, lasting longer than 1 week). As a result, only the first-phase data were used in additional analyses. Specifically, those receiving ketamine (n=8) reported significant improvement in obsessions (measured by OCD-VAS) during the infusion compared with subjects receiving placebo (n=7). One-week post-infusion, 50% of those receiving ketamine (n=8) met criteria for treatment response (≥35% Y-BOCS reduction) vs 0% of those receiving placebo (n=7). Rapid anti-OCD effects from a single intravenous dose of ketamine can persist for at least 1 week in some OCD patients with constant intrusive thoughts. This is the first randomized, controlled trial to demonstrate that a drug affecting glutamate neurotransmission can reduce OCD symptoms without the presence of an SRI and is consistent with a glutamatergic hypothesis of OCD. PMID:23783065

  15. Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome

    PubMed Central

    Poole, Angela C.; Pischel, Lauren; Ley, Catherine; Suh, Gina; Goodrich, Julia K.; Haggerty, Thomas D.; Ley, Ruth E.

    2016-01-01

    ABSTRACT Commonly prescribed antibiotics are known to alter human microbiota. We hypothesized that triclosan and triclocarban, components of many household and personal care products (HPCPs), may alter the oral and gut microbiota, with potential consequences for metabolic function and weight. In a double-blind, randomized, crossover study, participants were given triclosan- and triclocarban (TCS)-containing or non-triclosan/triclocarban (nTCS)-containing HPCPs for 4 months and then switched to the other products for an additional 4 months. Blood, stool, gingival plaque, and urine samples and weight data were obtained at baseline and at regular intervals throughout the study period. Blood samples were analyzed for metabolic and endocrine markers and urine samples for triclosan. The microbiome in stool and oral samples was then analyzed. Although there was a significant difference in the amount of triclosan in the urine between the TCS and nTCS phases, no differences were found in microbiome composition, metabolic or endocrine markers, or weight. Though this study was limited by the small sample size and imprecise administration of HPCPs, triclosan at physiologic levels from exposure to HPCPs does not appear to have a significant or important impact on human oral or gut microbiome structure or on a panel of metabolic markers. IMPORTANCE Triclosan and triclocarban are commonly used commercial microbicides found in toothpastes and soaps. It is unknown what effects these chemicals have on the human microbiome or on endocrine function. From this randomized crossover study, it appears that routine personal care use of triclosan and triclocarban neither exerts a major influence on microbial communities in the gut and mouth nor alters markers of endocrine function in humans. PMID:27303746

  16. Randomized Controlled Crossover Trial of Ketamine in Obsessive-Compulsive Disorder: Proof-of-Concept

    PubMed Central

    Rodriguez, Carolyn I; Kegeles, Lawrence S; Levinson, Amanda; Feng, Tianshu; Marcus, Sue M; Vermes, Donna; Flood, Pamela; Simpson, Helen B

    2013-01-01

    Serotonin reuptake inhibitors (SRIs), the first-line pharmacological treatment for obsessive-compulsive disorder (OCD), have two limitations: incomplete symptom relief and 2–3 months lag time before clinically meaningful improvement. New medications with faster onset are needed. As converging evidence suggests a role for the glutamate system in the pathophysiology of OCD, we tested whether a single dose of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, could achieve rapid anti-obsessional effects. In a randomized, double-blind, placebo-controlled, crossover design, drug-free OCD adults (n=15) with near-constant obsessions received two 40-min intravenous infusions, one of saline and one of ketamine (0.5 mg/kg), spaced at least 1-week apart. The OCD visual analog scale (OCD-VAS) and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) were used to assess OCD symptoms. Unexpectedly, ketamine's effects within the crossover design showed significant (p<0.005) carryover effects (ie, lasting longer than 1 week). As a result, only the first-phase data were used in additional analyses. Specifically, those receiving ketamine (n=8) reported significant improvement in obsessions (measured by OCD-VAS) during the infusion compared with subjects receiving placebo (n=7). One-week post-infusion, 50% of those receiving ketamine (n=8) met criteria for treatment response (⩾35% Y-BOCS reduction) vs 0% of those receiving placebo (n=7). Rapid anti-OCD effects from a single intravenous dose of ketamine can persist for at least 1 week in some OCD patients with constant intrusive thoughts. This is the first randomized, controlled trial to demonstrate that a drug affecting glutamate neurotransmission can reduce OCD symptoms without the presence of an SRI and is consistent with a glutamatergic hypothesis of OCD. PMID:23783065

  17. Interplay between spin-crossover and magnetic interactions in a BEG model

    NASA Astrophysics Data System (ADS)

    Oke, T. D.; Hontinfinde, F.; Boukheddaden, K.

    2013-06-01

    A two-dimensional Blume-Emery-Griffiths spin-1 model with spin-phonon interaction is introduced to investigate the thermodynamic properties of Prussian Blue Analogs and Spin-crossover materials. The quadrupolar interaction parameter is assumed to depend on the temperature in the form K = α k B T while the crystal-field depends both on the ligand-field strength and the degeneracy ratio between high spin (HS) and low spin (LS) states as in some previous works. The model is solved by means of two statistical-mechanical methods: kinetic Monte Carlo simulations and corrective effective field theory calculations. Our calculations indicate that by tuning α, the spin-crossover transition changes to a sharp first order transition where the HS fraction, n HS changes discontinuously. Second order transitions are observed in the presence of magnetic ordering when the nearest-neighbor coupling constant J exceeds some critical value J c which depends on α and other model parameters. Below J c , simple spin-transition occurs at an equilibrium temperature T eq that is very sensitive to the values of the degenaracy ratio and the ligand-field. Competition between model parameters lead to interesting phase diagrams. Some of them are displayed for varying values of the coupling J and also in the specific case where J and K are of the same order of magnitude. Thermal hysteresis loops have been calculated by Monte Carlo simulations and also by using the self-consistent equations in the case of long-lived metastable states showing strong dependence on model parameters.

  18. Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome.

    PubMed

    Poole, Angela C; Pischel, Lauren; Ley, Catherine; Suh, Gina; Goodrich, Julia K; Haggerty, Thomas D; Ley, Ruth E; Parsonnet, Julie

    2016-01-01

    Commonly prescribed antibiotics are known to alter human microbiota. We hypothesized that triclosan and triclocarban, components of many household and personal care products (HPCPs), may alter the oral and gut microbiota, with potential consequences for metabolic function and weight. In a double-blind, randomized, crossover study, participants were given triclosan- and triclocarban (TCS)-containing or non-triclosan/triclocarban (nTCS)-containing HPCPs for 4 months and then switched to the other products for an additional 4 months. Blood, stool, gingival plaque, and urine samples and weight data were obtained at baseline and at regular intervals throughout the study period. Blood samples were analyzed for metabolic and endocrine markers and urine samples for triclosan. The microbiome in stool and oral samples was then analyzed. Although there was a significant difference in the amount of triclosan in the urine between the TCS and nTCS phases, no differences were found in microbiome composition, metabolic or endocrine markers, or weight. Though this study was limited by the small sample size and imprecise administration of HPCPs, triclosan at physiologic levels from exposure to HPCPs does not appear to have a significant or important impact on human oral or gut microbiome structure or on a panel of metabolic markers. IMPORTANCE Triclosan and triclocarban are commonly used commercial microbicides found in toothpastes and soaps. It is unknown what effects these chemicals have on the human microbiome or on endocrine function. From this randomized crossover study, it appears that routine personal care use of triclosan and triclocarban neither exerts a major influence on microbial communities in the gut and mouth nor alters markers of endocrine function in humans. PMID:27303746

  19. Observation of a crossover in kinetic aggregation of Palladium colloids

    NASA Astrophysics Data System (ADS)

    Ghafari, M.; Ranjbar, M.; Rouhani, S.

    2015-10-01

    We use field emission scanning electron microscope (FE-SEM) to investigate the growth of palladium colloids over the surface of thin films of WO3/glass. The film is prepared by Pulsed Laser Deposition (PLD) at different temperatures. A PdCl2 (aq) droplet is injected on the surface and in the presence of steam hydrogen the droplet is dried through a reduction reaction process. Two distinct aggregation regimes of palladium colloids are observed over the substrates. We argue that the change in aggregation dynamics emerges when the measured water drop Contact Angel (CA) for the WO3/glass thin films passes a certain threshold value, namely CA ≈ 46°, where a crossover in kinetic aggregation of palladium colloids occurs. Our results suggest that the mass fractal dimension of palladium aggregates follows a power-law behavior. The fractal dimension (Df) in the fast aggregation regime, where the measured CA values vary from 27° up to 46° according to different substrate deposition temperatures, is Df = 1.75(± 0.02) - the value of Df is in excellent agreement with kinetic aggregation of other colloidal systems in fast aggregation regime. Whereas for the slow aggregation regime, with CA = 58°, the fractal dimension changes abruptly to Df = 1.92(± 0.03). We have also used a modified Box-Counting method to calculate fractal dimension of gray-level images and observe that the crossover at around CA ≈ 46° remains unchanged.

  20. Recombination patterns in maize reveal limits to crossover homeostasis

    PubMed Central

    Sidhu, Gaganpreet K.; Fang, Celestia; Olson, Mischa A.; Falque, Matthieu; Martin, Olivier C.; Pawlowski, Wojciech P.

    2015-01-01

    During meiotic recombination, double-strand breaks (DSBs) are formed in chromosomal DNA and then repaired as either crossovers (COs) or non–crossovers (NCOs). In most taxa, the number of DSBs vastly exceeds the number of COs. COs are required for generating genetic diversity in the progeny, as well as proper chromosome segregation. Their formation is tightly controlled so that there is at least one CO per pair of homologous chromosomes whereas the maximum number of COs per chromosome pair is fairly limited. One of the main mechanisms controlling the number of recombination events per meiosis is CO homeostasis, which maintains a stable CO number even when the DSB number is dramatically altered. The existence of CO homeostasis has been reported in several species, including mouse, yeast, and Caenorhabditis elegans. However, it is not known whether homeostasis exists in the same form in all species. In addition, the studies of homeostasis have been conducted using mutants and/or transgenic lines exhibiting fairly severe meiotic phenotypes, and it is unclear how important homeostasis is under normal physiological conditions. We found that, in maize, CO control is robust only to ensure one CO per chromosome pair. However, once this limit is reached, the CO number is linearly related to the DSB number. We propose that CO control is a multifaceted process whose different aspects have a varying degree of importance in different species. PMID:26668366

  1. Bottleneck crossover between classical and quantum superfluid turbulence

    SciTech Connect

    L'vov, Victor S.; Rudenko, Oleksii; Nazarenko, Sergei V.

    2007-07-01

    We consider superfluid turbulence near absolute zero of temperature generated by classical means, e.g., towed grid or rotation but not by counterflow. We argue that such turbulence consists of a polarized tangle of mutually interacting vortex filaments with quantized vorticity. For this system, we predict and describe a bottleneck accumulation of the energy spectrum at the classical-quantum crossover scale l. Demanding the same energy flux through scales, the value of the energy at the crossover scale should exceed the Kolmogorov-41 (K41) spectrum by a large factor ln{sup 10/3}(l/a{sub 0}) (l is the mean intervortex distance and a{sub 0} is the vortex core radius) for the classical and quantum spectra to be matched in value. One of the important consequences of the bottleneck is that it causes the mean vortex line density to be considerably higher than that based on K41 alone, and this should be taken into account in (re)interpretation of new (and old) experiments as well as in further theoretical studies.

  2. Metal-to-insulator crossover in alkali doped zeolite

    PubMed Central

    Igarashi, Mutsuo; Jeglič, Peter; Krajnc, Andraž; Žitko, Rok; Nakano, Takehito; Nozue, Yasuo; Arčon, Denis

    2016-01-01

    We report a systematic nuclear magnetic resonance investigation of the 23Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state. As the loading levels decrease below n ≤ 11.6, the extracted density of states (DOS) at the Fermi level sharply decreases, although a residual DOS at Fermi level is still observed even in the samples that lack the metallic Drude-peak in the optical reflectance. The observed crossover is a result of a complex loading-level dependence of electric potential felt by the electrons confined to zeolite cages, where the electronic correlations and disorder both play an important role. PMID:26725368

  3. Crossover Inhibition Generates Sustained Visual Responses in the Inner Retina

    PubMed Central

    Rosa, Juliana M.; Ruehle, Sabine; Ding, Huayu; Lagnado, Leon

    2016-01-01

    Summary In daylight, the input to the retinal circuit is provided primarily by cone photoreceptors acting as band-pass filters, but the retinal output also contains neuronal populations transmitting sustained signals. Using in vivo imaging of genetically encoded calcium reporters, we investigated the circuits that generate these sustained channels within the inner retina of zebrafish. In OFF bipolar cells, sustained transmission was found to depend on crossover inhibition from the ON pathway through GABAergic amacrine cells. In ON bipolar cells, the amplitude of low-frequency signals was regulated by glycinergic amacrine cells, while GABAergic inhibition regulated the gain of band-pass signals. We also provide the first functional description of a subset of sustained ON bipolar cells in which synaptic activity was suppressed by fluctuations at frequencies above ∼0.2 Hz. These results map out the basic circuitry by which the inner retina generates sustained visual signals and describes a new function of crossover inhibition. PMID:27068790

  4. Dimensional crossover of a boson gas in multilayers

    SciTech Connect

    Salas, P.; Sevilla, F. J.; Fortes, M.; Solis, M. A.; Llano, M. de; Camacho, A.

    2010-09-15

    We obtain the thermodynamic properties for a noninteracting Bose gas constrained on multilayers modeled by a periodic Kronig-Penney delta potential in one direction and allowed to be free in the other two directions. We report Bose-Einstein condensation (BEC) critical temperatures, chemical potential, internal energy, specific heat, and entropy for different values of a dimensionless impenetrability P{>=}0 between layers. The BEC critical temperature T{sub c} coincides with the ideal gas BEC critical temperature T{sub 0} when P=0 and rapidly goes to zero as P increases to infinity for any finite interlayer separation. The specific heat C{sub V} as a function of absolute temperature T for finite P and plane separation a exhibits one minimum and one or two maxima in addition to the BEC, for temperatures larger than that of BEC T{sub c}. This highlights the effects due to particle confinement. We then discuss a distinctive dimensional crossover of the system through the specific heat behavior driven by the magnitude of P. For Tcrossover is revealed by a change in slope of logC{sub V}(T) and when T>T{sub c}, it is exhibited by a broad minimum in C{sub V}(T).

  5. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  6. Chaos based crossover and mutation for securing DICOM image.

    PubMed

    Ravichandran, Dhivya; Praveenkumar, Padmapriya; Balaguru Rayappan, John Bosco; Amirtharajan, Rengarajan

    2016-05-01

    This paper proposes a novel encryption scheme based on combining multiple chaotic maps to ensure the safe transmission of medical images. The proposed scheme uses three chaotic maps namely logistic, tent and sine maps. To achieve an efficient encryption, the proposed chao-cryptic system employs a bio-inspired crossover and mutation units to confuse and diffuse the Digital Imaging and Communications in Medicine (DICOM) image pixels. The crossover unit extensively permutes the image pixels row-wise and column-wise based on the chaotic key streams generated from the Combined Logistic-Tent (CLT) system. Prior to mutation, the pixels of the crossed over image are decomposed into two images with reduced bit depth. The decomposed images are then mutated by XOR operation with quantized chaotic sequences from Combined Logistic-Sine (CLS) system. In order to validate the sternness of the proposed algorithm, the developed chao-cryptic scheme is subjected to various security analyses such as statistical, differential, key space, key sensitivity, intentional cropping attack and chosen plaintext attack analyses. The experimental results prove the proposed DICOM cryptosystem has achieved a desirable amount of protection for real time medical image security applications. PMID:27046666

  7. Phase Transition in Sexual Reproduction and Biological Evolution

    NASA Astrophysics Data System (ADS)

    Zawierta, Marta; Waga, Wojciech; Mackiewicz, Dorota; Biecek, Przemysław; Cebrat, Stanisław

    Using Monte Carlo model of biological evolution it is discovered that populations can switch between two different strategies of their genomes' evolution: Darwinian purifying selection and complementing the haplotypes. The first one is exploited in the large panmictic populations while the second one in the small highly inbred populations. The choice depends on the crossover frequency. There is a power law relation between the critical value of crossover frequency and the size of panmictic population. Under constant inbreeding this critical value of crossover does not depend on the population size and has a character of phase transition. Close to this value sympatric speciation is observed.

  8. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes

    NASA Astrophysics Data System (ADS)

    Sampaio Filho, C. I. N.; dos Santos, T. B.; Moreira, A. A.; Moreira, F. G. B.; Andrade, J. S.

    2016-05-01

    We study through Monte Carlo simulations and finite-size scaling analysis the nonequilibrium phase transitions of the majority-vote model taking place on spatially embedded networks. These structures are built from an underlying regular lattice over which directed long-range connections are randomly added according to the probability Pi j˜r-α , where ri j is the Manhattan distance between nodes i and j , and the exponent α is a controlling parameter [J. M. Kleinberg, Nature (London) 406, 845 (2000), 10.1038/35022643]. Our results show that the collective behavior of this system exhibits a continuous order-disorder phase transition at a critical parameter, which is a decreasing function of the exponent α . Precisely, considering the scaling functions and the critical exponents calculated, we conclude that the system undergoes a crossover among distinct universality classes. For α ≤3 the critical behavior is described by mean-field exponents, while for α ≥4 it belongs to the Ising universality class. Finally, in the region where the crossover occurs, 3 <α <4 , the critical exponents are dependent on α .

  9. Crossover Equation of State Compared to Lattice QCD and to Baryon Fluctuations in the RHIC Beam Energy Scan

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph; Albright, Michael; Young, Clint

    2015-10-01

    We match hadronic equations of state at low energy densities to a perturbatively computed equation of state of quarks and gluons at high energy densities. The hadronic equations of state include all known hadrons; repulsive interactions are taken into account via two versions of the excluded volume approximation. A switching function is employed to make the crossover transition from one phase to another without introducing a thermodynamic phase transition. A fit to accurate lattice calculations of the pressure and trace anomaly, with temperature 100 < T < 1000 MeV and μ = 0 , determines the parameters. These parameters quantify the behavior of the QCD running gauge coupling and the hard core radius of the nucleon. With no new parameters, the pressure and trace anomaly from lattice calculations for μ = 400 MeV are equally well reproduced, as is the speed of sound. We then compute the skewness and kurtosis and compare to measurements of the fluctuations of the proton number distribution in central Au-Au collisions as measured by the STAR collaboration in a beam energy scan at RHIC. The crossover equations of state can reproduce the data if the fluctuations are frozen at a temperature significantly lower than the average chemical freeze-out. This work was supported by the US Department of Energy under Grant No. DE-FG02-87ER40328.

  10. A spin-crossover ionic liquid from the cationic iron(III) Schiff base complex.

    PubMed

    Okuhata, Megumi; Funasako, Yusuke; Takahashi, Kazuyuki; Mochida, Tomoyuki

    2013-09-01

    A thermochromic magnetic ionic liquid containing a cationic iron(III) Schiff-base complex has been developed, whose color and magnetic moment change with temperature because of spin crossover in the liquid state. This spin-crossover behavior closely resembles that of a solid having the same cation. PMID:23872624

  11. Spillover and Crossover of Exhaustion and Life Satisfaction among Dual-Earner Parents

    ERIC Educational Resources Information Center

    Demerouti, Evangelia; Bakker, Arnold B.; Schaufeli, Wilmar B.

    2005-01-01

    This study integrates spillover research of stress transferring from work to home and crossover research of strains transferring from one spouse to another. A spillover and crossover model was tested among 191 (couples of) dual-earner parents. For both males and females, it was hypothesized that (self-reported and partners' rating of)…

  12. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of...

  13. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switches, including crossover... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...) General. Employees operating or verifying the position of a hand-operated switch shall: (1) Conduct...

  14. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switches, including crossover... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...) General. Employees operating or verifying the position of a hand-operated switch shall: (1) Conduct...

  15. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hand-operated switches, including crossover... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...) General. Employees operating or verifying the position of a hand-operated switch shall: (1) Conduct...

  16. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switches, including crossover... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...) General. Employees operating or verifying the position of a hand-operated switch shall: (1) Conduct...

  17. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of...

  18. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of...

  19. 49 CFR 218.103 - Hand-operated switches, including crossover switches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switches, including crossover... Equipment, Switches, and Fixed Derails § 218.103 Hand-operated switches, including crossover switches. (a)(1...) General. Employees operating or verifying the position of a hand-operated switch shall: (1) Conduct...

  20. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of...

  1. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of...

  2. DNA Crossover Motifs Associated with Epigenetic Modifications Delineate Open Chromatin Regions in Arabidopsis[OPEN

    PubMed Central

    Shilo, Shay; Melamed-Bessudo, Cathy; Barkai, Naama

    2015-01-01

    The rate of crossover, the reciprocal exchanges of homologous chromosomal segments, is not uniform along chromosomes differing between male and female meiocytes. To better understand the factors regulating this variable landscape, we performed a detailed genetic and epigenetic analysis of 737 crossover events in Arabidopsis thaliana. Crossovers were more frequent than expected in promoters. Three DNA motifs enriched in crossover regions and less abundant in crossover-poor pericentric regions were identified. One of these motifs, the CCN repeat, was previously unknown in plants. The A-rich motif was preferentially associated with promoters, while the CCN repeat and the CTT repeat motifs were preferentially associated with genes. Analysis of epigenetic modifications around the motifs showed, in most cases, a specific epigenetic architecture. For example, we show that there is a peak of nucleosome occupancy and of H3K4me3 around the CCN and CTT repeat motifs while nucleosome occupancy was lowest around the A-rich motif. Cytosine methylation levels showed a gradual decrease within ∼2 kb of the three motifs, being lowest at sites where crossover occurred. This landscape was conserved in the decreased DNA methylation1 mutant. In summary, the crossover motifs are associated with epigenetic landscapes corresponding to open chromatin and contributing to the nonuniformity of crossovers in Arabidopsis. PMID:26381163

  3. First Step Towards a Devil's Staircase in Spin-Crossover Materials.

    PubMed

    Trzop, Elzbieta; Zhang, Daopeng; Piñeiro-Lopez, Lucia; Valverde-Muñoz, Francisco J; Carmen Muñoz, M; Palatinus, Lukas; Guerin, Laurent; Cailleau, Hervé; Real, Jose Antonio; Collet, Eric

    2016-07-18

    The unprecedented bimetallic 2D coordination polymer {Fe[(Hg(SCN)3 )2 ](4,4'-bipy)2 }n exhibits a thermal high-spin (HS)↔low-spin (LS) staircase-like conversion characterized by a multi-step dependence of the HS molar fraction γHS . Between the fully HS (γHS =1) and LS (γHS =0) phases, two steps associated with different ordering appear in terms of spin-state concentration waves (SSCW). On the γHS ≈0.5 step, a periodic SSCW forms with a HS-LS-HS-LS sequence. On the γHS ≈0.34 step, the 4D superspace crystallography structural refinement reveals an aperiodic SSCW, with a HS-LS sequence incommensurate with the molecular lattice. The formation of these different long-range spatially ordered structures of LS and HS states during the multi-step spin-crossover is discussed within the framework of "Devil's staircase"-type transitions. Spatially modulated phases are known in various types of materials but are uniquely related to molecular HS/LS bistability in this case. PMID:27193972

  4. Evolution of a MCM complex in flies promoting meiotic crossovers by blocking BLM helicase

    PubMed Central

    Kohl, Kathryn P.; Jones, Corbin D.; Sekelsky, Jeff

    2013-01-01

    Generation of meiotic crossovers in many eukaryotes requires the elimination of anti-crossover activities by utilizing the Msh4–Msh5 heterodimer to block helicases. Msh4 and Msh5 have been lost from the flies Drosophila and Glossina but we identified a complex of mini-chromosome maintenance (MCM) proteins that functionally replace Msh4–Msh5. REC, an ortholog of MCM8 that evolved under strong positive selection in flies, interacts with MEI-217 and MEI-218, which arose from a previously undescribed metazoan-specific MCM protein. Meiotic crossovers are reduced in Drosophila rec, mei-217, and mei-218 mutants; however, removal of the Bloom syndrome helicase ortholog restores crossovers. Thus, MCMs were co-opted into a novel complex that replaces the meiotic pro-crossover function of Msh4–Msh5 in flies. PMID:23224558

  5. Unraveling the daily stress crossover between unemployed individuals and their employed spouses.

    PubMed

    Song, Zhaoli; Foo, Maw-Der; Uy, Marilyn A; Sun, Shuhua

    2011-01-01

    This study examined the dynamic relationship of distress levels between spouses when one is unemployed (and looking for a job) while the other is engaged in full-time employment. Using the diary survey method, we sampled 100 couples in China for 10 days and tested a model comprising three stress crossover mechanisms: the direct crossover, the mediating crossover, and the common stressor mechanisms. Results supported the direct crossover and common stressor mechanisms. Other stressors (e.g., work–family conflict and negative job search experience) were also related to distress of the unemployed individuals and their employed spouses. Additionally, we found a three-way interaction involving gender, marital satisfaction, and distress levels of employed spouses. We discuss how the study contributes to the unemployment and stress crossover literatures. PMID:20919793

  6. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  7. Synaptonemal Complex Proteins of Budding Yeast Define Reciprocal Roles in MutSγ-Mediated Crossover Formation.

    PubMed

    Voelkel-Meiman, Karen; Cheng, Shun-Yun; Morehouse, Savannah J; MacQueen, Amy J

    2016-07-01

    During meiosis, crossover recombination creates attachments between homologous chromosomes that are essential for a precise reduction in chromosome ploidy. Many of the events that ultimately process DNA repair intermediates into crossovers during meiosis occur within the context of homologous chromosomes that are tightly aligned via a conserved structure called the synaptonemal complex (SC), but the functional relationship between SC and crossover recombination remains obscure. There exists a widespread correlation across organisms between the presence of SC proteins and successful crossing over, indicating that the SC or its building block components are procrossover factors . For example, budding yeast mutants missing the SC transverse filament component, Zip1, and mutant cells missing the Zip4 protein, which is required for the elaboration of SC, fail to form MutSγ-mediated crossovers. Here we report the reciprocal phenotype-an increase in MutSγ-mediated crossovers during meiosis-in budding yeast mutants devoid of the SC central element components Ecm11 or Gmc2, and in mutants expressing a version of Zip1 missing most of its N terminus. This novel phenotypic class of SC-deficient mutants demonstrates unequivocally that the tripartite SC structure is dispensable for MutSγ-mediated crossover recombination in budding yeast. The excess crossovers observed in SC central element-deficient mutants are Msh4, Zip1, and Zip4 dependent, clearly indicating the existence of two classes of SC proteins-a class with procrossover function(s) that are also necessary for SC assembly and a class that is not required for crossover formation but essential for SC assembly. The latter class directly or indirectly limits MutSγ-mediated crossovers along meiotic chromosomes. Our findings illustrate how reciprocal roles in crossover recombination can be simultaneously linked to the SC structure. PMID:27184389

  8. Quantum Corrections Crossover and Ferromagnetism in Magnetic Topological Insulators

    PubMed Central

    Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian

    2013-01-01

    Revelation of emerging exotic states of topological insulators (TIs) for future quantum computing applications relies on breaking time-reversal symmetry and opening a surface energy gap. Here, we report on the transport response of Bi2Te3 TI thin films in the presence of varying Cr dopants. By tracking the magnetoconductance (MC) in a low doping regime we observed a progressive crossover from weak antilocalization (WAL) to weak localization (WL) as the Cr concentration increases. In a high doping regime, however, increasing Cr concentration yields a monotonically enhanced anomalous Hall effect (AHE) accompanied by an increasing carrier density. Our results demonstrate a possibility of manipulating bulk ferromagnetism and quantum transport in magnetic TI, thus providing an alternative way for experimentally realizing exotic quantum states required by spintronic applications. PMID:23928713

  9. Crossover from Quantum to Classical Creep in YBCO

    NASA Astrophysics Data System (ADS)

    Shung, E.; Beauchamp, K. M.; Rosenbaum, T. F.; Welp, U.; Crabtree, G. W.

    1996-03-01

    We use a miniature Hall probe array to measure the local magnetization relaxation S in single crystals of YBCO with columnar defects from milliKelvin to tens of Kelvin. In addition to the usual quantum signature of temperature independence of the relaxation, we probe the relationship between S and the critical current density J_c, tuned by varying columnar defect density. S can increase concurrently with Jc in the Bose glass when quantum effects dominate (K. M. Beauchamp et al., Phys. Rev. Lett. 75), 3942 (1995). Moreover, we test recent theoretical predictions of the dependence of the quantum to classical crossover temperature on critical current density (L. Radzihovsky, Phys Rev. Lett. 74), 4923 (1995).

  10. Self-adaptive genetic algorithms with simulated binary crossover.

    PubMed

    Deb, K; Beyer, H G

    2001-01-01

    Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (SBX) operator and without any mutation operator. The connection between the working of self-adaptive ESs and real-parameter GAs with the SBX operator is also discussed. Thereafter, the self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly used in the ES literature. The remarkable similarity in the working principle of real-parameter GAs and self-adaptive ESs shown in this study suggests the need for emphasizing further studies on self-adaptive GAs. PMID:11382356

  11. Critical velocity in the BEC-BCS crossover.

    PubMed

    Weimer, Wolf; Morgener, Kai; Singh, Vijay Pal; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Mathey, Ludwig; Moritz, Henning

    2015-03-01

    We map out the critical velocity in the crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer superfluidity with ultracold ^{6}Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity v_{c}. In the same samples, we measure the speed of sound v_{s} by exciting density waves and compare the results to the measured values of v_{c}. We perform numerical simulations in the Bose-Einstein condensation regime and find very good agreement, validating the approach. In the strongly correlated regime our measurements of v_{c} provide a testing ground for theoretical approaches. PMID:25793823

  12. Progesterone and the premenstrual syndrome: a double blind crossover trial.

    PubMed Central

    Dennerstein, L; Spencer-Gardner, C; Gotts, G; Brown, J B; Smith, M A; Burrows, G D

    1985-01-01

    A double blind, randomised, crossover trial of oral micronised progesterone (two months) and placebo (two months) was conducted to determine whether progesterone alleviated premenstrual complaints. Twenty three women were interviewed premenstrually before treatment and in each month of treatment. They completed Moos's menstrual distress questionnaire, Beck et al's depression inventory, Spielberger et al's state anxiety inventory, the mood adjective checklist, and a daily symptom record. Analyses of data found an overall beneficial effect of being treated for all variables except restlessness, positive moods, and interest in sex. Maximum improvement occurred in the first month of treatment with progesterone. Nevertheless, an appreciably beneficial effect of progesterone over placebo for mood and some physical symptoms was identifiable after both one and two months of treatment. Further studies are needed to determine the optimum duration of treatment. PMID:3924191

  13. FM-AFM crossover in vanadium oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Grigorieva, A. V.; Goodilin, E. A.; Sluchanko, N. E.; Samarin, N. A.; Semeno, A. V.

    2010-01-01

    The magnetic properties of nanomaterials based on vanadium oxide (multiwall nanotubes, nanorods, and nanolayers) have been investigated in the temperature range of 1.8-220 K by high-frequency (60-GHz) EPR. A transition from a ferromagnetic temperature dependence to an antiferromagnetic temperature dependence has been observed in nanorods and nanotubes with a decrease in the temperature. The FM-AFM crossover observed near T C ˜ 110 K is accompanied by a low-temperature increase in the Curie constant by a factor of 2.7-7. The comparison of the experimental data for various VO x nanoparticles indicates that the most probable cause of the change in the type of magnetic interaction is a change in the concentration of V4+ magnetic ions.

  14. Workaholism and relationship quality: a spillover-crossover perspective.

    PubMed

    Bakker, Arnold B; Demerouti, Evangelia; Burke, Ronald

    2009-01-01

    This study of 168 dual-earner couples examined the relationship between workaholism and relationship satisfaction. More specifically, on the basis of the literature, it was hypothesized that workaholism is positively related to work-family conflict. In addition, the authors predicted that workaholism is related to reduced support provided to the partner, through work-family conflict, and that individuals who receive considerable support from their partners are more satisfied with their relationship. Finally, the authors hypothesized direct crossover of relationship satisfaction between partners. The results of structural equation modeling analyses using the matched responses of both partners supported these hypotheses. Moreover, in line with predictions, the authors found that gender did not affect the strength of the relationships in the proposed model. The authors discuss workplace interventions as possible ways to help workaholics and their partners. PMID:19210044

  15. Vacuum energy density kicked by the electroweak crossover

    SciTech Connect

    Klinkhamer, F. R.; Volovik, G. E.

    2009-10-15

    Using q-theory, we show that the electroweak crossover can generate a remnant vacuum energy density {lambda}{approx}E{sub ew}{sup 8}/E{sub Planck}{sup 4}, with effective electroweak energy scale E{sub ew}{approx}10{sup 3} GeV and reduced Planck-energy scale E{sub Planck}{approx}10{sup 18} GeV. The obtained expression for the effective cosmological constant {lambda} may be a crucial input for the suggested solution by Arkani-Hamed et al. of the triple cosmic coincidence puzzle (why the orders of magnitude of the energy densities of vacuum, matter, and radiation are approximately the same in the present Universe)

  16. An inverted crossover resonance aiding laser cooling of ^171Yb

    NASA Astrophysics Data System (ADS)

    McFerran, J. J.

    2016-06-01

    We observe an inverted crossover resonance in $\\pi$-driven four-level systems, where $F'-F=0,+1$. The signal is observed through saturated absorption spectroscopy of the $(6s^{2})$ $^{1}S_{0}$ $-$ $(6s6p)$ $^{3}P_{1}$ transition in $^{171}$Yb, where the nuclear spin $I=1/2$. The enhanced absorption signal is used to generate a dispersive curve for 556 nm laser frequency stabilisation and the stabilised light cools $^{171}$Yb atoms in a two-stage magneto-optical trap, achieving temperatures of 20 $\\mu$K. The Doppler-free spectroscopy scheme is further used to measure isotopic frequency shifts and hyperfine separations for the intercombination line in ytterbium.

  17. Experimental evidence for a dynamical crossover in liquid aluminium.

    PubMed

    Demmel, F; Fraile, A; Szubrin, D; Pilgrim, W-C; Morkel, C

    2015-11-18

    The temperature dependence of the dynamic structure factor at next-neighbour distances has been investigated for liquid aluminium. This correlation function is a sensitive parameter for changes in the local environment and its Fourier transform was measured in a coherent inelastic neutron scattering experiment. The zero frequency amplitude decreases in a nonlinear way and indicates a change in dynamics around 1.4 ∙ Tmelting. From that amplitude a generalized viscosity can be derived which is a measure of local stress correlations on next-neighbour distances. The derived generalized longitudinal viscosity shows a changing slope at the same temperature range. At this temperature the freezing out of degrees of freedom for structural relaxation upon cooling sets in which can be understood as a precursor towards the solid state. That crossover in dynamics of liquid aluminium shows the same signatures as previously observed in liquid rubidium and lead, indicating an universal character. PMID:26465204

  18. Crossover from BCS to Bose superconductivity: A functional integral approach

    SciTech Connect

    Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.

    1993-04-01

    We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum as a function of the coupling.

  19. Experimental evidence for a dynamical crossover in liquid aluminium

    NASA Astrophysics Data System (ADS)

    Demmel, F.; Fraile, A.; Szubrin, D.; Pilgrim, W.-C.; Morkel, C.

    2015-11-01

    The temperature dependence of the dynamic structure factor at next-neighbour distances has been investigated for liquid aluminium. This correlation function is a sensitive parameter for changes in the local environment and its Fourier transform was measured in a coherent inelastic neutron scattering experiment. The zero frequency amplitude decreases in a nonlinear way and indicates a change in dynamics around 1.4\\cdot {{T}\\text{melting}} . From that amplitude a generalized viscosity can be derived which is a measure of local stress correlations on next-neighbour distances. The derived generalized longitudinal viscosity shows a changing slope at the same temperature range. At this temperature the freezing out of degrees of freedom for structural relaxation upon cooling sets in which can be understood as a precursor towards the solid state. That crossover in dynamics of liquid aluminium shows the same signatures as previously observed in liquid rubidium and lead, indicating an universal character.

  20. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya

    2015-12-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  1. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    SciTech Connect

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  2. Crossover Phenomena in Detrended Fluctuation Analysis Used in Financial Markets

    NASA Astrophysics Data System (ADS)

    Ma, Shi-Hao

    2009-02-01

    A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/fβ processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously. Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.

  3. Effects of capacitance at crossover wirings in power GaAs M.E.S.F.E.T.s

    NASA Astrophysics Data System (ADS)

    Aono, Y.; Higashisaka, A.; Hasegawa, F.

    1980-05-01

    Power GaAs FETs with an air-bridge crossover were compared with those of SiO2 crossover to find the effect of the capacitance at the crossover points. The capacitance of SiO2 crossover points is much smaller than that of the gate pad or the gate busbar in power GaAs FETs, and deterioration of the microwave performance due to that capacitance is negligible.

  4. Compression of a multiphase mantle assemblage: Effects of undesirable stress and stress annealing on the iron spin state crossover in ferropericlase

    NASA Astrophysics Data System (ADS)

    Glazyrin, Konstantin; Miyajima, Nobuyoshi; Smith, Jesse S.; Lee, Kanani K. M.

    2016-05-01

    Using synchrotron-based X-ray diffraction, we explore characteristic signatures for nonhydrostatic stresses and their effect on the spin state crossover of ferrous iron in (Mg, Fe)O ferropericlase (Fp) upon compression in a two-phase mixture which includes an Al- and Fe-bearing bridgmanite (Bm). We observe an influence of nonhydrostatic stresses on the spin state crossover starting pressure and width. The undesirable stresses discussed here include uniaxial deviatoric stress evolving in the diamond anvil cell and effects of intergrain interaction. While the former leads to a pressure overestimation, the latter one lowers the pressure of the onset for the high-spin to low-spin electronic transition in Fe2+ in ferropericlase (Mg, Fe)O with respect to hydrostatic conditions.

  5. Spin correlations near the ferromagnetic-spin glass crossover in Eu/sub x/Sr/sub 1-x/S

    SciTech Connect

    Maletta, H.; Aeppli, G.; Shapiro, S.M.

    1982-09-01

    Bulk susceptibility and high-resolution neutron-diffraction measurements have been performed on single crystals of Eu/sub x/Sr/sub 1-x/S for x = 0.52 and 0.54 near the ferromagnet (FM) - spin glass (SG) crossover. A reentrant phase is established, which is induced by random-field effects. As the temperature is reduced the FM correlation length xi passes through a resolution-limited maximum where a frustrated FM phase is observed. In the SG at lower temperature xi decreases again and a coexisting FM component can be excluded. 6 figures.

  6. Nanocrystals of Fe(phen)2(NCS)2 and the size-dependent spin-crossover characteristics.

    PubMed

    Laisney, J; Tissot, A; Molnár, G; Rechignat, L; Rivière, E; Brisset, F; Bousseksou, A; Boillot, M-L

    2015-10-21

    We report on the size reduction of the neutral Fe(phen)2(NCS)2 prototypical compound exhibiting a cooperative spin-crossover associated with a first-order phase transition (at ca. 176 K). We use the [Fe(phen)3](NCS)2 ionic precursor and the solvent-assisted precipitation technique to prepare an array of crystalline objects with sizes varying over two orders of magnitude (from 15 up to 1400 nm). TEM, X-ray diffraction and IR measurements provide evidences for the formation of particles of neutral and ionic species, which results from the interplay between the relevant chemical equilibrium and the reaction kinetics (ligand extraction, complex precipitation), and the modulation of the latter by physico-chemical parameters. A thermal transformation of diamagnetic nanocrystals of [Fe(phen)3](NCS)2 leads to spin-crossover particles of Fe(phen)2(NCS)2 of a comparable size. Powders of nano-, micro- and polycrystals of Fe(phen)2(NCS)2 present X-ray diffractograms typical of the so-called polymorph II. The importance of size effects on the cooperative spin-crossover process was probed with magnetic, Mössbauer, Raman and IR spectroscopic measurements. Each sample exhibits spin-state switching of the Fe(ii) ions. The salient features are: a cooperativity preserved at the micrometric scale, a very limited downshift of the transition temperature and an asymmetric spreading of the thermal process (over ca. 100 K) with the size reduction. At temperatures close to room temperature, the process appears to be quasi complete whatever the size of the samples. This result, extracted from Raman data, was confirmed by Mössbauer measurements in the case of the largest objects (LS residue <5-10% for bulk and microparticles). Below 150 K, a very efficient low-spin to high-spin photoexcitation was induced by the Raman laser beam in all the samples which prevents the extraction of the high-spin fraction in this temperature range. However variable temperature IR spectra of the 29 nm particles

  7. Crossover from the parity-conserving pair contact process with diffusion to other universality classes.

    PubMed

    Park, Su-Chan; Park, Hyunggyu

    2009-05-01

    The pair contact process with diffusion (PCPD) with modulo 2 conservation (PCPD2) [ 2A-->4A , 2A-->0 ] is studied in one dimension, focused on the crossover to other well established universality classes: the directed Ising (DI) and the directed percolation (DP). First, we show that the PCPD2 shares the critical behaviors with the PCPD, both with and without directional bias. Second, the crossover from the PCPD2 to the DI is studied by including a parity-conserving single-particle process (A-->3A) . We find the crossover exponent 1/varphi_{1}=0.57(3) , which is argued to be identical to that of the PCPD-to-DP crossover by adding A-->2A . This suggests that the PCPD universality class has a well-defined fixed point distinct from the DP. Third, we study the crossover from a hybrid-type reaction-diffusion process belonging to the DP [ 3A-->5A , 2A-->0 ] to the DI by adding A-->3A . We find 1/varphi_{2}=0.73(4) for the DP-to-DI crossover. The inequality of varphi_{1} and varphi_{2} further supports the non-DP nature of the PCPD scaling. Finally, we introduce a symmetry-breaking field in the dual spin language to study the crossover from the PCPD2 to the DP. We find 1/varphi_{3}=1.23(10) , which is associated with a new independent route from the PCPD to the DP. PMID:19518439

  8. Indirect fuel cell based on a redox-flow battery with a new design to avoid crossover

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Yamazaki, Shin-ichi; Fujiwara, Naoko; Asahi, Masafumi; Nagai, Tsukasa; Ioroi, Tsutomu

    2013-11-01

    A new design of a redox flow battery (RFB), which is composed of two subcells separated by a gas phase of hydrogen, is proposed to eliminate the crossover of ionic species between the anolyte and catholyte. This idea not only increases the possible combinations of the two electrolytes, but also opens up the prospect of a revival of the old idea of an indirect fuel cell, which is composed of an RFB and two chemical reactors to regenerate the electrolytes using a fuel and oxygen. This paper describes the operation of a subcell as a component of an indirect fuel cell system. In the cycling test, oxidation/reduction of the electroactive species in each electrolyte were repeated with a hydrogen electrode as the counter electrode. This result demonstrates the possibility of this newly proposed RFB without crossover. In the operation of the subcell with a chemical reactor, a molecular catalyst (a rhodium porphyrin) was dissolved in the anolyte, and then a fuel was bubbled in the anolyte reservoir. As the electroactive species was reduced by the fuel, a steady-state oxidation current was observed at the cell. This demonstrates the negative half of the newly proposed indirect fuel cell.

  9. An algebraic model on the performance of a direct methanol fuel cell with consideration of methanol crossover

    NASA Astrophysics Data System (ADS)

    Yin, Ken-Ming

    An algebraic one-dimensional model on the membrane-electrode-assembly (MEA) of direct methanol fuel cell (DMFC) is proposed. Non-linear regression procedure was imposed on the model to retrieve important parameters: solid polymer electrolyte conductivity κ m, exchange current density of methanol electro-oxidation at anode catalyst surface i oM,ref, and mass diffusivity of methanol in aqueous phase within the porous electrode D a that correspond to the experimentally measured polarization curves. Although numerical iteration is required for a complete solution, the explicit relationships of methanol concentration, methanol crossover rate, oxygen concentration and cell discharge current density do provide a clear picture of the mass transport and electrochemical kinetics within the various porous media in the MEA. It is shown the cathode mixed potential induced by the parallel reactions of oxygen reduction and oxidation of crossover methanol elucidates the potential drop of the cathode and the decrease of the cell open circuit voltage (OCV). Methanol transport in the membrane is described by the diffusion, electro-osmosis, and pressure induced convection. Detailed accounts of the effects of anode methanol and cathode oxygen feed concentrations on the cell discharge performance are given with correlation to the physical structure and chemical compositions of the catalyst layers (CLs).

  10. Anomalous behavior in the crossover between the negative and positive biaxial nematic mesophases in a lyotropic liquid crystal.

    PubMed

    Akpinar, Erol; Reis, Dennys; Figueiredo Neto, Antonio M

    2014-05-19

    A novel quaternary lyotropic liquid-crystalline mixture of dodecyltrimethylammonium bromide (DDTMABr)/sodium bromide/1-dodecanol/water, presenting the biaxial nematic phase (NB ) in addition to two uniaxial discotic (ND) and calamitic (NC) nematic ones, was synthesized. The partial phase diagram of this new mixture was constructed as a function of the DDTMABr molar-fraction concentration. The phase transitions from uniaxial to biaxial nematic phases were studied by means of the temperature dependence of the optical birefringence. In a particular region of the phase diagram, anomalous behavior was observed in the crossover from N-B to N+b: the contrast of the conoscopic fringes, which allows the birefringence measurements, almost vanishes, and the sample loses its alignment. This behavior, which was not observed before in lyotropics, was interpreted as a decrease in the mean diamagnetic susceptibility anisotropy (Δχ) of the sample, which was related to the shape anisotropy of the micelles. Small-angle X-ray scattering measurements were performed to evaluate the micellar shape anisotropy; these revealed that this mixture presented a smaller shape anisotropy than those of other lyotropic micellar systems presenting the NB phase. PMID:24692308

  11. A Pilot Study on Culottes versus Crossover Single Stenting for True Coronary Bifurcation Lesions

    PubMed Central

    Zhang, Linlin; Zhong, Wenliang; Luo, Yukun; Chen, Lianglong

    2016-01-01

    Background The purpose of our study was to compare clinical and angiographic outcomes of planned culottes technique with that of provisional crossover single stenting in the treatment of true coronary bifurcation lesions (CBL) with drug-eluting stent (DES). Methods True CBL patients (n = 104) were randomly assigned to either the provisional stenting of the side branch (crossover group) or the culottes group. Additional side branch (SB) stenting in the crossover group was required if there was thrombolysis in myocardial infarction flow ≤ 1 flow). The primary end point was the occurrence of major adverse cardiac events (MACE) at nine months, including cardiac death, myocardial infarction, target lesion/vessel revascularization and in-stent thrombosis. The secondary end point was angiographic in-segment restenosis at nine months. Results The rate of MACE at nine months was similar between the crossover and culottes groups (7.7% vs. 7.7%, p = 1.000). Additional SB stenting in the crossover group was required in 3.8% of patients. There was one procedural occlusion of SB in the crossover group. At nine months, the rate of in-segment restenosis was similar in the parent main vessel (0% vs. 1.9%, p = 1.000), main branch (1.9% vs. 7.7%, p = 0.363) and SB (17.3% vs. 9.6%, p = 0.250) between the crossover and culottes groups, respectively. Conclusions This study demonstrated that there is no significant difference in cumulative MACE or in-segment restenosis between crossover and culottes groups. Larger randomized clinical trials are warranted to re-evaluate the outcomes of the provisional crossover stenting versus the culottes stenting techniques utilizing DES for true CBL. PMID:27471358

  12. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior. PMID:25481157

  13. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  14. Phase structure of QCD for heavy quarks

    NASA Astrophysics Data System (ADS)

    Fischer, Christian S.; Luecker, Jan; Pawlowski, Jan M.

    2015-01-01

    We investigate the nature of the deconfinement and Roberge-Weiss transition in the heavy quark regime for finite real and imaginary chemical potential within the functional approach to continuum QCD. We extract the critical phase boundary between the first-order and crossover regions and also explore tricritical scaling. Our results confirm previous ones from finite volume lattice studies.

  15. Semiflexible polymer brushes and the brush-mushroom crossover.

    PubMed

    Egorov, Sergei A; Hsu, Hsiao-Ping; Milchev, Andrey; Binder, Kurt

    2015-04-01

    Semiflexible polymers end-grafted to a repulsive planar substrate under good solvent conditions are studied by scaling arguments, computer simulations, and self-consistent field theory. Varying the chain length N, persistence length lp, and grafting density σg, the chain linear dimensions and distribution functions of all monomers and of the free chain ends are studied. Particular attention is paid to the limit of very small σg, where the grafted chains behave as "mushrooms" no longer interacting with each other. Unlike a flexible mushroom, which has a self-similar structure from the size (a) of an effective monomer up to the mushroom height (h/a ∝ N(v), ν ≈ 3/5), a semiflexible mushroom (like a free semiflexible chain) exhibits three different scaling regimes, h/a ∝ N for contour length L = Na < lp, a Gaussian regime, h/a ∝ (Llp)(1/2)/a for lp ≪ L ≪ R* ∝ (lp(2)/a), and a regime controlled by excluded volume, h/a ∝ (lp/a)(1/5)N(ν). The semiflexible brush is predicted to scale as h/a ∝ (lpaσg)(1/3)N in the excluded volume regime, and h/a ∝ (lpa(3)σ(2))(1/4)N in the Gaussian regime. Since in the volume taken by a semiflexible mushroom excluded-volume interactions are much weaker in comparison to a flexible mushroom, there occurs an additional regime where semiflexible mushrooms overlap without significant chain stretching. Moreover, since the size of a semiflexible mushroom is much larger than the size of a flexible mushroom with the same N, the crossover from mushroom to brush behavior is predicted to take place at much smaller densities than for fully flexible chains. The numerical results, however, confirm the scaling predictions only qualitatively; for chain lengths that are relevant for experiments, often intermediate effective exponents are observed due to extended crossovers. PMID:25687784

  16. The Hawking-Page crossover in noncommutative anti-deSitter space

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero; Torrieri, Giorgio

    2011-08-01

    We study the problem of a Schwarzschild-anti-deSitter black hole in a non-commutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.

  17. Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids.

    PubMed

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav'yalov, Dmitry; Stoupin, Stanislav; Cai, Yong Q; Cunsolo, Alessandro

    2015-08-01

    In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions. PMID:26267201

  18. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  19. Parametric representation of open quantum systems and cross-over from quantum to classical environment.

    PubMed

    Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola

    2013-04-23

    The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field. PMID:23572581

  20. Impact of a soy drink on climacteric symptoms: an open-label, crossover, randomized clinical trial

    PubMed Central

    Tranche, Salvador; Brotons, Carlos; Pascual de la Pisa, Beatriz; Macías, Ramón; Hevia, Eduardo; Marzo-Castillejo, Mercè

    2016-01-01

    Abstract Objectives: The objective of this study is to evaluate the effects of a soy drink with a high concentration of isoflavones (ViveSoy®) on climacteric symptoms. Methods: An open-label, controlled, crossover clinical trial was conducted in 147 peri- and postmenopausal women. Eligible women were recruited from 13 Spanish health centers and randomly assigned to one of the two sequence groups (control or ViveSoy®, 500 mL per day, 15 g of protein and 50 mg of isoflavones). Each intervention phase lasted for 12 weeks with a 6-week washout period. Changes on the Menopause Rating Scale and quality of life questionnaires, as well as lipid profile, cardiovascular risk and carbohydrate and bone metabolism were assessed. Statistical analysis was performed using a mixed-effects model. Results: A sample of 147 female volunteers was recruited of which 90 were evaluable. In both sequence groups, adherence to the intervention was high. Regular consumption of ViveSoy® reduced climacteric symptoms by 20.4% (p = 0.001) and symptoms in the urogenital domain by 21.3% (p < 0.05). It also improved health-related quality life by 18.1%, as per the MRS questionnaire (p <0.05). Conclusion: Regular consumption of ViveSoy® improves both the somatic and urogenital domain symptoms of menopause, as well as health-related quality of life in peri- and postmenopausal women. PMID:26806546

  1. Revealing the mechanism of the viscous-to-elastic crossover in liquids

    SciTech Connect

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav'yalov, Dmitry; Stoupin, Stanislav; Cai, Yong Q.; Cunsolo, Alessandro

    2015-07-18

    In our work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. Our results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. Furthermore, the simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.

  2. Revealing the mechanism of the viscous-to-elastic crossover in liquids

    DOE PAGESBeta

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav'yalov, Dmitry; Stoupin, Stanislav; Cai, Yong Q.; Cunsolo, Alessandro

    2015-07-18

    In our work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. Our results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolvemore » consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. Furthermore, the simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.« less

  3. Nematic Crossover in BaFe2 As2 under Uniaxial Stress

    NASA Astrophysics Data System (ADS)

    Ren, Xiao; Duan, Lian; Hu, Yuwen; Li, Jiarui; Zhang, Rui; Luo, Huiqian; Dai, Pengcheng; Li, Yuan

    The nature of the nematic order in iron-based superconductors has invoked intense research interest. A substantial portion of experimental attempts on resolving this issue required the use of single-domain samples produced under external stress. Here we use Raman scattering, a technique that can detect spontaneous point-group symmetry breaking without resorting to single-domain samples, to study BaFe2As2, the parent compound of the ``122'' Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature Ts into a crossover that spans a considerable temperature range above Ts. Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above Ts. Our results are consistent with an onset of spontaneous nematicity only below Ts. First author.

  4. Role of open boundary conditions on the hysteretic behaviour of one-dimensional spin crossover nanoparticles

    SciTech Connect

    Chiruta, Daniel; Linares, Jorge E-mail: miya@spin.phys.s.u-tokyo.ac.jp; Boukheddaden, Kamel; Miyashita, Seiji E-mail: miya@spin.phys.s.u-tokyo.ac.jp

    2014-05-21

    In order to explain clearly the role of the open boundary conditions (OBCs) on phase transition in one dimensional system, we consider an Ising model with both short-range (J) and long-range (G) interactions, which has allowed us to study the cooperative nature of spin-crossover (SCO) materials at the nanometer scale. At this end, we developed a transfer-matrix method for one-dimensional (1D) SCO system with free boundary conditions, and we give numerical evidences for how the thermal spin transition curves vary as a function of the physical parameters (J, G) or an applied pressure. Moreover for OBCs case, we have derived the bulk, surface and finite-size contributions to the free energy and we have investigated the variation of these energies as function of J and system size. We have found that the surface free energy behaves like J〈σ〉{sup 2}, where 〈σ〉 is the average magnetization per site. Since the properties of the nanometric scale are dramatically influenced by the system's size (N), our analytical outcomes for the size dependence represent a step to achieve new characteristic of the future devices and also a way to find various novel properties which are absent in the bulk materials.

  5. Non-equilibrium phases and phase diagrams

    SciTech Connect

    Massalski, T.B.; Rizzo, H.F.

    1988-03-01

    In this paper we consider the degree of usefulness of the phase diagram and the related thermodynamics in predicting and understanding the formation of metastable phases during quenching, or during low-temperature solid-state interdiffusion, or during co-deposition. Recent research has demonstrated that many of such metastable phases are formed because the more stable intermediate phases that are favored thermodynamically are nevertheless bypassed kinetically. The kinetic elimination of intermediate phases provides conditions where a metastable equilibrium can be established at low temperatures between the supercooled liquid and the terminal solid solutions, leading to metastable partitioned two-phase regions. Alternatively, the range of the metastable phases may be governed by the T/sub 0/ principle related to the crossover of the respective free energy curves, or may be controlled mainly by kinetic considerations. Which particular thermodynamic conditions apply appears to depend on the initial form of the phase diagram and the specific technique used. The occurrence of massive transformations also is discussed. 34 refs., 10 figs.

  6. Coherent transport through spin-crossover magnet Fe2 complexes.

    PubMed

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2016-01-01

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices. PMID:26647165

  7. Autotitrating versus standard noninvasive ventilation: a randomised crossover trial.

    PubMed

    Jaye, J; Chatwin, M; Dayer, M; Morrell, M J; Simonds, A K

    2009-03-01

    The aim of the present study was to compare the efficacy of automatic titration of noninvasive ventilation (NIV) with conventional NIV in stable neuromuscular and chest wall disorder patients established on long-term ventilatory support. In total, 20 neuromuscular and chest wall disease patients with nocturnal hypoventilation treated with long-term NIV completed a randomised crossover trial comparing two noninvasive pressure support ventilators: a standard bilevel ventilator (VPAP III) and a novel autotitrating bilevel ventilator (AutoVPAP). Baseline physiological measurements, overnight polysomnography and Holter monitoring were repeated at the end of each 1-month treatment period. Nocturnal oxygenation was comparable between the autotitrating device and standard ventilator, as were sleep efficiency, arousals and heart rate variability. However, there was a small significant increase in mean overnight transcutaneous carbon dioxide tension (median (interquartile range) 7.2 (6.7-7.7) versus 6.7 (6.1-7.0) kPa) and a decrease in percentage stage 1 sleep (mean+/-sd 16+/-9 versus 19+/-10%) on autotitrating NIV compared with conventional NIV. Autotitrating noninvasive ventilation using AutoVPAP produced comparable control of nocturnal oxygenation to standard nonivasive ventilation, without compromising sleep quality in stable neuromuscular and chest wall disease patients requiring long-term ventilatory support for nocturnal hypoventilation. PMID:19251798

  8. Flooding and Clostridium difficile Infection: A Case-Crossover Analysis.

    PubMed

    Lin, Cynthia J; Wade, Timothy J; Hilborn, Elizabeth D

    2015-06-01

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospitalized and/or receiving antibiotics; however, community-associated infections affecting otherwise healthy individuals have become more commonly reported. A case-crossover study was used to assess emergency room (ER) and outpatient visits for C. difficile infection following flood events in Massachusetts from 2003 through 2007. Exposure status was based on whether or not a flood occurred prior to the case/control date during the following risk periods: 0-6 days, 7-13 days, 14-20 days, and 21-27 days. Fixed-effects logistic regression was used to estimate the risk of diagnosis with C. difficile infection following a flood. There were 129 flood events and 1575 diagnoses of C. difficile infection. Among working age adults (19-64 years), ER and outpatient visits for C. difficile infection were elevated during the 7-13 days following a flood (Odds Ratio, OR = 1.69; 95% Confidence Interval, CI: 0.84, 3.37). This association was more substantial among males (OR = 3.21; 95% CI: 1.01-10.19). Associations during other risk periods were not observed (p < 0.05). Although we were unable to differentiate community-associated versus nosocomial infections, a potential increase in C. difficile infections should be considered as more flooding is projected due to climate change. PMID:26090609

  9. Crossover of formic acid through Nafion ® membranes

    NASA Astrophysics Data System (ADS)

    Rhee, Young-Woo; Ha, Su Y.; Masel, Richard I.

    Formic acid has been proposed as a possible fuel for miniature fuel cells, because formic acid is expected to show low crossover and easy water management. In this paper, the permeation of formic acid through Nafion ® membranes is investigated at room temperature. It is found that the permeation of formic acid through Nafion ® 112 and 117 is much lower than that of methanol. For example, at a 1 M concentration, the steady state flux of formic acid through Nafion ® 117 is only 2.03±0.07×10 -8 mol/cm 2 s. By comparison, previous workers have observed a methanol flux of 3 to 6×10 -6 mol/cm 2 s through Nafion ® 117 under similar conditions. The flux through Nafion ® 117 increases with increasing formic acid concentration, reaching a maximum of 1.86±0.11×10 -7 mol/cm 2 s at a formic acid concentration of 10 M. The flux of formic acid is about a factor of two higher through Nafion ® 112 than through Nafion ® 117 but still low. These results show that the permeation of formic acid through Nafion ® is much slower than the permeation of methanol through the same membrane. Consequently, formic acid is an attractive alternative fuel for small polymer electrolyte membrane (PEM) fuel cells.

  10. Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

    PubMed

    Galán-Mascarós, José Ramón; Coronado, Eugenio; Forment-Aliaga, Alicia; Monrabal-Capilla, María; Pinilla-Cienfuegos, Elena; Ceolin, Marcelo

    2010-06-21

    Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications. PMID:20503990

  11. Finite size induces crossover temperature in growing spin chains

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A.

    2014-01-01

    We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.

  12. Flooding and Clostridium difficile Infection: A Case-Crossover Analysis

    PubMed Central

    Lin, Cynthia J.; Wade, Timothy J.; Hilborn, Elizabeth D.

    2015-01-01

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospitalized and/or receiving antibiotics; however, community-associated infections affecting otherwise healthy individuals have become more commonly reported. A case-crossover study was used to assess emergency room (ER) and outpatient visits for C. difficile infection following flood events in Massachusetts from 2003 through 2007. Exposure status was based on whether or not a flood occurred prior to the case/control date during the following risk periods: 0–6 days, 7–13 days, 14–20 days, and 21–27 days. Fixed-effects logistic regression was used to estimate the risk of diagnosis with C. difficile infection following a flood. There were 129 flood events and 1575 diagnoses of C. difficile infection. Among working age adults (19–64 years), ER and outpatient visits for C. difficile infection were elevated during the 7–13 days following a flood (Odds Ratio, OR = 1.69; 95% Confidence Interval, CI: 0.84, 3.37). This association was more substantial among males (OR = 3.21; 95% CI: 1.01–10.19). Associations during other risk periods were not observed (p < 0.05). Although we were unable to differentiate community-associated versus nosocomial infections, a potential increase in C. difficile infections should be considered as more flooding is projected due to climate change. PMID:26090609

  13. Crossover from retro to specular Andreev reflections in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Efetov, Dmitri K.; Efetov, Konstantin B.

    2016-08-01

    Ongoing experimental progress in the preparation of ultraclean graphene/superconductor (SC) interfaces enabled the recent observation of specular interband Andreev reflections (ARs) at bilayer graphene (BLG )/NbSe2 van der Waals interfaces [Efetov et al., Nat. Phys. 12, 328 (2016), 10.1038/nphys3583]. Motivated by this experiment we theoretically study the differential conductance across a BLG/SC interface at the continuous transition from high to ultralow Fermi energies EF in BLG. Using the Bogoliubov-de Gennes equations and the Blonder-Tinkham-Klapwijk formalism we derive analytical expressions for the differential conductance across the BLG/SC interface. We find a characteristic signature of the crossover from intraband retro (high EF) to interband specular (low EF) ARs that manifests itself in a strongly suppressed interfacial conductance when the excitation energy |ɛ |=| EF|<Δ (the SC gap). The sharpness of these conductance dips is strongly dependent on the size of the potential step at the BLG/SC interface U0.

  14. At grade optical crossover for monolithic optial circuits

    NASA Technical Reports Server (NTRS)

    Jamieson, Robert S. (Inventor)

    1983-01-01

    Planar optical circuits may be made to cross through each other, (thus eliminating extra steps required to fabricate elevated, nonintersecting crossovers) by control of the dimensions of the crossing light conductors (10, 12) to be significantly greater than d=0.89.lambda. and the angle of crossing as nearly 90.degree. as conveniently possible. A light trap may be provided just ahead of the intersection to trap any light being reflected in the source conductor at angles greater than about 45.degree.. The light trap may take the form of triangular shaped portions (16a, 16b) on each side of the source conductor with the far side of the triangular portion receiving incident light at an angle so that incident light will be reflected to the other side, or it may take the form of windows (18a, 18b) in place of the triangular portions. Planar optical circuit boards (21-23) may be fabricated and stacked to form a keyboard (20) with intersecting conductors (26-29) and keyholes (0-9) where conductors merge at the broad side of the circuit boards. These keyholes may be prearranged to form an array or matrix of keyholes.

  15. Time-dependent couplings and crossover length scales in nonequilibrium surface roughening

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; López, Juan M.; Hernández-Machado, A.

    2007-07-01

    We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In the case of a crossover between two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface, although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical models and experiments.

  16. ERS-1 radial position refinement by dual crossover analysis with TOPEX/Poseidon

    NASA Astrophysics Data System (ADS)

    Carnochan, S.; Moore, P.; Ehlers, S.

    Achieving orbital accuracies in the radial direction for ERS-1 commensurate with those for TOPEX/Poseidon is of utmost importance for the integration of the two altimeter data sets. This paper outlines a procedure whereby the radial orbit error for ERS-1 is recovered as a time series expansion in the form of a finite Fourier series with additional terms for atmospheric drag, solar radiation pressure, and initial state vector mismodelling. Using a least squares collocation method with constraints derived from the JGM2 gravity field co-variance matrix, the radial error is recovered using both dual crossovers and ERS-1 single satellite crossovers. Aggregate arcs are then used to derive the ERS-1 orbit error over the repeat period of 35 days. The results are presented in the improvement of fit in the dual crossover, ERS-1 crossover and altimetry data sets as well as the recovery of an altimeter bias for the two satellites.

  17. 49 CFR 236.203 - Hand operated crossover between main tracks; protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Facing point locks on both switches of the crossover, with both locks operated by a single lever, or (c... matter on the rail prevents effective shunting; (2) Where facing point locks with a single lever...

  18. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  19. Crossover versus Stabilometric Platform for the Treatment of Balance Dysfunction in Parkinson's Disease: A Randomized Study

    PubMed Central

    Frazzitta, G.; Bossio, F.; Maestri, R.; Palamara, G.; Bera, R.; Ferrazzoli, D.

    2015-01-01

    Balance dysfunctions are a major challenge in the treatment of Parkinson's disease (PD). Previous studies have shown that rehabilitation can play a role in their treatment. In this study, we have compared the efficacy of two different devices for balance training: stabilometric platform and crossover. We have enrolled 60 PD patients randomly assigned to two groups. The first one (stabilometric group) performed a 4-week cycle of balance training, using the stabilometric platform, whereas the second one (crossover group) performed a 4-week cycle of balance training, using the crossover. The outcome measures used were Unified Parkinson's Disease Rating Scale (UPDRS) part II, Berg Balance Scale (BBS), Timed Up and Go (TUG), and Six Minutes Walking Test (6MWT). Results showed that TUG, BBS, and UPDRS II improved in both groups. There was not difference in the efficacy of the two balance treatments. Patients in both groups improved also the meters walked in the 6MWT at the end of rehabilitation, but the improvement was better for patients performing crossover training. Our results show that the crossover and the stabilometric platform have the same effect on balance dysfunction of Parkinsonian patients, while crossover gets better results on the walking capacity. PMID:26583142

  20. In situ measurements of water crossover through the membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhao, T. S.

    We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.

  1. Mitotic crossover--an evolutionary rudiment which promotes carcinogenesis of colorectal carcinoma.

    PubMed

    Rovcanin, Branislav; Ivanovski, Ivan; Djuric, Olivera; Nikolic, Dimitrije; Petrovic, Jelena; Ivanovski, Petar

    2014-09-21

    Mitotic crossover is a natural mechanism that is a main source of the genetic variability of primitive organisms. In complex organisms such as mammals, it represents an evolutionary rudiment which persisted as one of the numerous DNA repair mechanisms, and results in the production of homozygous allele combinations in all heterozygous genes located on the chromosome arm distal to the crossover. This event is familiar as loss of heterozygosity, which is one of the key mechanisms responsible for the development and progression of almost all cancers. We propose the hypothesis in which mitotic crossover is a principal source of the increased loss of heterozygosity that leads to the initiation and progression of colorectal carcinoma. The hypothesis could be tested by in vitro inhibition of Rad51 protein, orthotopic grafting of human colon cancer tissue into the gut of mice, and treatment with potential inhibitors. After these procedures, the frequency of mitotic crossover would be estimated. The development of selective inhibitors of mitotic crossover could stop further carcinogenesis of colorectal carcinoma, as well as many other neoplastic events. Loss of heterozygosity is an event responsible for carcinogenesis, its reduction by selective inhibitors of mitotic crossover could have a positive effect on cancer chemoprevention, as well as on growth reduction and a cessation in the progression of earlier developed tumors. PMID:25253953

  2. Analysis of Crossovers in the Interbeat Sequences of Elderly Individuals and Heart Failure Patients

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.; del Río Correa, J. L.

    2006-09-01

    Many physical and biological systems exhibit complex behavior characterized by long-range power-law correlations. Detrended fluctuation analysis (DFA) is a scaling analysis method that provides a scaling parameter to represent the correlation properties of a signal. The study of interbeat sequences with the DFA method has revealed the presence of crossovers associated with physiological aging and heart with failure; the hinges present in the crossover region from both the elderly healthy individuals and the patients with congestive heart failure (CHF) are in opposite directions. The interbeat sequences of healthy young persons do not show crossovers. In this paper we study interbeat time series of healthy young and elderly persons and patients with CHF. We use the DFA-m method, where m refers to the order of the polynomial function used for the fitting. For instance, DFA-2 filters linear trends and DFA-3 filters quadratic trends. We found that the presence of the crossovers and the direction of the hinges are conserved when we apply the DFA method for different values of m. Therefore we conclude that the DFA-m method is a reliable method to accurately quantify correlations in interbeat time series even if there are polynomial trends. We can characterize the crossovers and we can conclude that the crossovers are not a result of the trends; they are part of the system dynamics.

  3. Spin crossover properties of enantiomers, co-enantiomers, racemates, and co-racemates.

    PubMed

    Qin, Long-Fang; Pang, Chun-Yan; Han, Wang-Kang; Zhang, Feng-Li; Tian, Lei; Gu, Zhi-Guo; Ren, Xuehong; Li, Zaijun

    2016-04-25

    Through multi-component self-assembly of chiral phenylethylamine, 1-alkyl-2-imidazolecarboxaldehyde and iron(ii) ions, two couples of enantiomeric iron(ii) complexes , , and with the formula of fac-Λ or Δ-[Fe(L)3](2+)(L = R or S-1-phenyl-N-(1-alkyl-1H-imidazol-2-ylmethylene)ethanamine) have been designed and synthesized as building blocks. Further binary cocrystallization of the prefabricated enantiomers enabled us to construct spin crossover co-enantiomers and , racemates and , and co-racemate . Compared with in a high spin state and with spin crossover at 291 K, the co-enantiomers exhibited gradual spin crossover at a higher temperature of 301 K, and the racemic alloys showed hysteresis loops induced by desolvation above room temperature. It was demonstrated that molecular chirality could be used effectively for stereochemical engineering of spin crossover materials. In addition, crystal packing, intramolecular π-π stacking, intermolecular C-Hπ interactions and solvent effects were elucidated to be responsible for the distinct spin crossover properties. This collective structural and magnetic study not only enriched the spin crossover library, but also provided a full comparison of optically pure, homochiral, and racemic materials with similar molecular structures. PMID:27021212

  4. Triplex-directed recognition of a DNA nanostructure assembled by crossover strand exchange.

    PubMed

    Rusling, David A; Nandhakumar, Iris S; Brown, Tom; Fox, Keith R

    2012-04-24

    DNA has been widely exploited for the self-assembly of nanosized objects and arrays that offer the potential to act as scaffolds for the spatial positioning of molecular components with nanometer precision. Methods that allow the targeting of components to specific locations within these structures are therefore highly sought after. Here we report that the triplex approach to DNA recognition, which relies on the specific binding of an oligonucleotide within the major groove of double-helical DNA, can be exploited to recognize specific loci within a DNA double-crossover tile and array, a nanostructure assembled by crossover strand exchange. The oligonucleotide can be targeted to both crossover and non-crossover strands and, surprisingly, across the region spanning the crossover junction itself. Moreover, by attaching biotin to the end of the oligonucleotide, we show that streptavidin molecules can be recruited to precise locations within a DX array, with an average spacing of 31.9 (±1.3) nm. This is a promising approach that could be exploited to introduce other components compatible with oligonucleotide synthesis into the wide variety of DNA nanostructures assembled by crossover strand exchange, such as those generated by DNA origami. PMID:22443318

  5. Towards an accurate and computationally-efficient modelling of Fe(II)-based spin crossover materials.

    PubMed

    Vela, Sergi; Fumanal, Maria; Ribas-Arino, Jordi; Robert, Vincent

    2015-07-01

    The DFT + U methodology is regarded as one of the most-promising strategies to treat the solid state of molecular materials, as it may provide good energetic accuracy at a moderate computational cost. However, a careful parametrization of the U-term is mandatory since the results may be dramatically affected by the selected value. Herein, we benchmarked the Hubbard-like U-term for seven Fe(ii)N6-based pseudo-octahedral spin crossover (SCO) compounds, using as a reference an estimation of the electronic enthalpy difference (ΔHelec) extracted from experimental data (T1/2, ΔS and ΔH). The parametrized U-value obtained for each of those seven compounds ranges from 2.37 eV to 2.97 eV, with an average value of U = 2.65 eV. Interestingly, we have found that this average value can be taken as a good starting point since it leads to an unprecedented mean absolute error (MAE) of only 4.3 kJ mol(-1) in the evaluation of ΔHelec for the studied compounds. Moreover, by comparing our results on the solid state and the gas phase of the materials, we quantify the influence of the intermolecular interactions on the relative stability of the HS and LS states, with an average effect of ca. 5 kJ mol(-1), whose sign cannot be generalized. Overall, the findings reported in this manuscript pave the way for future studies devoted to understand the crystalline phase of SCO compounds, or the adsorption of individual molecules on organic or metallic surfaces, in which the rational incorporation of the U-term within DFT + U yields the required energetic accuracy that is dramatically missing when using bare-DFT functionals. PMID:26040609

  6. Antispasmodic/analgesic associations in primary dysmenorrhea double-blind crossover placebo-controlled clinical trial.

    PubMed

    de los Santos, A R; Zmijanovich, R; Pérez Macri, S; Martí, M L; Di Girolamo, G

    2001-01-01

    We studied 125 patients with primary dysmenorrhea in a prospective randomized double-blind crossover study. After an admission pretreatment period without medication, the patients completed three consecutive randomized treatment phases with lysine clonixinate 125 mg plus propinox 10 mg or paracetamol 500 mg plus hyoscine N-butylbromide 10 mg or placebo, according to a fixed-dose schedule of 1 tablet every 6 h, 3 days before onset of menses and for 5 days thereafter. Changes in menstrual pain intensity and duration, amount of bleeding measured according to the number of daily pads used and concomitant symptoms were assessed on the fifth day of each cycle. Every night, the patients recorded the average intensity of menstrual pain during the first 4 days of menstruation in a diary The follow-up visit carried out at day 5 showed significant reduction in pain intensity with both active treatments vs. the other two phases: baseline: 2.72 +/- 0.61; placebo: 1.85 +/- 0.87; lysine clonixinate plus propinox 1.36 +/- 0.81, and paracetamol plus hyosine N-butylbromide: 1.45 +/- 0.87. The patients' diaries showed increasingly lower pain intensities starting from day 1 with the three treatments. Active treatments revealed significantly higher analgesic efficacy from the outset compared with baseline and placebo; however, only the lysine clonixinate plus propinox combination reached a statistically significant difference by days 3 and 4. No changes in duration or intensity of menstrual bleeding or in the incidence of adverse effects were observed during the four study periods. PMID:11708572

  7. Classical-to-quantum crossover in the critical behavior of the transverse-field Sherrington-Kirkpatrick spin glass model

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.

    2015-10-01

    We study the critical behavior of the Sherrington-Kirkpatrick model in transverse field (at finite temperature) using Monte Carlo simulation and exact diagonalization (at zero temperature). We determine the phase diagram of the model by estimating the Binder cumulant. We also determine the correlation length exponent from the collapse of the scaled data. Our numerical studies here indicate that critical Binder cumulant (indicating the universality class of the transition behavior) and the correlation length exponent cross over from their "classical" to "quantum" values at a finite temperature (unlike the cases of pure systems, where such crossovers occur at zero temperature). We propose a qualitative argument supporting such an observation, employing a simple tunneling picture.

  8. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell

    PubMed Central

    Yahashi, Misato; Kimoto, Natsuki; Okumura, Ko

    2016-01-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes’ drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. PMID:27562151

  9. Matrix and size effects on the appearance of the thermal hysteresis in 2D spin crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Linares, Jorge; Jureschi, Catalin-Maricel; Boulmaali, Ayoub; Boukheddaden, Kamel

    2016-04-01

    The Ising-like model is used to simulate the thermal behavior of a 2D spin crossover (SC) nanoparticle embedded in a matrix, which affects the ligand field at its surface. First, we discuss the standard case of the isolated nanoparticle, and in the second part we consider the effect of the interaction between edge molecules and their local environment. We found that in the case of an isolated SC nanoparticle presenting a gradual spin transition, the matrix effect may drive a first-order spin transition accompanied with a hysteresis loop. An in-depth analysis of the physical mechanism underlying this unusual property is performed, leading to build up the system's phase diagram which clarifies the conditions of appearance of the first-order transition in the current 2D SC nanoparticles as function of their size and the strength of their interaction with their immediate environment.

  10. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell.

    PubMed

    Yahashi, Misato; Kimoto, Natsuki; Okumura, Ko

    2016-01-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes' drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. PMID:27562151

  11. Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans.

    PubMed Central

    Meneely, Philip M; Farago, Anna F; Kauffman, Tate M

    2002-01-01

    Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has essentially one crossover during oogenesis, with only three possible double crossover exceptions among 220 recombinant X chromosomes. All three had one of the two crossovers in the same chromosomal interval, suggesting that crossovers in that interval do not cause interference. No other interval was associated with double crossovers. Very high interference was also found on an autosome during oogenesis, implying that each chromosome has only one crossover during oogenesis. During spermatogenesis, recombination on this autosome was reduced by approximately 30% compared to oogenesis, but the relative distribution of the residual crossovers was only slightly different. In contrast to previous results with other autosomes, no double crossover chromosomes were observed. Despite an increased frequency of nonrecombinant chromosomes, segregation of a nonrecombinant autosome during spermatogenesis appears to occur normally. This indicates that an achiasmate segregation system helps to ensure faithful disjunction of autosomes during spermatogenesis. PMID:12454064

  12. Coherent transport through spin-crossover magnet Fe2 complexes

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2015-12-01

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices.As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO

  13. Bloodcurdling movies and measures of coagulation: Fear Factor crossover trial

    PubMed Central

    Nemeth, Banne; Scheres, Luuk J J; Lijfering, Willem M

    2015-01-01

    Objective To assess whether, as has been hypothesised since medieval times, acute fear can curdle blood. Design Crossover trial. Setting Main meeting room of Leiden University’s Department of Clinical Epidemiology, the Netherlands, converted to a makeshift cinema. Participants 24 healthy volunteers aged ≤30 years recruited among students, alumni, and employees of the Leiden University Medical Center: 14 were assigned to watch a frightening (horror) movie followed by a non-threatening (educational) movie and 10 to watch the movies in reverse order. The movies were viewed more than a week apart at the same time of day and both lasted approximately 90 minutes. Main outcome measures The primary outcome measures were markers, or “fear factors” of coagulation activity: blood coagulant factor VIII, D-dimer, thrombin-antithrombin complexes, and prothrombin fragments 1+2. The secondary outcome was participant reported fear experienced during each movie using a visual analogue fear scale. Results All participants completed the study. The horror movie was perceived to be more frightening than the educational movie on a visual analogue fear scale (mean difference 5.4, 95% confidence interval 4.7 to 6.1). The difference in factor VIII levels before and after watching the movies was higher for the horror movie than for the educational movie (mean difference of differences 11.1 IU/dL (111 IU/L), 95% confidence interval 1.2 to 21.0 IU/dL). The effect of either movie on levels of thrombin-antithrombin complexes, D-dimer, and prothrombin fragments 1+2 did not differ. Conclusion Frightening (in this case, horror) movies are associated with an increase of blood coagulant factor VIII without actual thrombin formation in young and healthy adults. Trial registration ClinicalTrials.gov NCT02601053. PMID:26673787

  14. Clarithromycin in GABA-related Hypersomnolence: A Randomized, Crossover Trial

    PubMed Central

    Trotti, Lynn Marie; Saini, Prabhjyot; Bliwise, Donald L.; Freeman, Amanda A.; Jenkins, Andrew; Rye, David B.

    2016-01-01

    Objective Some central hypersomnolence syndromes are associated with a positive allosteric modulator of GABA-A receptors in cerebrospinal fluid. Negative allosteric modulators of GABA-A receptors, including clarithromycin, have been reported to reduce sleepiness in these patients. We sought to systematically assess the effects of clarithromycin on objective vigilance and subjective sleepiness. Methods This was a five-week, randomized, placebo-controlled, double-blind, crossover trial of clarithromycin 500 mg with breakfast and lunch, in patients with hypersomnolence syndromes (excluding narcolepsy with cataplexy) and evidence for abnormal cerebrospinal fluid potentiation of GABA-A receptors. The study occurred at a university-affiliated medical center. The primary outcome measure was median reaction time on the psychomotor vigilance task (PVT) at week 2 in each condition. Secondary outcomes included the Epworth Sleepiness Scale, Stanford Sleepiness Scale, Functional Outcomes of Sleep, Pittsburgh Sleep Quality Index, the SF-36, and additional PVT measures. Results Twenty-three patients began treatment. Three patients dropped out, and final analyses were performed on twenty complete cases. Median reaction time was not significantly different between clarithromycin and placebo. Subjective measures of sleepiness were significantly improved on clarithromycin versus placebo. Altered taste perception occurred, but was the only side effect more common on clarithromycin than placebo. No serious adverse events occurred. Interpretation Subjective sleepiness, but not psychomotor vigilance, improved during a two-week course of clarithromycin. Although additional studies are needed, this suggests that clarithromycin may be a reasonable treatment option in patients with treatment-refractory hypersomnolence. This trial was registered at clinicaltrials.gov (NCT01146600) and supported by the American Sleep Medicine Foundation. PMID:26094838

  15. Randomized Polypill Crossover Trial in People Aged 50 and Over

    PubMed Central

    Wald, David S.; Morris, Joan K.; Wald, Nicholas J.

    2012-01-01

    Background A Polypill is proposed for the primary prevention of cardiovascular disease in people judged to be at risk on account of their age alone. Its efficacy in reducing cholesterol and blood pressure is uncertain. Methods We conducted a randomized double-blind placebo-controlled crossover trial of a Polypill among individuals aged 50+ without a history of cardiovascular disease and compared the reductions with those predicted from published estimates of the effects of the individual drugs. Participants took the Polypill (amlodipine 2.5 mg, losartan 25 mg, hydrochlorothiazide 12.5 mg and simvastatin 40 mg) each evening for 12 weeks and a placebo each evening for 12 weeks in random sequence. The mean within-person differences in blood pressure and low density lipoprotein (LDL) cholesterol at the end of each 12 week period were determined. Results 84 out of 86 participants completed both treatment periods. The mean systolic blood pressure was reduced by 17.9 mmHg (95% CI, 15.7–20.1) on the Polypill, diastolic blood pressure by 9.8 mmHg (8.1–11.5), and LDL cholesterol by 1.4 mmol/L (1.2–1.6), reductions of 12%, 11%, and 39% respectively. The results were almost identical to those predicted; 18.4 mmHg, 9.7 mmHg, and 1.4 mmol/L respectively. Conclusion The Polypill resulted in the predicted reductions in blood pressure and LDL cholesterol. Long term reductions of this magnitude would have a substantial effect in preventing heart attacks and strokes. Trial Registration Controlled-Trials.com ISRCTN36672232 PMID:22815989

  16. Sildenafil for Chronic Obstructive Pulmonary Disease: A Randomized Crossover Trial

    PubMed Central

    Lederer, David J.; Bartels, Matthew N.; Schluger, Neil W.; Brogan, Frances; Jellen, Patricia; Thomashow, Byron M.; Kawut, Steven M.

    2016-01-01

    Rationale Pulmonary hypertension with exercise is common in chronic obstructive pulmonary disease (COPD) and may contribute to exercise limitation in this disease. We aimed to determine the effects of treatment with sildenafil on exercise capacity in patients with COPD and emphysema. Methods We performed a randomized, double-blind, placebo-controlled 2-period crossover trial of sildenafil thrice daily in ten adults with COPD and emphysema on CT scan without pulmonary hypertension. We randomized study participants to 4 weeks of sildenafil (or placebo) followed by a 1-week washout and then 4 weeks of placebo (or sildenafil). The 2 primary outcomes were the 6-minute walk distance and oxygen consumption at peak exercise. Results Sildenafil had no effect on 6-minute walk distance (placebo-corrected difference = −7.8 m, 95% confidence interval, −23.2 to 7.5 m, p = 0.35) or oxygen consumption at peak exercise (placebo-corrected difference = −0.1 ml/kg/min, 95% confidence interval −2.1 to 1.8 ml/kg/min, p = 0.89). Sildenafil increased the alveolar-arterial oxygen gradient (p = 0.02), worsened symptoms (p = 0.04), and decreased quality-of-life (p = 0.03). Adverse events were more frequent while receiving sildenafil (p = 0.005). Conclusions Routine sildenafil administration did not have a beneficial effect on exercise capacity in patients with COPD and emphysema without pulmonary hypertension. Sildenafil significantly worsened gas exchange at rest and quality of life. (clinicaltrials.gov NCT00104637). PMID:22360383

  17. Nutrition intervention for migraine: a randomized crossover trial

    PubMed Central

    2014-01-01

    Background Limited evidence suggests that dietary interventions may offer a promising approach for migraine. The purpose of this study was to determine the effects of a low-fat plant-based diet intervention on migraine severity and frequency. Methods Forty-two adult migraine sufferers were recruited from the general community in Washington, DC, and divided randomly into two groups. This 36-week crossover study included two treatments: dietary instruction and placebo supplement. Each treatment period was 16 weeks, with a 4-week washout between. During the diet period, a low-fat vegan diet was prescribed for 4 weeks, after which an elimination diet was used. Participants were assessed at the beginning, midpoint, and end of each period. Significance was determined using student’s t-tests. Results Worst headache pain in last 2 weeks, as measured by visual analog scale, was initially 6.4/10 cm (SD 2.1 cm), and declined 2.1 cm during the diet period and 0.7 cm during the supplement period (p=0.03). Average headache intensity (0–10 scale) was initially 4.2 (SD 1.4) per week, and this declined by 1.0 during the diet period and by 0.5 during the supplement period (p=0.20). Average headache frequency was initially 2.3 (SD 1.8) per week, and this declined by 0.3 during the diet period and by 0.4 during the supplement period (p=0.61). The Patient’s Global Impression of Change showed greater improvement in pain during the diet period (p<0.001). Conclusions These results suggest that a nutritional approach may be a useful part of migraine treatment, but that methodologic issues necessitate further research. Trial registration Clinicaltrials.gov, NCT01699009 and NCT01547494. PMID:25339342

  18. Strong-coupling corrections to spin susceptibility in the BCS-BEC-crossover regime of a superfluid Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji

    2016-01-01

    We theoretically investigate the uniform spin susceptibility χ in the superfluid phase of an ultracold Fermi gas in the region of the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC) crossover. In our previous paper [H. Tajima et al., Phys. Rev. A 89, 033617 (2014), 10.1103/PhysRevA.89.033617], including pairing fluctuations within an extended T -matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where χ is anomalously suppressed even in the normal state near the superfluid phase transition temperature Tc. In this paper, we extend this work to the superfluid phase below Tc, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA χ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below Tc in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a 6Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.

  19. Covariance and crossover matrix guided differential evolution for global numerical optimization.

    PubMed

    Li, YongLi; Feng, JinFu; Hu, JunHua

    2016-01-01

    Differential evolution (DE) is an efficient and robust evolutionary algorithm and has wide application in various science and engineering fields. DE is sensitive to the selection of mutation and crossover strategies and their associated control parameters. However, the structure and implementation of DEs are becoming more complex because of the diverse mutation and crossover strategies that use distinct parameter settings during the different stages of the evolution. A novel strategy is used in this study to improve the crossover and mutation operations. The crossover matrix, instead of a crossover operator and its control parameter CR, is proposed to implement the function of the crossover operation. Meanwhile, Gaussian distribution centers the best individuals found in each generation based on the proposed covariance matrix, which is generated between the best individual and several better individuals. Improved mutation operator based on the crossover matrix is randomly selected to generate the trial population. This operator is used to generate high-quality solutions to improve the capability of exploitation and enhance the preference of exploration. In addition, the memory population is randomly chosen from previous generation and used to control the search direction in the novel mutation strategy. Accordingly, the diversity of the population is improved. Thus, CCDE, which is a novel efficient and simple DE variant, is presented in this paper. CCDE has been tested on 30 benchmarks and 5 real-world optimization problems from the IEEE Congress on Evolutionary Computation (CEC) 2014 and CEC 2011, respectively. Experimental and statistical results demonstrate the effectiveness of CCDE for global numerical and engineering optimization. CCDE can solve the test benchmark functions and engineering problems more successfully than the other DE variants and algorithms from CEC 2014. PMID:27512635

  20. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM.

    PubMed

    Séguéla-Arnaud, Mathilde; Crismani, Wayne; Larchevêque, Cécile; Mazel, Julien; Froger, Nicole; Choinard, Sandrine; Lemhemdi, Afef; Macaisne, Nicolas; Van Leene, Jelle; Gevaert, Kris; De Jaeger, Geert; Chelysheva, Liudmilla; Mercier, Raphael

    2015-04-14

    Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases--the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs--as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs. PMID:25825745

  1. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM

    PubMed Central

    Séguéla-Arnaud, Mathilde; Crismani, Wayne; Larchevêque, Cécile; Mazel, Julien; Froger, Nicole; Choinard, Sandrine; Lemhemdi, Afef; Macaisne, Nicolas; Van Leene, Jelle; Gevaert, Kris; De Jaeger, Geert; Chelysheva, Liudmilla; Mercier, Raphael

    2015-01-01

    Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases—the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs—as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs. PMID:25825745

  2. Theoretical Study of Spin Crossover in 30 Iron Complexes.

    PubMed

    Kepp, Kasper P

    2016-03-21

    Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems. PMID:26913489

  3. Chern-Simons diffusion rate across different phase transitions

    NASA Astrophysics Data System (ADS)

    Rougemont, Romulo; Finazzo, Stefano Ivo

    2016-05-01

    We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate ΓCS divided by the product of the entropy density s and temperature T behaves across different kinds of phase transitions in the class of bottom-up nonconformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, ΓCS/s T jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, ΓCS/s T behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. In all the cases, ΓCS/s T increases with decreasing T . The behavior of the Chern-Simons diffusion rate across different phase transitions is expected to play a relevant role for the chiral magnetic effect around the QCD critical end point, which is a second order phase transition point connecting a crossover band to a line of first order phase transition. Our findings in the present work add to the literature the first predictions for the Chern-Simons diffusion rate across second order and crossover transitions in strongly coupled nonconformal, non-Abelian gauge theories.

  4. Double-blind, randomized, controlled, crossover trial of pregabalin for neurogenic claudication

    PubMed Central

    Frazer, Maria E.; Rast, Shirley A.; McDermott, Michael P.; Gewandter, Jennifer S.; Chowdhry, Amit K.; Czerniecka, Kate; Pilcher, Webster H.; Simon, Lee S.; Dworkin, Robert H.

    2015-01-01

    Objectives: To test the effects of pregabalin on the induction of neurogenic claudication. Methods: This study was a randomized, double-blind, active placebo-controlled, 2-period, crossover trial. Twenty-nine subjects were randomized to receive pregabalin followed by active placebo (i.e., diphenhydramine) or active placebo followed by pregabalin. Each treatment period lasted 10 days, including a 2-step titration. Periods were separated by a 10-day washout period, including a 3-day taper phase after the first period. The primary outcome variable was the time to first moderate pain symptom (Numeric Rating Scale score ≥4) during a 15-minute treadmill test (Tfirst). Secondary outcome measures included pain intensity at rest, pain intensity at the end of the treadmill test, distance walked, and validated self-report measures of pain and functional limitation including the Roland-Morris Disability Questionnaire, modified Brief Pain Inventory–Short Form, Oswestry Disability Index, and Swiss Spinal Stenosis Questionnaire. Results: No significant difference was found between pregabalin and active placebo for the time to first moderate pain symptom (difference in median Tfirst = −1.08 [95% confidence interval −2.25 to 0.08], p = 0.61). In addition, none of the secondary outcome measures of pain or functional limitation were significantly improved by pregabalin compared with active placebo. Conclusions: Pregabalin was not more effective than active placebo in reducing painful symptoms or functional limitations in patients with neurogenic claudication associated with lumbar spinal stenosis. Classification of evidence: This study provides Class I evidence that for patients with neurogenic claudication, compared with diphenhydramine, pregabalin does not increase the time to moderate pain during a treadmill test. PMID:25503625

  5. Two measures of bilingualism in the memories of immigrants and indigenous minorities: crossover memories and codeswitching.

    PubMed

    Altman, Carmit

    2015-04-01

    Two indices of bilingualism, crossover memories and codeswitching (CS), were explored in five groups of immigrant (English-Hebrew, Georgian-Hebrew Russian-Hebrew) and indigenous bilinguals (Arabic-Hebrew, Hebrew-English). Participants recalled memories in response to cue words and then were asked to report the language of retrieval and provide a more elaborate narrative. More memories were 'same language' memories, recalled in the language of the experimental session/cue word, but as many as 48 % of the memories were crossovers, i.e. memories reported in a language other than the language of the session/cue word. In an effort to examine the ecological validity of the self-reported language of the memories, the frequency of CS in the elaborated narratives was investigated. For the entire sample, more CS was found for self-reported crossover memories in L2 sessions. In a further analysis of CS in crossover memories, collapsed across L1 and L2 sessions, significant differences emerged between immigrants and indigenous bilinguals. Differences between immigrant and non-immigrant bilinguals are discussed in terms of the role of activation in crossover memories. PMID:24510584

  6. Spin crossover and hyperfine interactions of iron in (Mg ,Fe ) CO3 ferromagnesite

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Huang, Sheng-Chieh

    2016-08-01

    Ferromagnesite, an iron-bearing carbonate stable up to 100-115 GPa, is believed to be the major carbon carrier in the earth's lower mantle and play a key role in the earth's deep carbon cycle. In this paper, we use the local density approximation plus self-consistent Hubbard U (LDA+Usc) method to study the iron spin crossover in ferromagnesite with a wide range of iron concentration (12.5-100%). Our calculation shows that this mineral undergoes a crossover from the high-spin (HS) (S =2 ) to the low-spin (LS) (S =0 ) state at around 45-50 GPa, regardless of the iron concentration. The intermediate-spin (S =1 ) state is energetically unfavorable and not involved in spin crossover. The anomalous changes of volume, density, and bulk modulus accompanying the spin crossover obtained in our calculation are in great agreement with experiments. Our calculation also predicts that an abrupt change of the iron nuclear quadrupole splitting, from ≳2.8 mm/s to ≲0.3 mm/s, can be observed in Mössbauer spectra at 45-50 GPa as a signature of the HS-LS crossover.

  7. Separation of a molecular electronic configuration transition from the spin-crossover transition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Mu, Sai; Chen, Jia; Chastanet, Guillaume; Nathalie, Daro; Létard, Jean-François; Palamarciuc, Tatiana; Rosa, Patrick; Liu, Jing; Arena, Dario; Sterbinsky, George; Kundys, Bohdan; Doudin, Bernard; Dowben, Peter A.

    2015-03-01

    We have investigated the unoccupied electronic structure of several molecular spin crossover systems including [Fe(H2B(pz)2)2(bipy)][Fe(H2B(pz)2)2phen],[Fe(PM-AzA)2(NCS)2]and[Fe(phen)2(NCS)2] by inverse photoemission (IPES) and X-ray absorption spectroscopy (XAS). The XAS clearly shows the change of iron L2 edge spectra, typically associated with thermal induced spin crossover, occurring at temperatures well below the temperatures of the spin crossover transition. This suggests a change in the electronic structure configuration occurring separately from the spin ordering from a low spin to high spin state. These results may be significant to understand the observations that indicate that the spin crossover transition, and certainly the unoccupied electronic structure, is influenced by electric field. In some respects, these results for the molecular spin crossover transition resemble the separation of the charge ordering transition from the ferromagnetic transition in the manganates.

  8. Ethanol crossover phenomena and its influence on the performance of DEFC

    NASA Astrophysics Data System (ADS)

    Song, S.; Zhou, W.; Tian, J.; Cai, Rui; Sun, G.; Xin, Q.; Kontou, S.; Tsiakaras, P.

    In the present work, Nafion ® membrane porosity changes were determined in aqueous ethanol solutions with different concentrations by weighing vacuum-dried and ethanol aqueous solution equilibrated membranes at room temperature. The ethanol crossover rate through Nafion ®-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using gas chromatography analysis. The experimental results show that the swelling degree of Nafion ® membrane gets higher as ethanol solution concentration increases. The ethanol crossover rate increases with ethanol concentration and temperature increment. The single direct ethanol fuel cell (DEFC) tests were carried out to investigate the effect of ethanol concentration on ethanol crossover and consequently, on the open circuit voltage and the cell performance of DEFC. It can be found that ethanol crossover presented a negative effect on the OCV and the cell performance of DEFC. It can also be found that an improved DEFC performance was obtained as temperature increased although the ethanol crossover rate increased with temperature increment.

  9. A light-induced spin crossover actuated single-chain magnet

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zheng, Hui; Kang, Soonchul; Shiota, Yoshihito; Hayami, Shinya; Mito, Masaki; Sato, Osamu; Yoshizawa, Kazunari; Kanegawa, Shinji; Duan, Chunying

    2013-11-01

    Both spin-crossover complexes and molecular nanomagnets display bistable magnetic states, potentially behaving as elementary binary units for information storage. It is a challenge to introduce spin-crossover units into molecular nanomagnets to switch the bistable state of the nanomagnets through external stimuli-tuned spin crossover. Here we report an iron(II) spin-crossover unit and paramagnetic iron(III) ions that are incorporated into a well-isolated double-zigzag chain. The chain exhibits thermally induced reversible spin-crossover and light-induced excited spin-state trapping at the iron(II) sites. Single-chain magnet behaviour is actuated accompanying the synergy between light-induced excited spin-state trapping at the iron(II) sites and ferromagnetic interactions between the photoinduced high-spin iron(II) and low-spin iron(III) ions in the chain. The result provides a strategy to switch the bistable state of molecular nanomagnets using external stimuli such as light and heat, with the potential to erase and write information at a molecular level.

  10. Constructing higher order DNA origami arrays using DNA junctions of anti-parallel/parallel double crossovers

    NASA Astrophysics Data System (ADS)

    Ma, Zhipeng; Park, Seongsu; Yamashita, Naoki; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2016-06-01

    DNA origami provides a versatile method for the construction of nanostructures with defined shape, size and other properties; such nanostructures may enable a hierarchical assembly of large scale architecture for the placement of other nanomaterials with atomic precision. However, the effective use of these higher order structures as functional components depends on knowledge of their assembly behavior and mechanical properties. This paper demonstrates construction of higher order DNA origami arrays with controlled orientations based on the formation of two types of DNA junctions: anti-parallel and parallel double crossovers. A two-step assembly process, in which preformed rectangular DNA origami monomer structures themselves undergo further self-assembly to form numerically unlimited arrays, was investigated to reveal the influences of assembly parameters. AFM observations showed that when parallel double crossover DNA junctions are used, the assembly of DNA origami arrays occurs with fewer monomers than for structures formed using anti-parallel double crossovers, given the same assembly parameters, indicating that the configuration of parallel double crossovers is not energetically preferred. However, the direct measurement by AFM force-controlled mapping shows that both DNA junctions of anti-parallel and parallel double crossovers have homogeneous mechanical stability with any part of DNA origami.

  11. The crossover between organized and disorganized states in some non-equilibrium systems

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Téllez, Gabriel

    2009-05-01

    We study numerically the crossover between organized and disorganized states of three non-equilibrium systems: the Poisson/coalesce random walk (PCRW), a one-dimensional spin system and a quasi one-dimensional lattice gas. In all cases, we describe this crossover in terms of the average spacing between particles/domain borders langS(t)rang and the spacing distribution functions p(n)(s). The nature of the crossover is not the same for all systems; however, we found that for all systems the nearest neighbor distribution p(0)(s) is well fitted by the Berry-Robnik model. The destruction of the level repulsion in the crossover between organized and disorganized states is present in all systems. Additionally, we found that the correlations between domains in the gas and spin systems are not strong and can be neglected in a first approximation, but for the PCRW the correlations between particles must be taken into account. To find p(n)(s) with n > 1, we propose two different analytical models based on the Berry-Robnik model. Our models give us a good approximation for the statistical behavior of these systems at their crossover and allow us to quantify the degree of order/disorder of the system.

  12. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  13. Velocity-dependent quantum phase slips in 1D atomic superfluids

    PubMed Central

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D’Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  14. Antiseptic Body Washes for Reducing the Transmission of Methicillin-Resistant Staphylococcus aureus: A Cluster Crossover Study.

    PubMed

    Harris, Patrick N A; Le, Bich Diep; Tambyah, Paul; Hsu, Li Yang; Pada, Surinder; Archuleta, Sophia; Salmon, Sharon; Mukhopadhyay, Amartya; Dillon, Jasmine; Ware, Robert; Fisher, Dale A

    2015-04-01

    Background.  Limiting the spread of methicillin-resistant Staphylococcus aureus (MRSA) within healthcare facilities where the organism is highly endemic is a challenge. The use of topical antiseptic agents may help interrupt the transmission of MRSA and reduce the risk of clinical infection. Octenidine dihydrochloride is a topical antiseptic that exhibits in vitro efficacy against a wide variety of bacteria, including S aureus. Methods.  We conducted a prospective cluster crossover study to compare the use of daily octenidine body washes with soap and water in patients identified by active surveillance cultures to be MRSA-colonized, to prevent the acquisition of MRSA in patients with negative screening swabs. Five adult medical and surgical wards and 2 intensive care units were selected. The study involved an initial 6-month phase using octenidine or soap washes followed by a crossover in each ward to the alternative product. The primary and secondary outcomes were the rates of new MRSA acquisitions and MRSA clinical infections, respectively. Results.  A total of 10 936 patients admitted for ≥48 hours was included in the analysis. There was a small reduction in MRSA acquisition in the intervention group compared with controls (3.0% vs 3.3%), but this reduction was not significant (odds ratio, 0.89; 95% confidence interval, .72-1.11; P = .31). There were also no significant differences in clinical MRSA infection or incidence of MRSA bacteremia. Conclusions.  This study suggests that the targeted use of routine antiseptic washes may not in itself be adequate to reduce the transmission of MRSA in an endemic hospital setting. PMID:26125031

  15. Antiseptic Body Washes for Reducing the Transmission of Methicillin-Resistant Staphylococcus aureus: A Cluster Crossover Study

    PubMed Central

    Harris, Patrick N. A.; Le, Bich Diep; Tambyah, Paul; Hsu, Li Yang; Pada, Surinder; Archuleta, Sophia; Salmon, Sharon; Mukhopadhyay, Amartya; Dillon, Jasmine; Ware, Robert; Fisher, Dale A.

    2015-01-01

    Background. Limiting the spread of methicillin-resistant Staphylococcus aureus (MRSA) within healthcare facilities where the organism is highly endemic is a challenge. The use of topical antiseptic agents may help interrupt the transmission of MRSA and reduce the risk of clinical infection. Octenidine dihydrochloride is a topical antiseptic that exhibits in vitro efficacy against a wide variety of bacteria, including S aureus. Methods. We conducted a prospective cluster crossover study to compare the use of daily octenidine body washes with soap and water in patients identified by active surveillance cultures to be MRSA-colonized, to prevent the acquisition of MRSA in patients with negative screening swabs. Five adult medical and surgical wards and 2 intensive care units were selected. The study involved an initial 6-month phase using octenidine or soap washes followed by a crossover in each ward to the alternative product. The primary and secondary outcomes were the rates of new MRSA acquisitions and MRSA clinical infections, respectively. Results. A total of 10 936 patients admitted for ≥48 hours was included in the analysis. There was a small reduction in MRSA acquisition in the intervention group compared with controls (3.0% vs 3.3%), but this reduction was not significant (odds ratio, 0.89; 95% confidence interval, .72–1.11; P = .31). There were also no significant differences in clinical MRSA infection or incidence of MRSA bacteremia. Conclusions. This study suggests that the targeted use of routine antiseptic washes may not in itself be adequate to reduce the transmission of MRSA in an endemic hospital setting. PMID:26125031

  16. Popov approximation for composite bosons in the BCS-BEC crossover

    SciTech Connect

    Pieri, P.; Strinati, G.C.

    2005-03-01

    Theoretical treatments of the BCS-BEC crossover need to provide as accurate as possible descriptions of the two regimes where the diluteness condition applies, either in terms of the constituent fermions (BCS limit) or of the composite bosons which form as bound-fermion pairs (BEC limit). This has to occur via a single fermionic theory that bridges across these two limiting representations. In this paper, we set up successive improvements of the fermionic theory, that result into composite bosons described at the level of either the Bogoliubov or the Popov approximations for pointlike bosons. This work bears on the recent experimental advances on the BCS-BEC crossover with trapped Fermi atoms, which show the need for accurate theoretical descriptions of the BEC side of the crossover.

  17. BCS-BEC crossover in atomic Fermi gases with a narrow resonance

    SciTech Connect

    Jensen, L. M.; Nilsen, H. M.; Watanabe, Gentaro

    2006-10-15

    We determine the effects on the BCS-BEC crossover of the energy dependence of the effective two-body interaction, which at low energies is determined by the effective range. To describe interactions with an effective range of either sign, we consider a single-channel model with a two-body interaction having an attractive square well and a repulsive square barrier. We investigate the two-body scattering properties of the model, and then solve the Eagles-Leggett equations for the zero temperature crossover, determining the momentum dependent gap and the chemical potential self-consistently. From this we investigate the dependence of the crossover on the effective range of the interaction.

  18. Diffusion path representation for two-phase ternary diffusion couples

    SciTech Connect

    Dayananda, M A; Venkatasubramanian, R

    1986-01-01

    Several two-phase, solid-solid diffusion couples from diffusion studies in the ternary Cu-Ni-Zn, Fe-Ni-Al and Cu-Ag-Au systems were investigated for their analytical representation on the basis of characteristic path parameters. The concentration profiles were examined in terms of relative concentration variables for cross-over compositions and internal consistency. The diffusion paths delineated single or double S-shaped curves crossing the straight line joining the terminal alloy compositions once or thrice. Cross-over compositions were identified in the individual phase regions or at an interface. Based on the symmetry between the path segments on either side of cross-over compositions, the paths were analytically represented with the aid of cross-over compositions and path slopes at these compositions, considered as path parameters. Exprestion for the ratios of diffusion depth on the two sides of the Matano plane were derived in terms of cross-over compositions and the estimated ratios of diffusion depths were found to be consistent with those observed from the concentration profiles.

  19. Phase-Measuring System

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1986-01-01

    System developed and used at Langley Research Center measures phase between two signals of same frequency or between two signals, one of which is harmonic multiple of other. Simple and inexpensive device combines digital and analog components to give accurate phase measurements. One signal at frequency f fed to pulse shaper, produces negative pulse at time t4. Pulse applied to control input of sample-and-hold module 1. Second signal, at frequency nf, fed to zero-crossover amplifier, producing square wave at time t. Signal drives first one-shot producing narrow negative pulse at t1. Signal then drives second one-shot producing narrow positive pulse at time t2. This pulse used to turn on solid-state switch and reset integrator circuit to zero.

  20. The Use and Reporting of the Cross-Over Study Design in Clinical Trials and Systematic Reviews: A Systematic Assessment

    PubMed Central

    Hambleton, Ian; Dwan, Kerry

    2016-01-01

    Background Systematic reviews of treatment interventions in stable or chronic conditions often require the synthesis of clinical trials with a cross-over design. Previous work has indicated that methodology for analysing cross-over data is inadequate in trial reports and in systematic reviews assessing trials with this design. Objective We assessed systematic review methodology for synthesising cross-over trials among Cochrane Cystic Fibrosis and Genetic Disorders Group reviews published to July 2015, and assessed the quality of reporting among the cross-over trials included in these reviews. Methodology We performed data extraction of methodology and reporting in reviews, trials identified and trials included within reviews. Principal Findings We reviewed a total of 142 Cochrane systematic reviews including 53 reviews which synthesised evidence from 218 cross-over trials. Thirty-three (63%) Cochrane reviews described a clear and appropriate method for the inclusion of cross-over data, and of these 19 (56%) used the same method to analyse results. 145 cross-over trials were described narratively or treated as parallel trials in reviews but in 30 (21%) of these trials data existed in the trial reports to account for the cross-over design. At the trial level, the analysis and presentation of results were often inappropriate or unclear, with only 69 (32%) trials presenting results that could be included in meta-analysis. Conclusions Despite development of accessible, technical guidance and training for Cochrane systematic reviewers, statistical analysis and reporting of cross-over data is inadequate at both the systematic review and the trial level. Plain language and practical guidance for the inclusion of cross-over data in meta-analysis would benefit systematic reviewers, who come from a wide range of health specialties. Minimum reporting standards for cross-over trials are needed. PMID:27409076

  1. Temperature effect on the small-to-large crossover lengthscale of hydrophobic hydration

    SciTech Connect

    Djikaev, Y. S. Ruckenstein, E.

    2013-11-14

    The thermodynamics of hydration is expected to change gradually from entropic for small solutes to enthalpic for large ones. The small-to-large crossover lengthscale of hydrophobic hydration depends on the thermodynamic conditions of the solvent such as temperature, pressure, presence of additives, etc. We attempt to shed some light on the temperature dependence of the crossover lengthscale by using a probabilistic approach to water hydrogen bonding that allows one to obtain an analytic expression for the number of bonds per water molecule as a function of both its distance to a solute and solute radius. Incorporating that approach into the density functional theory, one can examine the solute size effects on its hydration over the entire small-to-large lengthscale range at a series of different temperatures. Knowing the dependence of the hydration free energy on the temperature and solute size, one can also obtain its enthalpic and entropic contributions as functions of both temperature and solute size. These functions can provide some interesting insight into the temperature dependence of the crossover lengthscale of hydrophobic hydration. The model was applied to the hydration of spherical particles of various radii in water in the temperature range from T = 293.15 K to T = 333.15 K. The model predictions for the temperature dependence of the hydration free energy of small hydrophobes are consistent with the experimental and simulational data on the hydration of simple molecular solutes. Three alternative definitions for the small-to-large crossover length-scale of hydrophobic hydration are proposed, and their temperature dependence is obtained. Depending on the definition and temperature, the small-to-large crossover in the hydration mechanism is predicted to occur for hydrophobes of radii from one to several nanometers. Independent of its definition, the crossover length-scale is predicted to decrease with increasing temperature.

  2. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    SciTech Connect

    Bakalis, Evangelos E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco E-mail: francesco.zerbetto@unibo.it; Venturini, Alessandro

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  3. Bistable Magnetism and Potential for Voltage-Induced Spin Crossover in Dilute Magnetic Ferroelectrics.

    PubMed

    Weston, L; Cui, X Y; Ringer, S P; Stampfl, C

    2015-06-19

    A first-principles investigation into the magnetic ferroelectric PbTi(1-x)Co(x)O(3) has revealed a bi-stable magnetic system with strong spin-lattice coupling. The local distortions induced by the low-spin to high-spin crossover are ferroelectric in nature, and are characterized by the displacement of the dopant ion with respect to the surrounding O(6) octahedral cage. We demonstrate how this spin-lattice effect could mediate magnetoelectric coupling and possible electric field induced spin-crossover, indicating a promising route to voltage manipulation of isolated spins in a solid-state system. PMID:26197012

  4. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    NASA Astrophysics Data System (ADS)

    Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco

    2015-06-01

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  5. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  6. Spectrum and Dynamics of the BCS-BEC Crossover from a Few-Body Perspective

    SciTech Connect

    Stecher, Javier von; Greene, Chris H.

    2007-08-31

    The spectrum of two spin-up and two spin-down fermions in a trap is calculated using a correlated Gaussian basis throughout the range of the BCS-BEC crossover. These accurate calculations provide a few-body solution to the crossover problem. This solution is used to study the time evolution of the system as the scattering length is changed, mimicking experiments with Fermi gases near Fano-Feshbach resonances. The structure of avoiding crossings in the spectrum allow us to understand the dynamics of the system as a sequence of Landau-Zener transitions. Finally, we propose a ramping scheme to study atom-molecule coherence.

  7. Recommended dairy product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study.

    PubMed

    Abdullah, Mohammad M H; Cyr, Audrey; Lépine, Marie-Claude; Labonté, Marie-Ève; Couture, Patrick; Jones, Peter J H; Lamarche, Benoît

    2015-02-14

    Dairy products are rich sources of an array of fatty acids (FA) that have been shown individually and in certain clusters to exert varying effects on cardiovascular health, for which the circulating lipid profile is a powerful biomarker. Whether the profile of these FA is reflected in blood upon short terms of intake, possibly contributing to the lipid-related health impacts of dairy products, remains to be fully established. The objectives of the present study were to assess a recommended dairy product consumption in relation to circulating FA and lipid profiles, and to evaluate certain FA in dairy fat as potential biomarkers of intake. In a free-living, multi-centre, cross-over design, 124 healthy individuals consumed 3 servings/d of commercial dairy (DAIRY; 1% fat milk, 1·5% fat yogurt and 34% fat cheese) or energy-equivalent control (CONTROL; fruit and vegetable juice, cashews and a cookie) products for 4 weeks each, separated by a 4-week washout period. Plasma FA and serum lipid profiles were assessed by standard methods at the end of each dietary phase. After 4 weeks of intake, plasma levels of FA pentadecanoic acid (15 : 0) and heptadecanoic acid (17 : 0) were higher (0·26 v. 0·22% and 0·42 v. 0·39% of the total identified FA, respectively) after the DAIRY phase than after the CONTROL phase (P< 0·0001). This was accompanied by a small but significant increase in serum LDL-cholesterol levels after the DAIRY phase compared with the CONTROL phase (+0·08 mmol/l; P= 0·04). In conclusion, intake of 3 servings/d of conventional dairy products may modify certain circulating FA and lipid profiles within 4 weeks, where 15 : 0 and 17 : 0 may be potential short-term biomarkers of intake. PMID:25609231

  8. Fine-Scale Heterogeneity in Crossover Rate in the garnet-scalloped Region of the Drosophila melanogaster X Chromosome

    PubMed Central

    Singh, Nadia D.; Stone, Eric A.; Aquadro, Charles F.; Clark, Andrew G.

    2013-01-01

    Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity. PMID:23410829

  9. Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast

    PubMed Central

    Ira, Grzegorz; Malkova, Anna; Liberi, Giordano; Foiani, Marco; Haber, James E.

    2015-01-01

    Summary Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied by a crossover appear 30 min before conversions accompanied by exchange, indicating that there are two different repair mechanisms in mitotic cells. Crossovers are rare (5%), but deleting the BLM/WRN homolog, SGS1, or the SRS2 helicase increases crossovers 2- to 3-fold. Overexpressing SRS2 nearly eliminates crossovers, whereas overexpression of RAD51 in srs2Δ cells almost completely eliminates the noncrossover recombination pathway. We suggest Sgs1 and its associated topoisomerase Top3 remove double Holliday junction intermediates from a crossover-producing repair pathway, thereby reducing crossovers. Srs2 promotes the noncrossover synthesis-dependent strand-annealing (SDSA) pathway, apparently by regulating Rad51 binding during strand exchange. PMID:14622595

  10. Spin crossover transition of Fe(phen)2(NCS)2: periodic dispersion-corrected density-functional study.

    PubMed

    Bučko, Tomáš; Hafner, Jürgen; Lebègue, Sébastien; Ángyán, János G

    2012-04-28

    Periodic dispersion corrected DFT calculations have been performed to study the spin-crossover transition of Fe(phen)(2)(NCS)(2) in the molecular and in the crystalline state. We show that London dispersion interactions play a crucial role in the cohesion of the crystals. Based on calculations of vibrational eigenstates of the isolated molecule and of the crystalline phase in both the low- and high-spin states, the transition entropies and enthalpies have been calculated. We demonstrate that, due to the stabilization of the low-spin state by intermolecular dispersion forces, the transition enthalpy at the transition temperature is larger for the crystalline phase in comparison with an isolated molecule. The effective coordination number of the nitrogen atoms of the ligands around the iron atom has been identified as the order parameter driving the quasi-reversible low-spin to high-spin transition in the crystal. Finally, using constrained geometry relaxations at fixed values of the coordination number, we computed the energy barrier of the LS to HS transition and found it to be in a reasonable agreement with the experimental value. PMID:22415338

  11. Effects of a Bovine Lactoferrin Formulation from Cow's Milk on Menstrual Distress in Volunteers: A Randomized, Crossover Study.

    PubMed

    Ueno, Hiroshi M; Yoshise, Ran Emilie; Sugino, Tomohiro; Kajimoto, Osami; Kobayashi, Toshiya

    2016-01-01

    Dysmenorrhea is a highly prevalent complaint and highly undiagnosed gynecologic condition. Dairy products have a potential in the management of menstrual distress, and bovine lactoferrin can help the subjective dysphoria associated with dysmenorrhea. In the present study, we aimed to investigate the effects of a lactoferrin formulation isolated from cow's milk on menstrual symptoms in volunteers. A double-blind, randomized, placebo-controlled, crossover study of the iron-lactoferrin complex (FeLf) was performed in thirty-five healthy Japanese women. Participants received the 150 mg FeLf (per day) or placebo from day ten of the luteal phase to day four of the follicular phase. The Moos Menstrual Distress Questionnaire (MDQ) was measured for menstrual distress, and heart rate variability was measured as an index of autonomic nerve balance during menses. A visual analog scale for menstrual pain, and a verbal rating scale for quality of life during the first three days of menstruation were measured. The MDQ score for the automatic nervous system subscale was lower and the parasympathetic nervous system activity was greater in FeLf than in placebo for intention-to-treat or per-protocol populations. The other variables were not different between the groups. No treatment-related side effects were observed during the study. The results indicate that FeLf can provide a beneficial effect on the psychological symptoms in women affected by menstrual distress. PMID:27258249

  12. Effects of a Bovine Lactoferrin Formulation from Cow’s Milk on Menstrual Distress in Volunteers: A Randomized, Crossover Study

    PubMed Central

    Ueno, Hiroshi M.; Yoshise, Ran Emilie; Sugino, Tomohiro; Kajimoto, Osami; Kobayashi, Toshiya

    2016-01-01

    Dysmenorrhea is a highly prevalent complaint and highly undiagnosed gynecologic condition. Dairy products have a potential in the management of menstrual distress, and bovine lactoferrin can help the subjective dysphoria associated with dysmenorrhea. In the present study, we aimed to investigate the effects of a lactoferrin formulation isolated from cow’s milk on menstrual symptoms in volunteers. A double-blind, randomized, placebo-controlled, crossover study of the iron-lactoferrin complex (FeLf) was performed in thirty-five healthy Japanese women. Participants received the 150 mg FeLf (per day) or placebo from day ten of the luteal phase to day four of the follicular phase. The Moos Menstrual Distress Questionnaire (MDQ) was measured for menstrual distress, and heart rate variability was measured as an index of autonomic nerve balance during menses. A visual analog scale for menstrual pain, and a verbal rating scale for quality of life during the first three days of menstruation were measured. The MDQ score for the automatic nervous system subscale was lower and the parasympathetic nervous system activity was greater in FeLf than in placebo for intention-to-treat or per-protocol populations. The other variables were not different between the groups. No treatment-related side effects were observed during the study. The results indicate that FeLf can provide a beneficial effect on the psychological symptoms in women affected by menstrual distress. PMID:27258249

  13. A Crossover Trial Evaluating an Educational-Behavioral Joint Protection Programme for People with Rheumatoid Arthritis.

    ERIC Educational Resources Information Center

    Hammond, A.; Lincoln, N.; Sutcliffe, L.

    1999-01-01

    Joint protection, a self-management technique taught to people with rheumatoid arthritis, was used in a group education program. A crossover trial (N=35) was conducted. No significant changes in measures of pain, functional disability, grip strength, self-efficacy or helplessness occurred post-education, although this may have been due to the…

  14. Crossover Literature and Abjection: Geraldine McCaughrean's "The White Darkness"

    ERIC Educational Resources Information Center

    Falconer, Rachel

    2007-01-01

    This article provides a close reading of Geraldine McCaughrean's award-winning novel, "The White Darkness". It argues that this is a key text in the increasing debate about "crossover" literature. Whereas, traditionally, adolescent books were seen to offer compensatory fantasies to the adolescent reader, McCaughrean's text goes beyond this,…

  15. Tic Reduction with Risperidone Versus Pimozide in a Randomized, Double-Blind, Crossover Trial

    ERIC Educational Resources Information Center

    Gilbert, Donald L.; Batterson, J. Robert; Sethuraman, Gopalan; Sallee, Floyd R.

    2004-01-01

    Objective: To compare the tic suppression, electrocardiogram (ECG) changes, weight gain, and side effect profiles of pimozide versus risperidone in children and adolescents with tic disorders. Method: This was a randomized, double-blind, crossover (evaluable patient analysis) study. Nineteen children aged 7 to 17 years with Tourette's or chronic…

  16. Iron(ii)-triazole core-shell nanocomposites: toward multistep spin crossover materials.

    PubMed

    Wang, Yu-Xia; Qiu, Dan; Xi, Sai-Fei; Ding, Zheng-Dong; Li, Zaijun; Li, Yunxing; Ren, Xuehong; Gu, Zhi-Guo

    2016-06-28

    The first SCO@SCO core-shell nanomaterials have been synthesized by the step-by-step microemulsion method. The observed gyroscopic core-shell nanocomposites exhibit three-step spin crossover behaviour with thermal hysteresis at around room temperature. This offers an efficient and novel strategy for the development of multistable SCO materials. PMID:27263855

  17. A Crossover Study of Risperidone in Children, Adolescents and Adults with Mental Retardation

    ERIC Educational Resources Information Center

    Hellings, Jessica A.; Zarcone, Jennifer R.; Reese, R. Matthew; Valdovinos, Maria G.; Marquis, Janet G.; Fleming, Kandace K.; Schroeder, Stephen R.

    2006-01-01

    Risperidone has shown safety and efficacy for aggressive and destructive behaviors in short-term studies. This longer-duration study includes a broad sample. Forty subjects, aged 8-56 years (mean=22), all with mental retardation and 36 with autism spectrum disorders participated in this 22-week crossover study, with 24 weeks of open maintenance…

  18. Improvement of the radial positioning of ERS-1 through dual crossover analysis with TOPEX/Poseidon

    NASA Astrophysics Data System (ADS)

    Carnochan, S.; Moore, P.; Ehlers, S.; Lam, C.; Woodworth, P.

    1994-01-01

    A method where both dual crossovers and single satellite crossovers are used in conjunction to determine the radial error for both Topology Ocean Experiment (TOPEX)/Poseidon and ERS-1 as a finite Fourier series, is outlined. The procedure is based on a time series expansion of the radial orbit error of ERS-1 expressed in terms of a finite Fourier series at frequencies of multiples of 1/501 cycles per revolution (for the 35 day repeat orbit), with additional terms for atmospheric drag and solar radiation pressure mismodeling as well as errors in the initial state vector. Refinement of the ERS-1 positioning is presented from solutions utilizing both the dual crossover data set by itself and in combination with ERS-1 crossover data. The zero frequency term or constant offset in the time series expansion of the ERS-1 radial orbit error is a measure of the difference between the so called altimeter biases on TOPEX/Poseidon and ERS-1. Preliminary results of this difference are presented and compared against results for both satellites from long arc orbits.

  19. A method for evaluating aberration in the crossover image in mask irradiation optics of electron beam

    NASA Astrophysics Data System (ADS)

    Sohda, Yasunari; Ohta, Hiroya; Saitou, Norio

    2002-02-01

    A method for evaluating aberration in the crossover image in a cell projection lithography system has been developed. In an electron-beam lithography system of projection-type such as a cell projection lithography system, the aberration in the crossover image causes the electron beam to pass off-axis in the electron optics. Optical simulation has quantitatively shown that the aberration in the crossover image causes an electron-beam blur and a positioning error on a writing sample. The evaluating method consists of four square apertures and a mark-detection function in a cell projection system. By measuring each position of the images of the four square apertures on the writing sample at difference focuses, the aberration can be calculated. The field curvature and the astigmatism in a cell projection system were evaluated by using this method. The field curvature agrees with the simulation. In addition, the measurement of the effect of beam alignment is also demonstrated. It is thus concluded that the method can effectively evaluate the aberration in the crossover image. This method is also useful for other projection-type lithographies of charged particles—like ion and electron beams.

  20. Cycling Versus Continuous Mode In Neuromodulator Programming: A Crossover, Randomized, Controlled Trial.

    PubMed

    Beer, Gwendolyn M; Gurule, Margaret M; Komesu, Yuko M; Qualls, Clifford R; Rogers, Rebecca G

    2016-01-01

    This is a randomized, controlled, blind, crossover trial comparing cycling versus continuous programming of a sacral neuromodulator in women diagnosed with overactive bladder (OAB). At 6 months, treatment order significantly affected Overactive Bladder Questionnaire - Short Form (OABq-SF) symptom scores. The cycling followed by continuous stimulation group had superior OABq-SF scores (p > 0.02). PMID:27501593

  1. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Fixed gear fishery-crossover provisions. 660.220 Section 660.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  2. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Open access fishery-crossover provisions. 660.320 Section 660.320 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  3. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Fixed gear fishery-crossover provisions. 660.220 Section 660.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  4. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Open access fishery-crossover provisions. 660.320 Section 660.320 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  5. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Fixed gear fishery-crossover provisions. 660.220 Section 660.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  6. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fixed gear fishery-crossover provisions. 660.220 Section 660.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  7. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Fixed gear fishery-crossover provisions. 660.220 Section 660.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  8. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Open access fishery-crossover provisions. 660.320 Section 660.320 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  9. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Open access fishery-crossover provisions. 660.320 Section 660.320 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  10. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Open access fishery-crossover provisions. 660.320 Section 660.320 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST...

  11. [East Syracuse-Minoa Schools Environmental Education Materials, Middle School Package, Middle School Crossover Units.

    ERIC Educational Resources Information Center

    East Syracuse - Minoa Central Schools, East Syracuse, NY.

    This interdisciplinary series of five environmental education units is designed for teacher use at the middle school level. The two crossover units are designed to span a period of six to eight weeks at the beginning of the eighth grade. Each unit is developed around several organizing ideas or concepts; objectives, activities and strategies,…

  12. A randomized crossover trial to decrease bacterial contamination on hospital scrubs.

    PubMed

    Boutin, Mallory A; Thom, Kerri A; Zhan, Min; Johnson, J Kristie

    2014-11-01

    Healthcare worker attire may become contaminated with pathogenic organisms during a normal shift. We performed a randomized crossover study to assess whether treatment with an antimicrobial coating would decrease bacterial contamination on scrubs. Thirty percent of all scrubs were contaminated; there was no difference in the rate of contamination between the intervention and control groups. PMID:25333437

  13. The Crossover Generation: Baby Boomers and the Role of the Public Library

    ERIC Educational Resources Information Center

    Williamson, Kirsty; Bannister, Marion; Sullivan, Jen

    2010-01-01

    The article explores the concept of baby boomers as a "crossover" generation, one that embodies characteristics of previous and later generations. The context is the retirement of the baby boomers and its potential impact on the public library. Ethnographic method within a constructivist framework was used, employing the techniques of focus groups…

  14. Two structural relaxations in protein hydration water and their dynamic crossovers.

    PubMed

    Camisasca, G; De Marzio, M; Corradini, D; Gallo, P

    2016-07-28

    We study the translational single particle dynamics of hydration water of lysozyme upon cooling by means of molecular dynamics simulations. We find that water close to the protein exhibits two distinct relaxations. By characterizing their behavior upon cooling, we are able to assign the first relaxation to the structural α-relaxation also present in bulk water and in other glass-forming liquids. The second, slower, relaxation can be ascribed to a dynamic coupling of hydration water motions to the fluctuations of the protein structure. Both relaxation times exhibit crossovers in the behavior upon cooling. For the α-process, we find upon cooling a crossover from a fragile behavior to a strong behavior at a temperature which is about five degrees higher than that of bulk water. The long-relaxation time appears strictly connected to the protein motion as it shows upon cooling a temperature crossover from a strong behavior with a lower activation energy to a strong behavior with a higher activation energy. The crossover temperature coincides with the temperature of the protein dynamical transition. These findings can help experimentalists to disentangle the different information coming from total correlators and to better characterize hydration water relaxations in different biomolecules. PMID:27475377

  15. A Randomized Crossover Study of Web-Based Media Literacy to Prevent Smoking

    ERIC Educational Resources Information Center

    Shensa, Ariel; Phelps-Tschang, Jane; Miller, Elizabeth; Primack, Brian A.

    2016-01-01

    Feasibly implemented Web-based smoking media literacy (SML) programs have been associated with improving SML skills among adolescents. However, prior evaluations have generally had weak experimental designs. We aimed to examine program efficacy using a more rigorous crossover design. Seventy-two ninth grade students completed a Web-based SML…

  16. Hypothesis testing and estimation in ordinal data under a simple crossover design.

    PubMed

    Lui, Kung-Jong; Chang, Kuang-Chao

    2012-01-01

    Since each patient serves as his/her own control, the crossover design can be of use to improve power as compared with the parallel-groups design in studying noncurative treatments to certain chronic diseases. Although the research studies on the crossover design have been quite intensive, the discussions on analyzing ordinal data under such a design are truly limited. We propose using the generalized odds ratio (GOR) for paired sample data to measure the relative effect on patient responses for both treatment and period in ordinal data under a simple crossover trial. Assuming the treatment and period effects are multiplicative, we note that one can easily derive the maximum likelihood estimator (LE) in closed forms for the GOR of treatment and period effects. We develop asymptotic and exact procedures for testing treatment and period effects. We further derive asymptotic and exact interval estimators for the GOR of treatment and period effects. We use the data taken from a crossover trial to assess the clarity of leaflet instructions between two devices among asthma patients to illustrate the use of these test procedures and estimators developed here. PMID:23075013

  17. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    NASA Astrophysics Data System (ADS)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  18. MICROSATELLITE DIVERSITY AND CROSSOVER REGIONS WITHIN HOMOZYGOUS AND HETEROZYGOUS SLA HAPLOTYPES OF DIFFERENT PIG BREEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our aim was to investigate microsatellite (MS) diversity and find crossover regions at 42 polymorphic MS loci in the SLA genomic region of 72 pigs with different homozygous and heterozygous well-defined SLA haplotypes. We analyzed the genetic polymorphisms of the 42 MS markers in 23 SLA homozygous/h...

  19. The Daily Spillover and Crossover of Emotional Labor: Faking Emotions at Work and at Home

    ERIC Educational Resources Information Center

    Sanz-Vergel, Ana Isabel; Rodriguez-Munoz, Alfredo; Bakker, Arnold B.; Demerouti, Evangelia

    2012-01-01

    This diary study among 75 Spanish dual earner couples investigates whether emotional labor performed by employees at work has implications for themselves and for their partner at home. On the basis of the Spillover-Crossover model, we hypothesized that individuals' surface acting at work would spill over to the home domain, and that surface acting…

  20. Atomoxetine for Hyperactivity in Autism Spectrum Disorders: Placebo-Controlled Crossover Pilot Trial

    ERIC Educational Resources Information Center

    Arnold, L. Eugene; Aman, Michael G.; Cook, Amelia M.; Witwer, Andrea N.; Hall, Kristy L.; Thompson, Susan; Ramadan, Yaser

    2006-01-01

    Objective: To explore placebo-controlled efficacy and safety of atomoxetine (ATX) for attention-deficit/hyperactivity disorder (ADHD) symptoms in children with autism spectrum disorders (ASD). Method: Children ages 5 to 15 with ASD and prominent ADHD symptoms were randomly assigned to order in a crossover of clinically titrated ATX and placebo, 6…

  1. BCS-BEC crossover physics in FeSe bulk superconductor

    NASA Astrophysics Data System (ADS)

    Shibauchi, Takasada

    The physics of the crossover between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein-condensate (BEC) limits gives a unified framework of quantum bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Through the superfluid response, transport, thermoelectric response, and quantum oscillations, we demonstrate that the Fermi energy of the bulk superconductor FeSe is extremely small, with the ratio of the gap to Fermi energy is of the order of unity, which qualifies FeSe to be deep inside the BCS-BEC crossover regime. Thus FeSe appears to be a key material to solve the longstanding issue in the crossover physics; the presence of preformed Cooper pairs giving rise to a pseudogap above the superconducting transition temperature Tc. We report experimental signatures of preformed Cooper pairing well above Tc = 8 . 5 K in clean single crystals of FeSe. Our torque magnetometry reveals distinct diamagnetic signal below T* ~ 20 K indicating that the superconducting fluctuations above the transition temperature are strongly enhanced from the standard Gaussian theory. The transport and thermoelectric coefficients also exhibit distinct anomalies at ~T* , signaling a possible pseudogap formation. The multiband nature with the electron-hole compensation in FeSe may highlight a fundamentally new aspect of the BCS-BEC crossover physics In collaboration with S. Kasahara, T. Yamashita, Y. Matsuda (Kyoto), Y. Mizukami (Tokyo), T. Wolf, F. Hardy, C. Meingast, H. v. Löhneysen (KIT), M. D. Watson, A. I. Coldea (Oxford), T. Terashima (NIMS), W. Knafo (Toulouse), T. Hanaguri (Riken).

  2. Microscopic theory of cooperative spin crossover: Interaction of molecular modes with phonons

    NASA Astrophysics Data System (ADS)

    Palii, Andrew; Ostrovsky, Serghei; Reu, Oleg; Tsukerblat, Boris; Decurtins, Silvio; Liu, Shi-Xia; Klokishner, Sophia

    2015-08-01

    In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

  3. Microscopic theory of cooperative spin crossover: Interaction of molecular modes with phonons

    SciTech Connect

    Palii, Andrew E-mail: klokishner@yahoo.com; Ostrovsky, Serghei; Reu, Oleg; Klokishner, Sophia E-mail: klokishner@yahoo.com; Tsukerblat, Boris; Decurtins, Silvio; Liu, Shi-Xia

    2015-08-28

    In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz){sub 6}](BF{sub 4}){sub 2} crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

  4. Comment on 'Superfluid stability in the BEC-BCS crossover'

    SciTech Connect

    Sheehy, Daniel E.; Radzihovsky, Leo

    2007-04-01

    We point out an error in recent work by Pao, Wu, and Yip [Phys. Rev. B 73, 132506 (2006)], that stems from their use of a necessary but not sufficient condition [positive compressibility (magnetic susceptibility) and superfluid stiffness] for the stability of the ground state of a polarized Fermi gas. As a result, for a range of detunings their proposed ground-state solution is a local maximum rather than a minimum of the ground state energy, which thereby invalidates their proposed phase diagram for resonantly interacting fermions under an imposed population difference.

  5. Comment on ``Superfluid stability in the BEC-BCS crossover''

    NASA Astrophysics Data System (ADS)

    Sheehy, Daniel E.; Radzihovsky, Leo

    2007-04-01

    We point out an error in recent work by Pao, Wu, and Yip [Phys. Rev. B 73, 132506 (2006)], that stems from their use of a necessary but not sufficient condition [positive compressibility (magnetic susceptibility) and superfluid stiffness] for the stability of the ground state of a polarized Fermi gas. As a result, for a range of detunings their proposed ground-state solution is a local maximum rather than a minimum of the ground state energy, which thereby invalidates their proposed phase diagram for resonantly interacting fermions under an imposed population difference.

  6. Studying the thermal/non-thermal crossover in solar flares

    NASA Astrophysics Data System (ADS)

    Schwartz, R. A.

    1994-12-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  7. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  8. The Effects of Milnacipran on Sleep Disturbance in Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled, Two-Way Crossover Study

    PubMed Central

    Ahmed, Mansoor; Aamir, Rozina; Jishi, Zahra; Scharf, Martin B.

    2016-01-01

    Objective: This study examined the effects of milnacipran on polysomnographic (PSG) measures of sleep and subjective complaints in patients with fibromyalgia and disturbed sleep. Methods: This was a single-site, double-blind, placebo-controlled, two-period crossover PSG study. Eligible subjects (aged 28–72 y) were randomized (1:1) to milnacipran (100 mg/d) or placebo for crossover period 1, and vice versa for period 2. Each crossover period comprised a dose-escalation and dose-maintenance phase, with a 2-w taper/washout between periods. In-laboratory PSGs were collected at baseline, and at the end of each treatment period. The primary endpoints were the difference in PSG-recorded wake after sleep onset (WASO), number of awakenings after sleep onset (NAASO), and sleep efficiency (SE) between 4 w of maintenance treatment with milnacipran and placebo. Other PSG measures, subject-rated sleep, fatigue, physical functioning, and pain were assessed. Post hoc analysis was performed in subjects showing at least 25% reduction in pain from baseline in the Brief Pain Inventory Score (responders). Results: Of 19 subjects randomized, 15 completed both periods. Subjects treated with milnacipran showed no significant improvements in WASO and NAASO, but showed reduced SE (p = 0.049). Milnacipran did not show significant improvement in other PSG parameters or subjective endpoints. Two thirds of completers met responder criteria and additionally showed a significant improvement in daily effect of pain (p = 0.043) and subjective sleep quality (p = 0.040). Conclusion: The data suggest that milnacipran is not sedating in most patients with fibromyalgia and improvements in sleep are likely a result of pain improvement. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT01234675 Citation: Ahmed M, Aamir R, Jishi Z, Scharf MB. The effects of milnacipran on sleep disturbance in fibromyalgia: a randomized, double-blind, placebo-controlled, two-way crossover study. J Clin Sleep

  9. Phases of a polar spin-1 Bose gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Kis-Szabó, Krisztián; Szépfalusy, Péter; Szirmai, Gergely

    2007-05-01

    The two Bose Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation.

  10. Crossover behavior of multiscale fluctuations in Big Data: Langevin model and substorm time-scales in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Setty, V. A.

    2015-12-01

    Multiscale fluctuations in large and complex data are usually characterized by a power law with a scaling exponent but many systems require more than one exponent and thus exhibit crossover behavior. The scaling exponents, such as Hurst exponents, represent the nature of correlation in the system and the crossover shows the presence of more than one type of correlation. An accurate characterization of the crossover behavior is thus needed for a better understanding of the inherent correlations in the system, and is an important method of Big Data analysis. A multi-step process is developed for accurate computation of the crossover behavior. First the detrended fluctuation analysis is used to remove the trends in the data and the scaling exponents are computed. The crossover point is then computed by a Hyperbolic regression technique, with no prior assumptions. The time series data of the magnetic field variations during substorms in the Earth's magnetosphere is analyzed with these techniques and yields a crossover behavior with a time scale of ~4 hrs. A Langevin model derived from the data provides an excellent fit to the crossover in the scaling exponents and a good model of magnetospheric dynamics. The combination of fluctuation analysis and mathematical modeling thus yields a comprehensive approach in the analysis of Big Data.

  11. Delay in the Detrended Fluctuation Analysis Crossover Point as a Risk Factor for Type 2 Diabetes Mellitus

    PubMed Central

    Varela, Manuel; Vigil, Luis; Rodriguez, Carmen; Vargas, Borja; García-Carretero, Rafael

    2016-01-01

    Detrended Fluctuation Analysis (DFA) measures the complexity of a glucose time series obtained by means of a Continuous Glucose Monitoring System (CGMS) and has proven to be a sensitive marker of glucoregulatory dysfunction. Furthermore, some authors have observed a crossover point in the DFA, signalling a change of dynamics, arguably dependent on the beta-insular function. We investigate whether the characteristics of this crossover point have any influence on the risk of developing type 2 diabetes mellitus (T2DM). To this end we recruited 206 patients at increased risk of T2DM (because of obesity, essential hypertension, or a first-degree relative with T2DM). A CGMS time series was obtained, from which the DFA and the crossover point were calculated. Patients were then followed up every 6 months for a mean of 17.5 months, controlling for the appearance of T2DM diagnostic criteria. The time to crossover point was a significant predictor risk of developing T2DM, even after adjusting for other variables. The angle of the crossover was not predictive by itself but became significantly protective when the model also considered the crossover point. In summary, both a delay and a blunting of the crossover point predict the development of T2DM. PMID:27294154

  12. Inhibition of the Smc5/6 Complex during Meiosis Perturbs Joint Molecule Formation and Resolution without Significantly Changing Crossover or Non-crossover Levels

    PubMed Central

    Lilienthal, Ingrid; Kanno, Takaharu; Sjögren, Camilla

    2013-01-01

    Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways. PMID:24244180

  13. [Ovarian stimulation by a new therapeutic principle for the treatment of complications of the climacteric. Results of a double-blind crossover study with a defined spleen dialysate].

    PubMed

    Möller, C P; Lübow, H; Schmitz, H

    1986-07-01

    In a placebo-controlled double-blind cross-over study (test period 8 weeks) the spleen dialysate Solcosplen is tested for effectiveness and tolerance in 40 women, i.e. 14 pre- resp. 26 postmenopausal women in two consecutive periods (test periods I and II). The treatment begins in the first week of each test period with 2 ampoules i.m. t.i.d. and is to be continued for the following 7 weeks with 2 dragees b.i.d. Besides the incidence of clinical symptoms there intensity is summarized in a graded form to the Kupperman index. For further objectifying the therapeutic results vaginal-cytological examinations and radioimmunological analyses of estradiol (E2), LH, FSH and DHEA-S are carried out. The courses of therapy are frequented on a balanced basis. The progress of clinical symptoms shows in respect of incidence of appearance and intensity measured in Kupperman index in Phase I as well as in the cross-over statistically clear reciprocity, which demonstrates - with homogeneous prefindings - significantly differing results of treatment in favour of the dialysate. In the intraindividual comparison of judging the effectiveness by the physician and patient yields significant preferences for the verum. Side-effects were not observed. The proven effectiveness of the spleen dialysate within this study is explained by the stimulation of the ovarian residual function during menopause. It is discussed and compared to the presently applied monotherapeutic E2-substitution. PMID:3533088

  14. Effect of Membrane Permeability on Cardiovascular Risk Factors and β2m Plasma Levels in Patients on Long-Term Haemodialysis: A Randomised Crossover Trial.

    PubMed

    Chazot, Charles; Kirchgessner, Judith; Pham, Jenny; Vo-Van, Cyril; Lorriaux, Christie; Hurot, Jean-Marc; Zaoui, Eric; Grassmann, Aileen; Jean, Guillaume; Marcelli, Daniele

    2015-01-01

    Survival of haemodialysis (HD) patients is influenced by many factors. Mortality is mainly of cardiovascular (CV) origin and related to both traditional and nontraditional CV risk factors. Low plasma Beta2-microglobulin (β2m) levels are associated with improved HD patient survival. HD session times that are longer than the conventional 4 h (i.e., extended dialysis) provide better middle molecule clearance and are also associated with a survival advantage. In this crossover randomised trial, we investigated the effect of membrane flux on CV risk factors and on β2m plasma levels in patients treated with extended dialysis. Dialysis session duration was between 5 and 8 h for all patients. Patients were randomly assigned to the treatment sequences low-flux/high-flux dialysis versus high-flux/low-flux dialysis in a crossover design after a 3-month run-in period, with each phase lasting 9 months. Of the initially enrolled 168 patients, 155 patients started the study after the run-in period, 117 patients completed Phase 1, and 83 patients completed the whole study. Lp(a), homocystein, LDL cholesterol, HDL cholesterol and serum albumin were comparable in the low-flux and high-flux treatments. The average β2m level was 43.3 ± 11.1 mg/l at the end of the low-flux phase. Independent of sequence assignation, average β2m was significantly lower at the end of the high-flux phase (27.5 ± 76.0 mg/l, p < 0.0001 versus end of low-flux phase). Both phosphate and nPNA were significantly lower at the end of the high-flux phase compared to the low-flux phase (p = 0.045 and p = 0.002, respectively). Inclusion of those patients who completed Phase 1 and who dropped out of the study during Phase 2 did not significantly change the results. In conclusion, this study did not find an influence of high-flux filters on several traditional CV risk factors in a population of HD patients treated with extended dialysis. However, high-flux filters are necessary to optimise middle molecule

  15. Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting

    2011-01-01

    The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum

  16. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures.

    PubMed

    Reishus, Dustin; Shaw, Bilal; Brun, Yuriy; Chelyapov, Nickolas; Adleman, Leonard

    2005-12-21

    We designed a molecular complex, the double-double crossover, consisting of four DNA double helices connected by six reciprocal exchanges. Atomic force micrographs suggest that double-double crossover complexes self-assemble into high-density, doubly connected, two-dimensional, planar structures. Such structures may be suitable as substrates for the deposition of nanomaterials in the creation of high-density electrical and quantum devices. We speculate about a modified double-double crossover complex that might self-assemble into high-density, doubly connected, three-dimensional structures. PMID:16351073

  17. The effect of crossover frequency on aided speech perception in the presence of environmental sounds

    NASA Astrophysics Data System (ADS)

    Hayes, Donald Edward, Jr.

    2002-01-01

    Since its introduction several years ago, multichannel signal processing has become a nearly ubiquitous component of programmable and digital hearing aids. Rapid development of sophisticated multichannel circuits has proceeded well ahead of sound clinical techniques to implement this new technology. Splitting the incoming acoustic signal into as few as two independent high and low frequency bandpass filters (channels) can provide significant perceptual benefits for some hearing aid wearers but no empirically derived relationship has ever been found between a given set of bandpass filter settings and improved speech perception in noise. More specifically, adjustments to the crossover frequency at which the bandpass filters intersect, has never conclusively been shown to improve speech perception in noise. This might have been because the area of crossover frequency settings in and of itself has never received a great deal of attention. The primary purpose of this study was to determine whether speech perception is significantly affected by changing the crossover frequency of a two-channel hearing aid across different sound environments. Those environmental sounds included: the steady state low frequency engine of a jet in flight, the slowly modulating wideband energy of ocean waves breaking on a beach and the high frequency transient bursts of rain hitting a tin roof. Nine participants were given the Hearing in Noise Test (HINT) and the Four Alternative Auditory Features (FAAF) test in the presence of each environmental sound. They were all tested wearing pairs of two-channel digital hearing aids with the crossover frequency set each of four ways: wideband, 800 Hz, 1600 Hz or 3200 Hz. Statistically significant group differences were found for both the 1600 Hz and 3200 Hz settings over the wideband condition on the HINT in the rain. Comparison of the HINT scores for each of the nine participants indicated that the 1600 Hz setting was superior to all others in both

  18. SPECIFIC AND CROSS-OVER EFFECTS OF FOAM ROLLING ON ANKLE DORSIFLEXION RANGE OF MOTION

    PubMed Central

    Beardsley, Chris

    2016-01-01

    ABSTRACT Background Flexibility is an important physical quality. Self-myofascial release (SMFR) methods such as foam rolling (FR) increase flexibility acutely but how long such increases in range of motion (ROM) last is unclear. Static stretching (SS) also increases flexibility acutely and produces a cross-over effect to contralateral limbs. FR may also produce a cross-over effect to contralateral limbs but this has not yet been identified. Purpose To explore the potential cross-over effect of SMFR by investigating the effects of a FR treatment on the ipsilateral limb of 3 bouts of 30 seconds on changes in ipsilateral and contralateral ankle DF ROM and to assess the time-course of those effects up to 20 minutes post-treatment. Methods A within- and between-subject design was carried out in a convenience sample of 26 subjects, allocated into FR (n=13) and control (CON, n=13) groups. Ankle DF ROM was recorded at baseline with the in-line weight-bearing lunge test for both ipsilateral and contralateral legs and at 0, 5, 10, 15, 20 minutes following either a two-minute seated rest (CON) or 3 3 30 seconds of FR of the plantar flexors of the dominant leg (FR). Repeated measures ANOVA was used to examine differences in ankle DF ROM. Results No significant between-group effect was seen following the intervention. However, a significant within-group effect (p<0.05) in the FR group was seen between baseline and all post-treatment time-points (0, 5, 10, 15 and 20 minutes). Significant within-group effects (p<0.05) were also seen in the ipsilateral leg between baseline and at all post-treatment time-points, and in the contralateral leg up to 10 minutes post-treatment, indicating the presence of a cross-over effect. Conclusions FR improves ankle DF ROM for at least 20 minutes in the ipsilateral limb and up to 10 minutes in the contralateral limb, indicating that FR produces a cross-over effect into the contralateral limb. The mechanism producing these cross-over effects is

  19. Reversible Guest Binding in a Non-Porous Fe(II) Coordination Polymer Host Toggles Spin Crossover.

    PubMed

    Lennartson, Anders; Southon, Peter; Sciortino, Natasha F; Kepert, Cameron J; Frandsen, Cathrine; Mørup, Steen; Piligkos, Stergios; McKenzie, Christine J

    2015-11-01

    Formation of either a dimetallic compound or a 1 D coordination polymer of adiponitrile adducts of [Fe(bpte)](2+) (bpte=[1,2-bis(pyridin-2-ylmethyl)thio]ethane) can be controlled by the choice of counteranion. The iron(II) atoms of the bis(adiponitrile)-bridged dimeric complex [Fe2 (bpte)2 (μ2 -(NC(CH2 )4 CN)2 ](SbF6 )4 (2) are low spin at room temperature, as are those in the polymeric adiponitrile-linked acetone solvate polymer {[Fe(bpte)(μ2 -NC(CH2 )4 CN)](BPh4 )2 ⋅Me2 CO} (3⋅Me2 CO). On heating 3⋅Me2 CO to 80 °C, the acetone is abruptly removed with an accompanying purple to dull lavender colour change corresponding to a conversion to a high-spin compound. Cooling reveals that the desolvate 3 shows hysteretic and abrupt spin crossover (SCO) S=0↔S=2 behaviour centred at 205 K. Non-porous 3 can reversibly absorb one equivalent of acetone per iron centre to regenerate the same crystalline phase of 3⋅Me2 CO concurrently reinstating a low-spin state. PMID:26394897

  20. Deep mineral water accelerates recovery after dehydrating aerobic exercise: a randomized, double-blind, placebo-controlled crossover study

    PubMed Central

    2014-01-01

    Background The effect of deep mineral water (DMW) with moderate mineralization on the recovery of physical performance after prolonged dehydrating aerobic exercise in the heat was studied in nine healthy, physically active (VO2max = 45.8 ± 8.4 mL kg−1 min−1) women aged 24.0 ± 3.7 years. Methods We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of ingestion of natural mineral water extracted from a depth of 689 m on recovery from prolonged fatiguing aerobic running conducted at 30°C. Results Mean body weight decreased by 2.6–2.8% following dehydrating exercise. VO2max was 9% higher after 4 h of recovery after rehydrating with DMW compared with plain water. Leg muscle power recovered better during the slow phase of recovery and was significantly higher after 48 h of recovery after rehydrating with DMW compared with plain water. Conclusions DMW with moderate mineralization was more effective in inducing recovery of aerobic capacity and leg muscle power compared with plain water following prolonged dehydrating aerobic running exercise. PMID:25002835

  1. Spin Crossover, Polymorphism and Porosity to Liquid Solvent in Heteroleptic Iron(III) {Quinolylsalicylaldimine/Thiosemicarbazone-Salicylaldimine} Complexes.

    PubMed

    Phonsri, Wasinee; Davies, Casey G; Jameson, Guy N L; Moubaraki, Boujemaa; Murray, Keith S

    2016-01-22

    Heteroleptic iron(III) complexes of formula [Fe(qsal)(thsa)]⋅solvent have been synthesized: [Fe(qsal)(thsa)]⋅0.4 BuOH (1), [Fe(qsal)(thsa)]⋅0.5 MeCN (2) and [Fe(qsal)(thsa)]⋅0.5 THF, (3). The latter two show partial solvent loss at room temperature to yield [Fe(qsal)(thsa)]⋅0.1 MeCN (2') and [Fe(qsal)(thsa)]⋅0.1 THF (3'), respectively. This family maintains a structural integrity which is analogous over different degrees of solvation, a rare occurrence in discrete molecular species. Uniquely, removal of MeCN from compound 2 leads to retention of crystallinity yielding the isostructural, fully desolvated compound [Fe(qsal)(thsa)] (2'') and a new high spin polymorph, 4. To the best of our knowledge, this is the first compound that forms polymorphs through a desolvation process. The desolvated mixture, 2'' and 4, is porous and can reabsorb MeCN and give rise to 2' again. This illustrates the reversible single-crystal-to-single-crystal transformation of two polymorphs back to a purely original phase, 2''+4↔2'. The structural, magnetic and Mőssbauer features of the various samples are described in terms of spin crossover. PMID:26662933

  2. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    NASA Astrophysics Data System (ADS)

    Boukheddaden, Kamel; Sy, Mouhamadou; Paez-Espejo, Miguel; Slimani, Ahmed; Varret, François

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)-high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)2}2(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  3. Crossover between magnetism and superconductivity in LaFeAsO with low H-doping level

    NASA Astrophysics Data System (ADS)

    Lamura, G.; Shiroka, T.; Bonfà, P.; Sanna, S.; De Renzi, R.; Caglieris, F.; Cimberle, M. R.; Iimura, S.; Hosono, H.; Putti, M.

    2014-07-01

    By making a systematic study of the hydrogen-doped LaFeAsO system by means of dc resistivity, dc magnetometry, and muon-spin spectroscopy, we addressed the question of universality of the phase diagram of rare-earth-1111 pnictides. In many respects, the behaviour of LaFeAsO1-xHx resembles that of its widely studied F-doped counterpart, with H- realizing a similar (or better) electron doping in the LaO planes. In an x = 0.01 sample we found a long-range spin-density wave (SDW) order with TN = 119 K, while at x = 0.05 the SDW establishes only at 38 K and, below Tc = 10 K, it coexists at a nanoscopic scale with bulk superconductivity. Unlike the abrupt magnetic-superconducting transition found in the La-1111 compound, the presence of a crossover region makes the H-doped system qualitatively similar to other Sm-1111, Ce-1111, and Nd-1111 families.

  4. Fiber content of diet affects exhaled breath volatiles in fasting and postprandial state in a pilot crossover study.

    PubMed

    Raninen, Kaisa J; Lappi, Jenni E; Mukkala, Maria L; Tuomainen, Tomi-Pekka; Mykkänen, Hannu M; Poutanen, Kaisa S; Raatikainen, Olavi J

    2016-06-01

    Our pilot study examined the potential of exhaled breath analysis in studying the metabolic effects of dietary fiber (DF). We hypothesized that a high-fiber diet (HFD) containing whole grain rye changes volatile organic compound (VOC) levels in exhaled breath and that consuming a single meal affects these levels. Seven healthy men followed a week-long low-fiber diet (17 g/d) and HFD (44 g/d) in a randomized crossover design. A test meal containing 50 g of the available carbohydrates from wheat bread was served as breakfast after each week. Alveolar exhaled breath samples were analyzed at fasting state and 30, 60, and 120 minutes after this meal parallel to plasma glucose, insulin, and serum lipids. We used solid-phase microextraction and gas chromatography-mass spectrometry for detecting changes in 15 VOCs. These VOCs were acetone, ethanol, 1-propanol, 2-propanol, 1-butanol, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, 2-methylbutyric acid, hexanoic acid, acetoin, diacetyl, and phenol. Exhaled breath 2-methylbutyric acid in the fasting state and 1-propanol at 120 minutes decreased (P = .091 for both) after an HFD. Ingestion of the test meal increased ethanol, 1-propanol, acetoin, propionic acid, and butyric acid levels while reducing acetone, 1-butanol, diacetyl, and phenol levels. Both DF diet content and having a single meal affected breathVOCs. Exploring exhaled breath further could help to develop tools for monitoring the metabolic effects of DF. PMID:27188907

  5. Slater to Mott Crossover in the Metal to Insulator Transition of Nd2Ir2O7

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kondo, Takeshi; Tian, Z.; Ishikawa, J. J.; Halim, M.; Bareille, C.; Malaeb, W.; Kuroda, K.; Tomita, T.; Ideta, S.; Tanaka, K.; Matsunami, M.; Kimura, S.; Inami, N.; Ono, K.; Kumigashira, H.; Balents, L.; Nakatsuji, S.; Shin, S.

    2016-07-01

    We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd2Ir2O7 through its magnetic metal-insulator transition. Our data reveal that metallic Nd2Ir2O7 has a quadratic band, touching the Fermi level at the Γ point, similar to that of Pr2Ir2O7 . The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a nondispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.

  6. Compressibility of molten “green glass” and crystal-liquid density crossovers in low-Ti lunar magma

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Agee, C. B.

    1997-05-01

    Density measurements of molten Apollo 15 "green glass" have been performed in the pressure range 0.5-3.5 GPa using the floating and sinking spheres technique in piston-cylinder and multi-anvil devices. A density crossover with equilibrium orthopyroxene is predicted for green glass at 3.5 GPa, or ˜800 km depth in the lunar interior. Equilibrium olivine should be neutrally buoyant in molten green glass at a pressure slightly greater (5 GPa) than the lunar core value of ˜4.7 GPa. At the olivine-orthopyroxene cotectic (˜2.0 GPa), molten green glass is less dense than both crystalline phases. Thus, the results are consistent with models that propose generation and buoyant rise of green glass magma from the depth of the olivine-orthopyroxene cotectic in the lunar interior. Molten green glass has a compression curve slope of 0.093 g/cc/GPa, along the liquids, in the pressure range investigated. The values of the Birch-Murnaghan isothermal bulk modulus ( K) and the pressure derivative of the bulk modulus ( K') at 1645°C are described by the relationship K (GPa) =19.5/(1 - (0.25-0.063 K')). Combining this relationship with a calculated isothermal bulk modulus value of 18 GPa, derived from 1-atm ultrasonic measurements, gives K' = 5.3 for molten green glass.

  7. Toward a first-principle derivation of confinement and chiral-symmetry-breaking crossover transitions in QCD

    SciTech Connect

    Kondo, Kei-Ichi

    2010-09-15

    We give a theoretical framework to obtain a low-energy effective theory of quantum chromodynamics (QCD) towards a first-principle derivation of confinement/deconfinement and chiral-symmetry breaking/restoration crossover transitions. In fact, we demonstrate that an effective theory obtained using simple but nontrivial approximations within this framework enables us to treat both transitions simultaneously on equal footing. A resulting effective theory is regarded as a modified and improved version of nonlocal Polyakov-loop extended Nambu-Jona-Lasinio (nonlocal PNJL) models proposed recently by Hell, Roessner, Cristoforetti, and Weise, and Sasaki, Friman, and Redlich, extending the original (local) PNJL model by Fukushima and others. A novel feature is that the nonlocal NJL coupling depends explicitly on the temperature and Polyakov loop, which affects the entanglement between confinement and chiral-symmetry breaking, together with the cross term introduced through the covariant derivative in the quark sector considered in the conventional PNJL model. The chiral-symmetry breaking/restoration transition is controlled by the nonlocal NJL interaction, while the confinement/deconfinement transition in the pure gluon sector is specified by the nonperturbative effective potential for the Polyakov loop obtained recently by Braun, Gies, Marhauser, and Pawlowski. The basic ingredients are a reformulation of QCD based on new variables and the flow equation of the Wetterich type in the Wilsonian renormalization group. This framework can be applied to investigate the QCD phase diagram at finite temperature and density.

  8. Toward a first-principle derivation of confinement and chiral-symmetry-breaking crossover transitions in QCD

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi

    2010-09-01

    We give a theoretical framework to obtain a low-energy effective theory of quantum chromodynamics (QCD) towards a first-principle derivation of confinement/deconfinement and chiral-symmetry breaking/restoration crossover transitions. In fact, we demonstrate that an effective theory obtained using simple but nontrivial approximations within this framework enables us to treat both transitions simultaneously on equal footing. A resulting effective theory is regarded as a modified and improved version of nonlocal Polyakov-loop extended Nambu-Jona-Lasinio (nonlocal PNJL) models proposed recently by Hell, Rössner, Cristoforetti, and Weise, and Sasaki, Friman, and Redlich, extending the original (local) PNJL model by Fukushima and others. A novel feature is that the nonlocal NJL coupling depends explicitly on the temperature and Polyakov loop, which affects the entanglement between confinement and chiral-symmetry breaking, together with the cross term introduced through the covariant derivative in the quark sector considered in the conventional PNJL model. The chiral-symmetry breaking/restoration transition is controlled by the nonlocal NJL interaction, while the confinement/deconfinement transition in the pure gluon sector is specified by the nonperturbative effective potential for the Polyakov loop obtained recently by Braun, Gies, Marhauser, and Pawlowski. The basic ingredients are a reformulation of QCD based on new variables and the flow equation of the Wetterich type in the Wilsonian renormalization group. This framework can be applied to investigate the QCD phase diagram at finite temperature and density.

  9. Dynamic structure factor of a Fermi superfluid in the BEC-BCS crossover

    NASA Astrophysics Data System (ADS)

    Ghosh, Tarun Kanti

    2007-09-01

    We consider cigar-shaped Fermi superfluid in the Bose-Einstein condensation (BEC)-BCS crossover. Using the polytropic form of equation of state, we derive low energy multibranch bosonic excitations and the corresponding density fluctuations in three different regimes along the crossover, namely weak-coupling BCS, unitarity, and molecular BEC regimes. Bragg spectroscopy can be used to probe the multibranch nature of the low-energy bosonic excitations by measuring the dynamic structure factor. Therefore we calculate the dynamic structure factor in those three different regimes. In Bragg spectroscopy, an actual observable is momentum imparted to the superfluid due to the Bragg potential. We also present results of the momentum imparted to the superfluid due to the Bragg pulses.

  10. Changes in the unoccupied electronic structure of the spin crossover molecule [Co(dpzca)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Xin; Enders, Axel; Dowben, Peter; Luo, Jian; Zhang, Jian; N'diaye, Alpha

    We have investigated the changes in the unoccupied electronic structure of the spin crossover molecule - [Co(dpzca)2] using X-ray absorption spectroscopy (XAS) and have compared the results with magnetometry (SQUID) measurements. The studies of the variable temperature of the electronic structure of this cobalt complex with symmetric pyrazine imide ligands, -(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, i.e. [Co(dpzca)2], are consistent with density functional theory (DFT). The temperature dependence of the occupancy of the high-spin state and low-spin state molecular orbital states, the unoccupied eg/t2g ratio from XAS and high spin state to low spin state ratio from molecular magnetic susceptibility χMT indicates that the low spin state is not a zero spin state, but simply a lower moment state that would occur below the spin crossover transition of [Co(dpzca)2].

  11. Anomalous compressibility of ferropericlase throughout the iron spin cross-over

    PubMed Central

    Wentzcovitch, R. M.; Justo, J. F.; Wu, Z.; da Silva, C. R. S.; Yuen, D. A.; Kohlstedt, D.

    2009-01-01

    The thermoelastic properties of ferropericlase Mg1−xFexO (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth's lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (KS) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant KS reduction at ≈1,400–1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound. PMID:19439661

  12. Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions

    SciTech Connect

    Armijo, J.; Jacqmin, T.; Bouchoule, I.; Kheruntsyan, K.

    2011-02-15

    By measuring the density fluctuations in a highly elongated weakly interacting Bose gas, we observe and quantify the transition from the ideal gas to a quasicondensate regime throughout the dimensional crossover from a purely one-dimensional (1D) to an almost three-dimensional (3D) gas. We show that that the entire transition region and the dimensional crossover are described surprisingly well by the modified Yang-Yang model. Furthermore, we find that at low temperatures the linear density at the quasicondensate transition scales according to an interaction-driven scenario of a longitudinally uniform 1D Bose gas, whereas at high temperatures it scales according to the degeneracy-driven critical scenario of transverse condensation of a 3D ideal gas.

  13. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  14. Crossover behavior of the thermal conductance and Kramers' transition rate theory

    NASA Astrophysics Data System (ADS)

    Sahu, Subin; Velizhanin, Kirill; Chien, Chih-Chun; Dubi, Yonatan; Zwolak, Michael

    2015-03-01

    Heat transport plays opposing roles in nanotechnology, hindering the miniaturization of electronics on one hand and forming the core of novel heattronic devices on the other. Moreover, heat transport in one-dimensional nanostructures has become a central tool in studying the onset of Fourier's law of heat conduction, a yet unresolved puzzle in theoretical physics. We study the paradigmatic setting of heat transport in one-dimensional systems, a lattice coupled to two heat baths held at different temperatures. Using both numerical and analytical tools, we demonstrate that the heat conductance displays a crossover behavior as the coupling to the thermal reservoirs is tuned. We provide evidence that this behavior is universal by examining harmonic, anharmonic, and disordered systems, and discuss the origin of this effect using an analogy with Kramers' transition state theory for chemical reaction rates. This crossover behavior has important implications in the analysis of numerical results, and suggests a novel way to tune the conductance in nanoscale devices.

  15. Interaction and Disorder Effects across BCS-BEC Crossover in Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Tanatar, B.; Khan, A.

    2015-03-01

    We investigate the effect of static impurities in two-dimensional ultracold atomic Fermi gases. We incorporate disorder from impurities through fluctuations and study its effects on the BCS-BEC crossover. We analyze the effect of quenched disorder for various physical quantities such as chemical potential, pairing gap, density of states, spectral function, and ground-state energy. We extend our study further towards the experimentally viable quantities such as condensate fraction, sound velocity and Landau critical velocity. The results are presented as a function of binding energy and scattering length. We observe negligible effect of disorder in 2D for BCS Cooper pairs and considerable amount of depletion in the BEC regime but intriguingly the results also reveal that disorder effect is masked at the crossover region.

  16. An Angle-Based Crossover Tabu Search for Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Li, Ping; Li, Mingsen

    An improved tabu search - crossover tabu search (CTS) is presented which adopt the crossover operator of the genetic algorithm as the diversification strategy, and selecting elite solutions as the intensification strategies. To improve the performances, the angle-based idea of the sweep heuristic is used to confirm the neighborhood, and an object function with punishment. The angle-based CTS is applied for the vehicle routing problem. The simulating results which compared the tradition sweep heuristic and the standard tabu search shows the results got by angle-based CTS are better than those got by other two heuristics. The experiment shows the angle-based CTS has good performance on the vehicle routing problem.

  17. Topography and Gravity of 433 Eros from DSN Doppler Tracking and Altimeter Crossovers

    NASA Astrophysics Data System (ADS)

    Torrence, M.; Dunn, P.

    2004-12-01

    We have used the X-band Doppler tracking of NEAR/Shoemaker spacecraft from Earth, and NEAR Laser Rangefinder (NLR) measurements to estimate the orbital state of NEAR-Shoemaker and measurement biases, as well as spherical harmonic coefficients for the gravity field and the shape of 433 Eros. Data from the 200 km. altitude orbital stage through the high inclination 35 km orbits have been used in this analysis. Crossover measurements from NLR observations have been extended to include off-nadir observations. Meter level orbital accuracy for NEAR/Shoemaker with respect to the asteroid center of mass are attainable when the NLR observations are included in the analyses, and the orbital accuracy is improved through the use of NLR crossover information. The long wavelength gravity features have been determined to fractions of a few percent of their value. The spherical harmonic model for the shape of 433 Eros has a precision of a few meters.

  18. POLYMER DIMENSIONS IN GOOD SOLVENTS: CROSSOVER FROM SEMIDILUTE TO CONCENTRATED SOLUTIONS

    SciTech Connect

    Cheng, Gang; Melnichenko, Yuri B; Graessley, William

    2009-01-01

    Using small-angle neutron scattering, we studied the variation of the polymer radius of gyration (R{sub g}) as a function of polymer concentration ({phi}) for solutions of a flexible-chain poly(methyl methacrylate) in chloroform. We observed for the first time a distinct crossover between swollen coils in the semidilute regime, where R{sub g}{sup 2{infinity}}{phi}{sup -0.26{+-}0.03}, and unperturbed coils in the concentrated regime, where R{sub g} is independent on concentration. The crossover occurs at {phi}{double_dagger} {approx} 0.15, a value that agrees reasonably well with {phi}{double_dagger} {approx} 0.21 {+-} 0.035, estimated with a scaling relationship between {phi}{double_dagger} and the coil overlap concentration {phi}*.

  19. Crossover between strong and weak measurement in interacting many-body systems

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Romito, Alessandro; Blanter, Ya M.; Gefen, Yuval

    2016-01-01

    Measurements with variable system-detector interaction strength, ranging from weak to strong, have been recently reported in a number of electronic nanosystems. In several such instances many-body effects play a significant role. Here we consider the weak-to-strong crossover for a setup consisting of an electronic Mach-Zehnder interferometer, where a second interferometer is employed as a detector. In the context of a conditional which-path protocol, we define a generalized conditional value (GCV), and determine its full crossover between the regimes of weak and strong (projective) measurement. We find that the GCV has an oscillatory dependence on the system-detector interaction strength. These oscillations are a genuine many-body effect, and can be experimentally observed through the voltage dependence of cross current correlations.

  20. Ginzburg-Landau theory of a trapped Fermi gas with a BEC-BCS crossover

    SciTech Connect

    Huang Kun; Yu Zengqiang; Yin Lan

    2009-05-15

    The Ginzburg-Landau theory of a trapped Fermi gas with a BEC-BCS crossover is derived by the path-integral method. In addition to the standard Ginzburg-Landau equation, a second equation describing the total atom density is obtained. These two coupled equations are necessary to describe both homogeneous and inhomogeneous systems. The Ginzburg-Landau theory is valid near the transition temperature T{sub c} on both sides of the crossover. In the weakly interacting BEC region, it is also accurate at zero temperature where the Ginzburg-Landau equation can be mapped onto the Gross-Pitaevskii (GP) equation. The applicability of GP equation at finite temperature is discussed. On the BEC side, the fluctuation of the order parameter is studied and the renormalization to the molecule coupling constant is obtained.

  1. BCS-BEC Crossover on the Two-Dimensional Honeycomb Lattice

    SciTech Connect

    Zhao Erhai; Paramekanti, Arun

    2006-12-08

    The attractive Hubbard model on the honeycomb lattice exhibits, at half filling, a quantum critical point between a semimetal with massless Dirac fermions and an s-wave superconductor (SC). We study the BCS-BEC crossover in this model away from half filling at zero temperature and show that the appropriately defined crossover line (in the interaction-density plane) passes through the quantum critical point at half filling. For a range of densities around half filling, the 'underlying Fermi surface' of the SC, defined as the momentum space locus of minimum energy quasiparticle excitations, encloses an area which changes nonmonotonically with interaction. We also study fluctuations in the SC and the semimetal, and show the emergence of an undamped Leggett mode deep in the SC. Finally, we consider possible implications for ultracold atoms in optical lattices and the high temperature SCs.

  2. BEC-BCS crossover in a cold and magnetized two color NJL model

    NASA Astrophysics Data System (ADS)

    Duarte, Dyana C.; Allen, P. G.; Farias, R. L. S.; Manso, Pedro H. A.; Ramos, Rudnei O.; Scoccola, N. N.

    2016-01-01

    The BEC-BCS crossover for a Nambu-Jona-Lasinio (NJL) model with diquark interactions is studied in the presence of an external magnetic field. Particular attention is paid to different regularization schemes used in the literature. A thorough comparison of results is performed for the case of a cold and magnetized two-color NJL model. According to our results, the critical chemical potential for the BEC transition exhibits a clear inverse magnetic catalysis effect for magnetic fields in the range 1 ≲e B /mπ2≲20 . As for the BEC-BCS crossover, the corresponding critical chemical potential is very weakly sensitive to magnetic fields up to e B ˜9 mπ2, showing a much smaller inverse magnetic catalysis as compared to the BEC transition, and displays a strong magnetic catalysis from this point on.

  3. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    PubMed

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  4. A sphere-cut-splice crossover for the evolution of cluster structures

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Jiang, Xiangwei; Li, Jingbo; Li, Shushen

    2013-06-01

    A new crossover operator is proposed to evolve the structures of the atomic clusters. It uses a sphere rather than a plane to cut and splice the parent structures. The child cluster is constructed by the atoms of one parent which lie inside the sphere, and the atoms of the other parent which lie outside the sphere. It can reliably produce reasonable offspring and preserve the good schemata in parent structures, avoiding the drawbacks of the classical plane-cut-splice crossover in the global searching ability and the local optimization speed. Results of Lennard-Jones clusters (30 ⩽ N ⩽ 500) show that at the same settings the genetic algorithm with the sphere-cut-splice crossover exhibits better performance than the one with the plane-cut-splice crossover. The average number of local minimizations needed to find the global minima and the average number of energy evaluation of each local minimization in the sphere scheme is 0.8075 and 0.8386 of that in the plane scheme, respectively. The mean speed-up ratio for the entire testing clusters reaches 1.8207. Moreover, the sphere scheme is particularly suitable for large clusters and the mean speed-up ratio reaches 2.3520 for the clusters with 110 ⩽ N ⩽ 500. The comparison with other successful methods in previous studies also demonstrates its good performance. Finally, a further analysis is presented on the statistical features of the cutting sphere and a modified strategy that reduces the probability of using tiny and large spheres exhibits better global search.

  5. Diagnostic crossover from obesity to atypical anorexia nervosa - a case report.

    PubMed

    Wolter, Heike; Schneider, Nora; Pfeiffer, Ernst; Lehmkuhl, Ulrike

    2009-01-01

    A 15-year-old, female, formerly obese adolescent was referred to our day care clinic due to self-induced massive weight loss and depressive symptoms. Intense treatment, additional dialectical behavioral therapy and psychopharmacological treatment prevented further weight loss and improved her affective state. Due to remaining anorexic symptoms such as body image distortion, outpatient psychotherapeutic treatment is continued. This case report indicates the importance of further research on diagnostic crossover from obesity to atypical anorexia nervosa. PMID:20054205

  6. Accuracy of the GEM-T2 geopotential from Geosat and ERS 1 crossover altimetry

    NASA Astrophysics Data System (ADS)

    Wagner, C. A.; Klokočník, J.

    1994-05-01

    Extensive analyses of altimetrically determined sea height differences at crossovers have been used to assess the accuracy of the GEM-T2 geopotential. The orbits used were determined with GEM-T2 for Geosat in its 17-day Exact Repeat Mission (ERM) in 1986-1989 and ERS 1 in both its 3-day ERM in 1991-1992 and its 35-day ERM in 1992. The data examined are completely independent of the data used in GEM-T2's development though GEM-T2 had considerable use of Doppler tracking information on Geosat. The test of the radial accuracy of the ERS 1 orbit (98.5° inclination) is especially significant because it is not ``close'' to any other orbit well represented in GEM-T2. The assessment consists of a comparison of observed mean height differences at thousands of distinct geographic locations with error projections from the GEM-T2 covariance matrix which was estimated from other data sources. This first comprehensive, independent test of the purely radial accuracy of an orbit-geopotential model clearly shows that the covariant predictions for GEM-T2 are broadly reliable for this purpose. Thus, the agreement of crossover predictions and observations suggests that the total radial errors for these ERMs, due to only to GEM-T2 (but excluding the effects of initial state error) are about 23 cm for Geosat and 115 cm (rms) for ERS 1. However, there is little detailed agreement of measurements and predictions for ERS 1 and only partial agreement in detail for Geosat. Our 30,000 mean crossover discrepancies for Geosat (derived from ERM cycles 1-44) are also shown to reduce substantially the crossover height differences in cycles 45-61, almost exactly as predicted if these are the true GEM-T2 errors for this orbit.

  7. Thiazolylimines as novel ligand-systems for spin-crossover centred near room temperature.

    PubMed

    Struch, N; Wagner, N; Schnakenburg, G; Weisbarth, R; Klos, S; Beck, J; Lützen, A

    2016-09-28

    A new thiazolylimine ligand system for iron(ii) complexes which stabilises spin-crossover in solution and solid states with T1/2 temperatures around room temperature has been developed. This effect is studied in solution and solid states. Furthermore crystal packing effects are investigated offering a variety of T1/2 and even hysteresis centred at -3 °C in the solid state. PMID:27534997

  8. Evolution of fermionic superfluid across the crossover from three to two dimensions

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeep Kumar; Shenoy, Vijay B.

    2013-03-01

    Motivated by recent experiments on the evolution of superfluid pairing from three to two dimensions, we construct and study a Bogoliubov-de Gennes theory that accurately accounts for the periodic potential that induces this dimensional crossover. We also obtain the anisotropic superfluid density tensor by a study of fluctuations. We investigate the thermal evolution of the superfluid state. Our results include temperature dependent radio frequency spectra of fermions along with a comparison with recent experiments. Work supported by CSIR, DST, DAE India

  9. Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian

    2016-04-01

    We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.

  10. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Agar, Ertan

    Vanadium redox flow batteries (VRFBs) are an emerging energy storage technology that offers unique advantages for grid-scale energy storage due to their flexible design and decoupled power/energy feature. Despite their popularity, a series of technical challenges hinder their widespread implementation. Among these, capacity loss (i.e., loss of energy storage capability) due to the undesired species crossover across the membrane has been identified as the key issue limiting the longevity of these systems. This issue is primarily governed by the properties of the membrane and can be mitigated by using proper membrane architectures with desired features. Presently, identifying proper membrane architectures for VRFB systems is hampered by the lack of a fundamental understanding of the nature of species transport mechanisms and how they are related to the membrane properties and key operating conditions. This Ph.D. study seeks to address this critical challenge by exploring the fundamental mechanisms responsible for species transport within the membrane. The overall objective of this dissertation study is to establish a fundamental understanding of the multi-ionic transport in VRFB membranes by investigating the ionic transport mechanisms responsible for crossover, and utilize this understanding to reveal the role of membrane properties and operating conditions on the capacity loss. To achieve these goals, a combined experimental and computational study was designed. An experimentally validated, 2-D, transient VRFB model that can track the vanadium crossover and capture the related capacity loss was developed. In addition to the model, several electrochemical techniques were used to characterize different types of membrane and study the effects of various operating conditions on the species crossover. Using these computational and experimental tools, an in-depth understanding of the species transport mechanisms within the membrane and how they are related to membrane

  11. Relativistic BEC-BCS Crossover in a magnetized Nambu-Jona-Lasinio Model

    NASA Astrophysics Data System (ADS)

    Duarte, Dyana C.; Farias, R. L. S.; Manso, Pedro H. A.; Ramos, Rudnei O.

    2016-04-01

    The BEC-BCS crossover in the NJL model is studied in the presence of an external magnetic field. Particular attention is given to two different regularization schemes used in the literature and we show how they compare to each other. The comparison is made for the case of a cold and magnetized two color NJL model. We also make a brief discussion about the Nc = 3 case without magnetic fields, as an extension of this work in the future.

  12. Organic-aqueous crossover coating process for the desmopressin orally disintegrating microparticles.

    PubMed

    Kim, Ju-Young; Hwang, Kyu-Mok; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok

    2015-02-01

    The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed. A pharmacokinetic study of the ODMs was also conducted in eight beagle dogs. It was found that sucrose beads should be coated using organic solvents to preserve their original morphology. For the active coating, the aqueous coating solution should be used for drug stability. When sucrose beads were coated using organic-aqueous crossover coating process, double-layer ODMs with round shapes were produced with detectable impurities below limit of US Pharmacopeia. The median size of ODMs was 195.6 μm, which was considered small enough for a good mouthfeel. The ODMs dissolved in artificial saliva within 15 s because of hydrophilic materials including sucrose and HPC in the ODMs. Because of its fast-dissolving properties, 100% release of the drug was reached within 5 min. Pharmacokinetic parameters including Cmax and AUC24 indicated bioequivalence of the ODMs and the conventional immediate release tablets. Therefore, by using the organic-aqueous crossover coating process, double-layer ODMs were successively prepared with small size, round shapes and good drug stability. PMID:24252109

  13. 2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2003-03-01

    With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.

  14. Simulating dynamic crossover behavior of semiflexible linear polymers in solution and in the melt.

    PubMed

    Steinhauser, M O; Schneider, J; Blumen, A

    2009-04-28

    We present a molecular dynamics study of the dynamic scaling behavior of linear polymers in solution and in the melt when their character changes from fully flexible to semiflexible. The stiffness of the chains is determined by a bending potential. It is shown that the relaxation times tau(p) characterizing the internal dynamics of the polymer chains as well as the mean square mode amplitudes exhibit a clear crossover from Rouse to bending modes with increasing mode number p. For small mode numbers p the well-known p(-2) Rouse behavior is observed, whereas large mode numbers exhibit the p(-4) scaling, typical of the bending modes of semiflexible chains. We study the extension and the onset of the region where the crossover from p(-2) to p(-4) behavior occurs. With increasing stiffness of the chains we observe a shift of the crossover domain to smaller p-values. We also investigate the effect of chain stiffness on the monomer dynamics, based on their mean square displacements. Finally, we compare our results to previous simulations, where the scaling behavior of semiflexible chains was studied and which were restricted to a smaller range of persistence lengths l(p) and p values. PMID:19405625

  15. Qualitative determination of H2S crossover rates in nation membranes using ion-probe techniques

    SciTech Connect

    Brosha, Eric L; Rockward, Tommy; Uribe, Francisco A; Garzon, Fernando H

    2008-01-01

    Polymer electrolyte membrane fuel cells are sensitive to impurities that may be present in either the oxidizer or fuel. H2S, even at the ppb level, will have a dramatic and adverse affect on fuel cell performance. The H2S permeability through dry and humidified Nafion PEMFC membranes was studied using ion probe techniques. A sulfide anti-oxidant buffer solution was used to trap and concentrate trace quantities of H2S that permeated through 50 cm2samples of Nafion 117 and 212 membranes using a partial pressure difference up to I030ppm at room temperature. Experiments were conducted for up to 24 hours in order to achieve sulfide ion concentrations high enough to be precisely determined by subsequent titration with Pb(N03)2. The rate of H2S crossover for dry 117 and 212 were identical at 1.2e-7 g/min. Humidification increased the crossover rate to 5.ge-7 glmin and 1.8e-6 glmin for 117 and 212 respectively. Although the data collected in this work show that the rate of H2S crossover increases with water content and reduced membrane thickness, an accurate determination of permeation constants from this work was not possible because the H2S partial pressure was not constant throughout the experiment.

  16. Knee Kinematics is Altered Post-Fatigue While Performing a Crossover Task

    PubMed Central

    Cortes, Nelson; Greska, Eric; Ambegaonkar, Jatin P.; Kollock, Roger O.; Caswell, Shane V.; Onate, James A.

    2013-01-01

    Purpose To examine the effect of a sequential fatigue protocol on lower extremity biomechanics during a crossover cutting task in female soccer players. Methods Eighteen female collegiate soccer players alternated between a fatigue protocol and two consecutive unanticipated crossover trials until fatigue was reached. Lower extremity biomechanics were evaluated during the crossover using a 3D motion capture system and two force plates. Repeated measures ANOVAs analyzed differences between three sequential stages of fatigue (pre, 50%, 100%) for each dependent variable (α=0.05). Results Knee flexion angles at initial contact (IC) for pre- (−32±9°) and 50% (−29±11°) were significantly higher than at 100% fatigue (−22±9°) (p<0.001 and p=0.015, respectively). Knee adduction angles at IC for pre- (9±5°) and 50% (8±4°) were significantly higher (p=0.006 and p=0.049, respectively) than at 100% fatigue (6±4°). Conclusions Fatigue altered sagittal and frontal knee kinematics after 50% fatigue whereupon participants had diminished knee control at initial contact. Interventions should attempt to reduce the negative effects of fatigue on lower extremity biomechanics by promotion appropriate frontal plane alignment, and increased knee flexion during fatigue status. PMID:24045915

  17. Structural signatures evidenced in dynamic crossover phenomena in metallic glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Li, F. X.; Li, M. Z.; Bai, H. Y.; Wang, W. H.

    2016-05-01

    Molecular dynamics simulations were performed to investigate dynamic evolution in metallic glass-forming liquids during quenching from high temperature above melting point down to supercooled region. Two crossover temperatures TA and TS (TA > TS) are identified, and their physical meanings are clarified. TA and TS are found to be not only the sign of dynamic crossover phenomena but also the manifestation of two key structure correlation lengths ξ s . As temperature decreases below TA, ξ s goes beyond the nearest-neighbor distance, resulting in the Arrhenius-to-non-Arrhenius transition of structural relaxation time and the failure of Stokes-Einstein (SE) relation. As TS is traversed, the increase rate of ξ s reaches the maximum, leading to the simultaneous appearance of dynamical heterogeneity and fractional SE relation. It is further found that structure correlation increases much faster than dynamic correlation, playing a role of structural precursor for dynamic evolution in liquids. Thus, a structural link is established for deeper understanding dynamic crossover phenomena.

  18. The commerce and crossover of resources: resource conservation in the service of resilience.

    PubMed

    Chen, Shoshi; Westman, Mina; Hobfoll, Stevan E

    2015-04-01

    Conservation of resources (COR) theory was originally introduced as a framework for understanding and predicting the consequences of major and traumatic stress, but following the work of Hobfoll and Shirom (1993), COR theory has been adopted to understanding and predicting work-related stress and both the stress and resilience that occur within work settings and work culture. COR theory underscores the critical role of resource possession, lack, loss and gain and depicts personal, social and material resources co-travelling in resource caravans, rather than piecemeal. We briefly review the principles of COR theory and integrate it in the crossover model, which provides a key mechanism for multi-person exchange of emotions, experiences and resources. Understanding the impact of resource reservoirs, resource passageways and crossover provides a framework for research and intervention promoting resilience to employees as well as to organizations. It emphasizes that the creation and maintenance of resource caravan passageways promote resource gain climates through resource crossover processes. PMID:25873421

  19. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference

    PubMed Central

    Segura, Joana; Ferretti, Luca; Ramos-Onsins, Sebastián; Capilla, Laia; Farré, Marta; Reis, Fernanda; Oliver-Bonet, Maria; Fernández-Bellón, Hugo; Garcia, Francisca; Garcia-Caldés, Montserrat; Robinson, Terence J.; Ruiz-Herrera, Aurora

    2013-01-01

    Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary change. Here, we analysed the recombination features from species representing the major eutherian taxonomic groups Afrotheria, Rodentia, Primates and Carnivora to better understand the dynamics of mammalian recombination. Our results suggest a phylogenetic component in recombination rates (RRs), which appears to be directional, strongly punctuated and subject to selection. Species that diversified earlier in the evolutionary tree have lower RRs than those from more derived phylogenetic branches. Furthermore, chromosome-specific recombination maps in distantly related taxa show that crossover interference is especially weak in the species with highest RRs detected thus far, the tiger. This is the first example of a mammalian species exhibiting such low levels of crossover interference, highlighting the uniqueness of this species and its relevance for the study of the mechanisms controlling crossover formation, distribution and resolution. PMID:24068360

  20. A randomized crossover study of web-based media literacy to prevent smoking.

    PubMed

    Shensa, Ariel; Phelps-Tschang, Jane; Miller, Elizabeth; Primack, Brian A

    2016-02-01

    Feasibly implemented Web-based smoking media literacy (SML) programs have been associated with improving SML skills among adolescents. However, prior evaluations have generally had weak experimental designs. We aimed to examine program efficacy using a more rigorous crossover design. Seventy-two ninth grade students completed a Web-based SML program based on health behavior theory and implemented using a two-group two-period crossover design. Students were randomly assigned by classroom to receive media literacy or control interventions in different sequences. They were assessed three times, at baseline (T0), an initial follow-up after the first intervention (T1) and a second follow-up after the second intervention (T2). Crossover analysis using analysis of variance demonstrated significant intervention coefficients, indicating that the SML condition was superior to control for the primary outcome of total SML (F = 11.99; P < 0.001) and for seven of the nine individual SML items. Results were consistent in sensitivity analyses conducted using non-parametric methods. There were changes in some exploratory theory-based outcomes including attitudes and normative beliefs but not others. In conclusion, while strength of the design of this study supports and extends prior findings around effectiveness of SML programs, influences on theory-based mediators of smoking should be further explored. PMID:26675176

  1. Calorimetric investigation of triazole-bridged Fe(II) spin-crossover one-dimensional materials: measuring the cooperativity.

    PubMed

    Roubeau, Olivier; Castro, Miguel; Burriel, Ramón; Haasnoot, Jaap G; Reedijk, Jan

    2011-03-31

    The relevance of abrupt magnetic and optical transitions exhibiting bistability in spin-crossover solids has been pointed out for their potential applications in optical or memory devices. In this respect, triazole-based one-dimensional coordination polymers are widely recognized as one of the most interesting systems. The measure of the interaction among spin-crossover centers at the origin of such cooperative behavior is of paramount importance and has so far been realized through modeling of spin-crossover curves derived mostly from magnetic measurements. Here, a new series of triazole-based one-dimensional coordination polymers of formula [Fe(Rtrz)(3)](A)(2)·xH(2)O with R = methoxyethyl and A = monovalent anion has been prepared that show complete and abrupt spin-crossover phenomenon as shown by magnetic measurements. The spin-crossover transition in these and related compounds is studied by differential scanning calorimetry, and the thermodynamic excess enthalpies and entropies associated with the phenomenon are derived systematically. Then the cooperative character of the spin-crossover in these materials is quantified by use of two widely used models, so-called Slichter and Drickamer and domain models. The same procedure is applied to spin-crossover curves of similar compounds available in the literature and for which calorimetric studies have been reported. The experimental thermodynamic figures, in particular the excess enthalpies, are shown to be clearly correlated to the output parameters of both models, thus providing a direct, experimental, quantitative measure of the cooperative character of the spin-crossover phenomenon. PMID:21381636

  2. Traditional and pyramidal resistance training systems improve muscle quality and metabolic biomarkers in older women: A randomized crossover study.

    PubMed

    Ribeiro, Alex S; Schoenfeld, Brad J; Souza, Mariana F; Tomeleri, Crisieli M; Venturini, Danielle; Barbosa, Décio S; Cyrino, Edilson S

    2016-06-15

    The purpose of this study was to compare the effect of RT performed in a pyramid (PR) and traditional (TD) straight set training system on muscle quality and metabolic biomarkers in older women. Twenty-five physically independent older women (67.6±5.1years, 65.9±11.1kg, 154.7±5.8cm) performed a RT program in TD and PR training systems in a balanced crossover design. Measurements of muscle quality, serum levels of C-reactive protein (CRP), glucose (GLU), total cholesterol, high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), and triglycerides (TG) were obtained at different moments. The TD program consisted of 3 sets of 8-12 repetitions maximum (RM) with a constant weight for the 3 sets, whereas the PR training consisted of 3 sets of 12/10/8 RM with incremental weight for each set. The training was performed in 2 phases of 8weeks each, with a 12-week washout period between phases. Significant (P<0.05) improvements were observed in both groups for muscle quality (TD=+8.6% vs. PR=+6.8%), GLU (TD=-4.5% vs. PR=-1.9%), TG (TD=-18.0% vs. PR=-11.7%), HDL-C (TD=+10.6 vs. PR=+7.8%), LDL-C (TD=-23.3% vs. PR=-21.0%), and CRP (TD=-19.4% vs. PR=-14.3%) with no differences between training systems. These results suggest that RT improves muscle quality and metabolic biomarkers of older women independently of the training system. PMID:26972635

  3. Topical capsaicin—a novel and effective treatment for idiopathic intractable pruritus ani: a randomised, placebo controlled, crossover study

    PubMed Central

    Lysy, J; Sistiery-Ittah, M; Israelit, Y; Shmueli, A; Strauss-Liviatan, N; Mindrul, V; Keret, D; Goldin, E

    2003-01-01

    Purpose: Pruritus ani is a common and embarrassing proctological condition which can be very difficult to treat. We report the results of a double blind placebo controlled study of treatment with capsaicin. Methods: Firstly, a pilot open study was carried out on five patients to establish which of two doses was the most acceptable by comparing effectiveness and side effects. Secondly, a double blind, placebo controlled, crossover study of topical capsaicin was performed. This study involved two four week treatment phases separated by a one week washout phase. Forty four patients were randomised to receive locally either active capsaicin (0.006%) or placebo (menthol 1%) ointment over a four week period (22 patients per group). After four weeks of treatment and a one week washout period, the placebo group began to receive capsaicin while the treated group received placebo (menthol 1%) for another four weeks. At the end of the controlled study, responders from both groups continued with capsaicin treatment in an open labelled manner. Results: Thirty one of 44 patients experienced relief during capsaicin treatment periods and did not respond to menthol; all patients not responding to capsaicin also failed on menthol (p<0.0001). In 13 patients, treatment with capsaicin was unsuccessful: eight patients did not respond to capsaicin treatment, one responded equally to capsaicin and placebo, and four others dropped out because of side effects. During the follow up period (mean 10.9 (SD 5.8) months), 29 “responders” needed a mean application of capsaicin every day (1.6 (SD 1.2); range 0.5–7 days) to remain symptom free (or nearly symptom free). Conclusion: Capsaicin is a new, safe, and highly effective treatment for severe intractable idiopathic pruritus ani. PMID:12912865

  4. Randomized crossover trial of kangaroo care to reduce biobehavioral pain responses in preterm infants: a pilot study.

    PubMed

    Cong, Xiaomei; Ludington-Hoe, Susan M; Walsh, Stephen

    2011-04-01

    Kangaroo care (KC), skin-to-skin contact between mother and infant, is a promising method for blunting pain responses. This crossover pilot tested KC effects on biobehavioral responses to heel stick in preterm infants (30-32 weeks' gestational age, 2-9 days old) measured by Premature Infant Pain Profile (PIPP) and salivary and serum cortisol. Mother-infant dyads were randomly assigned to KC heel stick (KCH) first or incubator heel stick (IH) first. Study 1 (80-min study, N = 18) tested the effect of 80 min of KC before and throughout the heel stick procedure versus incubator care. Study 2 (30-min study, N = 10) tested 30 min of KC before and throughout the heel stick versus incubator care. KCH and IH began during a premeasurement phase and continued through four data collection phases: baseline, heel warming, heel stick, and recovery. PIPP responses were measured every 30 s during data collection; salivary cortisol was measured at the end of baseline and recovery; and serum cortisol was measured during heel stick. Study 1 showed no differences between KCH and IH. Study 2 showed lower PIPP scores at four time points during recovery (p < .05 to p < .001), lower salivary cortisol at the end of recovery (p < .05), and lower serum cortisol during heel stick for the KCH condition (p < .05) as well as clinically lower PIPP scores in the KCH condition during heel stick. Thirty minutes of KC before and throughout the heel stick reduced biobehavioral responses to pain in preterm infants. PMID:21196428

  5. Superconducting dome and crossover to an insulating state in [Tl{sub 4}]Tl{sub 1−x}Sn{sub x}Te{sub 3}

    SciTech Connect

    Arpino, K. E.; Wasser, B. D.; McQueen, T. M.

    2015-04-01

    The structural, superconducting, and electronic phase diagram of [Tl{sub 4}]Tl{sub 1−x}Sn{sub x}Te{sub 3} is reported. Magnetization and specific heat measurements show bulk superconductivity exists for 0 ≤ x ≤ 0.4. Resistivity measurements indicate a crossover from a metallic state at x = 0 to a doped insulator at x = 1. Universally, there is a large non-Debye specific heat contribution, characterized by an Einstein temperature of θ{sub E} ≈ 35 K. Density functional theory calculations predict x = 0 to be a topological metal, while x = 1 is a topological crystalline insulator. The disappearance of superconductivity correlates with the transition between these distinct topological states.

  6. Magnetic-field induced crossover of superconducting percolation regimes in the layered organic Mott system {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Cl.

    SciTech Connect

    Mueller, J.; Brandenberg, J.; Schlueter, J. A.; Materials Science Division; Max Planck Inst. for Chemical Physics of Solids

    2009-01-01

    Fluctuation spectroscopy is used to investigate the organic bandwidth-controlled Mott system {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Cl. We find evidence for percolative-type superconductivity in the spatially inhomogeneous coexistence region of antiferromagnetic insulating and superconducting states. When the superconducting transition is driven by a magnetic field, percolation seems to be dominated by instable superconducting clusters upon approaching T{sub c}(B) from above, before a 'classical' type of percolation is resumed at low fields, dominated by the fractional change of superconducting clusters. The 1/f noise is resolved into Lorentzian spectra in the crossover region, where the action of an individual fluctuator is enhanced, pointing to a mesoscopic phase separation.

  7. A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson's disease.

    PubMed

    Rascol, Olivier; Ferreira, Joaquim; Nègre-Pages, Laurence; Perez-Lloret, Santiago; Lacomblez, Lucette; Galitzky, Monique; Lemarié, Jean-Christophe; Corvol, Jean-Christophe; Brotchie, Jonathan M; Bossi, Laura

    2012-08-01

    To explore for the first time the tolerability and efficacy of naftazone in patients with Parkinson's disease (PD). Proof-of-concept, randomized, double-blind, placebo-controlled, multiple-cross-over n-of-1 study in patients with PD with wearing-off and dyskinesias. Naftazone was titrated up to 120 mg/day during an initial single-blind dose-finding phase. Seven patients entered the placebo-controlled phase (four consecutive 28-day cross-overs). Three outcome measures were used to collect preliminary indices of efficacy: (i) 48-h ON-OFF diaries; (ii) Unified PD Rating Scale (UPDRS) part III while ON; (iii) seven-point Likert scale to assess "patients' discomfort caused by dyskinesias" (Q1) and 'disability during OFF-periods' (Q2). A 'responder' analysis (proportion of patients with mean treatment effect [naftazone minus placebo] favoring naftazone over the 4 cross-over periods) was used. Treatment effects were derived from mixed-effects anova. On diaries, 5/7 patients responded to naftazone for 'ON-time with troublesome dyskinesia' (reduced time, treatment effect: -49 [95% CI: -93/-4] min, P = 0.03), 6/7 regarding 'ON-time without troublesome dyskinesia' (increased time, treatment effect: 35 [-19/88], P = 0.2). No trend was observed for 'OFF' time. There were 7/7 'responders' regarding UPDRSIII (reduced score, treatment effect: -2.1[-4.5/0.2], P = 0.08). The 7-point scales did not show clear trends in favor of naftazone (3/7 responders for Q1 and 4/7 for Q2). Four of the seven patients reported adverse events after randomization, mostly related to the CNS (mild: 2, severe: 2). These pilot findings are consistent with preclinical data in primates and support the hypothesis that naftazone may have antiparkinsonian and antidyskinetic effects in humans that deserve further clinical investigation. PMID:21585523

  8. Spin crossover and iron-rich silicate melt in the Earth's deep mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Hirose, K.; Nomura, R.; Ozawa, H.; Tateno, S.; Hernlund, J. W.

    2010-12-01

    The volume difference between a silicate solid and its melt diminishes at high pressure, and the possibility that a melt sufficiently enriched in iron might then become more dense than solids at the pressures in the interior of the Earth and other terrestrial bodies has long been a source of considerable speculation. The occurrence of such dense silicate melts in the Earth's lowermost mantle would carry important consequences for its physical and chemical evolution and could provide a unifying model for explaining a variety of observed features in the core-mantle boundary (CMB) region [e.g., Labrosse et al., 2007 Nature]. Recent theoretical calculations [Stixrude et al., 2009 EPSL] combined with estimates of Fe partitioning between (Mg,Fe)SiO3 perovskite and melt at shallower mantle conditions suggest that melt is more dense than solids at pressures in the Earth's deepest mantle, consistent with analysis of shockwave experiments. Here we extend measurements of Fe partitioning in (Mg0.89Fe0.11)2 SiO4 bulk composition over the entire mantle pressure range, by a combination of laser-heated diamond-anvil cell experiments and chemical analyses of recovered samples using field-emission-type electron microprobe (FE-EPMA). The results demonstrate that the Fe-Mg distribution coefficient KD = ([FePv]/[MgPv]) / ([Femelt]/[Mgmelt]) between perovskite and melt is about 0.25 up to 75 GPa, consistent with earlier data found at 25 GPa in Al-free or -depleted peridotite materials using multi-anvil apparatus. On the other hand, the KD suddenly dropped to 0.07±0.02 at 76 GPa, resulting in strong Fe-enrichment in melts. It was almost constant at 0.06-0.08 at higher pressures to 159 GPa. The value did not change practically across the perovskite to post-perovskite phase transition. Additional x-ray emission spectroscopy measurements on (Mg0.95Fe0.05)SiO3 glass indicate the loss of spin around 60-70 GPa, suggesting that the observed change in Fe partitioning could be explained by a

  9. A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem.

    PubMed

    Drake, John H; Özcan, Ender; Burke, Edmund K

    2016-01-01

    Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing number of general-purpose hyper-heuristic tools such as HyFlex and Hyperion. However, little work has been undertaken to assess how best to utilise it. Since a single-point search hyper-heuristic operates on a single candidate solution, and two candidate solutions are required for crossover, a mechanism is required to control the choice of the other solution. The frameworks we propose maintain a list of potential solutions for use in crossover. We investigate the use of such lists at two conceptual levels. First, crossover is controlled at the hyper-heuristic level where no problem-specific information is required. Second, it is controlled at the problem domain level where problem-specific information is used to produce good-quality solutions to use in crossover. A number of selection hyper-heuristics are compared using these frameworks over three benchmark libraries with varying properties for an NP-hard optimisation problem: the multidimensional 0-1 knapsack problem. It is shown that allowing crossover to be managed at the domain level outperforms managing crossover at the hyper-heuristic level in this problem domain. PMID:25635698

  10. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.

    2011-07-01

    We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  11. A case-crossover analysis of air pollution and mortality in Philadelphia.

    PubMed Central

    Neas, L M; Schwartz, J; Dockery, D

    1999-01-01

    This study reassessed Schwartz and Dockery's analysis of daily mortality from nonexternal causes among residents of Philadelphia, Pennsylvania, over 8 years, from 1973 to 1980 [American Review of Respiratory Disease 145:600-604 (1992)]. A Poisson regression analysis using the same model found that a 100-microg/m(3) increment in the 48-hr mean concentration of total suspended particulates (TSP) was associated with increased all-cause mortality [rate ratio = 1.069; 95% confidence interval (CI), 1.043-1.096) after adjustment for quadratic trend, season, year, previous day's mean temperature, dew point, winter temperature, and indicators of hot (temperature > 80 degrees F) and humid days (dew point > 66 degrees F). Critics suggested that time-varying factors such as season and day of week were not sufficiently controlled in this analysis and subsequent studies in other locations. We used a conditional logistic regression analysis with a case-crossover design to reanalyze the data, with air pollution in the prior and subsequent weeks to the day of death serving as referent periods. The case-crossover approach controls for season and day of week by design rather than modeling. We found that a 100-microg/m(3) increment in the 48-hr mean level of TSP was associated with increased all-cause mortality [odds ratio (OR) = 1.056; CI, 1.027-1.086) after adjustment for the same weather variables as above. Similar associations were observed for deaths in individuals over 65 years of age (OR = 1.074; CI, 1. 037-1.111) and for deaths due to cardiovascular disease (OR = 1.063; CI, 1.021-1.107). The current case-crossover analysis confirms the general conclusion of the previous Poisson regression analysis of an association of TSP with daily mortality in Philadelphia, Pennsylvania. PMID:10417359

  12. Compressibility of water in magma and the prediction of density crossovers in mantle differentiation.

    PubMed

    Agee, Carl B

    2008-11-28

    Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt ( partial differentialV-H2O/ partial differentialP) is highly dependent on pressure regime. Thus, H2O can be thought of as the most compressible 'liquid oxide' component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on V-H2O from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal-liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410km discontinuity, and, although not required to be hydrous, atop the core-mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted. PMID:18826929

  13. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    SciTech Connect

    Vyasanakere, Jayantha P.; Shenoy, Vijay B.; Zhang Shizhong

    2011-07-01

    We investigate the ground state of interacting spin-(1/2) fermions in three dimensions at a finite density ({rho}{approx}k{sub F}{sup 3}) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector {lambda}{identical_to}({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}), whose magnitude {lambda} determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k{sub F}|a{sub s}| < or approx. 1), the ground state in the absence of the gauge field ({lambda}=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum ({lambda}=0). For large gauge couplings ({lambda}/k{sub F}>>1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)--we call these bosons ''rashbons.'' In the absence of interactions (a{sub s}=0{sup -}), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling {lambda}{sub T}. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of {lambda} near {lambda}{sub T}. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  14. Threshold Levels of Infant and Under-Five Mortality for Crossover between Life Expectancies at Ages Zero, One and Five in India: A Decomposition Analysis

    PubMed Central

    Dubey, Manisha

    2015-01-01

    Objectives Under the prevailing conditions of imbalanced life table and historic gender discrimination in India, our study examines crossover between life expectancies at ages zero, one and five years for India and quantifies the relative share of infant and under-five mortality towards this crossover. Methods We estimate threshold levels of infant and under-five mortality required for crossover using age specific death rates during 1981–2009 for 16 Indian states by sex (comprising of India’s 90% population in 2011). Kitagawa decomposition equations were used to analyse relative share of infant and under-five mortality towards crossover. Findings India experienced crossover between life expectancies at ages zero and five in 2004 for menand in 2009 for women; eleven and nine Indian states have experienced this crossover for men and women, respectively. Men usually experienced crossover four years earlier than the women. Improvements in mortality below ages five have mostly contributed towards this crossover. Life expectancy at age one exceeds that at age zero for both men and women in India except for Kerala (the only state to experience this crossover in 2000 for men and 1999 for women). Conclusions For India, using life expectancy at age zero and under-five mortality rate together may be more meaningful to measure overall health of its people until the crossover. Delayed crossover for women, despite higher life expectancy at birth than for men reiterates that Indian women are still disadvantaged and hence use of life expectancies at ages zero, one and five become important for India. Greater programmatic efforts to control leading causes of death during the first month and 1–59 months in high child mortality areas can help India to attain this crossover early. PMID:26683617

  15. Density Functional Plus Dynamical Mean Field Study of Spin Crossover Molecule

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Millis, Andrew; Marianetti, Chris

    2015-03-01

    We report a density functional plus dynamical mean field study of spin crossover molecule Fe(phen)2(NCS)2. The temperature dependent magnetic susceptibility, Fe-d spectral and total energy were calculated and compared with experimental magnetization, metal L-edge x-ray adsorption spectroscopy. The importance of dynamic effect on energetics is demonstrated by comparison with density functional plus U method, and the role of full charge self-consistency is identified. Moreover, the local spin density plus U (LSDA+U) method with exchange interaction explicitly included is shown to dramatically overemphasize magnetic interaction.

  16. Improvement of erectile function with Prelox: a randomized, double-blind, placebo-controlled, crossover trial.

    PubMed

    Stanislavov, R; Nikolova, V; Rohdewald, P

    2008-01-01

    In a randomly allocated, double-blind, placebo-controlled, crossover design, 50 patients with mild to moderate erectile dysfunction (ED) were treated for 1 month with placebo or a combination of L-arginine aspartate and Pycnogenol (Prelox). Patients reported sexual function from diaries. Testosterone levels and endothelial NO synthase (e-NOS) were monitored along with routine clinical chemistry. Intake of Pycnogenol for 1 month restored erectile function to normal. Intercourse frequency doubled. e-NOS in spermatozoa and testosterone levels in blood increased significantly. Cholesterol levels and blood pressure were lowered. No unwanted effects were reported. Prelox is a promising alternative to treat mild to moderate ED. PMID:17703218

  17. Two-channel Kondo effect and the low-temperature crossover

    NASA Astrophysics Data System (ADS)

    Keller, Andrew; Peeters, Lucas; Weymann, Ireneusz; Moca, Cătălin Paşcu; Mahalu, Diana; Umansky, Vladimir; Zaránd, Gergely; Goldhaber-Gordon, David

    2015-03-01

    The two-channel Kondo (2CK) state, where a spin-1/2 impurity is equally exchange-coupled to two independent reservoirs, is a canonical non-Fermi liquid state. Experimental observations are rare because of its sensitivity to common and hard-to-control perturbations. We implement experimentally a 2CK state in a coupled dot-grain system (Potok, et al., doi:10.1038/nature05556), and explore the physics of the low-temperature crossover: how magnetic field and gate voltage drive the system towards a Fermi liquid ground state. Our experimental findings are corroborated by detailed numerical renormalization group modeling of our device.

  18. Manager Characteristics and Employee Job Insecurity around a Merger Announcement: The Role of Status and Crossover

    PubMed Central

    Lam, Jack; Fox, Kimberly; Fan, Wen; Moen, Phyllis; Kelly, Erin; Hammer, Leslie; Kossek, Ellen

    2014-01-01

    Most existing research theorizes individual factors as predictors of perceived job insecurity. Incorporating contextual and organizational factors at an information technology organization where a merger was announced during data collection, we draw on status expectations and crossover theories to investigate whether managers’ characteristics and insecurity shape their employees’ job insecurity. We find having an Asian as opposed to a White manager is associated with lower job insecurity, while managers’ own insecurity positively predicts employees’ insecurity. Also contingent on the organizational climate, managers’ own tenure buffers, and managers’ perceived job insecurity magnifies insecurity of employees interviewed after a merger announcement, further specifying status expectations theory by considering context. PMID:26190868

  19. Crossover between fast and slow excitation of magnetization by spin torque

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2016-07-01

    A crossover between two mechanisms destabilizing the magnetization in equilibrium by the spin transfer effect is found in a ferromagnetic multilayer consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer, where an in-plane magnetic field is applied, and electric current flows from the pinned to the free layer. A fast transition from the in-plane to the out-of-plane state occurs in the low-field region, whereas a slow transition with small-amplitude oscillation becomes dominant in the high-field region. On the other hand, only the fast transition mechanism appears for the opposite current direction.

  20. Crossover from antipersistent to persistent behavior in time series possessing the generalyzed dynamic scaling law

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Morales Matamoros, Oswaldo; Gálvez M., Ernesto; Pérez A., Alfonso

    2004-03-01

    The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed in a wide variety of physical systems governed by avalanche dynamics.