Science.gov

Sample records for 2006-2007 balloon flight

  1. Initial Results from the ANITA 2006-2007 Balloon Flight

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /Hawaii U. /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U. /UC, Irvine

    2011-11-16

    We report initial results of the Antarctic Impulsive Transient Antenna (ANITA) 2006-2007 Long Duration Balloon flight, which searched for evidence of the flux of cosmogenic neutrinos. ANITA flew for 35 days looking for radio impulses that might be due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. In our initial high-threshold robust analysis, no neutrino candidates are seen, with no physics background. In a non-signal horizontal-polarization channel, we do detect 6 events consistent with radio impulses from extensive air showers, which helps to validate the effectiveness of our method. Upper limits derived from our analysis now begin to eliminate the highest cosmogenic neutrino models.

  2. The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for 2006-2007 balloon flight

    SciTech Connect

    Gorham, P. W.; Allison, P.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C. L.; Hoover, S.; Israel, M. H.; Learned, J. G.

    2009-05-23

    In this article, we present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.

  3. JACEE long duration balloon flights

    SciTech Connect

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J. ); Dake, S.; Oda, H. ); Miyamura, O. ); Fuki, M. ); Jones, W.V. ); Gregory, J.; Hayashi, T.; Takahashi, U. ); Tominaga,

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs.

  4. The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007

    NASA Technical Reports Server (NTRS)

    Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.; Kennea, J.; Campana, S.; Chincarini, G.; Citterio, O.; Cusumano, G.; LaParola, V.; Mangano, V.; Mineo, T.; Giommi, P.; Perri, M.; Capalbi, M.; Tamburelli, F.

    2007-01-01

    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.

  5. Mars Balloon Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Pauken, Michael T.; Kerzhanovich, Viktor V.; Walsh, Gerald J.; Kulczycki, Eric A.; Fairbrother, Debora; Shreves, Chris; Lachenmeier, Tim

    2009-01-01

    This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.

  6. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  7. Test flights of the NASA ultra long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H.

    The NASA Ultra Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the National Aeronautics and Space Administration (NASA) Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Two Ultra Long Duration balloon test flights took place from Australia in early 2001. The results from these flights, as well as the challenges presented, will be discussed. With these lessons learned and incorporating both material and design improvements, a test flight of a full-scale 610,500m3 balloon with a 2,800 kg suspended load will be completed in Spring of 2002 from Ft. Sumner, New Mexico. This balloon, the largest single celled super- pressure balloon ever flown, has been sized to satisfy the requirements for the planned ULDB CREAM mission in late 2003. A description of the balloon design, including the modifications made as a result of the lessons learned from the two Australia flights, will be presented. The results, highlighting balloon performance, from the Spring 2002 test flight will be presented. This will include information related to the balloon preparation, flight operations, and flight performance. A review of the radiative environmental influences on the balloon related to this flight will be presented. A second test flight of a full-scale Ultra Long Duration Balloon is scheduled for December of 2002. This flight is expected to be one orbit or approximately 15 days. The plans for this Southern Hemisphere, Australia launched, global flight will also be presented.

  8. Test flights of the NASA ultra-long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Ultra-Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Descriptions of two test flights from early 2001 are presented along with lessons learned. Results are also presented of a July 2002 test flight of a full-scale 610,500 m 3 balloon with a 2800 kg suspended load that incorporated the lessons learned.

  9. CREAM Balloon Flights and Beyond

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2012-07-01

    The Cosmic Ray Energetics And Mass (CREAM) payload was launched from McMurdo Station in Antarctica on December 21, 2010 for its sixth flight. A cumulative exposure of ~ 161 days was achieved when this almost 6-day flight was terminated on December 26, 2010. The calorimeter module was recovered in one piece on the pallet without dis-assembly, despite the challenging recovery location at high altitude on the opposite side of the Antarctic continent from McMurdo Station. The recovered CREAM-VI instrument was calibrated at CERN in October 2011, and it is being integrated for a CREAM-VII flight in Antarctica. The CREAM-V instrument recovered previously was refurbished, and it is being re-configured for exposure on the International Space Station (ISS). The instrument performance, results from the ongoing data analysis, and future plans will be presented.

  10. Measurements of Load Train Motion on a Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Gruner, Timothy D.; Olney, David J.; Russo, Angela M.

    2005-01-01

    Attitude measurements using gyros and magnetometers placed on a stratospheric balloon during a non-pointed test flight were used to observe the natural azimuth and elevation motions of a balloon/load train/gondola at an altitude of 36 km over a total flight time of 400 minutes. Time traces of the entire flight are presented. This flight, conducted under nominal atmospheric conditions, had significant motion about the azimuth. Some discussion on balloon disturbances is also included.

  11. EUSO-Balloon: The first flight

    NASA Astrophysics Data System (ADS)

    Scotti, Valentina; Osteria, Giuseppe

    2016-07-01

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the International Space Station (ISS). The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies of JEM-EUSO detectors and to measure the UV background. The JEM-EUSO instrument consists of UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, was launched on August 2014 from Timmins (Ontario, Canada). The flight lasted about five hours and the instrument reached a float altitude of about 40 km. From this altitude the telescope registered, at a rate of 400 000 frames/s, the nightglow background on forests, lakes and clouds, as well as city lights and artificial air showers tracks generated by means of a laser installed on an helicopter flying inside its field of view. In this contribution we will describe the instrument and its performance during the first flight.

  12. Sounding rocket and balloon flight safety philosophy and methodologies

    NASA Technical Reports Server (NTRS)

    Beyma, R. J.

    1986-01-01

    NASA's sounding rocket and balloon goal is to successfully and safely perform scientific research. This is reflected in the design, planning, and conduct of sounding rocket and balloon operations. The purpose of this paper is to acquaint the sounding rocket and balloon scientific community with flight safety philosophy and methodologies, and how range safety affects their programs. This paper presents the flight safety philosophy for protecting the public against the risk created by the conduct of sounding rocket and balloon operations. The flight safety criteria used to implement this philosophy are defined and the methodologies used to calculate mission risk are described.

  13. The NASA super pressure balloon - A path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2009-07-01

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space

  14. NASA balloon design and flight - Philosophy and criteria

    NASA Technical Reports Server (NTRS)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  15. Flight Qualification of the NASA's Super Pressure Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  16. The NASA super pressure balloon - a path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, Henry

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of an Ultra Long Duration Balloon (ULDB) test flight in 2006. Summary results of the June 2006 ULDB test flight from Kiruna, Sweden will be presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the projects efforts toward additional ground testing and analysis. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of 27 m model balloons were successfully testing indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these 27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, material testing, ground testing, photogrammetry, and an analysis overview. A

  17. Medium energy gamma ray astronomy with transpacific balloon flights

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Jennings, M. C.; White, R. S.; Dayton, B.

    1981-01-01

    Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1-30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. It is proposed that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.

  18. Concepts for autonomous flight control for a balloon on Mars

    NASA Technical Reports Server (NTRS)

    Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.

    1988-01-01

    Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.

  19. New Design Concept and Flight Test of Superpressure Balloon

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Yajima, Nobuyuki; Ohta, Shigeo; Honda, Hideyuki; Kurokawa, Haruhisa; Matsushima, Kiyoho

    A new ballon design method named ‘three-dimensional gore design’ was developed. It is based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. This type of balloon can be manufactured with gores having a size larger than that of the conventional gore. The sides of each gore are fixed to the adjacent short load tapes with controlled shortening rates. The gore length is chosen so as not to create any meridional tension. Hence, the superpressure limit of these balloons is simply given as film strength divided by bulge radius. As the limit does not depend on the balloon size, a large balloon with a high superpressure limit can be easily constructed without strong films. A test flight as well as indoor inflation and burst experiment showed that this new design method can realize a larger and lighter superpressure balloon capable of suspending a heavy payload in the stratosphere.

  20. Analysis of Flight of Near-Space Balloon

    NASA Astrophysics Data System (ADS)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  1. Results of the 1970 balloon flight solar cell standardization program

    NASA Technical Reports Server (NTRS)

    Greenwood, R. F.

    1972-01-01

    For the eighth consective year, high-altitude calibration of solar cells was accomplished with the aid of free-flight balloons. Flights were conducted to an altitude of 36,576 m which is above 99.5% of earth's atmosphere where all water vapor levels and significant ozone bands are absent. Solar cells calibrated in this manner are significant used as intensity references in solar simulators and in terrestrial sunlight. Discussed is the method employed for high altitude balloon flight solar cell calibration. Also presented are data collected on 52 standard solar cells on two flights conducted in 1970. Solar cells flown repeatedly on successive flights have shown correlation of better than + or - 1.0%.

  2. Vertical sounding balloons for long duration flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    1994-02-01

    Vertical soundings in the lower stratosphere are possible on command with an Infrared Montgolfiere, between 16 km and 28 km. Results of simulations are presented. The first test flight of a 7800 m3 Montgolfiere with a relief valve, has been conducted in Arctic area (Spitzbergen, July 1992). The flight of an Infrared Montgolfiere, with full vertical sounding capabilities, is planned for the end of 1993, from Ecuador (South AMERICA).

  3. Vertical sounding balloons for long duration flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    1994-02-01

    Vertical soundings in the lower stratosphere are possible on command with an Infrared Montgolfiere, between 16 km and 28 km. Results of simulations are presented. The first test flight of a 7800 cu m Montgolfiere with a relief valve, has been conducted in Arctic area (Spitzbergen, July 1992). The flight of an Infrared Montgolfiere, with full vertical sounding capabilities, is planned for the end of 1993, from Ecuador (South AMERICA).

  4. ARL Supplementary Statistics, 2006-2007

    ERIC Educational Resources Information Center

    Bland, Les, Comp.; Kyrillidou, Martha, Comp.

    2009-01-01

    This report presents statistics on how Association of Research Libraries (ARL) member libraries spend money on electronic resources. This report indicates that 108 ARL libraries purchased 25,006,758 electronic books. In 2006-2007, there was an ARL median of 243,725 acquisitions of electronic books (this includes one institution that purchased…

  5. Solar cell calibration facility validation of balloon flight data: a comparison of shuttle and balloon flight results

    SciTech Connect

    Anspaugh, B.E.; Downing, R.G.; Sidwell, L.B.

    1985-10-01

    The Solar Cell Calibration Facility (SCCF) experiment was designed and built to evaluate the effect of the Earth's upper atmosphere on the calibration of solar cell standards. During execution of the experiment, a collection of carefully selected solar cells was flown on the shuttle, and reflown on a high-altitude balloon, then their outputs were compared. After correction to standard temperature and intensity values of 28 C and an Earth-Sun distance of 1 AU, the solar cell outputs during the two flights were found to be identical. The conclusion is therefore that the high-altitude balloon flights are very good vehicles for calibrating solar cells for use as space flight reference standards.

  6. Solar cell calibration facility validation of balloon flight data: A comparison of shuttle and balloon flight results

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.; Sidwell, L. B.

    1985-01-01

    The Solar Cell Calibration Facility (SCCF) experiment was designed and built to evaluate the effect of the Earth's upper atmosphere on the calibration of solar cell standards. During execution of the experiment, a collection of carefully selected solar cells was flown on the shuttle, and reflown on a high-altitude balloon, then their outputs were compared. After correction to standard temperature and intensity values of 28 C and an Earth-Sun distance of 1 AU, the solar cell outputs during the two flights were found to be identical. The conclusion is therefore that the high-altitude balloon flights are very good vehicles for calibrating solar cells for use as space flight reference standards.

  7. JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment

    NASA Technical Reports Server (NTRS)

    Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.

  8. Implementing Improved Security and Encryption for Balloon Flight Systems

    NASA Astrophysics Data System (ADS)

    Denney, Andrew; Stilwell, Bryan D.

    The Columbia Scientific Balloon Facility uses a broad array of communication techniques be-tween its balloon-borne flight systems and ground command and control systems. These com-munication mediums vary from commercially available routing such as e-mail and IP based TCP/UDP protocols to military grade proprietary line-of-sight configurations; each with their own unique benefits and shortfalls. While each new advancement in technology improves secu-rity in some capacity, it does not always address the limitation of older, less advanced security or encryption capabilities. As the proliferation of newer, more commercially viable technologies become common place, safeguarding mission critical applications from unauthorized access and improve data integrity in the process becomes ever more necessary. Therefore, this paper will evaluate several security measures and methods of data encryption; including formalizing a standardized security philosophy that improves and addresses the mixture of established and emerging technologies.

  9. LDEF (Flight), S1006 : Balloon Material Degradation, Tray E06

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The flight photograph was taken from the orbiter aft flight deck during the LDEF retrieval and shows the positions of four (4) LDEF experiments mounted in a three (3) inch deep LDEF peripheral tray. The Balloon Materials Degradation Experiment (S1006) experiment is located in the center one third (1/3rd) section, the Multiple Foil Microabrasion Package (MAP) Experiment (AO023) occupies the left one third (1/3rd) section, the Measurement of Heavy Cosmic-Ray Nuclei on LDEF Experiment (M0002-02) is located in the lower one half (1/2) of the right section and the Ion Beam Textured and Coated Surfaces Experiment (S1003) is shown in the top-right section of the tray.The tray flanges appear as pre- launch but the white paint dots on tray clamp blocks have varying degrees of discoloration. The paint color on the lower-center clamp block is white, paint on the left-center clamp block is lightly discolored and paint on the upper-right clamp block is heavily discolored. The Balloon Materials Degradation experiment, located in the center one third (1/3rd) tray section, consist of 38 polymer film specimen, in the form of either thin film or reinforced tape, and 24 fibrous cord specimen. The ends of each test polymer film specimen, approximately 1.0 inch wide and 6.0 inches long, were secured between aluminum clamp strips that attached to aluminum experiment mounting plates. The cord specimen, approximately 4.0 inches long, are secured along the left and right edges of the experiment mounting plates in a similar manner. The aluminum clamp strips and experiment mounting plates have a thermal coat of IITRI S13G-LO white paint. Non-magnetic stainless steel fasteners are used for the experiment assembly and for attaching the experiment mounting plate to the tray structure. The thin film polymeric material samples in the Balloon Materials Degradation experiment appear to have been severely degraded. All 26 of the unreinforced thin film samples have curled edges, 12 samples appear to

  10. The NASA Balloon Program: Implementing a New Flight Program for the Future

    NASA Technical Reports Server (NTRS)

    Pierce, David L.

    2006-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Balloon Program continues to support the scientific community providing enhanced capabilities across a spectrum of balloon related disciplines. Long Duration Ballooning (LDB) continues to be a prominent element of the program with a mission model of a two flight campaign in each the Northern and Southern Hemispheres per year. A new LDB endurance record was achieved in Antarctica with the LDB/CREAM mission. Both polar and mid-latitude LDB capabilities continue to be on-going operational elements of the flight program. The Swedish Space Corporation/Esrange and the National Aeronautics and Space Administration (NASA) inaugurated a joint European/U.S. capability for LDB balloon flights from Sweden to Canada in June 2005. This will complement the NASA/U.S. National Science Foundation Office of Polar Programs achievement of more than a decade of successful long-duration flights around Antarctica. Most of Antarctic flights have flown one time around the South Pole in 8-20 days using conventional (zero differential pressure) balloons. One flight went twice around in 31 days and another went three times around in 42 days using conventional balloons. Balloon technology efforts have continued to broaden in scope and new plans for activities to provide advancements have been initiated. A new balloon volume record was established with the successful flight of a 1,700,000 m3 volume zero-pressure balloon. The capability to fly a 700 kg payload (200 kg science instrument) to 160,000 ft has also been demonstrated. A new super-pressure (constant volume) balloon is currently under development for future flights of 60 - 100 day at any latitude. The Ultra-Long Duration Balloon (ULDB) project for the development of a 100-day duration balloon capability has been progressing with additional ground and flight tests having been conducted. The Program has also continued to introduce new technology and improvements into flight

  11. Flight demonstration of a superpressure balloon by three-dimensional gore design

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Ohta, S.; Honda, H.; Kurokawa, H.; Matsushima, K.

    On May 15, 1999, a balloon with a volume of 3,100 cubic meters was successfully launched from Sanriku Balloon Center of Japan. It became a superpressure balloon at 19.2km in altitude with 20% pressure difference to the ambient atmosphere. This is the first superpressure balloon capable of suspending a heavy payload. It was designed by the new 'three-dimensional gore design' method and was based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. The balloon climbed up to 21.6km in altitude by dropping the ballast and held out against a 64% pressure difference over the ambient atmosphere. This flight test proved the capability of large stratospheric superpressure balloons by this new design method.

  12. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  13. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    NASA Astrophysics Data System (ADS)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  14. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  15. Balloon-borne, high altitude gravimetry: The flight of DUCKY 1a (11 October 1983)

    NASA Astrophysics Data System (ADS)

    Lazarewicz, A. R.; Schilinski, B. J.; Cowie, R. J.; Rice, C. L.; Moss, P.; Carter, L. N.

    1985-12-01

    Gravity measurements from a high-altitude balloon were made in late September to verify global and upward-continued gravity models. The first flight was intended to provide balloon motion and environment data with a preliminary estimate of the quality of measured gravity values. A balloon operates in a dynamic, largely unpredictable environment; thus, the gravimeter senses accelerations due to balloon motions as well as gravitational acceleration. Independent measurements of balloon motions from an intertial navigation package (three accelerometers, three rate gyros, three-axis magnetometer and two tiltmeters) combined with ground tracking (X, Y and Z position and velocity) will allow for separation of balloon-induced accelerations from gravitational acceleration to 1 mGal, using tracking data to an accuracy of about 5 cm/sec in velocity for Eotvos corrections, and position to 1 m. This first engineering flight was planned to coincide with the lowest seasonal wind velocities over Holloman AFB, where AFGL has its permanent balloon launch facility. Mild wind velocities are desired to provide the most benign environment possible during the testing phase, and to keep the balloon within tracking range. The experiment design, launch, and flight operations, and a first look at the data are presented.

  16. A search for solar neutrons on a long duration balloon flight

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Thomas, J.; Koga, R.; Owens, A.; Denehy, B. V.; Mace, O.

    1985-01-01

    The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.

  17. Results of the first EUSO-Balloon flight

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Bertaina, M.; JEM-EUSO Collaboration

    2016-05-01

    EUSO-Balloon, a balloon-borne diffractive fluorescence telescope, was launched by the French Space Agency ONES from the Timmins base in Ontario (Canada) on August 25th in 2014. After reaching the floating altitude of about 38 km, EUSO-Balloon imaged the UV background for more than 5 hours before descending to ground using the key technologies of JEM-EUSO. A detailed and precise measurement of the UV background in different atmospheric and ground conditions was achieved. The instrument proved the capability of detecting Extensive Air Showers (EAS) by observing laser tracks with similar characteristics. This contribution will summarise the first results obtained concerning all the topics described above.

  18. Design considerations &practical results with long duration systems for manned flight: cryogenic helium and superpressure balloons.

    NASA Astrophysics Data System (ADS)

    Nott, J.

    The paper will describe two manned flights made in polyethylene zero pressure balloons with liquid helium carried to provide all in-flight buoyancy adjustment. These balloons were of 1,600 and 8,000 cubic meter volumes. Two flights have been made, both lasting 24 hours. The first flight cruised and flew through the sunset at 18,000 feet / 5,500 meters. The second flight using a pressurized cabin included flying through the night at about 32,000 feet / 10,000 meters. These flights highlight a wide range of theoretical and practical design concerns. For a craft carrying a crew, structural integrity and manageability &control in flight are naturally important. These flights demonstrated the complete feasibility of this system which will be described in detail. In addition the author constructed a 1,600 cubic meter pumpkin balloon used for a two day fight across Australia with a crew of two. Considerable problems were discovered during construction with distortion of the balloon. Although this work was done some time ago, the results have not been published in detail. The reason for publications at this time is that the work is very relevant to the problems recently encountered with the ULDB pumpkin design. The author, who is a physicist as well as a member of the Society of Experimental Test Pilots, was the principal desig ner as well as pilot of these craft. Ends...

  19. Private and Commercial Pilot: Free Balloon: Flight Test Guide (Part 61 Revised).

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The flight test guide has been prepared to assist the applicant and his instructor in preparing for the private pilot or commercial pilot certificate with a lighter-than-air category and free balloon class rating. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test: layout and…

  20. Balloons for Science.

    ERIC Educational Resources Information Center

    Lally, Vincent E.

    1982-01-01

    Discusses the nature and use of scientific balloons. Topics addressed include: (1) types of balloons; (2) lifting gases; (3) polyethylene balloons; (4) duration of balloon flight; and (5) use of balloons in scientific research. (JN)

  1. Estimation of balloon position from wind data. [computerized prediction of observation balloon flight

    SciTech Connect

    Ng, L.C.; Kelly, M.F.

    1988-03-01

    The report summarized the mathematical algorithm and the computed results developed for the prediction of a balloon's position uncertainty as a function of time from a given statistical wind velocity profile. The predicted results were used for mission plannings in support of a recent ship launch ballon observation experiment. 30 figs.

  2. Long Duration Balloon flights development. (Italian Space Agency)

    NASA Astrophysics Data System (ADS)

    Peterzen, S.; Masi, S.; Dragoy, P.; Ibba, R.; Spoto, D.

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, earth observations, near space research and commercial component testing, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78º N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennial oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultra-light payloads and TM systems ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program. This paper discusses the development of the launch facilities and international LDB development.

  3. Results of the 1997 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1997-01-01

    The 1997 solar cell calibration balloon flight campaign consisted of three flights, the first flight on June 11, 1997, the second flight on August 2, 1997, and the third flight on August 24, 1997. One flight, flown on August 14, 1997, was terminated early because of a telemetry transmitter failure, and its payload was reflown on the August 24 flight. All objectives of the flight program were met. Ninety-eight modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on 32 of these modules, and output at a fixed load was measured on 66 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  4. Southeastern Wisconsin School District Rankings, 2006-2007

    ERIC Educational Resources Information Center

    Public Policy Forum, 2007

    2007-01-01

    This brochure displays the following data for seven counties in southeastern Wisconsin for the 2006-2007 school year: (1) Total operations expenditures; (2) Property tax revenue; (3) Total enrollment; (4) One-year change in enrollment; (5) Minority enrollment; (6) Free or reduced lunch; (7) Graduation rate; (8) 3rd, 4th, 8th and 10th grade…

  5. ARL Academic Health Sciences Library Statistics 2006-2007

    ERIC Educational Resources Information Center

    Kyrillidou, Martha, Comp.; Bland, Les, Comp.

    2008-01-01

    This document presents data that describe collections, expenditures, personnel, and services in 65 medical libraries at Association of Research Libraries (ARL) member institutions throughout North America. In 2006-2007, the reporting health sciences libraries held a median of 244,188 volumes, spent a total of $244,188,020, and employed 2,395 FTE…

  6. Blind Childrens Center Annual Report, 2006-2007

    ERIC Educational Resources Information Center

    Blind Childrens Center, 2007

    2007-01-01

    Children with vision loss often have health care needs beyond those that are related to their vision. In 2006-2007, the Blind Childrens Center rendered more extensive services than ever before. Home visits, transportation services, medical appointments, hospital visits, mediations, meetings for individual educational/family service plans,…

  7. ARL Academic Law Library Statistics 2006-2007

    ERIC Educational Resources Information Center

    Kyrillidou, Martha, Comp.; Bland, Les, Comp.

    2008-01-01

    This document presents results of the 2006-2007 Association of Research Libraries (ARL) Law Library Statistics Questionnaire. Of 113 ARL university libraries, 74 responded to the survey. Results for each library are presented in the following data tables: (1) collections (2-parts), including volumes in library, volumes added, monographs purchased,…

  8. Dilemmas of Dissent: International Students' Protest, Melbourne 2006/2007

    ERIC Educational Resources Information Center

    Rodan, Paul

    2008-01-01

    International students in Australia are not usually identified with protest. However, a cohort of such students at one university campus was prepared to undertake robust public protest over alleged academic mistreatment in 2006/2007, eschewing conventional internal mechanisms for the resolution of such problems. Subsequent developments revealed…

  9. Results of the 1993 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1993-10-01

    The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.

  10. Results of the 1991 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1991-10-01

    The 1991 solar cell calibration balloon flight was completed on August 1, 1991. All objectives of the flight program were met. Thirty-nine modules were carried to an altitude of 119,000 ft. (36.3 km). Data telemetered from the modules were corrected to 28 C and to 1 AU. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  11. Results of the 1993 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1993-01-01

    The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.

  12. Results of the 1994 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1994-01-01

    The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.

  13. Results of the 1992 NASA/JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1992-01-01

    The 1992 solar cell calibration balloon flight was completed on August 1, 1992. All objectives of the flight program were met. Forty-one modules were carried to an altitude of 119,000 ft (36.3 km). Data telemetered from the modules was corrected to 28 C and 1 AU. The calibrated cells have been returned to 39 participants and can now be used as reference standards in simulator testing of cells and arrays.

  14. Results of the 1991 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1991-01-01

    The 1991 solar cell calibration balloon flight was completed on August 1, 1991. All objectives of the flight program were met. Thirty-nine modules were carried to an altitude of 119,000 ft. (36.3 km). Data telemetered from the modules were corrected to 28 C and to 1 AU. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  15. Results of the 1983 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1984-01-01

    The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).

  16. Results of the 1994 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1994-10-01

    The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.

  17. Results of the 1987 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1987-12-01

    The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.

  18. Results of the 1989 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1989-11-01

    The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  19. Results of the 1989 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1989-01-01

    The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  20. Results of the 1985 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1986-12-01

    The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. 1 reference.

  1. Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1986-11-01

    The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  2. Results of the 1985 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1986-01-01

    The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  3. Results of the 1988 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1988-11-01

    The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  4. Results of the 1988 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1988-01-01

    The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  5. Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1986-01-01

    The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  6. Results of the 1982 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1983-01-01

    The 1982 solar cell calibration balloon flight was successfully completed on July 21, meeting all objectives of the program. Twenty-eight modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  7. Balloon Flight Tests of a Gas-Ionization-Chamber-Based Isotope Spectrometer

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; Milliken, B.

    1995-01-01

    High resolution studies of the isotopic composition of heavy elements in the galactic cosmic radiation have been performed using satellites. The performance of the Tracking Heavy Isotope Spectrometer Telescopes for Low Energies (THISTLE) is investigated using data from a balloon flight carried out in 1993. The instrument design is discussed; and data, and additional analysis, is shown.

  8. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The Interplanetary Monitoring Platform-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard-particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  9. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The IMP-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  10. Results of the 1987 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1987-01-01

    The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.

  11. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  12. Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Curioni, Alessandro

    2004-10-01

    This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXe

  13. The GRAD high-altitude balloon flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.; Coldwell, R. L.; Dunnam, F. E.; Rester, A. C.; Trombka, J. I.; Starr, R.

    1989-01-01

    The Gamma Ray Advanced Detector (GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high-altitude balloon at 36 km altitude at a latitude of 78 deg S over Antarctica for observations of gamma radiation emitted by the radioactive decay of Co-56 in the supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software.

  14. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Technical Reports Server (NTRS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; Mcbride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-01-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  15. Balloon stratospheric research flights, November 1974 to January 1976

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1976-01-01

    These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the photochemical system of the upper atmosphere. An overview of the specific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for each of the last five flights during this period are presented.

  16. Polaris Experiment: Data Collected During the Stratospheric Flight on the Balloon BEXUS 18

    NASA Astrophysics Data System (ADS)

    Paganini, D.; Cacco, C.; Cipriani, F.; Cocco, F.; Cortese, T.; Vecchia, R. D.; La Grassa, M.; Lora, M.; Zorzan, M.; Branz, F.; Olivieri, L.; Sansone, F.; Francesconi, A.

    2015-09-01

    POLARIS experiment, POLymer-Actuated Radiator with Independent Surfaces, is a technology demonstrator based on a new concept of heat radiator, conceived for space and planetary applications. This innovative radiator, named “multi-plate”, is able to influence actively the heat amount dissipated towards the environment through a simple geometry change, varying its equivalent thermal resistance. In order to better understand the potentialities of this radiator concept in one of its most likely scenario of application, POLARIS flew into stratosphere on the BEXUS1 8 balloon, in the framework of the REXUS-BEXUS programme; the flight took place from the ESRANGE Space Center on October 12th, 2014. The conditions that the experiment experienced during the flight allowed to evaluate the radiator in a realistic context, giving an extraordinary opportunity to characterize its capabilities. In this paper, POLARIS architecture is introduced and the main results obtained from the stratospheric balloon flight are presented and discussed.

  17. Results of the 1998 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    1998-01-01

    The 1998 solar cell calibration balloon flight campaign consisted of one flight, which occurred on August 15, 1998. All objectives of the flight program were met. Thirty-one modules were carried to an altitude of = 120,000 ft (36.6 km). Full I-V curves were measured on 4 of these modules, and output at a fixed load was measured on 27 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  18. Search for gamma ray bursts with coincident balloon flights

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Schmidt, W. K. H.; Teegarden, B. J.

    1976-01-01

    A search was conducted for cosmic gamma ray bursts of small size and of sufficient frequency of occurrence to be detected during a one day observation program. Two similar detectors, successfully balloon-borne from launch sites in South Dakota and Texas, achieved about 20 hours of simultaneous operation at several millibars atmospheric depth, with continuous separation of over 1,500 km. Fluctuations of the counting rates of less than 150 keV photons with temporal structures from microseconds to several minutes were compared in order to detect coincident or associated responses from the two instruments. No coincident gamma-ray burst events were detected. The resulting integral size spectrum of small bursts, from this and from all other searches, remains a spectrum of upper limits, consistent with an extrapolation of the size spectrum of the largest known bursts, fitting a power low of index -1.5.

  19. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  20. Results of the 1995 JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to

  1. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1990-11-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  2. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, Bruce E.; Weiss, Robert S.

    1990-01-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  3. Results of the 2000 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    2001-01-01

    The 2000 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 27, 2000, and July 5, 2000. All objectives of the flight program were met. Sixty-two modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on sixteen of these modules, and output at a fixed load was measured on thirty-seven modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. This data was corrected to 28 C and to 1 AU (1.496x10(exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  4. Results of the 1996 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1996-01-01

    The 1996 solar cell calibration balloon flight campaign was completed with the first flight on June 30, 1996 and a second flight on August 8, 1996. All objectives of the flight program were met. Sixty-four modules were carried to an altitude of 120,000 ft (36.6 km). Full 1-5 curves were measured on 22 of these modules, and output at a fixed load was measured on 42 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  5. Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    2000-01-01

    The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  6. Results of the 1973 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Greenwood, R. F.

    1975-01-01

    High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.

  7. Long-Duration Altitude-Controlled Balloons for Venus: A Feasibility Study Informed by Balloon Flights in Remote Environments on Earth

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.

    2013-12-01

    In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon

  8. Results of the 2001 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.

    2002-01-01

    The 2001 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 26, 2001, and July 4, 2001. Fifty-nine modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on nineteen of these modules, and output at a fixed load was measured on thirty-two modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. The data from the fixed load cells on the first flight was not usable. The temperature dependence of the first-flight data was erratic and we were unable to find a way to extract accurate calibration values. The I-V data from the first flight was good, however, and all data from the second flight was also good. The data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8)km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  9. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-2, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1972-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.

  10. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  11. Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts

    NASA Astrophysics Data System (ADS)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Ryan, J. M.; McConnell, M. L.

    2016-03-01

    We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray (~0.4-10 MeV) detectors capable of making sensitive observations of both line and continuum sources over a wide dynamic range. A fast scintillator-based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits both the rejection of background via time-of-flight (ToF) discrimination and the ability to operate at high count rates. The Solar Compton Telescope (SolCompT) prototype presented here was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2×2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of 60Co embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 h at a float altitude of ~123,000 ft. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise

  12. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  13. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  14. Modified ECC ozone sonde for long-duration flights aboard isopicnic drifting balloons

    NASA Astrophysics Data System (ADS)

    Gheusi, Francois; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clénet, Antoine; Fontaine, Alain; Jambert, Corinne; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2015-04-01

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPB) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electrochemical concentration cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (owing to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPB. The mechanical elements (Teflon pump and motor) and the electrochemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, a strategy has been adopted of short measurement sequences (typically 2-3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Consequently, the measurement sequence is typically composed of a one-minute spin-up period after the pump has been turned on, followed by a one- to two-minute acquisition period. All time intervals can be adjusted before and during the flight. Results of a preliminary ground-based test in spring 2012 are first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then we illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during summer field campaings in 2012 and 2013 (TRAQA and ChArMEx programmes). BLPB drifting

  15. First Flight of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Mock, L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The ATILT instrument is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range -10 GeV - 100 TeV. ATIC was launched as a long duration test balloon flight on 12/28/00 local time from McMurdo, Antarctica. The operations preceding and during launch went very smoothly. During the first -20 hr while the instrument remained within line of sight (LOS), a full system check out was conducted, the experiment was operated in several test configurations, and all major tuning was completed. Preliminary analysis of the science data indicates that the overall detector system is functioning as expected. With our fully functioning analysis software we were able to monitor the data in nearly real time. Each event was reconstructed event-by-event to confirm the detector performance. The shower profiles indicate that the shower maximum location is deeper in the calorimeter for higher energy events, as expected. The energy spectra of protons, Helium nuclei, and "all particles" appear to follow power laws. Both the Si matrix and top scintillator layer of the charge module show clear charge separation for p and He. As the statistics increase, heavy nuclei charge separation will be evaluated. We will present preliminary results of the LOS data, as well as other data that will be available from the flight-data hard disk,

  16. Gamma-ray Large-Area Space Telescope (GLAST) balloon flight data handling overview

    NASA Astrophysics Data System (ADS)

    Burnett, T. H.; Chekhtman, A.; Do Couto E Silva, E.; Dubois, R.; Flath, D.; Gable, I.; Grove, J. E.; Hartman, R. C.; Kamae, T.; Kavelaars, A.; Kelly, H.; Kotani, T.; Kuss, M.; Lauben, D.; Lindner, T.; Lumb, N.; Mizuno, T.; Moiseev, A.; Ozaki, M.; Rochester, L. S.; Schaefer, R.; Spandre, G.; Thompson, D. J.; Usher, T.; Young, K.

    2002-08-01

    The GLAST Balloon Flight Engineering Model (BFEM) represents one of 16 towers that constitute the Large Area Telescope (LAT), a high-energy (>20 MeV) gamma-ray pair-production telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006. The prototype tower consists of a Pb/Si pair-conversion tracker (TKR), a CsI hodoscopic calorimeter (CAL), an anti-coincidence detector (ACD) and an autonomous data acquisition system (DAQ). The self-triggering capabilities and performance of the detector elements have been previously characterized using positron, photon and hadron beams. External target scintillators were placed above the instrument to act as sources of hadronic showers. This paper provides a comprehensive description of the BFEM data-reduction process, from receipt of the flight data from telemetry through event reconstruction and background rejection cuts. The goals of the ground analysis presented here are to verify the functioning of the instrument and to validate the reconstruction software and the background-rejection scheme.

  17. Solar Observations at THz Frequencies on Board of a Trans-Antartic Stratospheric Balloon Flight

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Abrantes, André; Bortolucci, Emilio; Caspi, Amir; Fernandes, Luis Olavo T.; Kropotov, Grigory; Kudaka, Amauri; Laurent, Glenn Thomas; Machado, Nelson; Marcon, Rogério; Marun, Adolfo; Nicolaev, Valery; Hidalgo Ramirez, Ray Fernando; Raulin, Jean-Pierre; Saint-Hilaire, Pascal; Shih, Albert; Silva, Claudemir; Timofeevsky, Alexander

    2016-05-01

    Sub-THz and 30 THz solar burst observations revealed a new spectral component, with fluxes increasing towards THz frequencies, simultaneously with the well known component peaking at microwaves, bringing challenging constraints for interpretation. The THz flare spectra can be completed with measurements made from space. A new system of two photometers was built to observe the Sun at 3 and 7 THz named SOLAR-T. An innovative optical setup allows observations of the full solar disk and detect small burst with sub-second time resolution. The photometers use two Golay cell detectors at the foci of 7.6 cm Cassegrain telescopes. The incoming radiation undergoes low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. The system has been integrated to redundant data acquisition system and Iridium short-burst data services telemetry for monitoring during the flight. SOLAR-T has been flown coupled to U.C. Berkeley solar hard X-ray and gamma-ray imaging spectro-polarimeter GRIPS experiment launched on a NASA CSBF stratospheric balloon from U.S. McMurdo base on January 19, 2016, on a trans-Antarctic flight. The mission ended on January 30. The SOLAR-T on-board computers were recovered from the payload that landed in the Argentina Mountain Range, nearly 2100 km from McMurdo. The SOLAR-T performance was successfully attained, with full space qualification instrumentation. Preliminary results provide the solar disk THz brightness temperatures and indicate a 7 THz burst enhancement time coincident to a sub-THz burst observed by SST during the 28 January GOES C9.6 class soft X-ray burst, the largest occurred during the flight.

  18. High Energy Electrons and Gamma Rays from the ATIC-2 Balloon Flight

    NASA Astrophysics Data System (ADS)

    Isbert, J. B.; ATIC Collaboration

    2004-08-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment is primarily designed to measure the spectra of nuclear cosmic rays (protons to nickel). It is composed of a segmented BGO calorimeter (18 radiation lengths deep) following a carbon target (0.75 nuclear interaction lengths) interleaved with scintillator tracking layers. A Silicon matrix detector at the entrance identifies the incident particle charge. Utilizing simulations such as Fluka and Geant we have investigated the ability of this design to differentiate electron (gamma) initiated showers from hadronic showers. The differences in shower development between the two populations are sufficient to differentiate them for measurements of electron spectra into the TeV region, as confirmed by accelerator tests at CERN and by the ATIC-1 test flight in 2000-01. ATIC had a successful science flight in 2002-03 from McMurdo, Antarctica returning about 19 days of flight data. This exposure is sufficient to record electrons into the TeV region and measure gamma rays at 100's of GeV. The majority of gamma rays are of atmospheric origin and provide a test for this technique. The preliminary electron spectrum from the ATIC-2 flight is presented and compared to previous high energy measurements, principally from emulsion chambers. Possible astrophysical interpretations of the results are discussed. The ATIC Collaboration: J.H. Adams,2 H.S. Ahn,3 G.L. Bashindzhagyan,4 K.E. Batkov,4 J. Chang,6,7 M. Christl,2 A.R. Fazely,5, O. Ganel,3 R.M. Gunasingha,5 T.G. Guzik,1 J. Isbert,1 K.C. Kim,3 E.N. Kouznetsov,4 M.I. Panasyuk,4 A.D. Panov,4 W.K.H. Schmidt,6 E.S. Seo,3 N.V. Sokolskaya,4 J.Z. Wang,3 J.P. Wefel,1 J. Wu,3 V.I. Zatsepin,4 (1) Louisiana State University, Baton Rouge, LA, USA (2) Marshall Space Flight Center, Huntsville, AL, USA (3) University of Maryland, College Park, MD, USA (4) Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia (5) Southern University, Baton Rouge, LA, USA (6

  19. 7 CFR 982.254 - Free and restricted percentages-2006-2007 marketing year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Free and Restricted Percentages § 982.254 Free and... hazelnuts for the 2006-2007 marketing year shall be 8.2840 percent and 91.7160 percent, respectively....

  20. 7 CFR 982.254 - Free and restricted percentages-2006-2007 marketing year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Free and Restricted Percentages § 982.254 Free and... hazelnuts for the 2006-2007 marketing year shall be 8.2840 percent and 91.7160 percent, respectively....

  1. 7 CFR 982.254 - Free and restricted percentages-2006-2007 marketing year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Free and Restricted Percentages § 982.254 Free and... hazelnuts for the 2006-2007 marketing year shall be 8.2840 percent and 91.7160 percent, respectively....

  2. 7 CFR 982.254 - Free and restricted percentages-2006-2007 marketing year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Free and Restricted Percentages § 982.254 Free and... hazelnuts for the 2006-2007 marketing year shall be 8.2840 percent and 91.7160 percent, respectively....

  3. 7 CFR 982.254 - Free and restricted percentages-2006-2007 marketing year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Free and Restricted Percentages § 982.254 Free and... hazelnuts for the 2006-2007 marketing year shall be 8.2840 percent and 91.7160 percent, respectively....

  4. Scientific ballooning in Japan

    NASA Astrophysics Data System (ADS)

    Makino, Fumiyoshi

    Activities in scientific ballooning in Japan during 1998-1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.

  5. Testing of Radio Communication Subsystems for the NUTS CubeSat on a Meteorological Balloon Flight from Andoya in 2014

    NASA Astrophysics Data System (ADS)

    Tommer, M.; Birkeland, R.; Gjersvik, A.; Stein, T. A.; Vestnes, F.; Skagmo, J. P.; Kvamtro, K. M.; Eckholdt, F.; Alstad, T.; Grande, J.; Mathisen, S. V.

    2015-09-01

    In April 2014, the Norwegian University of Science and Technology (NTNU) Test Satellite (NUTS) team carried out a balloon campaign at Andøya, Norway. The purpose was to test the on-board UHF and VHF radio prototypes. In accordance with the project mission goals, this campaign marked the test of the engineering model's communication subsystems. One of the mission requirements was that these systems should be as close to the final flight-model as possible. Parts of the system were built and assembled in advance at NTNU, and the final system integration was carried out at Andøya. A standard PTU probe with a GPS module transmitting the balloon's location in the UHF band was used to track the flight. The probe was mounted below the NUTS payload box. The payload radios was tracked using Yagi antennas based on the received GPS coordinates from the PTU probe. A two-way communication link was established and maintained between the balloon and the ground station. This paper will present the results from the mission as well as lessons learned related to the preparation and execution of balloon campaigns.

  6. Detector performances of the BESS-Polar II instrument during the second long-duration balloon flight over Antarctica.

    NASA Astrophysics Data System (ADS)

    Yoshimura, Koji; Sakai, Kenichi; Yamamoto, A.; Mitchell, J. W.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Lee, T. Kumazawa1, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Moiseev, A. A.; Myers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yoshida, T.; Yoshimura, K.

    USA The new balloon-borne instrument was developed for the second long-duration balloon flight over Antarctica (BESS-Polar II) on the basis of the feed back from the results from the first flight in 2004 (BESS-Polar I). Most of the detector components had been redesigned and upgraded to improve their performances and to increase the data taking period and capacity. The BESS-Polar II flight was successfully carried out in December 2007-January 2008. We performed 24.5 days scientific observation just at the solar minimum and recorded about 4.7 billion cosmic-ray enents in the harddisk drives onboard. During the flight, the instrument worked well except for minor problems in some detector components. We have made careful post-flight calibration for all detectors by using cosmic-ray event and house-keeping data. Stable and better performance was obtained for the entire flight. In this presentatation, detector performances for the BESS-Polar II instrument will be presented.

  7. Preliminary results of a balloon flight of the solar disk sextant

    NASA Astrophysics Data System (ADS)

    Maier, E.; Twigg, L.; Sofia, S.

    1992-04-01

    Preliminary results of a balloon flight on October 11, 1991, of the solar disk sextant (SDS) experiment are reported. The SDS is an instrument which measures the solar diameter at different orientations with respect to the solar polar axis. Fitting straight lines through two fixed-angle data sets with time as the independent variable yields slopes of (7.1 +/ - 1.5) x 10 exp -3 and (6.7 +/- 1.6) x 10 exp -3/mas s, consistent with the value of 6.47 x 10 exp -3/mas s expected from the earth's approach to the sun due to the orbital motion toward perihelion. Upon the instrument's rotation on its axis a sinusoidal component of the diameter measurement was observed in each rotation cycle, with a variable amplitude of about 150 mas. The present result is epsilon of (5.6 +/- 6.3) x 10 exp -6, about 30 deg offset from the polar-equator position. The absolute diameter obtained by means of the FFT definition is found to be 1919.269 +/- 0.240 arcsec or 1919.131 +/- 0.240 arcsec, depending on the orientation mode of the measurement.

  8. Preliminary results of a balloon flight of the solar disk sextant

    NASA Technical Reports Server (NTRS)

    Maier, E.; Twigg, L.; Sofia, S.

    1992-01-01

    Preliminary results of a balloon flight on October 11, 1991, of the solar disk sextant (SDS) experiment are reported. The SDS is an instrument which measures the solar diameter at different orientations with respect to the solar polar axis. Fitting straight lines through two fixed-angle data sets with time as the independent variable yields slopes of (7.1 +/ - 1.5) x 10 exp -3 and (6.7 +/- 1.6) x 10 exp -3/mas s, consistent with the value of 6.47 x 10 exp -3/mas s expected from the earth's approach to the sun due to the orbital motion toward perihelion. Upon the instrument's rotation on its axis a sinusoidal component of the diameter measurement was observed in each rotation cycle, with a variable amplitude of about 150 mas. The present result is epsilon of (5.6 +/- 6.3) x 10 exp -6, about 30 deg offset from the polar-equator position. The absolute diameter obtained by means of the FFT definition is found to be 1919.269 +/- 0.240 arcsec or 1919.131 +/- 0.240 arcsec, depending on the orientation mode of the measurement.

  9. Thin film strain transducer. [in-flight measurement of stress or strain in walls of high altitude balloons

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  10. Stratochip, a dual balloon high-altitude platform: controlled altitude flight experiments and potential applications in geosciences.

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves

    2014-05-01

    A high-altitude dual balloons system, the 'Stratochip', was designed at the Geological Survey of Belgium to serve as a development platform to carry measurement and earth observation equipments, in altitudes comprised between 1000 and 25000m. These working altitudes far exceed the range of current motor powered unmanned aerial vehicules, with a higher weight carrying capacity (up to 10-15kg). This platform is built around a two helium balloons configuration, than can be released one by one at a target altitude or location, allowing a partially controlled drift of the platform. Using a 'nowcasting' meteorological model, updated by flight telemetry, the predicted path can be refined live to follow and retrieve the equipment in a predicted landing area. All subsystems (balloon cut-off devices, flight controller, telemetry system) have been developed in-house. Three independent communication channels, designed to work at extremely low temperature (up to -60° C) ensure a continuous tracking until landing. A calibrated parachute is used to control the safe descent of the equipment. Several flight tests have been performed in Belgium to control the meteorological model accuracy for wind predictions (model based on National Oceanic and Atmospheric Administration data). Those tests demonstrated the capability of the platform to maintain its altitude in a predicted path, allowing using the platform for new types of atmospheric studies and affordable high-altitude remote-sensing applications (i.e. sub-meter resolution stereo imagery).

  11. Two lighter than air systems in opposing flight regimes: An unmanned short haul, heavy load transport balloon and a manned, light payload airship

    NASA Technical Reports Server (NTRS)

    Pohl, R. A.

    1975-01-01

    Lighter Than Air vehicles are generally defined or categorized by the shape of the balloon, payload capacity and operational flight regime. Two balloon systems that are classed as being in opposite categories are described. One is a cable guided, helium filled, short haul, heavy load transport Lighter Than Air system with a natural shaped envelope. The other is a manned, aerodynamic shaped airship which utilizes hot air as the buoyancy medium and is in the light payload class. While the airship is in the design/fabrication phase with flight tests scheduled for the latter part of 1974, the transport balloon system has been operational for some eight years.

  12. Duster - in the Upper Stratosphere Tracking Experiment and Return: a Balloon Flight in Arctic Region

    NASA Astrophysics Data System (ADS)

    Palumbo, Pasquale; Della Corte, Vincenzo; Ciucci, Alessandra; de Angelis, Simone; Brunetto, Rosario; Rotundi, Alessandra; Rietmeijer, Frans Jm; Peterzen, Steven; Masi, Silvia; Bussoletti, Ezio; Brucato, John Robert; Colangeli, Luigi; Esposito, Francesca; Mazzotta Epifani, Elena; Mennella, Vito; Ibba, Roberto

    This self-contained instrument was designed to collect nanometer to micrometer scale solid and condensed-liquid aerosol particles in the upper stratosphere at about 40 km that operates in a stand-alone autonomous mode when carried aloft during long-duration stratospheric balloon flights. During its maiden flight as part of an Italian Space Agency campaign, DUSTER [0.4x0.4x0.3 m3 and weighing 30 kg] was launched from Longyearbyen (Svalbard, Norway) on June 2008. The autonomous instrument was in the stratosphere for 3.5 days, and collected aerosol particles at an average 37 ± 1 km altitude during a 55-hour period. With this first flight we have demonstrated that 1. The self-contained design of the instrument survives transportation and recovery, 2. The instrument performed within the design parameters of environmental specifications (-80° C; 3-10 mbar) and continuous autonomous operation in the sampling mode, 3. Inertial impact collection of aerosols ˜500nm to 150 microns on holey-carbon thin films mounted on Au mesh grids was achieved by continuous air flow through the chamber, 4. The dual-module design of an active collector exposed to the air flux was and a collector to monitor the pre-flight and flight environments within of the collector using an identical sample holder provided a `blank' internal dust environment sample, 5. Save storage of collected samples, and subsequent retrieval in the laboratory, was achieved with no measurable contamination, 6. Reduced sample manipulation allowed the chemical and structural characterization of col-lected dust particles by Field-emission scanning electron microscopy and energy dispersive X-Ray analyses, and infrared and Raman micro-spectroscopy. The main and most ambitious goal is the collection and characterization of solid aerosol par-ticles less then 2 microns of solar system debris, or from the interstellar medium, that are currently not sampled on a routine basis. DUSTER will provide a time-stamped record of the

  13. The solar diameter and oblateness measured by the solar disk sextant on the 1992 September 30 balloon flight

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Heaps, W.; Twigg, L. W.

    1994-01-01

    This paper reports the results of a balloon flight of the Solar Disk Sextant (SDS) on 1992 September 30. This was the first flight in which the SDS used a wedge assembly fabricated by molecular contact in order to eliminate the wedge angle variations observed in previous flights. The instrument performed as designed. The main results obtained are values of the solar diameter for a number of discrete heliocentric latitudes, and the solar oblateness. The accuracy of the diameter values is better than 0.2 sec whereas the precision is approximately 1-2 mas. The equatorial solar diameter, at 1 AU, was 1919.06 sec +/- 0.12 sec, and the oblateness epsilon = 8.63 +/- 0.88 x 10(exp -6).

  14. Feasibility study of a long duration balloon flight with NASA/GSFC and Soviet Space Agency Gamma Ray Spectrometers

    NASA Technical Reports Server (NTRS)

    Sharp, William E.; Knoll, Glenn

    1989-01-01

    A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.

  15. Annual Report: Discipline, Crime, and Violence, School Year 2006-2007

    ERIC Educational Resources Information Center

    Virginia Department of Education, 2008

    2008-01-01

    The "Code of Virginia" requires school divisions statewide to submit data to the Virginia Department of Education (VDOE) on incidents of discipline, crime, and violence (DCV). School divisions began reporting such data in 1991. This annual report focuses primarily on DCV data submitted for school year 2006-2007, with selected comparisons to prior…

  16. International Rules for Precollege Science Research: Guidelines for Science and Engineering Fairs, 2006-2007

    ERIC Educational Resources Information Center

    Science Service, 2006

    2006-01-01

    This publication presents changes and modifications for 2006-2007 to the "International Rules for Precollege Science Research: Guidelines for Science and Engineering Fairs." It is written to guide fair directors, teachers, scientists, parents, and adult volunteers as they pursue their work of encouraging students to explore and investigate their…

  17. Measuring What Students Entering School Know and Can Do: PIPS Australia 2006-2007

    ERIC Educational Resources Information Center

    Wildy, Helen; Styles, Irene

    2008-01-01

    This paper reports analysis of 2006-2007 on-entry assessment data from the Performance Indicators in Primary Schools Baseline Assessment (PIPS-BLA) of random samples of students in England, Scotland, New Zealand and Australia. The analysis aimed, first, to investigate the validity and reliability of that instrument across countries and sexes, and,…

  18. Insider's Guide to Graduate Programs in Clinical and Counseling Psychology. 2006/2007 Edition

    ERIC Educational Resources Information Center

    Mayne, Tracy J.; Norcross, John C.; Sayette, Michael A.

    2006-01-01

    Now in its 2006-2007 edition, this perennial bestseller is the resource students count on for the most current information on applying to doctoral programs in clinical or counseling psychology. The Insider's Guide presents up-to-date facts on 300 accredited programs in the United States and Canada. Each program's profile includes admissions…

  19. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    NASA Astrophysics Data System (ADS)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  20. 77 FR 42764 - Distribution of the 2005, 2006, 2007 and 2008 Digital Audio Recording Technology Royalty Funds...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Copyright Royalty Board Distribution of the 2005, 2006, 2007 and 2008 Digital Audio Recording Technology... the digital audio recording technology royalty fees in the 2005, 2006, 2007 and 2008 Musical Works... Judges issued an order granting certain claimants' (i.e., Broadcast Music, Inc., the American Society...

  1. Balloon for Long-Duration, High-Altitude Flight at Venus

    NASA Technical Reports Server (NTRS)

    Hall, Jeffrey; Kerzhanovich, Viktor; Yavrouian, Andre; Fairbrother, Debora; Said, Magdi; Sandy, Chuck; Fredrickson, Thad

    2007-01-01

    A document describes a 5.5-m-diameter, helium-filled balloon designed for carrying a scientific payload having a mass of 44 kg for at least six days at an altitude of about 55 km in the atmosphere of Venus. The requirement for floating at nearly constant altitude dictates the choice of a mass-efficient spherical super-pressure balloon that tracks a constant atmospheric density. Therefore, the balloon is of a conventional spherical super-pressure type, except that it is made of materials chosen to minimize solar radiant heating and withstand the corrosive sulfuric acid aerosol of the Venusian atmosphere. The shell consists of 16 gores of a multilayer composite material. The outer layer, made of polytetrafluoroethylene, protects against sulfuric acid aerosol. Next is an aluminum layer that reflects sunlight to minimize heating, followed by an aluminized polyethylene terephthalate layer that resists permeation by helium, followed by an aromatic polyester fabric that imparts strength to withstand deployment forces and steady super-pressure. A polyurethane coat on the inner surface of the fabric facilitates sealing at gore-to-gore seams. End fittings and seals, and a tether connecting the end fittings to a gondola, are all made of sulfuric-acid-resistant materials.

  2. Evaluation of trajectories calculated from ecmwf data against constant volume balloon flights during etex

    NASA Astrophysics Data System (ADS)

    Stohl, Andreas; Koffi, N.'dri Ernest

    This paper validates trajectories calculated from ECMWF analyses against the tracks of constant volume balloons (CVBs) released during the European tracer experiment (ETEX). The altitudes of the calculated trajectories were adjusted to the altitudes of the respective balloons in short intervals to allow direct comparisons. The agreement between the calculated trajectories and the balloon tracks was very good for the first experiment (individual errors from 1 to 26%, average 15%), and excellent (errors from 2 to 11%, average 6%) for the second one. The agreement for the second experiment was probably partly better because the CVBs travelled above the planetary boundary layer, but the small errors also indicate that the ECMWF fields of the horizontal wind were of exceptionally good quality in the second experiment. This is in sharp contrast to the results of the dispersion models which all failed in the prediction of the perfluorocarbon tracer dispersion for the second experiment. A likely explanation for this is that vertical motions, possibly on small scales, were not correctly captured by the ECMWF analyses, but it is not possible to clarify this with the CVB data.

  3. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  4. A mercuric detector system for X-ray astronomy. 2. Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Vanderspek, R. K.; Ricker, G. R.

    1982-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate (Bi4Ge3O12) scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, Texas. The second flight of this instrument established a differential background counting rate of 4.2 O.7 x 10-5 counts/sec cm keV over the energy range of 40 to 80 keV. This measurement was within 50% of the predicted value. The measured rate is approx 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range. The prediction was based on a Monte Carlo simulation of the detector assembly in the radiation environment at float altitude.

  5. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; Rydström, S.; Takahashi, H.; Lind, J.; Strömberg, J.-E.; Welin, O.; Iyudin, A.; Shifrin, D.; Pearce, M.

    2016-02-01

    In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

  6. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, extended definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.

    1993-01-01

    Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.

  7. B-SSIPP: A Miniature Solar Observatory for Rocket or Balloon Flight

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Laurent, Glenn Thomas; Diller, Jed; Brownsberger, Judy

    2016-05-01

    The Southwest Solar Instrument Pointing Package (SSIPP) is a miniature solar observatory for flight application. Conceived as a way to lower barriers to entry to spaceflight, SSIPP conditions a broadband solar beam for use by an IR, visible, or UV instrument on an optical table -- just as do ground-based observatories. The beam is conditioned by a closed-loop tip/tilt pointing system that can lock onto the Sun over a 20° cone of angles, and maintain arcsecond-class pointing from a dynamic flight platform. SSIPP was originally conceived as an instrument platform for the XCOR Lynx suborbital sportsrocket. It has been adapted for ballloon flight, incorporating a novel coarse pointing system that measures torsional pendulation in-flight to construct a stable pointing law on-the-fly. First flight is projected for June 2016 (shortly after SPD). We present status, major design elements, and future plans for the platform.

  8. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  9. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  10. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  11. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  12. Accuracy of analyzed stratospheric temperatures in the winter Arctic vortex from infrared Montgolfier long-duration balloon flights 2. Results

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Pommereau, J.-P.; Garnier, A.; Nunes-Pinharanda, M.; Denis, L.; Newman, P.; Letrenne, G.; Durand, M.

    2002-08-01

    Five long-duration flights with the Mongolfier infrared (MIR) balloon lasting 15 days, on average, have been conducted in the Arctic winter stratospheric vortex in 1997, 1999, and 2000. Temperatures from the European Centre for Medium-Range Weather Forecasts (ECMWF), Met Office (MO), National Centers for Environmental Prediction (NCEP), Data Assimilation Office (DAO), and NCEP/NCAR reanalysis (REA) have been compared to the observations from 4 to 146 hPa. Occasional large errors (>14 K) occur in each analysis, mainly above 30 hPa. In 2000 the standard deviations of ECMWF, MO, and DAO with respect to the measured temperatures range from 1.0 to 1.3 K, whereas NCEP and REA have substantially larger errors. In 1999 the flights took place during a major warming, and all operational models had large standard deviations and substantial biases. Preoperational versions of the new ECMWF model with increased stratospheric resolution and assimilation of the advanced microwave sounding unit, which none of the other models assimilated, show small biases and standard deviations.

  13. Planetary atmospheres minor species sensor balloon flight test to near space

    NASA Astrophysics Data System (ADS)

    Peale, Robert E.; Fredricksen, Christopher J.; Muraviev, Andrei V.; Maukonen, Douglas; Quddusi, Hajrah M.; Calhoun, Seth; Colwell, Joshua E.; Lachenmeier, Timothy A.; Dewey, Russell G.; Stern, Alan; Padilla, Sebastian; Bode, Rolfe

    2015-05-01

    The Planetary Atmospheres Minor Species Sensor (PAMSS) is an intracavity laser absorption spectrometer that uses a mid-infrared quantum cascade laser in an open external cavity for sensing ultra-trace gases with parts-per-billion sensitivity. PAMSS was flown on a balloon by Near Space Corporation from Madras OR to 30 km on 17 July 2014. Based on lessons learned, it was modified and was flown a second time to 32 km by World View Enterprises from Pinal AirPark AZ on 8 March 2015. Successes included continuous operation and survival of software, electronics, optics, and optical alignment during extreme conditions and a rough landing. Operation of PAMSS in the relevant environment of near space has significantly elevated its Technical Readiness Level for trace-gas sensing with potential for planetary and atmospheric science in harsh environments.

  14. Nuclear Phosphatidylcholine and Sphingomyelin Metabolism of Thyroid Cells Changes during Stratospheric Balloon Flight

    PubMed Central

    Albi, Elisabetta; Cataldi, Samuela; Villani, Maristella; Perrella, Giuseppina

    2009-01-01

    Nuclear sphingomyelin and phosphatidylcholine metabolism is involved in the response to ultraviolet radiation treatment in different ways related to the physiological state of cells. To evaluate the effects of low levels of radiation from the stratosphere on thyroid cells, proliferating and quiescent FRTL-5 cells were flown in a stratospheric balloon (BIRBA mission). After recovery, the activity of neutral sphingomyelinase, phosphatidylcholine-specific phospholipase C, sphingomyelin synthase, and reverse sphingomyelin synthase was assayed in purified nuclei and the nuclei-free fraction. In proliferating FRTL-5, space radiation stimulate nuclear neutral sphingomyelinase and reverse sphingomyelin synthase activity, whereas phosphatidylcholine-specific phospholipase C and sphingomyelin synthase were inhibited, thus inducing sphingomyelin degradation and phosphatidylcholine synthesis. This effect was lower in quiescent cells. The possible role of nuclear lipid metabolism in the thyroid damage induced by space radiations is discussed. PMID:20011661

  15. Measurements of atmospheric electrical parameters and ELF electromagnetic emissions during a meteorological balloon flight.

    NASA Astrophysics Data System (ADS)

    Benda, Robert; Dujany, Matthieu; Berthomieu, Roland; Boissier, Mathilde; Bruneel, Pierre; Fischer, Lucie; Focillon, William; Gullo, Robin; Hubert, Valentin; Lafforgue, Gaétan; Loe-Mie, Marichka; Messager, Adrien; Roy, Felix; Auvray, Gérard; Bertrand, Fabrice; Coulomb, Romain; Deprez, Gregoire; Berthelier, Jean-Jacques

    2016-04-01

    Measurements of electric field and atmospheric conductivity were performed onboard a small payload flown under a meteorological balloon during a fair weather period. This experiment is part of a project to study thunderstorms and TLE organized in the frame of the engineering cursus at Ecole Polytechnique. The payload is equipped with 4 electrodes to measure the 3 components of the DC and AC electric fields up to 3.2 kHz. Dedicated sequences of operation, when one electrode is operated in the relaxation mode, have been used to determine the positive and negative electrical conductivities. Altitude profiles of the DC vertical electric field and conductivities in agreement with expected fair weather parameters were obtained from ~ 3.5 to ~ 13 km before the failure of a battery. At an altitude of ~ 9 km slight disturbances in the electric field suggest the traversal of thin clouds with disturbed electrical characteristics. Schumann resonances were observed up to the fifth harmonics at levels that are typical of a quiet period over Europe with most thunderstorms located over remote longitudinal sectors. EM waves due the power lines at 50Hz are detected during the whole measuring period and their altitude and horizontal variations will be presented as a function of the position of the balloon over the ground power network. A surprising and interesting observation was made of a Russian transmitter at 82 Hz located in Murmansk region and used for sub-marine communications. We shall present an initial analysis of the amplitude and polarization of the corresponding signal.

  16. Two Duskside Relativistic Electron Precipitation Events Seen During the 2008/2009 Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) Piggyback Flight

    NASA Astrophysics Data System (ADS)

    Liang, A. X.

    2009-12-01

    The Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) is a balloon-based mission studying the loss of relativistic electrons from the outer radiation belts. Understanding and quantifying electron losses is a vital component of understanding radiation belt dynamics. Radiation belt electrons lost to the Earth's atmosphere, called relativistic electron precipitation (REP), can be observed by the bremsstrahlung X-rays produced as the electrons are scattered in the atmosphere. In December 2008 a test balloon payload with an X-ray detector was launched and collected data for 54 days. Analysis of the data from this flight shows two intense and spectrally hard events occurring during the dusk sector of MLT. Interpretation requires modeling both the interaction of electrons in the atmosphere to make gammas and the interaction of the gammas in the atmosphere and in the instrument. A spectral analysis of these two events will be presented and electron spectra will be derived for these events.

  17. Performance of bismuth germanate active shielding on a balloon flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Rester, A. C.; Coldwell, R. L.; Trombka, J. I.; Starr, R.; Eichhorn, G.

    1990-01-01

    The GRAD (Gamma-Ray Advanced Detector) gamma-ray spectrometer was flown on a balloon at an altitude of 36.6 km over Antarctica on January 8-10, 1988, where it was used to make observations of SN 1987A. The performance of the bismuth germanate (BGO) active shielding in the near-space environment over Antarctica is examined. The promised effectiveness of this shielding in the suppression of unwanted background has been demonstrated. The BGO-shielded GRAD spectrometer detected gamma-ray lines with fluxes of 0.002/sq cm sec from SN 1987A in a radiation background approximately a factor of 4 more intense than that over Alice Springs, Australia. This level of sensitivity indicates that BGO is at least as effective as CsI when used as active shielding. Isomerism is common, both in the bismuth and germanium regions of the nuclear chart, but is found to be less of a problem for background suppression in the latter region than in the former.

  18. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  19. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  20. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the Nairas Aviation Radiation Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.

    2014-12-01

    The NASA Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is a real-time, global, physics-based model for predicting exposure to cosmic radiation to air travelers from both galactic and solar sources. Tabular and graphical data products from the prototype operational NAIRAS model have been available to the public since April 2011. An initial validation of the NAIRAS model was recently conducted by comparing predicted dose rates with tabulated reference aircraft measurement data and recent aircraft radiation measurements taken in 2008. However, aircraft measurements alone do not provide an unambiguous constraint on the model such that the predominant source of uncertainty in the NAIRAS model could be uniquely identified. High altitude measurements above the Pfotzer maximum are needed to characterize the extent to which the NAIRAS model can predict the cosmic radiation primaries, which are the source of the secondary particles that are responsible for radiation exposure at aircraft flight altitudes. The Radiation Dosimetry Experiment (RaD-X) is a NASA high-altitude balloon flight mission with the goal of improving model characterization of cosmic radiation primaries by taking dosimetric measurements above the Pfotzer maximum. A second goal of the RaD-X mission is to facilitate the pathway toward data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions. RaD-X is scheduled for launch at Fort Sumner, NM in September 2015. Here we briefly describe the NAIRAS model, present the science and mission overview of the RaD-X mission, and show preliminary results from instrument beam tests and calibration.

  1. Ground-Water Conditions and Studies in Georgia, 2006-2007

    USGS Publications Warehouse

    Peck, Michael F.; Painter, Jaime A.; Leeth, David C.

    2009-01-01

    The U.S. Geological Survey collects ground-water data and conducts studies to monitor hydrologic conditions, better define ground-water resources, and address problems related to water supply, water use, and water quality. Water levels were monitored continuously, in Georgia, in a network of 184 wells during 2006 and 182 wells during 2007. Because of missing data or the short period of record (less than 3 years) for several of these wells, a total of 166 wells from the network are discussed in this report. These wells include 18 in the surficial aquifer system, 21 in the Brunswick aquifer system and equivalent sediments, 67 in the Upper Floridan aquifer, 15 in the Lower Floridan aquifer and underlying units, 10 in the Claiborne aquifer, 1 in the Gordon aquifer, 11 in the Clayton aquifer, 12 in the Cretaceous aquifer system, 2 in Paleozoic-rock aquifers, and 9 in crystalline-rock aquifers. Data from the network indicate that water levels generally declined from 2005 levels, with water levels in 99 wells below normal, 52 wells in the normal range, 12 wells above normal, and 3 wells with insufficient data for comparison of 5-year trends and period of record statistics. In addition to continuous water-level data, periodic synoptic water-level measurements were collected and used to construct potentiometric-surface maps for the Upper Floridan aquifer in Camden, Charlton, and Ware Counties, Georgia, and adjacent counties in Florida during September 2006 and 2007, in the Brunswick area during July 2006 and August 2007, and in the City of Albany-Dougherty County area during October 2006 and October 2007. In general, the configuration of the potentiometric surfaces showed little change during 2006-2007 in each of the areas. Ground-water quality in the Upper Floridan aquifer is monitored in the Albany, Savannah, and Brunswick areas and in Camden County; and water quality in the Lower Floridan aquifer is monitored in the Savannah and Brunswick areas and in Camden County. In

  2. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  3. Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Christensen, T.; Hertzog, A.; Deme, A.; Vial, F.; Pommereau, J.-P.

    2006-08-01

    Eight super-pressure balloons floating at constant level between 50 and 80 hPa and three Infra-Red Montgolfier balloons of variable altitude (15 hPa daytime, 40-80 hPa night time) have been launched at 22° S from Brazil in February-May 2004 in the frame of the HIBISCUS project. The flights lasted for 7 to 79 days residing mainly in the tropics, but some of them passed the tropical barrier and went to southern midlatitudes. Compared to the balloon measurements just above the tropical tropopause the ECMWF operational temperatures show a systematic cold bias of 0.9 K and the easterly zonal winds are too strong by 0.7 m/s. This bias in the zonal wind adds to the ECMWF trajectory errors, but they still are relatively small with e.g. about an error of 700 km after 5 days. The NCEP/NCAR reanalysis trajectory errors are substantially larger (1300 km after 5 days). In the southern midlatitudes the cold bias is the same, but the zonal wind bias is almost zero. The trajectories are generally more accurate than in the tropics, but for one balloon a lot of the calculated trajectories end up on the wrong side of the tropical barrier and this leads to large trajectory errors.

  4. Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Christensen, T.; Hertzog, A.; Deme, A.; Vial, F.; Pommereau, J.-P.

    2006-12-01

    Eight super-pressure balloons floating at constant level between 50 and 80 hPa and three Infra-Red Montgolfier balloons of variable altitude (15 hPa daytime, 40-80 hPa night time) have been launched at 22° S from Brazil in February-May 2004 in the frame of the HIBISCUS project. The flights lasted for 7 to 79 days residing mainly in the tropics, but some of them passed the tropical barrier and went to southern midlatitudes. Compared to the balloon measurements just above the tropical tropopause the ECMWF operational temperatures show a systematic cold bias of 0.9 K and the easterly zonal winds are too strong by 0.7 m/s. This bias in the zonal wind adds to the ECMWF trajectory errors, but they still are relatively small with e.g. about an error of 700 km after 5 days. The NCEP/NCAR reanalysis trajectory errors are substantially larger (1300 km after 5 days). In the southern midlatitudes the cold bias is the same, but the zonal wind bias is almost zero. The trajectories are generally more accurate than in the tropics, but for one balloon a lot of the calculated trajectories end up on the wrong side of the tropical barrier and this leads to large trajectory errors.

  5. The Japanese Balloon Program

    NASA Astrophysics Data System (ADS)

    Nishimura, J.

    The Japanese scientific ballooning program has been organized by ISAS since the institute was founded in mid 1960s. Since then, the balloon group of ISAS has been engaged in the development of the balloon technologies and scientific observations in collaboration with scientists and engineers in other universities and organizations. Here, I describe several subjects of recent activities, the details of some items will also be reported in the separate papers in this meeting.Preparation of a new mobile receiving station.

  6. Balloons of made of the EVAL (Ethylene-Vinyl-Alcohol) films. EVAL film has specific Infra-red absorption bands, and is expected to be useful for saving the ballast for a long duration flight.
  7. A high altitude balloon with thin polyethylene films achieving at an altitude of above 50km. Further improvement of this type of balloons is continued by inventing how to extrude thin films less than 5 microns of thickness.
  8. Recent achievement of Antarctica Flights under the collaboration of ISAS and National Polar Institute.
  9. Other new efforts to long duration flights such as satellite link boomerang balloon systems and others.
  10. New balloon borne scientific instrumentation for observations of high energy electrons and Anti-protons in cosmic-rays.
  11. Breakthrough in Mars balloon technology

    NASA Astrophysics Data System (ADS)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  12. 38th Annual Survey Report on State-Sponsored Student Financial Aid, 2006-2007 Academic Year

    ERIC Educational Resources Information Center

    National Association of State Student Grant and Aid Programs, 2007

    2007-01-01

    Each year, the National Association of State Student Grant and Aid Programs (NASSGAP) completes a survey regarding state-funded expenditures for postsecondary student financial aid. This report, the 38th annual survey, represents data from academic year 2006-07. Data highlights of this survey include: (1) In the 2006-2007 academic year, the states…

  13. Florida Community College System Long-Range Program Plan (LRPP) for Fiscal Years 2002-2003 through 2006-2007.

    ERIC Educational Resources Information Center

    Florida State Board of Community Colleges, Tallahassee.

    This document discusses the Florida Community College System's Long Range Program Plan (LRPP) for the fiscal years 2002-2003 through 2006-2007. The document begins by addressing the mission statement of the college, which strives for "high student achievement, seamless articulation and increased access, workforce skills and economic development,…

  14. Resurgence of Plasmodium vivax malaria in the Republic of Korea during 2006-2007.

    PubMed

    Jun, Gyo; Yeom, Joon-Sup; Hong, Jee-Young; Shin, E-Hyun; Chang, Kyu-Sik; Yu, Jae-Ran; Oh, Sejoong; Chung, Hyeok; Park, Jae-Won

    2009-10-01

    Plasmodium vivax malaria, which re-emerged in the Republic of Korea (ROK) in 1993, had decreased since 2001. However, case numbers began to increase again in 2005. The number of cases rose 54.0% in 2006, but the rate of increase slowed down in 2007. Among the total of 4,206 cases of P. vivax malaria during 2006-2007, 756 cases (18.0%) were ROK military personnel, 891 cases (21.2%) were veterans, and 2,559 cases (60.8%) were civilians. The rapid increase during this period was mostly contributed by the western part of the malaria-risk areas that is under the influence of adjacent North Korea. Local transmission cases in ROK have also increased gradually and the transmission period seemingly became longer. Chemoprophylaxis in the military should be re-assessed in view of chloroquine-resistance. Continuous surveillance and monitoring are warranted to prevent further expansion of P. vivax malaria caused by climate change in ROK. PMID:19815874

  15. Unintentional injuries among youth with developmental disabilities in the United States, 2006-2007.

    PubMed

    Brenner, Ruth A; Taneja, Gitanjali S; Schroeder, Thomas J; Trumble, Ann C; Moyer, Patricia M; Louis, Germaine M Buck

    2013-01-01

    We examined unintentional injury among youth with and without developmental disabilities. Our nationally representative sample included 6369 injured youth, aged 0-17 years, who were seen in one of the 63 US hospital emergency rooms that participated in the National Electronic Injury Surveillance System - All Injury Program (NEISS-AIP) in 2006-2007. Parents or guardians of injured youth were interviewed by telephone after the hospital visit to ascertain disability status. Denominator data were obtained from the National Health Interview Survey. Leading causes of injury were comparable for youth with and without disability. Injury rates (per 100 youth per year) were also comparable [10.4; 95% confidence interval (CI) 7.8, 13.0 and 10.5; 95% CI 8.2, 12.9, for youth with and without disability, respectively]. When examined by specific disability, the rate ratio for youth with learning disabilities versus youth without learning disability was 1.57 (95% CI 1.04, 2.10), which may represent a subgroup for targeted interventions. PMID:22757768

  16. NASA Balloon Technology Activities

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration NASA Balloon Program technology development efforts are fundamental to improving the capabilities of the balloon systems better understanding of the flight dynamics and to support the science missions throughout the next decade Building on the foundations of the 20-year research and development program a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments The major components of the roadmap are vehicle systems ballooncraft systems operational and safety support systems and planetary vehicles Within each of these major components technologies are targeted that will provide both better understanding and foster advancements The Program s technology thrust areas are directed both in broad efforts that touch on a number of the major components as well as specific tasks that address elements within a specific component Advances in vehicle systems have focused on producing better balloon designs This is being attempted through the use of improved inputs into the balloon design process Central to this is an increasing the understanding of materials used to fabricate balloons Testing techniques have been improved with better bi-axial characterization of the balloon materials More realistic radiative properties of the balloon films and components have also been made Analytical assessments of the balloon designs are also key in improving balloon designs These analytical assessments have been accomplished using improving

  17. Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae--United States, 2006-2007.

    PubMed

    2008-12-19

    Streptococcus pneumoniae (pneumococcus) is a common cause of pneumonia and meningitis in the United States. Antimicrobial resistance, which can result in pneumococcal infection treatment failure, is identified by measuring the minimum inhibitory concentration (MIC) of an antimicrobial that will inhibit pneumococcal growth. Breakpoints are MICs that define infections as susceptible (treatable), intermediate (possibly treatable with higher doses), and resistant (not treatable) to certain antimicrobials. In January 2008, after a reevaluation that included more recent clinical studies, the Clinical and Laboratory Standards Institute (CLSI) published new S. pneumoniae breakpoints for penicillin (the preferred antimicrobial for susceptible S. pneumoniae infections). To assess the potential effects of the new breakpoints on susceptibility categorization, CDC applied them to MICs of invasive pneumococcal disease (IPD) isolates collected by the Active Bacterial Core surveillance (ABCs) system at sites in 10 states during 2006-2007. This report summarizes the results of that analysis, which found that the percentage of IPD nonmeningitis S. pneumoniae isolates categorized as susceptible, intermediate, and resistant to penicillin changed from 74.7%, 15.0%, and 10.3% under the former breakpoints to 93.2%, 5.6%, and 1.2%, respectively, under the new breakpoints. Microbiology laboratories should be aware of the new breakpoints to interpret pneumococcal susceptibility accurately, and clinicians should be aware of the breakpoints to prescribe antimicrobials appropriately for pneumococcal infections. State and local health departments also should be aware of the new breakpoints because they might result in a decrease in the number of reported cases of penicillin-resistant pneumococcus. PMID:19092758

  18. Determination of balloon drag

    NASA Technical Reports Server (NTRS)

    Conrad, George R.; Robbins, Edward J.

    1991-01-01

    The evolution of an empirical drag relationship that has stimulated rethinking regarding the physics of balloon drag phenomena is discussed. Combined parasitic drag from all sources in the balloon system are estimated to constitute less than 10 percent of the total system drag. It is shown that the difference between flight-determined drag coefficients and those based on the spherical assumption should be related to the square of the Froude number.

  19. Firearm homicides and suicides in major metropolitan areas - United States, 2006-2007 and 2009-2010.

    PubMed

    2013-08-01

    Firearm homicides and suicides are a continuing public health concern in the United States. During 2009-2010, a total of 22,571 firearm homicides and 38,126 firearm suicides occurred among U.S. residents. This includes 3,397 firearm homicides and 1,548 firearm suicides among persons aged 10-19 years; the firearm homicide rate for this age group was slightly above the all-ages rate. This report updates an earlier report that provided statistics on firearm homicides and suicides in major metropolitan areas for 2006-2007, with special emphasis on persons aged 10-19 years in recognition of the importance of early prevention efforts. Firearm homicide and suicide rates were calculated for the 50 most populous U.S. metropolitan statistical areas (MSAs) for 2009-2010 using mortality data from the National Vital Statistics System (NVSS) and population data from the U.S. Census Bureau. Comparison statistics were recalculated for 2006-2007 to reflect revisions to MSA delineations and population estimates subsequent to the earlier report. Although the firearm homicide rate for large MSAs collectively remained above the national rate during 2009-2010, more than 75% of these MSAs showed a decreased rate from 2006-2007, largely accounting for a national decrease. The firearm homicide rate for persons aged 10-19 years exceeded the all-ages rate in many of these MSAs during 2009-2010, similar to the earlier reporting period. Conversely, although the firearm suicide rate for large MSAs collectively remained below the national rate during 2009-2010, nearly 75% of these MSAs showed an increased rate from 2006-2007, paralleling the national trend. Firearm suicide rates among persons aged 10-19 years were low compared with all-ages rates during both periods. These patterns can inform the development and monitoring of strategies directed at reducing firearm-related violence. PMID:23903593

  20. Ballooning Comes of Age: Make Your Own Balloon.

    ERIC Educational Resources Information Center

    Eckford, Jim

    1983-01-01

    Provides instructions for building a working model of a hot-air balloon, offering suggestions for a successful flight. Indicates that children can be involved in the projects, for example, by filling in colors in the panels of a balloon drawing. (JN)

  21. Coseismic and Postseismic Deformations From Great 2006-2007 Kuril Earthquakes Revealed by Regional GPS Observations

    NASA Astrophysics Data System (ADS)

    Steblov, G. M.; Kogan, M. G.; Levin, B. V.; Vasilenko, N. F.; Prytkov, A. S.; Frolov, D. I.

    2007-12-01

    The 1200-km long Kuril arc is the last subduction zone never previously explored by space geodetic methods. In 2006, we installed the continuous GPS network (CGPS) over the whole arc and added several survey-mode stations (SGPS). In 2006-2007, the paired great earthquakes near the central Kurils happened several months after we installed the network: Mw 8.3, Nov. 15, 2006 underthrusting event, and Mw 8.1, Jan. 13, 2007 tensional outer-rise event. Although the earthquakes have prevented us from estimating reliable interseismic surface velocities for most of the Kuril arc, it has given us the chance to examine great earthquakes and their transient response in the region that was a seismic gap for a century. Two SGPS stations nearest to the hypocenters captured the largest observed offsets of about 0.6 m reflecting the superposed effect of both events. These offsets are mostly attributed to the Nov. 2006 event. More distant stations captured coseismic offsets caused by each event ranging from several mm to 60 mm. Significant transient signals associated with rapid postseismic afterslip in the rupture or with the relaxation in the viscous mantle were noticed for the Nov. 2006 event but not for the Jan. 2007 event. Large amount of afterslip was observed in the first 12 hours following the Nov. 2006 main shock. For both events, we inverted observed GPS offsets to evaluate the size and rake of the coseismic slip. In forward modeling, the PREM layered model of the spherical Earth was adopted (the method of F. Pollitz). The rupture dimensions and geometry were constrained by the spatial distribution of aftershocks, shallow seismicity, plate tectonics considerations, and CMT solutions. In case of the Jan. 2007 event, plate tectonic constraints are inapplicable. To ensure correct estimation of the Nov. 2006 coseismic offsets, we modeled postseismic transients by the logarithmic approximation in agreement with the rate-strengthening friction. For the Nov. 2006 event, our

  22. Development overview of the revised NASA Ultra Long Duration Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2008-11-01

    The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ˜176,000 m3 (˜6.2 MCF Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ˜176,000 m3 (˜6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.

  23. Universal stratospheric balloon gradiometer

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG

  24. Microgravity Experiment System Using Balloon

    NASA Astrophysics Data System (ADS)

    Sawai, Shujiro; Hashimoto, Tatsuaki; Sawai, Shujiro; Sakai, Shin'ichiro; Bando, Nobutaka; Kobayashi, Hiroaki; Fujita, Kazuhisa; Inatomi, Yuko; Ishikawa, Takehiko; Yoshimitsu, Tetsuo; Saito, Yoshitaka

    Balloon based system to conduct microgravity experiment was developed. This system consists of high altitude balloon, Microgravity Operation Unit for Scientific Experiment (MOUSE), and Balloon based Operation Vehicle (BOV). BOV drops from the balloon. But due to the residual air drag, BOV do not fall freely. So, MOUSE floats freely inside BOV body. BOV itself is controlled not to collide to MOUSE, and it makes the residual gravity negligible inside MOUSE. Authors have conducted the flight campaign twice to show the feasibility of this microgravity experiment system.

  25. Status of the NASA Balloon Program

    NASA Technical Reports Server (NTRS)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-01-01

    The NASA Balloon Program (BP) is examined in an overview of design philosophy, R&D activities, flight testing, and the development of a long-duration balloon for Antarctic use. The Balloon Recovery Program was developed to qualify the use of existing films and to design improved materials and seals. Balloon flights are described for studying the supernova SN1987a, and systems were developed to enhance balloon campaigns including mobile launch vehicles and tracking/data-acquisition systems. The technical approach to long-duration ballooning is reviewed which allows the use of payloads of up to 1350 kg for two to three weeks. The BP is responsible for the development of several candidate polyethylene balloon films as well as design/performance standards for candidate balloons. Specific progress is noted in reliability and in R&D with respect to optimization of structural design, resin blending, and extrusion.

  1. Next Generation Balloon Performance Model

    NASA Astrophysics Data System (ADS)

    Pankine, A.; Nock, K.; Heun, M.; Schlaifer, S.

    Global Aerospace Corporation is developing a new trajectory and performance modeling tool for Earth and Planetary Balloons, called Navajo. This tool will advance the state of the art for balloon performance models and assist NASA and commercial balloon designers, campaign and mission planners, and flight operations staff by providing high-accuracy vertical and horizontal trajectory predictions. Nothing like Navajo currently exists. The Navajo design integrates environment, balloon (or Lighter Than Air - LTA), gondola (for ballast and communications), and trajectory control system submodels to provide rapid and exhaustive evaluation of vertical and horizontal balloon and LTA vehicle trajectories. The concept utilizes an extensible computer application architecture to permit definit ion of additional flight system components and environments. The Navajo architecture decouples the balloon performance and environment models so that users can swap balloon and environment models easily and assess the capabilities of new balloon technologies in a variety of environments. The Navajo design provides integrated capabilities for safety analysis for Earth balloon trajectories, and utilize improved thermal models. We report on our progress towards the development of Navajo.

  2. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-duration Balloon Flights over Antarctica

    NASA Astrophysics Data System (ADS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Mitchell, J. W.; Myers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Picot-Clemente, N.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yamamoto, A.; Yoshida, T.; Yoshimura, K.

    2016-05-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  3. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.

  4. Cleft formation in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  5. Balloon-Borne Polarimetry

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Murphy, G.; Strohbehn, K.; Keller, C. U.

    1996-03-01

    For about two weeks in 1995, the balloon-borne Flare Genesis Experiment will continuously observe the Sun well above the turbulent, image-blurring layers of the Earth's atmosphere. The polarization-free 80 cm telescope will supply images to a liquid-crystal based vector magnetograph, which will measure magnetic features at a resolution of 0.2 arcsec. An electrically tunable lithium-niobate Fabry-Perot provides a spectral resolution of about 0.015 nm. In a follow-up series of Antarctic balloon flights, the Flare Genesis Experiment (FGE) will provide unprecedented details about sunspots, flares, magnetic elements, filaments, and the quiet solar atmosphere.

  6. Violence-related firearm deaths among residents of metropolitan areas and cities---United States, 2006--2007.

    PubMed

    2011-05-13

    Violence-related firearm deaths remain an important public health concern in the United States. During 2006--2007, a total of 25,423 firearm homicides and 34,235 firearm suicides occurred among U.S. residents. These national totals include 4,166 firearm homicides and 1,446 firearm suicides among youths aged 10--19 years; the rate of firearm homicides among youths slightly exceeded the rate among persons of all ages. This report presents statistics on firearm homicides and firearm suicides for major metropolitan areas and cities, with an emphasis on youths aged 10--19 years in recognition of the importance of early prevention efforts. It integrates analyses conducted by CDC in response to requests for detailed information, arising from a heightened focus on urban violence by the media, the public, and policymakers over the past year. Firearm homicides and suicides and annual rates were tabulated for the 50 largest U.S. metropolitan statistical areas (MSAs) and their central cities for 2006--2007, using data from the National Vital Statistics System and the U.S. Census Bureau. Firearm homicide rates in approximately two thirds of the MSAs exceeded the national rate, and 86% of cities had rates higher than those of their MSAs. The youth firearm homicide rate exceeded the all-ages rate in 80% of the MSAs and in 88% of the cities. Firearm suicide rates in just over half of the MSAs were below the national rate, and 55% of cities had rates below those of their MSAs. Youth firearm suicide rates in the MSAs and cities were collectively low compared with all-ages rates. Such variations in firearm homicide and firearm suicide rates, with respect to both urbanization and age, should be considered in the continuing development of prevention programs directed at reducing firearm violence. PMID:21566557

  7. Balloon gondola diagnostics package

    NASA Technical Reports Server (NTRS)

    Cantor, K. M.

    1986-01-01

    In order to define a new gondola structural specification and to quantify the balloon termination environment, NASA developed a balloon gondola diagnostics package (GDP). This addition to the balloon flight train is comprised of a large array of electronic sensors employed to define the forces and accelerations imposed on a gondola during the termination event. These sensors include the following: a load cell, a three-axis accelerometer, two three-axis rate gyros, two magnetometers, and a two axis inclinometer. A transceiver couple allows the data to be telemetered across any in-line rotator to the gondola-mounted memory system. The GDP is commanded 'ON' just prior to parachute deployment in order to record the entire event.

  8. John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Reversible Chemochromic Hydrogen Detectors; Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling; Using Indium Tin Oxide To Mitigate Dust on Viewing Ports; High-Performance Polyimide Powder Coatings; Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications; Aerocoat 7 Replacement Coatings; Photocatalytic Coatings for Exploration and Spaceport Design; New Materials for the Repair of Polyimide Electrical Wire Insulation; Commodity-Free Calibration; Novel Ice Mitigation Methods; Crack Offset Measurement With the Projected Laser Target Device; New Materials for Structural Composites and Protective Coatings; Fire Chemistry Testing of Spray-On Foam Insulation (SOFI); Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank; Particle Ejection and Levitation Technology (PELT); Electrostatic Characterization of Lunar Dust; Numerical Analysis of Rocket Exhaust Cratering; RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization; Tribocharging Lunar Soil for Electrostatic Beneficiation; Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes; Trajectory Model of Lunar Dust Particles; Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes; Predicting the Acoustic Environment Induced by the Launch of the Ares I Vehicle; Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite; Hail Size Distribution Mapping; Launch Pad 39 Hail Monitor Array System; Autonomous Flight Safety System - Phase III; The Photogrammetry Cube; Bird Vision System; Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques; Next-Generation Telemetry Workstation; GPS Metric Tracking Unit; and Space-Based Range.

  9. Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over antarctica.

    PubMed

    Abe, K; Fuke, H; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Kim, K C; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Mitchell, J W; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Sakai, K; Sasaki, M; Seo, E S; Shinoda, R; Streitmatter, R E; Suzuki, J; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2012-02-01

    The energy spectrum of cosmic-ray antiprotons (p's) from 0.17 to 3.5 GeV has been measured using 7886 p's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p calculations. Cosmologically primary p's have been investigated by comparing measured and calculated p spectra. BESS-Polar II data show no evidence of primary p's from the evaporation of primordial black holes. PMID:22400920

  10. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  11. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  12. Balloons Revisited

    ERIC Educational Resources Information Center

    Jeskova, Z.; Featonby, D.; Fekova, V.

    2012-01-01

    Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…

  13. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelle, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Mineau, J.-L.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J.-C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-01-01

    In a companion (Part 1) paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosols Counter) based on scattering measurements at angles of 12 and 60°. that allows some speciation of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overwhelm those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Wien (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  14. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  15. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  16. Vega balloon meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Ingersoll, A. P.; Hildebrand, C. E.; Preston, R. A.

    1990-01-01

    The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.

  17. Scientific Balloons for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

    Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

  18. Physics & Astronomy Master's Initial Employment: Data from the Degree Recipient Follow-Up Survey for the Classes of 2006, 2007 and 2008. Focus On

    ERIC Educational Resources Information Center

    Mulvey, Patrick; Shindel, Brandon

    2011-01-01

    This report presents the characteristics and initial outcomes of exiting master's degree recipients in physics and astronomy. The report covers the degree classes of 2006, 2007 and 2008. The status of exiting physics master's varied greatly by the citizenship of the degree recipient. The majority of US citizens entered or remained in the workforce…

  19. Ballooning Interest.

    ERIC Educational Resources Information Center

    Mebane, Robert C.; Rector, Bronwyn

    1991-01-01

    Presents activities that utilize balloons to encourage students to explore questions related to scientific concepts. Concepts explored include light, heat, charged ions, polarization, and the sense of smell. (MDH)

  20. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  1. [Serological monitoring of arbovirus infections in the estuary of the Kuban River (the 2006-2007 data)].

    PubMed

    L'vov, D K; Shchelkanov, M Iu; Kolobukhina, L V; L'vov, D N; Galkina, I V; Aristova, V A; Morozova, T N; Proshina, E S; Kulikov, A G; Kogdenko, N V; Andronova, O V; Pronin, N I; Shevkoplias, V N; Fontanetskiĭ, A S; Vlasov, N A; Nepoklonov, E A

    2008-01-01

    Solid-phase enzyme immunoassay, neutralization test, and the hemagglutination-inhibition test were used to study the sera from human beings (152 samples), agricultural animals (n = 77), hares (n = 3), and wild birds (n = 69), collected in 2006-2007 in the Kuban River estuary (Temryuk District, Krasnodar Territory). There were specific antibodies against viruses of West Nile (WH), tick-borne encephalitis (TBE) (Flaviviridae, Flavivirus), Sindbis (Togaviridae, Alphavirus), the antigenic complex of California, Batai (Bunyaviridae, Orthobunyavirus), Dhori (Orthomyxoviridae, Thogotovirus). The findings suggest the presence of arboviruses from 6 transmitting mosquitoes and ticks in the study area and human infection by the viruses of the antigenic complex of California (20-47%), Batai (3-15%), West Nile (3-12%), Dhori (2%). The index agricultural animals (horses, cattle) were observed to have specific antibodies to the viruses of WN (8-15%), TBE (0-2%), Sindbis (2-9%), the antigenic complex of California (27-54%). Out of the representatives of the wild fauna, virus-neutralizing antibodies to Sindbis virus were found in European hares (Lepus europaeus), California complex virus in gulls (Larus argentatus) and terns (Sterna hirundo), WN and Sindbis viruses in herons (Ardea purpurea), and WN and California complex viruses in bald-coots (Fulica atra). PMID:18756814

  2. High Altitude Ozone Research Balloon

    NASA Technical Reports Server (NTRS)

    Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.

    1990-01-01

    In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.

  3. Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rajagopalan

    2012-07-01

    The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.

  4. Early Cosmic Ray Research with Balloons

    NASA Astrophysics Data System (ADS)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  5. Scientific balloons: historical remarks.

    NASA Astrophysics Data System (ADS)

    Ubertini, P.

    The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.

  6. Global electrodynamics from superpressure balloons

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Hu, H.

    1995-01-01

    Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.

  7. The challenge to balloon science

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    A thorough review of the NASA balloon program in 1995 confirmed both the inherent importance of balloon science investigations and their value for developing technology for future space missions. A follow-on study in 1996 looked into restructuring the entire suborbital program, in order to find more efficient and effective ways of doing business. These studies were mandated by the adverse impact of NASA's declining budgets and work force constraints on all aspects of space research. The challenge is to accomplish more with less. The balloon program began stepping up to this challenge several years ago with the advent of 10 - 20 day long-duration flights in Antarctica. We must now push ahead with enhanced flight capabilities and with new science instrument technologies, as we forge alliances with other modes of low-cost access to space. Specifically, the development of sealed superpressure balloons could extend flight duration by another order of magnitude, to about 100 days, making ballooning even more competitive with space missions.

  8. Analysis of erythemally effective UV radiation at the Mendel Station, James Ross Island in the period of 2006-2007

    NASA Astrophysics Data System (ADS)

    Laska, K.; Prosek, P.; Budik, L.; Budikova, M.

    2009-04-01

    The results of global solar and erythemally effective ultraviolet (EUV) radiation measurements are presented. The radiation data were collected within the period of 2006-2007 at the Czech Antarctic station J. G. Mendel, James Ross Island (63°48'S, 57°53'W). Global solar radiation was measured by a Kipp&Zonen CM11 pyranometer. EUV radiation was measured according to the McKinley and Diffey Erythemal Action Spectrum with a Solar Light broadband UV-Biometer Model 501A. The effects of stratospheric ozone concentration and cloudiness (estimated as cloud impact factor from global solar radiation) on the intensity of incident EUV radiation were calculated by a non-linear regression model. The total ozone content (TOC) and cloud/surface reflectivity derived from satellite-based measurements were applied into the model for elimination of the uncertainties in measured ozone values. There were two input data of TOC used in the model. The first were taken from the Dobson spectrophotometer measurements (Argentinean Antarctic station Marambio), the second was acquired for geographical coordinates of the Mendel Station from the EOS Aura Ozone Monitoring Instrument and V8.5 algorithm. Analysis of measured EUV data showed that variable cloudiness affected rather short-term fluctuations of the radiation fluxes, while ozone declines caused long-term UV radiation increase in the second half of the year. The model predicted about 98 % variability of the measured EUV radiation. The residuals between measured and modeled EUV radiation intensities were evaluated separately for the above-specified two TOC datasets, parts of seasons and cloud impact factor (cloudiness). The mean average prediction error was used for model validation according to the cloud impact factor and satellite-based reflectivity data.

  9. Influenza antiviral susceptibility monitoring activities in relation to national antiviral stockpiles in Europe during the winter 2006/2007 season.

    PubMed

    Meijer, A; Lackenby, A; Hay, A; Zambon, M

    2007-04-01

    Due to the influenza pandemic threat, many countries are stockpiling antivirals in the hope of limiting the impact of a future pandemic virus. Since resistance to antiviral drugs would probably significantly alter the effectiveness of antivirals, surveillance programmes to monitor the emergence of resistance are of considerable importance. During the 2006/2007 influenza season, an inventory was conducted by the European Surveillance Network for Vigilance against Viral Resistance (VIRGIL) in collaboration with the European Influenza Surveillance Scheme (EISS) to evaluate antiviral susceptibility testing by the National Influenza Reference Laboratories (NIRL) in relation to the national antiviral stockpile in 30 European countries that are members of EISS. All countries except Ukraine had a stockpile of the neuraminidase inhibitor (NAI) oseltamivir. Additionally, four countries had a stockpile of the NAI zanamivir and three of the M2 ion channel inhibitor rimantadine. Of 29 countries with a NAI stockpile, six countries' NIRLs could determine virus susceptibility by 50% inhibitory concentration (IC50) and in 13 countries it could be done by sequencing. Only in one of the three countries with a rimantadine stockpile could the NIRL determine virus susceptibility, by sequencing only. However, including the 18 countries that had plans to introduce or extend antiviral susceptibility testing, the NIRLs of 21 of the 29 countries with a stockpile would be capable of susceptibility testing appropriate to the stockpiled drug by the end of the 2007/2008 influenza season. Although most European countries in this study have stockpiles of influenza antivirals, susceptibility surveillance capability by the NIRLs appropriate to the stockpiled antivirals is limited. PMID:17991386

  10. 14 CFR 61.115 - Balloon rating: Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Balloon rating: Limitations. 61.115 Section...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Private Pilots § 61.115 Balloon rating: Limitations. (a) If a person who applies for a private pilot certificate with a balloon...

  11. Balloon flight and atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Herrera, Emilio

    1924-01-01

    The air is known to be charged with electricity (chiefly positive) with reference to the earth, so that its potential increases with the altitude and the difference in potential between two points in the same vertical line, divided by the distance between them, gives a value called the "potential gradient," which may vary greatly with the altitude, the nature of the ground and the atmospheric conditions.

  12. Microbial and Nutrient Concentration and Load Data During Stormwater Runoff at a Swine Concentrated Animal Feeding Operation in the North Carolina Coastal Plain, 2006-2007

    USGS Publications Warehouse

    Harden, Stephen L.

    2008-01-01

    This report summarizes water-quality and hydrologic data collected during 2006-2007 to characterize bacteria and nutrient loads associated with overland runoff and subsurface tile drainage in spray fields at a swine concentrated animal feeding operation. Four monitoring locations were established at the Lizzie Research Site in the North Carolina Coastal Plain Physiographic Province for collecting discharge and water-quality data during stormwater-runoff events. Water stage was measured continuously at each monitoring location. A stage-discharge relation was developed for each site and was used to compute instantaneous discharge values for collected samples. Water-quality samples were collected for five storm events during 2006-2007 for analysis of nutrients and fecal indicator bacteria. Instantaneous loads of nitrite plus nitrate, total coliform, Escherichia coli (E. coli), and enterococci were computed for selected times during the five storm events.

  13. Balloon Sculpture

    ERIC Educational Resources Information Center

    Warwick, James F.

    1976-01-01

    For the adventurous teacher and student there is an alternative to the often messy mixing, pouring, casting, cutting, scoring and sanding of plaster of Paris for casting or sculptural projects. Balloon sculpture, devised, designed and shown here by a sculptor/teacher, is an eye appealing sculptural form and holds a strong interest for students.…

  14. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  15. Cosmic balloons

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2014-11-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess’s historical experiment that demonstrated the existence of ionizing radiation from the sky—later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  16. A balloon-borne integrating nephelometer

    SciTech Connect

    Brown, G.S.; Apple, M.L. ); Weiss, R.E. )

    1990-09-01

    A balloon-borne integrating nephelometer has been successfully developed and flown by Sandia National Laboratories and Radiance Research. This report details instrument design, calibration and data conversion procedure. Free and tethered balloon transport and telemetry systems are described. Data taken during March 1989 South-Central New Mexico free flight ascents are presented as vertical profiles of atmospheric particle scattering coefficient, temperature and balloon heading. Data taken during December 1989 Albuquerque, New Mexico tethered flights are also presented as vertical profiles. Data analysis shows superior instrument performance. 5 refs., 22 figs.

  17. The balloon and the airship technological heritage

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.

  18. Gondola development for CNES stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  19. Girl child marriage and its effect on fertility in Pakistan: findings from Pakistan Demographic and Health Survey, 2006-2007.

    PubMed

    Nasrullah, Muazzam; Muazzam, Sana; Bhutta, Zulfiqar A; Raj, Anita

    2014-04-01

    Child marriage (before 18 years) is prevalent in Pakistan, which disproportionately affects young girls in rural, low income and low education households. Our study aims to determine the association between early marriage and high fertility and poor fertility health indicators among young women in Pakistan beyond those attributed to social vulnerabilities. Nationally representative data from Pakistan Demographic and Health Survey, 2006-2007, a cross-sectional observational survey, were limited to ever-married women aged 20-24 years (n = 1,560; 15% of 10,023) to identify differences in poor fertility outcomes [high fertility (three or more childbirths); rapid repeat childbirth (<24 months between births); unwanted pregnancy (any ever); pregnancy termination (any stillbirth, miscarriage or abortion ever)] by early (<18) versus adult (≥18) age at marriage. Associations between child marriage and fertility outcomes were assessed by calculating adjusted odds ratios (AORs) using logistic regression models after controlling for demographics, social equity indicators (education, wealth index, rural residence), contraception use, marriage duration and culture-specific factors (husband's desire for more children, son preference). Overall, 50% of ever-married women aged 20-24 years in Pakistan were married before the age of 18 years. Girl child marriage was significantly (p < 0.001) associated with low social equity indicators (poverty, rural residence, and no formal education). Adjusted logistic regression models showed that girl child marriage was significantly associated with high fertility (AOR 6.62; 95% CI 3.53-12.43), rapid repeat childbirth (AOR 2.88; 95% CI 1.83-4.54), unwanted pregnancy (AOR 2.90; 95% CI 1.75-4.79), and pregnancy termination (AOR 1.75; 95% CI 1.10-2.78). Girl child marriage affects half of all ever-married women aged 20-24 years in Pakistan, and increases their risk for high fertility and poor fertility health indicators, highlighting the need of

  20. A Mars 2011 Balloon Mission Trade Study

    NASA Astrophysics Data System (ADS)

    Smith, I.; Lew, T.; Perry, W.

    Mars Scouts are competitively selected PI-led missions to further Mars exploration in ways that satisfy NASA s overall objectives but are not currently in the planned line of missions The current 2006 Announcement of Opportunity AO for Mars Scouts has just closed The goal of this SwRI study was to develop a new balloon mission concept to where it could be credibly proposed for the AO The balloon system was defined in the study as consisting of two parts the balloon flight system BFS and the balloon deployment inflation system DIS The BFS includes the balloon envelope accessory hardware and gondola The balloon includes the envelope seams end fittings load core inflation tube diffusers payload tether shock attenuator and separation hardware The DIS includes the balloon container deployment hardware sequencer tankage gas and control hardware Trade studies were performed to better define the mission design space These studies included 1 effect of varied atmospheric thermal loads 2 effect of varying latitudes 3 effect of payload mass for varying altitudes 4 effect of radiative material properties on balloon size mass 5 effect of material areal densities on balloon size mass and 6 effect of inflation gas on system masses Results of the balloon trade study for the Mars 2011 mission opportunity will be presented

  1. Feasibility Study of Eval Balloons

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Kamioka, Eiji; Toriumi, Michihiko; Matsuzaka, Yukihiko; Namiki, Michiyoshi; Izutsu, Naoki; Ohta, Shigco; Yamagami, Takamasa; Nishimura, Jun; Matsushima, Kiyoho

    For a new balloon material, we have been studying the properties of an EVAL (Ethylene-Vinyl-ALcohol) film during a part of few years. The EVAL film is a product of Kurare Plastic Company, and has mechanical properties similar to that of a Mylar film. Besides this strong mechanical strength. we found that the EVAL film has several characteristics which seems to be suitable for the balloon material. Those are:

  2. Sandwiched EVAL films laminated by polyethylene films can be heat-sealed,
  3. Gas leakage through the EVAL film is extremely low, and for Helium gas, it is almost 100 times less than that of a Mylar film.
  4. The EVAL film is transparent in the optical band. while it efficiently absorbs the infrared radiation from the earth.In 1997, we have carried out a test flight from the Sanriku Balloon Center using a small balloon with a volume of 1000 m3. The balloon reached an altitude of 22 km successfully and showed a maximum burst pressure of 2.1 g/cm2.In this paper, basic properties of the EVAL film and performance of the test balloon are described

  5. Simulating clefts in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  6. Balloons and Science Kit.

    ERIC Educational Resources Information Center

    Balloon Council, Washington, DC.

    This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…

  7. NASA super-pressure balloons - designing to meet the future

    NASA Astrophysics Data System (ADS)

    Cathey, Henry M., Jr.

    2001-08-01

    The NASA Ultra Long Duration Balloon project presents a new challenge in balloon design by extending flight duration for large heavy payloads. The pumpkin balloon design is innovative and presents many new challenges. This paper encapsulates the NASA Ultra Long Duration Balloon Vehicle developments, presents them to the Science Community, and shows points of interaction with the users. The capabilities and limitations are presented to allow potential users to make informed choices in the development of balloon class payloads. Brief summaries of test flights and the cause and effect relationship between suspended load and float altitude are presented. A focus on innovation and the future using the Ultra Long Duration Balloon super-pressure balloon technology is also presented.

  8. Overview of the NASA balloon R&D program

    NASA Technical Reports Server (NTRS)

    Smith, I. Steve, Jr.

    1994-01-01

    The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.

  9. Final report : results of the 2006-2007 investigation of potential contamination at the former CCC/USDA facility in Barnes, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-08-28

    The 2006-2007 investigation of carbon tetrachloride and chloroform contamination at Barnes, Kansas, was conducted at the request of the Kansas Department of Health and Environment (KDHE). The Environmental Science Division of Argonne National Laboratory implemented the investigation on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The overall goal of the investigation was to establish criteria for monitoring leading to potential site reclassification. The investigation objectives were to (1) determine the hydraulic gradient near the former CCC/USDA facility, (2) delineate the downgradient carbon tetrachloride plume, and (3) design and implement an expanded monitoring network at Barnes (Argonne 2006a).

  10. Recent and Future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    Esrange Space Center located in northern Sweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have a unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern Canada. The Swedish Government and Swedish National Space Board are now finaliz-ing an agreement with Russia for peaceful uPersonNamese of space, which will permit circumpolar balloon flights. Within this agreement we will soon be able to of-fer the science community long duration balloon flights with durations for PersonNameseveral weeks. The balloon operations at Esrange Space Center are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern Sweden. We have also received a request from JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big assembly hall will be ready for use at the beginning of 2011. January 24 we made an historical balloon flight in a very cold stratosphere with a Zodiac metricconverterProductID402?000 m3402ü ınbsp;000 m3402 000 m3 balloon carrying a 750kg gondola with the German Mipas-B/Telis instrument. The balloon reached 34kms alti-tude after a carefully piloted ascent in temperature levels down to -89 degrees Centigrade. The scientists received unique data during the 13 hours and 30 minutes long sailing at different altitudes during slow descent. The payload was recovered in very good condition 80 kms from the border between country-regionFinland and Russia.

  11. Ballooning Then...and Ballooning Now.

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the history of hot-air balloon travel, starting with its French origins and continuing through to the 1978 national championship. An address for Balloon Federation of America membership is included. (MA)

  12. Incorporation of Scientific Ballooning into Science Education

    NASA Astrophysics Data System (ADS)

    Chanover, N.; Stochaj, S.; Petty, C.

    1999-12-01

    We are augmenting the science curriculum of the Roswell Independent School District in Roswell, NM, to take advantage of the proximity of a NASA scientific balloon base. The basic science related to balloon experimentation is being incorporated into the K-12 science curriculum via the discussion of topics such as atmospheric properties, weather, phases of matter, plotting skills, and communications in the context of a high-altitude balloon flight. These efforts will culminate in the construction of balloon-borne instruments by high school students, which will be launched during the spring of 2000. A demonstration flight, launched in the spring of 1999, was used to build student enthusiasm and community support for this program, which is funded by the NASA/IDEAS program.

  13. Children with elevated blood lead levels related to home renovation, repair, and painting activities--New York State, 2006-2007.

    PubMed

    2009-01-30

    Although blood lead levels (BLLs) >/=10 microg/dL are associated with adverse behavioral and developmental outcomes, and environmental and medical interventions are recommended at >/=20 microg/dL, no level is considered safe. A 1997 analysis conducted by the New York State Department of Health (NYSDOH) indicated that home renovation, repair, and painting (RRP) activities were important sources of lead exposure among children with BLLs >/=20 microg/dL in New York state (excluding New York City) during 1993--1994. Subsequently, local health departments in New York state began to routinely collect information about RRP activities when investigating children's home environments for lead sources. This report updates the 1997 analysis with data from environmental investigations conducted during 2006--2007 in New York state (excluding New York City) for 972 children with BLLs >/=20 microg/dL. RRP activities were identified as the probable source of lead exposure in 139 (14%) of the 972 children. Resident owners or tenants performed 66% of the RRP work, which often included sanding and scraping (42%), removal of painted materials or structures (29%), and other activities (29%) that can release particles of lead-based paint. RRP activities continued to be an important source of lead exposure during 2006--2007. Children living in housing built before 1978 (when lead-based paint was banned from residential use) that are undergoing RRP activities should be considered at high risk for elevated BLLs, and appropriate precautions should be taken to prevent exposure. PMID:19177040

  14. A stress index model for balloon design

    NASA Technical Reports Server (NTRS)

    Smith, I. S.

    1987-01-01

    A NASA stress index model, SINDEX, is discussed which establishes the relative stress magnitudes along a balloon gore as a function of altitude. Application of the model to a data base of over 550 ballon flights demonstrates the effectiveness of the method. The results show a strong correlation between stress levels, failure rates, and the point of maximum stress coinciding with the observed failure locations. It is suggested that the model may be used during the balloon design process to lower the levels of stress in the balloon.

  15. Overview of the Scientific Balloon Activity in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya

    Institute of Space and Astronautical Science (ISAS) of Japan Aerospace Exploration Agency (JAXA) has conducted scientific ballooning in Japan for almost fifty years. Recent stratospheric balloon operations at Taiki Aerospace Research Field (TARF), Hokkaido, produce significant space science achievements. We have also developed new TT&&C system onboard which realize user-friendly interface between payloads and the balloon system. For the developments of next generation balloons, a tawara-shaped superpressure balloon (SPB) fabricating with polyethylene film was inflated in the TARF hangar in order to verify its pressure resistance. Since polyethylene balloons can float on the recovery, we will be able to carry out flight tests of tawara-shaped SPB repeatedly with no impact on the ocean pollution. The development of high altitude balloons with ultra-thin film was successful, and the flight performance will be presented in another presentation. In order to realize long duration balloon flights, which are quite difficult to be conducted in Japan, Japanese community eager to have complementary balloon campaigns in foreign countries. After two year discussion with Australian government and the University of New South Wales, ISAS will carry out two balloon launches at Alice Springs, Northern Territory, in 2014 Austral summer. Plans and schedule of this Australian campaign will also be discussed in this presentation.

  16. Evolution of scientific ballooning and its impact on astrophysics research

    NASA Astrophysics Data System (ADS)

    Jones, William Vernon

    2014-05-01

    As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.

  17. Report on the Activities of National Balloon Facility, Hyderabad

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rajagopalan; Sreenivasan, S.; Suneel Kumar, B.; Kulkarni, P. M.

    2012-07-01

    More than five and half decades back, the Indian Balloon Group at Tata Institute of Fundamental Research, Mumbai started development of stratospheric zero pressure balloon technology and today it is one among the leading balloon groups in the world. For the past 40 years, the Institute has been operating a Scientific Balloon Facility at Hyderabad and carried out 478 balloon flights for various disciplines of space sciences like primary cosmic ray studies, X ray, Gamma Ray, Infra Red Astronomies and Atmospheric science maintaining 100% success rate during the past nine years. The Balloon Facility has the capability to build balloons of volume up to 750,000 Cu.M. as well as carrying out R & D in all aspects of scientific ballooning like balloon engineering, balloon material development, general and flight support instrumentation. A continued effort in R & D for ultra thin balloon material for High Altitude Sounding Flights has resulted in lowering the thickness of the proven indigenous Antrix film initially from 6 to 3.8 microns in the first phase and further reduction to 2.7 microns in the second phase. A test balloon of volume 5000 Cu.M. using the 2.7 micron film attained a record altitude of 45.0 Km. amsl with 1 Kg. GPS sonde payload. A 60,000 Cu.M. balloon fabricated out of 3.8 micron film capable of reaching 47 Km. Altitude with 10 Kg. Payload is awaiting trial. This report briefly describes our balloon activities during the past two years. In atmospheric sciences, aerosol studies were made with OPC,QCM,Aethelometer, Nephelometer,MWR, CIMEL Sun Photometer and Raman LIDAR.Measuments of vertical profile of Meteorological parameters and ozone upto stratosphere using GPS Radiosonde and Ozone sonde is made respectively.Study of Ionospheric tomography is done with CADI and CRABEX.

  18. Stability of the pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  19. Methods for tracking of balloons and rockets at Esrange

    NASA Astrophysics Data System (ADS)

    Hedqvist, Tomas

    2001-08-01

    At Esrange several methods are used for tracking of balloons and rockets with help of radar, Vaisala sounding data, ARGOS and GPS information. Information from these different sources is fed into a computer system for processing, and for display on adapted systems. Data from balloon flights are displayed on a digital map, which includes population data and a system to predict impact point of the balloon. Data from rocket flights can be displayed either on a digital map, or in a system for range safety purpose. Signals from various sources are converted into a data format used in the new ATC (Air Traffic Control) transponder system in order to ease future integration into this system. Data from the GPS system in NMEA format can also be adopted directly into the tracking system for both balloon and rocket flight. Balloon tracking data is also transferred via Internet to ATCs centres for flight safety reasons. Future developments: A new system for wind measurements will be created from "throw away" GPS sondes. In air traffic transponders, the expensive altimeter will be replaced by an inexpensive GPS system. For recovery, Argos-GPS on balloons will be used for real-time tracking, position information via satellites and as a support system for recovery by helicopter. Balloons equipped with the Inmarsat system, for long duration balloon flights, will have their position displayed in the digital map system.

  20. Nationwide Eclipse Ballooning Project

    NASA Astrophysics Data System (ADS)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  21. The EUSO-Balloon pathfinder

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.

  22. A High Resolution Liquid Xenon Imaging Telescope for 0.3-10 MeV Gamma Ray Astrophysics: Construction and Initial Balloon Flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1993-01-01

    The results achieved with a 3.5 liter liquid xenon time projection chamber (LXe-TPC) prototype during the first year include: the efficiency of detecting the primary scintillation light for event triggering has been measured to be higher than 85%; the charge response has been measured to be stable to within 0.1% for a period of time of about 30 hours; the electron lifetime has been measured to be in excess of 1.3 ms; the energy resolution has been measured to be consistent with previous results obtained with small volume chambers; X-Y gamma ray imaging has been demonstrated with a nondestructive orthogonal wires readout; Monte Carlo simulation results on detection efficiency, expected background count rate at balloon altitude, background reduction algorithms, telescope response to point-like and diffuse sources, and polarization sensitivity calculations; and work on a 10 liter LXe-TPC prototype and gas purification/recovery system.

  23. Performance of the EUSO-Balloon electronics

    NASA Astrophysics Data System (ADS)

    Barrillon, P.; Bacholle, S.; Bayer, J.; Blaksley, C.; Blin, S.; Cafagna, F.; Dagoret, S.; Fornaro, C.; Gorodetzky, P.; Jung, A.; Karczmarczyk, J.; De La Taille, C.; Medina Tanco, G.; Miyamoto, H.; Moretto, C.; Osteria, G.; Park, I.; Perfetto, F.; Prévôt, G.; Prat, P.; Rabanal Reina, J.; Rojas, J.; Santiago, L.; Scotti, V.; Silva, H.; Szabelski, J.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight.

  1. The French Balloon Program 2013 - 2017

    NASA Astrophysics Data System (ADS)

    Dubourg, Vincent; Vargas, André; Raizonville, Philippe

    2016-07-01

    With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  2. Relationship of climate, geography, and geology to the incidence of Rift Valley fever in Kenya during the 2006-2007 outbreak.

    PubMed

    Hightower, Allen; Kinkade, Carl; Nguku, Patrick M; Anyangu, Amwayi; Mutonga, David; Omolo, Jared; Njenga, M Kariuki; Feikin, Daniel R; Schnabel, David; Ombok, Maurice; Breiman, Robert F

    2012-02-01

    We estimated Rift Valley fever (RVF) incidence as a function of geological, geographical, and climatological factors during the 2006-2007 RVF epidemic in Kenya. Location information was obtained for 214 of 340 (63%) confirmed and probable RVF cases that occurred during an outbreak from November 1, 2006 to February 28, 2007. Locations with subtypes of solonetz, calcisols, solonchaks, and planosols soil types were highly associated with RVF occurrence during the outbreak period. Increased rainfall and higher greenness measures before the outbreak were associated with increased risk. RVF was more likely to occur on plains, in densely bushed areas, at lower elevations, and in the Somalia acacia ecological zone. Cases occurred in three spatial temporal clusters that differed by the date of associated rainfall, soil type, and land usage. PMID:22302875

  3. Multiple Virus Lineages Sharing Recent Common Ancestry Were Associated with a Large Rift Valley Fever Outbreak among Livestock in Kenya during 2006-2007▿ †

    PubMed Central

    Bird, Brian H.; Githinji, Jane W. K.; Macharia, Joseph M.; Kasiiti, Jacqueline L.; Muriithi, Rees M.; Gacheru, Stephen G.; Musaa, Joseph O.; Towner, Jonathan S.; Reeder, Serena A.; Oliver, Jennifer B.; Stevens, Thomas L.; Erickson, Bobbie R.; Morgan, Laura T.; Khristova, Marina L.; Hartman, Amy L.; Comer, James A.; Rollin, Pierre E.; Ksiazek, Thomas G.; Nichol, Stuart T.

    2008-01-01

    Rift Valley fever (RVF) virus historically has caused widespread and extensive outbreaks of severe human and livestock disease throughout Africa, Madagascar, and the Arabian Peninsula. Following unusually heavy rainfall during the late autumn of 2006, reports of human and animal illness consistent with RVF virus infection emerged across semiarid regions of the Garissa District of northeastern Kenya and southern Somalia. Following initial RVF virus laboratory confirmation, a high-throughput RVF diagnostic facility was established at the Kenyan Central Veterinary Laboratories in Kabete, Kenya, to support the real-time identification of infected livestock and to facilitate outbreak response and control activities. A total of 3,250 specimens from a variety of animal species, including domesticated livestock (cattle, sheep, goats, and camels) and wildlife collected from a total of 55 of 71 Kenyan administrative districts, were tested by molecular and serologic assays. Evidence of RVF infection was found in 9.2% of animals tested and across 23 districts of Kenya, reflecting the large number of affected livestock and the geographic extent of the outbreak. The complete S, M, and/or L genome segment sequence was obtained from a total of 31 RVF virus specimens spanning the entire known outbreak period (December-May) and geographic areas affected by RVF virus activity. Extensive genomic analyses demonstrated the concurrent circulation of multiple virus lineages, gene segment reassortment, and the common ancestry of the 2006/2007 outbreak viruses with those from the 1997-1998 east African RVF outbreak. Evidence of recent increases in genomic diversity and effective population size 2 to 4 years prior to the 2006-2007 outbreak also was found, indicating ongoing RVF virus activity and evolution during the interepizootic/epidemic period. These findings have implications for further studies of basic RVF virus ecology and the design of future surveillance/diagnostic activities, and

  4. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.

    2005-01-01

    The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.

  5. Recent developments in the scientific ballooning in India

    NASA Astrophysics Data System (ADS)

    Manchanda, R.; Sreenivasan, S.; Subbarao, J.; Kumar, P.

    RECENT DEVELOPMENTS IN THE SCIENTIFIC BALLOONING IN INDIA R. K. Manchanda1, S. Sreenivasan2, J. V. Subbarao2, P. R. Kumar2 1. Tata Institute of Fundamental Research Colaba, Mumbai-400 005, India. 2. TIFR Balloon Facility, PO Box 5, ECIL Post Office, Hyderabad-500 762, India ravi@tifr.res.in/FAX: +91-22-2152110 National Balloon facility operated by TIFR in Hyderabad, India is the only one of its kind in the world, which combines both, the in-house balloon production and a complete flight support for scientific ballooning. In the past few years we executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years and the results of the test flight conducted to qualify new sub systems will be presented.

  6. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  7. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  8. Applications of Balloon-Based Launch Systems

    NASA Astrophysics Data System (ADS)

    Gizinski, Stephen J., III; Wanagas, John D.

    1992-08-01

    A balloon-based launch system concept is described for providing effective transportation to space for small satellites and experimental vehicles, which is based on the U.S. SDI concept of Balloon-Based Launch Systems (BBLSs). Design concepts for three BBLSs are presented: (1) suborbital microgravity system, (2) suborbital hypervelocity system, and (3) orbital delivery system. The paper summarizes the study constraints and highlights the aspects of each of the proposed BBLS configurations, with special attention given to the energy requirements for various missions, motor characteristics, launch sites, and balloon flight trains. The initial results showed that the use of a balloon as the first stage to a rocket system provides significant utility to small-payload principal investigators and technical visionaries for whom space access was not previously affordable.

  9. Deployment Instabilities of Lobed-Pumpkin Balloon

    NASA Astrophysics Data System (ADS)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  10. Morphological characterization of selected balloon films and its effects on balloon performances

    NASA Technical Reports Server (NTRS)

    Said, Magdi A.

    1994-01-01

    Morphological characterization of several polyethylene balloon films have been studied using various techniques. The objective is to determine, if any, differentiating structural or morphological features that can be related to the performance of these balloon film materials. The results of the study indicate that the films are composed of either linear low denstiy polyethylene (LLDPE) or low density polyethylene (LDPE). A selective examination of these data imply that films limited degree of branching and larger crystallites size (same % crystallinity) showed good mechanical properties that appear to correlate with their high level of success in balloon flights.

  11. Sinuplasty (Balloon Catheter Dilation)

    MedlinePlus

    ... development of the balloon dilating catheter and its adaptation to sinus surgery. In the 1980s, the field ... used in endoscopic sinus surgery. It is the adaptation or application of minimally-invasive balloon technology to ...

  12. Overview of the Scientific Balloon Activity in Sweden

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student

  13. Scientific ballooning payload termination loads

    NASA Astrophysics Data System (ADS)

    Robbins, E.

    1993-02-01

    NASA's high altitude balloon borne scientific payloads are typically suspended from a deployed flat circular parachute. At flight termination, the recovery train is pyrotechnically separated at the parachute apex and balloon nadir interface. The release of elastic energy stored in the parachute at zero initial virtical velocity in the rarefied atmosphere produces high canopy opening forces that subject the gondola to potentially damaging shock loads. Data from terminations occuring at altitudes to 40 km with payloads up to 2500 kg on parachutes up to 40 m in diameter are presented. Measured loads are markedly larger than encountered via packed parachute deployment for similar canopy loadings. Canopy inflation is significantly surpressed in the early stages and then accelerated during final blossoming. Data interpretation and behavioral phenomena are discussed along with proposed shock attenuation techniques.

  14. Scientific ballooning payload termination loads

    NASA Technical Reports Server (NTRS)

    Robbins, E.

    1993-01-01

    NASA's high altitude balloon borne scientific payloads are typically suspended from a deployed flat circular parachute. At flight termination, the recovery train is pyrotechnically separated at the parachute apex and balloon nadir interface. The release of elastic energy stored in the parachute at zero initial vertical velocity in the rarefied atmosphere produces high canopy opening forces that subject the gondola to potentially damaging shock loads. Data from terminations occurring at altitudes to 40 km with payloads up to 2500 kg on parachutes up to 40 m in diameter are presented. Measured loads are markedly larger than encountered via packed parachute deployment for similar canopy loadings. Canopy inflation is significantly suppressed in the early stages and then accelerated during final blossoming. Data interpretation and behavioral phenomena are discussed along with proposed shock attenuation techniques.

  15. Strategic Plans for NASA Research Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, W. V.

    Strategic planning is underway to maximize the return from the increased capabilities anticipated in scientific research ballooning. Circumpolar flights around Antarctica were initiated in the early 1990's to help offset the impact of losing Shuttle/Spacelab missions for the observational sciences following the Challenger accident. The Antarctic Long-Duration Balloon (LDB) program, conducted in partnership with the U.S. National Science Foundation Office of Polar Programs, has been even more successful than originally envisioned. In essence, there have been two LDB missions per year, with an average duration of about 14 days, using conventional zero-pressure balloons. Two LDB flights of similar duration in the Northern Hemisphere have shown the value of developing a routine capability that would complement the Antarctic flights. The development of super-pressure balloons should allow LDB flights at any latitude, and it is reasonable to expect that mission durations can be extended to 60 - 100 days. Assuming that the technical issues will be resolved and international agreements can be secured, scientists will be able to reap the benefits of frequent access to near-space for cutting-edge research and technology development, thereby reducing the impact of restrictions on the use of the International Space Station and the Shuttle retirement in the next decade.

  16. An overview of instrumentation capabilities for Scientific ballooning in India

    NASA Astrophysics Data System (ADS)

    Devarajan, Anand; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Bangaru, Kapardhi; Trivedi, Dharmesh; Rodi, Ashish; Ojha, Devendra; Koli, Santosh

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) in India, launches scientific balloons for research in the field of astronomy, astrobiology and atmospheric sciences. TIFR-BF not only has the capability to design, fabricate and launch zero-pressure balloons, but also provide operational and engineering support for launching them. The Control Instrumentation Group (CIG) at the balloon facility handles all electronics related to telemetry, telecommand, tracking, real-time data display, data storage, air-safety and payload recovery. In the recent past, it has designed and developed customized electronics and payload orientation mechanism to meet specific experimental objectives. Small, inexpensive and rugged industrial grade radio data modems were successfully deployed in balloon flights for low bit rate data and image telemetry. This paper will provide an overview and in-flight performance of some of the recent developments in instrumentation and electronics systems. Our plans for future upgradations will also be discussed.

  17. Development of Ultra-Thin Polyethylene Balloons for High Altitude Research upto Mesosphere

    NASA Astrophysics Data System (ADS)

    Kumar, B. Suneel; Nagendra, N.; Ojha, D. K.; Peter, G. Stalin; Vasudevan, R.; Anand, D.; Kulkarni, P. M.; Reddy, V. Anmi; Rao, T. V.; Sreenivasan, S.

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 μm for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000-gram rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenization of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 μm for fabrication of balloons capable of penetrating mesosphere to meet the needs of user scientists working in the area of atmospheric dynamics commenced in 2011. Pursuant to the successful trials with 61,000-m3 balloon made of 3.8-μm Antrix film reaching stratopause (48 km) for the first time in the history of balloon facility in the year 2012, fine tuning of launch parameters like percentage free lift was carried out to take the same volume balloons to higher mesospheric altitudes. Three successful flights with a total suspended load of 10 kg using 61,000-m3 balloons were carried out in the month of January 2014 and all the three balloons crossed into the mesosphere reaching altitudes of over 51 km. All the balloons flown so far are closed system with no escape ducts. Balloon fabrication, development of launch hardware, flight control instruments and launch technique for these mesospheric balloon flights are discussed in this paper.

  18. Reduced Disparities in Birth Rates Among Teens Aged 15-19 Years - United States, 2006-2007 and 2013-2014.

    PubMed

    Romero, Lisa; Pazol, Karen; Warner, Lee; Cox, Shanna; Kroelinger, Charlan; Besera, Ghenet; Brittain, Anna; Fuller, Taleria R; Koumans, Emilia; Barfield, Wanda

    2016-01-01

    Teen childbearing can have negative health, economic, and social consequences for mothers and their children (1) and costs the United States approximately $9.4 billion annually (2). During 1991-2014, the birth rate among teens aged 15-19 years in the United States declined 61%, from 61.8 to 24.2 births per 1,000, the lowest rate ever recorded (3). Nonetheless, in 2014, the teen birth rate remained approximately twice as high for Hispanic and non-Hispanic black (black) teens compared with non-Hispanic white (white) teens (3), and geographic and socioeconomic disparities remain (3,4), irrespective of race/ethnicity. Social determinants associated with teen childbearing (e.g., low parental educational attainment and limited opportunities for education and employment) are more common in communities with higher proportions of racial and ethnic minorities (4), contributing to the challenge of further reducing disparities in teen births. To examine trends in births for teens aged 15-19 years by race/ethnicity and geography, CDC analyzed National Vital Statistics System (NVSS) data at the national (2006-2014), state (2006-2007 and 2013-2014), and county (2013-2014) levels. To describe socioeconomic indicators previously associated with teen births, CDC analyzed data from the American Community Survey (ACS) (2010-2014). Nationally, from 2006 to 2014, the teen birth rate declined 41% overall with the largest decline occurring among Hispanics (51%), followed by blacks (44%), and whites (35%). The birth rate ratio for Hispanic teens and black teens compared with white teens declined from 2.9 to 2.2 and from 2.3 to 2.0, respectively. From 2006-2007 to 2013-2014, significant declines in teen birth rates and birth rate ratios were noted nationally and in many states. At the county level, teen birth rates for 2013-2014 ranged from 3.1 to 119.0 per 1,000 females aged 15-19 years; ACS data indicated unemployment was higher, and education attainment and family income were lower in

  19. Sensitivity of mountain permafrost to extreme climatic events; a case study from the 2006-2007 air temperature anomaly in southern Norway

    NASA Astrophysics Data System (ADS)

    Isaksen, K.; Ødegård, R. S.; Eiken, T.; Sollid, J. L.

    2009-04-01

    An unusual synoptic situation with long periods of warm and humid southerlies produced record breaking temperatures in southern Norway during the period from July 2006 to June 2007, particularly late summer, autumn and early winter 2006-2007. For the one-year period, the temperature anomaly was 2.5-3.0 °C above the 1961-1990 average, with highest anomalies in the eastern and northern parts of southern Norway. The homogenised mean air temperature for the station Kjøremsgrende (62°06'N, 9°03'E, 626 m a.s.l.) was 2.9 °C above the 1961-1990 average. This is the warmest since records began in 1867. The most striking month was December 2006, when mean air temperature was 7.5 °C above the 1961-1990 average. At the official mountain station Fokstugu (62°11'N, 9°29'E, 972 m a.s.l.), on Dovrefjell, there were no days with temperatures below freezing in August and September. The late summer heat had a particularly strong impact on snow, ice and frozen ground in the mountains of southern Norway. Official mass balance investigations performed on three glaciers showed that they had their most negative net balances ever measured. Analysis of a leather shoe that melted out from a perennial snowfield at 2000 meters altitude was dated back 3,400 years old. Several complete arrows and a spade made from wood were also found in front of perennial snowfields. This study seeks to analyse the impact of the 2006-2007 air temperature anomaly on the ground thermal regime, including permafrost and seasonal frost, in the high mountains of Jotunheimen and Dovrefjell in southern Norway. In Jotunheimen, ground temperature data are monitored in a 129 m deep permafrost borehole, located at Juvvasshøe (61°40'N, 8°22'E, 1894 m a.s.l.), established within the PACE-project (Permafrost and Climate in Europe). On Dovrefjell ground temperatures are measured in a transect from deep seasonal frost at 1039 m a.s.l. to discontinuous mountain permafrost at 1505 m a.s.l. in 11 boreholes, 9 m deep

  20. Report on activities of TIFR Balloon Facility , Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rajagopalan; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Shankarnarayan, Sreenivasan; Buduru, Suneel Kumar; Devarajan, Anand; Ojha, Devendra

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR) located at Hyderabad in the southern part of peninsular India has been conducting stratospheric balloon flights for research in Astronomy and Atmospheric Science for more than four decades. The Balloon Facility has been catering not only from the scientists from the National Laboratories of India but also from abroad. For keeping pace with the ever changing and growing need of the user scientists, continuous R & D activity is maintained for developing newer materials , building balloons with heavy payload capability and upgrading of Telemetry and Telecommand systems. So far, a total of 483 balloon flights have been carried out from the facility. During the past two years , significant strides have been made in building light weight balloons using ultra thin polyethylene film and successfully flying them to penetrate the mesosphere three times and developing a IRIG 106 Format compliant Encoder with added new facilities in putting various serial and parallel data streams in the Encoder Format with increased bit rates upto 500 kbps. This encoder will be tested during the summer flight programme of 2014. This paper describes the balloon flights and developmental work carried out during the past two years.

  1. Description of two measles outbreaks in the Lazio Region, Italy (2006-2007). Importance of pockets of low vaccine coverage in sustaining the infection

    PubMed Central

    2010-01-01

    Background Despite the launch of the national plan for measles elimination, in Italy, immunization coverage remains suboptimal and outbreaks continue to occur. Two measles outbreaks, occurred in Lazio region during 2006-2007, were investigated to identify sources of infection, transmission routes, and assess operational implications for elimination of the disease. Methods Data were obtained from several sources, the routine infectious diseases surveillance system, field epidemiological investigations, and molecular genotyping of virus by the national reference laboratory. Results Overall 449 cases were reported, sustained by two different stereotypes overlapping for few months. Serotype D4 was likely imported from Romania by a Roma/Sinti family and subsequently spread to the rest of the population. Serotype B3 was responsible for the second outbreak which started in a secondary school. Pockets of low vaccine coverage individuals (Roma/Sinti communities, high school students) facilitated the reintroduction of serotypes not endemic in Italy and facilitated the measles infection to spread. Conclusions Communities with low vaccine coverage represent a more serious public health threat than do sporadic susceptible individuals. The successful elimination of measles will require additional efforts to immunize low vaccine coverage population groups, including hard-to-reach individuals, adolescents, and young adults. An enhanced surveillance systems, which includes viral genotyping to document chains of transmission, is an essential tool for evaluating strategy to control and eliminate measles PMID:20219143

  2. Advances in scientific balloon thermal modeling

    NASA Astrophysics Data System (ADS)

    Bohaboj, T.; Cathey, H.

    The National Aeronautics and Space Administration's Balloon Program Office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the ``Thermal Desktop'' addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical ``proxy models'' for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This paper presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  3. Advances in Scientific Balloon Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Bohaboj, T.; Cathey, H. M., Jr.

    2004-01-01

    The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  4. Small Research Balloons in a Physics Course for Education Majors

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F. C.; Verner, E.; Long, T.; Montanaro, E.

    2013-12-01

    At The Catholic Univ. of America, we teach an experimental physics course entitled Physics 240: The Sun-Earth Connection, which is designed for the undergraduate education major. The emphasis is on providing hands-on experience and giving the students an exciting experience in physics. As part of this course, in the Spring 2013 semester, we instituted a project to plan, build, launch, and retrieve a small (~1.3 kg) research balloon payload. The payload flown was a small GPS unit that sent its position to an Internet site, a small wide-angle high-resolution video camera, and an analog refrigerator thermometer placed in the field of view of the camera. All data were stored on the camera sim-card. Students faced the problems of flying a small research balloon in the congested, densely populated Northeast Corridor of the US. They used computer simulators available on the Web to predict the balloon path and flight duration given velocities for the Jet Stream and ground winds, as well as payload mass and amount of helium in the balloon. The first flight was extremely successful. The balloon was launched 140 km NW of Washington DC near Hagerstown, MD and touched down 10 miles (16 km) NW of York, PA, within 1.6 km of what was predicted. The balloon reached 73,000 ft (22,000 m) and the thermometer indicated temperatures as low as -70 degrees Fahrenheit (-57 C) during the flight. Further balloon flights are planned in conjunction with this course. Additional exercises and experiments will be developed centered around these flights. Besides learning that science can be exciting, students also learn that science is not always easily predictable, and that these balloon flights give an understanding of many of problems that go into real scientific space missions. This project is supported in part by an educational supplement to NASA grant NNX10AC56G

  5. Pumpkins and onions and balloon design

    NASA Astrophysics Data System (ADS)

    Winker, J. A.

    The reach for a capability to make long flights (months) with heavy payloads (tonnes) has long been pursued. The closest we have come is with polar flights devoid of a significant diurnal cycle. Superpressure technology, with its ability to survive diurnal cycles, is an obvious choice, but materials limitations have been an obstacle to realizing these ambitious goals. Now comes an assortment of new synthetic materials, coupled with a special variety of superpressure balloon which, in combination, is poised to yield a solution for our enhanced duration/payload quest. In this paper we are looking not at materials, but only at a balloon concept. This concept is a "natural shape" oblate spheroid balloon whose shape is chosen to exploit properties of component materials, particularly newly available ones. The current variation of this concept is called a "pumpkin" balloon. The most visible work on this shape is that done by France's CNES, Japan's ISAS, and in the USA by NASA's Wallops Flight Facility. But the basic design idea is not new; it extends back at least a half century. This paper traces the origins of the shape, its evolution through various iterations, and it speculates on some of the recent thinking regarding construction details.

  6. Recruiting Trends, 2006-2007

    ERIC Educational Resources Information Center

    Collegiate Employment Research Institute (NJ3), 2007

    2007-01-01

    College students who plan on entering the labor market can expect to see more job opportunities in the spring of 2007, according to information supplied by 864 companies and organizations to this year's Recruiting Trends Report. After two years of double digit growth, the expansion will slow to a modest 4% to 6%. Two opposing factors appear to be…

  7. Principals' Salaries, 2006-2007

    ERIC Educational Resources Information Center

    Cooke, Willa D.; Licciardi, Chris

    2007-01-01

    How do salaries of elementary and middle school principals compare with those of other administrators and classroom teachers? Are increases in salaries of principals keeping pace with increases in salaries of classroom teachers? And how have principals' salaries fared over the years when the cost of living is taken into account? This article…

  8. High altitude balloon experiments at IIA

    NASA Astrophysics Data System (ADS)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  9. Catalytic Generation of Lift Gases for Balloons

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  10. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, A.; Philipona, R.; Romanens, G.; Hurst, D. F.; Hall, E. G.; Jordan, A. F.

    2015-12-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at pre-set altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.