Science.gov

Sample records for 20 100 kilometer kuiper

  1. MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS

    SciTech Connect

    Schlichting, Hilke E.; Ofek, Eran O.; Gal-Yam, Avishay; Sari, Re'em; Nelan, Edmund P.; Livio, Mario; Wenz, Michael; Muirhead, Philip; Javanfar, Nikta

    2012-12-20

    We present here the analysis of about 19,500 new star hours of low ecliptic latitude observations (|b| {<=} 20 Degree-Sign ) obtained by the Hubble Space Telescope's Fine Guidance Sensors over a time span of more than nine years, which is in addition to the {approx}12, 000 star hours previously analyzed by Schlichting et al. Our search for stellar occultations by small Kuiper Belt Objects (KBOs) yielded one new candidate event corresponding to a body with a 530 {+-} 70 m radius at a distance of about 40 AU. Using bootstrap simulations, we estimate a probability of Almost-Equal-To 5% that this event is due to random statistical fluctuations within the new data set. Combining this new event with the single KBO occultation reported by Schlichting et al. we arrive at the following results: (1) the ecliptic latitudes of 6. Degree-Sign 6 and 14. Degree-Sign 4 of the two events are consistent with the observed inclination distribution of larger, 100-km-sized KBOs. (2) Assuming that small, sub-kilometer-sized KBOs have the same ecliptic latitude distribution as their larger counterparts, we find an ecliptic surface density of KBOs with radii larger than 250 m of N(r > 250 m) = 1.1{sup +1.5}{sub -0.7} Multiplication-Sign 10{sup 7} deg{sup -2}; if sub-kilometer-sized KBOs have instead a uniform ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign then N(r > 250 m) = 4.4{sup +5.8}{sub -2.8} Multiplication-Sign 10{sup 6} deg{sup -2}. This is the best measurement of the surface density of sub-kilometer-sized KBOs to date. (3) Assuming the KBO size distribution can be well described by a single power law given by N(> r){proportional_to}r{sup 1-q}, where N(> r) is the number of KBOs with radii greater than r, and q is the power-law index, we find q = 3.8 {+-} 0.2 and q = 3.6 {+-} 0.2 for a KBO ecliptic latitude distribution that follows the observed distribution for larger, 100-km-sized KBOs and a uniform KBO ecliptic latitude distribution for -20 Degree

  2. A 100-micron polarimeter for the Kuiper Airborne Observatory

    SciTech Connect

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.

    1989-02-01

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent. 20 refs.

  3. A 100-micron polarimeter for the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Novak, G.; Gonatas, D. P.; Hildebrand, R. H.; Platt, S. R.

    1989-01-01

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent.

  4. POINT COVERAGE OF AIRS MONITORING SITES WITHIN A 100 KILOMETER BUFFERUS/MEXICO BORDER

    EPA Science Inventory

    A point coverage of Aerometric Information Retrieval System (AIRS) within a 100 kilometer around the U.S./Mexico International Boundary. Airs is the national repository for information about airborne pollution in the United States.

  5. Structure of Mars' Atmosphere up to 100 Kilometers from the Entry Measurements of Viking 2.

    PubMed

    Seiff, A; Kirk, D B

    1976-12-11

    The Viking 2 entry science data on the structure of Mars' atmosphere up to 100 kilometers define a morning atmosphere with an isothermal region near the surface; a surface pressure 10 percent greater than that recorded simultaneously at the Viking 1 site, which implies a landing site elevation lower by 2.7 kilometers than the reference ellipsoid; and a thermal structure to 100 kilometers at least qualitatively consistent with pre-Viking modeling of thermal tides. The temperature profile exhibits waves whose amplitude grows with altitude, to approximately 25 degrees K at 90 kilometers. These waves are believed to be a consequence of layered vertical oscillations and associated heating and cooling by compression and expansion, excited by the daily thermal cycling of the planet surface. As is necessary for gravity wave propagation, the atmosphere is stable against convection, except possibly in some very local regions. Temperature is everywhere appreciably above the carbon dioxide condensation boundary at both landing sites, precluding the occurrence of carbon dioxide hazes in northern summer at latitudes to at least 50 degrees N. Thus, ground level mists seen in these latitudes would appear to be condensed water vapor. PMID:17797089

  6. 100-micron array polarimetry from the Kuiper Airborne Observatory - Instrumentation, techniques, and first results

    NASA Technical Reports Server (NTRS)

    Platt, S. R.; Hildebrand, R. H.; Pernic, R. J.; Davidson, J. A.; Novak, G.

    1991-01-01

    The University of Chicago far-infrared array polarimeter, 'STOKES', is the first multiple-beam polarimeter for far-infrared astronomy. Observations are made from the NASA Kuiper Airborne Observatory. Two orthogonal components of linear polarization are detected simultaneously by corresponding pairs of bolometers in two 32-detector arrays. Novel observing and data-analysis techniques are used to overcome the inherent difficulties of array polarimetry. Results from the first observing flights with the new instrument are reported for the molecular clouds W3 and W51. The measurements show that the magnetic-field structure in both clouds is nonuniform on the scale of 0.5-1.5 pc. This is consistent with molecular line and Zeeman observations that indicate the presence of turbulent velocities and significant small-scale structure. Preliminary results from the second flight series have yielded approximately 40 new measurements in the Sgr A complex. These results indicate that modifications made since the first flights have significantly improved the performance of STOKES.

  7. Collisional Evolution of Edgeworth-Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Farinella, P.

    1997-01-01

    The Edgeworth-Kuiper Belt contains a population of objects ≈10 3times that of the main asteroid belt, spread over a volume ≈10 3larger and with relative speeds ≈10 times lower. As for the asteroids, the size distribution of Edgeworth-Kuiper Belt objects has been modified by mutual impacts over Solar System history. We have modeled this collisional evolution process using a numerical code developed originally to study asteroid collisional evolution but modified to reflect collision rates in the Edgeworth-Kuiper Belt. Our numerical simulations show that collisional evolution is substantial in the inner part of the Edgeworth-Kuiper Belt, but its intensity decreases with increasing distance from the Sun. In the inner belt, objects with diameters D> 50-100 km are not depleted by disruptive collisions; hence they reflect the original (formative) population (many of them, however, may have been converted into "rubble piles"). On the other hand, smaller objects are mostly multigenerational fragments, although the original population must have contained a significant number of bodies down to at least a few tens of kilometers in size in order to initiate a collisional cascade. About 10 fragments, 1-10 km in size, are produced per year in the inner Edgeworth-Kuiper Belt, with a few percent of them inserted into chaotic resonant orbits. This is in rough agreement with the required influx rate of Jupiter-family comets. Both collisions and dynamical instabilities associated with resonances are processes that can inject comets into the "escape hatches," but our results indicate that most comets coming from the Edgeworth-Kuiper Belt would be fragments from larger parent bodies, rather than primitive planetesimals. However, this does not apply to Chiron-sized ( D> 100 km) objects, which must be primordial and delivered to the outer Solar System by either dynamical processes or nondisruptive collisions.

  8. POINT COVERAGE OF 1990 US POPULATION DENSITY WITHIN A 100 KILOMETER BUFFER OF THE US/MEXICO BORDER

    EPA Science Inventory

    This is a point coverage of the 1990 Census of Population and Housing within a 100 kilo buffer around the US/Mexico Internation Boundary. The coverage contains the location of population points retrieved at the block group summary level and shows the total number of persons and ...

  9. 50 CFR 20.100 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Annual Seasons, Limits, and Shooting Hours Schedules § 20.100... schedules are established for seasons, daily bag and possession limits, and shooting (or hawking)...

  10. 50 CFR 20.100 - General provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Annual Seasons, Limits, and Shooting Hours Schedules § 20.100... schedules are established for seasons, daily bag and possession limits, and shooting (or hawking)...

  11. Population of the Scattered Kuiper Belt.

    PubMed

    Trujillo; Jewitt; Luu

    2000-02-01

    We present the discovery of three new scattered Kuiper Belt objects (SKBOs) from a wide-field survey of the ecliptic. This continuing survey has to date covered 20.2 deg2 to a limiting red magnitude of 23.6. We combine the data from this new survey with an existing survey conducted at the University of Hawaii 2.2 m telescope to constrain the number and mass of the SKBOs. The SKBOs are characterized by large eccentricities, perihelia near 35 AU, and semimajor axes greater than 50 AU. Using a maximum likelihood model, we estimate the total number of SKBOs larger than 100 km in diameter to be N=&parl0;3.1+1.9-1.3&parr0;x104 (1 sigma errors) and the total mass of SKBOs to be M approximately 0.05 M plus sign in circle, demonstrating that the SKBOs are similar in number and mass to the Kuiper Belt inside 50 AU. PMID:10622765

  12. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott; Trujillo, Chad

    2012-02-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a medium wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System.

  13. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2012-06-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System. We will also explore the Neptune Trojans and scattered disk populations through the survey.

  14. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    SciTech Connect

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-10

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .

  15. A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-01

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional "knees" in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10°.

  16. 49 CFR 179.100-20 - Stamping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... follows: Example of required stamping Specification DOT-105A100W Material ASTM A 516 Cladding material (if any) ASTM A240-304 Tank builder's initials Clad Date of original test ABC Car assembler (if other...

  17. 49 CFR 179.100-20 - Stamping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... outside heads as follows: Example of required stamping Specification DOT-105A100W Material ASTM A 516 Cladding material (if any) ASTM A240-304 Tank builder's initials Clad Date of original test ABC...

  18. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2012-01-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Most Kuiper Belt surveys to date either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky to efficiently detect objects beyond 50 AU. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we are conducting a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if it is unique (as once believed for Pluto) or one of a new class of object. We request one night in 2012B to recover interesting objects that will be discovered at Subaru in July 2012 and complete the sky coverage needed to constrain the Sedna-like population.

  19. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2013-01-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Most Kuiper Belt surveys to date either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky to efficiently detect objects beyond 50 AU. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we are conducting a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if it is unique (as once believed for Pluto) or one of a new class of object. We request one night in 2013B to recover a very interesting object that we discovered at Subaru in July 2012 and complete the sky coverage needed to constrain the Sedna-like population. This one night was awarded to us in 2012B but lost because of instrument problems.

  20. 20 CFR 411.100 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...' Benefits SOCIAL SECURITY ADMINISTRATION THE TICKET TO WORK AND SELF-SUFFICIENCY PROGRAM Introduction § 411.100 Scope. The regulations in this part 411 relate to the provisions of section 1148 of the Social... H contains provisions establishing employment network payment systems. (i) Subpart I...

  1. 20 CFR 411.100 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...' Benefits SOCIAL SECURITY ADMINISTRATION THE TICKET TO WORK AND SELF-SUFFICIENCY PROGRAM Introduction § 411.100 Scope. The regulations in this part 411 relate to the provisions of section 1148 of the Social... H contains provisions establishing employment network payment systems. (i) Subpart I...

  2. 20 CFR 411.100 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...' Benefits SOCIAL SECURITY ADMINISTRATION THE TICKET TO WORK AND SELF-SUFFICIENCY PROGRAM Introduction § 411.100 Scope. The regulations in this part 411 relate to the provisions of section 1148 of the Social... H contains provisions establishing employment network payment systems. (i) Subpart I...

  3. 20 CFR 411.100 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...' Benefits SOCIAL SECURITY ADMINISTRATION THE TICKET TO WORK AND SELF-SUFFICIENCY PROGRAM Introduction § 411.100 Scope. The regulations in this part 411 relate to the provisions of section 1148 of the Social... H contains provisions establishing employment network payment systems. (i) Subpart I...

  4. 20 CFR 411.100 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...' Benefits SOCIAL SECURITY ADMINISTRATION THE TICKET TO WORK AND SELF-SUFFICIENCY PROGRAM Introduction § 411.100 Scope. The regulations in this part 411 relate to the provisions of section 1148 of the Social... H contains provisions establishing employment network payment systems. (i) Subpart I...

  5. 31 CFR 20.100 - What does this part do?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false What does this part do? 20.100 Section 20.100 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Purpose and Coverage § 20.100 What does this...

  6. 31 CFR 20.100 - What does this part do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false What does this part do? 20.100 Section 20.100 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Purpose and Coverage § 20.100 What does this...

  7. Kuiper Belt Mapping Radar

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Nilsen, E.

    2001-01-01

    Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping Radar is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover radar albedo and object rotation rates. Additional information is contained in the original extended abstract.

  8. Infrared Kuiper Belt Constraints

    SciTech Connect

    Teplitz, V.L.; Stern, S.A.; Anderson, J.D.; Rosenbaum, D.; Scalise, R.J.; Wentzler, P.

    1999-05-01

    We compute the temperature and IR signal of particles of radius {ital a} and albedo {alpha} at heliocentric distance {ital R}, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of {ital COBE} DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance {ital R}, particle radius {ital a}, and particle albedo {alpha}. We then apply these results to a recently developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40{lt}R{lt}50{endash}90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the solar system of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally, we compare Kuiper belt IR spectra for various parameter values. Results of this work include: (1) numerical limits on Kuiper belt dust as a function of ({ital R}, {ital a}, {alpha}) on the basis of four alternative sets of constraints, including those following from recent discovery of the cosmic IR background by Hauser et al.; (2) application to the two-sector Kuiper belt model, finding mass limits and spectrum shape for different values of relevant parameters including dependence on time elapsed since last passage through a molecular cloud cleared the outer solar system of dust; and (3) potential use of spectral information to determine time since last passage of the Sun through a giant molecular cloud. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  9. Prevalence and Genetic Diversity of Campylobacter spp. in Environmental Water Samples from a 100-Square-Kilometer Predominantly Dairy Farming Area

    PubMed Central

    Kemp, R.; Leatherbarrow, A. J. H.; Williams, N. J.; Hart, C. A.; Clough, H. E.; Turner, J.; Wright, E. J.; French, N. P.

    2005-01-01

    Water samples were taken systematically from a 100-km2 area of mainly dairy farmland in northwestern England and examined for Campylobacter spp. Pulsed-field gel electrophoresis-restriction fragment length polymorphism (PFGE-RFLP) and flaA strain typing of Campylobacter jejuni and Campylobacter coli isolates were done. Data on the water source and the adjacent environment were recorded and examined as explanatory variables. Campylobacter spp. were isolated from 40.5% (n = 119) of the water samples tested. C. jejuni was isolated from 14.3%, C. coli was isolated from 18.5%, and Campylobacter lari was isolated from 4.2% of the samples. Campylobacter hyointestinalis was not isolated from any water source. The difference in prevalence between water types (trough, running, and standing) was significant (P = 0.001). C. jejuni was the species most commonly isolated from trough-water and running-water sources, while C. coli was the most frequently isolated from standing water (P < 0.001). No association was found between the presence of Escherichia coli and that of Campylobacter spp. The final multivariable logistic regression model for Campylobacter spp. included the following variables: water source, soil type, aspect, and amount of cattle fecal material in the environment (fecal pat count). Strain typing demonstrated a diverse population of C. jejuni and the presence of a common C. coli flaA type that was widely distributed throughout the area. Most of the isolates within the common flaA type were discriminated by PFGE-RFLP. These findings suggest a possible role for environmental water in the epidemiology of Campylobacter spp. in a farming environment. PMID:15812015

  10. 20 CFR 664.100 - What is the youth council?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section 117(h) and 20 CFR 661.335 and 661.340. (b) The purpose of the youth council is to provide... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What is the youth council? 664.100 Section...) YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Councils § 664.100 What is...

  11. 20 CFR 664.100 - What is the youth council?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) and 20 CFR 661.335 and 661.340. (b) The purpose of the youth council is to provide expertise in youth... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What is the youth council? 664.100 Section 664.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR...

  12. 20 CFR 664.100 - What is the youth council?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section 117(h) and 20 CFR 661.335 and 661.340. (b) The purpose of the youth council is to provide... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What is the youth council? 664.100 Section...) YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Councils § 664.100 What is...

  13. 20 CFR 664.100 - What is the youth council?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section 117(h) and 20 CFR 661.335 and 661.340. (b) The purpose of the youth council is to provide... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What is the youth council? 664.100 Section...) YOUTH ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Youth Councils § 664.100 What is...

  14. 20 CFR 645.100 - What does this part cover?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... found at 20 CFR part 646. ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false What does this part cover? 645.100 Section... GOVERNING WELFARE-TO-WORK GRANTS Scope and Purpose § 645.100 What does this part cover? (a) Subpart...

  15. 20 CFR 498.100 - Basis and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Basis and purpose. 498.100 Section 498.100 Employees' Benefits SOCIAL SECURITY ADMINISTRATION CIVIL MONETARY PENALTIES, ASSESSMENTS AND RECOMMENDED EXCLUSIONS § 498.100 Basis and purpose. (a) Basis. This part implements sections 1129 and 1140 of the...

  16. 20 CFR 498.100 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Basis and purpose. 498.100 Section 498.100 Employees' Benefits SOCIAL SECURITY ADMINISTRATION CIVIL MONETARY PENALTIES, ASSESSMENTS AND RECOMMENDED EXCLUSIONS § 498.100 Basis and purpose. (a) Basis. This part implements sections 1129 and 1140 of the...

  17. 20 CFR 498.100 - Basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Basis and purpose. 498.100 Section 498.100 Employees' Benefits SOCIAL SECURITY ADMINISTRATION CIVIL MONETARY PENALTIES, ASSESSMENTS AND RECOMMENDED EXCLUSIONS § 498.100 Basis and purpose. (a) Basis. This part implements sections 1129 and 1140 of the...

  18. 20 CFR 498.100 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Basis and purpose. 498.100 Section 498.100 Employees' Benefits SOCIAL SECURITY ADMINISTRATION CIVIL MONETARY PENALTIES, ASSESSMENTS AND RECOMMENDED EXCLUSIONS § 498.100 Basis and purpose. (a) Basis. This part implements sections 1129 and 1140 of the...

  19. 20 CFR 498.100 - Basis and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Basis and purpose. 498.100 Section 498.100 Employees' Benefits SOCIAL SECURITY ADMINISTRATION CIVIL MONETARY PENALTIES, ASSESSMENTS AND RECOMMENDED EXCLUSIONS § 498.100 Basis and purpose. (a) Basis. This part implements sections 1129 and 1140 of the...

  20. 20 CFR 641.100 - What does this part cover?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false What does this part cover? 641.100 Section 641.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROVISIONS GOVERNING THE SENIOR COMMUNITY SERVICE EMPLOYMENT PROGRAM Purpose and Definitions § 641.100 What does...

  1. 20 CFR 652.100 - Services for veterans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Services for veterans. 652.100 Section 652... FUNCTIONING OF STATE EMPLOYMENT SERVICES Services for Veterans § 652.100 Services for veterans. Services for veterans are administered by the Office of the Assistant Secretary for Veterans' Employment and...

  2. 20 CFR 652.100 - Services for veterans.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Services for veterans. 652.100 Section 652... FUNCTIONING OF STATE EMPLOYMENT SERVICES Services for Veterans § 652.100 Services for veterans. Services for veterans are administered by the Office of the Assistant Secretary for Veterans' Employment and...

  3. 20 CFR 652.100 - Services for veterans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Services for veterans. 652.100 Section 652... FUNCTIONING OF STATE EMPLOYMENT SERVICES Services for Veterans § 652.100 Services for veterans. Services for veterans are administered by the Office of the Assistant Secretary for Veterans' Employment and...

  4. 20 CFR 652.100 - Services for veterans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Services for veterans. 652.100 Section 652... FUNCTIONING OF STATE EMPLOYMENT SERVICES Services for Veterans § 652.100 Services for veterans. Services for veterans are administered by the Office of the Assistant Secretary for Veterans' Employment and...

  5. 20 CFR 652.100 - Services for veterans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Services for veterans. 652.100 Section 652... FUNCTIONING OF STATE EMPLOYMENT SERVICES Services for Veterans § 652.100 Services for veterans. Services for veterans are administered by the Office of the Assistant Secretary for Veterans' Employment and...

  6. 20. Historic south and west elevation drawing of Building 100. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Historic south and west elevation drawing of Building 100. June 29, 1955. NASA GRC drawing number CE-101443. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  7. 20 CFR 672.100 - What is YouthBuild?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What is YouthBuild? 672.100 Section 672.100... GOVERNING THE YOUTHBUILD PROGRAM Purpose and Definitions § 672.100 What is YouthBuild? (a) YouthBuild is a... opportunities to disadvantaged and low-income youth between the ages of 16 and 24, most of whom are...

  8. 20 CFR 672.100 - What is YouthBuild?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What is YouthBuild? 672.100 Section 672.100... GOVERNING THE YOUTHBUILD PROGRAM Purpose and Definitions § 672.100 What is YouthBuild? (a) YouthBuild is a... opportunities to disadvantaged and low-income youth between the ages of 16 and 24, most of whom are...

  9. 20 CFR 672.100 - What is YouthBuild?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What is YouthBuild? 672.100 Section 672.100... GOVERNING THE YOUTHBUILD PROGRAM Purpose and Definitions § 672.100 What is YouthBuild? (a) YouthBuild is a... opportunities to disadvantaged and low-income youth between the ages of 16 and 24, most of whom are...

  10. The extreme Kuiper Belt binary 2001 QW322.

    PubMed

    Petit, J-M; Kavelaars, J J; Gladman, B J; Margot, J L; Nicholson, P D; Jones, R L; Parker, J Wm; Ashby, M L N; Bagatin, A Campo; Benavidez, P; Coffey, J; Rousselot, P; Mousis, O; Taylor, P A

    2008-10-17

    The study of binary Kuiper Belt objects helps to probe the dynamic conditions present during planet formation in the solar system. We report on the mutual-orbit determination of 2001 QW322, a Kuiper Belt binary with a very large separation whose properties challenge binary-formation and -evolution theories. Six years of tracking indicate that the binary's mutual-orbit period is approximately 25 to 30 years, that the orbit pole is retrograde and inclined 50 degrees to 62 degrees from the ecliptic plane, and, most surprisingly, that the mutual orbital eccentricity is <0.4. The semimajor axis of 105,000 to 135,000 kilometers is 10 times that of other near-equal-mass binaries. Because this weakly bound binary is prone to orbital disruption by interlopers, its lifetime in its present state is probably less than 1 billion years. PMID:18927391

  11. Euclid Asteroseismology and Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Huber, Daniel; Stello, Dennis

    2016-02-01

    Euclid, which is primarily a dark-energy/cosmology mission, may have a microlensing component, consisting of perhaps four dedicated one-month campaigns aimed at the Galactic bulge. We show that such a program would yield excellent auxilliary science, including asteroseismology detections for about 100,000 giant stars, and detection of about 1000 Kuiper Belt Objects (KBOs), down to 2--2.5 mag below the observed break in the KBO luminosity function at I˜ 26. For the 400 KBOs below the break, Euclid will measure accurate orbits, with fractional period errors ≲ 2.5%.

  12. 31 CFR 20.100 - What does this part do?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Purpose and Coverage § 20.100 What does this part do? This part carries out the portion of the Drug-Free Workplace Act of 1988 (41 U.S.C. 701 et seq... agreements and other financial assistance awards, as a matter of Federal Government policy....

  13. 31 CFR 20.100 - What does this part do?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Purpose and Coverage § 20.100 What does this part do? This part carries out the portion of the Drug-Free Workplace Act of 1988 (41 U.S.C. 701 et seq... agreements and other financial assistance awards, as a matter of Federal Government policy....

  14. 31 CFR 20.100 - What does this part do?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Purpose and Coverage § 20.100 What does this part do? This part carries out the portion of the Drug-Free Workplace Act of 1988 (41 U.S.C. 701 et seq... agreements and other financial assistance awards, as a matter of Federal Government policy....

  15. WATER ICE IN THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2012-06-15

    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice-perhaps mixed with ammonia-that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the {approx}20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  16. The Scattered Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Trujillo, C. A.; Jewitt, D. C.; Luu, J. X.

    1999-09-01

    We describe a continuing survey of the Kuiper Belt conducted at the 3.6-m Canada France Hawaii Telescope on Mauna Kea, Hawaii. The survey employs a 12288 x 8192 pixel CCD mosaic to image the sky to red magnitude 24. All detected objects are targeted for systematic follow-up observations, allowing us to determine their orbital characteristics. Three new members of the rare Scattered Kuiper Belt Object class have been identified, bringing the known population of such objects to four. The SKBOs are thought to have been scattered outward by Neptune, and are a potential source of the short-period comets. Using a Maximum Likelihood method, we place observational constraints on the total number and mass of the SKBOs.

  17. The binary Kuiper-belt object 1998 WW31.

    PubMed

    Veillet, Christian; Parker, Joel Wm; Griffin, Ian; Marsden, Brian; Doressoundiram, Alain; Buie, Marc; Tholen, David J; Connelley, Michael; Holman, Matthew J

    2002-04-18

    The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects. PMID:11961547

  18. Distribution of Dust from Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick N.; Ozernoy, Leonid; Taidakova, Tanya; Mather, John C.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the 'kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects; the resulting 3-D grid consists of 1.9 x 10' cells containing 1.2 x 10" particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau between 10 and 50 AU. Between 25 and 45 AU, there is an appreciable concentration of kuiperoidal dust in the form of a broad belt of mostly resonant particles associated with Neptune. In fact, each giant planet possesses its own circumsolar dust belt consisting of both resonant and gravitationally scattered particles. As with the cometary belts simulated in our related papers, we reveal a rich and sophisticated resonant structure of the dust belts containing families of resonant peaks and gaps. An important result is that both the column and number dust density are more or less flat between 10 and 50 AU, which might explain the surprising data obtained by Pioneers 10 & 11 and Voyager that the dust number density remains approximately distance-independent in this region. The simulated kuiperoidal dust, in addition to asteroidal and cometary dust, might represent a third possible source of the zodiacal light in the Solar system.

  19. Exploration of the Kuiper Belt by serendipitous occultations using Ultraphot and MeFos instruments

    NASA Astrophysics Data System (ADS)

    Roques, F.; Guinouard, I.; Doressoundiram, A.; Felenbok, P.; Boissel, Y.; Sicardy, B.

    2008-09-01

    operated on VLT/UT2, and would have access to the entire field of the Nasmyth focus (25' diameter). The number of fibers of UltraPhot will be determined as a compromise between the camera read-out frequency and the capacity of the positioning system. Our estimates are based on a total of 100 to 200 fibers for a read-out frequency of 100 Hz using a 2 color photometry mode. The expected S/N ratio could be at least 10 3 /√f, where f is the read-out frequency for a magnitude 13. Potential interested scientific fields are numerous : Exploration of Outer Solar System Objects by stellar occultations : The aim is to characterize the small end of size distribution and the outer part of the Solar System population by a collection of serendipitous events. A challenge is the possibility to explore the Oort Cloud (using this method, we estimate a 5-kilometer comet-like object can be positively detected at a distance of 10000 AU). Extrasolar Planets Transits : Ultraphot will allow follow up of the Corot/Kepler targets. High precision photometry associated with a large field of view (1/20 of the Corot Exoplanets FOV) makes Ultraphot a powerful tool to explore the transit exoplanetary systems and to detect small planets. Moreover, precise timing of transits give access to other planets in the system by their perturbations on the orbits parameters. Study of variable objects in Globular Clusters (GC) would also benefit from this instrument. Searching for rapid periodic variations of blue objects might help to identify their nature. In particular Compact Binaries (CB) including Cataclysmic Variables are predicted to be numerous in GC not only in the cores but also in their outskirts. References [1] Roques, F. et Moncuquet M. (2000) A Detection Method for the Small Kuiper Belt Objects: The Stellar Occultations. Icarus, 147, 530-544. [2] F. Roques , A. Doressoundiram et al. (2006) Small and Distant Kuiper Belt Objects revealed by Stellar occultations, AJ, 132, 819 [3] Georgevits G. (2006

  20. THE COLLISIONAL DIVOT IN THE KUIPER BELT SIZE DISTRIBUTION

    SciTech Connect

    Fraser, Wesley C.

    2009-11-20

    This paper presents the results of collisional evolution calculations for the Kuiper Belt starting from an initial size distribution similar to that produced by accretion simulations of that region-a steep power-law large object size distribution that breaks to a shallower slope at r approx 1-2 km, with collisional equilibrium achieved for objects r approx< 0.5 km. We find that the break from the steep large object power law causes a divot, or depletion of objects at r approx 10-20 km, which, in turn, greatly reduces the disruption rate of objects with r approx> 25-50 km, preserving the steep power-law behavior for objects at this size. Our calculations demonstrate that the roll-over observed in the Kuiper Belt size distribution is naturally explained as an edge of a divot in the size distribution; the radius at which the size distribution transitions away from the power law, and the shape of the divot from our simulations are consistent with the size of the observed roll-over, and size distribution for smaller bodies. Both the kink radius and the radius of the divot center depend on the strength scaling law in the gravity regime for Kuiper Belt objects. These simulations suggest that the sky density of r approx 1 km objects is approx10{sup 6}-10{sup 7} objects per square degree. A detection of the divot in the size distribution would provide a measure of the strength of large Kuiper Belt objects, and constrain the shape of the size distribution at the end of accretion in the Kuiper Belt.

  1. Photographer : JPL Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa was taken by Voyager 2 along the evening terminator, which best shows the surface topography of complex narrow ridges, seen as curved bright streaks, 5 to 10 kilometers wide, and typically 100 kilometers in length. The area shown is about 600 by 800 kilometers, and the smallest features visible are about 4 kilometers in size. Also visable are dark bands, more diffused in character, 20 to 40 kilometers wide and hundreds to thousands of kilometers in length. A few features are suggestive of impact craters but are rare, indication that the surface thought to be dominantly ice is still active, perhaps warmed by tidal heating like Io. The larger icy satellites, Callisto and Ganymede, are evidently colder with much more rigid crusts and ancient impact craters. The complex intersection of dark markings and bright ridges suggest that the surface has been fractured and material from beneath has welled up to fill the cracks.

  2. 20 CFR 653.100 - Purpose and scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE EMPLOYMENT SERVICE SYSTEM Services for Migrant and Seasonal Farmworkers (MSFWs) § 653.100 Purpose... seasonal farmworkers (MSFWs) on a basis which is qualitatively equivalent and quantitatively...

  3. 20 CFR 653.100 - Purpose and scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... THE EMPLOYMENT SERVICE SYSTEM Services for Migrant and Seasonal Farmworkers (MSFWs) § 653.100 Purpose... seasonal farmworkers (MSFWs) on a basis which is qualitatively equivalent and quantitatively...

  4. Gerard Kuiper and the Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  5. Collisions in the Kuiper belt

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    2007-07-01

    For most of the 15 year history of observations of Kuiper belt objects, it has been speculated that impacts must have played a major role in shaping the physical and chemical characteristics of these objects, yet little direct evidence of the effects of such impacts has been seen. The past 18 months, however, have seen an explosion of major new discoveries giving some of the first insights into the influence of this critical process. From a diversity of observations we have been led to the hypotheses that: {1} satellite-forming impacts must have been common in the Kuiper belt; {2} such impacts led to significant chemical modification; and {3} the outcomes of these impacts are sufficiently predictable that we can now find and study these impact-derived systems by the chemical and physical attributes of both the satellites and the primaries. If our picture is correct, we now have in hand for the first time a set of incredibly powerful tools to study the frequency and outcome of collisions in the outer solar system. Here we propose three linked projects that would answer questions critical to the multiple prongs of our hypothesis. In these projects we will study the chemical effects of collisions through spectrophotometric observations of collisionally formed satellites and through the search for additional satellites around primaries with potential impact signatures, and we will study the physical effects of impacts through the examination of tidal evolution in proposed impact systems. The intensive HST program that we propose here will allow us to fully test our new hypotheses and will provide the ability to obtain the first extensive insights into outer solar system impact processes.

  6. A Search for 23rd Magnitude Kuiper Belt Comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane

    1997-01-01

    The goal of the project was to identify a statistically significant sample of large (200 km-sized) Kuiper Belt Objects (KBOs), by covering 10 sq. degrees of the sky to a red limiting magnitude m(sub R) = 23. This work differs from, but builds on, previous surveys of the outer solar system in that it will cover a large area to a limiting magnitude that is deep enough to guarantee positive results. The proposed work should provide us with a significant number of 200 km-size KBOs (approx. 20 are expected) for subsequent studies. Such a sample is crucial if we are to investigate the statistical properties of the Belt and its members. It was modified the original research strategy to accommodate unanticipated problems such as the urgent need for follow-up observations,the original goal was still reached: we have substantially increased the number of Kuiper Belt Objects brighter than 23rd mag.

  7. Water Ice on Kuiper Belt Object 1996 TO66

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.

    1999-01-01

    The 1.40-2.40 micron spectrum of Kuiper Belt object (KBO) 1996 TO66 was measured at the Keck Observatory in September 1998. It's spectrum shows the strong absorptions near 1.5 and 2.0 micron characteristic of water ice--the first such detection on a Kuiper Belt object. The depth of the absorption bands and the continuum reflectance of 1996 TO66 also suggest the presence of a black to slightly blue-colored, spectrally featureless particulate material as a minority component mixed with the water ice. In addition, there is evidence that the intensity of the water bands in the spectrum of 1996 TO66 vary with rotational phase suggesting that it has a "patchy" surface.

  8. 20 CFR 664.100 - What is the youth council?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) and 20 CFR 661.335 and 661.340. (b) The purpose of the youth council is to provide expertise in youth... training policy and practice; (2) Broadening the youth employment and training focus in the community...

  9. 20 CFR 645.100 - What does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... GOVERNING WELFARE-TO-WORK GRANTS Scope and Purpose § 645.100 What does this part cover? (a) Subpart A establishes regulatory provisions that apply to the Welfare-to-Work (WtW) programs conducted at the State and...) Regulatory provisions applicable to the Indian and Native American Welfare-to-Work Program (INA WtW)...

  10. 20 CFR 641.100 - What does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... efforts to provide services through the integration of the SCSEP within the One-Stop Delivery System. (c... GOVERNING THE SENIOR COMMUNITY SERVICE EMPLOYMENT PROGRAM Purpose and Definitions § 641.100 What does this part cover? Part 641 contains the Department of Labor's regulations for the Senior Community...

  11. 20 CFR 641.100 - What does this part cover?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... GOVERNING THE SENIOR COMMUNITY SERVICE EMPLOYMENT PROGRAM Purpose and Definitions § 641.100 What does this part cover? Part 641 contains the Department of Labor's regulations for the Senior Community Service... required relationship between the OAA and the Workforce Investment Act of 1998 (WIA), 29 U.S.C. 2801 et...

  12. 20 CFR 439.100 - What does this part do?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... out the portion of the Drug-Free Workplace Act of 1988 (41 U.S.C. 701 et seq., as amended) that....100 Employees' Benefits SOCIAL SECURITY ADMINISTRATION GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE... assistance awards, as a matter of Federal Government policy....

  13. Collisional Time Scales in the Kuiper Disk and Their Implications

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    We explore the rate of collisions among bodies in the present-day Kuiper Disk as a function of the total mass and population size structure of the disk. We find that collisional evolution is an important evolutionary process in the disk as a whole, and indeed, that it is likely the dominant evolutionary process beyond approx. 42 AU, where dynamical instability time scales exceed the age of the solar system. Two key findings we report from this modeling work are: that unless the disk's population structure is sharply truncated for radii smaller than approx. 1-2 km, collisions between comets and smaller debris are occurring so frequently in the disk, and with high enough velocities, that the small body (i.e., KM-class object) population in the disk has probably developed into a collisional cascade, thereby implying that the Kuiper Disk comets may not all be primordial, and that the rate of collisions of smaller bodies with larger 100 less R less 400 km objects (like 1992QB(sub 1) and its cohorts) is so low that there appears to be a dilemma in explaining how QB(sub 1)s could have grown by binary accretion in the disk as we know it. Given these findings, it appears that either the present-day paradigm for the formation of Kuiper Disk is failed in some fundamental respect, or that the present-day disk is no longer representative of the ancient structure from which it evolved. This in turn suggests the intriguing possibility that the present-day Kuiper Disk evolved through a more erosional stage reminiscent of the disks around the stars Beta Pictorus, alpha PsA, and alpha Lyr.

  14. Structure of the atmosphere of Venus up to 110 kilometers: Preliminary results from the four Pioneer Venus entry probes

    USGS Publications Warehouse

    Seiff, A.; Kirk, D.B.; Sommer, S.C.; Young, R.E.; Blanchard, R.C.; Juergens, D.W.; Lepetich, J.E.; Intrieri, P.F.; Findlay, J.T.; Derr, J.S.

    1979-01-01

    The four Pioneer Venus entry probes transmitted data of good quality on the structure of the atmosphere below the clouds. Contrast of the structure below an altitude of 50 kilometers at four widely separated locations was found to be no more than a few degrees Kelvin, with slightly warmer temperatures at 30?? south latitude than at 5?? or 60?? north. The atmosphere was stably stratified above 15 or 20 kilometers, indicating that the near-adiabatic state is maintained by the general circulation. The profiles move from near-adiabatic toward radiative equilibrium at altitudes above 40 kilometers. There appears to be a region of vertical convection above the dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. This is where the 4-day wind is believed to occur. The temperature wave may be related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photographs. Copyright ?? 1979 AAAS.

  15. Three steps toward understanding the dynamical structure of the Kuiper belt (and what it means for Neptune's migration)

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    2015-11-01

    Much of the dynamical structure of the Kuiper belt can be explained if Neptune migrated over several AU, and/or if Neptune was scattered to an eccentric orbit during planetary instability.Step 1: An outstanding problem with the previous migration/instability models is that the distribution of orbital inclinations they predict is narrower than the one inferred from observations. Here we perform numerical simulations of the Kuiper belt formation starting from an initial state with Neptune at 20100 Myr. A small fraction of the disk planetesimals become implanted into the Kuiper belt in the simulations. We find that the inclination constraint implies that Neptune's migration was slow (tau > 10 Myr) and long range (a_N < 25 AU).Step 2: A particularly puzzling and up-to-now unexplained feature of the Kuiper belt is the so-called `kernel', a concentration of orbits with semimajor axes a=44 AU, eccentricities e=0.05, and inclinations i<5 deg. Here we show that the Kuiper belt kernel can be explained if Neptune's migration was interrupted by a discontinuous change of Neptune's semimajor axis when Neptune reached 28 AU (jumping-Neptune model).Step 3: The existing migration/instability models invariably predict an excessively large resonant population, while observations show that the non-resonant orbits are in fact more common (e.g., Plutinos in the 3:2 resonance represent only ~1/3 of the main belt population). Here we show that the observed population statistic implies that Neptune's migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. Our preferred fit to observations suggests that the outer planetesimal disk below 30 AU contained ~2000 bodies with mass comparable to that of Pluto.Together, these results imply that Neptune's migration was slow, long-range and grainy

  16. Phobos from 6,800 Kilometers (Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Inset

    The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took two images of the larger of Mars' two moons, Phobos, within 10 minutes of each other on March 23, 2008. This is the first, taken from a distance of about 6,800 kilometers (about 4,200 miles). It is presented in color by combining data from the camera's blue-green, red, and near-infrared channels.

    The illuminated part of Phobos seen in the images is about 21 kilometers (13 miles) across. The most prominent feature in the images is the large crater Stickney in the lower right. With a diameter of 9 kilometers (5.6 miles), it is the largest feature on Phobos.

    The color data accentuate details not apparent in black-and-white images. For example, materials near the rim of Stickney appear bluer than the rest of Phobos. Based on analogy with materials on our own moon, this could mean this surface is fresher, and therefore younger, than other parts of Phobos.

    A series of troughs and crater chains is obvious on other parts of the moon. Although many appear radial to Stickney in this image, recent studies from the European Space Agency's Mars Express orbiter indicate that they are not related to Stickney. Instead, they may have formed when material ejected from impacts on Mars later collided with Phobos. The lineated textures on the walls of Stickney and other large craters are landslides formed from materials falling into the crater interiors in the weak Phobos gravity (less than one one-thousandth of the gravity on Earth).

    In the full-resolution version of this image, a pixel encompasses 6.8 meters (22 feet), providing a resolution (smallest visible feature) of about 20 meters (about 65 feet). The image is in the HiRISE catalog as PSP_007769_9010.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance

  17. Phobos from 6,800 Kilometers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took two images of the larger of Mars' two moons, Phobos, within 10 minutes of each other on March 23, 2008. This is the first, taken from a distance of about 6,800 kilometers (about 4,200 miles). The illuminated part of Phobos seen in the images is about 21 kilometers (13 miles) across.

    The most prominent feature in the images is the large crater Stickney in the lower right. With a diameter of 9 kilometers (5.6 miles), it is the largest feature on Phobos. A series of troughs and crater chains is obvious on other parts of the moon. Although many appear radial to Stickney in this image, recent studies from the European Space Agency's Mars Express orbiter indicate that they are not related to Stickney. Instead, they may have formed when material ejected from impacts on Mars later collided with Phobos. The lineated textures on the walls of Stickney and other large craters are landslides formed from materials falling into the crater interiors in the weak Phobos gravity (less than one one-thousandth of the gravity on Earth).

    In the full-resolution version of this image, a pixel encompasses 6.8 meters (22 feet), providing a resolution (smallest visible feature) of about 20 meters (about 65 feet). Although the image is displayed here in black and white, data from HiRISE's three color channels were used to give higher signal-to-noise, thereby increasing detail. The image is in the HiRISE catalog as PSP_007769_9010.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace

  18. OORT-Cloud and Kuiper-Belt Comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1998-01-01

    This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.

  19. [The 20th century: 100 years of misfortune and splendor].

    PubMed

    Urdaneta-Carruyo, Eliéxer

    2005-01-01

    The 20th century has been one of the most intense and convulsive periods in the History of humanity. A century of paradoxes and contrasts, it began with optimism, it witnessed the apocalypse of two world wars, and finished with unimaginable scientific progress that gave us a new civilization that we cannot yet grasp. In this century, significant events happened that shaped our time and projected their results toward an immediate future. Some of these were providential in understanding man's life, fighting against illnesses and prolonging life, and others were of undeniable social importance for humanity. Some knowledge was based on the work of others. Philosophy was embedded in mathematics, as was science in philosophy, while politics and the economy exercised so decisive an influence in our way of feeling and living that culture and society were affected to the core. Within that century the biggest technological revolution of all the time was also created, as transcendent as it was unimaginable, which put mankind on the road to the stars with the moon landing and in the process created the information society whose signature symbol, the internet, emerged as a new demiurge. However, the 20th century, with all its misfortune and splendor, paradoxes and contrasts, creation and destruction, was the most transcendent in the whole of history and it bequeaths to the future a promising horizon in the search for a renovated meaning of life and a yearning for peaceful coexistence for the whole humanity. PMID:15754756

  20. 11 CFR 100.20 - Occupation (2 U.S.C. 431(13)).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Occupation (2 U.S.C. 431(13)). 100.20 Section 100.20 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.20 Occupation (2 U.S.C. 431(13)). Occupation means the principal job title...

  1. 11 CFR 100.20 - Occupation (2 U.S.C. 431(13)).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Occupation (2 U.S.C. 431(13)). 100.20 Section 100.20 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.20 Occupation (2 U.S.C. 431(13)). Occupation means the principal job title...

  2. The state of knowledge concerning the Kuiper belt

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.

    1992-01-01

    The arguments for and against the idea that most short-period comets originate in the Kuiper belt are discussed. Observational constraints on the distribution of mass in the Kuiper belt are reviewed as well as a model of the physical conditions that now exist. Finally, predictions from this model about the detectability of the Kuiper belt are compared to optical surveys.

  3. UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT

    SciTech Connect

    Gulbis, A. A. S.; Elliot, J. L.; Adams, E. R.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H. E-mail: jle@mit.ed E-mail: lhw@lowell.ed E-mail: buie@boulder.swri.ed

    2010-08-15

    Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0{sup +0.6}{sub -0.5}{sup 0} and 8.1{sup +2.6}{sub -2.1}{sup 0}. Objects in different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched by sin i multiplied by a single Gaussian that is centered at 19.1{sup +3.9}{sub -3.6}{sup 0} with a width of 6.9{sup +4.1}{sub -2.7}{sup 0}. Centaur inclinations peak just below 20{sup 0}, with one exceptionally high-inclination object near 80{sup 0}. The currently observed inclination distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.

  4. 28 CFR 100.20 - Confidentiality of trade secrets/proprietary information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Confidentiality of trade secrets/proprietary information. 100.20 Section 100.20 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) COST... trade secrets/proprietary information. With respect to any information provided to the FBI under...

  5. 28 CFR 100.20 - Confidentiality of trade secrets/proprietary information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Confidentiality of trade secrets/proprietary information. 100.20 Section 100.20 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) COST... trade secrets/proprietary information. With respect to any information provided to the FBI under...

  6. 28 CFR 100.20 - Confidentiality of trade secrets/proprietary information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Confidentiality of trade secrets/proprietary information. 100.20 Section 100.20 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) COST... trade secrets/proprietary information. With respect to any information provided to the FBI under...

  7. 28 CFR 100.20 - Confidentiality of trade secrets/proprietary information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Confidentiality of trade secrets/proprietary information. 100.20 Section 100.20 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) COST... trade secrets/proprietary information. With respect to any information provided to the FBI under...

  8. 28 CFR 100.20 - Confidentiality of trade secrets/proprietary information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Confidentiality of trade secrets/proprietary information. 100.20 Section 100.20 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) COST... trade secrets/proprietary information. With respect to any information provided to the FBI under...

  9. Cdc20 mediates D-box-dependent degradation of Sp100

    SciTech Connect

    Wang, Ran; Li, Ke-min; Zhou, Cai-hong; Xue, Jing-lun; Ji, Chao-neng; Chen, Jin-zhong

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Cdc20 is a co-activator of APC/C complex. Black-Right-Pointing-Pointer Cdc20 recruits Sp100 and mediates its degradation. Black-Right-Pointing-Pointer The D-box of Sp100 is required for Cdc20-mediated degradation. Black-Right-Pointing-Pointer Sp100 expresses consistently at both the mRNA and protein levels in cell cycle. -- Abstract: Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand

  10. 20 CFR 666.100 - What performance indicators must be included in a State's plan?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What performance indicators must be included in a State's plan? 666.100 Section 666.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... State Measures of Performance § 666.100 What performance indicators must be included in a State's...

  11. 20 CFR 666.100 - What performance indicators must be included in a State's plan?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What performance indicators must be included in a State's plan? 666.100 Section 666.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... of Performance § 666.100 What performance indicators must be included in a State's plan? (a)...

  12. 20 CFR 628.100 - Scope and purpose of part 628.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Scope and purpose of part 628. 628.100 Section 628.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROGRAMS UNDER TITLE II OF THE JOB TRAINING PARTNERSHIP ACT Scope and Purpose § 628.100 Scope and purpose of part 628. (a) This part sets forth requirements...

  13. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF...' COMPENSATION ACT, AS AMENDED General Provisions Introduction § 10.0 What are the provisions of the FECA,...

  14. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF...' COMPENSATION ACT, AS AMENDED General Provisions Introduction § 10.0 What are the provisions of the FECA,...

  15. Pluto's small satellites in the context of the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; Weaver, H. A., Jr.; Porter, S.; Spencer, J. R.; Olkin, C.; Howett, C.; Grundy, W. M.; Buie, M. W.

    2015-12-01

    New Horizons is now beyond Pluto and flying deeper into the Kuiper Belt. The small satellites in the Pluto system are the closest analogues to typical Kuiper Belt Objects yet observed at close-range by the spacecraft, and we will review these observations in the greater context of the Kuiper Belt and as they pertain to New Horizons' exploration of a similarly-sized classical Kuiper Belt target in late 2018 or early 2019. Finally, we will summarize the current state-of-knowledge regarding the potential long-range and close-range Kuiper Belt targets.

  16. G. P. Kuiper's Early Studies of Planets

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.

    2005-08-01

    Gerard P. Kuiper was born on December 7, 1905; this is his centennial year. While he had an early interest in Solar System bodies, writing an extensive review about Mars for the popular Dutch astronomy journal, Hemel en Dampkring in 1931, Kuiper's first important observations began in 1944, when he discovered the atmosphere of Titan. In a letter dated February 29, 1944, to Lick Observatory director Joseph H. Moore, Kuiper noted that, ``The only reason I happened to observe the planets and the 10 brightest satellites was that they were nicely lined up in a region of the sky where I had run out of program stars (stars of large proper motion and parallax)." These spectroscopic observations were obtained with the new McDonald 82-inch telescope during a break from Kuiper's war-time work at Harvard's Radio Research Laboratory. In a letter of congratulations, his friend S. Chandrasekhar wrote, ``It is only on the impact of such discoveries that one realizes afresh the permanent value of science which no war -- not even of Hitler's -- can truly undermine. And it must be of satisfaction to you that if you took a vacation from war-work, it was only to make a fundamental discovery!" Using detectors declassified at the end of World War II, Kuiper began a study of the infrared spectra of planets and stars (with the first publication in 1947) that continued to the time of his death (December 24, 1973). Early in this work, on March 2, 1948, he wrote a lengthy letter to Henry Norris Russell in which he succinctly and enthusiastically summarized his observations and discoveries. Details in this letter give a fascinating perspective on some of the earliest physical studies of Solar System bodies, such as the detection of water ice on Saturn's rings and in the polar cap of Mars, spectral and photometric measurements of Mars' surface and atmospheric haze, and the discovery of Miranda.

  17. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  18. 20 CFR 667.100 - When do Workforce Investment Act grant funds become available?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false When do Workforce Investment Act grant funds become available? 667.100 Section 667.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... April 1 of the fiscal year for which the appropriation is made....

  19. 20 CFR 667.100 - When do Workforce Investment Act grant funds become available?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false When do Workforce Investment Act grant funds become available? 667.100 Section 667.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... April 1 of the fiscal year for which the appropriation is made....

  20. 20 CFR 655.100 - Scope and purpose of subpart B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Scope and purpose of subpart B. 655.100... Employment in the United States (H-2A Workers) § 655.100 Scope and purpose of subpart B. This subpart sets... import nonimmigrant foreign workers (H-2A workers); and (b) Whether the employment of H-2A workers...

  1. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL EMPLOYEES' COMPENSATION ACT CLAIMS FOR COMPENSATION UNDER THE FEDERAL...

  2. 20 CFR 10.100 - How and when is a notice of traumatic injury filed?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true How and when is a notice of traumatic injury filed? 10.100 Section 10.100 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL EMPLOYEES' COMPENSATION ACT CLAIMS FOR COMPENSATION UNDER THE FEDERAL...

  3. 20 CFR 661.100 - What is the workforce investment system?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What is the workforce investment system? 661.100 Section 661.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) STATEWIDE AND LOCAL GOVERNANCE OF THE WORKFORCE INVESTMENT SYSTEM UNDER TITLE I OF THE...

  4. 20 CFR 10.0 - What are the provisions of the FECA, in general?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true What are the provisions of the FECA, in general? 10.0 Section 10.0 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL EMPLOYEES' COMPENSATION ACT CLAIMS FOR COMPENSATION UNDER THE FEDERAL...

  5. 20 CFR 10.100 - How and when is a notice of traumatic injury filed?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false How and when is a notice of traumatic injury filed? 10.100 Section 10.100 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL EMPLOYEES' COMPENSATION ACT CLAIMS FOR COMPENSATION UNDER THE FEDERAL...

  6. 46 CFR 42.20-8 - Flooding standard: Type “B” vessel, 100 percent reduction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Flooding standard: Type âBâ vessel, 100 percent... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-8 Flooding standard: Type “B” vessel, 100...-11 as applied to the following flooding standards: (1) If the vessel is 225 meters (738 feet) or...

  7. 46 CFR 42.20-8 - Flooding standard: Type “B” vessel, 100 percent reduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Flooding standard: Type âBâ vessel, 100 percent... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-8 Flooding standard: Type “B” vessel, 100...-11 as applied to the following flooding standards: (1) If the vessel is 225 meters (738 feet) or...

  8. 46 CFR 42.20-8 - Flooding standard: Type “B” vessel, 100 percent reduction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Flooding standard: Type âBâ vessel, 100 percent... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-8 Flooding standard: Type “B” vessel, 100...-11 as applied to the following flooding standards: (1) If the vessel is 225 meters (738 feet) or...

  9. 46 CFR 42.20-8 - Flooding standard: Type “B” vessel, 100 percent reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding standard: Type âBâ vessel, 100 percent... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-8 Flooding standard: Type “B” vessel, 100...-11 as applied to the following flooding standards: (1) If the vessel is 225 meters (738 feet) or...

  10. 46 CFR 42.20-8 - Flooding standard: Type “B” vessel, 100 percent reduction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Flooding standard: Type âBâ vessel, 100 percent... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-8 Flooding standard: Type “B” vessel, 100...-11 as applied to the following flooding standards: (1) If the vessel is 225 meters (738 feet) or...

  11. QUAOAR: A ROCK IN THE KUIPER BELT

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.

    2010-05-10

    Here we report Wide-Field Planetary Camera 2 observations of the Quaoar-Weywot Kuiper Belt binary. From these observations, we find that Weywot is on an elliptical orbit with an eccentricity of 0.14 {+-} 0.04, a period of 12.438 {+-} 0.005 days, and a semimajor axis of 1.45 {+-} 0.08 x 10{sup 4} km. The orbit reveals a surprisingly high-Quaoar-Weywot system mass of (1.6 {+-} 0.3) x 10{sup 21} kg. Using the surface properties of the Uranian and Neptunian satellites as a proxy for Quaoar's surface, we reanalyze the size estimate from Brown and Trujillo. We find, from a mean of available published size estimates, a diameter for Quaoar of 890 {+-} 70 km. We find Quaoar's density to be {rho} = 4.2 {+-} 1.3gcm{sup -3}, possibly the highest density in the Kuiper Belt.

  12. Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie L.; Davidson, Jacqueline; Dowell, C. Darren; Schleuning, David A.; Hildebrand, Roger H.

    1999-01-01

    In this paper we present a complete summary of the data obtained with the far-infrared polarimeter, Stokes, in flights of the Kuiper Airborne Observatory. We have observed 12 Galactic clouds and have made over 1100 individual measurements at 100 micrometer and 60 micrometer. The median P for all of the 60 micrometer and 100 micrometer measurements is 3.6% and 2.6% respectively. We also present flux maps obtained simultaneously with the polarimetry.

  13. The Kuiper Belt of Four Gigayears Ago

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2008-09-01

    The Kuiper belt is largely dynamically stable on gigayear timescales, but weak orbital instabilities - also known as chaotic diffusion - have eroded its population by several tens of percent over the past 4 gigayears. Each of the dynamical subclasses in the Kuiper belt has slightly different loss rates. In this paper, I reconstruct the populations of the different subclasses as they were 4 gigayears ago, an epoch when the presently observed dynamical structure is thought to have been established. This exercise shows that the resonant/classical population ratio was significantly higher in the past, as also the scattered/classical population ratio; the resonant Twotino/Plutino population ratio was also much greater in the past. Such a historical projection is necessary for testing and constraining theories for the origin of the dynamical structure of the Kuiper belt. The differential loss rates of the various KB dynamical classes are also of interest for understanding the sources of impactors that are recorded in the impact craters on solid planetary bodies, as well as for establishing the provenance of transient small bodies, such as the Centaurs and the Jupiter family comets. This research was supported in part by grants from NASA's Origins of Solar Systems and Outer Planets Research programs.

  14. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT

    SciTech Connect

    Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.

    2011-05-20

    The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r {approx} 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.

  15. The gravitational sculpting of the Kuiper belt

    NASA Astrophysics Data System (ADS)

    Levison, H. F.; Duncan, M. J.

    1993-03-01

    Results are presented of numerical integrations over billion year time scales of the orbital evolution of more than one thousand test particles on initially low-inclination, low-eccentricity orbits within the proposed Kuiper belt beyond Neptune. Particles which eventually crossed Neptune's orbit often showed long periods (up to several billion years) of relatively low-eccentricity oscillations punctuated by a very rapid jump to Neptune-crossing eccentricity. This flux may be the ultimate source of present-day short-period comets. It is found here that there exists a correlation between Liapunov and crossing times in the Kuiper belt. None of the particles in the study with Liapunov time scales greater than about 1 Myr actually became a Neptune-crosser in 4 Gyr. An intricate structure to the region between 35 and 45 AU is found at the end of the billion year simulation. Implications for the origins of short-period comets and the detectability of objects currently in the Kuiper belt are discussed.

  16. CHAOTIC DIFFUSION OF RESONANT KUIPER BELT OBJECTS

    SciTech Connect

    Tiscareno, Matthew S.; Malhotra, Renu

    2009-09-15

    We carried out extensive numerical orbit integrations to probe the long-term chaotic dynamics of the two strongest mean-motion resonances of Neptune in the Kuiper Belt, the 3:2 (Plutinos) and 2:1 (Twotinos). Our primary results include a computation of the relative volumes of phase space characterized by large- and small-resonance libration amplitudes, and maps of resonance stability measured by mean chaotic diffusion rate. We find that Neptune's 2:1 resonance has weaker overall long-term stability than the 3:2-only {approx}15% of Twotinos are projected to survive for 4 Gyr, compared to {approx}27% of Plutinos, based on an extrapolation from our 1-Gyr integrations. We find that Pluto has only a modest effect, causing a {approx}4% decrease in the Plutino population that survives to 4 Gyr. Given current observational estimates, and assuming an initial distribution of particles proportional to the local phase-space volume in the resonance, we conclude that the primordial populations of Plutinos and Twotinos formerly made up more than half the population of the classical and resonant Kuiper Belt. We also conclude that Twotinos were originally nearly as numerous as Plutinos; this is consistent with predictions from early models of smooth giant planet migration and resonance sweeping of the Kuiper Belt and provides a useful constraint for more detailed models.

  17. 20 CFR 220.100 - Evaluation of disability for any regular employment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the Social Security Administration and as amended from time to time (20 CFR part 404, subpart P... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Evaluation of disability for any regular... RAILROAD RETIREMENT ACT DETERMINING DISABILITY Evaluation of Disability § 220.100 Evaluation of...

  18. 20 CFR 220.100 - Evaluation of disability for any regular employment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the Social Security Administration and as amended from time to time (20 CFR part 404, subpart P... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Evaluation of disability for any regular... RAILROAD RETIREMENT ACT DETERMINING DISABILITY Evaluation of Disability § 220.100 Evaluation of...

  19. 20 CFR 220.100 - Evaluation of disability for any regular employment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the Social Security Administration and as amended from time to time (20 CFR part 404, subpart P... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Evaluation of disability for any regular... RAILROAD RETIREMENT ACT DETERMINING DISABILITY Evaluation of Disability § 220.100 Evaluation of...

  20. New Constraints on the Small Kuiper Belt Object Population from High-Resolution Images of Triton

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Schenk, P. M.; Stern, S. A.

    Triton serves as an effective witness plate for Kuiper belt objects due to Triton's proximity to the Kuiper Belt and relatively young surface. Stern and McKinnon (LPSC XXX, abs. #1766, 1999; AJ 119, 945-952, 2000) showed Triton's crater populations to be consistent with a population of sub-km Kuiper belt objects with an approximately b = -3 differential power-law size index, dominance of KBO over Oort cloud impactors, and surface ages under 0.5 Ga. Here we update these findings based on the 10-frame highest resolution image sequence taken by Voyager 2 in 1989, not included in our earlier work. These images suffer degrees of image smear due to uncompensated spacecraft motion, but with careful processing and analysis, meaningful crater counts can be extracted. We focus on regions of abundant and easily discriminated primary craters, such as Cipango Planum (10o N, 35o E), a nearly featureless, rolling volcanic plain. There, craters can be confidently identified down to 1 km diameter, implying Kuiper Belt impactors below 100 m in diameter. The corresponding crater size-frequency index in the 1-to-6 km diameter range is similar to slightly steeper than that for more global counts at larger sizes, but remains consistent with b = -3.

  1. Planet Imager Discovers Young Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new

  2. New Horizons mission to Pluto and the Kuiper belt

    NASA Astrophysics Data System (ADS)

    McKinnon, W.; Stern, S.; Weaver, H.; Young, L.; Olkin, C.; New Horizons Science Team

    2014-07-01

    two 30--50 kilometer-diameter Kuiper Belt Objects (KBOs) if 1) the spacecraft is in good health, 2) at least one accessible KBO can be located from the Earth or Earth orbit in time, and 3) NASA approves an extended mission. New Horizons previously conducted a successful encounter with Jupiter and the Galilean satellites, has collected and is collecting valuable cruise science data, and became the prototype for NASA's medium-scale, PI-led New Frontiers planetary mission class. The NH flyby of the Pluto system will represent a watershed in the scientific exploration of the Solar System, by exploring a new class of planet in the Solar System --- dwarf planets --- and an accompanying, extensive satellite system. In this review talk we provide a more in-depth overview of the spacecraft, payload, and flyby plans.

  3. Surface composition of Kuiper belt object 1993SC.

    PubMed

    Brown, R H; Cruikshank, D P; Pendleton, Y; Veeder, G J

    1997-05-01

    The 1.42- to 2.40-micrometer spectrum of Kuiper belt object 1993SC was measured at the Keck Observatory in October 1996. It shows a strongly red continuum reflectance and several prominent infrared absorption features. The strongest absorptions in 1993SC's spectrum occur near 1.62, 1.79, 1.95, 2.20, and 2.32 micrometers in wavelength. Features near the same wavelengths in the spectra of Pluto and Neptune's satellite Triton are due to CH4 on their surfaces, suggesting the presence of a simple hydrocarbon ice such as CH4, C2H6, C2H4, or C2H2 on 1993SC. In addition, the red continuum reflectance of 1993SC suggests the presence of more complex hydrocarbons. PMID:9163038

  4. Surface composition of Kuiper belt object 1993SC

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.; Veeder, G. J.

    1997-01-01

    The 1.42- to 2.40-micrometer spectrum of Kuiper belt object 1993SC was measured at the Keck Observatory in October 1996. It shows a strongly red continuum reflectance and several prominent infrared absorption features. The strongest absorptions in 1993SC's spectrum occur near 1.62, 1.79, 1.95, 2.20, and 2.32 micrometers in wavelength. Features near the same wavelengths in the spectra of Pluto and Neptune's satellite Triton are due to CH4 on their surfaces, suggesting the presence of a simple hydrocarbon ice such as CH4, C2H6, C2H4, or C2H2 on 1993SC. In addition, the red continuum reflectance of 1993SC suggests the presence of more complex hydrocarbons.

  5. 20 CFR 402.100 - Exemption six: Clearly unwarranted invasion of personal privacy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Exemption six: Clearly unwarranted invasion... AVAILABILITY OF INFORMATION AND RECORDS TO THE PUBLIC § 402.100 Exemption six: Clearly unwarranted invasion of... mandatory disclosure under Exemption Six. (c) Examples. Some of the information that we frequently...

  6. 20 CFR 402.100 - Exemption six: Clearly unwarranted invasion of personal privacy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Exemption six: Clearly unwarranted invasion... AVAILABILITY OF INFORMATION AND RECORDS TO THE PUBLIC § 402.100 Exemption six: Clearly unwarranted invasion of... mandatory disclosure under Exemption Six. (c) Examples. Some of the information that we frequently...

  7. 20 CFR 402.100 - Exemption six: Clearly unwarranted invasion of personal privacy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Exemption six: Clearly unwarranted invasion... AVAILABILITY OF INFORMATION AND RECORDS TO THE PUBLIC § 402.100 Exemption six: Clearly unwarranted invasion of... mandatory disclosure under Exemption Six. (c) Examples. Some of the information that we frequently...

  8. 20 CFR 402.100 - Exemption six: Clearly unwarranted invasion of personal privacy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Exemption six: Clearly unwarranted invasion... AVAILABILITY OF INFORMATION AND RECORDS TO THE PUBLIC § 402.100 Exemption six: Clearly unwarranted invasion of... mandatory disclosure under Exemption Six. (c) Examples. Some of the information that we frequently...

  9. 20 CFR 402.100 - Exemption six: Clearly unwarranted invasion of personal privacy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Exemption six: Clearly unwarranted invasion... AVAILABILITY OF INFORMATION AND RECORDS TO THE PUBLIC § 402.100 Exemption six: Clearly unwarranted invasion of... mandatory disclosure under Exemption Six. (c) Examples. Some of the information that we frequently...

  10. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use... analysis or that may have an impact upon plant design (such as maximum probable wind speed...

  11. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use... analysis or that may have an impact upon plant design (such as maximum probable wind speed...

  12. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use... analysis or that may have an impact upon plant design (such as maximum probable wind speed...

  13. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use... analysis or that may have an impact upon plant design (such as maximum probable wind speed...

  14. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use... analysis or that may have an impact upon plant design (such as maximum probable wind speed...

  15. 33 CFR 100.20 - Action on application for event assigned to State regulation by Coast Guard-State agreement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... assigned to State regulation by Coast Guard-State agreement. 100.20 Section 100.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.20 Action on application for event assigned to State regulation by Coast...

  16. Phobos from 5,800 Kilometers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took two images of the larger of Mars' two moons, Phobos, within 10 minutes of each other on March 23, 2008. This is the second, taken from a distance of about 5,800 kilometers (about 3,600 miles). The illuminated part of Phobos seen in the images is about 21 kilometers (13 miles) across.

    The most prominent feature in the images is the large crater Stickney in the lower right. With a diameter of 9 kilometers (5.6 miles), it is the largest feature on Phobos. A series of troughs and crater chains is obvious on other parts of the moon. Although many appear radial to Stickney in this image, recent studies from the European Space Agency's Mars Express orbiter indicate that they are not related to Stickney. Instead, they may have formed when material ejected from impacts on Mars later collided with Phobos. The lineated textures on the walls of Stickney and other large craters are landslides formed from materials falling into the crater interiors in the weak Phobos gravity (less than one one-thousandth of the gravity on Earth).

    In the full-resolution version of this image, a pixel encompasses 5.8 meters (19 feet), providing a resolution (smallest visible feature) of about 15 meters (about 50 feet). Previous pictures from NASA's Mars Global Surveyor are of slightly higher resolution, at 4 meters (13 feet) per pixel. However, the HiRISE images have higher signal-to-noise, making the new data some of the best ever for Phobos.

    Although the image is displayed here in black and white, data from HiRISE's three color channels were used to give higher signal-to-noise, thereby increasing detail. The image is in the HiRISE catalog as PSP_007769_9015.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin

  17. Phobos from 5,800 Kilometers (Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter took two images of the larger of Mars' two moons, Phobos, within 10 minutes of each other on March 23, 2008. This is the second, taken from a distance of about 5,800 kilometers (about 3,600 miles). It is presented in color by combining data from the camera's blue-green, red, and near-infrared channels.

    The illuminated part of Phobos seen in the images is about 21 kilometers (13 miles) across. The most prominent feature in the images is the large crater Stickney in the lower right. With a diameter of 9 kilometers (5.6 miles), it is the largest feature on Phobos.

    The color data accentuate details not apparent in black-and-white images. For example, materials near the rim of Stickney appear bluer than the rest of Phobos. Based on analogy with materials on our own moon, this could mean this surface is fresher, and therefore younger, than other parts of Phobos.

    A series of troughs and crater chains is obvious on other parts of the moon. Although many appear radial to Stickney in this image, recent studies from the European Space Agency's Mars Express orbiter indicate that they are not related to Stickney. Instead, they may have formed when material ejected from impacts on Mars later collided with Phobos. The lineated textures on the walls of Stickney and other large craters are landslides formed from materials falling into the crater interiors in the weak Phobos gravity (less than one one-thousandth of the gravity on Earth).

    In the full-resolution version of this image, a pixel encompasses 5.8 meters (19 feet), providing a resolution (smallest visible feature) of about 15 meters (about 50 feet). Previous pictures from NASA's Mars Global Surveyor are of slightly higher resolution, at 4 meters (13 feet) per pixel. However, the HiRISE images have higher signal-to-noise, making the new data some of the best ever for Phobos. This image is in the Hi

  18. Kuiper belt structure around nearby super-Earth host stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Matrà, Luca; Marmier, Maxime; Greaves, Jane S.; Wyatt, Mark C.; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C.; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stéphane

    2015-05-01

    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10-20 M⊕ versus 3-5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system's scattered disc. We discuss alternative scenarios and possible means to distinguish among them.

  19. Stress dependent magnetostriction in highly magnetostrictive Fe100-xGax, 20

    NASA Astrophysics Data System (ADS)

    Clark, A. E.; Yoo, J.-H.; Cullen, J. R.; Wun-Fogle, M.; Petculescu, G.; Flatau, A.

    2009-04-01

    Saturation magnetostriction measurements along the [100] axis of Fe100-xGax single crystal rods (˜25×6mm diameter) were observed to have a linear dependence on [100] applied compressive stresses for 20100] magnetostriction. For x =20.9 and 29.5, the stress T dependencies of the saturation magnetostrictions were found to be 0.136×10-6TMPa-1 and 0.281×10-6TMPa-1, respectively. Values of the third order elastic constants, c3's, calculated from these values agree both in sign and magnitude with those obtained from stress dependent measurements of Young's moduli and Poisson's ratios. In sum, we conclude that the Fe100-xGax magnetostriction for 0

  20. Consequences of planetary migration: Kuiper belt dynamics and atmospheric escape from hot Jupiters

    NASA Astrophysics Data System (ADS)

    Murray-Clay, Ruth Ann

    The current resonance structure of the Kuiper belt suggests that during the late stages of planet formation, Neptune migrated outward as it scattered residual planetesimal debris. Extrasolar planetary systems also show evidence for planetary migration. Approximately 1/5 of the extrasolar planets discovered to date are "hot Jupiters," which likely exchanged angular momentum with gas disks, migrating large distances inward to reach their current semi-major axes of ~0.05 AU. In this thesis, I discuss three consequences of planetary migration. (1) During its migration, Neptune captured Kuiper belt objects (KBOs) into mean motion resonances. The current spatial distribution of KBOs in a particular resonance, the 2:1, acts as a celestial speedometer--fast planetary migration generates a larger population of 2:1 resonant KBOs trailing rather than leading Neptune on the sky. We provide an explanation of this phenomenon for the first time. Central to our understanding is how planetary migration shifts the equilibrium points of the superposed direct and indirect potentials felt by a KBO. The currently observed distribution of 2:1 KBOs excludes total migration times < 20 Myr with >99.65% confidence and is statistically consistent with the even population generated by slow migration. However, these observations are beset by systematic uncertainties. Observations with new telescopes such as PanSTARRS or LSST will tell us how quickly Neptune could have migrated. (2) Neptune's migration, powered by scattering planetesimal debris, was stochastic ("noisy"). Extreme stochasticity defeats resonance capture. We construct a theory analogous to Brownian motion for how a planet's orbital semi-major axis fluctuates in response to random planetesimal scatterings. The degree of stochasticity in Neptune's migration depends both on the sizes of the planetesimals driving migration and on their orbital elements and cannot currently be computed using N-body simulations. We find that capture of

  1. 20 CFR 664.620 - Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? Yes, the... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? 664.620 Section...

  2. 20 CFR 664.620 - Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? Yes, the... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? 664.620 Section...

  3. 20 CFR 664.620 - Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? Yes, the summer... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? 664.620 Section...

  4. 20 CFR 664.620 - Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? Yes, the... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? 664.620 Section...

  5. The small numbers of large Kuiper Belt objects

    SciTech Connect

    Schwamb, Megan E.; Brown, Michael E.; Fraser, Wesley C.

    2014-01-01

    We explore the brightness distribution of the largest and brightest (m(R) < 22) Kuiper Belt Objects (KBOs). We construct a luminosity function of the dynamically excited or hot Kuiper Belt (orbits with inclinations >5°) from the very brightest to m(R) = 23. We find for m(R) ≲ 23, a single slope appears to describe the luminosity function. We estimate that ∼12 KBOs brighter than m(R) ∼ 19.5 are present in the Kuiper Belt today. With nine bodies already discovered this suggests that the inventory of bright KBOs is nearly complete.

  6. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David (Principal Investigator)

    1997-01-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  7. Into the Kuiper Belt: New Horizons Post-Pluto

    NASA Astrophysics Data System (ADS)

    Harrison Parker, Alex; Spencer, John; Benecchi, Susan; Binzel, Richard; Borncamp, David; Buie, Marc; Fuentes, Cesar; Gwyn, Stephen; Kavelaars, JJ; Noll, Keith; Petit, Jean-Marc; Porter, Simon; Showalter, Mark; Stern, S. Alan; Sterner, Ray; Tholen, David; Verbiscer, Anne; Weaver, Hal; Zangari, Amanda

    2015-11-01

    New Horizons is now beyond Pluto and flying deeper into the Kuiper Belt. In the summer of 2014, a Hubble Space Telescope Large Program identified two candidate Cold Classical Kuiper Belt Objects (KBOs) that were within reach of New Horizons' remaining fuel budget. Here we present the selection of the Kuiper Belt flyby target for New Horizons' post-Pluto mission, our state of knowledge regarding this target and the potential 2019 flyby, the status of New Horizons' targeting maneuver, and prospects for near-future long-range observations of other KBOs.

  8. Spectroscopy of Kuiper Belt Objects and Centaurs

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Brown, Robert H.; Pendleton, Y. J.; Veeder, Glenn J.

    1998-01-01

    Recent near-infrared spectroscopy of Kuiper Belt objects and Centaurs indicates considerable spectral diversity among them. Some have entirely bland spectra with no discernible spectral features (e.g., Chiron), while 5145 Pholus has a very active spectrum with absorption bands of H2O, CH3OH, and probably the mineral olivine present. In addition, the strong red color of Pholus indicates the presence of organic solids. Among the KBOs, 1993 SC has an active spectrum with the probably presence of hydrocarbons and possibly the ices of H2O and N2. The diversity among these spectra and the implications that such diversity has for models of the formation of the formation of the planets will be discussed.

  9. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  10. Update on the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Tarter, Jill

    2002-01-01

    In August 2000 representatives of 24 groups in 10 countries signed a memorandum of understanding to continue cooperative technology development on five different antenna concepts intended to enable the cost-effective construction of a radio telescope array with one million square meters of collecting area; the Square Kilometer Array (SKA). The goal of this MOA is to find innovative ways of solving the many technical challenges posed by this mammouth array, and to drive down the costs so that this can realistically be afforded as a groundbased, international project for radio astronomy. The science drivers for this large instrument are diverse and very exciting; SETI being one of them. However, this means that the technical specifications are extremely challenging. There is historical reason to believe that these goals can be met. For the past six decades, the capability of radio astronomy facilities has been improving exponentially, and the SKA represents the logical extrapolation of this trend. In 2005 a selection of one or more of the current antenna concepts will be made, along with the choice of a suitable site and configuration for the array. Final detailed designs and prototyping will follow. Construction could start by the end of this decade. The SKA will permit SETI observations over a wider range of frequencies, and will offer a sensitivity that is two orders of magnitude better than current arrays. This improved performance justifies all the effort needed to overcome the technological, political, and bureaucratic challenges inherent in this international mega-science project.

  11. An Access To The Unknown Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Roques, Francoise

    2007-10-01

    The size distribution in the Kuiper Belt is unknown for faint objects. Current differential size distribution estimates give a slope of 4.5+- 0.2 for large end until mR=26 (Petit et al., 2007) but the population of fainter objects (small and far) is unknown. Observations with the HST (Bernstein et al., 2004) with a limiting magnitude de 28.5 could indicate a very shallow size distribution for small KBOs. The estimated slope would much smaller than expected from collisional equilibrium. It would also be smaller than the estimation of small KBOs numbers deduced from analyse of Triton cratering (Stern and McKinnon, 2000). It will be very difficult to improve these contradictory results from direct observations. The next advance could come from occultations of background targets. Three independant observations have announced occultations detections of KBOs. Observations of the bright X target Scorpius X1 by the satellite RXTE reveals 12 events compatible with KBOs occultations (Chang et al. 2007). Several occultations detections have been announced by Georgevits et al. (2006). The conditions of these two observations do not allow to measure the distance of the occulting objects. Three events were detected by Roques et al, 2006 but none is in the known Kuiper region. Occultation is a non reproductible phenomenon. Reliable results can only be obtained from simultaneous detection from two nearby telescope, or by signature of diffraction (expected with a very small target star and good temporal definition of the light curve) or by statistical signature of a large events data set (correlation with direction of observation or with the ecliptic latitude). Moreover, it is very difficult to compare results from different instruments in differents configurations. Results from three research campaigns with Ultracam are presented with an attempt of comparison with other results and some remarks about instruments best adapted for occultations works.

  12. The Relative Sizes of Kuiper Belt Binaries

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Levison, H. F.; Stephens, D. C.

    2006-09-01

    Nearly 40 binary and multiple systems are now known in the Kuiper Belt. Most of these consist of similar-sized components; for some it is problematic to define a primary and a secondary. Systems with faint companions do exist. In the Pluto system, the most extreme example known, the two newly identified satellites are approximately 9 magnitudes fainter than Pluto. Observational bias favors the detection of bright secondaries, especially in low or modest S/N observations, a common occurrence in the observation of transneptunian objects. Because of this bias, it has not been clear whether the apparent preference for similar-sized components in binaries is real or an observational artifact. In the last year we have made very deep observations of 61 Centaurs and TNOs using the Hubble Space Telescope High Resolution Camera. These observations have 3-sigma detection limits of visual magnitude 27.5 or fainter. This is the first large data set capable of assessing the relative frequency of symmetric (similar brightness) and asymmetric (large brightness differences) binaries. Our data show a clear and significant preference for companions that have a 1 magnitude or smaller difference compared to the primary. This result confirms the qualitative prediction of the chaos-assisted model for binary formation (Astakhov et al. 2005, MRAS 360, 401) and supports the contention that most of the bound systems in the Kuiper Belt formed via mutual capture. Asymmetric systems may, in contrast, be the result of collisional formation as is postulated for the Pluto system (Stern et al. 2006, Nature, 439, 946). Based on observations made with the NASA/ESA Hubble Space Telescope program #10514. Support for program #10514 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. INCLINATION MIXING IN THE CLASSICAL KUIPER BELT

    SciTech Connect

    Volk, Kathryn; Malhotra, Renu

    2011-07-20

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  14. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1999-01-01

    The objective of this proposal was to mount a ground-based search for Kuiper Belt objects near the trajectory of the NASA Pluto Express spacecraft. The high density of Kuiper Belt objects established from work on Mauna Kea makes it probable that one or more bodies can be visited by Pluto Express after its encounter with Pluto. The work was funded during its first year through NASA HQ. The second year was funded through Goddard. The third year was never funded.

  15. Discovery of the candidate Kuiper belt object 1992 QB1

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Luu, Jane

    1993-01-01

    The discovery of a new faint object in the outer solar system, 1992 QB1, moving beyond the orbit of Neptune is reported. It is suggested that the 1992 QB1 may represent the first detection of a member of the Kuiper belt (Edgworth, 1949; Kuiper, 1951), the hypothesized population of objects beyond Neptune and a possible source of the short-period comets, as suggested by Whipple (1964), Fernandez (1980), and Duncan et al. (1988).

  16. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  17. COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS

    SciTech Connect

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J. E-mail: Stephen.Tegler@nau.ed

    2010-07-15

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  18. Temperature dependence and origin of InP(100) reflectance anisotropy down to 20 K

    NASA Astrophysics Data System (ADS)

    Visbeck, S.; Hannappel, T.; Zorn, M.; Zettler, J.-T.; Willig, F.

    2001-06-01

    InP(100) surfaces were investigated by reflectance anisotropy spectroscopy (RAS) in the temperature range between 20 and 840 K. Surfaces were prepared via metal-organic chemical vapor deposition (MOCVD) resulting in P-terminated (2×1)-like and In-terminated (2×4) reconstructions. Additionally, intermediate states of different phosphorus coverage were prepared. RA spectra were recorded both inside the MOCVD reactor and in an ultrahigh vacuum chamber. At low temperatures, features in the RA spectra sharpened significantly due to the reduced lattice vibrations and electron-phonon interactions. The temperature-dependent energy shift of specific RAS features was determined between 20 and 840 K, and fitted with a model containing the Bose-Einstein occupation factor for phonons. The respective fitting parameters were compared to those of the InP bulk critical-point transitions nearby. Careful data analysis provided evidence for surface transitions and surface modified bulk transitions in the RA spectra.

  19. Kilometer-scale Kaiser effect identified in Krafla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Heimisson, Elías Rafn; Einarsson, Páll; Sigmundsson, Freysteinn; Brandsdóttir, Bryndís.

    2015-10-01

    The Krafla rifting episode in 1975-1984, consisted of around 20 inflation-deflation events within the Krafla caldera, where magma accumulated during inflation periods and was intruded into the transecting fissure swarm during brief periods of deflation. We reanalyze geodetic and seismic data from the rifting episode and perform a time-dependent inversion of a leveling time series for a spherical point source in an elastic half-space. Using the volume change as a proxy for stress shows that during inflation periods the seismicity rate remains low until the maximum inflation of previous cycles is exceeded thus exhibiting the Kaiser effect. Our observations demonstrate that this phenomenon, commonly observed in small-scale experiments, is also produced in kilometer-scale volcanic deformation. This behavior sheds new light on the relationship between deformation and seismicity of a deforming volcano. As a consequence of the Kaiser effect, a volcano may inflate rapidly without significant changes in seismicity rate.

  20. Design study for a superconducting proton linac from 20 to 100 MeV

    SciTech Connect

    Wangler, T.P.; Garnett, R.; Krawczyk, F.; Billen, J.; Bultman, N.; Christensen, K.; Fox, W.; Wood, R.

    1993-07-01

    Advances in superconducting radiofrequency technology during the past 15 years have made possible the large-scale application of superconducting niobium accelerators. So far this development has been restricted to rather low-current electron and heavy-ion accelerators. In addition to the power savings, the improved capability of superconducting cavities to provide acceleration of high currents with low beam losses, which follows from the ability to use larger beam apertures without a large economic penalty from increased rf losses, could make superconducting proton linacs very attractive for high-intensity applications, where activation of the accelerator is a major concern. During the past year, at Los Alamos, the authors have been looking at a possible upgrade to the 800-MeV LAMPF proton accelerator, to provide higher intensity injection into a new storage ring for a new high-intensity pulsed neutron source. As part of this upgrade to the LAMPF accelerator, the entire linac below 100 MeV would be rebuilt to provide improved beam quality, improved reliability, and to include funneling at 20 MeV for higher beam currents. Both a room-temperature and a superconducting option are being considered for the section from 20 to 100 MeV. At present, this section is a 201.25 MHz room-temperature copper drift-tube linac (DTL). For this new upgrade scenario the frequency from 20 to 100 MeV was fixed at 805 MHz. The new duty factor is assumed to be 7.2%, and the authors show some results at two currents, 30 mA and 150 mA, that span the range of interest. Their superconducting linac concept consists of individual multicell cavities, each driven by a klystrode. Focusing would be provided by superconducting quadrupole lenses between cavities. In the remainder of the paper they describe their study to evaluate the potential of a superconducting proton linac section for this application, and address some of the many design choices.

  1. Chiron and the Centaurs: Escapees from the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Campins, Humberto

    1996-01-01

    The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt.

  2. 20 CFR 664.620 - Do the core indicators described in 20 CFR 666.100(a)(3) apply to participation in summer...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Do the core indicators described in 20 CFR... described in 20 CFR 666.100(a)(3) apply to participation in summer employment activities? Yes, the summer... Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR YOUTH ACTIVITIES UNDER...

  3. The Warped Plane of the Classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Choi, Hyomin

    2008-07-01

    By numerically integrating the orbits of the giant planets and of test particles over a period of four billion years, we follow the evolution of the location of the midplane of the Kuiper belt. The Classical Kuiper belt conforms to a warped sheet that precesses with a 1.9 Myr period. The present-day location of the Kuiper belt plane can be computed using linear secular perturbation theory: the local normal to the plane is given by the theory's forced inclination vector, which is specific to every semimajor axis. The Kuiper belt plane does not coincide with the invariable plane, but deviates from it by up to a few degrees in stable zones. For example, at a semimajor axis of 38 AU, the local Kuiper belt plane has an inclination of 1.9 degrees and a longitude of ascending node of 149.9 degrees when referred to the mean ecliptic and equinox of J2000. At a semimajor axis of 43 AU, the local plane has an inclination of 1.9 degrees and a nodal longitude of 78.3 degrees. Only at infinite semimajor axis does the Kuiper belt plane merge with the invariable plane, whose inclination is 1.6 degrees and nodal longitude is 107.7 degrees. A Classical Kuiper belt object keeps its inclination relative to the Kuiper belt plane nearly constant, even while the plane departs from the trajectory predicted by linear theory. The constancy of relative inclination reflects the undamped amplitude of free oscillation; that is, the homogeneous solution to the forced harmonic oscillator equation retains constant amplitude, even while the inhomogeneous solution cannot be written down accurately because the planetary forcing terms are chaotic. Current observations of Classical Kuiper belt objects are consistent with the plane being warped by the giant planets alone, but the sample size will need to increase by a few times before confirmation exceeds 3σ in confidence. In principle, differences between the theoretically expected plane and the observed plane could be used to infer as yet unseen

  4. USING KUIPER BELT BINARIES TO CONSTRAIN NEPTUNE'S MIGRATION HISTORY

    SciTech Connect

    Murray-Clay, Ruth A.; Schlichting, Hilke E.

    2011-04-01

    Approximately 10%-20% of all Kuiper Belt objects (KBOs) occupy mean-motion resonances with Neptune. This dynamical configuration likely resulted from resonance capture as Neptune migrated outward during the late stages of planet formation. The details of Neptune's planetesimal-driven migration, including its radial extent and the concurrent eccentricity evolution of the planet, are the subject of considerable debate. Two qualitatively different proposals for resonance capture have been proposed-migration-induced capture driven by smooth outward evolution of Neptune's orbit and chaotic capture driven by damping of the planet's eccentricity near its current semi-major axis. We demonstrate that the distribution of comparable-mass, wide-separation binaries occupying resonant orbits can differentiate between these two scenarios. If migration-induced capture occurred, this fraction records information about the formation locations of different populations of KBOs. Chaotic capture, in contrast, randomizes the orbits of bodies as they are placed in resonance. In particular, if KBO binaries are formed by dynamical capture in a protoplanetary disk with a surface mass density typical of observed extrasolar disks, then migration-induced capture produces the following signatures. The 2:1 resonance should contain a dynamically cold component, with inclinations less than 5{sup 0}-10{sup 0}, having a binary fraction comparable to that among cold classical KBOs. If the 3:2 resonance also hosts a cold component, its binary fraction should be 20%-30% lower than in the cold classical belt. Among cold 2:1 (and if present 3:2) KBOs, objects with eccentricities e < 0.2 should have a binary fraction {approx}20% larger than those with e>0.2. Other binary formation scenarios and disk surface density profiles can generate analogous signatures but produce quantitatively different results. Searches for cold components in the binary fractions of resonant KBOs are currently practical. The

  5. High-Latitude Ionospheric Structuring at Kilometer Scales

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Datta-Barua, S.; Su, Y.; Deshpande, K.; Hampton, D.

    2014-12-01

    Ionospheric observations in the polar and auroral zones have been made regularly with radar chains and optical imaging at larger spatio-temporal cadence. However, the observation of kilometer scale variations at sub-second cadence has not been practically realizable until recently. Quantifying the irregularities at these sizes and scales is necessary for an understanding of the dynamics leading to fine scale phenomena in the high latitude environment. We present measurements of kilometer-scale plasma variations made at the northern auroral zone using an array of specialized Global Positioning System (GPS) receivers. These 6 CASES receivers (plus 1 from ASTRA, LLC) are sited at the Poker Flat Research Range, Alaska, and have been collecting data since late 2013. The array monitors for ionospheric scintillations, fluctuations in phase and amplitude of the GPS L-band signals received due to ionospheric variations. The array spans 2 km east-west and about 1 km north-south, with a variety of intermediate baseline lengths down to about 200 m. In addition to measuring amplitude and phase scintillation with the S4 and sigma_phi indices at 100-s cadence, these receivers also record 100 Hz raw power and phase measurements from GPS baseband signal processing. These low-rate data are publicly available for download through a web portal at http://apollo.tbc.iit.edu/~spaceweather/ with high rate available upon request. A detailed case study is presented from the December 8, 2013, 0300-0400 UT time period. During this period several interesting scintillation periods were observed. We use array cross-correlation processing methods to first estimate direct ground parameters of the array including a) estimate the 2D drift velocity on the ground; b) estimate a de-correlation (or turbulent) speed; and c) parameters of correlation elliptical coordinates (axial ratio and tilt angle). We then use these results and cross-correlation measurements to derive the ground 2D spatial spectrum of

  6. Photographer : JPL Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 1 million kilometers Voyager 2 completed a dramatic 10 hour time lapse photo sequence to monitor the active volcanos on Jupiter's moon Io following the spacecraft's closest approach to Jupiter. This picture is one of about 200 images that will be used to generate a time lapse motion picture to illustrate Io's volcanic activity. On the bright limb, two of the plumes (P-5 & P-6) discovered in March by Voyager 1 are again visible. The plumes are spewing materials to a height of about 100 kilometers.

  7. In-situ monitoring of InP(100) and GaP(100) interfaces and characterization with RDS at 20 K

    NASA Astrophysics Data System (ADS)

    Hannappel, T.; Töben, L.; Möller, K.; Willig, F.

    2001-11-01

    MOVPE-preparation of highly ordered InP(100) and GaP(100) surfaces was monitored with in-situ reflectance difference spectroscopy (RDS). Specific ordered P-terminated and ordered cation-terminated surface reconstructions were identified with specific structured RD spectra with the highest peaks. After contamination-free transfer of the samples to UHV, RDS measurements were performed also at 20 K. The experimental RD spectrum for the In-terminated, (2×4) reconstructed InP(100) surface shows a remarkable similarity to a recently published theoretical spectrum, whereas there is only moderate similarity between the experimental RD spectrum for the (2×4) reconstructed Ga-terminated GaP(100) surface and a recently proposed theoretical spectrum.

  8. Neptune's eccentricity and the nature of the kuiper belt

    PubMed

    Ward; Hahn

    1998-06-26

    The small eccentricity of Neptune may be a direct consequence of apsidal wave interaction with the trans-Neptune population of debris called the Kuiper belt. The Kuiper belt is subject to resonant perturbations from Neptune, so that the transport of angular momentum by density waves can result in orbital evolution of Neptune as well as changes in the structure of the Kuiper belt. In particular, for a belt eroded out to the vicinity of Neptune's 2:1 resonance at about 48 astronomical units, Neptune's eccentricity can damp to its current value over the age of the solar system if the belt contains slightly more than an earth mass of material out to about 75 astronomical units. PMID:9641913

  9. Neptune's Eccentricity and the Nature of the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1998-01-01

    The small eccentricity of Neptune may be a direct consequence of apsidal wave interaction with the trans-Neptune population of debris called the Kuiper belt. The Kuiper belt is subject to resonant perturbations from Neptune, so that the transport of angular momentum by density waves can result in orbital evolution of Neptune as well as changes in the structure of the Kuiper belt. In particular, for a belt eroded out to the vicinity of Neptune's 2:1 resonance at about 48 astronomical units, Neptune's eccentricity can damp to its current value over the age of the solar system if the belt contains slightly more than an earth mass of material out to about 75 astronomical units.

  10. K-(alpha) Radiography at 20-100 keV Using Short-Pulse Lasers

    SciTech Connect

    Park, H S; Chambers, D; Clarke, R; Eagleton, R; Giraldez, E; Goldsack, T; Heathcote, R; Izumi, N; Key, M; King, J; Koch, J; Landen, O L; Mackinnon, A; Nikroo, A; Patel, P; Pasley, J; Remington, B; Robey, H; Snavely, R; Steinman, D; Stephenson, R; Stoeckl, C; Storm, M; Tabak, M; Theobald, W; Town, R J

    2005-08-29

    X-ray radiography is an important tool for diagnosing and imaging planar and convergent hydrodynamics phenomena for laser experiments. Until now, hydrodynamics experiments at Omega and NIF utilize E{sub x-ray} < 9 keV backlighter x-rays emitted by thermal plasmas. However, future experiments will need to diagnose larger and denser targets and will require x-ray probes of energies from 20-100 keV and possibly up to 1 MeV. Hard K-{alpha} x-ray photons can be created through high-energy electron interactions in the target material after irradiation by petawatt-class high-intensity-short-pulse lasers with > 10{sup 17} W/cm{sup 2}. We have performed several experiments on the JanUSP, and the Vulcan 100TW, and Vulcan Petawatt lasers to understand K-{alpha} sources and to test radiography concepts. 1-D radiography using an edge-on foil and 2-D radiography using buried wires and cone-fiber targets were tested. We find that 1-D thin edge-on foils can have imaging resolution better than 10 {micro}m. Micro volume targets produce bright sources with measured conversion efficiency from laser energy to x-ray photons of {approx} 1 x 10{sup -5}. This level of conversion may not be enough for 2-D point projection radiography. A comparison of our experimental measurements of small volume sources with the LSP/PIC simulation show similar K-{alpha} creation profiles but discrepancy in absolute yields.

  11. FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE

    SciTech Connect

    Nesvorny, David; Youdin, Andrew N.; Richardson, Derek C.

    2010-09-15

    A large fraction of {approx}100 km class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable masses and a wide separation of components. A favored model for their formation is that they were captured during the coagulation growth of bodies in the early KB. However, recent studies have suggested that large, {approx}>100 km objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here, we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW{sub 322} and multiples such as (47171) 1999 TC{sub 36}. Notably, the gravitational collapse is capable of producing {approx}100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses ({approx}80% have a secondary-over-primary radius ratio >0.7) and their separation ranges from {approx}1000 to {approx}100,000 km. The binary orbits have eccentricities from e = 0 to {approx}1, with the majority having e < 0.6. The binary orbit inclinations with respect to the initial angular momentum of the swarm range from i = 0 to {approx}90{sup 0}, with most cases having i < 50{sup 0}. The total binary mass represents a characteristic fraction of the collapsing swarm's total initial mass, M{sub tot}, suggesting M{sub tot} equivalent to that of a radius {approx}100-250 km compact object. Our binary formation mechanism also implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data. We discuss the applicability of our results to the Pluto-Charon, Orcus-Vanth, (617) Patroclus

  12. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  13. ARTIST'S VIEW OF KUIPER BELT OBJECT 1998 WW31

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's view of a Kuiper Belt binary object, called 1998 WW31. These icy bodies orbit each other at the fringe of our solar system. The illustration depicts one member of the duo in the foreground; its companion - the dark, round object - is in the background. The objects are about the same size. Both are illuminated from behind by the Sun [the white dot at upper left]. Like other Kuiper Belt objects, this duo orbits the Sun, completing a circuit every 301 years. The planet Pluto orbits the Sun every 248 years. Credit: NASA and G. Bacon (Space Telescope Science Institute)

  14. Test of IR arrays on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Russell, R. W.; Rossano, G. S.; Lynch, D. K.; Colon-Bonet, G. T.; Hackwell, J. A.

    1986-01-01

    NASA's Kuiper Airborne Observatory, which is a C-141 transport aircraft equipped with a 90-cm, all-reflective altazimuth telescope, has been engaged in the Kuiper Infrared Technology Experiment. Attention is presently given to the Experiment's flight series for state-of-the-art two-dimensional, 500-element arrays that use either blocked impurity band or bulk silicon devices. The switched FET readout scheme used on the three arrays flown thus far yields exceptionally low crosstalk. System sensitivities are found to be sufficient for the detection of both pointlike and extended sources; several of each type have been used in staring and scanning experiments.

  15. 20 CFR 403.100 - When can an SSA employee testify or produce information or records in legal proceedings?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CFR parts 401 and 402. A request for both testimony and records or other information is considered two... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false When can an SSA employee testify or produce information or records in legal proceedings? 403.100 Section 403.100 Employees' Benefits SOCIAL...

  16. 20 CFR 660.100 - What is the purpose of title I of the Workforce Investment Act of 1998?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What is the purpose of title I of the Workforce Investment Act of 1998? 660.100 Section 660.100 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) INTRODUCTION TO THE REGULATIONS FOR WORKFORCE INVESTMENT...

  17. The New Horizons Mission to Pluto and the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Weaver, H. A.; Stern, S. A.; New Horizons Science; Engineering Team

    New Horizons, which initiates the NASA New Frontiers program of mid-sized missions, will provide the first scientific reconnaissance of the Pluto-Charon system and is scheduled for launch in January 2006. An encounter with Jupiter at a flyby distance of ˜32-45 RJ about 13 months after launch provides a gravity boost for the spacecraft's journey to Pluto and practice for the Pluto encounter, in addition to providing an opportunity to perform a valuable set of scientific measurements within the jovian system. New Horizons carries a sophisticated suite of instruments to perform ultraviolet and infrared spectroscopy, panchromatic and color optical imaging, and charged particle and dust measurements, all within a spacecraft having a total mass of ˜465 kg and total power output of ˜210 W at the time of Pluto encounter in July 2015. The primary scientific objectives of the New Horizons are to characterize the global geology and morphology of Pluto and Charon, map the surface composition of Pluto and Charon, and characterize the neutral atmosphere and its escape rate, but many other important scientific objectives will be addressed as well. New Horizons has the capability to image Pluto with a resolution exceeding that provided by the Hubble Space Telescope for at least 90 days prior to closest approach at a distance of ˜10,000 km from the surface, at which time a resolution of ˜100 m will be achieved for selected regions near the terminator. After encounter, the spacecraft will pass through the shadows of both Pluto and Charon, which enables radio and ultraviolet occultation measurements of their atmospheres. If an extended mission phase is approved, the spacecraft will be re-targeted to encounter one or more Kuiper belt objects (KBOs), roughly 3 years after the Pluto encounter at a heliocentric distance of ˜42 AU. The scientific objectives for the KBO encounters are similar to those for the Pluto encounter.

  18. NEP for a Kuiper Belt Object Rendezvous Mission

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID I.; WRIGHT,STEVEN A.

    1999-11-03

    Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present

  19. Size and Albedo of the Kuiper Belt Object 55636

    NASA Astrophysics Data System (ADS)

    Elliot, James L.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Adams, E. R.; Brothers, T. C.; Gulbis, A. A. S.; Levine, S. E.; Lockhart, M.; Zangari, A. M.; Babcock, B. A.; DuPré, K.; Pasachoff, J. M.; Souza, S. P.; Rosing, W.; Secrest, N.

    2010-10-01

    Due to the small sizes and great distances of Kuiper belt objects (KBOs), it is difficult to determine their diameters. We report multi-chord observations of a KBO stellar occultation, which occurred on 2009 October 9 (Elliot, J. L., et al. 2010, Nature, 465, 897). We set up a network of 21 telescopes at 18 stations, spanning a distance of 5920 km perpendicular to the predicted shadow path for the 2009 October 9 stellar occultation by the KBO 55636. Of these stations, seven could not observe due to weather, nine reported non-detections, and two observed an occultation, both in Hawai'i: the 2.0-m Faulkes North telescope at Haleakala and a 0.36-m portable telescope at the Visitor Information Station at the Onizuka Center for International Astronomy on Mauna Kea (located at the Mauna Kea Mid Level). We find that 55636 (2002 TX300), which is a member of the water-ice rich Haumea KBO collisional family (Brown, M. E., et al. 2007, Nature, 446, 294), has a mean radius of 143 ± 5 km (for a circular solution). Allowing for possible elliptical shapes we find a geometric albedo of 0.88 +0.15/-0.06 in the V photometric band. This firmly establishes that 55636 is smaller than previously thought and like its parent body, Haumea, is among the most highly reflective objects in the Solar System. Dynamical calculations by two groups indicate that the collision that created 55636 occurred at least 1 Gyr ago (Ragozzine, D., & Brown, M. E. 2007, AJ, 134, 2160; Schlichting, H. E., & Sari, R. 2009, ApJ, 700, 1242), which implies either that 55636 has an active resurfacing mechanism, or that fresh water ice in the outer solar system can persist for Gyr timescales. This work was supported, in part by NASA Grants NNX10AB27G (MIT), NNX08AO50G (Williams College), and NNH08AI17I (USNO-FS).

  20. Venus - 600 Kilometer Segment of Longest Channel on Venus

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This compressed resolution radar mosaic from Magellan at 49 degrees north latitude, 165 degrees east longitude with dimensions of 460 by 460 kilometers (285 by 285 miles), shows a 600 kilometers (360 mile segment of the longest channel discovered on Venus to date. The channel is approximately 1.8 kilometers (1.1 miles) wide. At more than 7,000 kilometers (4,200 miles) long, it is several hundred kilometers longer than the Nile River, Earth's longest river, thus making it the longest known channel in the solar system. Both ends of the channel are obscured, however, so its original length is unknown. The channel was initially discovered by the Soviet Venera 15-16 orbiters which, in spite of their one kilometer resolution, detected more than 1,000 kilometers (620 miles) of the channel. These channel-like features are common on the plains of Venus. In some places they appear to have been formed by lava which may have melted or thermally eroded a path over the plains' surface. Most are 1 to 3 kilometers (0.6 to 2 miles) wide. They resemble terrestrial meandering rivers in some aspects, with meanders, cutoff bows and abandoned channel segments. However, Venus channels are not as tightly sinuous as terrestrial rivers. Most are partly buried by younger lava plains, making their sources difficult to identify. A few have vast radar-dark plains units associated with them, suggesting large flow volumes. These channels, with large deposits appear to be older than other channel types, as they are crossed by fractures and wrinkle ridges, and are often buried by other volcanic materials. In addition, they appear to run both upslope and downslope, suggesting that the plains were warped by regional tectonism after channel formation. Resolution of the Magellan data is about 120 meters (400 feet).

  1. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2010-01-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.

  2. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Hill, M. E.; Richardson, J. D.; Sturner, S. J.

    2010-10-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism (Cooper et al., Plan. Sp. Sci., 2009) and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.

  3. Far-Infrared Astronomy with The Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger, H.

    1997-01-01

    This report summarizes work made possible by NASA's Kuiper Airborne Observatory. The results of the work have appeared in over 80 papers. The publications fall in three main areas: instrumentation, observations, and analysis. Although there is considerable overlap between these categories it will be convenient to group them separately.

  4. Three Classes of Kuiper Belt Objects: Theory and Observations

    NASA Technical Reports Server (NTRS)

    Holman, Mathew J.; Boyce, J. (Technical Monitor)

    2001-01-01

    As part of the Origins of Solar Systems program our team conducted a dynamically motivated search for three classes of Kuiper belt objects (distant comets near and beyond the orbit of Neptune). Our strategy has been to exploit variations in the sky density of Kuiper belt that result from the gravitational influence of Neptune. By searching two regions of the sky, one nearly 90 degrees from Neptune and one nearly opposite Neptune, and comparing the number of objects discovered in each region we are able to constrain the relative populations of resonant and non-resonant objects, a fundamental quantity in Kuiper belt formation models. In addition, by searching at a variety of angles above the plane of the solar system we have constrained the inclination distribution of Kuiper belt objects. We have conducted four searches for this program. One was in February 1999 and August 2000 at the Canada-France-Hawaii telescope (3.6-meter), and another was in May 1999 and Oct. 2000 at the Kitt Peak National Observatory (4-meter). In addition, a search for Uranian satellites was conducted.

  5. 25 CFR 20.100 - What definitions clarify the meaning of the provisions of this part?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... threat to life, safety, or health as specified in §§ 20.327 and 20.328. Emergency means a situation where... life threatening situations that may cause loss or damage of personal possessions; (6)...

  6. 25 CFR 20.100 - What definitions clarify the meaning of the provisions of this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... threat to life, safety, or health as specified in §§ 20.327 and 20.328. Emergency means a situation where... life threatening situations that may cause loss or damage of personal possessions; (6)...

  7. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Brown, Michael; Gauron, Tom; Heneghan, Cate; Holman, Matthew; Kenter, Almus; Kraft, Ralph; Livingstone, John; Murray-Clay, Ruth; Nulsen, Paul; Payne, Matthew; Schlichting, Hilke; Trangsrud, Amy; Vrtilek, Jan; Werner, Michael

    2015-11-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, potentially detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that was proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems and imaging sensors from Teledyne Imaging Sensors.

  8. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Alcock, Charles; Kenter, Almus T.; Kraft, Ralph P.; Nulsen, Paul; Payne, Matthew John; Vrtilek, Jan M.; Murray, Stephen S.; Murray-Clay, Ruth; Schlichting, Hilke; Brown, Michael E.; Livingston, John H.; Trangsrud, Amy R.; Werner, Michael W.

    2015-01-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the earlysolar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that will be proposed to NASA in response to the upcoming Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratory, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  9. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Brown, M. E.; Gauron, T.; Heneghan, C.; Holman, M. J.; Kenter, A.; Kraft, R.; Lee, R.; Livingston, J.; Mcguire, J.; Murray, S. S.; Murray-Clay, R.; Nulsen, P.; Payne, M. J.; Schlichting, H.; Trangsrud, A.; Vrtilek, J.; Werner, M.

    2014-12-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint. Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950. Whipple is a Discovery class mission that will be proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  10. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Brown, Michael; Gauron, Tom; Heneghan, Cate; Holman, Matthew; Kenter, Almus; Kraft, Ralph; Livingston, John; Murray, Stephen; Murray-Clay, Ruth; Nulsen, Paul; Payne, Matthew; Schlichting, Hilke; Trangsrud, Amy; Vrtilek, Jan; Werner, Michael

    2014-11-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly 1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences 12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that will be proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  11. Predicted performance of InP solar cells in Cassegrainian and slats space concentrator arrays at 20 to 100 AM0, 80 to 100 C

    NASA Technical Reports Server (NTRS)

    Goradia, Chandra; Thesling, William; Goradia, Manju Ghalla; Weinberg, Irving; Swartz, Clifford K.

    1989-01-01

    Researchers have calculated the expected performance dependence of near-optimally designed shallow homojunction n+pp+InP solar cells on incident intensities up 200 AM0 and temperatures up to 100 C (373K). Both circular and rectangular cells have been considered, the former for use in a Cassegrainian concentrator array at 100 AM0, 80 to 100 C and the latter for use in a Slats type concentrator array at 20 AM0 80 to 100 C. Calculation of the temperature dependence of the performance parameters I sub sc, V sub oc, FF and eta was done by first verifying that the use of the measured temperature variation of I sub sc, of the best published value of the temperature dependence of the bandgap of InP, and of the temperature dependences of the lifetimes and mobilities of electrons and holes the same as in equivalently doped GaAs, gave calculated results that closely matched measured data on the temperature variation of I sub sc, V sub oc, and FF of four existing InP cells at 1 AM0. It was then assumed that the same temperature dependences of I sub sc, the bandgap and lifetimes and mobilities would hold in the near-optimally designed cells at the higher concentrations.

  12. 11 CFR 100.24 - Federal election activity (2 U.S.C. 431(20)).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (ii) Generic campaign activity, as defined in 11 CFR 100.25. (iii) Get-out-the-vote activity. (3) A... association of State or local candidates, enabling visitors to download a voter registration form or...

  13. 11 CFR 100.24 - Federal election activity (2 U.S.C. 431(20)).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (ii) Generic campaign activity, as defined in 11 CFR 100.25. (iii) Get-out-the-vote activity. (3) A... association of State or local candidates, enabling visitors to download a voter registration form or...

  14. 11 CFR 100.24 - Federal election activity (2 U.S.C. 431(20)).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (ii) Generic campaign activity, as defined in 11 CFR 100.25. (iii) Get-out-the-vote activity. (3) A... association of State or local candidates, enabling visitors to download a voter registration form or...

  15. 11 CFR 100.24 - Federal election activity (2 U.S.C. 431(20)).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defined in 11 CFR 100.25. (iii) Get-out-the-vote activity. (3) A public communication that refers to a... polling places; and (ii) Offering to transport or actually transporting voters to the polls. (4)...

  16. Photographer : JPL Range : 312, 000 kilometers (195,000 miles) This photo of Ganymede (Ice Giant)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 312, 000 kilometers (195,000 miles) This photo of Ganymede (Ice Giant) was taken from Voyager 2 and shows features down to about 5 to 6 kilometers across. Different types of terrain common on Ganymede's surface are visible. The boundary of the largest region of dark ancient terrain on Ganymede can be seen to the east (right), revealing some of the light linear features which may be all that remains of a large ancient impact structure similar to the large ring structure on Callisto. The broad light regions running through the image are the typical grooved structures seen within another example of what might be evidence of large scale lateral motion in Ganymede's crust. The band of grooved terrain (about 100 kilometers wide) in this region appears to be offset by 50 kilometers or more on the left hand edge by a linear feature perpendicular to it. A feature similar to this one was previously discovered by Voyager 1. These are the first clear examples of strike-slip style faulting on any planet other than Earth. Many examples of craters of all ages can be seen in this image, ranging from fresh, bright ray craters to large, subdued circular markings thought to be the 'scars' of large ancient impacts that have been flatteded by glacier-like flows.

  17. The Development of Children's Adaptive Expertise in the Number Domain 20 to 100

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven; Ghesquiere, Pol

    2006-01-01

    The aim of the study was to analyze the development of children's adaptive expertise in computing sums and differences up to 100. We defined the adaptive nature of children's strategy choices on the basis of problem (addition, subtraction), achievement, and strategy performance (accuracy, speed). Sixty-nine 2nd graders of high, above-average, or…

  18. NEPTUNE ON TIPTOES: DYNAMICAL HISTORIES THAT PRESERVE THE COLD CLASSICAL KUIPER BELT

    SciTech Connect

    Wolff, Schuyler; Dawson, Rebekah I.; Murray-Clay, Ruth A. E-mail: rdawson@cfa.harvard.edu

    2012-02-20

    The current dynamical structure of the Kuiper Belt was shaped by the orbital evolution of the giant planets, especially Neptune, during the era following planet formation when the giant planets may have undergone planet-planet scattering and/or planetesimal-driven migration. Numerical simulations of this process, while reproducing many properties of the Belt, fail to generate the high inclinations and eccentricities observed for some objects while maintaining the observed dynamically 'cold' population. We present the first of a three-part parameter study of how different dynamical histories of Neptune sculpt the planetesimal disk. Here we identify which dynamical histories allow an in situ planetesimal disk to remain dynamically cold, becoming today's cold Kuiper Belt population. We find that if Neptune undergoes a period of elevated eccentricity and/or inclination, it secularly excites the eccentricities and inclinations of the planetesimal disk. We demonstrate that there are several well-defined regimes for this secular excitation, depending on the relative timescales of Neptune's migration, the damping of Neptune's orbital inclination and/or eccentricity, and the secular evolution of the planetesimals. We model this secular excitation analytically in each regime, allowing for a thorough exploration of parameter space. Neptune's eccentricity and inclination can remain high for a limited amount of time without disrupting the cold classical belt. In the regime of slow damping and slow migration, if Neptune is located (for example) at 20 AU, then its eccentricity must stay below 0.18 and its inclination below 6 Degree-Sign .

  19. 20 CFR 30.100 - In general, how does an employee file an initial claim for benefits?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false In general, how does an employee file an... Claims for Benefits Under Eeoicpa § 30.100 In general, how does an employee file an initial claim for benefits? (a) To claim benefits under EEOICPA, an employee must file a claim in writing. Form EE-1...

  20. The Kuiper belt and the solar system's comet disk.

    PubMed

    Gladman, Brett

    2005-01-01

    Our planetary system is embedded in a small-body disk of asteroids and comets, vestigial remnants of the original planetesimal population that formed the planets. Once formed, those planets dispersed most of the remaining small bodies. Outside of Neptune, this process has left our Kuiper belt and built the Oort cloud, as well as emplacing comets into several other identifiable structures. The orbits in these structures indicate that our outer solar system's comet disk was shaped by a variety of different physical processes, which teach us about how the giant planets formed. Recent work has shown that the scattered disk is the most likely source of short-period comets. Moreover, a growing body of evidence indicates that the sculpting of the Kuiper belt region may have involved large-scale planetary migration, the presence of other rogue planetary objects in the disk, and/or the close passage of other stars in the Sun's birth cluster. PMID:15637267

  1. Energetics of vertical kilometer foot races; is steeper cheaper?

    PubMed

    Giovanelli, Nicola; Ortiz, Amanda Louise Ryan; Henninger, Keely; Kram, Rodger

    2016-02-01

    Vertical kilometer foot races consist of a 1,000-m elevation gain in <5,000 m of overall distance, and the inclines of the fastest courses are ∼30°. Previous uphill locomotion studies have focused on much shallower angles. We aimed to quantify the metabolic costs of walking and running on very steep angles and to biomechanically distinguish walking from running. Fifteen runners (10 male, 5 female, 32.9 ± 7.5 yr, 1.75 ± 0.09 m, 64.3 ± 9.1 kg) walked and ran for 5 min at seven different angles (9.4, 15.8, 20.4, 24.8, 30.0, 35.0, and 39.2°) all at a fixed vertical velocity (0.35 m/s). We measured the metabolic rates and calculated the vertical costs of walking (Cwvert) and running (Crvert). Using video analysis, we determined stride frequency, stride length, and duty factor (fraction of stride that each foot is in ground contact). At all angles other than 9.4°, Cwvert was cheaper than Crvert (average -8.45 ± 1.05%; P < 0.001). Further, broad minima for both Cwvert and Crvert existed between 20.4 and 35.0° (average Cwvert 44.17 ± 0.41 J·kg(-1)·m(-1) and average Crvert 48.46 ± 0.35 J·kg(-1)·m(-1)). At all angles and speeds tested, both walking and running involved having at least one foot on the ground at all times. However, in walking, stride frequency and stride length were ∼28% slower and longer, respectively, than in running. In conclusion, we found that there is a range of angles for which energy expenditure is minimized. At the vertical velocity tested, on inclines steeper than 15.8°, athletes can reduce their energy expenditure by walking rather than running. PMID:26607247

  2. THE DENSITY OF MID-SIZED KUIPER BELT OBJECT 2002 UX25 AND THE FORMATION OF THE DWARF PLANETS

    SciTech Connect

    Brown, M. E.

    2013-12-01

    The formation of the largest objects in the Kuiper belt, with measured densities of ∼1.5 g cm{sup –3} and higher, from the coagulation of small bodies, with measured densities below 1 g cm{sup –3}, is difficult to explain without invoking significant porosity in the smallest objects. If such porosity does occur, measured densities should begin to increase at the size at which significant porosity is no longer supported. Among the asteroids, this transition occurs for diameters larger than ∼350 km. In the Kuiper belt, no density measurements have been made between ∼350 km and ∼850 km, the diameter range where porosities might first begin to drop. Objects in this range could provide key tests of the rock fraction of small Kuiper belt objects (KBOs). Here we report the orbital characterization, mass, and density determination of the 2002 UX25 system in the Kuiper belt. For this object, with a diameter of ∼650 km, we find a density of 0.82 ± 0.11 g cm{sup –3}, making it the largest solid known object in the solar system with a measured density below that of pure water ice. We argue that the porosity of this object is unlikely to be above ∼20%, suggesting a low rock fraction. If the currently measured densities of KBOs are a fair representation of the sample as a whole, creating ∼1000 km and larger KBOs with rock mass fractions of 70% and higher from coagulation of small objects with rock fractions as low as those inferred from 2002 UX25 is difficult.

  3. Cosmic Ray Mantle Visibility on Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matt E.; Richardson, J. D.; Sturner, S. J.

    2006-01-01

    Optically red objects constitute the dynamically cold, old component of the Classical Kuiper Belt (40 - 47 AU) with heliocentric orbits of low eccentricity and inclination. The red colors likely arise from primordial mixed ices processed by irradiation to meters in surface depth over the past four billion years, since the time of giant planet migration and Kuiper Belt stirring, at relatively moderate dosages of 60 gigarads provided by galactic cosmic ray protons and heavier ions. The red cosmic ray mantle is uniformly visible on the cold classical objects beneath a minimally thin eroded layer of more neutrally colored material arising from cumulative effects of heliospheric particle irradiation. The radiation fluxes are lowest in the middle heliospheric region containing the Classical Kuiper Belt and increase from there both towards and away from the Sun. Despite increasing irradiation at various times of solar system history from increases in solar and interstellar ion fluxes, the red object region has apparently never reached sufficiently high dosage levels to neutralize in color the red mantle material. Erosion processes, including plasma sputtering and micrometeroid impacts, act continuously to reduce thickness of the upper neutral crust and expose the cosmic ray mantle. A deeper layer at tens of meters and more may consist of relatively unprocessed ices that can erupt to the surface by larger impacts or cryovolcanism and account for brighter surfaces of larger objects such as 2003 UB313. Surface colors among the Kuiper Belt and other icy objects of the outer solar system are then a function, assuming uniform primordial composition, of relative thickness for the three layers and of the resurfacing age dependent on the orbital and impact history of each object.

  4. Corralling a Distant Planet with Extreme Resonant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu; Volk, Kathryn; Wang, Xianyu

    2016-06-01

    The four longest period Kuiper Belt objects have orbital periods close to integer ratios with each other. A hypothetical planet with an orbital period of ˜17,117 years and a semimajor axis ˜665 au would have N/1 and N/2 period ratios with these four objects. The orbital geometries and dynamics of resonant orbits constrain the orbital plane, the orbital eccentricity, and the mass of such a planet as well as its current location in its orbital path.

  5. Corralling a Distant Planet with Extreme Resonant Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu; Volk, Kathryn; Wang, Xianyu

    2016-06-01

    The four longest period Kuiper Belt objects have orbital periods close to integer ratios with each other. A hypothetical planet with an orbital period of ∼17,117 years and a semimajor axis ∼665 au would have N/1 and N/2 period ratios with these four objects. The orbital geometries and dynamics of resonant orbits constrain the orbital plane, the orbital eccentricity, and the mass of such a planet as well as its current location in its orbital path.

  6. Origin Hypotheses for Kilometer-Scale Mounds on Dwarf Planet Ceres

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna G.; Platz, Thomas; Schmidt, Britney E.; Scully, Jennifer E. C.; Russell, Christopher T.; Mest, Scott C.; Crown, David A.; Sykes, Mark V.; Hughson, Kynan H. G.; Chilton, Heather T.; Williams, David A.; Pieters, Carle M.; Marchi, Simone; Travis, Bryan; Raymond, Carol A.

    2015-11-01

    The Dawn Framing Camera has revealed numerous domical to conical features on Ceres, which may have relevance to the presence and history of near-surface ice. These features fall into two broad classes, large domes 10s to >100 km in diameter exhibiting 1-5 km of positive relief, and small mounds <10 km in diameter exhibiting sub-kilometer relief. Here, we propose three hypotheses for the origin of the ~150 small mounds identified thus far, and discuss morphological observations that could support each hypothesis as higher resolution data becomes available.Hypothesis 1: Kilometer-scale mounds are produced by localized eruption of cryomagma or hydrothermal material. Observational tests: Kilometer and sub-kilometer scale albedo variations; sub-kilometer flow features on individual mounds; localized vents; conical or domical shape. Challenge: Features are smaller than convective plumes expected from thermal evolution modeling.Hypothesis 2: Kilometer-scale mounds are analogous to terrestrial and martian pingos, which grow by drawing liquid water through a silicate matrix as a freezing front propagates downward. Observational tests: Mounds occurring on smooth material that floods or embays large-scale features; little or no local albedo variation; no small flows associated with individual mounds; domical or ring-shape; concentric or radial fractures on dome, or central depression. Challenge: Small Cerean mounds observed thus far are an order of magnitude larger than terrestrial or martian pingos.Hypothesis 3: Kilometer-scale mounds are rootless cones analogous to features observed on the surface of volcanic flows in volatile-rich regions of Earth and Mars. Rootless cones are produced when layers of fluid material inundate a region; localized devolatilization of a layer mobilizes clasts to form cone-shaped deposits. Observational tests: Mounds on smooth material that floods or embays large-scale features; conical, not domical, profile; large central

  7. 21 CFR 20.100 - Applicability; cross-reference to other regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... file for an antibiotic drug, in § 514.10 of this chapter. (13) Methadone patient records, in § 291.505... chapter. (20) Investigational new drug notice for an antibiotic drug, in § 431.70 of this chapter. (21) Antibiotic drug file, in § 314.430 of this chapter. (22) Data and information submitted for biologics...

  8. 21 CFR 20.100 - Applicability; cross-reference to other regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... file for an antibiotic drug, in § 514.10 of this chapter. (13) Methadone patient records, in § 291.505... chapter. (20) Investigational new drug notice for an antibiotic drug, in § 431.70 of this chapter. (21) Antibiotic drug file, in § 314.430 of this chapter. (22) Data and information submitted for biologics...

  9. 21 CFR 20.100 - Applicability; cross-reference to other regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... file for an antibiotic drug, in § 514.10 of this chapter. (13) Methadone patient records, in § 291.505... chapter. (20) Investigational new drug notice for an antibiotic drug, in § 431.70 of this chapter. (21) Antibiotic drug file, in § 314.430 of this chapter. (22) Data and information submitted for biologics...

  10. 21 CFR 20.100 - Applicability; cross-reference to other regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... file for an antibiotic drug, in § 514.10 of this chapter. (13) Methadone patient records, in § 291.505... chapter. (20) Investigational new drug notice for an antibiotic drug, in § 431.70 of this chapter. (21) Antibiotic drug file, in § 314.430 of this chapter. (22) Data and information submitted for biologics...

  11. 21 CFR 20.100 - Applicability; cross-reference to other regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... file for an antibiotic drug, in § 514.10 of this chapter. (13) Methadone patient records, in § 291.505... chapter. (20) Investigational new drug notice for an antibiotic drug, in § 431.70 of this chapter. (21) Antibiotic drug file, in § 314.430 of this chapter. (22) Data and information submitted for biologics...

  12. Sulfuric acid aerosol production at 30 kilometers over Antarctica

    SciTech Connect

    Hofmann, D.

    1987-09-01

    The author will use balloons of various sizes, instrumented with ozonesondes to measure in detail vertical profiles of ozone and temperature from the ground to about 29 kilometers above the surface. These measurements should indicate where in the column changes the ozone is being destroyed.

  13. The Era of Kilometer-Scale Neutrino Detectors

    DOE PAGESBeta

    Halzen, Francis; Katz, Uli

    2013-01-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galacticmore » and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.« less

  14. From Kuiper Belt to Comet: The Shapes of the Nuclei

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Sheppard, S.; Fernandez, Y.

    2003-05-01

    It is widely believed that escaped objects from the Kuiper Belt are the source of both the Centaurs and the nuclei of the Jupiter Family Comets (JFCs). If the JFC nuclei are produced by collisional breakup of parent objects in the Kuiper Belt, then it is reasonable to expect that their shape distribution should be consistent with those of fragments produced in disintegrative laboratory experiments, or with the small main-belt asteroids (which are produced collisionally). We test this idea using a sample of eleven well-observed cometary nuclei. Our main result is that the nuclei are, on average, much more elongated than either the collisionally produced small main-belt asteroids or the fragments created in laboratory impact experiments. Several interpretations of this systematic shape difference are possible (including the obvious one that the JFC nuclei are not, after all, produced collisionally in the Kuiper Belt). Our preferred explanation, however, is that the asphericities of the nuclei have been modified by one or more processes of mass loss. An implication of this interpretation is that the JFC nuclei in our sample are highly evolved, having lost a major part of their original mass. In turn, this implies that the angular momenta of the nuclei are also non-primordial: the JFC nuclei are highly physically evolved objects. We will discuss the evidence supporting these conclusions. This work has been recently published in Astronomical Journal, 125, 3366-3377 (2003).

  15. A HYPOTHESIS FOR THE COLOR DIVERSITY OF THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2011-10-01

    We propose a chemical and dynamical process to explain the surface colors of the Kuiper belt. In our hypothesis, the initial bulk compositions of the bodies themselves can be quite diverse-as is seen in comets-but the early surface compositions are set by volatile evaporation after the objects are formed. Strong gradients in surface composition, coupled with UV and particle irradiation, lead to the surface colors that are seen today. The objects formed in the inner part of the primordial belt retain only H{sub 2}O and CO{sub 2} as the major ice species on their surfaces. Irradiation of these species plausibly results in the dark neutrally colored centaurs and Kuiper belt objects (KBOs). Object formed further in the disk retain CH{sub 3}OH, which has been shown to lead to brighter redder surfaces after irradiation, as seen in the brighter redder centaurs and KBOs. Objects formed at the current location of the cold classical Kuiper belt uniquely retain NH{sub 3}, which has been shown to affect irradiation chemistry and could plausibly lead to the unique colors of these objects. We propose observational and experimental tests of this hypothesis.

  16. Crystalline water ice on the Kuiper belt object (50000) Quaoar.

    PubMed

    Jewitt, David C; Luu, Jane

    2004-12-01

    The Kuiper belt is a disk-like structure consisting of solid bodies orbiting the Sun beyond Neptune. It is the source of the short-period comets and the likely repository of the Solar System's most primitive materials. Surface temperatures in the belt are low ( approximately 50 K), suggesting that ices trapped at formation should have been preserved over the age of the Solar System. Unfortunately, most Kuiper belt objects are too faint for meaningful compositional study, even with the largest available telescopes. Water ice has been reported in a handful of objects, but most appear spectrally featureless. Here we report near-infrared observations of the large Kuiper belt object (50000) Quaoar, which reveal the presence of crystalline water ice and ammonia hydrate. Crystallinity indicates that the ice has been heated to at least 110 K. Both ammonia hydrate and crystalline water ice should be destroyed by energetic particle irradiation on a timescale of about 10(7) yr. We conclude that Quaoar has been recently resurfaced, either by impact exposure of previously buried (shielded) ices or by cryovolcanic outgassing, or by a combination of these processes. PMID:15592406

  17. SKARPS: The Search for Kuiper Belts around Radial-Velocity Planet Stars

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Marshall, Jonathan; Stapelfeldt, Karl; Su, Kate; Wyatt, Mark

    2011-01-01

    The Search for Kuiper belts Around Radial-velocity Planet Stars - SKARPS -is a Herschel survey of solar-type stars known to have orbiting planets. When complete, the 100-star SKARPS sample will be large enough for a meaningful statistical comparison against stars not known to have planets. (This control sample has already been observed by Herschel's DUst around NEarby Stars - DUNES - key program). Initial results include previously known disks that are resolved for the first time and newly discovered disks that are fainter and colder than those typically detected by Spitzer. So far, with only half of the sample in hand, there is no measured correlation between inner RV planets and cold outer debris. While this is consistent with the results from Spitzer, it is in contrast with the relationship suggested by the prominent debris disks in imaged-planet systems.

  18. Optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications.

    PubMed

    Sunny, Youhan; Bawiec, Christopher R; Nguyen, An T; Samuels, Joshua A; Weingarten, Michael S; Zubkov, Leonid A; Lewin, Peter A

    2012-09-01

    This paper describes optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications. The goal of this work was to design a fully wearable, low weight (<100g), battery operated, piezoelectric ultrasound applicator providing maximum output pressure amplitude at the minimum excitation voltage. Such implementation of ultrasound applicators that can operate at the excitation voltages on the order of only 10-25V is needed in view of the emerging evidence that spatial-peak temporal-peak ultrasound intensity (I(SPTP)) on the order of 100mW/cm(2) delivered at frequencies below 100kHz can have beneficial therapeutic effects. The beneficial therapeutic applications include wound management of chronic ulcers and non-invasive transdermal delivery of insulin and liposome encapsulated drugs. The early prototypes of the 20 and 100kHz applicators were optimized using the maximum electrical power transfer theorem, which required a punctilious analysis of the complex impedance of the piezoelectric disks mounted in appropriately shaped metal housings. In the implementation tested, the optimized ultrasound transducer applicators were driven by portable, customized electronics, which controlled the excitation voltage amplitude and facilitated operation in continuous wave (CW) or pulsed mode with adjustable (10-90%) duty cycle. The driver unit was powered by remotely located rechargeable lithium (Li) polymer batteries. This was done to further minimize the weight of the applicator unit making it wearable. With DC voltage of approximately 15V the prototypes were capable of delivering pressure amplitudes of about 55kPa or 100mW/cm(2) (I(SPTP)). This level of acoustic output was chosen as it is considered safe and side effects free, even at prolonged exposure. PMID:22513259

  19. Optimization of un-tethered, low voltage, 20100 kHz flexural transducers for biomedical ultrasonics applications

    PubMed Central

    Sunny, Youhan; Bawiec, Christopher R.; Nguyen, An T.; Samuels, Joshua A.; Weingarten, Michael S.; Zubkov, Leonid A.; Lewin, Peter A.

    2012-01-01

    This paper describes optimization of un-tethered, low voltage, 20100 kHz flexural transducers for biomedical ultrasonics applications. The goal of this work was to design a fully wearable, low weight (<100 g), battery operated, piezoelectric ultrasound applicator providing maximum output pressure amplitude at the minimum excitation voltage. Such implementation of ultrasound applicators that can operate at the excitation voltages on the order of only 10–25 V is needed in view of the emerging evidence that spatial-peak temporal-peak ultrasound intensity (ISPTP) on the order of 100 mW/cm2 delivered at frequencies below 100 kHz can have beneficial therapeutic effects. The beneficial therapeutic applications include wound management of chronic ulcers and non-invasive transdermal delivery of insulin and liposome encapsulated drugs. The early prototypes of the 20 and 100 kHz applicators were optimized using the maximum electrical power transfer theorem, which required a punctilious analysis of the complex impedance of the piezoelectric disks mounted in appropriately shaped metal housings. In the implementation tested, the optimized ultrasound transducer applicators were driven by portable, customized electronics, which controlled the excitation voltage amplitude and facilitated operation in continuous wave (CW) or pulsed mode with adjustable (10–90%) duty cycle. The driver unit was powered by remotely located rechargeable lithium (Li) polymer batteries. This was done to further minimize the weight of the applicator unit making it wearable. With DC voltage of approximately 15 V the prototypes were capable of delivering pressure amplitudes of about 55 kPa or 100 mW/cm2 (ISPTP). This level of acoustic output was chosen as it is considered safe and side effects free, even at prolonged exposure. PMID:22513259

  20. The secular evolution of the Kuiper belt after a close stellar encounter

    NASA Astrophysics Data System (ADS)

    Punzo, D.; Capuzzo-Dolcetta, R.; Portegies Zwart, S.

    2014-11-01

    We show the effects of the perturbation caused by a passing by star on the Kuiper belt objects (KBOs) of our Solar system. The dynamics of the Kuiper belt (KB) is followed by direct N-body simulations. The sampling of the KB has been done with N up to 131 062, setting the KBOs on initially nearly circular orbits distributed in a ring of surface density Σ ˜ r-2. This modellization allowed us to investigate the secular evolution of the KB upon the encounter with the perturbing star. Actually, the encounter itself usually leads towards eccentricity and inclination distributions similar to observed ones, but tends also to excite the low-eccentricity population (e ≲ 0.1 around a ˜ 40 au from the Sun), depleting this region of low eccentricities. The following long-term evolution shows a `cooling' of the eccentricities repopulating the low-eccentricity area. In dependence on the assumed KBO mass spectrum and sampled number of bodies, this repopulation takes place in a time that goes from 0.5 to 100 Myr. Due to the unavoidable limitation in the number of objects in our long-term simulations (N ≤ 16 384), we could not consider a detailed KBO mass spectrum, accounting for low-mass objects, thus our present simulations are not reliable in constraining correlations among inclination distribution of the KBOs and other properties, such as their size distribution. However, our high-precision long-term simulations are a starting point for future larger studies on massively parallel computational platforms which will provide a deeper investigation of the secular evolution (˜100 Myr) of the KB over its whole mass spectrum.

  1. Temperature dependence of magnetoelastic properties of Fe100−xSix (5 < x < 20)

    SciTech Connect

    Petculescu, G.; Lambert, P.K.; Clark, A.E.; Hathaway, K.B.; Xing, Qingfeng; Lograsso, Tom; Restorff, J.B.; Wun-Fogle, M.

    2012-02-29

    Tetragonal magnetostriction (λγ,2) and elastic constants (c′, c44, and c11) for Fe100−xSix were measured as a function of temperature (T). Compositions corresponding to the disordered A2 (x = 5), ordered D03 (x = 19.8), and mixed (x = 11.6) phases, were investigated. The magnetoelastic coupling (−b1) was determined for 77 < T < 300 K and compared with those of Fe-Ga, Fe-Ge, and Fe-Al. Both λγ,2(T) and −b1(T) of Fe-Si behave similarly to those of Fe-Ge, while other notable differences exist between the measured properties of Fe-Si and those of the other three alloys. Due to the early establishment of short range order, Fe-Si exhibits a positive, although small, slope in λγ,2(T) at 5 at. % Si, and a remarkable drop in −b1 before the solubility limit. The weaker softening of the tetragonal shear modulus with the addition of Si and the lack of strong anharmonic effects in the Fe-Si lattice inferred from the weak T-dependence of all the moduli suggest that Fe-Si exhibits more structural stability than the other three alloys. The distinctive behavior is likely due to the smaller size of Si compared to the sizes of Ga, Ge and Al, and therefore to the effect of the larger size difference between Fe and Si in the Fe-Si lattice.

  2. THE SIZE, DENSITY, AND FORMATION OF THE ORCUS-VANTH SYSTEM IN THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Ragozzine, D.; Fraser, W. C.; Stansberry, J.

    2010-06-15

    The Kuiper Belt object (KBO) Orcus and its satellite Vanth form an unusual system in the Kuiper Belt. While most large KBOs have small satellites in circular orbits and smaller KBOs and their satellites tend to be much closer in size, Orcus sits in between these two regimes. Orcus is among the largest objects known in the Kuiper Belt, but the relative size of Vanth is much larger than that of the tiny satellites of the other large objects. Here, we characterize the physical and orbital characteristics of the Orcus-Vanth system in an attempt to distinguish discuss possible formation scenarios. From Hubble Space Telescope observations, we find that Orcus and Vanth have different visible colors and that Vanth does not share the water ice absorption feature seen in the infrared spectrum of Orcus. We also find that Vanth has a nearly face-on circular orbit with a period of 9.5393 {+-} 0.0001 days and semimajor axis of 8980 {+-} 20 km, implying a system mass of (6.32 {+-} 0.01) x 10{sup 20} kg or 3.8% the mass of dwarf planet Eris. From Spitzer Space Telescope observations, we find that the thermal emission is consistent with a single body with diameter 940 {+-} 70 km and a geometric albedo of 0.28 {+-} 0.04. Assuming equal densities and albedos, this measurement implies sizes of Orcus and Vanth of 900 and 280 km, respectively, and a mass ratio of 33. Assuming a factor of 2 lower albedo for the non-icy Vanth, however, implies sizes of 860 km and 380 km and a mass ratio of 12. The measured density depends on the assumed albedo ratio of the two objects but is approximately 1.5 {+-} 0.3 g cm{sup -3}, midway between typical densities measured for larger and smaller objects. The orbit and mass ratio is consistent with formation from a giant impact and subsequent outward tidal evolution, and even consistent with the system having now achieved a double synchronous state. Because of the large angle between the plane of the heliocentric orbit of Orcus and the plane of the orbit

  3. Searching for Chips of Kuiper Belt Objects in Meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ohsumi, K.; Briani, G.; Gounelle, M.; Mikouchi, T.; Satake, W.; Kurihara, T.; Weisberg, M. K.; Le, L.

    2009-01-01

    The Nice model [1&2] describes a scenario whereby the Jovian planets experienced a violent reshuffling event approx.3:9 Ga the giant planets moved, existing small body reservoirs were depleted or eliminated, and new reservoirs were created in particular locations. The Nice model quantitatively explains the orbits of the Jovian planets and Neptune [1], the orbits of bodies in several different small body reservoirs in the outer solar system (e.g., Trojans of Jupiter [2], the Kuiper belt and scattered disk [3], the irregular satellites of the giant planets [4], and the late heavy bombardment on the terrestrial planets approx.3:9 Ga [5]. This model is unique in plausibly explaining all of these phenomena. One issue with the Nice model is that it predicts that transported Kuiper Belt Objects (KBOs) (things looking like D class asteroids) should predominate in the outer asteroid belt, but we know only about 10% of the objects in the outer main asteroid belt appear to be D-class objects [6]. However based upon collisional modeling, Bottke et al. [6] argue that more than 90% of the objects captured in the outer main belt could have been eliminated by impacts if they had been weakly-indurated objects. These disrupted objects should have left behind pieces in the ancient regoliths of other, presumably stronger asteroids. Thus, a derived prediction of the Nice model is that ancient regolith samples (regolith-bearing meteorites) should contain fragments of collisionally-destroyed Kuiper belt objects. In fact KBO pieces might be expected to be present in most ancient regolith- bearing meteorites [7&8].

  4. Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott S.; Trujillo, Chadwick; Tholen, David J.

    2016-07-01

    We are conducting a survey for distant solar system objects beyond the Kuiper Belt edge (∼50 au) with new wide-field cameras on the Subaru and CTIO telescopes. We are interested in the orbits of objects that are decoupled from the giant planet region to understand the structure of the outer solar system, including whether a massive planet exists beyond a few hundred astronomical units as first reported in 2014 by Trujillo & Sheppard. In addition to discovering extreme trans-Neptunian objects detailed elsewhere, we found several objects with high perihelia (q > 40 au) that differ from the extreme and inner Oort cloud objects due to their moderate semimajor axes (50 < a < 100 au) and eccentricities (e ≲ 0.3). Newly discovered objects 2014 FZ71 and 2015 FJ345 have the third and fourth highest perihelia known after Sedna and 2012 VP113, yet their orbits are not nearly as eccentric or distant. We found several of these high-perihelion but moderate orbit objects and observe that they are mostly near Neptune mean motion resonances (MMRs) and have significant inclinations (i > 20°). These moderate objects likely obtained their unusual orbits through combined interactions with Neptune’s MMRs and the Kozai resonance, similar to the origin scenarios for 2004 XR190. We also find the distant 2008 ST291 has likely been modified by the MMR+KR mechanism through the 6:1 Neptune resonance. We discuss these moderately eccentric distant objects along with some other interesting low inclination outer classical belt objects like 2012 FH84 discovered in our ongoing survey.

  5. Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott S.; Trujillo, Chadwick; Tholen, David J.

    2016-07-01

    We are conducting a survey for distant solar system objects beyond the Kuiper Belt edge (˜50 au) with new wide-field cameras on the Subaru and CTIO telescopes. We are interested in the orbits of objects that are decoupled from the giant planet region to understand the structure of the outer solar system, including whether a massive planet exists beyond a few hundred astronomical units as first reported in 2014 by Trujillo & Sheppard. In addition to discovering extreme trans-Neptunian objects detailed elsewhere, we found several objects with high perihelia (q > 40 au) that differ from the extreme and inner Oort cloud objects due to their moderate semimajor axes (50 < a < 100 au) and eccentricities (e ≲ 0.3). Newly discovered objects 2014 FZ71 and 2015 FJ345 have the third and fourth highest perihelia known after Sedna and 2012 VP113, yet their orbits are not nearly as eccentric or distant. We found several of these high-perihelion but moderate orbit objects and observe that they are mostly near Neptune mean motion resonances (MMRs) and have significant inclinations (i > 20°). These moderate objects likely obtained their unusual orbits through combined interactions with Neptune’s MMRs and the Kozai resonance, similar to the origin scenarios for 2004 XR190. We also find the distant 2008 ST291 has likely been modified by the MMR+KR mechanism through the 6:1 Neptune resonance. We discuss these moderately eccentric distant objects along with some other interesting low inclination outer classical belt objects like 2012 FH84 discovered in our ongoing survey.

  6. Analysis of Polarization Data from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1999-01-01

    The purpose of this grant was to complete the analysis of data obtained with the polarimeter, Hertz, on the Kuiper Airborne Observatory. This has enabled us to complete and publish two student theses (one on Sgr B2 and one on Orion) and a paper on the first results on the far-infrared polarization-spectrum. In addition it has enabled us to analyze data for two additional papers (one on W3 and the other a complete archive of KAO polarization data) which have reached the stage of complete drafts but still need checking and editing before final submission.

  7. 47 CFR 73.186 - Establishment of effective field at one kilometer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... kilometer. 73.186 Section 73.186 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... at one kilometer. (a) Section 73.189 provides that certain minimum field strengths are acceptable in... be made on six or more radials, at intervals of approximately 0.2 kilometer up to 3 kilometers...

  8. 47 CFR 73.186 - Establishment of effective field at one kilometer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... kilometer. 73.186 Section 73.186 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... at one kilometer. (a) Section 73.189 provides that certain minimum field strengths are acceptable in... be made on six or more radials, at intervals of approximately 0.2 kilometer up to 3 kilometers...

  9. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  10. First ultraviolet reflectance measurements of several Kuiper Belt objects, Kuiper Belt object satellites, and new ultraviolet measurements of A Centaur

    SciTech Connect

    Stern, S. A.; Schindhelm, E.; Cunningham, N. J.

    2014-05-01

    We observed the 2600-3200 Å (hereafter, mid-UV) reflectance of two Kuiper Belt Objects (KBOs), two KBO satellites, and a Centaur, using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). Other than measurements of the Pluto system, these constitute the first UV measurements obtained of KBOs, and KBO satellites, and new HST UV measurements of the Centaur 2060 Chiron. We find significant differences among these objects, constrain the sizes and densities of Haumea's satellites, and report the detection of a possible spectral absorption band in Haumea's spectrum near 3050 Å. Comparisons of these objects to previously published UV reflectance measurements of Pluto and Charon are also made here.

  11. Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths.

    PubMed

    Haggerty, S E; Sautter, V

    1990-05-25

    Geophysical discontinuities in Earth's upper mantle and experimental data predict the structural transformation of pyroxene to garnet and the solid-state dissolution of pyroxene into garnet with increasing depth. These predictions are indirectly verified by omphacitic pyroxene exsolution in pyropic garnet-bearing xenoliths from a diamondiferous kimberlite. Conditions for silicon in octahedral sites in the original garnets are met at pressures greater than 130 kilobars, placing the origin of these xenoliths at depths of 300 to 400 kilometers. These ultradeep xenoliths support the theory that the 400-km seismic discontinuity is marked by a transition from peridotite to eclogite. PMID:17745405

  12. Forming the Cold Classical Kuiper Belt in a Light Disk

    NASA Astrophysics Data System (ADS)

    Shannon, Andrew; Wu, Yanqin; Lithwick, Yoram

    2016-02-01

    Large Kuiper Belt objects are conventionally thought to have formed out of a massive planetesimal belt that is a few thousand times its current mass. Such a picture, however, is incompatible with multiple lines of evidence. Here, we present a new model for the conglomeration of Cold Classical Kuiper Belt objects, out of a solid belt only a few times its current mass, or a few per cent of the solid density in a Minimum Mass Solar Nebula. This is made possible by depositing most of the primordial mass in grains of centimeter size or smaller. These grains collide frequently and maintain a dynamically cold belt out of which large bodies grow efficiently: an order-unity fraction of the solid mass can be converted into large bodies, in contrast to the ∼ {10}-3 efficiency in conventional models. Such a light belt may represent the true outer edge of the solar system, and it may have effectively halted the outward migration of Neptune. In addition to the high efficiency, our model can also produce a mass spectrum that peaks at an intermediate size, similar to the observed Cold Classicals, if one includes the effect of cratering collisions. In particular, the observed power-law break observed at ∼ 30 {km} for Cold Classicals, one that has been interpreted as a result of collisional erosion, may be primordial in origin.

  13. Resonant and Secular Families of the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Chiang, E. I.; Lovering, J. R.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Meech, K. J.

    2003-06-01

    We review ongoing efforts to identify occupants of mean-motion resonances (MMRs) and collisional families in the Edgeworth-Kuiper belt. Direct integrations of trajectories of Kuiper belt objects (KBOs) reveal the 1:1 (Trojan), 5:4, 4:3, 3:2 (Plutino), 5:3, 7:4, 9:5, 2:1 (Twotino), and 5:2 MMRs to be inhabited. Apart from the Trojan, resonant KBOs typically have large orbital eccentricities and inclinations. The observed pattern of resonance occupation is consistent with resonant capture and adiabatic excitation by a migratory Neptune; however, the dynamically cold initial conditions prior to resonance sweeping that are typically assumed by migration simulations are probably inadequate. Given the dynamically hot residents of the 5:2 MMR and the substantial inclinations observed in all exterior MMRs, a fraction of the primordial belt was likely dynamically pre-heated prior to resonance sweeping. A pre-heated population may have arisen as Neptune gravitationally scattered objects into trans-Neptunian space. The spatial distribution of Twotinos offers a unique diagnostic of Neptune's migration history. The Neptunian Trojan population may rival the Jovian Trojan population, and the former's existence is argued to rule out violent orbital histories for Neptune. Finally, lowest-order secular theory is applied to several hundred non-resonant KBOs with well-measured orbits to update proposals of collisional families. No convincing family is detected.

  14. A collisional family of icy objects in the Kuiper belt.

    PubMed

    Brown, Michael E; Barkume, Kristina M; Ragozzine, Darin; Schaller, Emily L

    2007-03-15

    The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61. PMID:17361177

  15. Insolation and Resulting Surface Temperatures of the Kuiper-Rudaki Study Region on Mercury.

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; D'Amore, Mario; Helbert, Jörn; Weinauer, Julia

    2016-04-01

    cold poles along the equator. The region shows smooth plains surrounding crater Rudaki (˜120km), as well as cratered terrain around the prominent crater Kuiper (˜60km) and has been extensively covered by measurements during the MESSENGER mission. Temperatures range from about 100K during the night to 570K (cold pole) and 700K (hot pole) at local noon. The floor of Kuiper crater reaches temperatures of ˜660K at local noon, while those at Rudaki crater are 625K (+/-5K). Due to their higher albedo, the rays of Kuiper crater are about 5K colder than the surrounding regions. These temperature estimates will aid the accurate interpretation of future MERTIS spectra of the region obtained during the BepiColombo mission [10]. References: [1] Hiesinger, H. et al. (2010), PSS 58, 144-165. [2] Helbert, J. et al. (2005), LPSC XXXVI, #1753. [3] Keihm, S.J. and Langseth, M.G. (1973), Proc. Lunar Sci. Conf. 4th, 2503-2513. [4] Lawson, S.L. et al. (2000), JGR 105, E5, 4273-4290. [5] Pieters, C.M. et al. (2009), Science 326, 568-572. [6] Paige, D.A. et al. (2010), Space Sci. Rev 150, 125-160. [7] Bauch, K.E. et al. (2014), PSS 101, 27-36. [8] Vasavada, A. et al. (1999), Icarus 141, 179-193. [9] Solomon, S.C. et al. (2008), Science 321, 59-62. [10] D'Amore et al. (2013), AGU, #P13A-1735.

  16. Finite element static displacement optimization of 20-100 kHz flexural transducers for fully portable ultrasound applicator.

    PubMed

    Bawiec, Christopher R; Sunny, Youhan; Nguyen, An T; Samuels, Joshua A; Weingarten, Michael S; Zubkov, Leonid A; Lewin, Peter A

    2013-02-01

    This paper focuses on the development of a finite-element model and subsequent stationary analysis performed to optimize individual flexural piezoelectric elements for operation in the frequency range of 20-100kHz. These elements form the basic building blocks of a viable, un-tethered, and portable ultrasound applicator that can produce intensities on the order of 100mW/cm(2) spatial-peak temporal-peak (I(SPTP)) with minimum (on the order of 15V) excitation voltage. The ultrasound applicator can be constructed with different numbers of individual transducer elements and different geometries such that its footprint or active area is adjustable. The primary motivation behind this research was to develop a tether-free, battery operated, fully portable ultrasound applicator for therapeutic applications such as wound healing and non-invasive transdermal delivery of both naked and encapsulated drugs. It is shown that careful selection of the components determining applicator architecture allows the displacement amplitude to be maximized for a specific frequency of operation. The work described here used the finite-element analysis software COMSOL to identify the geometry and material properties that permit the applicator's design to be optimized. By minimizing the excitation voltage required to achieve the desired output (100mW/cm(2)I(SPTP)) the power source (rechargeable Li-Polymer batteries) size may be reduced permitting both the electronics and ultrasound applicator to fit in a wearable housing. PMID:23040829

  17. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition and Dynamics on Kuiper Belt and Oort Cloud Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Richardson, John D.

    2010-01-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environment. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Cycles of atmospheric formation and surface freezeout can further account for temporal variation as observed on Pluto. The diversity of causative processes must therefore be understood to account for observationally apparent diversities of the object surfaces.

  18. The color-magnitude distribution of small Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-11-01

    Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the

  19. Sub-kilometer Numerical Weather Prediction in complex urban areas

    NASA Astrophysics Data System (ADS)

    Leroyer, S.; Bélair, S.; Husain, S.; Vionnet, V.

    2013-12-01

    A Sub-kilometer atmospheric modeling system with grid-spacings of 2.5 km, 1 km and 250 m and including urban processes is currently being developed at the Meteorological Service of Canada (MSC) in order to provide more accurate weather forecasts at the city scale. Atmospheric lateral boundary conditions are provided with the 15-km Canadian Regional Deterministic Prediction System (RDPS). Surface physical processes are represented with the Town Energy Balance (TEB) model for the built-up covers and with the Interactions between the Surface, Biosphere, and Atmosphere (ISBA) land surface model for the natural covers. In this study, several research experiments over large metropolitan areas and using observational networks at the urban scale are presented, with a special emphasis on the representation of local atmospheric circulations and their impact on extreme weather forecasting. First, numerical simulations are performed over the Vancouver metropolitan area during a summertime Intense Observing Period (IOP of 14-15 August 2008) of the Environmental Prediction in Canadian Cities (EPiCC) observational network. The influence of the horizontal resolution on the fine-scale representation of the sea-breeze development over the city is highlighted (Leroyer et al., 2013). Then severe storms cases occurring in summertime within the Greater Toronto Area (GTA) are simulated. In view of supporting the 2015 PanAmerican and Para-Pan games to be hold in GTA, a dense observational network has been recently deployed over this region to support model evaluations at the urban and meso scales. In particular, simulations are conducted for the case of 8 July 2013 when exceptional rainfalls were recorded. Leroyer, S., S. Bélair, J. Mailhot, S.Z. Husain, 2013: Sub-kilometer Numerical Weather Prediction in an Urban Coastal Area: A case study over the Vancouver Metropolitan Area, submitted to Journal of Applied Meteorology and Climatology.

  20. 25-Hydroxyvitamin D in the Range of 20 to 100 ng/mL and Incidence of Kidney Stones

    PubMed Central

    Nguyen, Stacie; Baggerly, Leo; French, Christine; Heaney, Robert P.; Gorham, Edward D.

    2014-01-01

    Objectives. Increasing 25-hydroxyvitamin D serum levels can prevent a wide range of diseases. There is a concern about increasing kidney stone risk with vitamin D supplementation. We used GrassrootsHealth data to examine the relationship between vitamin D status and kidney stone incidence. Methods. The study included 2012 participants followed prospectively for a median of 19 months. Thirteen individuals self-reported kidney stones during the study period. Multivariate logistic regression was applied to assess the association between vitamin D status and kidney stones. Results. We found no statistically significant association between serum 25-hydroxyvitamin D and kidney stones (P = .42). Body mass index was significantly associated with kidney stone risk (odds ratio = 3.5; 95% confidence interval = 1.1, 11.3). Conclusions. We concluded that a serum 25-hydroxyvitamin D level of 20 to 100 nanograms per milliliter has no significant association with kidney stone incidence. PMID:24134366

  1. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  2. Explaining the Kuiper Belt with a Jumping Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    A feature of the Kuiper Belt known as the kernel has yet to be adequately explained by solar system formation models. In a recent study, a theorist at the Southwest Research Institute proposes a new explanation for how Neptune arrived at its current orbit and how this planets migration in the early years of the solar system might have created the kernel.Orbital JumpThe kernel is a concentration of orbits within the Kuiper Belt that all have semimajor axes of roughly a 44 AU, low eccentricities, and low inclinations. How this collection of objects formed and why they exist where they do is difficult to explain with current models, however. Kernel objects arent in resonance with any of the larger bodies, so why are they concentrated at that specific distance? In this study, David Nesvorn proposes that the kernel resulted from Neptunes outward migration through the solar system.In the currently favored model of our solar systems formation, the outermost gas giant planets formed closer to the Sun and then migrated out to their current locations. Nesvorn ran a series of simulations of this migration to test the theory that a discontinuity in Neptunes movement outward i.e., a sudden jump in the planets orbital distance could explain the presence of the Kuiper Belts kernel.Results from a previous study, in which the authors evolved the four gas giant planets plus a fifth giant planet (blue) initially on an orbit between Saturn and Uranus. At 18.3 Myr, a close encounter with the fifth planet causes Neptunes orbit (pink) to jump outwards by ~0.4 AU, and the fifth planet is then ejected from the solar system by Jupiter. [Nesvorn 2015]Resonant PopulationNesvorn was successful in finding a model that reproduced the kernel, as well as other observed features of the solar system today. In his model, Neptune began its journey closer to the Sun, at a distance of roughly 24 AU, and it migrated fairly rapidly outward to about 28 AU. As it traveled, it swept up bodies in the outer

  3. Testing of the Kuiper Airborne Observatory 91-CM telescope

    NASA Technical Reports Server (NTRS)

    Parks, R. E.

    1979-01-01

    The 91 cm telescope of the Kuiper Airborne Observatory was tested for optical figure errors in the surface of the mirrors and misalignment of the optical components. When the present set of optical components are installed in the telescope in proper alignment, the telescope produces an image with 80% of the energy in a circle of 1.50 arc seconds in diameter; that is, a 0.11 mm spot diameter in the focal plane. The primary mirror, an f/2 parabola, was tested against a flat and has a quality that puts 80% of the energy in a 0.51 arc second diameter spot. Two principal sources account for the residual error: the tertiary folding flat and the chopping secondary. It appears that the method of mounting the folding flat causes some distortion and that the secondary mirror has some residual spherical aberration in its figure.

  4. Microlensing by Kuiper, Oort, and Free-Floating Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2016-08-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event.At present, the search for such hosts is restricted to within the ``confusion limit'' of θ_\\confus ˜ 0.25'' but future WFIRST (Wide Field Infrared Survey Telescope) observations will allow one to probe beyond this confusion limit as well.

  5. Formation of High Mass Hydrocarbons on Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Jones, Brant M.; Bennett, C.; Gu, X.; Kaiser, R.

    2012-10-01

    We present recent results from the newly established W.M. Keck Research Laboratory in Astrochemistry regarding the formation of high molecular weight ( C15) hydrocarbons starting from pure, simple hydrocarbons ices upon interaction of these ices with ionizing radiation: methane (CH4), ethane (C2H6), propane (C3H8) and n-butane (C4H10). Specifically, we have utilized a novel application of reflection time-of-flight mass spectrometry coupled with soft vacuum ultraviolet photoionization to observe the nature of high mass hydro- carbons as a function of their respective sublimation temperature. The Kuiper Belt is estimated to consist of over 70,000 icy bodies, which extend beyond the orbit of Neptune at 30 AU. These bodies are thought to have maintained low temperatures (30-50 K) since the formation of the solar system and are regarded as frozen relics that may preserve a record of the primitive volatiles from which the solar system formed. In particular, methane has been detected on the surfaces of Sedna, Quaoar, Triton (thought to be a captured KBO) and Pluto along with ethane being tentatively assigned to on Quaoar, Pluto, and Orcus. The surfaces of these bodies have undergone 4.5 Gyr of chemical processing due to ionizing radiation from the solar wind and Galactic Cosmic Radiation. Our research has been focused on trying to understand how these ices have evolved over the age of our solar system by simulating the chemical processing via ionizing radiation in an ultrahigh vacuum chamber coupled with a variety of optical analytical spectroscopies (FT-IR, Raman, UV-Vis) and gas phase mass spectroscopy. Our results indicate that larger, more complex hydrocarbons up to C15 are formed easily under conditions relevant to the environment of Kuiper Belt Objects which may help elucidate part of the puzzle regarding the ‘colors’ of these objects along with the formation of carbonaceous material throughout the interstellar medium.

  6. TAOS: Taiwan-American Occultation Survey of Comet-Sized Objects in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Several dozen minor planets with radii greater than 100 km have been detected beyond Neptune using large telescopes. The TAOS project is to measure directly the number of these KBOs (Kuiper Belt Objects) down to the typical size of cometary nuclei (a few km) and out as far as approximately 100 AU from the Sun. Because of their large distance, small sizes and presumed low albedos, these target objects are extremely faint. Three 50 cm wide field robotic telescopes with 2048 x 2048 CCD cameras will be deployed along a 7 km east-west baseline in or near Jade Mountain National Park in Taiwan. They will monitor approximately 3000 stars for occultations by KBOs in a coincidence mode, so that the sequence and timing of the three separate blinkings can be used to distinguish real events from false alarms. Follow-up imaging observations using large telescopes will yield albedos and orbits for some of the larger objects detected by TAOS. A fourth telescope on a north-south spur to refine the size information on occulting GABON is also being contemplated.

  7. The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration.

    PubMed

    Levison, Harold F; Morbidelli, Alessandro

    2003-11-27

    The 'dynamically cold Kuiper belt' consists of objects on low-inclination orbits between approximately 40 and approximately 50 au from the Sun. It currently contains material totalling less than a tenth the mass of the Earth, which is surprisingly low because, according to accretion models, the objects would not have grown to their present size unless the cold Kuiper belt originally contained tens of Earth masses of solids. Although several mechanisms have been proposed to produce the observed mass depletion, they all have significant limitations. Here we show that the objects currently observed in the dynamically cold Kuiper belt were most probably formed within approximately 35 au and were subsequently pushed outward by Neptune's 1:2 mean motion resonance during its final phase of migration. Combining our mechanism with previous work, we conclude that the entire Kuiper belt formed closer to the Sun and was transported outward during the final stages of planet formation. PMID:14647375

  8. Imaging protoplanetary disks with a square kilometer array

    NASA Astrophysics Data System (ADS)

    Wilner, D. J.

    2004-12-01

    The recent detections of extrasolar giant planets has revealed a surprising diversity of planetary system architectures, with many very unlike our Solar System. Understanding the origin of this diversity requires multi-wavelength studies of the structure and evolution of the protoplanetary disks that surround young stars. Radio astronomy and the square kilometer array (SKA) will play a unique role in these studies by imaging thermal dust emission in a representative sample of protoplanetary disks at unprecedented sub-AU scales in the innermost regions, including the "habitable zone" that lies within a few AU of the central stars. Radio observations will probe the evolution of dust grains up to centimeter-sized "pebbles", the critical first step in assembling giant planet cores and terrestrial planets, through the wavelength dependence of dust emissivity, which provides a diagnostic of particle size. High resolution images of dust emission will show directly mass concentrations and features in disk surface density related to planet building, in particular the radial gaps opened by tidal interactions between planets and disks, and spiral waves driven by embedded protoplanets. Moreover, because orbital timescales are short in the inner disk, synoptic studies over months and years will show proper motions and allow for the tracking of secular changes in disk structure. SKA imaging of protoplanetary disks will reach into the realm of rocky planets for the first time, and they will help clarify the effects of the formation of giant planets on their terrestrial counterparts.

  9. The Square Kilometer Array and The Cradle of Life

    NASA Astrophysics Data System (ADS)

    Lazio, T. J. W.; Tarter, J. C.; Werthimer, D.; Wilner, D. J.

    2005-12-01

    The Square Kilometer Array (SKA) will be one of a suite of new, large telescopes for the Twenty-first Century probing fundamental physics, the origin and evolution of the Universe, the structure of the Milky Way Galaxy, and the formation and distribution of planets. The emerging field of astrobiology is beginning to address one of the oldest questions in science and philosophy: Are we alone? By virtue of its sheer sensitivity, high frequency coverage, and long baselines, the SKA will play a pivotal role in astrobiological studies. It will be a unique instrument with the capability to image proto-planetary disks in nearby star-forming regions and monitor the evolution of structures within those disks (``movies of planetary formation''). It will be able to reach qualitatively new levels of sensitivity in the search for intelligence elsewhere in the Galaxy, including for the first time the realistic possibility of detecting unintentional emissions or ``leakage'' (such as from TV transmitters) from nearby stars. Finally, it will also be able to assess the extent to which interstellar molecules are incorporated into proto-planetary disks. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  10. The Allen Telescope Array as Square Kilometer Array Pathfinder

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.

    2007-12-01

    The Allen Telescope Array (ATA) is a new radio interferometer that has begun scientific operations in 2007. Many of the technologies, techniques, and observing modes developed for the ATA are directly applicable to the Square Kilometer Array (SKA). The ATA is a pioneer of the LNSD, which refers to a large number (LN) of small diameter (SD) dishes to create the array. This concept underlies nearly all SKA designs. Other relevant technologies are the offset Gregorian ATA antenna, the ATA wideband log periodic feed, transport of broadband data over fiber optic cables, and flexible digital signal processing electronics. The small dishes of the ATA gives it extraordinary wide-field imaging and survey capability but also require new solutions for calibration and imaging. Real time imaging, rapid response to transients, and thinking telescope technology are also under development. Finally, the ATA is developing commensal observing modes, which enable multiple simultaneous science programs, such as SETI, transient surveys, and HI surveys. Opportunities exist for community members to perform scientific investigations as well as develop techniques and technology for the SKA through use of the ATA.