Science.gov

Sample records for 21-cm line survey

  1. An H I 21-cm line survey of evolved stars

    NASA Astrophysics Data System (ADS)

    Gérard, E.; Le Bertre, T.; Libert, Y.

    2011-12-01

    The HI line at 21 cm is a tracer of circumstellar matter around AGB stars, and especially of the matter located at large distances (0.1-1 pc) from the central stars. It can give unique information on the kinematics and on the physical conditions in the outer parts of circumstellar shells and in the regions where stellar matter is injected into the interstellar medium. However this tracer has not been much used up to now, due to the difficulty of separating the genuine circumstellar emission from the interstellar one. With the Nançay Radiotelescope we are carrying out a survey of the HI emission in a large sample of evolved stars. We report on recent progresses of this long term programme, with emphasis on S-type stars.

  2. Combining galaxy and 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.; White, Martin; Chang, Tzu-Ching; Holder, Gil; Padmanabhan, Nikhil; Doré, Olivier

    2016-04-01

    Acoustic waves travelling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and intergalactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as baryon acoustic oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the `smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper, we use low-order Lagrangian perturbation theory to study the ability of 21-cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit 21-cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this work, we analyse reconstruction within the framework of Lagrangian perturbation theory with local Lagrangian bias, redshift-space distortions, {k}-dependent noise and anisotropic filtering schemes.

  3. Surveys of the Milky Way and Magellanic System in the λ21-cm line of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Dickey, J. M.

    2012-02-01

    In the next three years, surveys of the Northern and Southern skies using focal plane arrays on aperture synthesis radio telescopes will lead to a breakthrough in our knowledge of the warm and cool atomic phases of the interstellar medium and their relationship with the diffuse molecular gas. The sensitivity and resolution of these surveys will give an order of magnitude or more improvement over existing interstellar medium data. The GASKAP (South) and GAMES (North) projects together constitute a complete survey of the Milky Way plane and the Magellanic Clouds and Stream in both emission and absorption in the H I 21-cm line and the OH 18-cm lines. The overall goal of this project is to understand the mechanism of galaxy evolution, through a detailed tracing of the astrophysical processes that drive the cycle of star formation in very different environments. Comparison of 21-cm emission and absorption highlights the transition from the warm, diffuse medium to cool clouds. Tracing turbulence in the Magellanic Stream shows how extra-galactic gas makes the difficult passage through the halo to replenish the disk. Finally, high resolution images of OH masers trace outflows from evolved stars that enrich the medium with heavy elements. To understand how the Milky Way was assembled and how it has evolved since, the speed and efficiency of these processes must be measured, as functions of Galactic radius and height above the plane. Observations of similar processes in the Magellanic Clouds show how differently they might have worked in conditions typical of the early universe.

  4. H I SHELLS AND SUPERSHELLS IN THE I-GALFA H I 21 cm LINE SURVEY. I. FAST-EXPANDING H I SHELLS ASSOCIATED WITH SUPERNOVA REMNANTS

    SciTech Connect

    Park, G.; Koo, B.-C.; Gibson, S. J.; Newton, J. H.; Kang, J.-H.; Lane, D. C.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C.

    2013-11-01

    We search for fast-expanding H I shells associated with Galactic supernova remnants (SNRs) in the longitude range l ≈ 32° to 77° using 21 cm line data from the Inner-Galaxy Arecibo L-band Feed Array (I-GALFA) H I survey. Among the 39 known Galactic SNRs in this region, we find such H I shells in 4 SNRs: W44, G54.4-0.3, W51C, and CTB 80. All four were previously identified in low-resolution surveys, and three of those (excluding G54.4-0.3) were previously studied with the Arecibo telescope. A remarkable new result, however, is the detection of H I emission at both very high positive and negative velocities in W44 from the receding and approaching parts of the H I expanding shell, respectively. This is the first detection of both sides of an expanding shell associated with an SNR in H I 21 cm emission. The high-resolution I-GALFA survey data also reveal a prominent expanding H I shell with high circular symmetry associated with G54.4-0.3. We explore the physical characteristics of four SNRs and discuss what differentiates them from other SNRs in the survey area. We conclude that these four SNRs are likely the remnants of core-collapse supernovae interacting with a relatively dense (∼> 1 cm{sup –3}) ambient medium, and we discuss the visibility of SNRs in the H I 21 cm line.

  5. H I Structure and Topology of the Galaxy Revealed by the I-GALFA H I 21-cm Line Survey

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Park, G.; Cho, W.; Gibson, S. J.; Kang, J.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C. E.

    2011-05-01

    The I-GALFA survey mapping all the H I in the inner Galactic disk visible to the Arecibo 305m telescope within 10 degrees of the Galactic plane (longitudes of 32 to 77 degrees at b = 0) completed observations in 2009 September and will soon be made publicly available. The high (3.4 arcmin) resolution and tremendous sensitivity of the survey offer a great opportunity to observe the fine details of H I both in the inner and in the far outer Galaxy. The reduced HI column density maps show that the HI structure is highly filamentary and clumpy, pervaded by shell-like structures, vertical filaments, and small clumps. By inspecting individual maps, we have found 36 shell candidates of angular sizes ranging from 0.4 to 12 degrees, half of which appear to be expanding. In order to characterize the filamentary/clumpy morphology of the HI structure, we have carried out statistical analyses of selected areas representing the spiral arms in the inner and outer Galaxy. Genus statistics that can distinguish the ``meatball'' and ``swiss-cheese'' topologies show that the HI topology is clump-like in most regions. The two-dimensional Fourier analysis further shows the HI structures are filamentary and mainly parallel to the plane in the outer Galaxy. We also examine the level-crossing statistics, the results of which are described in detail in an accompanying poster by Park et al.

  6. Cosmological constraints from 21cm surveys after reionization

    SciTech Connect

    Visbal, Eli; Loeb, Abraham; Wyithe, Stuart E-mail: aloeb@cfa.harvard.edu

    2009-10-01

    21cm emission from residual neutral hydrogen after the epoch of reionization can be used to trace the cosmological power spectrum of density fluctuations. Using a Fisher matrix formulation, we provide a detailed forecast of the constraints on cosmological parameters that are achievable with this probe. We consider two designs: a scaled-up version of the MWA observatory as well as a Fast Fourier Transform Telescope. We find that 21cm observations dedicated to post-reionization redshifts may yield significantly better constraints than next generation Cosmic Microwave Background (CMB) experiments. We find the constraints on Ω{sub Λ}, Ω{sub m}h{sup 2}, and Ω{sub ν}h{sup 2} to be the strongest, each improved by at least an order of magnitude over the Planck CMB satellite alone for both designs. Our results do not depend as strongly on uncertainties in the astrophysics associated with the ionization of hydrogen as similar 21cm surveys during the epoch of reionization. However, we find that modulation of the 21cm power spectrum from the ionizing background could potentially degrade constraints on the spectral index of the primordial power spectrum and its running by more than an order of magnitude. Our results also depend strongly on the maximum wavenumber of the power spectrum which can be used due to non-linearities.

  7. Discovery and First Observations of the 21-cm Hydrogen Line

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T.

    2005-08-01

    Unlike most of the great discoveries in the first decade of radio astronomy after World War II, the 21 cm hydrogen line was first predicted theoretically and then purposely sought. The story is familiar of graduate student Henk van de Hulst's prediction in occupied Holland in 1944 and the nearly simultaneous detection of the line by teams at Harvard, Leiden, and Sydney in 1951. But in this paper I will describe various aspects that are little known: (1) In van de Hulst's original paper he not only worked out possible intensities for the 21 cm line, but also for radio hydrogen recombination lines (not detected until the early 1960s), (2) in that same paper he also used Jansky's and Reber's observations of a radio background to make cosmological conclusions, (3) there was no "race" between the Dutch, Americans, and Australians to detect the line, (4) a fire that destroyed the Dutch team's equipment in March 1950 ironically did not hinder their progress, but actually speeded it up (because it led to a change of their chief engineer, bringing in the talented Lex Muller). The scientific and technical styles of the three groups will also be discussed as results of the vastly differing environments in which they operated.

  8. The foreground wedge and 21-cm BAO surveys

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Jong; Hirata, Christopher M.

    2016-03-01

    Redshifted H I 21 cm emission from unresolved low-redshift large-scale structure is a promising window for ground-based baryon acoustic oscillations (BAO) observations. A major challenge for this method is separating the cosmic signal from the foregrounds of Galactic and extra-Galactic origins that are stronger by many orders of magnitude than the former. The smooth frequency spectrum expected for the foregrounds would nominally contaminate only very small k∥ modes; however, the chromatic response of the telescope antenna pattern at this wavelength to the foreground introduces non-smooth structure, pervasively contaminating the cosmic signal over the physical scales of our interest. Such contamination defines a wedged volume in Fourier space around the transverse modes that is inaccessible for the cosmic signal. In this paper, we test the effect of this contaminated wedge on the future 21-cm BAO surveys using Fisher information matrix calculation. We include the signal improvement due to the BAO reconstruction technique that has been used for galaxy surveys and test the effect of this wedge on the BAO reconstruction as a function of signal to noises and incorporate the results in the Fisher matrix calculation. We find that the wedge effect expected at z = 1-2 is very detrimental to the angular diameter distances: the errors on angular diameter distances increased by 3-4.4 times, while the errors on H(z) increased by a factor of 1.5-1.6. We conclude that calibration techniques that clean out the foreground `wedge' would be extremely valuable for constraining angular diameter distances from intensity-mapping 21-cm surveys.

  9. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.

    2015-02-01

    The highly redshifted 21-cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ˜ 1) up through the Epoch of Reionization (EoR) (z ˜ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21-cm signal, since this approach maximizes the signal to noise in the initial measurement. However, like galaxy surveys, the 21-cm signal is affected by redshift space distortions, and is inherently anisotropic between the line of sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line of sight and transverse directions: the so-called foreground `wedge'. Although foreground subtraction techniques are actively being developed, a `foreground avoidance' approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyse the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21-cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (Hydrogen Epoch of Reionization Array and the Square Kilometre Array), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like Canadian Hydrogen Intensity Mapping Experiment can place non-trivial constraints on cosmological parameters.

  10. The existence and detection of optically dark galaxies by 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Disney, M. J.; Minchin, R. F.; Auld, R.; Smith, R.

    2006-05-01

    One explanation for the disparity between cold dark matter (CDM) predictions of galaxy numbers and observations could be that there are numerous dark galaxies in the Universe. These galaxies may still contain baryons, but no stars, and may be detectable in the 21-cm line of atomic hydrogen. The results of surveys for such objects, and simulations that do/do not predict their existence, are controversial. In this paper, we use an analytical model of galaxy formation, consistent with CDM, to first show that dark galaxies are certainly a prediction of the model. Secondly, we show that objects like VIRGOHI21, a dark galaxy candidate recently discovered by us, while rare are predicted by the model. Thirdly, we show that previous `blind' HI surveys have placed few constraints on the existence of dark galaxies. This is because they have either lacked the sensitivity and/or velocity resolution or have not had the required detailed optical follow up. We look forward to new 21-cm blind surveys [Arecibo Legacy Fast ALFA (ALFALFA) survey and Arecibo Galactic Environments Survey (AGES)] using the Arecibo multibeam instrument which should find large numbers of dark galaxies if they exist.

  11. A fully sampled λ21 cm linear polarization survey of the southern sky

    NASA Astrophysics Data System (ADS)

    Testori, J. C.; Reich, P.; Reich, W.

    2008-06-01

    Context: Linear polarization of Galactic synchrotron emission provides valuable information on the Galactic magnetic field and on the properties of the Galactic magneto-ionic medium. Polarized high-latitude Galactic emission is the major foreground for polarization studies of the cosmic microwave background. Aims: We present a new southern-sky λ21 cm linear polarization survey, which complements the recent λ21 cm DRAO northern sky polarization data. Methods: We used a 30-m telescope located at Villa Elisa/Argentina to map the southern sky simultaneously in continuum and linear polarization. Results: We present a fully sampled map of linearly polarized emission at λ21 cm of the southern sky for declinations between -10° and -90°. The angular resolution of the survey is 36' and its sensitivity is 15 mK (rms-noise) in Stokes U and Q. The survey's zero-level has been adjusted to that of the recent DRAO 1.4 GHz linear polarization survey by comparing data in the region of overlap between -10° and -27°. Conclusions: The polarized southern sky at 1.4 GHz shows large areas with smooth low-level emission almost uncorrelated to total intensities indicating that Faraday rotation originating in the Galactic interstellar medium along the line of sight is significant at 1.4 GHz. The southern sky is much less contaminated by local foreground features than is the northern sky. Thus high-frequency observations of polarized cosmic microwave emission are expected to be less affected. The percentage polarization of the high-latitude emission is low, which seems to be an intrinsic property of Galactic emission.

  12. A synthetic 21-cm Galactic Plane Survey of a smoothed particle hydrodynamics galaxy simulation

    NASA Astrophysics Data System (ADS)

    Douglas, Kevin A.; Acreman, David M.; Dobbs, Clare L.; Brunt, Christopher M.

    2010-09-01

    We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90° <= l <= 180°, using a model spiral galaxy from smoothed particle hydrodynamics (SPH) simulations and the radiative transfer code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of outer Galaxy `Perseus arm' HI, with a view to tracing atomic gas as it encounters shock motions as it enters a spiral arm interface, an early step in the formation of molecular clouds. The observation of HI self-absorption features at these shock sites (in both real observations and our synthetic data) allows us to investigate further the connection between cold atomic gas and the onset of molecular cloud formation.

  13. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    SciTech Connect

    Evoli, C.; Mesinger, A.; Ferrara, A. E-mail: andrei.mesinger@sns.it

    2014-11-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale (k ≅ 0.1 Mpc{sup -1}) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. These signatures are robust to astrophysical uncertainties, and will be easily detectable with second generation interferometers. We also briefly show that decaying warm dark matter has a negligible role in heating the IGM.

  14. A comparison of neutral hydrogen 21 cm observations with UV and optical absorption-line measurements

    NASA Technical Reports Server (NTRS)

    Giovanelli, R.; York, D. G.; Shull, J. M.; Haynes, M. P.

    1978-01-01

    Several absorption components detected in visible or UV lines have been identified with emission features in new high-resolution, high signal-to-noise 21 cm observations. Stars for which direct overlap is obtained are HD 28497, lambda Ori, mu Col, HD 50896, rho Leo, HD 93521, and HD 219881. With the use of the inferred H I column densities from 21 cm profiles, rather than the integrated column densities obtained from L-alpha, more reliable densities can be derived from the existence of molecular hydrogen. Hence the cloud thicknesses are better determined; and 21 cm emission maps near these stars can be used to obtain dimensions on the plane of the sky. It is now feasible to derive detailed geometries for isolated clumps of gas which produce visual absorption features.

  15. Studying the first X-ray sources in our Universe with the redshifted 21-cm line

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei

    2016-04-01

    The cosmological 21-cm line is sensitive to the thermal and ionization state of the intergalactic medium (IGM). As it is a line transition, a given observed frequency can be associated with a cosmological redshift. Thus upcoming next-generation radio interferometers, such as HERA and SKA, will map out the 3D structure of the early Universe. This 21-cm signal encodes a weath of information about the first galaxies and IGM structures. In particular, X-ray sources in the first galaxies are thought to have heated the IGM to temperatures above the CMB temperature, well before cosmic reionization. The spatial structure of the 21-cm signal during this epoch of X-ray heating encodes invaluable information about the X-ray luminosity and spectral energy distributions of the first galaxies. I will review this exciting new fronteer, highlighting how the 21-cm line will provide us with a unique opertunity to study high-energy processes inside the first galaxies.

  16. DEEP 21 cm H I OBSERVATIONS AT z {approx} 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    SciTech Connect

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-20

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around {alpha}{sub 2000} {approx} 0{sup h}, {delta} {approx} 15{sup 0}42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is {rho}{sub H{sub I}}[z = 0.125] = (1.0 {+-} 0.3){rho}{sub 0}, where {rho}{sub 0} is the H I density at zero redshift.

  17. A Large-Scale Radio Polarization Survey of the Southern Sky at 21cm

    NASA Astrophysics Data System (ADS)

    Testori, J. C.; Reich, P.; Reich, W.

    2004-02-01

    We have successfully reduced the polarization data from the recently published 21 cm continuum survey of the southern sky carried out with a 30-m antenna at Villa Elisa (Argentina). We describe the reduction and calibration methods of the survey. The result is a fully sampled survey, which covers declinations from -90 degrees to -10 degrees with a typical rms-noise of 15 mK TB. The map of polarized intensity shows large regions with smooth low-level emission, but also a number of enhanced high-latitude features. Most of these regions have no counterpart in total intensity and indicate Faraday active regions.

  18. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely; Dai, Liang; Kamionkowski, Marc

    2016-04-01

    We investigate the possibility of detecting the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as a lunar radio array.

  19. Prospects of probing quintessence with HI 21-cm intensity mapping survey

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Thakur, Shruti; Sarkar, Tapomoy Guha; Sen, Anjan A.

    2016-09-01

    We investigate the prospect of constraining scalar field dark energy models using HI 21-cm intensity mapping surveys. We consider a wide class of coupled scalar field dark energy models whose predictions about the background cosmological evolution are different from the ΛCDM predictions by a few percent. We find that these models can be statistically distinguished from ΛCDM through their imprint on the 21-cm angular power spectrum. At the fiducial z = 1.5, corresponding to a radio interferometric observation of the post-reionization HI 21 cm observation at frequency 568 MHz, these models can infact be distinguished from the ΛCDM model at SNR > 3σ level using a 10,000 hr radio observation distributed over 40 pointings of a SKA1-mid like radio-telescope. We also show that tracker models are more likely to be ruled out in comparison with ΛCDM than the thawer models. Future radio observations can be instrumental in obtaining tighter constraints on the parameter space of dark energy models and supplement the bounds obtained from background studies.

  20. A WSRT 21 CM deep survey of two fields in Hercules

    NASA Astrophysics Data System (ADS)

    Oort, M. J. A.; van Langevelde, H. J.

    1987-10-01

    A deep 21 cm survey, carried out with the Westerbork Synthesis Radio Telescope (WSRT), of two fields in the constellation of Hercules is presented. These areas were observed previously at 21 cm in the Leiden-Berkeley Deep Survey (LBDS), (Windhorst et al., 1984), but with a factor of three higher noise level. A complete sample is defined, containing 116 radio sources with a peak flux above 5 sigma, within the -7dB attenuation radius (0.464 deg). This complete sample is used to determine the 1412 MHz source counts down to 0.45 mJy. The counts from the current sample show the same small scale structure at about 1 mJy, as was found in previous surveys. A direct comparison is made with the LBDS observations of the same fields. It is shown that the 5 sigma peak flux cut-off in the complete sample is not stringent enough to sufficiently avoid contamination by spurious sources, especially when strong (S of not less than 100 mJy) sources are present in the field. Finally, a search was made for the variable sources.

  1. Dicke’s Superradiance in Astrophysics. I. The 21 cm Line

    NASA Astrophysics Data System (ADS)

    Rajabi, Fereshteh; Houde, Martin

    2016-08-01

    We have applied the concept of superradiance introduced by Dicke in 1954 to astrophysics by extending the corresponding analysis to the magnetic dipole interaction characterizing the atomic hydrogen 21 cm line. Although it is unlikely that superradiance could take place in thermally relaxed regions and that the lack of observational evidence of masers for this transition reduces the probability of detecting superradiance, in situations where the conditions necessary for superradiance are met (close atomic spacing, high velocity coherence, population inversion, and long dephasing timescales compared to those related to coherent behavior), our results suggest that relatively low levels of population inversion over short astronomical length-scales (e.g., as compared to those required for maser amplification) can lead to the cooperative behavior required for superradiance in the interstellar medium. Given the results of our analysis, we expect the observational properties of 21 cm superradiance to be characterized by the emission of high-intensity, spatially compact, burst-like features potentially taking place over short periods ranging from minutes to days.

  2. 21 cm line bispectrum as a method to probe cosmic dawn and epoch of reionization

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Hayato; Yoshiura, Shintaro; Takahashi, Keitaro; Yokoyama, Shuichiro; Ichiki, Kiyotomo

    2016-05-01

    Redshifted 21 cm signal is a promising tool to investigate the state of intergalactic medium (IGM) in the cosmic dawn (CD) and epoch of reionization (EoR). In our previous work, we studied the variance and skewness of the 21 cm fluctuations to give a clear interpretation of the 21 cm power spectrum and found that skewness is a good indicator of the epoch when X-ray heating becomes effective. Thus, the non-Gaussian feature of the spatial distribution of the 21 cm signal is expected to be useful to investigate the astrophysical effects in the CD and EoR. In this paper, in order to investigate such a non-Gaussian feature in more detail, we focus on the bispectrum of the 21 cm signal. It is expected that the 21 cm brightness temperature bispectrum is produced by non-Gaussianity due to the various astrophysical effects such as the Wouthuysen-Field effect, X-ray heating and reionization. We study the various properties of 21 cm bispectrum such as scale dependence, shape dependence and redshift evolution. And also we study the contribution from each component of 21 cm bispectrum. We find that the contribution from each component has characteristic scale-dependent feature. In particular, we find that the bulk of the 21 cm bispectrum at z = 20 comes from the matter fluctuations, while in other epochs it is mainly determined by the spin and/or neutral fraction fluctuations and it is expected that we could obtain more detailed information on the IGM in the CD and EoR by using the 21 cm bispectrum in the future experiments, combined with the power spectrum and skewness.

  3. SPECTRAL POLARIZATION OF THE REDSHIFTED 21 cm ABSORPTION LINE TOWARD 3C 286

    SciTech Connect

    Wolfe, Arthur M.; Jorgenson, Regina A.; Robishaw, Timothy; Heiles, Carl; Xavier Prochaska, J. E-mail: raj@ast.cam.ac.uk E-mail: heiles@astro.berkeley.edu

    2011-05-20

    A reanalysis of the Stokes-parameter spectra obtained of the z = 0.692 21 cm absorption line toward 3C 286 shows that our original claimed detection of Zeeman splitting by a line-of-sight magnetic field, B{sub los} = 87 {mu}G, is incorrect. Because of an insidious software error, what we reported as Stokes V is actually Stokes U: the revised Stokes V spectrum indicates a 3{sigma} upper limit of B{sub los}< 17 {mu}G. The correct analysis reveals an absorption feature in fractional polarization that is offset in velocity from the Stokes I spectrum by -1.9 km s{sup -1}. The polarization position-angle spectrum shows a dip that is also significantly offset from the Stokes I feature, but at a velocity that differs slightly from the absorption feature in fractional polarization. We model the absorption feature with three velocity components against the core-jet structure of 3C 286. Our {chi}{sup 2} minimization fitting results in components with differing (1) ratios of H I column density to spin temperature, (2) velocity centroids, and (3) velocity dispersions. The change in polarization position angle with frequency implies incomplete coverage of the background jet source by the absorber. It also implies a spatial variation of the polarization position angle across the jet source, which is observed at frequencies higher than the 839.4 MHz absorption frequency. The multi-component structure of the gas is best understood in terms of components with spatial scales of {approx}100 pc comprised of hundreds of low-temperature (T {<=} 200 K) clouds with linear dimensions of <<100 pc. We conclude that previous attempts to model the foreground gas with a single uniform cloud are incorrect.

  4. A FOURTH H I 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS

    SciTech Connect

    Tanna, A.; Webb, J. K.; Curran, S. J.; Whiting, M. T.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  5. Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization.

    PubMed

    Loeb, Abraham; Wyithe, J Stuart B

    2008-04-25

    Measurements of the 21 cm line emission by residual cosmic hydrogen after reionization can be used to trace the power spectrum of density perturbations through a significant fraction of the observable volume of the Universe. We show that a dedicated 21 cm observatory could probe a number of independent modes that is 2 orders of magnitude larger than currently available, and enable a cosmic-variance limited detection of the signature of a neutrino mass approximately 0.05 eV. The evolution of the linear growth factor with redshift could also constrain exotic theories of gravity or dark energy to an unprecedented precision. PMID:18518181

  6. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  7. THE APPLICATION OF CONTINUOUS WAVELET TRANSFORM BASED FOREGROUND SUBTRACTION METHOD IN 21 cm SKY SURVEYS

    SciTech Connect

    Gu Junhua; Xu Haiguang; Wang Jingying; Chen Wen; An Tao

    2013-08-10

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  8. 21-cm Intensity Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; GBT-HIM Team

    2016-01-01

    The redshifted 21-cm emission from neutral hydrogen has emerged as a powerful probe for large-scale structure; a significant fraction of the observable universe can be mapped in the Intensity Mapping regime out to high redshifts. At redshifts around unity, the 21-cm emission traces the matter distribution and can be used to measure the Baryon Acoustic Oscillation (BAO) signature and constrain dark energy properties. I will describe our HI Intensity Mapping program at the Green Bank Telescope (GBT), aiming at measuring the 21cm power spectrum at z=0.8. A 800-MHz multi-beam focal-plane array for the GBT is currently under construction in order to facilitate a large-scale survey for BAO and the redshift-space distortion measurements for cosmological constraints.

  9. Searching for signatures of cosmic string wakes in 21cm redshift surveys using Minkowski Functionals

    SciTech Connect

    McDonough, Evan; Brandenberger, Robert H. E-mail: rhb@hep.physics.mcgill.ca

    2013-02-01

    Minkowski Functionals are a powerful tool for analyzing large scale structure, in particular if the distribution of matter is highly non-Gaussian, as it is in models in which cosmic strings contribute to structure formation. Here we apply Minkowski functionals to 21cm maps which arise if structure is seeded by a scaling distribution of cosmic strings embeddded in background fluctuations, and then test for the statistical significance of the cosmic string signals using the Fisher combined probability test. We find that this method allows for detection of cosmic strings with Gμ > 5 × 10{sup −8}, which would be improvement over current limits by a factor of about 3.

  10. Invisible Active Galactic Nuclei. II. Radio Morphologies and Five New H i 21cm Absorption Line Detectors

    NASA Astrophysics Data System (ADS)

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-01

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  11. How Ewen and Purcell discovered the 21-cm interstellar hydrogen line.

    NASA Astrophysics Data System (ADS)

    Stephan, K. D.

    1999-02-01

    The story of how Harold Irving Ewen and Edward Mills Purcell detected the first spectral line ever observed in radio astronomy, in 1951, has been told for general audiences by Robert Buderi (1996). The present article has a different purpose. The technical roots of Ewen and Purcell's achievement reveal much about the way science often depends upon "borrowed" technologies, which were not developed with the needs of science in mind. The design and construction of the equipment is described in detail. As Ewen's photographs, records, and recollections show, he and Purcell had access to an unusual combination of scientific knowledge, engineering know-how, critical hardware, and technical assistance at Harvard, in 1950 and 1951. This combination gave them a competitive edge over similar research groups in Holland and Australia, who were also striving to detect the hydrogen line, and who succeeded only weeks after the Harvard researchers did. The story also shows that Ewen and Purcell did their groundbreaking scientific work in the "small-science" style that prevailed before World War II, while receiving substantial indirect help from one of the first big-science projects at Harvard.

  12. A GREEN BANK TELESCOPE SURVEY FOR H I 21 cm ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES

    SciTech Connect

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Meiring, Joseph D.; Bowen, David V.; York, Donald G.; Momjian, Emmanuel

    2011-01-20

    We present an H I 21 cm absorption survey with the Green Bank Telescope (GBT) of galaxy-quasar pairs selected by combining galaxy data from the Sloan Digital Sky Survey (SDSS) and radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. Our sample consists of 23 sight lines through 15 low-redshift foreground galaxy-background quasar pairs with impact parameters ranging from 1.7 kpc up to 86.7 kpc. We detected one absorber in the GBT survey from the foreground dwarf galaxy, GQ1042+0747, at an impact parameter of 1.7 kpc and another possible absorber in our follow-up Very Large Array (VLA) imaging of the nearby foreground galaxy UGC 7408. The line widths of both absorbers are narrow (FWHM of 3.6 and 4.8km s{sup -1}). The absorbers have sub-damped Ly{alpha} column densities, and most likely originate in the disk gas of the foreground galaxies. We also detected H I emission from three foreground galaxies including UGC 7408. Although our sample contains both blue and red galaxies, the two H I absorbers as well as the H I emissions are associated with blue galaxies. We discuss the physical conditions in the 21 cm absorbers and some drawbacks of the large GBT beam for this type of survey.

  13. A 21-cm line study of NGC 5963, an SC galaxy with a low-surface brightness disk

    NASA Astrophysics Data System (ADS)

    Bosma, A.; Athanassoula, E.; van der Hulst, J. M.

    1988-06-01

    Results are presented from a detailed 21-cm line study of the Sc galaxy NGC 5963. The extent of the H I emission is found to be roughly coincident with the optical image, the latter being of much lower surface brightness than normal for Sc galaxies. The velocity field shows little deviation from axial symmetry, and the derived rotation curve is typical for Sc galaxies about twice as bright as NGC 5963. A composite mass model is presented using the observed light distribution to calculate a rotation curve for the luminous part of the galaxy (assuming a constant M/L-ratio with radius); this calculated rotation curve is compared to the observed one to derive a rotation law for a dark halo. Comparison with Sc galaxies having normal disk surface brightnesses suggests that the halo in NGC 5963 is more concentrated than in normal Scs with similar rotation curves. The origin of the low surface brightness of the disk is discussed.

  14. Adding Context to James Webb Space Telescope Surveys with Current and Future 21 cm Radio Observations

    NASA Astrophysics Data System (ADS)

    Beardsley, A. P.; Morales, M. F.; Lidz, A.; Malloy, M.; Sutter, P. M.

    2015-02-01

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  15. Factor analysis as a tool for spectral line component separation 21cm emission in the direction of L1780

    NASA Technical Reports Server (NTRS)

    Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.

    1992-01-01

    The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.

  16. Expected constraints on models of the epoch of reionization with the variance and skewness in redshifted 21 cm-line fluctuations

    NASA Astrophysics Data System (ADS)

    Kubota, Kenji; Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-08-01

    The redshifted 21 cm-line signal from neutral hydrogen in the intergalactic medium (IGM) gives a direct probe of the epoch of reionization (EoR). In this paper, we investigate the potential of the variance and skewness of the probability distribution function of the 21 cm brightness temperature for constraining EoR models. These statistical quantities are simple, easy to calculate from the observed visibility, and thus suitable for the early exploration of the EoR with current telescopes such as the Murchison Widefield Array (MWA) and LOw Frequency ARray (LOFAR). We show, by performing Fisher analysis, that the variance and skewness at z = 7-9 are complementary to each other to constrain the EoR model parameters such as the minimum virial temperature of halos which host luminous objects, ionizing efficiency, and mean free path of ionizing photons in the IGM. Quantitatively, the constraining power highly depends on the quality of the foreground subtraction and calibration. We give a best case estimate of the constraints on the parameters, neglecting the systematics other than the thermal noise.

  17. Expected constraints on models of the epoch of reionization with the variance and skewness in redshifted 21 cm-line fluctuations

    NASA Astrophysics Data System (ADS)

    Kubota, Kenji; Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-06-01

    The redshifted 21 cm-line signal from neutral hydrogen in the intergalactic medium (IGM) gives a direct probe of the epoch of reionization (EoR). In this paper, we investigate the potential of the variance and skewness of the probability distribution function of the 21 cm brightness temperature for constraining EoR models. These statistical quantities are simple, easy to calculate from the observed visibility, and thus suitable for the early exploration of the EoR with current telescopes such as the Murchison Widefield Array (MWA) and LOw Frequency ARray (LOFAR). We show, by performing Fisher analysis, that the variance and skewness at z = 7-9 are complementary to each other to constrain the EoR model parameters such as the minimum virial temperature of halos which host luminous objects, ionizing efficiency, and mean free path of ionizing photons in the IGM. Quantitatively, the constraining power highly depends on the quality of the foreground subtraction and calibration. We give a best case estimate of the constraints on the parameters, neglecting the systematics other than the thermal noise.

  18. From Darkness to Light: Observing the First Stars and Galaxies with the Redshifted 21-cm Line using the Dark Ages Radio Explorer

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Lazio, Joseph; Bowman, Judd D.; Bradley, Richard F.; Datta, Abhirup; Furlanetto, Steven; Jones, Dayton L.; Kasper, Justin; Loeb, Abraham; Harker, Geraint

    2015-01-01

    The Dark Ages Radio Explorer (DARE) will reveal when the first stars, black holes, and galaxies formed in the early Universe and will define their characteristics, from the Dark Ages (z=35) to the Cosmic Dawn (z=11). This epoch of the Universe has never been directly observed. The DARE science instrument is composed of electrically-short bi-conical dipole antennas, a correlation receiver, and a digital spectrometer that measures the sky-averaged, low frequency (40-120 MHz) spectral features from the highly redshifted 21-cm HI line that surrounds the first objects. These observations are possible because DARE will orbit the Moon at an altitude of 125 km and takes data when it is above the radio-quiet, ionosphere-free, solar-shielded lunar farside. DARE executes the small-scale mission described in the NASA Astrophysics Roadmap (p. 83): 'mapping the Universe's hydrogen clouds using 21-cm radio wavelengths via lunar orbiter from the farside of the Moon'. This mission will address four key science questions: (1) When did the first stars form and what were their characteristics? (2) When did the first accreting black holes form and what was their characteristic mass? (3) When did reionization begin? (4) What surprises emerged from the Dark Ages (e.g., Dark Matter decay). DARE uniquely complements other major telescopes including Planck, JWST, and ALMA by bridging the gap between the smooth Universe seen via the CMB and rich web of galaxy structures seen with optical/IR/mm telescopes. Support for the development of this mission concept was provided by the Office of the Director, NASA Ames Research Center and by JPL/Caltech.

  19. 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Santos, Mario G.; Alonso, David; Bull, Philip; Camera, Stefano; Ferreira, Pedro G.

    2014-05-01

    A new generation of radio telescopes with unprecedented capabilities for astronomy and fundamental physics will be in operation over the next few years. With high sensitivities and large fields of view, they are ideal for cosmological applications. We discuss their uses for cosmology focusing on the observational technique of HI intensity mapping, in particular at low redshifts (z < 4). This novel observational window promises to bring new insights for cosmology, in particular on ultra-large scales and at a redshift range that can go beyond the dark energy domination epoch. In terms of standard constraints on the dark energy equation of state, telescopes such as Phase I of the SKA should be able to obtain constrains about as well as a future galaxy redshift surveys. Statistical techniques to deal with foregrounds and calibration issues, as well as possible systematics are also discussed.

  20. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ξ{sub ν}=μ{sub ν}/T{sub ν} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ξ{sub ν} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  1. 3.5 keV x rays as the "21 cm line" of dark atoms, and a link to light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Liu, Zuowei; Moore, Guy D.; Farzan, Yasaman; Xue, Wei

    2014-06-01

    The recently discovered 3.5 keV x-ray line from extragalactic sources may be evidence of dark matter scatterings or decays. We show that dark atoms can be the source of the emission, through their hyperfine transitions, which would be the analog of 21 cm radiation from a dark sector. We identify two families of dark atom models that match the x-ray observations and are consistent with other constraints. In the first, the hyperfine excited state is long lived compared to the age of the Universe, and the dark atom mass is relatively unconstrained; dark atoms could be strongly self-interacting in this case. In the second, the excited state is short lived, and viable models are parametrized by the value of the dark proton-to-electron mass ratio R: for R =102-104, the dark atom mass is predicted to be in the range 350-1300 GeV, with fine structure constant α'≅0.1-0.6. In either class of models, the dark photon is expected to be massive with mγ'˜1 MeV and decay into e+e-. Evidence for the model could come from direct detection of the dark atoms. In a natural extension of this framework, the dark photon could decay predominantly into invisible particles, for example, ˜0.5 eV sterile neutrinos, explaining the extra radiation degree of freedom recently suggested by data from BICEP2, while remaining compatible with big bang nucleosynthesis.

  2. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  3. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  4. Use of genetic algorithms in the optimization of patch antennas and patch antenna arrays for the observation of the 21cm H-I line

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew N.

    Radio Astronomy allows for astrophysicists and astronomers to observe parts of the Universe outside of the visible spectrum. Within radio astronomy, the 21cm wavelength is a very popular choice for observation. The 21cm wavelength emission/absorption corresponds to transitions of neutral hydrogen electrons in their orbitals and is a very useful wavelength to observe due to the prevalence of neutral hydrogen gas throughout the Universe. However, due to the physical size of wavelengths in the radio spectrum, radio telescopes tend to be very large and therefore very expensive. This thesis uses evolutionary optimization algorithms to optimize the much cheaper and rugged micro-patch antennas in a phased array. The evolutionary algorithm optimizes the geometry of the micro-patch antenna and 2-D phased array parameters that will culminate in a single radio telescope. The micropatch antenna parameters to be optimized are the geometry of top metal patch, dielectric thickness, dielectric constant, and feed point. The array factor parameters that are optimized are the relative weights for each array element and their relative periodic spacing.

  5. Constraining dark matter through 21-cm observations

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  6. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-04-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of <ν _{_TO}>≈ 5× 108 Hz, compared to <ν _{_TO}>≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  7. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  8. Detailed modelling of the 21-cm forest

    NASA Astrophysics Data System (ADS)

    Semelin, B.

    2016-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma-ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 h-1 Mpc box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Ly α self-shielding and shock heating all have an impact on the predicted values of the 21-cm optical depth of moderately overdense structures like filaments. A correct treatment of the peculiar velocities is also critical. Modelling these processes seems necessary for accurate predictions and can be done only at high enough resolution. As a result, based on our fiducial model, we estimate that LOFAR should be able to detect a few (strong) absorptions features in a frequency range of a few tens of MHz for a 20 mJy source located at z = 10, while the SKA would extract a large fraction of the absorption information for the same source.

  9. NIR Tully-Fisher in the Zone of Avoidance - II. 21 cm H I-line spectra of southern ZOA galaxies

    NASA Astrophysics Data System (ADS)

    Said, Khaled; Kraan-Korteweg, Renée C.; Staveley-Smith, Lister; Williams, Wendy L.; Jarrett, T. H.; Springob, Christopher M.

    2016-04-01

    High-accuracy H I profiles and linewidths are presented for inclined ((b/a)o < 0.5) spiral galaxies in the southern Zone of Avoidance (ZOA). These galaxies define a sample for use in the determinations of peculiar velocities using the near-infrared Tully-Fisher (TF) relation. The sample is based on the 394 H I-selected galaxies from the Parkes H I Zone of Avoidance survey (HIZOA). Follow-up narrow-band Parkes H I observations were obtained in 2010 and 2015 for 290 galaxies, while for the further 104 galaxies, sufficiently high signal-to-noise (S/N) spectra were available from the original HIZOA data. All 394 spectra are reduced and parametrized in the same systematic way. Five different types of linewidth measurements were derived, and a Bayesian mixture model was used to derive conversion equations between these five widths. Of the selected and measure galaxies, 342 have adequate signal to noise (S/N ≥ 5) for use in TF distance estimation. The average value of the S/N ratio of the sample is 14.7. We present the H I parameters for these galaxies. The sample will allow a more accurate determination of the flow field in the southern ZOA which bisects dynamically important large-scale structures such as Puppis, the Great Attractor, and the Local Void.

  10. Overcoming the Challenges of 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan

    The highly-redshifted 21cm line of neutral hydrogen is one of the most promising and unique probes of cosmology for the next decade and beyond. The past few years have seen a number of dedicated experiments targeting the 21cm signal from the Epoch of Reionization (EoR) begin operation, including the LOw-Frequency ARray (LOFAR), the Murchison Widefield Array (MWA), and the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). For these experiments to yield cosmological results, they require new calibration and analysis algorithms which will need to achieve unprecedented levels of separation between the 21cm signal and contaminating foreground emission. Although much work has been spent developing these algorithms over the past decade, their success or failure will ultimately depend on their ability to overcome the complications associated with real-world systems and their inherent complications. The work in this dissertation is closely tied to the late-stage commissioning and early observations with PAPER. The first two chapters focus on developing calibration algorithms to overcome unique problems arising in the PAPER system. To test these algorithms, I rely on not only simulations, but on commissioning observations, ultimately tying the success of the algorithm to its performance on actual, celestial data. The first algorithm works to correct gain-drifts in the PAPER system caused by the heating and cooling of various components (the amplifiers and above ground co-axial cables, in particular). It is shown that a simple measurement of the ambient temperature can remove ˜ 10% gain fluctuations in the observed brightness of calibrator sources. This result is highly encouraging for the ability of PAPER to remove a potentially dominant systematic in its power spectrum and cataloging measurements without resorting to a complicated system overhaul. The second new algorithm developed in this dissertation solves a major calibration challenge not

  11. Advancing precision cosmology with 21 cm intensity mapping

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi Wesley

    In this thesis we make progress toward establishing the observational method of 21 cm intensity mapping as a sensitive and efficient method for mapping the large-scale structure of the Universe. In Part I we undertake theoretical studies to better understand the potential of intensity mapping. This includes forecasting the ability of intensity mapping experiments to constrain alternative explanations to dark energy for the Universe's accelerated expansion. We also considered how 21 cm observations of the neutral gas in the early Universe (after recombination but before reionization) could be used to detect primordial gravity waves, thus providing a window into cosmological inflation. Finally we showed that scientifically interesting measurements could in principle be performed using intensity mapping in the near term, using existing telescopes in pilot surveys or prototypes for larger dedicated surveys. Part II describes observational efforts to perform some of the first measurements using 21 cm intensity mapping. We develop a general data analysis pipeline for analyzing intensity mapping data from single dish radio telescopes. We then apply the pipeline to observations using the Green Bank Telescope. By cross-correlating the intensity mapping survey with a traditional galaxy redshift survey we put a lower bound on the amplitude of the 21 cm signal. The auto-correlation provides an upper bound on the signal amplitude and we thus constrain the signal from both above and below. This pilot survey represents a pioneering effort in establishing 21 cm intensity mapping as a probe of the Universe.

  12. Distinctive 21-cm structures of the first stars, galaxies and quasars

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Li, Yuexing

    2014-12-01

    Observations of the redshifted 21-cm line with forthcoming radio telescopes promise to transform our understanding of the cosmic reionization. To unravel the underlying physical process, we investigate the 21-cm structures of three different ionizing sources - Population (Pop) III stars, the first galaxies and the first quasars - by using radiative transfer simulations that include both ionization of neutral hydrogen and resonant scattering of Lyα photons. We find that Pop III stars and quasars produce a smooth transition from an ionized and hot state to a neutral and cold state, because of their hard spectral energy distribution with abundant ionizing photons, in contrast to the sharp transition in galaxies. Furthermore, Lyα scattering plays a dominant role in producing the 21-cm signal because it determines the relation between hydrogen spin temperature and gas kinetic temperature. This effect, also called Wouthuysen-Field coupling, depends strongly on the ionizing source. It is strongest around galaxies, where the spin temperature is highly coupled to that of the gas, resulting in extended absorption troughs in the 21-cm brightness temperature. However, in the case of Pop III stars, the 21-cm signal shows both emission and absorption regions around a small H II bubble. For quasars, a large emission region in the 21-cm signal is produced, and the absorption region decreases as the size of the H II bubble becomes large due to the limited travelling time of photons. We predict that future surveys from large radio arrays, such as the Murchison Widefield Array, the Low Frequency Array and the Square Kilometre Array, might be able to detect the 21-cm signals of primordial galaxies and quasars, but possibly not those of Pop III stars, because of their small angular diameters.

  13. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  14. Modelling the cosmic neutral hydrogen from DLAs and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Choudhury, T. Roy; Refregier, Alexandre

    2016-05-01

    We review the analytical prescriptions in the literature to model the 21-cm (emission line surveys/intensity mapping experiments) and Damped Lyman-Alpha (DLA) observations of neutral hydrogen (H I) in the post-reionization universe. While these two sets of prescriptions have typically been applied separately for the two probes, we attempt to connect these approaches to explore the consequences for the distribution and evolution of H I across redshifts. We find that a physically motivated, 21-cm-based prescription, extended to account for the DLA observables provides a good fit to the majority of the available data, but cannot accommodate the recent measurement of the clustering of DLAs at z ˜ 2.3. This highlights a tension between the DLA bias and the 21-cm measurements, unless there is a very significant change in the nature of H I-bearing systems across redshifts 0-3. We discuss the implications of our findings for the characteristic host halo masses of the DLAs and the power spectrum of 21-cm intensity fluctuations.

  15. The 21 cm signature of a cosmic string loop

    SciTech Connect

    Pagano, Michael; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2012-05-01

    Cosmic string loops lead to nonlinear baryon overdensities at early times, even before the time which in the standard LCDM model corresponds to the time of reionization. These overdense structures lead to signals in 21 cm redshift surveys at large redshifts. In this paper, we calculate the amplitude and shape of the string loop-induced 21 cm brightness temperature. We find that a string loop leads to a roughly elliptical region in redshift space with extra 21 cm emission. The excess brightness temperature for strings with a tension close to the current upper bound can be as high as 1deg K for string loops generated at early cosmological times (times comparable to the time of equal matter and radiation) and observed at a redshift of z+1 = 30. The angular extent of these predicted 'bright spots' is x{sup '}. These signals should be detectable in upcoming high redshift 21 cm surveys. We also discuss the application of our results to global monopoles and primordial black holes.

  16. Mapmaking for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max; Liu, Adrian; Ewall-Wice, Aaron; Hewitt, Jacqueline N.; Morales, Miguel F.; Neben, Abraham R.; Parsons, Aaron R.; Zheng, Haoxuan

    2015-01-01

    In order to study the "Cosmic Dawn" and the Epoch of Reionization with 21 cm tomography, we need to statistically separate the cosmological signal from foregrounds known to be orders of magnitude brighter. Over the last few years, we have learned much about the role our telescopes play in creating a putatively foreground-free region called the "EoR window." In this work, we examine how an interferometer's effects can be taken into account in a way that allows for the rigorous estimation of 21 cm power spectra from interferometric maps while mitigating foreground contamination and thus increasing sensitivity. This requires a precise understanding of the statistical relationship between the maps we make and the underlying true sky. While some of these calculations would be computationally infeasible if performed exactly, we explore several well-controlled approximations that make mapmaking and the calculation of map statistics much faster, especially for compact and highly redundant interferometers designed specifically for 21 cm cosmology. We demonstrate the utility of these methods and the parametrized trade-offs between accuracy and speed using one such telescope, the upcoming Hydrogen Epoch of Reionization Array, as a case study.

  17. Intensity Mapping During Reionization: 21 cm and Cross-correlations

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration

    2016-01-01

    The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.

  18. The 21 cm signature of cosmic string wakes

    SciTech Connect

    Brandenberger, Robert H.; Danos, Rebecca J.; Hernández, Oscar F.; Holder, Gilbert P. E-mail: rjdanos@physics.mcgill.ca E-mail: holder@physics.mcgill.ca

    2010-12-01

    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at z{sub i}+1 = 10{sup 3}, then at a redshift of z+1 = 30 the critical value of the string tension μ is Gμ = 6 × 10{sup −7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.

  19. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  20. Detecting the 21 cm forest in the 21 cm power spectrum

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline

    2014-07-01

    We describe a new technique for constraining the radio-loud population of active galactic nuclei at high redshift by measuring the imprint of 21 cm spectral absorption features (the 21 cm forest) on the 21 cm power spectrum. Using semi-numerical simulations of the intergalactic medium and a semi-empirical source population, we show that the 21 cm forest dominates a distinctive region of k-space, k ≳ 0.5 Mpc- 1. By simulating foregrounds and noise for current and potential radio arrays, we find that a next-generation instrument with a collecting area of the order of ˜ 0.1 km2 (such as the Hydrogen Epoch of Reionization Array) may separately constrain the X-ray heating history at large spatial scales and radio-loud active galactic nuclei of the model we study at small ones. We extrapolate our detectability predictions for a single radio-loud active galactic nuclei population to arbitrary source scenarios by analytically relating the 21 cm forest power spectrum to the optical depth power spectrum and an integral over the radio luminosity function.

  1. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    SciTech Connect

    Brax, Philippe

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  2. The wedge bias in reionization 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Jensen, Hannes; Majumdar, Suman; Mellema, Garrelt; Lidz, Adam; Iliev, Ilian T.; Dixon, Keri L.

    2016-02-01

    A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k∥, k⊥ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this `wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (≲20 per cent).

  3. High redshift signatures in the 21 cm forest due to cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.

  4. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  5. Inferring the distances of fast radio bursts through associated 21-cm absorption

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Loeb, Abraham

    2016-07-01

    The distances of fast radio burst (FRB) sources are currently unknown. We show that the 21-cm absorption line of hydrogen can be used to infer the redshifts of FRB sources, and determine whether they are Galactic or extragalactic. We calculate a probability of ˜10 per cent for the host galaxy of an FRB to exhibit a 21-cm absorption feature of equivalent width ≳10 km s-1. Arecibo, along with several future radio observatories, should be capable of detecting such associated 21-cm absorption signals for strong bursts of ≳several Jy peak flux densities.

  6. Forecasted 21 cm constraints on compensated isocurvature perturbations

    SciTech Connect

    Gordon, Christopher; Pritchard, Jonathan R.

    2009-09-15

    A 'compensated' isocurvature perturbation consists of an overdensity (or underdensity) in the cold dark matter which is completely cancelled out by a corresponding underdensity (or overdensity) in the baryons. Such a configuration may be generated by a curvaton model of inflation if the cold dark matter is created before curvaton decay and the baryon number is created by the curvaton decay (or vice versa). Compensated isocurvature perturbations, at the level producible by the curvaton model, have no observable effect on cosmic microwave background anisotropies or on galaxy surveys. They can be detected through their effect on the distribution of neutral hydrogen between redshifts 30-300 using 21 cm absorption observations. However, to obtain a good signal to noise ratio, very large observing arrays are needed. We estimate that a fast Fourier transform telescope would need a total collecting area of about 20 square kilometers to detect a curvaton generated compensated isocurvature perturbation at more than 5 sigma significance.

  7. A record breaking sightline: Five DLA-strength 21 cm absorbers towards the quasar MG J0414+0534

    NASA Astrophysics Data System (ADS)

    Tanna, Anant; Whiting, Matthew; Curran, Steve

    2013-10-01

    High redshift absorption of the HI 21 cm transition is a powerful probe of star-forming gas and hence evolution of structure in the Universe at large lookback times. Typically a rare occurrence, we have detected an unprecedented number of 21 cm absorbers along a single sightline to the red QSO J0414+0534, suggesting a population of galaxies missed by optical surveys. Extreme RFI in the spectrum of the strongest absorber requires ATCA observations to fully parameterise the system and understand the nature of the absorbing gas. We aim to confirm whether this highly unique sight-line truly does have so many dense absorbers, and use these features toward calculating the cosmic acceleration.

  8. Gravitational-wave detection using redshifted 21-cm observations

    SciTech Connect

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-06-15

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  9. Looking for Dark Galaxies at 21-cm

    NASA Astrophysics Data System (ADS)

    Disney, mike; Lang, Robert. Hugh

    2012-10-01

    Blind HI surveys have so far failed to find the Dark and Low Surface Brightness Galaxies, and the Intergalactic Gas Clouds which were widely expected. It now appears very likely that this has been caused through incorrectly identifying many sources with clustered visible galaxies in the same groups. We aim to rectify this situation by using ATCA to find interferometric positions accurate to ~ 1 arc minute for a selection of the most unlikely identifications in the HIPASS catalogue and so either to find such objects, or conclusively rule out their existence.

  10. Global 21 cm signal experiments: A designer's guide

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Pritchard, Jonathan R.; Tegmark, Max; Loeb, Abraham

    2013-02-01

    The global (i.e., spatially averaged) spectrum of the redshifted 21 cm line has generated much experimental interest lately, thanks to its potential to be a direct probe of the epoch of reionization and the dark ages, during which the first luminous objects formed. Since the cosmological signal in question has a purely spectral signature, most experiments that have been built, designed, or proposed have essentially no angular sensitivity. This can be problematic because with only spectral information, the expected global 21 cm signal can be difficult to distinguish from foreground contaminants such as galactic synchrotron radiation, since both are spectrally smooth and the latter is many orders of magnitude brighter. In this paper, we establish a systematic mathematical framework for global signal data analysis. The framework removes foregrounds in an optimal manner, complementing spectra with angular information. We use our formalism to explore various experimental design trade-offs, and find that (1) with spectral-only methods, it is mathematically impossible to mitigate errors that arise from uncertainties in one’s foreground model; (2) foreground contamination can be significantly reduced for experiments with fine angular resolution; (3) most of the statistical significance in a positive detection during the dark ages comes from a characteristic high-redshift trough in the 21 cm brightness temperature; (4) measurement errors decrease more rapidly with integration time for instruments with fine angular resolution; and (5) better foreground models can help reduce errors, but once a modeling accuracy of a few percent is reached, significant improvements in accuracy will be required to further improve the measurements. We show that if observations and data analysis algorithms are optimized based on these findings, an instrument with a 5° wide beam can achieve highly significant detections (greater than 5σ) of even extended (high Δz) reionization scenarios

  11. Reconstructing the nature of the first cosmic sources from the anisotropic 21-cm signal.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Cohen, Aviad

    2015-03-13

    The redshifted 21-cm background is expected to be a powerful probe of the early Universe, carrying both cosmological and astrophysical information from a wide range of redshifts. In particular, the power spectrum of fluctuations in the 21-cm brightness temperature is anisotropic due to the line-of-sight velocity gradient, which in principle allows for a simple extraction of this information in the limit of linear fluctuations. However, recent numerical studies suggest that the 21-cm signal is actually rather complex, and its analysis likely depends on detailed model fitting. We present the first realistic simulation of the anisotropic 21-cm power spectrum over a wide period of early cosmic history. We show that on observable scales, the anisotropy is large and thus measurable at most redshifts, and its form tracks the evolution of 21-cm fluctuations as they are produced early on by Lyman-α radiation from stars, then switch to x-ray radiation from early heating sources, and finally to ionizing radiation from stars. In particular, we predict a redshift window during cosmic heating (at z∼15), when the anisotropy is small, during which the shape of the 21-cm power spectrum on large scales is determined directly by the average radial distribution of the flux from x-ray sources. This makes possible a model-independent reconstruction of the x-ray spectrum of the earliest sources of cosmic heating. PMID:25815921

  12. RESEARCH PAPER: Foreground removal of 21 cm fluctuation with multifrequency fitting

    NASA Astrophysics Data System (ADS)

    He, Li-Ping

    2009-06-01

    The 21 centimeter (21 cm) line emission from neutral hydrogen in the intergalactic medium (IGM) at high redshifts is strongly contaminated by foreground sources such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy, as well as emission from extragalactic radio sources, thus making its observation very complicated. However, the 21 cm signal can be recovered through its structure in frequency space, as the power spectrum of the foreground contamination is expected to be smooth over a wide band in frequency space while the 21 cm fluctuations vary significantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four frequencies 50, 100, 150 and 200MHz with an especially small channel width of 20 kHz. Our calculations show that this multifrequency fitting approach can effectively recover the 21 cm signal in the frequency range 100 ~ 200 MHz. However, this method doesn't work well around 50 MHz because of the low intensity of the 21 cm signal at this frequency. We also show that the fluctuation of detector noise can be suppressed to a very low level by taking long integration times, which means that we can reach a sensitivity of approx10 mK at 150 MHz with 40 antennas in 120 hours of observations.

  13. Reconstructing the Nature of the First Cosmic Sources from the Anisotropic 21-cm Signal

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Barkana, Rennan; Cohen, Aviad

    2015-03-01

    The redshifted 21-cm background is expected to be a powerful probe of the early Universe, carrying both cosmological and astrophysical information from a wide range of redshifts. In particular, the power spectrum of fluctuations in the 21-cm brightness temperature is anisotropic due to the line-of-sight velocity gradient, which in principle allows for a simple extraction of this information in the limit of linear fluctuations. However, recent numerical studies suggest that the 21-cm signal is actually rather complex, and its analysis likely depends on detailed model fitting. We present the first realistic simulation of the anisotropic 21-cm power spectrum over a wide period of early cosmic history. We show that on observable scales, the anisotropy is large and thus measurable at most redshifts, and its form tracks the evolution of 21-cm fluctuations as they are produced early on by Lyman-α radiation from stars, then switch to x-ray radiation from early heating sources, and finally to ionizing radiation from stars. In particular, we predict a redshift window during cosmic heating (at z ˜15 ), when the anisotropy is small, during which the shape of the 21-cm power spectrum on large scales is determined directly by the average radial distribution of the flux from x-ray sources. This makes possible a model-independent reconstruction of the x-ray spectrum of the earliest sources of cosmic heating.

  14. Enhanced Detectability of Pre-reionization 21 cm Structure

    NASA Astrophysics Data System (ADS)

    Alvarez, Marcelo A.; Pen, Ue-Li; Chang, Tzu-Ching

    2010-11-01

    Before the universe was reionized, it was likely that the spin temperature of intergalactic hydrogen was decoupled from the cosmic microwave background (CMB) by UV radiation from the first stars through the Wouthuysen-Field effect. If the intergalactic medium (IGM) had not yet been heated above the CMB temperature by that time, then the gas would appear in absorption relative to the CMB. Large, rare sources of X-rays could inject sufficient heat into the neutral IGM, so that δTb >0 at comoving distances of tens to hundreds of Mpc, resulting in large 21 cm fluctuations with δTb ~= 250 mK on arcminute to degree angular scales, an order of magnitude larger in amplitude than that caused by ionized bubbles during reionization, δTb ~= 25 mK. This signal could therefore be easier to detect and probe higher redshifts than that due to patchy reionization. For the case in which the first objects to heat the IGM are QSOs hosting 107 M sun black holes with an abundance exceeding ~1 Gpc-3 at z ~ 15, observations with either the Arecibo Observatory or the Five Hundred Meter Aperture Spherical Telescope could detect and image their fluctuations at greater than 5σ significance in about a month of dedicated survey time. Additionally, existing facilities such as MWA and LOFAR could detect the statistical fluctuations arising from a population of 105 M sun black holes with an abundance of ~104 Gpc-3 at z ~= 10-12.

  15. Cross-correlation of the cosmic 21-cm signal and Lyman α emitters during reionization

    NASA Astrophysics Data System (ADS)

    Sobacchi, Emanuele; Mesinger, Andrei; Greig, Bradley

    2016-07-01

    Interferometry of the cosmic 21-cm signal is set to revolutionize our understanding of the Epoch of Reionization (EoR), eventually providing 3D maps of the early Universe. Initial detections however will be low signal to noise, limited by systematics. To confirm a putative 21-cm detection, and check the accuracy of 21-cm data analysis pipelines, it would be very useful to cross-correlate against a genuine cosmological signal. The most promising cosmological signals are wide-field maps of Lyman α emitting galaxies (LAEs), expected from the Subaru Hyper-Suprime Cam ultradeep field (UDF). Here we present estimates of the correlation between LAE maps at z ˜ 7 and the 21-cm signal observed by both the Low Frequency Array (LOFAR) and the planned Square Kilometre Array Phase 1 (SKA1). We adopt a systematic approach, varying both: (i) the prescription of assigning LAEs to host haloes; and (ii) the large-scale structure of neutral and ionized regions (i.e. EoR morphology). We find that the LAE-21cm cross-correlation is insensitive to (i), thus making it a robust probe of the EoR. A 1000 h observation with LOFAR would be sufficient to discriminate at ≳ 1σ a fully ionized Universe from one with a mean neutral fraction of bar{x}_{H I}≈ 0.50, using the LAE-21 cm cross-correlation function on scales of R ≈ 3-10 Mpc. Unlike LOFAR, whose detection of the LAE-21 cm cross-correlation is limited by noise, SKA1 is mostly limited by ignorance of the EoR morphology. However, the planned 100 h wide-field SKA1-Low survey will be sufficient to discriminate an ionized Universe from one with bar{x}_{H I}=0.25, even with maximally pessimistic assumptions.

  16. Precise measurements of primordial power spectrum with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2013-10-01

    We discuss the issue of how precisely we can measure the primordial power spectrum by using future observations of 21 cm fluctuations and cosmic microwave background (CMB). For this purpose, we investigate projected constraints on the quantities characterizing primordial power spectrum: the spectral index n{sub s}, its running α{sub s} and even its higher order running β{sub s}. We show that future 21 cm observations in combinations with CMB would accurately measure above mentioned observables of primordial power spectrum. We also discuss its implications to some explicit inflationary models.

  17. Reionization on Large Scales. IV. Predictions for the 21 cm Signal Incorporating the Light Cone Effect

    NASA Astrophysics Data System (ADS)

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the "light cone" effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h -1). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  18. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    SciTech Connect

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  19. The rise of the first stars: Supersonic streaming, radiative feedback, and 21-cm cosmology

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan

    2016-07-01

    Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising method for observing the epoch of the first stars is to use the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also beginning and promise exciting discoveries. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from the astrophysics of the early galaxies that formed during cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced feedback that radically affected both the intergalactic medium and the character of newly-forming stars. Lyman- α radiation from stars generated a strong 21-cm absorption signal, observation of which is currently the only feasible method of detecting the dominant population of galaxies at redshifts as early as z ∼ 25. Another major player is cosmic heating; if due to soft X-rays, then it occurred fairly early (z ∼ 15) and produced the strongest pre-reionization signal, while if it is due to hard X-rays, as now seems more likely, then it occurred later and may have dramatically affected the 21-cm sky even during reionization. In terms of analysis, much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations, a rich dataset that can be used to reconstruct the astrophysical information of greatest interest. This does not, however, diminish the importance of finding additional probes that are complementary or amenable to a more model-independent analysis. Examples include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. Another striking feature may result from a recently recognized effect of a supersonic relative velocity

  20. New H I 21-cm absorbers at low and intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Zwaan, M. A.; Liske, J.; Péroux, C.; Murphy, M. T.; Bouché, N.; Curran, S. J.; Biggs, A. D.

    2015-10-01

    We present the results of a survey for intervening H I 21-cm absorbers at intermediate and low redshift (0 < z < 1.2). For our total sample of 24 systems, we obtained high-quality data for 17 systems, the other seven being severely affected by radio frequency interference (RFI). Five of our targets are low-redshift (z < 0.17) optical galaxies with small impact parameters (<20 kpc) towards radio-bright background sources. Two of these were detected in 21-cm absorption, showing narrow, high optical depth absorption profiles, the narrowest having a velocity dispersion of only 1.5 km s- 1, which puts an upper limit on the kinetic temperature of Tk < 270 K. Combining our observations with results from the literature, we measure a weak anticorrelation between impact parameter and integral optical depth in local (z < 0.5) 21-cm absorbers. Of 11 Ca II and Mg II systems searched, two were detected in 21-cm absorption, and six were affected by RFI to a level that precludes a detection. For these two systems at z ˜ 0.6, we measure spin temperatures of Ts = (65 ± 17) K and Ts > 180 K. A subset of our systems was also searched for OH absorption, but no detections were made.

  1. An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B

    2010-07-22

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma. PMID:20651685

  2. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; Zwart, J. T. L.; Price, D.; Greenhill, L. J.; Mesinger, A.; Dowell, J.; Eftekhari, T.; Ellingson, S. W.; Kocz, J.; Schinzel, F.

    2016-09-01

    The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work, we present a fully Bayesian method, HIBAYES, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible) Gaussian model of the 21-cm emission from the Cosmic Dawn epoch (15 ≲ z ≲ 30), parametrized by an amplitude A_{H I}, a frequency peak ν _{H I} and a width σ _{H I}, can be extracted even in the presence of a structured foreground frequency spectrum (parametrized as a seventh-order polynomial), provided sufficient signal-to-noise (400 h of observation with a single dipole). We apply our method to an early, 19-min-long observation from the Large aperture Experiment to detect the Dark Ages, constraining the 21-cm signal amplitude and width to be -890 < A_{H I} < 0 mK and σ _{H I} > 6.5 MHz (corresponding to Δz > 1.9 at redshift z ≃ 20) respectively at the 95-per cent confidence level in the range 13.2 < z < 27.4 (100 > ν > 50 MHz).

  3. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r˜10-9—far smaller than those currently accessible—to be probed.

  4. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  5. Mapping Cosmic Structure Using 21-cm Hydrogen Signal at Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; GBT 21-cm Intensity Mapping Group

    2011-05-01

    We are using the Green Bank Telescope to make 21-cm intensity maps of cosmic structure in a 0.15 Gpc^3 box at redshift of z 1. The intensity mapping technique combines the flux from many galaxies in each pixel, allowing much greater mapping speed than the traditional redshift survey. Measurement is being made at z 1 to take advantage of a window in frequency around 700 MHz where terrestrial radio frequency interference (RFI) is currently at a minimum. This minimum is due to a reallocation of this frequency band from analog television to wide area wireless internet and public service usage. We will report progress of our attempt to detect autocorrelation of the 21-cm signal. The ultimate goal of this mapping is to use Baryon Acoustic Oscillations to provide more precise constraints to dark energy models.

  6. Cosmologically probing ultra-light particle dark matter using 21 cm signals

    SciTech Connect

    Kadota, Kenji; Mao, Yi; Silk, Joseph; Ichiki, Kiyomoto E-mail: mao@iap.fr E-mail: j.silk1@physics.ox.ac.uk

    2014-06-01

    There can arise ubiquitous ultra-light scalar fields in the Universe, such as the pseudo-Goldstone bosons from the spontaneous breaking of an approximate symmetry, which can make a partial contribution to the dark matter and affect the large scale structure of the Universe. While the properties of those ultra-light dark matter are heavily model dependent and can vary in a wide range, we develop a model-independent analysis to forecast the constraints on their mass and abundance using futuristic but realistic 21 cm observables as well as CMB fluctuations, including CMB lensing measurements. Avoiding the highly nonlinear regime, the 21 cm emission line spectra are most sensitive to the ultra-light dark matter with mass m ∼ 10{sup −26} eV for which the precision attainable on mass and abundance bounds can be of order of a few percent.

  7. Probing patchy reionization through τ-21 cm correlation statistics

    SciTech Connect

    Meerburg, P. Daniel; Spergel, David N.; Dvorkin, Cora E-mail: dns@astro.princeton.edu

    2013-12-20

    We consider the cross-correlation between free electrons and neutral hydrogen during the epoch of reionization (EoR). The free electrons are traced by the optical depth to reionization τ, while the neutral hydrogen can be observed through 21 cm photon emission. As expected, this correlation is sensitive to the detailed physics of reionization. Foremost, if reionization occurs through the merger of relatively large halos hosting an ionizing source, the free electrons and neutral hydrogen are anticorrelated for most of the reionization history. A positive contribution to the correlation can occur when the halos that can form an ionizing source are small. A measurement of this sign change in the cross-correlation could help disentangle the bias and the ionization history. We estimate the signal-to-noise ratio of the cross-correlation using the estimator for inhomogeneous reionization τ-hat {sub ℓm} proposed by Dvorkin and Smith. We find that with upcoming radio interferometers and cosmic microwave background (CMB) experiments, the cross-correlation is measurable going up to multipoles ℓ ∼ 1000. We also derive parameter constraints and conclude that, despite the foregrounds, the cross-correlation provides a complementary measurement of the EoR parameters to the 21 cm and CMB polarization autocorrelations expected to be observed in the coming decade.

  8. Measuring the Cosmological 21 cm Monopole with an Interferometer

    NASA Astrophysics Data System (ADS)

    Presley, Morgan E.; Liu, Adrian; Parsons, Aaron R.

    2015-08-01

    A measurement of the cosmological 21 {cm} signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 {cm} brightness temperature as a function of redshift (the “global signal”). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (FWHM of ∼ 40^\\circ ) can compete with typical single-element experiments in their ability to constrain phenomenological parameters pertaining to reionization and the pre-reionization era. We also provide a general data analysis framework for extracting the global signal from interferometric measurements (with analysis of single-element experiments arising as a special case) and discuss trade-offs with various data analysis choices. Given that interferometric measurements are able to avoid a number of systematics inherent in single-element experiments, our results suggest that interferometry ought to be explored as a complementary way to probe the global signal.

  9. The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan; Loeb, Abraham

    2008-03-01

    A new generation of radio telescopes are currently being built with the goal of tracing the cosmic distribution of atomic hydrogen at redshifts 6-15 through its 21-cm line. The observations will probe the large-scale brightness fluctuations sourced by ionization fluctuations during cosmic reionization. Since detailed maps will be difficult to extract due to noise and foreground emission, efforts have focused on a statistical detection of the 21-cm fluctuations. During cosmic reionization, these fluctuations are highly non-Gaussian and thus more information can be extracted than just the one-dimensional function that is usually considered, i.e. the correlation function. We calculate a two-dimensional function that if measured observationally would allow a more thorough investigation of the properties of the underlying ionizing sources. This function is the probability distribution function (PDF) of the difference in the 21-cm brightness temperature between two points, as a function of the separation between the points. While the standard correlation function is determined by a complicated mixture of contributions from density and ionization fluctuations, we show that the difference PDF holds the key to separately measuring the statistical properties of the ionized regions.

  10. Statistics of 21-cm fluctuations in cosmic reionization simulations: PDFs and difference PDFs

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera; Barkana, Rennan

    2010-11-01

    In the coming decade, low-frequency radio arrays will begin to probe the epoch of reionization via the redshifted 21-cm hydrogen line. Successful interpretation of these observations will require effective statistical techniques for analysing the data. Due to the difficulty of these measurements, it is important to develop techniques beyond the standard power-spectrum analysis in order to offer independent confirmation of the reionization history, probe different aspects of the topology of reionization and have different systematic errors. In order to assess the promise of probability distribution functions (PDFs) as statistical analysis tools in 21-cm cosmology, we first measure the 21-cm brightness temperature (one-point) PDFs in six different reionization simulations. We then parametrize their most distinct features by fitting them to a simple model. Using the same simulations, we also present the first measurements of difference PDFs in simulations of reionization. We find that while these statistics probe the properties of the ionizing sources, they are relatively independent of small-scale, subgrid astrophysics. We discuss the additional information that the difference PDF can provide on top of the power spectrum and the one-point PDF.

  11. HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

    NASA Astrophysics Data System (ADS)

    Zwart, Jonathan T. L.; Price, Daniel; Bernardi, Gianni

    2016-06-01

    HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

  12. Developing an Interferometer to Measure the Global 21cm Monopole

    NASA Astrophysics Data System (ADS)

    Domagalski, Rachel; Patra, Nipanjana; Day, Cherie; Parsons, Aaron

    2016-01-01

    When radio interferometers observe over very small fields of view, they cannot measure the monopole mode of the sky. However, when the field of view extends to a large region of the sky, it becomes possible to use an measure the monopole with an interferometer. We are currently developing such an interferometer at UC Berkeley's Radio Astronomy Lab (RAL) with the goal of measuring the early stages of the Epoch of Reionization by probing the sky for the global 21cm signal between 50 and 100 MHz, and we have deployed a preliminary version of this experiment in Colorado. We present the current status of the interferometer, the future development plans, and some measurements taken in July of 2015. These measurements demonstrate performance of the analog signal chain of the interferometer as well as the RFI environment of the deployment site in Colorado.

  13. 21 cm Power Spectrum Upper Limits from PAPER-64

    NASA Astrophysics Data System (ADS)

    Shiraz Ali, Zaki; Parsons, Aaron; Pober, Jonathan; Team PAPER

    2016-01-01

    We present power spectrum results from the 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-64). We find an upper limit of Δ2≤(22.4 mK)2 over the range 0.1521 cm power spectrum constraints to date. In addition, we use these results to place lower limits on the spin temperature at a redshift of 8.4. We find that the spin temperature is at least 10K for a neutral fraction between 15% and 80%. This further suggests that there was heating in the early universe through various sources such as x-ray binaries.

  14. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  15. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  16. Cosmic (Super)String Constraints from 21 cm Radiation.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2008-03-01

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z > or =30. Future experiments can exploit this effect to constrain the cosmic string tension G mu and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of approximately 1 km2 will not provide any useful constraints, future experiments with a collecting area of 10(4)-10(6) km2 covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G mu > or = 10(-10)-10(-12) (superstring/phase transition mass scale >10(13) GeV). PMID:18352691

  17. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  18. Light-cone anisotropy in the 21 cm signal from the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Zawada, Karolina; Semelin, Benoît; Vonlanthen, Patrick; Baek, Sunghye; Revaz, Yves

    2014-04-01

    Using a suite of detailed numerical simulations, we estimate the level of anisotropy generated by the time evolution along the light cone of the 21 cm signal from the epoch of reionization. Our simulations include the physics necessary to model the signal during both the late emission regime and the early absorption regime, namely X-ray and Lyman band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight. We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light-cone anisotropy is visible only on large scales (100 comoving Mpc). However, the detailed behaviour is different. We find that, at three different epochs, the amplitudes of the correlations along and perpendicular to the line of sight differ from each other, indicating anisotropy. We show that these three epochs are associated with three events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman α coupling in regions around the sources. We find that a 20 × 20 deg2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 Mpc (comoving) scale, we show that the light-cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the Square Kilometre Array, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the Low-Frequency Array for radio astronomy, it is likely that only one anisotropy episode (ionized bubble overlap) will fall in the observing frequency range. This episode will be detectable only if sample

  19. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  20. H I 21 cm ABSORPTION AND UNIFIED SCHEMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2010-03-20

    In a recent study of z >= 0.1 active galactic nuclei (AGNs), we found that 21 cm absorption has never been detected in objects in which the ultraviolet luminosity exceeds L{sub UV} {approx} 10{sup 23} W Hz{sup -1}. In this paper, we further explore the implications that this has for the currently popular consensus that it is the orientation of the circumnuclear obscuring torus, invoked by unified schemes of AGNs, which determines whether absorption is present along our sight line. The fact that at L{sub UV} {approx}< 10{sup 23} W Hz{sup -1}, both type-1 and type-2 objects exhibit a 50% probability of detection, suggests that this is not the case and that the bias against detection of H I absorption in type-1 objects is due purely to the inclusion of the L{sub UV} {approx}> 10{sup 23} W Hz{sup -1} sources. Similarly, the ultraviolet luminosities can also explain why the presence of 21 cm absorption shows a preference for radio galaxies over quasars and the higher detection rate in compact sources, such as compact steep spectrum or gigahertz peaked spectrum sources, may also be biased by the inclusion of high-luminosity sources. Being comprised of all 21 cm searched sources at z >= 0.1, this is a necessarily heterogeneous sample, the constituents of which have been observed by various instruments. By this same token, however, the dependence on the UV luminosity may be an all encompassing effect, superseding the unified schemes model, although there is the possibility that the exclusive 21 cm non-detections at high UV luminosities could be caused by a bias toward gas-poor ellipticals. Additionally, the high UV fluxes could be sufficiently exciting/ionizing the H I above 21 cm detection thresholds, although the extent to which this is related to the neutral gas deficit in ellipticals is currently unclear. Examining the moderate UV luminosity (L{sub UV} {approx}< 10{sup 23} W Hz{sup -1}) sample further, from the profile widths and offsets from the systemic velocities

  1. A 21-cm Neutral Hydrogen Study of Arp 213

    NASA Astrophysics Data System (ADS)

    Wells, S. J.; Simpson, C. E.

    2002-12-01

    We present 21-cm VLA observations of the Sab galaxy Arp 213. An extended HI disk (approx. 2.3 RHolm) was detected, with a bifurcated or extra arm on the west featuring a large HI knot. Based on the kinematics, this knot does not appear to be a dwarf or small companion, but a local enhancement in the arm. Although no unusual kinematics appear in the region of the odd radial dust lanes that attracted Arp's attention to this galaxy, there is a very low level HI cloud just north of the galaxy at the same position angle. The total HI mass for the galaxy was measured to be 2.9 x 109 Msun. Arp 213 has a high rotational velocity (300 km s-1), and a flat rotation curve that rises in the outermost regions. The calculated dynamical mass for the system is quite high at 4.4 x 1011 Msun. The rotation curve and dynamic mass indicate the presence of a large dark matter halo. Further optical data is needed to confirm its mass. This work was supported by NSF grant AST-0097616 and the SARA Consortium REU program.

  2. Distinctive rings in the 21 cm signal of the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Vonlanthen, P.; Semelin, B.; Baek, S.; Revaz, Y.

    2011-08-01

    Context. It is predicted that sources emitting UV radiation in the Lyman band during the epoch of reionization show a series of discontinuities in their Lyα flux radial profile as a consequence of the thickness of the Lyman-series lines in the primeval intergalactic medium. Through unsaturated Wouthuysen-Field coupling, these spherical discontinuities are also present in the 21 cm emission of the neutral IGM. Aims: We study the effects that these discontinuities have on the differential brightness temperature of the 21 cm signal of neutral hydrogen in a realistic setting that includes all other sources of fluctuations. We focus on the early phases of the epoch of reionization, and we address the question of the detectability by the planned Square Kilometre Array (SKA). Such a detection would be of great interest because these structures could provide an unambiguous diagnostic tool for the cosmological origin of the signal that remains after the foreground cleaning procedure. These structures could also be used as a new type of standard rulers. Methods: We determine the differential brightness temperature of the 21 cm signal in the presence of inhomogeneous Wouthuysen-Field effect using simulations that include (hydro)dynamics as well as ionizing and Lyman lines 3D radiative transfer with the code LICORICE. We include radiative transfer for the higher-order Lyman-series lines and consider also the effect of backreaction from recoils and spin diffusivity on the Lyα resonance. Results: We find that the Lyman horizons are difficult to indentify using the power spectrum of the 21 cm signal but are clearly visible in the maps and radial profiles around the first sources of our simulations, if only for a limited time interval, typically Δz ≈ 2 at z ~ 13. Stacking the profiles of the different sources of the simulation at a given redshift results in extending this interval to Δz ≈ 4. When we take into account the implementation and design planned for the SKA

  3. Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal

    SciTech Connect

    Pritchard, Jonathan R.; Loeb, Abraham

    2010-07-15

    Observations of the frequency dependence of the global brightness temperature of the redshifted 21 cm line of neutral hydrogen may be possible with single dipole experiments. In this paper, we develop a Fisher matrix formalism for calculating the sensitivity of such instruments to the 21 cm signal from reionization and the dark ages. We show that rapid reionization histories with duration {Delta}z < or approx. 2 can be constrained, provided that local foregrounds can be well modeled by low order polynomials. It is then shown that observations in the range {nu}=50-100 MHz can feasibly constrain the Ly{alpha} and x-ray emissivity of the first stars forming at z{approx}15-25, provided that systematic temperature residuals can be controlled to less than 1 mK. Finally, we demonstrate the difficulty of detecting the 21 cm signal from the dark ages before star formation.

  4. A Low-cost 21 cm Horn-antenna Radio Telescope for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Patel, Rishi N; Kimberk, Robert S; Test, John H; Krolewski, Alex; Ryan, James; Karkare, Kirit S; Kovac, John M; Dame, Thomas M.

    2014-06-01

    Small radio telescopes (1-3m) for observations of the 21 cm hydrogen line are widely used for education and outreach. A pyramidal horn was used by Ewen & Purcell (1951) to first detect the 21cm line at Harvard. Such a horn is simple to design and build, compared to a parabolic antenna which is usually purchased ready-made. Here we present a design of a horn antenna radio telescope that can be built entirely by students, using simple components costing less than $300. The horn has an aperture of 75 cm along the H-plane, 59 cm along the E-plane, and gain of about 20 dB. The receiver system consists of low noise amplifiers, band-pass filters and a software-defined-radio USB receiver that provides digitized samples for spectral processing in a computer. Starting from construction of the horn antenna, and ending with the measurement of the Galactic rotation curve, took about 6 weeks, as part of an undergraduate course at Harvard University. The project can also grow towards building a two-element interferometer for follow-up studies.

  5. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    SciTech Connect

    Sekiguchi, Toyokazu; Sugiyama, Naoshi; Tashiro, Hiroyuki; Silk, Joseph E-mail: hiroyuki.tashiro@asu.edu E-mail: naoshi@nagoya-u.jp

    2014-03-01

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2∼21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum.

  6. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-08-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  7. Primordial non-gaussianity from the bispectrum of 21-cm fluctuations in the dark ages

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2015-10-01

    A measurement of primordial non-Gaussianity will be of paramount importance to distinguish between different models of inflation. Cosmic microwave background (CMB) anisotropy observations have set unprecedented bounds on the non-Gaussianity parameter fNL but the interesting regime fNL≲1 is beyond their reach. Brightness-temperature fluctuations in the 21-cm line during the dark ages (z ˜30 - 100 ) are a promising successor to CMB studies, giving access to a much larger number of modes. They are, however, intrinsically nonlinear, which results in secondary non-gaussianities orders of magnitude larger than the sought-after primordial signal. In this paper we carefully compute the primary and secondary bispectra of 21-cm fluctuations on small scales. We use the flat-sky formalism, which greatly simplifies the analysis, while still being very accurate on small angular scales. We show that the secondary bispectrum is highly degenerate with the primordial one, and argue that even percent-level uncertainties in the amplitude of the former lead to a bias of order Δ fNL˜10 . To tackle this problem we carry out a detailed Fisher analysis, marginalizing over the amplitudes of a few smooth redshift-dependent coefficients characterizing the secondary bispectrum. We find that the signal-to-noise ratio for a single redshift slice is reduced by a factor of ˜5 in comparison to a case without secondary non-gaussianities. Setting aside foreground contamination, we forecast that a cosmic-variance-limited experiment observing 21-cm fluctuations over 30 ≤z ≤100 with a 0.1-MHz bandwidth and 0.1 arc min angular resolution could achieve a sensitivity of order fNLlocal˜0.03 , fNLequil˜0.04 and fNLortho˜0.03 .

  8. The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Greig, Bradley; Sobacchi, Emanuele

    2016-07-01

    We introduce the Evolution Of 21 cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21 cm simulations. 21 cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Progress will depend on sophisticated data analysis pipelines, initially tested on large-scale mock observations. Here we present the 2016 EOS release: 10243, 1.6 Gpc, 21 cm simulations of the CD and EoR, calibrated to the Planck 2015 measurements. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photoheating suppression of star formation in small-mass galaxies. Leaving the efficiency of supernovae feedback as a free parameter, we present two runs which bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 ≲ Δzre ≲ 5.7. The large-scale 21 cm power during the advanced EoR stages can be different by up to a factor of ˜10, depending on the model. This difference has a comparable contribution from (i) the typical bias of sources and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also present detectability forecasts. With a 1000 h integration, Hydrogen Epoch of Reionization Array and (Square Kilometre Array phase 1) SKA1 should achieve a signal-to-noise of ˜few to hundreds throughout the EoR/CD. We caution that our ability to clean foregrounds determines the relative performance of narrow/deep versus wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.

  9. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively. PMID:25105607

  10. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    SciTech Connect

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R.; Banavar, N.; Bandura, K.; Blake, C.; Chang, T.-C.; Liao, Y.-W.; Chen, X.; Li, Y.-C.; Natarajan, A.; Peterson, J. B.; Voytek, T. C.

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  11. A fast method for power spectrum and foreground analysis for 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Liu, Adrian; Tegmark, Max

    2013-02-01

    We develop and demonstrate an acceleration of the Liu and Tegmark quadratic estimator formalism for inverse variance foreground subtraction and power spectrum estimation in 21 cm tomography from O(N3) to O(Nlog⁡N), where N is the number of voxels of data. This technique makes feasible the megavoxel scale analysis necessary for current and upcoming radio interferometers by making only moderately restrictive assumptions about foreground models and survey geometry. We exploit iterative and Monte Carlo techniques and the symmetries of the foreground covariance matrices to quickly estimate the 21 cm brightness temperature power spectrum, P(k∥,k⊥), the Fisher information matrix, the error bars, the window functions, and the bias. We also extend the Liu and Tegmark foreground model to include bright point sources with known positions in a way that scales as O[(Nlog⁡N)×(Npointsources)]≤O(N5/3). As a first application of our method, we forecast error bars and window functions for the upcoming 128-tile deployment of the Murchinson Widefield Array, showing that 1000 hours of observation should prove sufficiently sensitive to detect the power spectrum signal from the Epoch of Reionization.

  12. Probing primordial non-Gaussianity: the 3D Bispectrum of Ly-α forest and the redshifted 21-cm signal from the post reionization epoch

    SciTech Connect

    Sarkar, Tapomoy Guha; Hazra, Dhiraj Kumar E-mail: dhiraj@apctp.org

    2013-04-01

    We explore possibility of using the three dimensional bispectra of the Ly-α forest and the redshifted 21-cm signal from the post-reionization epoch to constrain primordial non-Gaussianity. Both these fields map out the large scale distribution of neutral hydrogen and maybe treated as tracers of the underlying dark matter field. We first present the general formalism for the auto and cross bispectrum of two arbitrary three dimensional biased tracers and then apply it to the specific case. We have modeled the 3D Ly-α transmitted flux field as a continuous tracer sampled along 1D skewers which corresponds to quasars sight lines. For the post reionization 21-cm signal we have used a linear bias model. We use a Fisher matrix analysis to present the first prediction for bounds on f{sub NL} and the other bias parameters using the three dimensional 21-cm bispectrum and other cross bispectra. The bounds on f{sub NL} depend on the survey volume, and the various observational noises. We have considered a BOSS like Ly-α survey where the average number density of quasars n-bar = 10{sup −3}Mpc{sup −2} and the spectra are measured at a 2-σ level. For the 21-cm signal we have considered a 4000 hrs observation with a futuristic SKA like radio array. We find that bounds on f{sub NL} obtained in our analysis (6 ≤ Δf{sub NL} ≤ 65) is competitive with CMBR and galaxy surveys and may prove to be an important alternative approach towards constraining primordial physics using future data sets. Further, we have presented a hierarchy of power of the bispectrum-estimators towards detecting the f{sub NL}. Given the quality of the data sets, one may use this method to optimally choose the right estimator and thereby provide better constraints on f{sub NL}. We also find that by combining the various cross-bispectrum estimators it is possible to constrain f{sub NL} at a level Δf{sub NL} ∼ 4.7. For the equilateral and orthogonal template we obtain Δf{sub NL}{sup equ} ∼ 17 and

  13. Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case

    NASA Astrophysics Data System (ADS)

    Harker, Geraint; Zaroubi, Saleem; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Ciardi, Benedetta; Jelić, Vibor; Koopmans, Leon V. E.; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, André; Pandey, V. N.; Pawlik, Andreas H.; Schaye, Joop; Thomas, Rajat M.; Yatawatta, Sarod

    2010-07-01

    One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 h of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different observational strategies which compromise between depth of observation, sky coverage and frequency coverage. A plan in which lower frequencies receive a larger fraction of the time appears to be promising. We also study the nature of the bias which foreground fitting errors induce on the inferred power spectrum and discuss how to reduce and correct for this bias. The angular and line-of-sight power spectra have different merits in this respect, and we suggest considering them separately in the analysis of LOFAR data.

  14. Violation of statistical isotropy and homogeneity in the 21-cm power spectrum

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Muñoz, Julian B.; Kamionkowski, Marc; Raccanelli, Alvise

    2016-05-01

    Most inflationary models predict primordial perturbations to be statistically isotropic and homogeneous. Cosmic microwave background (CMB) observations, however, indicate a possible departure from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alternative models of inflation, beyond the simplest single-field slow-roll models, can generate a small power asymmetry, consistent with these observations. Observations of clustering of quasars show, however, agreement with statistical isotropy at much smaller angular scales. Here, we propose to use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our results show that the 21-cm line power spectrum will enable access to information at very small scales and at different redshift slices, thus improving upon the current CMB constraints by ˜2 orders of magnitude for a dipolar asymmetry and by ˜1 - 3 orders of magnitude for a quadrupolar asymmetry case.

  15. Effects of the sources of reionization on 21-cm redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Majumdar, Suman; Jensen, Hannes; Mellema, Garrelt; Chapman, Emma; Abdalla, Filipe B.; Lee, Kai-Yan; Iliev, Ilian T.; Dixon, Keri L.; Datta, Kanan K.; Ciardi, Benedetta; Fernandez, Elizabeth R.; Jelić, Vibor; Koopmans, Léon V. E.; Zaroubi, Saleem

    2016-02-01

    The observed 21 cm signal from the epoch of reionization will be distorted along the line of sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotropic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21 cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.

  16. 21 cm signal from cosmic dawn - II. Imprints of the light-cone effects

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Datta, Kanan K.; Choudhury, T. Roy

    2015-11-01

    Details of various unknown physical processes during the cosmic dawn and the epoch of reionization can be extracted from observations of the redshifted 21 cm signal. These observations, however, will be affected by the evolution of the signal along the line of sight which is known as the `light-cone effect'. We model this effect by post-processing a dark matter N-body simulation with an 1D radiative transfer code. We find that the effect is much stronger and dramatic in presence of inhomogeneous heating and Ly α coupling compared to the case where these processes are not accounted for. One finds increase (decrease) in the spherically averaged power spectrum up to a factor of 3 (0.6) at large scales (k ˜ 0.05 Mpc- 1) when the light-cone effect is included, though these numbers are highly dependent on the source model. The effect is particularly significant near the peak and dip-like features seen in the power spectrum. The peaks and dips are suppressed and thus the power spectrum can be smoothed out to a large extent if the width of the frequency band used in the experiment is large. We argue that it is important to account for the light-cone effect for any 21-cm signal prediction during cosmic dawn.

  17. The Impact of Peculiar Velocity and Reionization Patchiness on 21cm Cosmology from the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Shapiro, P. R.; Iliev, I. T.; Mellema, G.; Ahn, K.; Datta, K.

    2012-01-01

    Neutral hydrogen atoms in the intergalactic medium at high redshift contribute a diffuse background of redshifted 21cm radiation which encodes information about the physical conditions in the early universe at z>6 during and before the epoch of reionization (EOR). Tomography of this 21cm background has emerged as a promising cosmological probe. The assumption that cosmological information in the 21cm signal can be separated from astrophysical information (i.e. that fluctuations in the total matter density can be measured separately from the dependence on patchy reionization and spin temperature) is based on linear perturbation theory and the anisotropy introduced by peculiar velocity. While it is true that fluctuations in the matter density at such high redshift are likely to be of linear amplitude on the large scales which correspond to the beam- and bandwidths of upcoming experiments, the nonlinearity of smaller scale structure in density, velocity and reionization patchiness can leave its imprint on the signal, which might then spoil the linear separation scheme. We have built a robust and efficient computational scheme to predict the 21cm background in observer redshift space, given real-space simulation data, which accounts for peculiar velocity in every detail. We apply this to the results of new state-of-the-art large-scale reionization simulations which combine large-box, high-resolution N-body simulations of the LCDM universe (with up to 165 billion particles in comoving boxes up to 607 Mpc on a side in present units) with radiative transfer simulations of reionization, to test the validity of using 21cm background measurements for cosmology and characterize the predicted signal for upcoming radio surveys. This work was supported in part by NSF grants AST-0708176 and AST-1009799, NASA grants NNX07AH09G, NNG04G177G and NNX11AE09G, and Chandra grant SAO TM8-9009X.

  18. Redshift-space distortion of the 21-cm background from the epoch of reionization - I. Methodology re-examined

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Shapiro, Paul R.; Mellema, Garrelt; Iliev, Ilian T.; Koda, Jun; Ahn, Kyungjin

    2012-05-01

    The peculiar velocity of the intergalactic gas responsible for the cosmic 21-cm background from the epoch of reionization and beyond introduces an anisotropy in the three-dimensional power spectrum of brightness temperature fluctuations. Measurement of this anisotropy by future 21-cm surveys is a promising tool for separating cosmology from 21-cm astrophysics. However, previous attempts to model the signal have often neglected peculiar velocity or only approximated it crudely. This paper re-examines the effects of peculiar velocity on the 21-cm signal in detail, improving upon past treatment and addressing several issues for the first time. (1) We show that even the angle-averaged power spectrum, P(k), is affected significantly by the peculiar velocity. (2) We re-derive the brightness temperature dependence on atomic hydrogen density, spin temperature, peculiar velocity and its gradient and redshift to clarify the roles of thermal versus velocity broadening and finite optical depth. (3) We show that properly accounting for finite optical depth eliminates the unphysical divergence of the 21-cm brightness temperature in overdense regions of the intergalactic medium found by previous work that employed the usual optically thin approximation. (4) We find that the approximation made previously to circumvent the diverging brightness temperature problem by capping the velocity gradient can misestimate the power spectrum on all scales. (5) We further show that the observed power spectrum in redshift space remains finite even in the optically thin approximation if one properly accounts for the redshift-space distortion. However, results that take full account of finite optical depth show that this approximation is only accurate in the limit of high spin temperature. (6) We also show that the linear theory for redshift-space distortion widely employed to predict the 21-cm power spectrum results in a ˜30 per cent error in the observationally relevant wavenumber range k˜ 0

  19. Combining Optical and 21 cm Observations: A Study of Baryons in Galaxies

    NASA Astrophysics Data System (ADS)

    Faith Horne, Lisa; Zeh, P.; Rosenberg, J. L.; West, A. A.; ALFALFA Team

    2009-01-01

    This poster presents the first look at combining data from the Arecibo Legacy Fast ALFA (ALFALFA), a blind HI 21cm radio survey, with optical data from the Sloan Digital Sky Survey (SDSS). The goal of the project is to study the state of baryonic mass in galaxies in order to provide a better understanding of the evolution of gas into stars. Optical surveys tend to overlook some gas-rich galaxies such as low surface brightness galaxies because these systems are too low-contrast to easily be identified by their starlight while HI surveys can easily identify such objects by the gas that they contain. However, HI surveys tend to miss elliptical and spheroidal galaxies that have little gas. Therefore, the combination of the ALFALFA and SDSS data will allow a wider selection of objects to be detected and studied than would be possible with only one survey or the other. The data presented here are taken from one region of sky where ALFALFA and SDSS overlap. The environments probed in this region include the Great Wall and the low-density region in front of the Great Wall. It is found that this region contains a variety of galaxies from very dim, gas-deprived ellipticals to extremely bright, gas-rich spirals. We present measurements of HI mass, optical luminosity, and velocity width for galaxies in the sample and examine the relationship between these quantities. ALFALFA, PIs Giovanelli and Haynes, is a legacy survey funded by NAIC and NSF. SDSS is a legacy survey managed by the Astrophysical Research Consortium for the Participating Institutions.

  20. Linear and Circular polarization of CMB and cosmic 21cm radiation

    NASA Astrophysics Data System (ADS)

    De, Soma; Vachaspati, T.; Pogosian, L.; Tashiro, H.

    2014-01-01

    I will discuss the effect of galactic and primordial magnetic field on the linear polarization of CMB. Faraday Rotation (FR) of CMB polarization, as measured through mode-coupling correlations of E and B modes, can be a promising probe of a stochastic primordial magnetic field (PMF). We use existing estimates of the Milky Way rotation measure (RM) to forecast its detectability with upcoming and future CMB experiments. We find that a realistic future sub-orbital experiment, covering a patch of the sky near the galactic poles, can detect a scale-invariant PMF of 0.1 nano-Gauss at better than 95% confidence level. Next I'll discuss how the galactic magnetic field affects polarization of 21 cm. Unpolarized 21 cm radiation acquires a certain level of linear polarization during the EoR due to Thompson scattering. This linear polarization, if measured, could probe important information about the EoR. We show that a 99 % accuracy on galactic rotation measure (RM) data is necessary to recover the initial E-mode signal. I will conclude my talk by addressing the very interesting question of if CMB can be circularly polarized due to the secondary effects along the line of sight. As the CMB passes through galaxies and galaxy clusters, which could generate a circular polarization by the method of Faraday conversion (FC) (Pacholczyk, 1998, Cooray et al, 2002). Particularly explosions of first stars can induce circular polarization (due to Faraday conversion) and it has no strong local foreground. The unique frequency dependence of FC signal will allow one to eliminate other possible sources of circular polarization enabling to probe the first star explosions.

  1. Angular 21 cm power spectrum of a scaling distribution of cosmic string wakes

    SciTech Connect

    Hernández, Oscar F.; Wang, Yi; Brandenberger, Robert; Fong, José E-mail: wangyi@physics.mcgill.ca E-mail: jose.fong@ens-lyon.fr

    2011-08-01

    Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.

  2. Hydrogen and the First Stars: First Results from the SCI-HI 21-cm all-sky spectrum experiment

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; Peterson, Jeffrey; Lopez-Cruz, Omar; Jauregui-Garcia, Jose-Miguel; SCI-HI Experiment Team

    2015-01-01

    The 'Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro' (SCI-HI) experiment is an all-sky 21-cm brightness temperature spectrum experiment studying the cosmic dawn (z~15-35). The experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. Initial deployment of the SCI-HI experiment occurred in June 2013 on Guadalupe; a small island about 250 km off of the Pacific coast of Baja California in Mexico. Preliminary measurements from this deployment have placed the first observational constraints on the 21-cm all-sky spectrum around 70 MHz (z~20), see Voytek et al (2014).Neutral Hydrogen (HI) is found throughout the universe in the cold gas that makes up the intergalactic medium (IGM). HI can be observed through the spectral line at 21 cm (1.4 GHz) due to hyperfine structure. Expansion of the universe causes the wavelength of this spectral line to stretch at a rate defined by the redshift z, leading to a signal which can be followed through time.Now the strength of the 21-cm signal in the IGM is dependent only on a small number of variables; the temperature and density of the IGM, the amount of HI in the IGM, the UV energy density in the IGM, and the redshift. This means that 21-cm measurements teach us about the history and structure of the IGM. The SCI-HI experiment focuses on the spatially averaged 21-cm spectrum, looking at the temporal evolution of the IGM during the cosmic dawn before reionization.Although the SCI-HI experiment placed first constraints with preliminary data, this data was limited to a narrow frequency regime around 60-85 MHz. This limitation was caused by instrumental difficulties and the presence of residual radio frequency interference (RFI) in the FM radio band (~88-108 MHz). The SCI-HI experiment is currently undergoing improvements and we plan to have another deployment soon. This deployment would be to Socorro and Clarion, two

  3. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    SciTech Connect

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  4. HI Absorption Lines Detected from the Arecibo Legacy Fast ALFA Survey Data

    NASA Astrophysics Data System (ADS)

    Zhong-zu, Wu; Martha P, Haynes; Riccardo, Giovanelli; Ming, Zhu; Ru-rong, Chen

    2015-10-01

    We present some preliminary results of an on-going study of HI 21-cm absorption lines based on the 40% survey data released by the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA). (1) Ten HI candidate absorbers have been detected. Five of them are previously published in the literature, and the rest of them are new detections that need further confirmation. (2) For those sources with no detected absorptions, we have calculated the upper limit of their foreground HI column density NHI. The statistical result of the NHI distribution indicates that the ratio Ts/f between the averaged spin temperature and coverage factor for DLAs (the damped Lyα systems) might be larger than 500 K. The radio frequency interference (RFI) and standing wave are the main factors affecting the detection of HI absorption lines, which have been analyzed and discussed as well in order to find a method of solution. Our study can serve as a pathfinder for the future large-scale search of HI 21-cm absorption lines using the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST), which is an Arecibo-type radio telescope currently under construction in China with greatly increased sensitivity, bandwidth, and observational sky area. As prospects, we have discussed two types of observational studies of HI absorption lines toward extragalactic sources using the FAST telescope.

  5. Cross-correlation of 21 cm and soft X-ray backgrounds during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Liang, Jun-Min; Mao, Xiao-Chun; Qin, Bo

    2016-08-01

    The cross-correlation between the high-redshift 21 cm background and the Soft X-ray Background (SXB) of the Universe may provide an additional probe of the Epoch of Reionization. Here we use semi-numerical simulations to create 21 cm and soft X-ray intensity maps and construct their cross power spectra. Our results indicate that the cross power spectra are sensitive to the thermal and ionizing states of the intergalactic medium (IGM). The 21 cm background correlates positively to the SXB on large scales during the early stages of the reionization. However as the reionization develops, these two backgrounds turn out to be anti-correlated with each other when more than ∼ 15% of the IGM is ionized in a warm reionization scenario. The anti-correlated power reaches its maximum when the neutral fraction declines to 0.2–0.5. Hence, the trough in the cross power spectrum might be a useful tool for tracing the growth of HII regions during the middle and late stages of the reionization. We estimate the detectability of the cross power spectrum based on the abilities of the Square Kilometre Array and the Wide Field X-ray Telescope (WFXT), and find that to detect the cross power spectrum, the pixel noise of X-ray images has to be at least 4 orders of magnitude lower than that of the WFXT deep survey.

  6. 21 cm Synthesis Observations of VIRGOHI 21-A Possible Dark Galaxy in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Minchin, Robert; Davies, Jonathan; Disney, Michael; Grossi, Marco; Sabatini, Sabina; Boyce, Peter; Garcia, Diego; Impey, Chris; Jordan, Christine; Lang, Robert; Marble, Andrew; Roberts, Sarah; van Driel, Wim

    2007-12-01

    Many observations indicate that dark matter dominates the extragalactic universe, yet no totally dark structure of galactic proportions has ever been convincingly identified. Previously, we have suggested that VIRGOHI 21, a 21 cm source we found in the Virgo Cluster using Jodrell Bank, was a possible dark galaxy because of its broad line width (~200 km s-1) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral hydrogen line and find what could be a dark, edge-on, spinning disk with the mass and diameter of a typical spiral galaxy. Moreover, VIRGOHI 21 has unquestionably been involved in an interaction with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Numerical models of NGC 4254 call for a close interaction ~108 yr ago with a perturber of ~1011 Msolar. This we take as additional evidence for the massive nature of VIRGOHI 21, as there does not appear to be any other viable candidate. We have also used the Hubble Space Telescope to search for stars associated with the H I and find none down to an I-band surface brightness limit of 31.1+/-0.2 mag arcsec-2.

  7. a Dark Galaxy in the Virgo Cluster Imaged at 21-CM

    NASA Astrophysics Data System (ADS)

    Minchin, R.; Disney, M. J.; Davies, J. I.; Marble, A. R.; Impey, C. D.; Boyce, P. J.; Garcia, D. A.; Grossi, M.; Jordan, C. A.; Lang, R. H.; Roberts, S.; Sabatini, S.; van Driel, W.

    Dark Matter supposedly dominates the extragalactic Universe (Peebles 1993; Peacock 1998; Moore et al. 1999; D'Onghi & Lake 2004), yet no dark structure of galactic proportions has ever been convincingly identified. Earlier (Minchin et al. 2005) we suggested that VIRGOHI 21, a 21-cm source we found in the Virgo Cluster at Jodrell Bank using single-dish observations (Davies et al. 2004), was probably such a dark galaxy because of its broad line-width (~200 km s-1) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral-hydrogen line, and have found what appears to be a dark, edge-on, spinning disc with the mass and diameter of a typical spiral galaxy. Moreover the disc has unquestionably interacted with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Published numerical models (Vollmer et al. 2005) of NGC 4254 call for a close interaction ~108 years ago with a perturber of ~1011 solar masses. This we take as further, independent evidence for the massive nature of VIRGOHI 21.

  8. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NASA Astrophysics Data System (ADS)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Mellema, G.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.

    2013-07-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21 cm emission is initially correlated with haloes on large scales (≳30 Mpc), anticorrelated on intermediate (˜5 Mpc) and uncorrelated on small (≲3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anticorrelated on large scales. The normalization of the cross-power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a powerful tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21 cm signal the noise expected from the LOw Frequency ARray (LOFAR) telescope, we find that while the normalization of the cross-power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for an Lyα Emitter (LAE) survey both the normalization and the shape of the cross-power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21 cm signal at the planned redshifts. If the ionized fraction at z ˜ 7 is lower than the one estimated here, then using the cross-power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.

  9. Measuring the 21 cm Power Spectrum from the Epoch of Reionization with the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Paciga, Gregory

    The Epoch of Reionization (EoR) is the transitional period in the universe's evolution which starts when the first luminous sources begin to ionize the intergalactic medium for the first time since recombination, and ends when the most of the hydrogen is ionized by about a redshift of 6. Observations of the 21cm emission from hyperfine splitting of the hydrogen atom can carry a wealth of cosmological information from this epoch since the redshifted line can probe the entire volume. The GMRT-EoR experiment is an ongoing effort to make a statistical detection of the power spectrum of 21cm neutral hydrogen emission due to the patchwork of neutral and ionized regions present during the transition. In this work we detail approximately five years of observations at the GMRT, comprising over 900 hours, and an in-depth analysis of about 50 hours which have lead to the first upper limits on the 21cm power spectrum in the range z = 8.1 to 9.2. This includes a concentrated radio frequency interference (RFI) mitigation campaign around the GMRT area, a novel method for removing broadband RFI with a singular value decomposition, and calibration with a pulsar as both a phase and polarization calibrator. Preliminary results from 2011 showed a 2-sigma upper limit to the power spectrum of (70 mK). 2. However, we find that foreground removalstrategies tend to reduce the cosmological signal significantly, and modeling this signal loss is crucial for interpretation of power spectrum measurements. Using a simulated signal to estimate the transfer function of the real 21cm signal through the foreground removal procedure, we are able to find the optimal level of foreground removal and correct for the signal loss. Using this correction, we report a 2-sigma upper limit of (248 mK)2 at k = 0.5 h Mpc-1.

  10. The imprint of warm dark matter on the cosmological 21-cm signal

    NASA Astrophysics Data System (ADS)

    Sitwell, Michael; Mesinger, Andrei; Ma, Yin-Zhe; Sigurdson, Kris

    2014-03-01

    We investigate the effects of warm dark matter (WDM) on the cosmic 21-cm signal. If dark matter exists as WDM instead of cold dark matter (CDM), its non-negligible velocities can inhibit the formation of low-mass haloes that normally form first in CDM models, therefore delaying star formation. The absence of early sources delays the build-up of UV and X-ray backgrounds that affect the 21-cm radiation signal produced by neutral hydrogen. With use of the 21CMFAST code, we demonstrate that the pre-reionization 21-cm signal can be changed significantly in WDM models with a free-streaming length equivalent to that of a thermal relic with mass mX of up to ˜10-20 keV. In such a WDM cosmology, the 21-cm signal traces the growth of more massive haloes, resulting in a delay of the 21-cm absorption signature and followed by accelerated X-ray heating. CDM models where astrophysical sources have a suppressed photon-production efficiency can delay the 21-cm signal as well, although its subsequent evolution is not as rapid as compared to WDM. This motivates using the gradient of the global 21-cm signal to differentiate between some CDM and WDM models. Finally, we show that the degeneracy between the astrophysics and mX can be broken with the 21-cm power spectrum, as WDM models should have a bias-induced excess of power on large scales. This boost in power should be detectable with current interferometers for models with mX ≲ 3 keV, while next-generation instruments will easily be able to measure this difference for all relevant WDM models.

  11. Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Parsons, Aaron R.

    2016-04-01

    Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean (`global') signal of the 21 cm brightness temperature. In this paper, we use the recently commenced Hydrogen Epoch of Reionization Array (HERA) as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so, we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fitting cosmological parameters from the Planck satellite, exploring the impact of different Planck data sets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an avenue for 21 cm reionization measurements to constrain cosmology. We additionally forecast HERA's ability to measure the ionization history using a combination of power spectrum measurements and semi-analytic simulations. Finally, we consider ways in which 21 cm global signal and power spectrum measurements can be combined, and propose a method by which power spectrum results can be used to train a compact parametrization of the global signal. This parametrization reduces the number of parameters needed to describe the global signal, increasing the likelihood of a high significance measurement.

  12. Tests of the Tully-Fisher relation. 1: Scatter in infrared magnitude versus 21 cm width

    NASA Technical Reports Server (NTRS)

    Bernstein, Gary M.; Guhathakurta, Puragra; Raychaudhury, Somak; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry; Vogt, Nicole P.

    1994-01-01

    We examine the precision of the Tully-Fisher relation (TFR) using a sample of galaxies in the Coma region of the sky, and find that it is good to 5% or better in measuring relative distances. Total magnitudes and disk axis ratios are derived from H and I band surface photometry, and Arecibo 21 cm profiles define the rotation speeds of the galaxies. Using 25 galaxies for which the disk inclination and 21 cm width are well defined, we find an rms deviation of 0.10 mag from a linear TFR with dI/d(log W(sub c)) = -5.6. Each galaxy is assumed to be at a distance proportional to its redshift, and an extinction correction of 1.4(1-b/a) mag is applied to the total I magnitude. The measured scatter is less than 0.15 mag using milder extinction laws from the literature. The I band TFR scatter is consistent with measurement error, and the 95% CL limits on the intrinsic scatter are 0-0.10 mag. The rms scatter using H band magnitudes is 0.20 mag (N = 17). The low width galaxies have scatter in H significantly in excess of known measurement error, but the higher width half of the galaxies have scatter consistent with measurement error. The H band TFR slope may be as steep as the I band slope. As the first applications of this tight correlation, we note the following: (1) the data for the particular spirals commonly used to define the TFR distance to the Coma cluster are inconsistent with being at a common distance and are in fact in free Hubble expansion, with an upper limit of 300 km/s on the rms peculiar line-of-sight velocity of these gas-rich spirals; and (2) the gravitational potential in the disks of these galaxies has typical ellipticity less than 5%. The published data for three nearby spiral galaxies with Cepheid distance determinations are inconsistent with our Coma TFR, suggesting that these local calibrators are either ill-measured or peculiar relative to the Coma Supercluster spirals, or that the TFR has a varying form in different locales.

  13. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Technical Reports Server (NTRS)

    Switzer, Eric R.; Liu, Adrian

    2014-01-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z approx. 6 - 30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least approx. 10(exp -4). In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the approx. 10(exp -2) level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission. Subject headings: dark ages, reionization, first stars - methods: data analysis - methods: statistical

  14. Erasing the variable: empirical foreground discovery for global 21 cm spectrum experiments

    SciTech Connect

    Switzer, Eric R.; Liu, Adrian

    2014-10-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ∼ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ∼10{sup –4}. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ∼10{sup –2} level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  15. 21-cm radiation: a new probe of variation in the fine-structure constant.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2007-03-16

    We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%. PMID:17501040

  16. Bayesian Semi-blind Component Separation for Foreground Removal in Interferometric 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Bunn, Emory F.; Karakci, Ata; Korotkov, Andrei; Sutter, P. M.; Timbie, Peter T.; Tucker, Gregory S.; Wandelt, Benjamin D.

    2016-01-01

    In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation-Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.

  17. Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru

    NASA Astrophysics Data System (ADS)

    Vrbanec, Dijana; Ciardi, Benedetta; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R.; Ghosh, Abhik; Iliev, Ilian T.; Kakiichi, Koki; Koopmans, Léon V. E.; Mellema, Garrelt

    2016-03-01

    The 21 cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21 cm emission from the EoR with the Low Frequency Array (LOFAR), and of high-redshift Ly α emitters with Subaru's Hyper Suprime-Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z = 6.6. In this paper, we use N-body + radiative transfer (both for continuum and Ly α photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21 cm-galaxy cross-power spectrum and cross-correlation function, as well as to predict the 2D 21 cm-galaxy cross-power spectrum and cross-correlation function expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21 cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than ˜60 h-1 Mpc (corresponding to k ˜ 0.1 h Mpc-1), with levels of significance p = 0.003 at z = 6.6 and p = 0.08 at z = 7.3. On smaller scales, instead, the signal is completely contaminated. On the other hand, our 21 cm-galaxy cross-correlation function is strongly contaminated by noise on all scales, since the noise is no longer being separated by its k modes.

  18. Sensitive 21cm Observations of Neutral Hydrogen in the Local Group near M31

    NASA Astrophysics Data System (ADS)

    Wolfe, Spencer A.; Lockman, Felix J.; Pisano, D. J.

    2016-01-01

    Very sensitive 21 cm H i measurements have been made at several locations around the Local Group galaxy M31 using the Green Bank Telescope at an angular resolution of 9.‧1, with a 5σ detection level of NH i = 3.9 × 1017 cm-2 for a 30 km s-1 line. Most of the H i in a 12 square-degree area almost equidistant between M31 and M33 is contained in nine discrete clouds that have a typical size of a few kpc and a H i mass of 105M⊙. Their velocities in the Local Group Standard of Rest lie between -100 and +40 km s-1, comparable to the systemic velocities of M31 and M33. The clouds appear to be isolated kinematically and spatially from each other. The total H i mass of all nine clouds is 1.4 × 106M⊙ for an adopted distance of 800 kpc, with perhaps another 0.2 × 106M⊙ in smaller clouds or more diffuse emission. The H i mass of each cloud is typically three orders of magnitude less than the dynamical (virial) mass needed to bind the cloud gravitationally. Although they have the size and H i mass of dwarf galaxies, the clouds are unlikely to be part of the satellite system of the Local Group, as they lack stars. To the north of M31, sensitive H i measurements on a coarse grid find emission that may be associated with an extension of the M31 high-velocity cloud (HVC) population to projected distances of ˜100 kpc. An extension of the M31 HVC population at a similar distance to the southeast, toward M33, is not observed.

  19. From Darkness to Light: Signatures of the Universe's First Galaxies in the Cosmic 21-cm Background

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    Within the first billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this Epoch of Reionization -- the emergence of the first stars, black holes, and full-fledged galaxies -- are expected to manifest as spectral "turning points" in the sky-averaged ("global") 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) required to model the signal. In this thesis, I make the first attempt to build the final piece of a global 21-cm data analysis pipeline: an inference tool capable of extracting the properties of the IGM and the Universe's first galaxies from the recovered signal. Such a framework is valuable even prior to a detection of the global 21-cm signal as it enables end-to-end simulations of 21-cm observations that can be used to optimize the design of upcoming instruments, their observing strategies, and their signal extraction algorithms. En route to a complete pipeline, I found that (1) robust limits on the physical properties of the IGM, such as its temperature and ionization state, can be derived analytically from the 21-cm turning points within two-zone models for the IGM, (2) improved constraints on the IGM properties can be obtained through simultaneous fitting of the global 21-cm signal and foregrounds, though biases can emerge depending on the parameterized form of the signal one adopts, (3) a simple four-parameter galaxy formation model can be constrained in only 100 hours of integration provided a stable instrumental response over a broad frequency range (~80 MHz), and (4) frequency-dependent RT solutions in physical models for the global 21-cm signal will be required to properly interpret the 21-cm absorption minimum, as the IGM thermal history is highly sensitive to the

  20. A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION

    SciTech Connect

    Parsons, Aaron; Pober, Jonathan; McQuinn, Matthew; Jacobs, Daniel; Aguirre, James

    2012-07-01

    Telescopes aiming to measure 21 cm emission from the Epoch of Reionization must toe a careful line, balancing the need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometer's response to the power spectrum of 21 cm reionization fluctuations, we show that even under optimistic scenarios first-generation arrays will yield low-signal-to-noise detections, and that different compact array configurations can substantially alter sensitivity. We explore the sensitivity gains of array configurations that yield high redundancy in the uv-plane-configurations that have been largely ignored since the advent of self-calibration for high-dynamic-range imaging. We first introduce a mathematical framework to generate optimal minimum-redundancy configurations for imaging. We contrast the sensitivity of such configurations with high-redundancy configurations, finding that high-redundancy configurations can improve power-spectrum sensitivity by more than an order of magnitude. We explore how high-redundancy array configurations can be tuned to various angular scales, enabling array sensitivity to be directed away from regions of the uv-plane (such as the origin) where foregrounds are brighter and instrumental systematics are more problematic. We demonstrate that a 132 antenna deployment of the Precision Array for Probing the Epoch of Reionization observing for 120 days in a high-redundancy configuration will, under ideal conditions, have the requisite sensitivity to detect the power spectrum of the 21 cm signal from reionization at a 3{sigma} level at k < 0.25 h Mpc{sup -1} in a bin of {Delta}ln k = 1. We discuss the tradeoffs of low- versus high-redundancy configurations.

  1. Mapping kiloparsec-scale structures in the extended H I disc of the galaxy UGC 000439 by H I 21-cm absorption

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Gupta, N.; Srianand, R.; O'Meara, J. M.

    2016-03-01

    We study the properties of H I gas in the outer regions (˜2r25) of a spiral galaxy, UGC 00439 (z = 0.017 69), using H I 21-cm absorption towards different components of an extended background radio source, J0041-0043 (z = 1.679). The radio source exhibits a compact core coincident with the optical quasar and two lobes separated by ˜7 kpc, all at an impact parameter ˜25 kpc. The H I 21-cm absorption detected towards the southern lobe is found to extend over ˜2 kpc2. The absorbing gas shows sub-kpc-scale structures with the line-of-sight velocities dominated by turbulent motions. Much larger optical depth variations over 4-7 kpc scale are revealed by the non-detection of H I 21-cm absorption towards the radio core and the northern lobe, and the detection of Na I and Ca II absorption towards the quasar. This could reflect a patchy distribution of cold gas in the extended H I disc. We also detect H I 21-cm emission from UGC 00439 and two other galaxies within ˜150 kpc to it, that probably form an interacting group. However, no H I 21-cm emission from the absorbing gas is detected. Assuming a linear extent of ˜4 kpc, as required to cover both the core and the southern lobe, we constrain the spin temperature ≲ 300 K for the absorbing gas. The kinematics of the gas and the lack of signatures of any ongoing in situ star formation are consistent with the absorbing gas being at the kinematical minor axis and corotating with the galaxy. Deeper H I 21-cm observations would help to map in greater detail both the large- and small-scale structures in the H I gas associated with UGC 00439.

  2. THOR - The HI, OH, Recombination Line Survey of the Milky Way

    NASA Astrophysics Data System (ADS)

    Bihr, Simon; Beuther, Henrik; Johnston, Katharine; Ott, Juergen; Glover, Simon; Carlhoff, Philipp; Brunthaler, Andreas; Goldsmith, Paul; Schilke, Peter; Motte, Frederique; Henning, Thomas

    2013-07-01

    How do molecular clouds form from the diffuse atomic interstellar medium? To address this and further questions we are conducting the THOR survey, a galactic plane survey (l = 15 to 50dec and b = -1 to +1dec) of the 21cm HI line, four OH lines, and 20 recombination lines as well as the continuum from 1 to 2 GHz at a spatial resolution of ~20arcsec. We got granted 110 hours at the VLA in C-configuration. To test the configuration, we did a pilot study around the active star forming region W43 in 2012. The data analysis is work in progress and we combined our data with the VGPS survey (VLA Galactic plane survey - HI in D-configuration). This allows us to reconstruct all spatial scales down to 0.2-0.5pc. We will compare our data with CO data to study the cloud formation from the atomic to the molecular phase. We find significantly higher HI column densities for W43 than for other regions such as Perseus. The reason for these high column densities is debatable, but we speculate, that the strong interstellar radiation field of W43 prevents the formation of molecular hydrogen.

  3. Galaxy-cluster masses via 21st-century measurements of lensing of 21-cm fluctuations

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Kamionkowski, Marc

    2013-03-01

    We discuss the prospects to measure galaxy-cluster properties via weak lensing of 21-cm fluctuations from the dark ages and the epoch of reionization (EOR). We choose as a figure of merit the smallest cluster mass detectable through such measurements. We construct the minimum-variance quadratic estimator for the cluster mass based on lensing of 21-cm fluctuations at multiple redshifts. We discuss the tradeoff among frequency bandwidth, angular resolution, and the number of redshift shells available for a fixed noise level for the radio detectors. Observations of lensing of the 21-cm background from the dark ages will be capable of detecting M≳1012h-1M⊙ mass halos, but will require futuristic experiments to overcome the contaminating sources. Next-generation radio measurements of 21-cm fluctuations from the EOR will, however, have the sensitivity to detect galaxy clusters with halo masses M≳1013h-1M⊙, given enough observation time (for the relevant sky patch) and collecting area to maximize their resolution capabilities.

  4. INTERPRETING THE GLOBAL 21 cm SIGNAL FROM HIGH REDSHIFTS. I. MODEL-INDEPENDENT CONSTRAINTS

    SciTech Connect

    Mirocha, Jordan; Harker, Geraint J. A.; Burns, Jack O.

    2013-11-10

    The sky-averaged (global) 21 cm signal is a powerful probe of the intergalactic medium (IGM) prior to the completion of reionization. However, so far it has been unclear whether it will provide more than crude estimates of when the universe's first stars and black holes formed, even in the best case scenario in which the signal is accurately extracted from the foregrounds. In contrast to previous work, which has focused on predicting the 21 cm signatures of the first luminous objects, we investigate an arbitrary realization of the signal and attempt to translate its features to the physical properties of the IGM. Within a simplified global framework, the 21 cm signal yields quantitative constraints on the Lyα background intensity, net heat deposition, ionized fraction, and their time derivatives without invoking models for the astrophysical sources themselves. The 21 cm absorption signal is most easily interpreted, setting strong limits on the heating rate density of the universe with a measurement of its redshift alone, independent of the ionization history or details of the Lyα background evolution. In a companion paper, we extend these results, focusing on the confidence with which one can infer source emissivities from IGM properties.

  5. THE SIGNATURES OF PARTICLE DECAY IN 21 cm ABSORPTION FROM THE FIRST MINIHALOS

    SciTech Connect

    Vasiliev, Evgenii O.; Shchekinov, Yuri A. E-mail: yus@sfedu.ru

    2013-11-01

    The imprint of decaying dark matter (DM) particles on the characteristics of the {sup 2}1 cm forest{sup —}absorption at 21 cm from minihalos in the spectra of distant radio-loud sources—is considered within a one-dimensional, self-consistent hydrodynamic description of minihalos from their turnaround point to virialization. The most pronounced influence of decaying DM on the evolution of minihalos is found in the mass range M = 10{sup 5}-10{sup 6} M{sub ☉}, for which unstable DM with a current upper limit on its ionization rate of ξ{sub L} = 0.59 × 10{sup –25} s{sup –1} reduces the 21 cm optical depth by an order of magnitude compared with the standard recombination scenario. Even a rather modest ionization, ξ ∼ 0.3ξ{sub L}, practically erases absorption features and results in a considerable decrease (by factor of more than 2.5) of the number of strong (W{sub ν}{sup obs}∼>0.3 kHz at z ≅ 10) absorptions. In such circumstances, broadband observations are more suitable for inferring the physical conditions of the absorbing gas. X-ray photons from stellar activity of the initial episodes of star formation can compete with the contribution from decaying DM only at z < 10. Therefore, observing the 21 cm signal will allow us to follow the evolution of decaying DM particles in the redshift range z = 10-15. On the other hand, a non-detection of the 21 cm signal in the frequency range ν < 140 MHz can establish a lower limit on the ionization rate from decaying DM.

  6. The 21-cm emission from the reionization epoch: extended and point source foregrounds

    NASA Astrophysics Data System (ADS)

    Di Matteo, Tiziana; Ciardi, Benedetta; Miniati, Francesco

    2004-12-01

    Fluctuations in the redshifted 21-cm emission from neutral hydrogen probe the epoch of reionization. We examine the observability of this signal and the impact of extragalactic foreground radio sources (both extended and point-like). We use cosmological simulations to predict the angular correlation functions of intensity fluctuations due to unresolved radio galaxies, cluster radio haloes and relics and free-free emission from the interstellar and intergalactic medium at the frequencies and angular scales relevant for the proposed 21-cm tomography. In accord with previous findings, the brightness temperature fluctuations due to foreground sources are much larger than those from the primary 21-cm signal at all scales. In particular, diffuse cluster radio emission, which has been previously neglected, provides the most significant foreground contamination. However, we show that the contribution to the angular fluctuations at scales θ>~ 1 arcmin is dominated by the spatial clustering of bright foreground sources. This excess can be removed if sources above flux levels S>~ 0.1 mJy (out to redshifts of z~ 1 and z~ 2 for diffuse and point sources, respectively) are detected and removed. Hence, efficient source removal may be sufficient to allow the detection of angular fluctuations in the 21-cm emission free of extragalactic foregrounds at θ>~ 1 arcmin. In addition, the removal of sources above S= 0.1 mJy also reduces the foreground fluctuations to roughly the same level as the 21-cm signal at scales θ<~ 1 arcmin. This should allow the substraction of the foreground components in frequency space, making it possible to observe in detail the topology and history of reionization.

  7. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    NASA Astrophysics Data System (ADS)

    Lopez-Honorez, Laura; Mena, Olga; Moliné, Ángeles; Palomares-Ruiz, Sergio; Vincent, Aaron C.

    2016-08-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-α pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of ~100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21 cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21 cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from ~100 MeV.

  8. Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations

    NASA Astrophysics Data System (ADS)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2016-04-01

    We explore the impact of incorporating physically motivated ionization and recombination rates on the history and topology of cosmic reionization and the resulting 21 cm power spectrum, by incorporating inputs from small-volume hydrodynamic simulations into our semi-numerical code, SIMFAST21, that evolves reionization on large scales. We employ radiative hydrodynamic simulations to parametrize the ionization rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion scales superlinearly with halo mass ({R_ion}∝ M_h^{1.41}), in contrast to previous assumptions. Implementing these scalings into SIMFAST21, we tune our one free parameter, the escape fraction fesc, to simultaneously reproduce recent observations of the Thomson optical depth, ionizing emissivity and volume-averaged neutral fraction by the end of reionization. This yields f_esc=4^{+7}_{-2} per cent averaged over our 0.375 h-1 Mpc cells, independent of halo mass or redshift, increasing to 6 per cent if we also constrain to match the observed z = 7 star formation rate function. Introducing superlinear Rion increases the duration of reionization and boosts small-scale 21 cm power by two to three times at intermediate phases of reionization, while inhomogeneous recombinations reduce ionized bubble sizes and suppress large-scale 21 cm power by two to three times. Gas clumping on sub-cell scales has a minimal effect on the 21 cm power. Superlinear Rion also significantly increases the median halo mass scale for ionizing photon output to ˜ 1010 M⊙, making the majority of reionizing sources more accessible to next-generation facilities. These results highlight the importance of accurately treating ionizing sources and recombinations for modelling reionization and its 21 cm power spectrum.

  9. THOR - The HI, OH, Recombination Line Survey of the Milky Way

    NASA Astrophysics Data System (ADS)

    Bihr, Simon; Beuther, Henrik; THOR Collaboration

    2015-08-01

    To study a large variety of open questions, such as the transition of atomic to molecular hydrogen in Giant Molecular Clouds (GMCs) or studies of evolved stars showing OH maser emission, we have initiated a multi-line and continuum Galactic plane survey with the Karl G. Jansky Very Large Array (VLA): ‘THOR - The HI, OH, Recombination Line survey of the Milky Way’. We use the VLA for more than 200h in the C-array configuration to map the 21cm HI line, 4 OH lines, up to 19 Hα recombination lines and the continuum from 1-2GHz in full polarisation. We cover a significant fraction of the Milky Way (l=15-67°, |b|<1°) at an angular resolution of ~20’’ resulting in more than 2TB of raw data. Starting in 2012, we mapped 4 square degrees of the GMC associated with the W43 star-formation complex during a pilot study. The rest of the area was observed during two observing campaigns in 2013 and 2014. This data set will become public and on my poster, I will explain our observing strategy, the data reduction and show results of our HI and OH studies. Furthermore, I will show the wealth that this dataset offers to the community.

  10. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  11. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    SciTech Connect

    Bernardi, G.; McQuinn, M.; Greenhill, L. J.

    2015-01-20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered {sup s}pectrally smooth{sup )}. Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  12. Foreground Model and Antenna Calibration Errors in the Measurement of the Sky-averaged λ21 cm Signal at z~ 20

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; McQuinn, M.; Greenhill, L. J.

    2015-01-01

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ~ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered "spectrally smooth"). Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ~fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  13. THE EFFECTS OF POLARIZED FOREGROUNDS ON 21 cm EPOCH OF REIONIZATION POWER SPECTRUM MEASUREMENTS

    SciTech Connect

    Moore, David F.; Aguirre, James E.; Parsons, Aaron R.; Pober, Jonathan C.; Jacobs, Daniel C.

    2013-06-01

    Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using the delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.

  14. The Effects of Polarized Foregrounds on 21 cm Epoch of Reionization Power Spectrum Measurements

    NASA Astrophysics Data System (ADS)

    Moore, David F.; Aguirre, James E.; Parsons, Aaron R.; Jacobs, Daniel C.; Pober, Jonathan C.

    2013-06-01

    Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using the delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.

  15. A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE

    SciTech Connect

    Parsons, Aaron R.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Carilli, Christopher L.; Jacobs, Daniel C.

    2012-09-10

    A critical challenge in measuring the power spectrum of 21 cm emission from cosmic reionization is compensating for the frequency dependence of an interferometer's sampling pattern, which can cause smooth-spectrum foregrounds to appear unsmooth and degrade the separation between foregrounds and the target signal. In this paper, we present an approach to foreground removal that explicitly accounts for this frequency dependence. We apply the delay transformation introduced in Parsons and Backer to each baseline of an interferometer to concentrate smooth-spectrum foregrounds within the bounds of the maximum geometric delays physically realizable on that baseline. By focusing on delay modes that correspond to image-domain regions beyond the horizon, we show that it is possible to avoid the bulk of smooth-spectrum foregrounds. We map the point-spread function of delay modes to k-space, showing that delay modes that are uncorrupted by foregrounds also represent samples of the three-dimensional power spectrum, and can be used to constrain cosmic reionization. Because it uses only spectral smoothness to differentiate foregrounds from the targeted 21 cm signature, this per-baseline analysis approach relies on spectrally and spatially smooth instrumental responses for foreground removal. For sufficient levels of instrumental smoothness relative to the brightness of interfering foregrounds, this technique substantially reduces the level of calibration previously thought necessary to detect 21 cm reionization. As a result, this approach places fewer constraints on antenna configuration within an array, and in particular, facilitates the adoption of configurations that are optimized for power-spectrum sensitivity. Under these assumptions, we demonstrate the potential for the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21 cm reionization at an amplitude of 10 mK{sup 2} near k {approx} 0.2 h Mpc{sup -1} with 132 dipoles in 7 months of observing.

  16. Numerical simulation of soil brightness temperatures at wavelength of 21 cm

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.

    1981-01-01

    A simulation model is applied to reproduce some observed brightness temperatures at a wavelength of 21 cm. The simulated results calculated with two different soil textures are compared directly with observations measured over fields in Arizona and South Dakota. It is found that good agreement is possible by properly adjusting the surface roughness parameter. Correlation analysis and linear regression of the brightness temperatures versus soil moistures are also carried out.

  17. 21-cm signature of the first sources in the Universe: Prospects of detection with SKA

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2016-04-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and epoch of reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e., the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible make a ˜9 - σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 hours. The exact value of the signal to noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve a SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.

  18. A Per-baseline, Delay-spectrum Technique for Accessing the 21 cm Cosmic Reionization Signature

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron R.; Pober, Jonathan C.; Aguirre, James E.; Carilli, Christopher L.; Jacobs, Daniel C.; Moore, David F.

    2012-09-01

    A critical challenge in measuring the power spectrum of 21 cm emission from cosmic reionization is compensating for the frequency dependence of an interferometer's sampling pattern, which can cause smooth-spectrum foregrounds to appear unsmooth and degrade the separation between foregrounds and the target signal. In this paper, we present an approach to foreground removal that explicitly accounts for this frequency dependence. We apply the delay transformation introduced in Parsons & Backer to each baseline of an interferometer to concentrate smooth-spectrum foregrounds within the bounds of the maximum geometric delays physically realizable on that baseline. By focusing on delay modes that correspond to image-domain regions beyond the horizon, we show that it is possible to avoid the bulk of smooth-spectrum foregrounds. We map the point-spread function of delay modes to k-space, showing that delay modes that are uncorrupted by foregrounds also represent samples of the three-dimensional power spectrum, and can be used to constrain cosmic reionization. Because it uses only spectral smoothness to differentiate foregrounds from the targeted 21 cm signature, this per-baseline analysis approach relies on spectrally and spatially smooth instrumental responses for foreground removal. For sufficient levels of instrumental smoothness relative to the brightness of interfering foregrounds, this technique substantially reduces the level of calibration previously thought necessary to detect 21 cm reionization. As a result, this approach places fewer constraints on antenna configuration within an array, and in particular, facilitates the adoption of configurations that are optimized for power-spectrum sensitivity. Under these assumptions, we demonstrate the potential for the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21 cm reionization at an amplitude of 10 mK2 near k ~ 0.2 h Mpc-1 with 132 dipoles in 7 months of observing.

  19. 21-cm signature of the first sources in the Universe: prospects of detection with SKA

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2016-07-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and Epoch of Reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e. the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible to make a ˜9σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 h. The exact value of the signal-to-noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve an SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.

  20. Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal

    NASA Astrophysics Data System (ADS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2016-06-01

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ˜ 10–15 only extends to < {{Δ }}{T}B> ˜ -25 {{mK}}, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ˜ 0.1–1h Mpc‑1. This scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.

  1. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; MacMahon, Dave; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; Manley, Jason; Walbrugh, William P.; Stefan, Irina I.

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  2. Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal

    DOE PAGESBeta

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2016-06-20

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc–1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less

  3. Opening the 21 cm Epoch of Reionization Window: Measurements of Foreground Isolation with PAPER

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; MacMahon, Dave; Manley, Jason; Moore, David F.; Stefan, Irina I.; Walbrugh, William P.

    2013-05-01

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a "wedge"-like region of two-dimensional (k , k ∥)-space, creating a window for cosmological studies at higher k ∥ values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this "unsmooth" emission and image its specific k ∥ modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  4. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  5. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  6. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  7. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  8. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  9. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  10. On the Detection of Global 21-cm Signal from Reionization Using Interferometers

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Subrahmanyan, Ravi; Udaya Shankar, N.; Raghunathan, A.

    2015-12-01

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to global signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.

  11. Parametrizations of the 21-cm global signal and parameter estimation from single-dipole experiments

    NASA Astrophysics Data System (ADS)

    Harker, Geraint J. A.; Mirocha, Jordan; Burns, Jack O.; Pritchard, Jonathan R.

    2016-02-01

    One approach to extracting the global 21-cm signal from total-power measurements at low radio frequencies is to parametrize the different contributions to the data and then fit for these parameters. We examine parametrizations of the 21-cm signal itself, and propose one based on modelling the Ly α background, intergalactic medium temperature and hydrogen ionized fraction using tanh functions. This captures the shape of the signal from a physical modelling code better than an earlier parametrization based on interpolating between maxima and minima of the signal, and imposes a greater level of physical plausibility. This allows less biased constraints on the turning points of the signal, even though these are not explicitly fit for. Biases can also be alleviated by discarding information which is less robustly described by the parametrization, for example by ignoring detailed shape information coming from the covariances between turning points or from the high-frequency parts of the signal, or by marginalizing over the high-frequency parts of the signal by fitting a more complex foreground model. The fits are sufficiently accurate to be usable for experiments gathering 1000 h of data, though in this case it may be important to choose observing windows which do not include the brightest areas of the foregrounds. Our assumption of pointed, single-antenna observations and very broad-band fitting makes these results particularly applicable to experiments such as the Dark Ages Radio Explorer, which would study the global 21-cm signal from the clean environment of a low lunar orbit, taking data from the far side.

  12. 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2015-06-01

    We introduce 21 CMMC: a parallelized, Monte Carlo Markov Chain analysis tool, incorporating the epoch of reionization (EoR) seminumerical simulation 21 CMFAST. 21 CMMC estimates astrophysical parameter constraints from 21 cm EoR experiments, accommodating a variety of EoR models, as well as priors on model parameters and the reionization history. To illustrate its utility, we consider two different EoR scenarios, one with a single population of galaxies (with a mass-independent ionizing efficiency) and a second, more general model with two different, feedback-regulated populations (each with mass-dependent ionizing efficiencies). As an example, combining three observations (z = 8, 9 and 10) of the 21 cm power spectrum with a conservative noise estimate and uniform model priors, we find that interferometers with specifications like the Low Frequency Array/Hydrogen Epoch of Reionization Array (HERA)/Square Kilometre Array 1 (SKA1) can constrain common reionization parameters: the ionizing efficiency (or similarly the escape fraction), the mean free path of ionizing photons and the log of the minimum virial temperature of star-forming haloes to within 45.3/22.0/16.7, 33.5/18.4/17.8 and 6.3/3.3/2.4 per cent, ˜1σ fractional uncertainty, respectively. Instead, if we optimistically assume that we can perfectly characterize the EoR modelling uncertainties, we can improve on these constraints by up to a factor of ˜few. Similarly, the fractional uncertainty on the average neutral fraction can be constrained to within ≲ 10 per cent for HERA and SKA1. By studying the resulting impact on astrophysical constraints, 21 CMMC can be used to optimize (i) interferometer designs; (ii) foreground cleaning algorithms; (iii) observing strategies; (iv) alternative statistics characterizing the 21 cm signal; and (v) synergies with other observational programs.

  13. Statistics of the epoch of reionization 21-cm signal - I. Power spectrum error-covariance

    NASA Astrophysics Data System (ADS)

    Mondal, Rajesh; Bharadwaj, Somnath; Majumdar, Suman

    2016-02-01

    The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum P(k). We have used a large ensemble of seminumerical simulations and an analytical model to estimate the effect of this non-Gaussianity on the entire error-covariance matrix {C}ij. Our analytical model shows that {C}ij has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of P(k). The other is the trispectrum of the signal. Using the simulated 21-cm Signal Ensemble, an ensemble of the Randomized Signal and Ensembles of Gaussian Random Ensembles we have quantified the effect of the trispectrum on the error variance {C}ii. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the k range 0.3 ≤ k ≤ 1.0 Mpc-1, and can be even ˜200 times larger at k ˜ 5 Mpc-1. We also establish that the off-diagonal terms of {C}ij have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different k modes are not independent. We find a strong correlation between the errors at large k values (≥0.5 Mpc-1), and a weak correlation between the smallest and largest k values. There is also a small anticorrelation between the errors in the smallest and intermediate k values. These results are relevant for the k range that will be probed by the current and upcoming EoR 21-cm experiments.

  14. Extracting Physical Parameters for the First Galaxies from the Cosmic Dawn Global 21-cm Spectrum

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Mirocha, Jordan; harker, geraint; Tauscher, Keith; Datta, Abhirup

    2016-01-01

    The all-sky or global redshifted 21-cm HI signal is a potentially powerful probe of the first luminous objects and their environs during the transition from the Dark Ages to Cosmic Dawn (35 > z > 6). The first stars, black holes, and galaxies heat and ionize the surrounding intergalactic medium, composed mainly of neutral hydrogen, so the hyperfine 21-cm transition can be used to indirectly study these early radiation sources. The properties of these objects can be examined via the broad absorption and emission features that are expected in the spectrum. The Dark Ages Radio Explorer (DARE) is proposed to conduct these observations at low radio astronomy frequencies, 40-120 MHz, in a 125 km orbit about the Moon. The Moon occults both the Earth and the Sun as DARE makes observations above the lunar farside, thus eliminating the corrupting effects from Earth's ionosphere, radio frequency interference, and solar nanoflares. The signal is extracted from the galactic/extragalactic foreground employing Bayesian methods, including Markov Chain Monte Carlo (MCMC) techniques. Theory indicates that the 21-cm signal is well described by a model in which the evolution of various physical quantities follows a hyperbolic tangent (tanh) function of redshift. We show that this approach accurately captures degeneracies and covariances between parameters, including those related to the signal, foreground, and the instrument. Furthermore, we also demonstrate that MCMC fits will set meaningful constraints on the Ly-α, ionizing, and X-ray backgrounds along with the minimum virial temperature of the first star-forming halos.

  15. 21-cm lensing and the cold spot in the cosmic microwave background.

    PubMed

    Kovetz, Ely D; Kamionkowski, Marc

    2013-04-26

    An extremely large void and a cosmic texture are two possible explanations for the cold spot seen in the cosmic microwave background. We investigate how well these two hypotheses can be tested with weak lensing of 21-cm fluctuations from the epoch of reionization measured with the Square Kilometer Array. While the void explanation for the cold spot can be tested with Square Kilometer Array, given enough observation time, the texture scenario requires significantly prolonged observations, at the highest frequencies that correspond to the epoch of reionization, over the field of view containing the cold spot. PMID:23679703

  16. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    PubMed

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes. PMID:16384131

  17. 2MTF III. H I 21 cm observations of 1194 spiral galaxies with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Crook, Aidan; Hong, Tao; Jarrett, T. H.; Koribalski, Bärbel S.; Macri, Lucas; Springob, Christopher M.; Staveley-Smith, Lister

    2014-09-01

    We present H I 21 cm observations of 1194 galaxies out to a redshift of 10 000 km s-1 selected as inclined spirals (i ≳ 60°) from the 2MASS redshift survey. These observations were carried out at the National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT). This observing programme is part of the 2MASS Tully-Fisher (2MTF) survey. This project will combine H I widths from these GBT observations with those from further dedicated observing at the Parkes Telescope, from the Arecibo Legacy Fast Arecibo L-band Feed Array survey at Arecibo, and S/N > 10 and spectral resolution vres < 10 km s-1 published widths from a variety of telescopes. We will use these H I widths along with 2MASS photometry to estimate Tully-Fisher distances to nearby spirals and investigate the peculiar velocity field of the local Universe. In this paper, we report on detections of neutral hydrogen in emission in 727 galaxies, and measure good signal to noise and symmetric H I global profiles suitable for use in the Tully-Fisher relation in 484.

  18. Integrated survey and design for transmission lines

    SciTech Connect

    Miller, M.A.; Simpson, K.D.

    1994-12-31

    Gathering and compiling information on the features and uses of the land within a proposed corridor provides the basis for selecting a route, obtaining easements, and designing and constructing a transmission line. Traditionally, gathering this information involved searches of existing maps and records to obtain the available information, which would then be supplemented with aerial photography to record current conditions. Ground surveys were performed to collect topographic data for design purposes. This information was manually transferred to drawings and other documents to show the terrain, environmentally sensitive areas, property ownership, and existing facilities. These drawing served as the base to which the transmission line right-of-way, structures, and other design information were added. As the design was completed, these drawings became the source of information for constructing the line and ultimately, the record of the facility. New technologies and the every growing need for instantly accessible information have resulted in changes in almost every step of gathering, storing and using information. Electronic data collection, global positioning systems (GPS), digitized terrain models, computerized design techniques, development of drawings using CAD, and graphical information systems (GIS) have individually resulted in significant advancements in this process. Combining these components into an integrated system, however, is truly revolutionizing transmission line engineering. This paper gives an overview of the survey and mapping information that is required for transmission line projects, review the traditional techniques that have been employed to obtain and utilize this information, and discuss the recent advances in the technology. Additionally, a system is presented that integrates the components in this process to achieve efficiency, minimize chances of errors, and provide improved access to project information.

  19. The 21-cm BAO signature of enriched low-mass galaxies during cosmic reionization

    NASA Astrophysics Data System (ADS)

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan

    2016-06-01

    Studies of the formation of the first stars have established that they formed in small haloes of ˜105-106 M⊙ via molecular hydrogen cooling. Since a low level of ultraviolet radiation from stars suffices to dissociate molecular hydrogen, under the usually assumed scenario this primordial mode of star formation ended by redshift z ˜ 15 and much more massive haloes came to dominate star formation. However, metal enrichment from the first stars may have allowed the smaller haloes to continue to form stars. In this Letter, we explore the possible effect of star formation in metal-rich low-mass haloes on the redshifted 21-cm signal of neutral hydrogen from z = 6 to 40. These haloes are significantly affected by the supersonic streaming velocity, with its characteristic baryon acoustic oscillation (BAO) signature. Thus, enrichment of low-mass galaxies can produce a strong signature in the 21-cm power spectrum over a wide range of redshifts, especially if star formation in the small haloes was more efficient than suggested by current simulations. We show that upcoming radio telescopes can easily distinguish among various possible scenarios.

  20. 21 cm Fluctuations of the Cosmic Dawn with the Owens Valley Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael; Hallinan, Gregg; Owens Valley LWA Collaboration

    2016-01-01

    The Owens Valley Long Wavelength Array (OVRO LWA) is a 288-antenna interferometer covering 30 to 80 MHz located at the Owens Valley Radio Observatory (OVRO) near Big Pine, California. I am leading the effort to detect spatial fluctuations of the 21 cm transition from the cosmic dawn (z~20) with the OVRO LWA. These spatial fluctuations are primarily sourced by inhomogeneous X-ray heating from early star formation. The spectral hardness of early X-ray sources, stellar feedback mechanisms, and baryon streaming therefore all play a role in shaping the power spectrum. I will present the application of m-mode analysis (Shaw et al. 2014, Shaw et al. 2015) to OVRO LWA data to: 1. compress the data set, 2. create maps of the northern sky that can be fed back into the calibration pipeline, and 3. filter foreground emission. Finally I will present the current status and future prospects of the OVRO LWA for detecting the 21 cm power spectrum at z~20.

  1. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ∼ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ∼2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  2. Pilot observations at 74 MHz for global 21cm cosmology with the Parkes 64 m

    NASA Astrophysics Data System (ADS)

    Bannister, Keith; McConnell, David; Reynolds, John; Chippendale, Aaron; Landecker, Tom L.; Dunning, Alex

    2013-10-01

    We propose a single pilot observing session using the existing 74 MHz feed at Parkes to evaluate tools and techniques to optimise low frequency (44-88 MHz) observing. 1. A continuum map of the diffuse emission in the Southern sky at 74 MHz. Such a map would be of great help to single-dipole 21cm cosmology experiments, whose diffuse Galactic foregrounds are currently poorly constrained (Pritchard & Loeb, 2010b; de Oliveira-Costa et al., 2008). 2. A wideband (44-88 MHz) map of of the Southern sky, which can be used as a direct detection of the dark ages global signal. Recent theoretical work has shown that the Parkes aperture of 64 m is the optimal size for such a direct detection, which could be achieved at 25? in as little as 100 hrs of observing (Liu et al., 2012). After receiving a 4.1 grade in the previous round, our observations were not scheduled due to limited receiver changes. We are therefore re-proposing as formality. Since the proposal, we have obtained RFI measurements with the feed pointed at zenith. We are confident the dominant source of RFI can be found and removed. If observing at this band is possible, at least two scientific outputs relevant to global 21cm cosmology (among many others) are put within reach:

  3. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements

    NASA Astrophysics Data System (ADS)

    Mozdzen, T. J.; Bowman, J. D.; Monsalve, R. A.; Rogers, A. E. E.

    2016-02-01

    Foreground subtraction in global redshifted 21 cm measurements is limited by frequency-dependent (chromatic) structure in antenna beam patterns. Chromatic beams couple angular structures in Galactic foreground emission to spectral structures that may not be removed by smooth functional forms. We report results for simulations based on two dipole antennas used by the Experiment to Detect the Global EoR Signature (EDGES). The residual levels in simulated foreground-subtracted spectra are found to differ substantially between the two antennas, suggesting that antenna design must be carefully considered. Residuals are also highly dependent on the right ascension and declination of the antenna pointing, with rms values differing by as much as a factor of 20 across pointings. For EDGES and other ground-based experiments with zenith pointing antennas, right ascension and declination correspond directly to the local sidereal time and the latitude of the deployment site, hence chromatic beam effects should be taken into account when selecting sites. We introduce the `blade' dipole antenna and show, via simulations, that it has better chromatic performance than the `fourpoint' antenna previously used for EDGES. The blade antenna yields 1-5 mK residuals across the entire sky after a 5-term polynomial is removed from simulated spectra, whereas the fourpoint antenna typically requires a 6-term polynomial for comparable residuals. For both antennas, the signal-to-noise ratio of recovered 21 cm input signals peaks for a 5-term polynomial foreground fit given realistic thermal noise levels.

  4. PAPER-64 Constraints on Reionization: The 21 cm Power Spectrum at z = 8.4

    NASA Astrophysics Data System (ADS)

    Ali, Zaki S.; Parsons, Aaron R.; Zheng, Haoxuan; Pober, Jonathan C.; Liu, Adrian; Aguirre, James E.; Bradley, Richard F.; Bernardi, Gianni; Carilli, Chris L.; Cheng, Carina; DeBoer, David R.; Dexter, Matthew R.; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C.; Klima, Pat; MacMahon, David H. E.; Maree, Matthys; Moore, David F.; Razavi, Nima; Stefan, Irina I.; Walbrugh, William P.; Walker, Andre

    2015-08-01

    In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ2(k) of (22.4 mK)2 in the range 0.15\\lt k\\lt 0.5h {{Mpc}}-1 at z = 8.4. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array.

  5. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ˜ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ˜2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  6. Signatures of clumpy dark matter in the global 21 cm background signal

    SciTech Connect

    Cumberbatch, Daniel T.; Lattanzi, Massimiliano; Silk, Joseph

    2010-11-15

    We examine the extent to which the self-annihilation of supersymmetric neutralino dark matter, as well as light dark matter, influences the rate of heating, ionization, and Lyman-{alpha} pumping of interstellar hydrogen and helium and the extent to which this is manifested in the 21 cm global background signal. We fully consider the enhancements to the annihilation rate from dark matter halos and substructures within them. We find that the influence of such structures can result in significant changes in the differential brightness temperature, {delta}T{sub b}. The changes at redshifts z<25 are likely to be undetectable due to the presence of the astrophysical signal; however, in the most favorable cases, deviations in {delta}T{sub b}, relative to its value in the absence of self-annihilating dark matter, of up to {approx_equal}20 mK at z=30 can occur. Thus we conclude that, in order to exclude these models, experiments measuring the global 21 cm signal, such as EDGES and CORE, will need to reduce the systematics at 50 MHz to below 20 mK.

  7. The 21cm power spectrum and the shapes of non-Gaussianity

    SciTech Connect

    Chongchitnan, Sirichai

    2013-03-01

    We consider how measurements of the 21cm radiation from the epoch of reionization (z = 8−12) can constrain the amplitudes of various 'shapes' of primordial non-Gaussianity. The limits on these shapes, each parametrized by the non-linear parameter f{sub NL}, can reveal whether the physics of inflation is more complex than the standard single-field, slow-roll scenario. In this work, we quantify the effects of the well-known local, equilateral, orthogonal and folded types of non-Gaussianities on the 21cm power spectrum, which is expected to be measured by upcoming radio arrays such as the Square-Kilometre Array (SKA). We also assess the prospects of the SKA in constraining these non-Gaussianities, and found constraints that are comparable with those from cosmic-microwave-background experiments such as Planck. We show that the limits on various f{sub NL} can be tightened to O(1) using a radio array with a futuristic but realistic set of specifications.

  8. Constraining the population of radio-loud active galactic nuclei at high redshift with the power spectrum of the 21 cm Forest

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline N.

    2014-06-01

    The 21 cm forest, the absorption by the intergalactic medium (IGM) towards a high redshift radio-loud source, is a probe of the thermal state of the IGM. To date, the literature has focused on line-of-sight spectral studies of a single quasar known to have a large redshift. We instead examine many sources in a wide field of view, and show that the imprint from the 21 cm forest absorption of these sources is detectible in the power spectrum. The properties of the power spectrum can reveal information on the population of the earliest radio loud sources that may have existed during the pre-reionization epoch at z>10.Using semi-numerical simulations of the IGM and a semi-empirical source population, we show that the 21 cm forest dominates, in a distinctive region of Fourier space, the brightness temperature power spectrum that many contemporary experiments aim to measure. In particular, the forest dominates the diffuse emission on smaller spatial scales along the line of sight. Exploiting this separation, one may constrain the IGM thermal history, such as heating by the first X-ray sources, on large spatial scales and the absorption of radio loud active galactic nuclei on small ones.Using realistic simulations of noise and foregrounds, we show that planned instruments on the scale of the Hydrogen Epoch of Reionization Array (HERA) with a collecting area of one tenth of a square kilometer can detect the 21cm forest in this small spatial scale region with high signal to noise. We develop an analytic toy model for the signal and explore its detectability over a large range of thermal histories and potential high redshift source scenarios.

  9. Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.

  10. Reionization and beyond: detecting the peaks of the cosmological 21 cm signal

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Ewall-Wice, Aaron; Hewitt, Jacqueline

    2014-04-01

    The cosmological 21 cm signal is set to become the most powerful probe of the early Universe, with first-generation interferometers aiming to make statistical detections of reionization. There is increasing interest also in the pre-reionization epoch when the intergalactic medium (IGM) was heated by an early X-ray background. Here, we perform parameter studies varying the halo masses capable of hosting galaxies and their X-ray production efficiencies. These two fundamental parameters control the timing and relative offset of reionization and IGM heating, making them the most relevant for predicting the signal during both epochs. We also relate these to popular models of warm dark matter cosmologies. For each parameter combination, we compute the signal-to-noise ratio (S/N) of the large-scale (k ˜ 0.1 Mpc-1) 21 cm power for both reionization and X-ray heating for a 2000 h observation with several instruments: 128 tile Murchison Wide Field Array (MWA128T), a 256 tile extension (MWA256T), the Low Frequency Array (LOFAR), the 128 element Precision Array for Probing the Epoch of Reionization (PAPER), and the second-generation Square Kilometre Array (SKA). We show that X-ray heating and reionization in many cases are of comparable detectability. For fiducial astrophysical parameters, MWA128T might detect X-ray heating, thanks to its extended bandpass. When it comes to reionization, both MWA128T and PAPER will also only achieve marginal detections, unless foregrounds on larger scales can be mitigated. On the other hand, LOFAR should detect plausible models of reionization at S/N > 10. The SKA will easily detect both X-ray heating and reionization.

  11. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    NASA Astrophysics Data System (ADS)

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-σ upper limit on the EoR power spectrum of Δ^2(k)<1.25×10^4 mK^2 at cosmic scale k=0.236 h Mpc^{-1} and redshift z=6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  12. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    NASA Astrophysics Data System (ADS)

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-sigma upper limit on the EoR power spectrum of Delta2(k) < 1.25 x 104 mK2 at cosmic scale k = 0.236 h Mpc-1 and redshift z = 6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  13. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  14. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating.

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-05-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 hMpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  15. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION

    SciTech Connect

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.

    2012-09-20

    Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional power spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.

  16. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $k\\lesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12\\lesssim z \\lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  17. THOR - The HI, OH, Recombination Line Survey of the Milky Way - HI observations of the giant molecular cloud W43

    NASA Astrophysics Data System (ADS)

    Bihr, Simon; Beuther, Henrik; Johnston, Katharine; Henning, Thomas; Ott, Juergen; Brunthaler, Andreas; THOR Collaboration

    2015-08-01

    To study the atomic, molecular and ionised emission of Giant Molecular Clouds (GMCs) in the Milky Way, we have initiated a Large Program with the VLA: 'THOR - The HI, OH, Recombination Line survey of the Milky Way'. We map the 21cm HI line, 4 OH lines, 19 Hα recombination lines and the continuum from 1-2GHz of a significant fraction of the Milky Way (l=15-67°, |b|<1°) at an angular resolution of ~20’’. In my talk, I will focus on the HI emission from the W43 GMC complex. Classically, the HI 21cm line is treated as optically thin with properties such as the column density calculated under this assumption. While this approach gives reasonable results for regions of low-mass star-formation, it is not sufficient to describe the atomic gas in close proximity to GMCs. In my talk, I will present a method using strong continuum sources to measure the optical depth, and thus correct the HI 21cm emission for optical depth effects and weak diffuse continuum emission. Our analysis puts a lower limit of M~6.6x106 Msun on the HI mass associated with the W43 GMC, which is a factor of 2.4 larger than the mass obtained using the optically thin assumption. The HI column densities reach NHI~150 Msun pc-2 ~ 1.9x1022 cm-2, which is an order of magnitude higher than seen in low mass star formation regions. This result challenges theoretical models that predict a threshold for the HI column density of ~10 Msun pc-2, at which the formation of molecular hydrogen should set in. Furthermore, we assume an elliptical layered structure for W43 to estimate the particle density profile. The HI particle density shows a linear decrease toward the centre of W43 and the molecular hydrogen, traced via dust observations with Herschel, shows an exponential increase toward the centre. While at the cloud edge atomic and molecular hydrogen are well mixed, the centre of the cloud is dominated by H2. We do not identify a sharp transition between hydrogen in atomic and molecular form. Our results are

  18. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc‑1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  19. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  20. The 21-cm signature of the first stars during the Lyman-Werner feedback era

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli; Tseliakhovich, Dmitriy; Hirata, Christopher M.

    2013-07-01

    The formation of the first stars is an exciting frontier area in astronomy. Early redshifts (z ˜ 20) have become observationally promising as a result of a recently recognized effect of a supersonic relative velocity between the dark matter and gas. This effect produces prominent structure on 100 comoving Mpc scales, which makes it much more feasible to detect 21-cm fluctuations from the epoch of first heating. We use semi-numerical hybrid methods to follow for the first time the joint evolution of the X-ray and Lyman-Werner radiative backgrounds, including the effect of the supersonic streaming velocity on the cosmic distribution of stars. We incorporate self-consistently the negative feedback on star formation induced by the Lyman-Werner radiation, which dissociates molecular hydrogen and thus suppresses gas cooling. We find that the feedback delays the X-ray heating transition by Δz ˜ 2, but leaves a promisingly large fluctuation signal over a broad redshift range. The large-scale power spectrum is predicted to reach a maximal signal-to-noise ratio of S/N ˜ 3-4 at z ˜ 18 (for a projected first-generation instrument), with S/N >1 out to z ˜ 22-23. We hope to stimulate additional numerical simulations as well as observational efforts focused on the epoch prior to cosmic reionization.

  1. 21 cm signal from cosmic dawn: imprints of spin temperature fluctuations and peculiar velocities

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2015-02-01

    The 21 cm brightness temperature δTb fluctuations from reionization promise to provide information on the physical processes during that epoch. We present a formalism for generating the δTb distribution using dark matter simulations and a 1D radiative transfer code. Our analysis is able to account for the spin temperature TS fluctuations arising from inhomogeneous X-ray heating and Lyα coupling during cosmic dawn. The δTb power spectrum amplitude at large scales (k ˜ 0.1 Mpc-1) is maximum when ˜10 per cent of the gas (by volume) is heated above the cosmic microwave background temperature. The power spectrum shows a `bump'-like feature during cosmic dawn and its location measures the typical sizes of heated regions. We find that the effect of peculiar velocities on the power spectrum is negligible at large scales for most part of the reionization history. During early stages (when the volume averaged ionization fraction ≲ 0.2) this is because the signal is dominated by fluctuations in TS. For reionization models that are solely driven by stars within high-mass (≳ 109 M⊙) haloes, the peculiar velocity effects are prominent only at smaller scales (k ≳ 0.4 Mpc-1) where patchiness in the neutral hydrogen density dominates the signal. The conclusions are unaffected by changes in the amplitude or steepness in the X-ray spectra of the sources.

  2. MITEoR: a scalable interferometer for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Tegmark, M.; Buza, V.; Dillon, J. S.; Gharibyan, H.; Hickish, J.; Kunz, E.; Liu, A.; Losh, J.; Lutomirski, A.; Morrison, S.; Narayanan, S.; Perko, A.; Rosner, D.; Sanchez, N.; Schutz, K.; Tribiano, S. M.; Valdez, M.; Yang, H.; Adami, K. Zarb; Zelko, I.; Zheng, K.; Armstrong, R. P.; Bradley, R. F.; Dexter, M. R.; Ewall-Wice, A.; Magro, A.; Matejek, M.; Morgan, E.; Neben, A. R.; Pan, Q.; Penna, R. F.; Peterson, C. M.; Su, M.; Villasenor, J.; Williams, C. L.; Zhu, Y.

    2014-12-01

    We report on the MIT Epoch of Reionization (MITEoR) experiment, a pathfinder low-frequency radio interferometer whose goal is to test technologies that improve the calibration precision and reduce the cost of the high-sensitivity 3D mapping required for 21 cm cosmology. MITEoR accomplishes this by using massive baseline redundancy, which enables both automated precision calibration and correlator cost reduction. We demonstrate and quantify the power and robustness of redundancy for scalability and precision. We find that the calibration parameters precisely describe the effect of the instrument upon our measurements, allowing us to form a model that is consistent with χ2 per degree of freedom <1.2 for as much as 80 per cent of the observations. We use these results to develop an optimal estimator of calibration parameters using Wiener filtering, and explore the question of how often and how finely in frequency visibilities must be reliably measured to solve for calibration coefficients. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious Hydrogen Epoch of Reionization Array project and other next-generation instruments, which would incorporate many identical or similar technologies.

  3. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  4. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  5. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.

    PubMed

    Tarter, J

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank. PMID:11537747

  6. 21 cm absorption by compact hydrogen discs around black holes in radio-loud nuclei of galaxies

    SciTech Connect

    Loeb, Abraham

    2008-05-15

    The clumpy maser discs observed in some galactic nuclei mark the outskirts of the accretion disc that fuels the central black hole and provide a potential site of nuclear star formation. Unfortunately, most of the gas in maser discs is currently not being probed; large maser gains favor paths that are characterized by a small velocity gradient and require rare edge-on orientations of the disc. Here we propose a method for mapping the atomic hydrogen distribution in nuclear discs through its 21 cm absorption against the radio continuum glow around the central black hole. In NGC 4258, the 21 cm optical depth may approach unity for high angular resolution (VLBI) imaging of coherent clumps which are dominated by thermal broadening and have the column density inferred from x-ray absorption data, {approx}10{sup 23} cm{sup -2}. Spreading the 21 cm absorption over the full rotation velocity width of the material in front of the narrow radio jets gives a mean optical depth of {approx}0.1. Spectroscopic searches for the 21 cm absorption feature in other galaxies can be used to identify the large population of inclined gaseous discs which are not masing in our direction. Follow-up imaging of 21 cm silhouettes of accelerating clumps within these discs can in turn be used to measure cosmological distances.

  7. EXPLORING THE COSMIC REIONIZATION EPOCH IN FREQUENCY SPACE: AN IMPROVED APPROACH TO REMOVE THE FOREGROUND IN 21 cm TOMOGRAPHY

    SciTech Connect

    Wang, Jingying; Xu, Haiguang; Guo, Xueying; Li, Weitian; Liu, Chengze; An, Tao; Wang, Yu; Gu, Junhua; Martineau-Huynh, Olivier; Wu, Xiang-Ping E-mail: zishi@sjtu.edu.cn

    2013-02-15

    With the intent of correctly restoring the redshifted 21 cm signals emitted by neutral hydrogen during the cosmic reionization processes, we re-examine the separation approaches based on the quadratic polynomial fitting technique in frequency space in order to investigate whether they work satisfactorily with complex foreground by quantitatively evaluating the quality of restored 21 cm signals in terms of sample statistics. We construct the foreground model to characterize both spatial and spectral substructures of the real sky, and use it to simulate the observed radio spectra. By comparing between different separation approaches through statistical analysis of restored 21 cm spectra and corresponding power spectra, as well as their constraints on the mean halo bias b and average ionization fraction x{sub e} of the reionization processes, at z = 8 and the noise level of 60 mK we find that although the complex foreground can be well approximated with quadratic polynomial expansion, a significant part of the Mpc-scale components of the 21 cm signals (75% for {approx}> 6 h {sup -1} Mpc scales and 34% for {approx}> 1 h {sup -1} Mpc scales) is lost because it tends to be misidentified as part of the foreground when the single-narrow-segment separation approach is applied. The best restoration of the 21 cm signals and the tightest determination of b and x{sub e} can be obtained with the three-narrow-segment fitting technique as proposed in this paper. Similar results can be obtained at other redshifts.

  8. Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis

    NASA Astrophysics Data System (ADS)

    Shaw, J. Richard; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert; Pen, Ue-Li

    2015-04-01

    In this paper we continue to develop the m -mode formalism, a technique for efficient and optimal analysis of wide-field transit radio telescopes, targeted at 21 cm cosmology. We extend this formalism to give an accurate treatment of the polarized sky, fully accounting for the effects of polarization leakage and cross polarization. We use the geometry of the measured set of visibilities to project down to pure temperature modes on the sky, serving as a significant compression, and an effective first filter of polarized contaminants. As in our previous work, we use the m -mode formalism with the Karhunen-Loève transform to give a highly efficient method for foreground cleaning, and demonstrate its success in cleaning realistic polarized skies observed with an instrument suffering from substantial off axis polarization leakage. We develop an optimal quadratic estimator in the m -mode formalism which can be efficiently calculated using a Monte Carlo technique. This is used to assess the implications of foreground removal for power spectrum constraints where we find that our method can clean foregrounds well below the foreground wedge, rendering only scales k∥<0.02 h Mpc-1 inaccessible. As this approach assumes perfect knowledge of the telescope, we perform a conservative test of how essential this is by simulating and analyzing data sets with deviations about our assumed telescope. Assuming no other techniques to mitigate bias are applied, we find we recover unbiased power spectra when the per-feed beamwidth to be measured to 0.1%, and amplifier gains to be known to 1% within each minute. Finally, as an example application, we extend our forecasts to a wideband 400-800 MHz cosmological observation and consider the implications for probing dark energy, finding a pathfinder-scale medium-sized cylinder telescope improves the Dark Energy Task Force figure of merit by around 70% over Planck and Stage II experiments alone.

  9. A Practical Theorem on Using Interferometry to Measure the Global 21-cm Signal

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Chang, Tzu-Ching; Doré, Olivier; Hirata, Christopher M.

    2016-08-01

    The sky-averaged, or global, background of redshifted 21 cm radiation is expected to be a rich source of information on cosmological reheating and reionization. However, measuring the signal is technically challenging: one must extract a small, frequency-dependent signal from under much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single antennas, which require one to calibrate out the frequency-dependent structure in the overall system gain (due to internal reflections, for example) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated proposals to measure the signal using cross-correlations in interferometric setups, where additional calibration techniques are available. In this paper we focus on the general principles driving the sensitivity of the interferometric setups to the global signal. We prove that this sensitivity is directly related to two characteristics of the setup: the cross-talk between readout channels (i.e., the signal picked up at one antenna when the other one is driven) and the correlated noise due to thermal fluctuations of lossy elements (e.g., absorbers or the ground) radiating into both channels. Thus in an interferometric setup, one cannot suppress cross-talk and correlated thermal noise without reducing sensitivity to the global signal by the same factor—instead, the challenge is to characterize these effects and their frequency dependence. We illustrate our general theorem by explicit calculations within toy setups consisting of two short-dipole antennas in free space and above a perfectly reflecting ground surface, as well as two well-separated identical lossless antennas arranged to achieve zero cross-talk.

  10. The impact of spin-temperature fluctuations on the 21-cm moments

    NASA Astrophysics Data System (ADS)

    Watkinson, C. A.; Pritchard, J. R.

    2015-12-01

    This paper considers the impact of Lyman α coupling and X-ray heating on the 21-cm brightness-temperature one-point statistics (as predicted by seminumerical simulations). The X-ray production efficiency is varied over four orders of magnitude and the hardness of the X-ray spectrum is varied from that predicted for high-mass X-ray binaries, to the softer spectrum expected from the hot interstellar medium. We find peaks in the redshift evolution of both the variance and skewness associated with the efficiency of X-ray production. The amplitude of the variance is also sensitive to the hardness of the X-ray spectral energy distribution. We find that the relative timing of the coupling and heating phases can be inferred from the redshift extent of a plateau that connects a peak in the variance's evolution associated with Lyman α coupling to the heating peak. Importantly, we find that late X-ray heating would seriously hamper our ability to constrain reionization with the variance. Late X-ray heating also qualitatively alters the evolution of the skewness, providing a clean way to constrain such models. If foregrounds can be removed, we find that LOFAR, MWA and PAPER could constrain reionization and late X-ray heating models with the variance. We find that HERA and SKA (phase 1) will be able to constrain both reionization and heating by measuring the variance using foreground-avoidance techniques. If foregrounds can be removed they will also be able to constrain the nature of Lyman α coupling.

  11. A Flux Scale for Southern Hemisphere 21 cm Epoch of Reionization Experiments

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki; Bowman, Judd; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; Gugliucci, Nicole E.; Klima, Pat; MacMahon, Dave H. E.; Manley, Jason R.; Moore, David F.; Pober, Jonathan C.; Stefan, Irina I.; Walbrugh, William P.

    2013-10-01

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from -46° to -40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of -0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  12. 21-cm Observations with the Morehead Radio Telescope: Involving Undergraduates in Observing Programs

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2000-12-01

    Herein we report astronomical observations made by undergraduate students with the Morehead Radio Telescope (MRT). The MRT, located at Morehead State University, Morehead, Kentucky, is small aperture (44-ft.) instrument designed by faculty, students, and industrial partners to provide a research instrument and active laboratory for undergraduate astronomy, physics, pre-engineering, and computer science students. Small aperture telescopes like the MRT have numerous advantages as active laboratories and as research instruments. The benefits to students are based upon a hands-on approach to learning concepts in astrophysics and engineering. Students are provided design and research challenges and are allowed to pursue their own solutions. Problem-solving abilities and research design skills are cultivated by this approach. Additionally, there are still contributions that small aperture centimeter-wave instruments can make. The MRT operates over a 6 MHz bandwidth centered at 1420 MHz (21-cm), which corresponds to the hyperfine transition of atomic hydrogen (HI). The HI spatial distribution and flux density associated with cosmic phenomena can be observed and mapped. The dynamics and kinematics of celestial objects can be investigated by observing over a range of frequencies (up to 2.5 MHz) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. The sensitivity and versatility of the telescope design facilitate investigation of a wide variety of cosmic phenomena, including supernova remnants, emission and planetary nebulae, extended HI emission from the Milky Way, quasars, radio galaxies, and the sun. Student observations of galactic sources herein reported include Taurus A, Cygnus X, and the Rosette Nebula. Additionally, we report observations of extragalactic phenomena, including Cygnus A, 3C 147, and 3C 146. These observations serve as a performance and capability test-bed of the MRT. In addition to the astronomical results of these

  13. Models of the Cosmological 21 cm Signal from the Epoch of Reionization Calibrated with Lyα and CMB Data

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2016-08-01

    We present here 21 cm predictions from high dynamic range simulations for a range of reionization histories that have been tested against available Lyα and CMB data. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen spin temperature is significantly larger than the CMB temperature. Models consistent with the available Lyα data and CMB measurement of the Thomson optical depth predict typical values of 10-20 mK2 for the variance of the 21 cm brightness temperature at redshifts z = 7-10 at scales accessible to ongoing and upcoming experiments (k ≲ 1 cMpc-1h). This is within a factor of a few magnitude of the sensitivity claimed to have been already reached by ongoing experiments in the signal rms value. Our different models for the reionization history make markedly different predictions for the redshift evolution and thus frequency dependence of the 21 cm power spectrum and should be easily discernible by LOFAR (and later HERA and SKA1) at their design sensitivity. Our simulations have sufficient resolution to assess the effect of high-density Lyman limit systems that can self-shield against ionizing radiation and stay 21 cm bright even if the hydrogen in their surroundings is highly ionized. Our simulations predict that including the effect of the self-shielded gas in highly ionized regions reduces the large scale 21 cm power by about 30%.

  14. New 21 cm Power Spectrum Upper Limits From PAPER II: Constraints on IGM Properties at z = 7.7

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan; Ali, Zaki; Parsons, Aaron; Paper Team

    2015-01-01

    Using a simulation-based framework, we interpret the power spectrum measurements from PAPER of Ali et al. in the context of IGM physics at z = 7.7. A cold IGM will result in strong 21 cm absorption relative to the CMB and leads to a 21 cm fluctuation power spectrum that can exceed 3000 mK^2. The new PAPER measurements allow us to rule out extreme cold IGM models, placing a lower limit on the physical temperature of the IGM. We also compare this limit with a calculation for the predicted heating from the currently observed galaxy population at z = 8.

  15. VizieR Online Data Catalog: High galactic latitude HI absorption survey (Mohan+, 2004)

    NASA Astrophysics Data System (ADS)

    Mohan, R.; Dwarakanath, K. S.; Srinivasan, G.

    2006-06-01

    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b|>15{deg}) Galactic latitudes. The Declination coverage of the present survey is DE~-45{deg}. With a mean rms optical depth of ~0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results. (2 data files).

  16. Characterizing foreground for redshifted 21 cm radiation: 150 MHz Giant Metrewave Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Prasad, Jayanti; Bharadwaj, Somnath; Ali, Sk. Saiyad; Chengalur, Jayaram N.

    2012-11-01

    Foreground removal is a major challenge for detecting the redshifted 21 cm neutral hydrogen (H I) signal from the Epoch of Reionization. We have used 150 MHz Giant Metrewave Radio Telescope observations to characterize the statistical properties of the foregrounds in four different fields of view. The measured multifrequency angular power spectrum Cℓ(Δν) is found to have values in the range 104-2 × 104 mK2 across 700 ≤ ℓ ≤ 2 × 104 and Δν ≤ 2.5 MHz, which is consistent with model predictions where point sources are the most dominant foreground component. The measured Cℓ(Δν) does not show a smooth Δν dependence, which poses a severe difficulty for foreground removal using polynomial fitting. The observational data were used to assess point source subtraction. Considering the brightest source (˜1 Jy) in each field, we find that the residual artefacts are less than 1.5 per cent in the most sensitive field (FIELD I). Considering all the sources in the fields, we find that the bulk of the image is free of artefacts, the artefacts being localized to the vicinity of the brightest sources. We have used FIELD I, which has an rms noise of 1.3 mJy beam-1, to study the properties of the radio source population to a limiting flux of 9 mJy. The differential source count is well fitted with a single power law of slope -1.6. We find there is no evidence for flattening of the source counts towards lower flux densities which suggests that source population is dominated by the classical radio-loud active galactic nucleus. The diffuse Galactic emission is revealed after the point sources are subtracted out from FIELD I. We find Cℓ ∝ ℓ-2.34 for 253 ≤ ℓ ≤ 800 which is characteristic of the Galactic synchrotron radiation measured at higher frequencies and larger angular scales. We estimate the fluctuations in the Galactic synchrotron emission to be ℓ(ℓ+1)Cℓ/2π≃10 K at ℓ = 800 (θ > 10 arcmin). The measured Cℓ is dominated by

  17. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    SciTech Connect

    Jacobs, Daniel C.; Bowman, Judd; Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E.; Gugliucci, Nicole E.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  18. Predictions for BAO distance estimates from the cross-correlation of the Lyman-α forest and redshifted 21-cm emission

    SciTech Connect

    Sarkar, Tapomoy Guha; Bharadwaj, Somnath E-mail: somnath@phy.iitkgp.ernet.in

    2013-08-01

    We investigate the possibility of using the cross-correlation of the Lyman-α forest and redshifted 21-cm emission to detect the baryon acoustic oscillation (BAO). The standard Fisher matrix formalism is used to determine the accuracy with which it will be possible to measure cosmological distances using this signal. Earlier predictions [1] indicate that it will be possible to measure the dilation factor D{sub V} with 1.9% accuracy at z = 2.5 from the BOSS Lyman-α forest auto-correlation. In this paper we investigate if it is possible to improve the accuracy using the cross-correlation. We use a simple parametrization of the Lyman-α forest survey which very loosely matches some properties of the BOSS. For the redshifted 21-cm observations we consider a hypothetical radio interferometric array layout. It is assumed that the observations span z = 2 to 3 and covers the 10,000 deg{sup 2} sky coverage of BOSS. We find that it is possible to significantly increase the accuracy of the distance estimates by considering the cross-correlation signal.

  19. Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Neben, Abraham R.; Hewitt, Jacqueline N.; Tegmark, Max; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; de Oliveira-Costa, A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hernquist, L.; Hurley-Walker, N.; Jacobs, D. C.; Kim, H. S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; McKinley, B.; Mitchell, D. A.; Morales, M. F.; Offringa, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sethi, S.; Shankar, N. Udaya; Subrahmanyan, R.; Sullivan, I.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C.; Wayth, R. B.; Webster, R. L.; Wyithe, S.; Bernardi, G.; Cappallo, R. J.; Deshpande, A. A.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.

    2015-06-01

    The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Δ2(k )<3.7 ×104 mK2 at comoving scale k =0.18 h Mpc-1 and at z =6.8 , consistent with existing limits.

  20. VizieR Online Data Catalog: Velocities of interstellar lines in Sco-Cen (Poeppel+, 2010)

    NASA Astrophysics Data System (ADS)

    Poeppel, W. G. L.; Bajaja, E.; Arnal, E. M.; Morras, R.

    2010-07-01

    In this paper we are using our new high-sensitivity southern 21-cm line survey (see Arnal et al., 2000, ASP Conf. Ser., 218, 401), combined with the Leiden/Dwingeloo Survey of Galactic Neutral Hydrogen (Hartmann & Burton, 1997, Atlas of Galactic Neutral Hydrogen (Cambridge Univ. Press)). (2 data files).

  1. X-rays and hard ultraviolet radiation from the first galaxies: ionization bubbles and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Benson, Andrew

    2011-11-01

    The first stars and quasars are known sources of hard ionizing radiation in the first billion years of the Universe. We examine the joint effects of X-rays and hard ultraviolet (UV) radiation from such first-light sources on the hydrogen and helium reionization of the intergalactic medium (IGM) at early times, and the associated heating. We study the growth and evolution of individual H II, He II and He III regions around early galaxies with first stars and/or quasi-stellar object populations. We find that in the presence of helium-ionizing radiation, X-rays may not dominate the ionization and thermal history of the IGM at z˜ 10-20, contributing relatively modest increases to IGM ionization and heating up to ˜103-105 K in IGM temperatures. We also calculate the 21-cm signal expected from a number of scenarios with metal-free starbursts and quasars in varying combinations and masses at these redshifts. The peak values for the spin temperature reach ˜104-105 K in such cases. The maximum values for the 21-cm brightness temperature are around 30-40 mK in emission, while the net values of the 21-cm absorption signal range from ˜a few to 60 mK on scales of 0.01-1 Mpc. We find that the 21-cm signature of X-ray versus UV ionization could be distinct, with the emission signal expected from X-rays alone occurring at smaller scales than that from UV radiation, resulting from the inherently different spatial scales at which X-ray and UV ionization/heating manifests. This difference is time-dependent and becomes harder to distinguish with an increasing X-ray contribution to the total ionizing photon production. Such differing scale-dependent contributions from X-ray and UV photons may therefore 'blur' the 21-cm signature of the percolation of ionized bubbles around early haloes (depending on whether a cosmic X-ray or UV background is built up first) and affect the interpretation of 21-cm data constraints on reionization.

  2. Practical Low Cost On Line Survey Administration.

    ERIC Educational Resources Information Center

    Heger, Herbert K.

    In response to the accountability movement, schools must develop appropriate data sources and use them for decision making. This paper describes a data-collection and data-analysis procedure that can be used at the school building level. The process uses software for survey administration and data analysis for conducting practical automated…

  3. Comparison of the thermal and nonthermal radiation characteristics of Jupiter at 6, 11, and 21 cm with model calculations

    NASA Technical Reports Server (NTRS)

    De Pater, I.; Kenderdine, S.; Dickel, J. R.

    1982-01-01

    Four different data sets on Jupiter, one at 6, one at 11, and two at 21 cm, are compared to each other and with the synchrotron radiation model of the magnetosphere developed by de Pater (1981). The model agrees with all these data sets, and hence was used to derive and interpret the characteristics of the thermal radiation component at all three wavelengths. The disk temperatures are 233 + or - 17, 280 + or - 20, and 340 + or - 26 K at 6, 11, and 21 cm, respectively. A comparison of the data with atmospheric model calculations strongly suggests that the disk is uniform at 6 and 11 cm near the center of the disk, where mu is greater than 0.6-0.7. This may indicate a nonuniform distribution of ammonia at layers at and above the visible cloud layers.

  4. [StraighterLine] Student Survey Results. Final

    ERIC Educational Resources Information Center

    Hezel Associates (NJ1), 2011

    2011-01-01

    The cost of college continues to outpace inflation, even as average household income has declined over the past decade. Since 2008, StraighterLine has offered a new way of reducing the cost of a college degree: self-paced, pay-as-you-go introductory level college courses. The underlying philosophy of the program is that students can get an…

  5. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  6. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  7. e-MERLIN 21cm constraints on the mass-loss rates of OB stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, J. C.; Fenech, D. M.; Prinja, R. K.; Blomme, R.; Yates, J. A.

    2016-08-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the COBRaS Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ˜ 70 μJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ˜ 4.4 - 4.8 × 10-6 M⊙ yr -1 for O3 supergiants and ≲ 2.9 × 10-6 M⊙ yr -1 for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and LBV candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 days, we detect a ˜ 69% increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to the stellar surface (where Hα forms) is more clumped than the very extended geometric region sampled by our radio observations.

  8. The cross correlation between the 21-cm radiation and the CMB lensing field: a new cosmological signal

    SciTech Connect

    Vallinotto, Alberto

    2011-01-01

    The measurement of Baryon Acoustic Oscillations through the 21-cm intensity mapping technique at redshift z {<=} 4 has the potential to tightly constrain the evolution of dark energy. Crucial to this experimental effort is the determination of the biasing relation connecting fluctuations in the density of neutral hydrogen (HI) with the ones of the underlying dark matter field. In this work I show how the HI bias relevant to these 21-cm intensity mapping experiments can successfully be measured by cross-correlating their signal with the lensing signal obtained from CMB observations. In particular I show that combining CMB lensing maps from Planck with 21-cm field measurements carried out with an instrument similar to the Cylindrical Radio Telescope, this cross-correlation signal can be detected with a signal-to-noise (S/N) ratio of more than 5. Breaking down the signal arising from different redshift bins of thickness {Delta}z = 0.1, this signal leads to constraining the large scale neutral hydrogen bias and its evolution to 4{sigma} level.

  9. Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission

    NASA Astrophysics Data System (ADS)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.

    2015-11-01

    The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.

  10. Line Focus Receiver Infrared Temperature Survey System

    Energy Science and Technology Software Center (ESTSC)

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solarmore » parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.« less

  11. Line Focus Receiver Infrared Temperature Survey System

    SciTech Connect

    Wendelin, Tim

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solar parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.

  12. Survey of Product-line Verification and Validation Techniques

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn

    2007-01-01

    This report presents the results from the first task of the SARP Center Initiative, 'Product Line Verification of Safety-Critical Software.' Task 1 is a literature survey of available techniques for product line verification and validation. Section 1 of the report provides an introduction to product lines and motivates the survey of verification techniques. It describes what is reused in product-line engineering and explains the goal of verifiable conformance of the developed system to its product-line specifications. Section 2 of the report describes six lifecycle steps in product-line verification and validation. This description is based on, and refers to, the best practices extracted from the readings. It ends with a list of verification challenges for NASA product lines (2.7) and verification enablers for NASA product lines (2.8) derived from the survey. Section 3 provides resource lists of related conferences, workshops, industrial and defense industry experiences and case studies of product lines, and academic/industrial consortiums. Section 4 is a bibliography of papers and tutorials with annotated entries for relevant papers not previously discussed in sections 2 or 3.

  13. Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength

    NASA Technical Reports Server (NTRS)

    Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.

    1974-01-01

    The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.

  14. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    PubMed

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized). PMID:25167246

  15. An objective prism survey of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Liu, J.-Y.; Huang, Y.-W.; Feng, X.-C.

    1986-09-01

    The first list of emission line objects detected as part of an object prism survey of emission line galaxies begun in China in 1981 is presented. The instrument and observations are described, and the identification of emission-line galaxies is discussed. The spectral structural classification of the presented objects is addressed. On a dozen plates covering some 220 square degrees of sky, 50 emission line objects were detected, 47 of which are galaxies and the other three of which are planetary nebulae. Finding charts of the objects are presented.

  16. Constraints on the temperature of the intergalactic medium at z = 8.4 with 21-cm observations

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei; Pober, Jonathan C.

    2016-02-01

    We compute robust lower limits on the spin temperature, TS, of the z = 8.4 intergalactic medium (IGM), implied by the upper limits on the 21-cm power spectrum recently measured by PAPER-64. Unlike previous studies which used a single epoch of reionization (EoR) model, our approach samples a large parameter space of EoR models: the dominant uncertainty when estimating constraints on TS. Allowing TS to be a free parameter and marginalizing over EoR parameters in our Markov Chain Monte Carlo code 21CMMC, we infer TS ≥ 3 K (corresponding approximately to 1σ) for a mean IGM neutral fraction of bar{x}_{HI}≳ 0.1. We further improve on these limits by folding-in additional EoR constraints based on: (i) the dark fraction in QSO spectra, which implies a strict upper limit of bar{x}_{HI}[z=5.9]≤ 0.06+0.05 (1σ ); and (ii) the electron scattering optical depth, τe = 0.066 ± 0.016 (1σ) measured by the Planck satellite. By restricting the allowed EoR models, these additional observations tighten the approximate 1σ lower limits on the spin temperature to TS ≥ 6 K. Thus, even such preliminary 21-cm observations begin to rule out extreme scenarios such as `cold reionization', implying at least some prior heating of the IGM. The analysis framework developed here can be applied to upcoming 21-cm observations, thereby providing unique insights into the sources which heated and subsequently reionized the very early Universe.

  17. Interpreting the Global 21-cm Signal from High Redshifts. II. Parameter Estimation for Models of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan; Harker, Geraint J. A.; Burns, Jack O.

    2015-11-01

    Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic data set, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hr of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyα, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to ˜0.1 dex in each dimension) so long as all three spectral features expected to occur between 40 ≲ ν/MHz ≲ 120 are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts z ≳ 15, (ii) extend z ≲ 4 upper limits on the normalization of the X-ray luminosity star formation rate (LX-SFR) relation out to z ˜ 20, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at z ˜ 12. Though our approach is general, the importance of a broadband measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from ˜40 to 120 MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side.

  18. Multi-redshift limits on the 21cm power spectrum from PAPER 64: XRays in the early universe

    NASA Astrophysics Data System (ADS)

    Kolopanis, Matthew; Jacobs, Danny; PAPER Collaboration

    2016-06-01

    Here we present new constraints on 21cm emission from cosmic reionization from the 64 element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). These results extend the single redshift 8.4 result presented in Ali et al 2015 to include redshifts from 7.3 to 10.9. These new limits offer as much as a factor of 4 improvement in sensitivity compared to previous 32 element PAPER results by Jacobs et al (2015). Using these limits we place constraints on a parameterized model of heating due to XRays emitted by early collapsed objects.

  19. Cosmology on Ultralarge Scales with Intensity Mapping of the Neutral Hydrogen 21 cm Emission: Limits on Primordial Non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Santos, Mário G.; Ferreira, Pedro G.; Ferramacho, Luís

    2013-10-01

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z≃1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter fNL, with an error close to σfNL˜1.

  20. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    SciTech Connect

    Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.

    2014-02-20

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km{sup 2} collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km{sup 2} of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  1. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  2. Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA

    NASA Astrophysics Data System (ADS)

    Barry, N.; Hazelton, B.; Sullivan, I.; Morales, M. F.; Pober, J. C.

    2016-09-01

    21 cm epoch of reionization (EoR) observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum (PS) analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalogue completeness, the calibration introduces contamination in otherwise foreground-free PS modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalogue and the inherent spectral smoothness of antennas, and that this has significant implications for the instrumental design of the SKA (Square Kilometre Array) and other future EoR observatories.

  3. Calibration Requirements for Detecting the 21 cm Epoch of Reionization Power Spectrum and Implications for the SKA

    NASA Astrophysics Data System (ADS)

    Barry, N.; Hazelton, B.; Sullivan, I.; Morales, M. F.; Pober, J. C.

    2016-06-01

    21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalogue completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalogue and the inherent spectral smoothness of antennae, and that this has significant implications for the instrumental design of the SKA and other future EoR observatories.

  4. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Schmugge, T.; Paris, J. F.

    1979-01-01

    An airborne experiment was conducted under NASA auspices to test the feasibility of detecting soil moisture by microwave remote sensing techniques over agricultural fields near Phoenix, Arizona at midday of April 5, 1974 and at dawn of the following day. Extensive ground data were obtained from 96 bare, sixteen hectare fields. Observations made using a scanning (2.8 cm) and a nonscanning (21 cm) radiometer were compared with the predictions of a radiative transfer emission model. It is shown that (1) the emitted intensity at both wavelengths correlates best with the near surface moisture, (2) surface roughness is found to more strongly affect the degree of polarization than the emitted intensity, (3) the slope of the intensity-moisture curves decreases in going from day to dawn, and (4) increased near surface moisture at dawn is characterized by increased polarization of emissions. The results of the experiment indicate that microwave techniques can be used to observe the history of the near surface moisture. The subsurface history must be inferred from soil physics models which use microwave results as boundary conditions.

  5. Carma 1 CM Line Survey of Orion-Kl

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas; Looney, Leslie; Corby, Joanna F.; Remijan, Anthony

    2015-06-01

    We have conducted the first 1 cm (27-35 GHz) line survey of the Orion-KL region by an array. With a primary beam of ˜4.5 arcminutes, the survey looks at a region ˜166,000 AU (0.56 pc) across. The data have a resolution of ˜6 arcseconds on the sky and 97.6 kHz(1.07-0.84 km/s) in frequency. This region of frequency space is much less crowded than at 3mm or 1mm frequencies and contains the fundamental transitions of several complex molecular species, allowing us to probe the largest extent of the molecular emission. We present the initial results, and comparison to 3mm results, from several species including, dimethyl ether [(CH_3)_2O], ethyl cyanide [C_2H_5CN], acetone [(CH_3)_2CO], SO, and SO_2.

  6. Searching for emission-line galaxies: The UCM survey

    NASA Technical Reports Server (NTRS)

    Gallego, J.; Zamorano, J.; Rego, M.; Vitores, A.

    1993-01-01

    We are carrying out a long-term project with the main purposes of finding and analyzing low metallicity galaxies. A very small number of very low metallicity galaxies is known up to now. However these ojbects are particularly interesting since they are excellent candidates to 'young galaxies' in evolutionary sense as POX186 (Kunth, Maurogordato & Vigroux, 1988). Since the interstellar matter in these objects is only weakly contaminated by stellar evolution, their study could provide valuable information about the primordial helium abundance and therefore it could place constraints on the different Big-Bang models. The instrumental set up of our survey is an objective-prism used with the Schmidt telescope at Calar Alto Observatory. By using hypersensitized IIIaF emulsion and RG630 filter low resolution spectra in the H alpha region of objects in a wide field is obtained (Rego et al. 1989, Zamorano et al. 1990). Surveys carried out in the past two decades at optical blue wavelengths have also produced large samples of emission-line galaxies (ELGs), for example MacAlpine & Willians 1981 and reference therein, Wasilewski 1983, Salzer and MacAlpine 1988, or Smith et al. 1976. Relying primarily on objective-prism plates taken in the blue, these surveys have found over 3000 blue/emission-line galaxies so far. A significant number of star-forming galaxies are missed by optical surveys in the blue because of their low-excitation spectra (MacAlpine and Willians 1981, Markarian et al. 1981 and references therein) or their low metallicity (Kunth and Sargent, 1986).

  7. THOR: The H i, OH, Recombination line survey of the Milky Way. The pilot study: H i observations of the giant molecular cloud W43

    NASA Astrophysics Data System (ADS)

    Bihr, S.; Beuther, H.; Ott, J.; Johnston, K. G.; Brunthaler, A.; Anderson, L. D.; Bigiel, F.; Carlhoff, P.; Churchwell, E.; Glover, S. C. O.; Goldsmith, P. F.; Heitsch, F.; Henning, T.; Heyer, M. H.; Hill, T.; Hughes, A.; Klessen, R. S.; Linz, H.; Longmore, S. N.; McClure-Griffiths, N. M.; Menten, K. M.; Motte, F.; Nguyen-Luong, Q.; Plume, R.; Ragan, S. E.; Roy, N.; Schilke, P.; Schneider, N.; Smith, R. J.; Stil, J. M.; Urquhart, J. S.; Walsh, A. J.; Walter, F.

    2015-08-01

    To study the atomic, molecular, and ionized emission of giant molecular clouds (GMCs) in the Milky Way, we initiated a large program with the Karl G. Jansky Very Large Array (VLA): "THOR: The H i, OH, Recombination line survey of the Milky Way". We map the 21 cm H i line, 4 OH lines, up to 19 Hα recombination lines and thecontinuum from 1 to 2 GHz of a significant fraction of the Milky Way (l = 15°-67°, | b | ≤ 1°) at an angular resolution of ~ 20″. Starting in 2012, as a pilot study we mapped 4 square degrees of the GMC associated with the W43 star formation complex. The rest of the THOR survey area was observed during 2013 and 2014. In this paper, we focus on the H i emission from the W43 GMC complex. Classically, the H i 21 cm line is treated as optically thin with properties such as the column density calculated under this assumption. This approach might yield reasonable results for regions of low-mass star formation, however, it is not sufficient to describe GMCs. We analyzed strong continuum sources to measure the optical depth along the line of sight, and thus correct the H i 21 cm emission for optical depth effects and weak diffuse continuum emission. Hence, we are able to measure the H i mass of this region more accurately and our analysis reveals a lower limit for the H i mass of M = 6.6-1.8 × 106 M⊙ (vLSR = 60-120 km s-1), which is a factor of 2.4 larger than the mass estimated with the assumption of optically thin emission. The H i column densities are as high as NH i ~ 150 M⊙ pc-2 ≈ 1.9 × 1022 cm-2, which is an order of magnitude higher than for low-mass star formation regions. This result challenges theoretical models that predict a threshold for the H i column density of ~10 M⊙ pc-2, at which the formation of molecular hydrogen should set in. By assuming an elliptical layered structure for W43, we estimate the particle density profile. For the atomic gas particle density, we find a linear decrease toward the center of W43 with

  8. A 1.3 cm line survey toward Orion KL

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Henkel, C.; Thorwirth, S.; Spezzano, S.; Menten, K. M.; Walmsley, C. M.; Wyrowski, F.; Mao, R. Q.; Klein, B.

    2015-09-01

    Context. The nearby Orion Kleinmann-Low nebula is one of the most prolific sources of molecular line emission. It has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. Aims: The main goal is to systematically study the spectral characteristics of Orion KL in the λ ~ 1.3 cm band. Methods: We carried out a spectral line survey with the Effelsberg-100 m telescope toward Orion KL. It covers the frequency range between 17.9 GHz and 26.2 GHz, i.e., the radio "K band". We also examined ALMA maps to address the spatial origin of molecules detected by our 1.3 cm line survey. Results: In Orion KL, we find 261 spectral lines, yielding an average line density of about 32 spectral features per GHz above 3σ (a typical value of 3σ is 15 mJy). The identified lines include 164 radio recombination lines (RRLs) and 97 molecular lines. The RRLs, from hydrogen, helium, and carbon, stem from the ionized material of the Orion Nebula, part of which is covered by our beam. The molecular lines are assigned to 13 different molecular species including rare isotopologues. A total of 23 molecular transitions from species known to exist in Orion KL are detected for the first time in the interstellar medium. Non-metastable (J>K) 15NH3 transitions are detected in Orion KL for the first time. Based on the velocity information of detected lines and the ALMA images, the spatial origins of molecular emission are constrained and discussed. A narrow feature is found in SO2 (81,7 - 72,6), but not in other SO2 transitions, possibly suggesting the presence of a maser line. Column densities and fractional abundances relative to H2 are estimated for 12 molecules with local thermodynamic equilibrium (LTE) methods. Rotational diagrams of non-metastable 14NH3 transitions with J = K + 1 to J = K + 4 yield different results; metastable (J = K) 15NH3 is found to have a higher excitation temperature than non-metastable 15NH3, also indicating that they may trace different

  9. Surveying converter lining erosion state based on laser measurement technique

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Shi, Tielin; Yang, Shuzi

    1998-08-01

    It is very important to survey the eroding state of the steelmaking converter lining real time so as to optimize technological process, extend converter durability and reduce steelmaking production costs. This paper gives one practical method based on the laser measure technique. It presents the basic principle of the measure technique. It presents the basic principle of the measure method, the composition of the measure system and the researches on key technological problems. The method is based on the technique of the laser range finding to net points on the surface of the surveyed converter lining, and the technology of angle finding to the laser beams. The angle signals would be used to help realizing the automatic scanning function also. The laser signals would be modulated and encoded. In the meantime, we would adopt the wavelet analysis and other filter algorithms, to denoise noisy data and extract useful information. And the main idea of some algorithms such as the net point measuring path planning and the measure device position optimal algorithm would also be given in order to improve the measure precision and real time property of the system.

  10. Remote sensing methods for power line corridor surveys

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Lehtomäki, Matti; Ahokas, Eero; Hyyppä, Juha; Karjalainen, Mika; Jaakkola, Anttoni; Kukko, Antero; Heinonen, Tero

    2016-09-01

    To secure uninterrupted distribution of electricity, effective monitoring and maintenance of power lines are needed. This literature review article aims to give a wide overview of the possibilities provided by modern remote sensing sensors in power line corridor surveys and to discuss the potential and limitations of different approaches. Monitoring of both power line components and vegetation around them is included. Remotely sensed data sources discussed in the review include synthetic aperture radar (SAR) images, optical satellite and aerial images, thermal images, airborne laser scanner (ALS) data, land-based mobile mapping data, and unmanned aerial vehicle (UAV) data. The review shows that most previous studies have concentrated on the mapping and analysis of network components. In particular, automated extraction of power line conductors has achieved much attention, and promising results have been reported. For example, accuracy levels above 90% have been presented for the extraction of conductors from ALS data or aerial images. However, in many studies datasets have been small and numerical quality analyses have been omitted. Mapping of vegetation near power lines has been a less common research topic than mapping of the components, but several studies have also been carried out in this field, especially using optical aerial and satellite images. Based on the review we conclude that in future research more attention should be given to an integrated use of various data sources to benefit from the various techniques in an optimal way. Knowledge in related fields, such as vegetation monitoring from ALS, SAR and optical image data should be better exploited to develop useful monitoring approaches. Special attention should be given to rapidly developing remote sensing techniques such as UAVs and laser scanning from airborne and land-based platforms. To demonstrate and verify the capabilities of automated monitoring approaches, large tests in various environments