Science.gov

Sample records for 232-z contaminated waste

  1. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  2. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect

    MINETTE, M.J.

    2007-05-30

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  3. 24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232z, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232-z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  4. DEMOLITION OF HANFORDS 232-Z WASTE INCINERATION FACILITY

    SciTech Connect

    LLOYD, E.R.

    2006-11-21

    The 232-Z Plutonium Incinerator Facility was a small, highly alpha-contaminated, building situated between three active buildings located in an operating nuclear complex. Approximately 500 personnel worked within 250 meters (800 ft) of the structure and expectations were that the project would neither impact plant operations nor result in any restrictions when demolition was complete. Precision demolition and tight controls best describe the project. The team used standard open-air demolition techniques to take the facility to slab-on-grade. Several techniques were key to controlling contamination and confining it to the demolition area: spraying fixatives before demolition began; using misting systems, frequently applying fixatives, and using a methodical demolition sequence and debris load-out process. Detailed air modeling was done before demolition to determine necessary facility source-term levels, establish radiological boundaries, and confirm the adequacy of the proposed demolition approach. By only removing the major source term in equipment, HEPA filters, gloveboxes, and the like, and leaving fixed contamination on the walls, ceilings and floors, the project showed considerable savings and reduced worker hazards and exposure. The ability to perform this demolition safely and without the spread of contamination provides confidence that similar operations can be performed successfully. By removing the major source terms, fixing the remaining contamination in the building, and using controlled demolition and contamination control techniques, similar structures can be demolished cost effectively and safely.

  5. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  6. Resolution of USQ regarding source term in the 232-Z Waste Incinerator Building

    SciTech Connect

    Westsik, G.A.

    1995-09-01

    The 232-Z Waste Incinerator at the Hanford Plutonium Finishing Plant (PFP) was used to incinerate plutonium-bearing combustible materials generated during normal plant operations. Nondestructive (NDA) measurements performed after the incinerator ceased operations indicated high plutonium loadings in exhaust ductwork near the incinerator glovebox, while the incinerator was found to have only low quantities. Measurements, following a campaign to remove some of the ductwork, resulted in markedly higher assay value for the incinerator glovebox itself. Subsequent assays confirmed the most recent results and pointed to a potential further underestimation of the holdup, in part because of attenuation due to fire brick, which could not be seen easily and which had been reported to not be present. NaI detector based measurements were used to map the deposits. Extended count times, using high resolution Ge detectors helped estimate the isotopic composition of the plutonium and quantify the deposits. Experiments were performed using a Ge detector to obtain adequate corrections for the high attenuation of the incinerator glovebox. Several neutron detectors and detector configurations were employed to understand and quantify the neutron flux. Due to the disparity that was anticipated to occur between the gamma ray and neutron assay results, radiation modeling was used to try to reconcile the divergent results. This was a third aspect of the team`s effort, utilizing computer modeling to resolve discrepancies between measurement methods.

  7. 25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  8. 26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  9. Deactivation and cleanout of the 308 Fuels Laboratory and the 232-Z Incinerator at the Hanford site

    SciTech Connect

    Gerber, M.S.; Bliss, R.J.

    1994-12-01

    This paper describes the deactivation and source term reduction activities conducted over the recent past in two plutonium-contaminated Hanford Site buildings: the 308 Fuels Development Laboratory and the 232-Z Incinerator. Both of these facilities belong to the U.S. Department of Energy, and the projects are unique success stories carried out in direct support of EM-60 functions and requirements. In both cases the buildings, for different reasons, contained unacceptable amounts of plutonium, and were stabilized and placed in a safe, pre-D&D (decontamination and decommissioning) mode. The concept of deactivation as the last step in the operating life of a facility will be discussed. The need for and requirements of EM-60 transition between operations and D&D, the costs savings, techniques, regulations and lessons learned also will be discussed. This paper describes the strategies that led to successful source term reduction: accurate characterization, cooperation among different divisions within DOE and the Hanford Site, attention to regulations (especially unique in this case since the 232-Z Incinerator has been nominated as a Historic Structure to the National Register of Historic Places), and stakeholder concerns involving the proximity of the 308 Building to the Columbia River. The paper also weaves in the history, missions, and plutonium accumulation of the two buildings. The lessons learned are cogent to many other present and future deactivation activities across the DOE complex and indeed across the world.

  10. CSER 94-013: Classification and access to PFP 232-Z Incinerator Facility and limits on characterization and disassembly activities in 232-Z burning hood

    SciTech Connect

    Miller, E.M.

    1995-01-12

    This CSER justifies the Limited Control Facility designation for the closed Burning Hood in the PFP 232-Z Incinerator Facility. If the Burning Hood is opened to characterize the plutonium distribution and geometric integrity of the internals or for disassembly of the internals, then the more rigorous Fissionable Material Facility classification is required. Two sets of requirements apply for personnel access, criticality firefighting category for water use, and fissile material movement for the two states of the Burning Hood. The parameters used in the criticality analysis are listed to establish the limits under which this CSER is valid. Determination that the Burning Hood fissile material, moderation, or internal arrangements are outside these limits requires reevaluation of these parameter values and activities at the 232-Z Incinerator Facility. When the Burning Hood is open, water entry is to be prevented by two physical barriers for each water source.

  11. Seismic analysis of safety class 1 incinerator glovebox in building 232-Z 200 W Area

    SciTech Connect

    Ocoma, E.C.

    1994-09-01

    This report documents the seismic evaluation for the existing safety class 1 incinerator glovebox in 232Z Building. The glovebox is no longer in use and most of the internal mechanical equipment have been removed. However, the insulation firebricks are still in the glovebox for proper disposal.

  12. CSER 95-003: Exemption from Criticality Alarm System requirement for 232-Z building

    SciTech Connect

    Nirider, L.T.; Miller, E.M.

    1995-05-18

    This CSER establishes an exemption for 232-Z from the requirement for a Criticality Alarm System, because the formation of a critical configuration is not a credible event for any circumstance involving the cleaning out and removal of the Burning Hood and associated equipment.

  13. CSER 90-006, addendum 1: Criticality safety control for source term reduction project in the scrubber glovebox of Building 232-Z. Revision 1

    SciTech Connect

    Hess, A.L.

    1995-03-10

    This Criticality Safety Evaluation Report addendum extends the coverage of the original CSER (90-006) about dismantling the ductwork in 232-Z to include cleanout of the Scrubber Glovebox, with an estimated residual Pu holdup of less than 200 grams. For conservatism and containment considerations, the provisions about waste packaging and water exclusion from the original work are retained, even though it is not credible for the Scrubber Pu content to be made critical with water added (NDA gives about 1/3 a minimum critical mass).

  14. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

  15. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect

    Francis, A.J.

    1998-12-31

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  16. Method of treating radioactively contaminated solvent waste

    SciTech Connect

    Jablonski, W.; Mallek, H.; Plum, W.

    1981-07-07

    A method of and apparatus for treating radioactively contaminated solvent waste are claimed. The solvent waste is supplied to material such as peat, vermiculite, diaton, etc. This material effects the distribution or dispersion of the solvent and absorbs the foreign substances found in the solvent waste. Air or an inert gas flows through the material in order to pick up the solvent portions which are volatile as a consequence of their vapor pressure. The thus formed gas mixture, which includes air or inert gas and solvent portions, is purified in a known manner by thermal, electrical, or catalytic combustion of the solvent portions.

  17. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect

    FRANCIS,A.J.

    1998-09-17

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  18. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  19. Transuranic contaminated waste functional definition and implementation

    SciTech Connect

    Kniazewycz, B.G.

    1980-03-01

    The purpose of this report is to examine the problem(s) of TRU waste classification and to document the development of an easy-to-apply standard(s) to determine whether or not this waste package should be emplaced in a geologic repository for final disposition. Transuranic wastes are especially significant because they have long half-lives and some are rather radiotoxic. Transuranic radionuclides are primarily produced by single or multiple neutron capture by U-238 in fuel elements during the operation of a nuclear reactor. Reprocessing of spent fuel elements attempts to remove plutonium, but since the separation is not complete, the resulting high-activity liquids still contain some plutonium as well as other transuranics. Likewise, transuranic contamination of low-activity wastes also occurs when the transuranic materials are handled or processed, which is primarily at federal facilities involved in R and D and nuclear weapons production. Transuranics are persistent in the environment and, as a general rule, are strongly retained by soils. They are not easily transported through most food chains, although some reconcentration does take place in the aquatic food chain. They pose no special biological hazard to humans upon ingestion because they are weakly absorbed from the gastrointestional tract. A greater hazard results from inhalation since they behave like normal dust and fractionate accordingly.

  20. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    SciTech Connect

    Robin M. Stewart

    1999-09-29

    Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a

  1. IN-SITU TREATMENT OF HAZARDOUS WASTE CONTAMINATED SOILS

    EPA Science Inventory

    Techniques were investigated for in-situ treatment of hazardous wastes that could be applied to contaminated soils. Included were chemical treatment methods, biological treatment, photochemical transformations and combination methods. Techniques were developed based on fundamenta...

  2. IN SITU RESTORATION TECHNIQUES FOR AQUIFERS CONTAMINATED WITH HAZARDOUS WASTES

    EPA Science Inventory

    Improper disposal of hazardous wastes is a threat to the nation's ground water supply. Methods which prevent contamination are probably the most effective techniques to protect ground water. Once contamination problems occur, there are a number of in situ techniques that can be u...

  3. Process for treating waste water having low concentrations of metallic contaminants

    DOEpatents

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  4. Treatability study for the stabilization of chromium contaminated waste

    SciTech Connect

    McGahan, J.F.; Martin, D.

    1994-12-31

    A process has been developed which immobilizes chromium in calcined uranyl nitrate mixed waste, resulting in a waste form disposable as radioactive, non hazardous waste. A prime contractor at the Idaho National Engineering Laboratory generates a radioactive waste contaminated with chromium. During handling, the waste becomes contaminated at a concentration sufficiently high to cause the waste to exceed the EPA`s Toxicity Characteristic Leaching Procedure (TCLP) leachable limit for chromium. A treatability test program was instigated to define the optimum conditions for the chemical reduction pretreatment step necessary for the stabilization of the contaminated waste. Sodium dithionite was determined to be the reducing agent of choice. A dithionite demand experiment was run to determine optimum dithionite dose. This dose, plus 67 percent excess, was added to each sample. Four different stabilization systems, at three different dosage levels, were investigated. The best performing reagent system was chosen for scale-up and more stringent performance testing. In one of the tested reagent systems, Portland cement sodium silicate and dithionite, all of the samples exhibited TCLP extract concentrations for chromium well below the regulatory limit. Portland cement/blast furnace slag blend had one passing sample, and for cement/fly ash and cement alone none of the samples had passing values for leachable chromium. The samples scaled-up passed the performance criteria and the process which is currently undergoing implementation at INEL has successfully converted mixed waste into radioactive waste for disposal.

  5. Transuranic contaminated waste container characterization and data base. Revision I

    SciTech Connect

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  6. Method of treating fluoride contaminated wastes

    SciTech Connect

    Davis, P.K.; Kakaria, V.K.

    1988-04-05

    A method for treating spent aluminum smelting potliner material containing fluoride contaminants is described which comprises: adding silica to the material to form a mixture thereof; elevating the temperature of the mixture within the range of 1,000/sup 0/ to 1,700/sup 0/C. to form a slag; providing sufficient silica in the mixture and forming the slag in the presence of sufficient water for pyrohydrolysis conditions resulting in the volatilization of substantially all of the fluoride contaminants mostly in the form of hydrogen fluoride; and cooling the slag remaining after volatilizatiion of substantially all of the fluoride contaminants to produce an insoluble silicate glass-residue containing any remaining portion of the fluoride contaminants in an immobile state.

  7. Waste reduction by separation of contaminated soils during environmental restoration

    SciTech Connect

    Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P.; Guerin, D.

    1998-06-01

    During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill.

  8. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  9. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  10. Management and disposal of waste from sites contaminated by radioactivity

    NASA Astrophysics Data System (ADS)

    Roberts, Carlyle J.

    1998-06-01

    Various methods of managing and disposing of wastes generated by decontamination and decommissioning (D & D) activities are described. This review of current waste management practices includes a description of waste minimization and volume reduction techniques and their applicability to various categories of radwaste. The importance of the physical properties of the radiation and radioactivity in determining the methodology of choice throughout the D & D process is stressed. The subject is introduced by a survey of the common types of radioactive contamination that must be managed and the more important hazards associated with each type. Comparisons are made among high level, transuranic, low level, and radioactive mixed waste, and technologically-enhanced, naturally-occurring radioactive material (TENORM). The development of appropriate clean-up criteria for each category of contaminated waste is described with the aid of examples drawn from actual practice. This includes a discussion of the application of pathway analysis to the derivation of residual radioactive material guidelines. The choice between interim storage and permanent disposal of radioactive wastes is addressed. Approaches to permanent disposal of each category of radioactive waste are described and illustrated with examples of facilities that have been constructed or are planned for implementation in the near future. Actual experience at older, existing, low-level waste disposal facilities is discussed briefly.

  11. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  12. Swedish recovered wood waste: linking regulation and contamination.

    PubMed

    Krook, J; Mårtensson, A; Eklund, M; Libiseller, C

    2008-01-01

    In Sweden, large amounts of wood waste are generated annually from construction and demolition activities, but also from other discarded products such as packaging and furniture. A large share of this waste is today recovered and used for heat production. However, previous research has found that recovered wood waste (RWW) contains hazardous substances, which has significant implications for the environmental performance of recycling. Improved sorting is often suggested as a proper strategy to decrease such implications. In this study, we aim to analyse the impacts of waste regulation on the contamination of RWW. The occurrence of industrial preservative-treated wood, which contains several hazardous substances, was used as an indicator for contamination. First the management of RWW during 1995-2004 was studied through interviews with involved actors. We then determined the occurrence of industrial preservative-treated wood in RWW for that time period for each supplier (actor). From the results, it can be concluded that a substantially less contaminated RWW today relies on extensive source separation. The good news is that some actors, despite several obstacles for such upstream efforts, have already today proved capable of achieving relatively efficient separation. In most cases, however, the existing waste regulation has not succeeded in establishing strong enough incentives for less contaminated waste in general, nor for extensive source separation in particular. One important factor for this outcome is that the current market forces encourage involved actors to practice weak quality requirements and to rely on end-of-pipe solutions, rather than put pressure for improvements on upstream actors. Another important reason is that there is a lack of communication and oversight of existing waste regulations. Without such steering mechanisms, the inherent pressure from regulations becomes neutralized. PMID:17509861

  13. 169. ARAIV Miscellaneous site details, including contaminated waste tank pit, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    169. ARA-IV Miscellaneous site details, including contaminated waste tank pit, fence detail, marker posts, berm, and "Caution radiation hazard" sign. Norman Engineering Company 961-area/ML-1-1-501-3. Date: March 1960. Ineel index code no. 066-0501-00-613-102795. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. Mechanisms of contaminant migration from grouted waste

    SciTech Connect

    Magnuson, S.O.; Yu, A.D.

    1992-12-31

    Low-level radioactive decontaminated salt solution is generated at the Savannah River Site (SRS) from the In-Tank Precipitation process. The solution is mixed with cement, slag, and fly ash, to form a grout, termed ``Saltstone``, that will be disposed in concrete vaults at the Saltstone Disposal Facility (SDF) [1]. Of the contaminants in the Saltstone, the greatest concern to SRS is the potential release of nitrate to the groundwater because of the high initial nitrate concentration (0.25 g/cm{sup 3}) in the Saltstone and the low Safe Drinking Water Act (SDWA) maximum contaminant level (MCL) of 44 mg/L. The SDF is designed to allow a slow, controlled release over thousands of years. This paper addresses a modeling study of nitrate migration from intact non-degraded concrete vaults in the unsaturated zone for the Radiological Performance Assessment (PA) of the SRS Saltstone Disposal Facility [3]. The PA addresses the performance requirements mandated by DOE Order 5820.2A [4].

  15. Mechanisms of contaminant migration from grouted waste

    SciTech Connect

    Magnuson, S.O. ); Yu, A.D. )

    1992-01-01

    Low-level radioactive decontaminated salt solution is generated at the Savannah River Site (SRS) from the In-Tank Precipitation process. The solution is mixed with cement, slag, and fly ash, to form a grout, termed Saltstone'', that will be disposed in concrete vaults at the Saltstone Disposal Facility (SDF) [1]. Of the contaminants in the Saltstone, the greatest concern to SRS is the potential release of nitrate to the groundwater because of the high initial nitrate concentration (0.25 g/cm[sup 3]) in the Saltstone and the low Safe Drinking Water Act (SDWA) maximum contaminant level (MCL) of 44 mg/L. The SDF is designed to allow a slow, controlled release over thousands of years. This paper addresses a modeling study of nitrate migration from intact non-degraded concrete vaults in the unsaturated zone for the Radiological Performance Assessment (PA) of the SRS Saltstone Disposal Facility [3]. The PA addresses the performance requirements mandated by DOE Order 5820.2A [4].

  16. Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste

    SciTech Connect

    Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.

    2011-03-03

    Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

  17. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  18. Radioactive waste and contamination in the former Soviet Union

    SciTech Connect

    Suokko, K.; Reicher, D. )

    1993-04-01

    Decades of disregard for the hazards of radioactive waste have created contamination problems throughout the former Soviet Union rivaled only by the Chernobyl disaster. Although many civilian activities have contributed to radioactive waste problems, the nuclear weapons program has been by far the greatest culprit. For decades, three major weapons production facilities located east of the Ural Mountains operated in complete secrecy and outside of environmental controls. Referred to until recently only by their postal abbreviations, the cities of Chelyabinsk-65, Tomsk-7, and Krasnoyarsk-26 were open only to people who worked in them. The mismanagement of waste at these sites has led to catastrophic accidents and serious releases of radioactive materials. Lack of public disclosure, meanwhile, has often prevented proper medical treatment and caused delays in cleanup and containment. 5 refs.

  19. Waste Contaminants at Military Bases Working Group report

    SciTech Connect

    Not Available

    1993-11-04

    The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter`s mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps.

  20. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    SciTech Connect

    Deutsch, William J.

    2008-01-17

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models.

  1. Characterisation of Plasma Vitrified Simulant Plutonium Contaminated Material Waste

    SciTech Connect

    Hyatt, Neil C.; Morgan, Suzy; Stennett, Martin C.; Scales, Charlie R.; Deegan, David

    2007-07-01

    The potential of plasma vitrification for the treatment of a simulant Plutonium Contaminated Material (PCM) was investigated. It was demonstrated that the PuO{sub 2} simulant, CeO{sub 2}, could be vitrified in the amorphous calcium iron aluminosilicate component of the product slag with simultaneous destruction of the organic and polymer waste fractions. Product Consistency Tests conducted at 90 deg. C in de-ionised water and buffered pH 11 solution show the PCM slag product to be durable with respect to release of Ce. (authors)

  2. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    NASA Astrophysics Data System (ADS)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  3. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  4. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead

  5. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    SciTech Connect

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  6. Chemical contaminants in feedlot wastes: concentrations, effects and attenuation.

    PubMed

    Khan, S J; Roser, D J; Davies, C M; Peters, G M; Stuetz, R M; Tucker, R; Ashbolt, N J

    2008-08-01

    Commercial feedlots for beef cattle finishing are potential sources of a range of trace chemicals which have human health or environmental significance. To ensure adequate protection of human and environmental health from exposure to these chemicals, the application of effective manure and effluent management practices is warranted. The Australian meat and livestock industry has adopted a proactive approach to the identification of best management practices. Accordingly, this review was undertaken to identify key chemical species that may require consideration in the development of guidelines for feedlot manure and effluent management practices in Australia. Important classes of trace chemicals identified include steroidal hormones, antibiotics, ectoparasiticides, mycotoxins, heavy metals and dioxins. These are described in terms of their likely sources, expected concentrations and public health or environmental significance based on international data and research. Androgenic hormones such as testosterone and trenbolone are significantly active in feedlot wastes, but they are poorly understood in terms of fate and environmental implications. The careful management of residues of antibiotics including virginiamycin, tylosin and oxytetracycline appears prudent in terms of minimising the risk of potential public health impacts from resistant strains of bacteria. Good management of ectoparasiticides including synthetic pyrethroids, macrocyclic lactones, fluazuron, and amitraz is important for the prevention of potential ecological implications, particularly towards dung beetles. Very few of these individual chemical contaminants have been thoroughly investigated in terms of concentrations, effects and attenuation in Australian feedlot wastes. PMID:18055014

  7. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    SciTech Connect

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  8. Food chain analysis at a mining waste-contaminated wetland

    SciTech Connect

    Pascoe, G.A.; Blanchet, R.J.; Linder, G.

    1994-12-31

    A food chain analysis was performed in support of a baseline ecological risk assessment oat the Milltown Reservoir Sediments Superfund site in Montana. The site consists of over 450 acres of primarily palustrine wetland contaminated with metals from mining-wastes transported from upstream sources. The food chain analysis focused on several species of terrestrial and aquatic animals indigenous to montane wetlands of the northern Rocky Mountains. Samples of small mammal tissues, grasses, forbs, invertebrates, soils, sediment, aquatic plants, and fish were collected and analyzed for As, Cd, Cu, Pb, and Zn. A linear multimedia food-chain model was constructed to estimate daily intakes of the metals for each receptor, with assumed values for aquatic and terrestrial food items from the site, ingestion of local surface water, incidental ingestion of soils or sediments, and estimated bioavailability of soil metals. Evaluation of health risks was performed by the quotient method, where exposures expressed as daily intakes were compared to literature toxicity values. Results from the food chain analysis suggested that the health of primary consumers and higher trophic organisms (including mice, voles, muskrats, beaver, various waterfowl species, osprey, bald eagles, and deer) is not at risk due to the presence of elevated metals in sediments or upland soils at the site.

  9. Environmental health: an analysis of available and proposed remedies for victims of toxic waste contamination.

    PubMed

    Hurwitz, W J

    1981-01-01

    Past and present residents of the Love Canal area near Niagara Falls, New York, fear that they and their homes have been contaminated by toxic wastes seeping out from nearby chemical disposal sites. Hundreds of landfills nationwide are as potentially dangerous as Love Canal. In the absence of a statutory remedy, victims of contamination must rely upon common law theories of lability in order to recover damages for injuries suffered as a result of toxic waste contamination. This Note examines the merits and deficiencies of four common law theories: negligence, strict liability, nuisance and trespass. The Note concludes that none of these remedies is adequate to assure recovery to a person injured by toxic waste disposal, and recommends that legislation be adopted to ensure that victims of toxic waste contamination can be compensated for their injuries. PMID:7258193

  10. ADVANCES IN ENCAPSULATION TECHNOLOGIES FOR THE MANAGEMENT OF MERCURY CONTAMINATED HAZARDOUS WASTES

    EPA Science Inventory

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of historic operations that have led to significant contamination and ongoing hazardo...

  11. Overview of advanced technologies for stabilization of {sup 238}Pu-contaminated waste

    SciTech Connect

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed {sup 238}PuO{sub 2} fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of {sup 238}Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes {sup 238}Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239{sup Pu}), makes disposal of {sup 238}Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all {sup 238}Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and recover kilogram quantities of {sup 238}PuO{sub 2} from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented.

  12. Overview of advanced technologies for stabilization of 238Pu-contaminated waste

    NASA Astrophysics Data System (ADS)

    Ramsey, Kevin B.; Foltyn, Elizabeth M.; Heslop, J. Mark

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed 238PuO2 fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of 238Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes 238Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239Pu), makes disposal of 238Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all 238Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from 238Pu-contaminated waste and recover kilogram quantities of 238PuO2 from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented.

  13. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  14. Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts

    SciTech Connect

    Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

    2003-02-25

    To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

  15. CHEMICAL MARKERS OF HUMAN WASTE CONTAMINATION: ANALYSIS OF UROBILIN AND PHARMACEUTICALS IN SOURCE WATERS

    EPA Science Inventory

    Giving public water authorities another tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. Most of the methods used today detect such contamination by quantifying microbes occurring in feces in high enough...

  16. MANAGING ARSENIC CONTAMINATED SOIL, SEDIMENT, AND INDUSTRIAL WASTE WITH SOLIDIFICATION/STABILIZATION TREATMENT

    EPA Science Inventory

    Arsenic contamination of soil, sediment and groundwater is a widespread problem in certain areas and has caused great public concern due to increased awareness of the health risks. Often the contamination is naturally occurring, but it can also be a result of waste generated from...

  17. WASTE DERIVED PRODUCTS AS A SOURCE OF ENVIRONMENTAL CONTAMINATION

    EPA Science Inventory

    The sale of reusable waste from industrial and municipal activities can potentially lower the overall cost of manufacturing and reduce the amount of material sent to waste sites for disposal. Marketed finished products that contain, either partially or wholly, are called waste d...

  18. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  19. Evidence That Certain Waste Tank Headspace Vapor Samples Were Contaminated by Semivolatile Polymer Additives

    SciTech Connect

    Huckaby, James L.

    2006-02-09

    Vapor samples collected from the headspaces of the Hanford Site high-level radioactive waste tanks in 1994 and 1995 using the Vapor Sampling System (VSS) were reported to contain trace levels of phthalates, antioxidants, and certain other industrial chemicals that did not have a logical origin in the waste. This report examines the evidence these chemicals were sampling artifacts (contamination) and identifies the chemicals reported as headspace constituents that may instead have been contaminants. Specific recommendations are given regarding the marking of certain chemicals as suspect on the basis they were sampling manifold contaminants.

  20. Evaluation of the Contamination Control Unit during simulated transuranic waste retrieval

    SciTech Connect

    Thompson, D.N.; Freeman, A.L.; Wixom, V.E.

    1993-11-01

    This report presents the results of a field demonstration at the INEL of the Contamination Control Unit (CCU). The CCU is a field deployable self-contained trailer mounted system to control contamination spread at the site of transuranic (TRU) handling operations. This is accomplished primarily by controlling dust spread. This demonstration was sponsored by the US Department of Energy`s Office of Waste Technology Development Buried Waste Integrated Demonstration. The CCU, housed in a mobile trailer for easy transport, supports four different contamination control systems: water misting, dust suppression application, soil fixative application, and vacuuming operations. Assessment of the CCU involved laboratory operational performance testing, operational testing and contamination control at a decommissioned Idaho National Engineering Laboratory reactor, and field testing in conjunction with a simulated TRU buried waste retrieval effort at the Cold Test Pit.

  1. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  2. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect

    Hays, David C.

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  3. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

  4. Calcium Phosphate: A potential host for halide contaminated plutonium wastes.

    SciTech Connect

    Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-07-06

    The presence of significant quantities of fluoride and chloride in four types of legacy wastes from plutonium pyrochemical reprocessing required the development of a new wasteform which could adequately immobilize the halides in addition to the Pu and Am. Using a simulant chloride-based waste (Type I waste) and Sm as the surrogate for the Pu3+ and Am3+ present in the waste, AWE developed a process which utilised Ca3(PO4)2 as the host material. The waste was successfully incorporated into two crystalline phases, chlorapatite, [Ca5(PO4)3Cl], and spodiosite, [Ca2(PO4)Cl]. Radioactive studies performed at PNNL with 239Pu and 241Am confirmed the process. A slightly modified version of the process in which CaHPO4 was used as the host was successful in immobilizing a more complex multi-cation oxide–based waste (Type II) which contained significant concentrations of Cl and F in addition to 239Pu and 241Am. This waste resulted in the formation of cation-doped whitlockite, Ca3-xMgx(PO4)2, β-calcium phosphate, β-Ca2P2O7 and chlor-fluorapatite rather than the chlorapatite and spodiosite formed with Type I waste.

  5. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    SciTech Connect

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-07-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

  6. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes.

    PubMed

    Randall, Paul; Chattopadhyay, Sandip

    2004-10-18

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of historic operations that have led to significant contamination and ongoing hazardous waste generation. This study was performed to evaluate whether the U.S. EPA could propose treatment and disposal alternatives to the current land disposal restriction (LDR) treatment standards for mercury. The focus of this article is on the current state of encapsulation technologies that can be used to immobilize elemental mercury, mercury-contaminated debris, and other mercury-contaminated wastes, soils, sediments, or sludges. The range of encapsulation materials used in bench-scale, pilot-scale, and full-scale applications for mercury-contaminated wastes are summarized. Several studies have been completed regarding the application of sulfur polymer stabilization/solidification, chemically bonded phosphate ceramic encapsulation, and polyethylene encapsulation. Other materials reported in the literature as under development for encapsulation use include asphalt, polyester resins, synthetic elastomers, polysiloxane, sol-gels, Dolocrete, and carbon/cement mixtures. The primary objective of these encapsulation methods is to physically immobilize the wastes to prevent contact with leaching agents such as water. However, when used for mercury-contaminated wastes, several of these methods require a pretreatment or stabilization step to chemically fix mercury into a highly insoluble form prior to encapsulation. Performance data is summarized from the testing and evaluation of various encapsulated, mercury-contaminated wastes. Future technology development and research needs are also discussed. PMID:15511593

  7. FUTURE TREATMENT AND DISPOSAL OF AQUEOUS ACTINIDE CONTAMINATED WASTE AT AWE ALDERMASTON

    SciTech Connect

    Crane, A.; Freestone, V.

    2003-02-27

    AWE Aldermaston has provided and maintained the warheads for the Untied Kingdom's nuclear deterrent for over 50 years. AWE's activities necessarily involve the use of radioactive materials and low levels of radioactivity are discharged to the environment, some of it in radioactive aqueous waste and the remainder in aerial discharges. A key part of AWE's Environmental, Safety and Health Policy to ensure ''that our actions cause no harm to the environment, public or employees'' and there is a commitment to continue to drive down AWE's discharge of radioactivity to the environment. As part of this policy AWE have made a commitment to cease discharge, by April 2005, of treated radioactive aqueous effluent, via a dedicated pipeline to the River Thames. This paper sets out how AWE have approached this challenge and how the best practicable environmental option (BPEO) for the management and disposal of AWE's radioactive aqueous wastes was identified. The BPEO identified that wastes whose radioactivity is predominantly due to the presence of actinides should be treated separately to those containing predominantly tritium. This is because of the very different behavior of tritium compared to actinides. A separate strategy has been developed for these tritiated wastes, but is not covered within this paper. The proposed treatment process for actinide contaminated aqueous waste is condensing evaporation followed by membrane filtration of the condensate. The evaporator concentrate will be solidified and the permeate will be discharged as nonradioactive trade waste. The paper highlights the importance in the decision making process of the identification of the sources of actinide contaminated radioactive aqueous waste on the AWE site and an understanding of the waste collection system. It also considers the important roles waste characterization, waste minimization, decommissioning, changes in work practices, stakeholder participation and implementation of best practice have

  8. TOTAL RECYCLE SYSTEMS FOR PETROCHEMICAL WASTE BRINES CONTAINING REFRACTORY CONTAMINANTS

    EPA Science Inventory

    Petrochemical wastewaters containing relatively high concentrations of salt and refractory organics were selected to study their feasibility for total recycle. A combination of reverse osmosis and electrodialysis was operated as a hybrid system using the pretreated wastes to prod...

  9. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.

    PubMed

    Oh, Byung-Taek; Lee, Jai-Young; Yoon, Jeyong

    2007-08-01

    This study may be the first investigation to be performed into the potential benefits of recycling industrial waste in controlling contaminants in leachate. Batch reactors were used to evaluate the efficacy of waste steel scrap and converter slag to treat mixed contaminants using mimic leachate solution. The waste steel scrap was prepared through pre-treatment by an acid-washed step, which retained both zero-valent iron site and iron oxide site. Extensive trichloroethene (TCE) removal (95%) occurred by acid-washed steel scrap within 48 h. In addition, dehalogenation (Cl(-) production) was observed to be above 7.5% of the added TCE on a molar basis for 48 h. The waste steel scrap also removed tetrachloroethylene (PCE) through the dehalogenation process although to a lesser extent than TCE. Heavy metals (Cr, Mn, Cu, Zn, As, Cd, and Pb) were extensively removed by both acid-washed steel scrap and converter slag through the adsorption process. Among salt ions (NH (4)(+) , NO (3)(-) , and PO (4)(3-) ), PO (4)(3-) was removed by both waste steel scrap (100% within 8 h) and converter slag (100% within 20 min), whereas NO (3)(-) and NH (4)(+ ) were removed by waste steel scrap (100% within 7 days) and converter slag (up to 50% within 4 days) respectively. This work suggests that permeable reactive barriers (PRBs) with waste steel scrap and converter slag might be an effective approach to intercepting mixed contaminants in leachate from landfill. PMID:17492478

  10. System and method for removing contaminants from solid surfaces and decontaminating waste

    SciTech Connect

    Brown, T.L.; Geiss, A.J.; Grieco, S.; Neubauer, E.D.; Rhea, J.R.

    1995-10-10

    A method and system are disclosed for removing a surface layer contaminated with radioactive and/or hazardous material and subsequently treating the waste to remove contaminants and provide an essentially contaminant-free final effluent. The contaminated material is removed by blasting the surface with a pressurized stream of air and sodium bicarbonate abrasive media, and the media is dissolved in water subsequent to the blasting operation. The resulting waste is treated in a sequence of steps including adjustment of pH, aeration and separation into primarily solid and liquid phases by precipitation of solids, which are removed for appropriate disposal. The primarily liquid phase is successively passed through a particle filter, a granulated activated carbon filter and a polishing unit to produce the clean final effluent. 1 fig.

  11. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  12. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    SciTech Connect

    Shuck, D.L.; Skriba, M.C.; Wade, J.F.

    1993-03-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics` perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM`93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams.

  13. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    SciTech Connect

    Shuck, D.L. . Denver Environmental Services); Skriba, M.C. ); Wade, J.F. )

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams.

  14. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-09-01

    The purpose of this report is to present the results of a health risk and ecological risk screening analysis for Waste Area Grouping 2 (WAG 2) using available data to identify contaminants and environmental pathways that will require either further investigation or immediate consideration for remediation based on the screening indices. The screening analysis will also identify contaminants that can be assigned a low priority for further investigation and those that require additional data.

  15. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    PubMed

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. PMID:25522855

  16. Disposal and improvement of contaminated by waste extraction of copper mining in chile

    NASA Astrophysics Data System (ADS)

    Naranjo Lamilla, Pedro; Blanco Fernández, David; Díaz González, Marcos; Robles Castillo, Marcelo; Decinti Weiss, Alejandra; Tapia Alvarez, Carolina; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    This project originated from the need of a mining company, which mines and processes copper ore. High purity copper is produced with an annual production of 1,113,928 tons of concentrate to a law of 32%. This mining company has generated several illegal landfills and has been forced by the government to make a management center Industrial Solid Waste (ISW). The forecast volume of waste generated is 20,000 tons / year. Chemical analysis established that the studied soil has a high copper content, caused by nature or from the spread of contaminants from mining activities. Moreover, in some sectors, soil contamination by mercury, hydrocarbons and oils and fats were detected, likely associated with the accumulation of waste. The waters are also impacted by mining industrial tasks, specifically copper ores, molybdenum, manganese, sulfates and have an acidic pH. The ISW management center dispels the pollution of soil and water and concentrating all activities in a technically suitable place. In this center the necessary guidelines for the treatment and disposal of soil contamination caused by uncontrolled landfills are given, also generating a leachate collection system and a network of fluid monitoring physicochemical water quality and soil environment. Keywords: Industrial solid waste, soil contamination, Mining waste

  17. HANDBOOK ON IN SITU TREATMENT OF HAZARDOUS WASTE- CONTAMINATED SOILS

    EPA Science Inventory

    This handbook comprises an update of Volume1 of the 1984 USEPA document entitled "Review of In-Place Treatment Techniques for Contaminated Surface Soils." The purpose of this handbook is the same as that of the original document - to provide state-of-the-art information on in sit...

  18. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge. PMID:15626384

  19. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...

  20. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    SciTech Connect

    Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui; Buck, Edgar C.

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  1. Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    SciTech Connect

    Thiesen, B.P.

    1993-01-01

    The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

  2. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  3. ISOCELL{trademark} proof-of-concept for retrieval of wastes and contaminated soil

    SciTech Connect

    Chatwin, T.D.; Krieg, R.K.

    1992-08-01

    ISOCELL{sup TM} cryogenic technology is designed to immobilize buried hazardous, radioactive, and mixed waste and contaminated soil by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust or aerosol production. A ``proof-of-concept`` test of the ISOCELL process was conducted in clean soil by RKK, Ltd., for the Idaho National Engineering Laboratory (INEL). Results indicate ISOCELL technology successfully froze moist soil into a solid block capable of being lifted and retrieved. Test conditions were compared to characteristics of possible buried waste sites in the INEL.

  4. ISOCELL trademark proof-of-concept for retrieval of wastes and contaminated soil

    SciTech Connect

    Chatwin, T.D. ); Krieg, R.K. )

    1992-01-01

    ISOCELL{sup TM} cryogenic technology is designed to immobilize buried hazardous, radioactive, and mixed waste and contaminated soil by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust or aerosol production. A proof-of-concept'' test of the ISOCELL process was conducted in clean soil by RKK, Ltd., for the Idaho National Engineering Laboratory (INEL). Results indicate ISOCELL technology successfully froze moist soil into a solid block capable of being lifted and retrieved. Test conditions were compared to characteristics of possible buried waste sites in the INEL.

  5. Retention of contaminants in northern natural peatlands treating mine waste waters

    NASA Astrophysics Data System (ADS)

    Palmer, Katharina; Ronkanen, Anna-Kaisa; Klöve, Björn

    2014-05-01

    The mining industry in Finland is growing, leading to an increasing number of working and proposed mine sites. As a consequence, the amount of mine waste waters created is likewise increasing. This poses a great challenge for water management and purification, as these mine waste waters can lead to severe environmental and health consequences when released to receiving water bodies untreated. In the past years, the use of natural peatlands for cost-effective passive waste water treatment has been increasing. In this study, the fate of mine water contaminants in a treatment peatland receiving process waters from the Kittilä gold mine was investigated. Special attention was paid to the fate of potentially harmful substances such as arsenic, antimony or nickel. During the 4 years of operation, the peatland removed contaminants from process waters at varying efficiencies. While arsenic, antimony and nickel were retained at high efficiencies (>80% retention), other contaminants such as zinc, sulfate or iron were not retained or even leaching from the peatland. Soil samples taken in 2013 showed a linear increase of arsenic, antimony and nickel concentration in the peatland as compared to earlier sampling times, in agreement with the good retention efficiencies for those contaminants. Measured concentrations exceeded guideline values for contaminated soils, indicating that the prolonged use of treatment peatlands leads to high soil contamination and restrict further uses of the peatlands without remediation measures. Soil and pore water samples were taken along a transect with varying distance from the process water distribution ditch and analyzed for total and more easily mobile concentrations of contaminants (peat soil) as well as total and dissolved contaminants (water samples). Concentrations of contaminants such as arsenic, manganese or antimony in peat and pore water samples were highest near the distribution ditch and decreased with increasing distance from the

  6. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-07-01

    Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

  7. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  8. Disposal of NORM-contaminated oil field wastes in Salt Caverns.

    SciTech Connect

    Veil, J. A.; Smith, K. P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G. P.

    1998-08-28

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  9. Microbial treatment of sulfur-contaminated industrial wastes.

    PubMed

    Gómez-Ramírez, Marlenne; Zarco-Tovar, Karina; Aburto, Jorge; de León, Roberto García; Rojas-Avelizapa, Norma G

    2014-01-01

    The present study evaluated the microbial removal of sulfur from a solid industrial waste in liquid culture under laboratory conditions. The study involved the use of two bacteria Acidithiobacillus ferrooxidans ATCC 53987 and Acidithiobacillus thiooxidans AZCT-M125-5 isolated from a Mexican soil. Experimentation for industrial waste biotreatment was done in liquid culture using 125-mL Erlenmeyer flasks containing 30 mL Starkey modified culture medium and incubated at 30°C during 7 days. The industrial waste was added at different pulp densities (8.25-100% w/v) corresponding to different sulfur contents from 0.7 to 8.63% (w/w). Sulfur-oxidizing activity of the strain AZCT-M125-5 produced 281 and 262 mg/g of sulfate and a sulfur removal of 60% and 45.7% when the pulp density was set at 8.25 and 16.5% (w/v), respectively. In comparison, the strain A. ferrooxidans ATCC 53987 showed a lower sulfur-oxidizing activity with a sulfate production of 25.6 and 12.7 mg/g and a sulfur removal of 6% and 2.5% at the same pulp densities, respectively. Microbial growth was limited by pulp densities higher than 25% (w/v) of industrial waste with minimal sulfur-oxidizing activity and sulfur removal. The rate of sulfur removal for Acidithiobacillus thioxidans AZCT-M125-5 and Acidithiobacillus ferrooxidans ATCC 53987 was 0.185 and 0.0159 mg S g(-1) h(-1) with a pulp density of 16.5% (w/v), respectively. This study demonstrated that Acidithiobacillus thiooxidans AZCT-M125-5 possesses a high sulfur-oxidizing activity, even at high sulfur concentration, which allows the treatment of hazardous materials. PMID:24171423

  10. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    EPA Science Inventory

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  11. LAND TREATMENT AND THE TOXICITY RESPONSE OF SOIL CONTAMINATED WITH WOOD PRESERVING WASTE

    EPA Science Inventory

    Soils contaminated with wood preserving wastes, including pentachlorophenol (PCP) and creosote, are treated at a field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). he concentration of selected indicator compounds of treatment ...

  12. CHEMICAL MARKERS OF HUMAN WASTE CONTAMINATION IN SOURCE WATERS: A SIMPLIFIED ANALYTICAL APPROACH

    EPA Science Inventory

    Giving public water authorities a tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. This methodology, using both urobilin and azithromycin (or any other human-use pharmaceutical) could be used to give pub...

  13. Organic wastes to enhance phyto-treatment of diesel-contaminated soil.

    PubMed

    Dadrasnia, Arezoo; Agamuthu, P

    2013-11-01

    Toxic inorganic and organic chemicals are major contributors to environmental contamination and pose major health risks to human population. In this work, Dracaena reflexa and Podocarpus polystachyus were investigated for their potential to remove hydrocarbons from 2.5% and 1% diesel fuel-contaminated soil amended individually with 5% organic wastes (tea leaf, soy cake and potato skin) for a period of 270 days. Loss of 90% and 99% oil was recorded in soil contaminated with 2.5% and 1% oil with soy cake amendment, respectively, compared with 52% and 62% in unamended soil with D. reflexa at the end of 270 days. Similarly, 84% and 91% oil loss was recorded for P. polystachyus amended with organic wastes in 2.5% and 1% oil, respectively. Diesel fuel disappeared more rapidly in the soil amendment with SC than in other organic waste supplementation. It was evident that plants did not accumulate hydrocarbon from the soil, while the number of hydrocarbon-utilizing bacteria was high in the rhizosphere, thus suggesting that the mechanism of the oil degradation was rhizodegradation. The kinetic model result indicated a high rate of degradation in soil amendment with SC at 1% with D. reflexa compared with other treatments. Thus, a positive relationship was observed between diesel hydrocarbon degradation with plant biomass production. Dracaena reflexa with organic wastes amendment has a greater potential of restoring hydrocarbon-contaminated soil compared to P. polystachyus plant. PMID:24025373

  14. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  15. REMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVING WASTES: CROSSCURRENT AND COUNTERCURRENT SOLVENT WASHING

    EPA Science Inventory

    solvent washing was evaluated as a method to remove pentachlorophenol (PCP) from aged field soils contaminated with wood treating wastes. Several soil:solvent contact ratios were considered. Solvent washing processes were evaluated based on the removal of PCP from the soil throug...

  16. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. efunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations we...

  17. 125. ARAI Contaminated waste storage tank (ARA729). Shows location of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. ARA-I Contaminated waste storage tank (ARA-729). Shows location of tank on the ARA-I site, section views, connecting pipeline, and other details. Norman Engineering Company 961-area/SF-301-3. Date: January 1959. Ineel index code no. 068-0301-00-613-102711. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  18. Effects of closure cap and liner on contaminant release rates from grouted wastes

    SciTech Connect

    Yu, A.D.; Fowler, J.R.; Bignell, D.T.

    1996-08-01

    This paper describes a groundwater modeling study of waste disposal concepts using grouted waste forms. The focus of the study is on the effects of clay caps and concrete vaults on contaminant migration. The authors modeled three waste disposal scenarios: (1) Grouted waste was solidified in an earthen trench and covered with soil, there was no vault and no cap; (2) grouted waste was solidified in an earthen trench, the entire waste disposal facility was then closed under a clay cap; (3) grouted waste was solidified in a concrete vault and protected by the same closure as in 2. Because of the huge contrast in hydraulic conductivities and highly non-linear multi-phase flow characteristics, these waste disposal concepts presented a difficult problem for numerical simulation. Advanced fluid flow and contaminant transport codes were used to solve the problem. Among the codes tested, ECLIPSE out-performed other codes in speed, accuracy (smaller material balance errors) and capability in handling sophisticated scenarios. The authors used nitrate as a tracer for the simulation. Nitrate does not absorb in the solid phase and does not decay. As a result, predicted release rate based on nitrate is conservative. They also assumed that the facility is intact for 10,000 years. In other words, properties of the materials used for this study do not change with time. Predicted peak flux for the no vault and no closure case was 5.8 {times} 10{sup {minus}4} per year at 12 years. If a clay cap was installed, predicted peak flux was 8.5 {times} 10{sup {minus}5} per year at 110 years. If the grout was disposed in a concrete vault and covered by a clay cap, predicted peak flux became 4.4 {times} 10{sup {minus}6} per year at 8,000 years. Both concrete liner and clay cap can reduce the rate of contaminant release to the water table and delay the peak time.

  19. CONTAMINATION CONTROL DURING IN SITU JET GROUTING FOR APPLICATION IN A BURIED TRANSURANIC WASTE SITE

    SciTech Connect

    Loomis, Guy G.; Jessmore, Jim J.

    2003-02-27

    Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed means of contamination control associated with jet-grouting buried radioactive mixed waste sites. Finely divided plutonium/americium oxide particulate can escape as the drill stem of the jet-grouting apparatus exits a waste deposit in preparation for insertion in another injection hole. In studying various options for controlling this potential contamination, engineers found that an elaborate glovebox/drill string shroud system prevents contaminants from spreading. Researchers jet-grouted a pit with nonradioactive tracers to simulate the movement of plutonium fines during an actual application. Data from the testing indicate that the grout immobilizes the tracer material by locking it up in particles large enough to resist aerosolization.

  20. Contamination Control During In Situ Jet Grouting for Application in a Buried Transuranic Waste Site

    SciTech Connect

    Loomis, Guy George; Jessmore, James Joseph

    2003-02-01

    Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed means of contamination control associated with jet-grouting buried radioactive mixed waste sites. Finely divided plutonium/americium oxide particulate can escape as the drill stem of the jet-grouting apparatus exits a waste deposit in preparation for insertion in another injection hole. In studying various options for controlling this potential contamination, engineers found that an elaborate glovebox/drill string shroud system prevents contaminants from spreading. Researchers jet-grouted a pit with nonradioactive tracers to simulate the movement of plutonium fines during an actual application. Data from the testing indicate that the grout immobilizes the tracer material by locking it up in particles large enough to resist aerosolization.

  1. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  2. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  3. Hanford tank residual wastecontaminant source terms and release models

    SciTech Connect

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-P±H phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less

  4. Detection and Monitoring of E-Waste Contamination through Remote Sensing and Image Analysis

    NASA Astrophysics Data System (ADS)

    Garb, Yaakov; Friedlander, Lonia

    2015-04-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams, and also one of the more problematic, as this end-of-life product contains precious metals mixed with and embedded in a variety of low value and potentially harmful plastic and other materials. This combination creates a powerful incentive for informal value chains that transport, extract from, and dispose of e-waste materials in far-ranging and unregulated ways, and especially in settings where regulation and livelihood alternatives are sparse, most notably in areas of India, China, and Africa. E-waste processing is known to release a variety of contaminants, such as heavy metals and persistent organic pollutants, including flame retardants, dioxins and furans. In several sites, where the livelihoods of entire communities are dependent on e-waste processing, the resulting contaminants have been demonstrated to enter the hydrological system and food chain and have serious health and ecological effects. In this paper we demonstrate for the first time the usefulness of multi-spectral remote sensing imagery to detect and monitor the release and possibly the dispersal of heavy metal contaminants released in e-waste processing. While similar techniques have been used for prospecting or for studying heavy metal contamination from mining and large industrial facilities, we suggest that these techniques are of particular value in detecting contamination from the more dispersed, shifting, and ad-hoc kinds of release typical of e-waste processing. Given the increased resolution and decreased price of multi-spectral imagery, such techniques may offer a remarkably cost-effective and rapidly responsive means of assessing and monitoring this kind of contamination. We will describe the geochemical and multi-spectral image-processing principles underlying our approach, and show how we have applied these to an area in which we have a detailed, multi-temporal, spatially referenced, and ground

  5. Khazar Iodine Production Plant Site Remediation in Turkmenistan. NORM Contaminated Waste Repository Establishment - 12398

    SciTech Connect

    Gelbutovskiy, Alexander B.; Cheremisin, Peter I.; Troshev, Alexander V.; Egorov, Alexander J.; Boriskin, Mikhail M.; Bogod, Mikhail A.

    2012-07-01

    Radiation safety provisions for NORM contaminated areas are in use in a number of the former Soviet republics. Some of these areas were formed by absorbed radionuclides at the iodine and bromine extraction sites. As a rule, there are not any plant radiation monitoring systems nor appropriate services to ensure personnel, population and environmental radiation safety. The most hazardous sites are those which are situated in the Caspian Sea coastal zone. The bulk of the accumulated waste is represented by a loose mixture of sand and charcoal, which was basically used as the iodine extraction sorbent. The amounts of these wastes were estimated to be approximately 20,000 metric tons. The waste contamination is mainly composed of Ra-226 (U-238 decay series) and Ra-224, Ra-228 (Th-232 decay series). In 2009, the 'ECOMET-S', a Closed Joint-Stock Company from St. Petersburg, Russian Federation, was authorized by the Turkmenistan government to launch the rehabilitation project. The project includes D and D activities, contaminated areas remediation, collected wastes safe transportation to the repository and its disposal following repository closure. The work at the Khazar chemical plant started in September, 2010. Comprehensive radiological surveys to estimate the waste quantities were carried out in advance. In course of the rehabilitation work at the site of the Khazar chemical plant additional waste quantities (5,000 MT, 10,000 m{sup 3}) were discovered after the sludge was dumped and drained. Disposal volumes for this waste was not provided initially. The additional volume of the construction wastes was required in order to accommodate all the waste to be disposed. For the larger disposal volume the project design enterprise VNIPIET, offered to erect a second wall outside the existing one and this solution was adopted. As of May, 2011, 40,575 m{sup 3} of contaminated waste were collected and disposed safely. This volume represents 96.6% of the initial repository volume

  6. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    SciTech Connect

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  7. Cytotoxic and genotoxic potential of tannery waste contaminated soils.

    PubMed

    Masood, Farhana; Malik, Abdul

    2013-02-01

    Soil samples from agricultural fields in the vicinity of industrial area of Jajmau, Kanpur (India) were collected and found to be heavily contaminated with various toxic heavy metals. GC-MS analysis revealed the presence of organic compounds mainly phthalates in contaminated soils. Samples were extracted using dichloromethane (DCM) and hexane solvents, and the extracts were assayed for genotoxic potential using three different bioassays namely Ames Salmonella/mammalian microsome test, DNA repair defective Escherichia coli K-12 mutants and Allium cepa chromosomal aberration assay. TA98 was found to be the most sensitive strain to all the soil extracts tested. The highest mutagenic potential was observed in DCM extracts of soil as compared with hexane extracts for each strain of Salmonella typhimurium. DCM extracts of the soil exhibited maximum damage to the cells at a dose of 40 μl of soil extracts/ml of culture after a 6-h treatment. The survival was 23% in polA, 40% in lexA and 53% in recA mutants when treated with DCM extract of site I. In A. cepa assay, all the test concentrations of soil extracts (5-100%) affected mitotic index in a dose-dependent manner and several types of abnormalities were observed at different mitotic stages with the treatments: C-mitosis, anaphase bridges, laggards, binucleated cells, stickiness, broken and unequal distributions of chromosomes at anaphase stage of cell division. The soil is accumulating a large number of pollutants as a result of wastewater irrigation and this practice of accumulation has an adverse impact on soil health. PMID:23268142

  8. Solid waste leach characteristics and contaminant-sediment interactions Volume 2: Contaminant transport under unsaturated moisture contents

    SciTech Connect

    Lindenmeier, C.W.; Serne, R.J.; Conca, J.L.

    1995-09-01

    The objectives of this report and subsequent volumes include describing progress on (1) development and optimization of experimental methods to quantify the release of contaminants from solid wastes and their subsequent interactions with unsaturated sediments and (2) the creation of empirical data that become input parameters to performance assessment (PA) analyses for future Hanford Site disposal units and baseline risk assessments for inactive and existing solid waste disposal units. For this report, efforts focused on developing methodologies to evaluate contaminant transport in Trench 8 (W-5 Burial Ground) sediments under unsaturated (vadose zone) conditions. To accomplish this task, a series of flow-through column tests were run using standard saturated column systems, Wierenga unsaturated column systems (both commercial and modified), and the Unsaturated Flow Apparatus (UFA). The reactants investigated were {sup 85}Sr, {sup 236}U, and {sup 238}U as reactive tracers, and tritium as a non-reactive tracer. Results indicate that for moderately unsaturated conditions (volumetric water contents >50 % of saturation), the Wierenga system performed reasonably well such that long water residence times (50-147 h) were achieved, and reasonably good steady-state flow conditions were maintained. The major drawbacks in using this system for reactive tracer work included (1) the inability to achieve reproducible and constant moisture content below 50% of saturation, (2) the four to six month time required to complete a single test, and (3) the propensity for mechanical failure resulting from laboratory power outages during the prolonged testing period.

  9. Effects of natural attenuation processes on groundwater contamination caused by abandoned waste sites in Berlin

    NASA Astrophysics Data System (ADS)

    Kerndorff, Helmut; Kühn, Stephan; Minden, Thomas; Orlikowski, Dagmar; Struppe, Thomas

    2008-07-01

    The aim of this research project is to identify, characterize and quantify natural attenuation (NA) processes in groundwater affected by emissions of abandoned waste disposal sites in Berlin-Kladow/Gatow, Germany. It is part of the funding priority called KORA established by the Federal Ministry for Education and Research (BMBF) to explore the extent to which NA can be used for remedial purposes for varied forms of soil and groundwater contamination. Information on the emission behaviour of individual parameters is generated on the basis of hydrogeochemical comparison of 20 years old and new data. Using groundwater-modelling and CFC-analysis, information on the transport and retention of pollutants in groundwater is compiled. The microbial colonization of contaminated aquifers is characterized by molecular biological methods [polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE)] to differentiate between contaminated and not contaminated zones.

  10. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    PubMed

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. PMID:20630737

  11. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    SciTech Connect

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  12. Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks

    SciTech Connect

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

    2007-12-01

    The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

  13. Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants

    PubMed Central

    Ela, Wendell P.; Sedlak, David L.; Barlaz, Morton A.; Henry, Heather F.; Muir, Derek C.G.; Swackhamer, Deborah L.; Weber, Eric J.; Arnold, Robert G.; Ferguson, P. Lee; Field, Jennifer A.; Furlong, Edward T.; Giesy, John P.; Halden, Rolf U.; Henry, Tala; Hites, Ronald A.; Hornbuckle, Keri C.; Howard, Philip H.; Luthy, Richard G.; Meyer, Anita K.; Sáez, A. Eduardo; vom Saal, Frederick S.; Vulpe, Chris D.; Wiesner, Mark R.

    2011-01-01

    Background This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled “Superfund Contaminants: The Next Generation” held in Tucson, Arizona, in August 2009. All the authors were workshop participants. Objectives Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Discussion Superfund-relevant CECs can be characterized by specific attributes: They are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites. Conclusions A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention. PMID:21205582

  14. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    SciTech Connect

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  15. RECOVERY OF MERCURY FROM CONTAMINATED PRIMARY AND SECONDARY WASTES

    SciTech Connect

    A. Faucette; J. Bognar; T. Broderick; T. Battaglia

    2000-01-13

    Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, a sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. Four new sorbents have been developed to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have demonstrated very high removal efficiencies for soluble mercury species, with mercury concentrations at the outlet of a pilot-scale system less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant is targeted at colloidal mercury that is not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicate good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and

  16. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    PubMed

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill. PMID:22452190

  17. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    PubMed

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology. PMID:25951900

  18. Removable of trace radionuclides and chemical contaminants from waste evaporator condensates by electrodialysis

    SciTech Connect

    Del Debbio, J.A.

    1986-09-01

    The feasibility of using electrodialysis, a membrane separation process, to remove radioactive and chemical contaminants from Process Equipment Waste (PEW) evaporator condensates was evaluated with a one-hundredth scale vendor-built pilot plant. Decontamination efficiencies (DE) for nine radionuclides and six chemical contaminants were determined. Excluding plutonium, which behaved erratically, the average radionuclide DE was 96%. Nitric acid removal averaged 98%, while the average DE for mercury was 83%. To a large extent, radionuclide removal was due to sorption on the membranes. Seventy-two percent of the input radioactivity for eleven runs became sorbed on the membranes.

  19. Waste management and contaminated site remediation practices after oil spill: a case study.

    PubMed

    Oliveira, Fernando Jorge Santos; da Rocha Calixto, Renata Oliveira; Felippe, Carlos Eduardo Cunha; de Franca, Francisca Pessoa

    2013-12-01

    A case study is presented on waste management practices implemented after a residual fuel oil spill from a steam-generating boiler in an industrial area, and on the technical feasibility of monitored natural attenuation as a treatment option for a recently contaminated tropical soil. One day after contamination, surface soil total petroleum hydrocarbons and phenanthrene concentrations varied from 3.1 to 7.9 g kg(-1) and 149 to 287 µg kg(-1), respectively. Petroleum hydrocarbon concentrations decayed along the monitored time and after 90 days of processes the soil was considered rehabilitated for future industrial use. PMID:24163378

  20. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    PubMed

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; <1.4-100, <1.2-100, and <0.5-20 ng/L, respectively). Interestingly, there were specific PFC profiles: perfluoroheptanoic acid and perfluorohexanoic acid (88 and 77 ng/L, respectively) were almost as abundant as PFOA in MD leachate (100 ng/L), whereas PFNA was prevalent in ER and BR (mean, 17 and 6.2 ng/L, respectively) and PFUDA was the most abundant in municipal wastewater (mean, 5.6 ng/L), indicating differences in PFC contents in different waste materials. PMID:22773082

  1. Mercury retorting of calcine waste, contaminated soils and railroad ballast at the Idaho National Egineering Laboratory

    SciTech Connect

    Cotten, G.B.; Rothermel, J.S.; Sherwood, J.; Heath, S.A.; Lo, T.Y.R.

    1996-02-28

    The Idaho National Engineering Laboratory (INEL) has been involved in nuclear reactor research and development for over 40 years. One of the earliest major projects involved the development of a nuclear powered aircraft engine, a long-term venture which used mercury as a shielding medium. Over the course of several years, a significant amount of mercury was spilled along the railroad tracks where the test engines were transported and stored. In addition, experiments with volume reduction of waste through a calcine process employing mercury as a catalyst resulted in mercury contaminated calcine waste. Both the calcine and Test Area North wastes have been identified in Department of Energy Action Memorandums to be retorted, thereby separating the mercury from the various contaminated media. Lockheed Idaho Technologies Company awarded the Mercury Retort contract to ETAS Corporation and assigned Parsons Engineering Science, Inc. to manage the treatment field activities. The mercury retort process entails a mobile unit which consists of four trailer-mounted subsystems requiring electricity, propane, and a water supply. This mobile system demonstrates an effective strategy for retorting waste and generating minimal secondary waste.

  2. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    SciTech Connect

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-02-25

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  3. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE.

    SciTech Connect

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-10-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

  4. Demonstration of NFS DeHg Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference Number 2229

    SciTech Connect

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with < 260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3 (Conley, Morris, Osborne-Lee, and Hulet 1998). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels, the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards and to be feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  5. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  6. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  7. Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration and Sequestration

    SciTech Connect

    Chorover, Jon; Mueller, Karl T.; O'Day, Peggy; Serne, R. Jeff

    2003-06-01

    High pH waste solutions are in gross chemical disequilibrium with the subsurface environment and react with sediment minerals, promoting dissolution and precipitation processes that impact 137Cs, 90Sr, and 129I speciation and migration behavior in the vadose zone. We have conducted long-term kinetic studies, with reaction times ranging from 1 to 369 d, to examine relationships between aluminosilicate weathering in the presence of synthetic tank waste leachate (STWL) and contaminant uptake and release. Our experiments employ a sequence of specimen clay minerals including illite, vermiculite, montmorillonite and kaolinite, which are also important reactive solids in the Hanford sediments. These studies have shown direct coupling between mineral transformation reactions and contaminant sequestration/stabilization.

  8. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-06-03

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  9. Tomographic gamma scanning of uranium-contaminated waste at Rocky Flats

    SciTech Connect

    Mercer, D.J.; Betts, S.E.; Prettyman, T.H.; Rael, C.D.

    1998-12-31

    A tomographic gamma-ray scanning (TGS) instrument was deployed at Rocky Flats Environmental Technology Site (RFETS) to assist with the deactivation of Building 886. Many 208-L drums containing waste contaminated with highly enriched uranium were measured in order to certify these sites for shipment and disposal. This project marks a successful cooperation between RFETS and Los Alamos National Laboratory and is the first major field experience using TGS technology to assay uranium.

  10. High-Level Waste Tanks Multi-Dimensional Contaminant Transport Model Development Enhancements for 2000

    SciTech Connect

    Collard, L.B.

    2001-09-21

    A suite of multi-dimensional computer models was developed in 1999 (Collard and Flach) to analyze the transport of residual contamination from high-level waste tanks through the subsurface to seeplines. Enhancements in 2000 to those models include investigate the effect of numerical dispersion, develop a solubility-limited case for U and Pu, and develop a plan for a database as part of the Rapid Screening Tool and start to implement that plan.

  11. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    PubMed

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  12. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    SciTech Connect

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters.

  13. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    SciTech Connect

    Wishau, R.

    1998-05-01

    Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

  14. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    USGS Publications Warehouse

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  15. Processing results of 1800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    SciTech Connect

    Thiesen, B.P.

    1993-05-01

    Mercury-contaminated rinse solution was successfully treated at the Idaho National Engineering Laboratory. This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 reactor shield tank. Approximately 6.8 m{sup 3} (1,800 pi) of waste was generated and placed into 33 drums. Each drum contained precipitated sludge material ranging from 2--5 cm in depth, with the average depth of about 6 cm. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/mL while the average sludge contamination was about 13,800 pCi/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. The resulting solution after treatment had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml.

  16. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect

    D. S. Tobiason

    2002-03-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench).

  17. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Rates EPA Environmental Protection Agency FR Federal Register HSWA Hazardous and Solid Waste Amendments... respective annual market share of 88 percent for reusable wipes and 12 percent for disposable wipes (68 FR... of the Common Sense Initiative (CSI) for the printing industry (59 FR 27295). The CSI...

  19. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    SciTech Connect

    Labieniec, P.A.

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  20. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    SciTech Connect

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  1. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    PubMed

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  2. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    PubMed Central

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  3. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. PMID:25568090

  4. Summary report on the demonstration of the Duratek process for treatment of mixed-waste contaminated groundwater

    SciTech Connect

    Singh, S.P.N.; Lomenick, T.F.

    1992-04-01

    This report presents the results of the demonstration of the Duratek process for removal of radioactive and hazardous waste compounds from mixed-waste contaminated groundwaters found at the Department of Energy (DOE) sites managed by Martin Marietta Energy Systems (Energy Systems). The process uses Duratek proprietary Durasil{reg_sign} ion-exchange media to remove the above contaminants from the water to produce treated water that can meet current and proposed drinking water quality standards with regard to the above contaminants. The demonstration showed that the process is simple, compact, versatile, and rugged and requires only minimal operator attention. It is thus recommended that this process be considered for remediating the mixed-waste contaminated waters found at the Energy Systems-managed DOE sites.

  5. Summary report on the demonstration of the Duratek process for treatment of mixed-waste contaminated groundwater

    SciTech Connect

    Singh, S.P.N.; Lomenick, T.F.

    1992-04-01

    This report presents the results of the demonstration of the Duratek process for removal of radioactive and hazardous waste compounds from mixed-waste contaminated groundwaters found at the Department of Energy (DOE) sites managed by Martin Marietta Energy Systems (Energy Systems). The process uses Duratek proprietary Durasil{reg sign} ion-exchange media to remove the above contaminants from the water to produce treated water that can meet current and proposed drinking water quality standards with regard to the above contaminants. The demonstration showed that the process is simple, compact, versatile, and rugged and requires only minimal operator attention. It is thus recommended that this process be considered for remediating the mixed-waste contaminated waters found at the Energy Systems-managed DOE sites.

  6. Testing contamination risk assessment methods for toxic elements from mine waste sites

    NASA Astrophysics Data System (ADS)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance <500m to the

  7. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOEpatents

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  8. Remote automatic control scheme for plasma arc cutting of contaminated waste

    SciTech Connect

    Dudar, A.M.; Ward, C.R.; Kriikku, E.M.

    1993-10-01

    The Robotics Development Group at the Savannah River Technology Center has developed and implemented a scheme to perform automatic cutting of metallic contaminated waste. The scheme employs a plasma arc cutter in conjunction with a laser ranging sensor attached to a robotic manipulator called the Telerobot. A software algorithm using proportional control is then used to perturb the robot`s trajectory in such a way as to regulate the plasma arc standoff and the robot`s speed in order to achieve automatic plasma arc cuts. The scheme has been successfully tested on simulated waste materials and the results have been very favorable. This report details the development and testing of the scheme.

  9. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-09-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  10. Risk assessment of particle dispersion and trace element contamination from mine-waste dumps.

    PubMed

    Romero, Antonio; González, Isabel; Martín, José María; Vázquez, María Auxiliadora; Ortiz, Pilar

    2015-04-01

    In this study, a model to delimit risk zones influenced by atmospheric particle dispersion from mine-waste dumps is developed to assess their influence on the soil and the population according to the concentration of trace elements in the waste. The model is applied to the Riotinto Mine (in SW Spain), which has a long history of mining and heavy land contamination. The waste materials are separated into three clusters according to the mapping, mineralogy, and geochemical classification using cluster analysis. Two of the clusters are composed of slag, fresh pyrite, and roasted pyrite ashes, which may contain high concentrations of trace elements (e.g., >1 % As or >4 % Pb). The average pollution load index (PLI) calculated for As, Cd, Co, Cu, Pb, Tl, and Zn versus the baseline of the regional soil is 19. The other cluster is primarily composed of sterile rocks and ochreous tailings, and the average PLI is 3. The combination of particle dispersion calculated by a Gaussian model, the PLI, the surface area of each waste and the wind direction is used to develop a risk-assessment model with Geographic Information System GIS software. The zone of high risk can affect the agricultural soil and the population in the study area, particularly if mining activity is restarted in the near future. This model can be applied to spatial planning and environmental protection if the information is complemented with atmospheric particulate matter studies. PMID:25190539

  11. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination

  12. Development and Implementation of an Assay System for Rapid Screening of Transuranic Waste in Highly Contaminated Environments

    SciTech Connect

    Douglas Akers; Hopi Salomon; Lyle Robal

    2010-08-01

    An overview of the Fissile Material Monitor Waste Screener (FMM-WS) System is presented. This system is a multifunctional radioactive waste assay system suitable for the rapid assay of highly contaminated transuranic wastes immediately after retrieval, prior to packaging. The FMM-WS was developed for use at the Accelerated Cleanup Project (ARP) and began initial testing and operation in April 2008. The FMM-WS is currently in use and is providing needed data on transuranic (TRU) wastes with a range of material types, volumes, and densities from the Accelerated Retrieval Project (ARP).

  13. Sources of heavy metal contamination in Swedish wood waste used for combustion

    SciTech Connect

    Krook, J. . E-mail: joakr@ikp.liu.se; Martensson, A.; Eklund, M.

    2006-07-01

    In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW.

  14. Assessing metal contamination from construction and demolition (C&D) waste used to infill wetlands: using Deroceras reticulatum (Mollusca: Gastropoda).

    PubMed

    Staunton, John A; Mc Donnell, Rory J; Gormally, Michael J; Williams, Chris D; Henry, Tiernan; Morrison, Liam

    2014-11-01

    Large quantities of construction and demolition waste (C&D) are produced globally every year, with little known about potential environmental impacts. In the present study, the slug, Deroceras reticulatum (Mollusca: Gastropoda) was used as the first biomonitor of metals (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Ti, Tl, V and Zn) on wetlands post infilling with construction and demolition (C&D) waste. The bioaccumulation of As, Ba, Cd, Co, Sb, Se and Tl were found to be significantly elevated in slugs collected on C&D waste when compared to unimproved pastures (control sites), while Mo, Se and Sr had significantly higher concentrations in slugs collected on C&D waste when compared to known contaminated sites (mining locations), indicating the potential hazardous nature of C&D waste to biota. Identifying exact sources for these metals within the waste can be problematic, due to its heterogenic nature. Biomonitors are a useful tool for future monitoring and impact studies, facilitating policy makers and regulations in other countries regarding C&D waste infill. In addition, improving separation of C&D waste to allow increased reuse and recycling is likely to be effective in reducing the volume of waste being used as infill, subsequently decreasing potential metal contamination. PMID:25298023

  15. Control technologies for remediation of contaminated soil and waste deposits at Superfund lead-battery recycling sites

    SciTech Connect

    Royer, M.D.; Selvakumar, A.; Gaire, R.

    1992-01-01

    The paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. Metallic lead and lead compounds are generally the principal contaminants of concern in soils and waste deposits. Other metals (e.g., cadmium, copper, arsenic, antimony, and selenium) are often present at LBRS. The article is primarily based on experience gained from: (1) Superfund site investigation, removal, and remedial actions, and (2) development and demonstration of control technologies under the Superfund Innovative Technology Evaluation (SITE) Program. The primary remedial options for lead contaminated soils and waste deposits include: (1) no action, (2) off-site disposal, (3) containment, (4) immobilization, (5) separation with resource recovery, and (6) separation without resource recovery.

  16. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    PubMed Central

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  17. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.

    PubMed

    McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L

    2015-11-01

    A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. PMID:26073590

  18. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    SciTech Connect

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-06-01

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental

  19. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  20. Modelling groundwater contamination above a nuclear waste repository at Gorleben, Germany

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2012-05-01

    The candidate repository for high-level nuclear waste in the Gorleben salt dome, Germany, is expected to host 8,550 tonnes of uranium in burnt fuel. It has been proposed that 5,440 waste containers be deposited at a depth of about 800 m. There is 260-280 m of siliciclastic cover sediments above the proposed repository. The potential groundwater contamination in the siliciclastic aquifer is simulated with the TOUGHREACT and TOUGH2-MP codes for a three-dimensional model with 290,435 elements. Two deterministic cases are simulated. The single-phase case considers the transport of radionuclides in the liquid phase only. The two-phase case accounts for hydrogen gas generated by the corrosion of waste containers and release of gaseous C-14. The gas release via a backfilled shaft is assumed to be steady (non-explosive). The simulation period is 2,000,000 years for the single-phase case and 7,000 years for the two-phase case. Only the radioactive dose in the two-phase case is higher than the regulatory limit (0.1 mSv/a).

  1. Hexachlorocyclohexane derivatives in industrial waste and samples from a contaminated riverine system.

    PubMed

    Berger, M; Löffler, D; Ternes, T; Heininger, P; Ricking, M; Schwarzbauer, J

    2016-05-01

    Side and initial degradation products of the persistent organic pollutant hexachlorocyclohexane (HCH) were largely neglected in environmental analysis so far. However, these compounds can be indicative for biodegradation or emission sources. Thus, several samples from a contaminated riverine system in vicinity to a former HCH production site in Central Germany were analyzed. This area adjacent to the industrial megasite Bitterfeld-Wolfen is known for elevated concentrations of various organic industrial pollutants as legacy of decades of industrial activity and subsequent deposition of chemical waste and emission of waste effluents. In environmental compartments of this riverine system, several isomers of HCH related compounds were detected comprising the two lower chlorinated species tetrachlorocyclohexene (TeCCH) and pentachlorocyclohexene (PeCCH) and the higher chlorinated species heptachlorocyclohexane (HpCCH). Except for the uppermost soil of an analyzed riparian wetland, concentrations of these compounds were low. Detected isomers in sediment, water, and soil samples correlated and dominant isomers of PeCCH and HpCCH were observed in the alluvial deposits. Comparisons with industrial HCH waste revealed isomeric patterns similar to patterns found in soil samples. Therefore, the application of HpCCH as an indicator of industrial HCH pollution is suggested. PMID:26901479

  2. Radioactive waste management and environmental contamination issues at the Chernobyl site.

    PubMed

    Napier, B A; Schmieman, E A; Voitsekovitch, O

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near-surface waste storage and disposal facilities. Trench and landfill type facilities were created from 1986-1987 in the Chernobyl Exclusion Zone at distances 0.5-15 km from the nuclear power plant site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100 y service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel-containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel-containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste

  3. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    SciTech Connect

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste

  4. Development in Waste Volume Reduction Technologies for Highly Contaminated Organic Radioactive Compounds

    SciTech Connect

    AKAI, Yoshie; OHMURA, Hisao; FUJIE, Makoto; MONIWA, Shinobu; SEKI, Shuji; YOTSUYANAGI, Tadasu; EBATA, Masaaki; TAKAGI, Junichi

    2006-07-01

    In nuclear facilities, there is highly contaminated organic radioactive waste such as ion exchange resins for water purification in nuclear power plants. In the future, it is desired that this waste be decomposed to reduce the volume and to become stable. Toshiba has developed a waste treatment system using supercritical water. Furthermore, the new demineralization system without using ion exchange resin has been examined. By this new system, it is possible to reduce the volume of ion exchange resin waste. First, supercritical water was applied to the decomposition of ion exchange resin. The supercritical water whose temperature and pressure exceed 647 K and 22 MPa is an excellent solvent for organic compound decomposition, since oxygen and organic compounds can exist in a single homogeneous fluid phase. Organic compounds can be rapidly and completely decomposed using supercritical water. Almost all the reactants can be kept in the water during organic compound decomposition. Therefore, applying supercritical water to treat organic radioactive waste is an attractive proposition. Actual plant-size apparatus was constructed with a treatment capacity of 1 kg of ion exchange resin per hour. The test revealed that more than 99.9% of the ion exchange resin was decomposed at 723 K and 30 MPa. By this system, ion exchange resin decomposes rapidly and completely, and the volume of ion exchange resin waste can be largely reduced. Secondly, the new demineralization system without using ion exchange resin is described. The new demineralization system consists of a filter and a demineralization cell. A metal mesh filter is adopted to remove crud, and the demineralization cell removes ionic impurities. In this system, it is important whether demineralization can take place at high temperature. Thus, this report describes the test results of the new demineralization process. This demineralization cell consists of an anode, a cathode, and a membrane made of inorganic material. The

  5. Removal of contaminants from equipment and debris and waste minimization using TechXtract{reg_sign} technology

    SciTech Connect

    Bonem, M.W.

    1997-10-01

    Under this Program Research and Development Agreement (PRDA), EET, Inc., is extending its proprietary TechXtract{reg_sign} chemical decontamination technology into an effective, economical, integrated contaminant removal system. This integrated system will consist of a series of decontamination baths using the TechXtract{reg_sign} chemical formulas, followed by a waste treatment process that will remove the contaminants from the spent chemicals. Sufficient decontamination will result so that materials can be released without restriction after they have been treated, even those materials that have traditionally been considered to be {open_quotes}undecontaminable.{close_quotes} The secondary liquid waste will then be treated to separate any hazardous and radioactive contaminants, so that the spent chemicals and wastewater can be discharged through conventional, permitted outlets. The TechXtract{reg_sign} technology is a unique process that chemically extracts hazardous contaminants from the surface and substrate of concrete, steel, and other solid materials. This technology has been used successfully to remove contaminants as varied as PCBs, radionuclides, heavy metals, and hazardous organics. The process` advantage over other alternatives is its effectiveness in safe and consistent extraction of subsurface contamination. TechXtract{reg_sign} is a proprietary process developed, owned, and provided by EET, Inc. The objective of the PRDA is to demonstrate on a full-scale basis an economical system for decontaminating equipment and debris, with further treatment of secondary waste streams to minimize waste volumes. Contaminants will be removed from the contaminated items to levels where they can be released for unrestricted use. The entire system will be designed with maximum flexibility and automation in mind.

  6. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-09-01

    The purpose of this report is to present the results of a health risk and ecological risk screening analysis for Waste Area Grouping 2 (WAG 2) using available data to identify contaminants and environmental pathways that will require either further investigation or immediate consideration for remediation based on the screening indices. The screening analysis will also identify contaminants that can be assigned a low priority for further investigation and those that require additional data.

  7. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  8. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    NASA Astrophysics Data System (ADS)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet

  9. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  10. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties. PMID:24997263

  11. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds. PMID:26189016

  12. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    PubMed

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. PMID:19932537

  13. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters.

    PubMed

    Parshetti, Ganesh K; Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2014-06-01

    Hydrothermal carbonization of urban food waste was carried out to prepare hydrochars for removal of Acridine Orange and Rhodamine 6G dyes from contaminated water. The chemical composition and microstructure properties of the synthesized hydrochars were investigated in details. Batch adsorption experiments revealed that hydrochars with lower degree of carbonization were more efficient in adsorption of dyes. Operational parameters such as pH and temperature had a strong influence on the dye uptake process. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm. The pseudo-second-order kinetic model provided a better correlation for the experimental kinetic data in comparison to the pseudo-first-order kinetic model. Thermodynamic investigations suggested that dye adsorption onto hydrochars was spontaneous and endothermic. The mechanism of dye removal appears to be associated with physisorption. An artificial neural network (ANN)-based modelling was further carried out to predict the dye adsorption capacity of the hydrochars. PMID:24727353

  14. Screening of contaminants in Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.; Suter, G.W.; Watts, J.A.

    1992-07-01

    Waste Area Grouping 2 (WAG 2) of the Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek Watershed and is composed of White Oak Creek Embayment, White Oak Lake and associated floodplain, and portions of White Oak Creek (WOC) and Melton Branch downstream of ORNL facilities. Contaminants leaving other ORNL WAGs in the WOC watershed pass through WAG 2 before entering the Clinch River. Health and ecological risk screening analyses were conducted on contaminants in WAG 2 to determine which contaminants were of concern and would require immediate consideration for remedial action and which contaminants could be assigned a low priority or further study. For screening purposes, WAG 2 was divided into four geographic reaches: Reach 1, a portion of WOC; Reach 2, Melton Branch; Reach 3, White Oak Lake and the floodplain area to the weirs on WOC and Melton Branch; and Reach 4, the White Oak Creek Embayment, for which an independent screening analysis has been completed. Screening analyses were conducted using data bases compiled from existing data on carcinogenic and noncarcinogenic contaminants, which included organics, inorganics, and radionuclides. Contaminants for which at least one ample had a concentration above the level of detection were placed in a detectable contaminants data base. Those contaminants for which all samples were below the level of detection were placed in a nondetectable contaminants data base.

  15. Removal of Contaminants from Equipment and Debris and Waste Minimization Using the TECHXTRACT(TM) Technology

    SciTech Connect

    Jorg Schwitzgebel; Klaus Schwitzgebel; Michael W. Bonem; Ronald E. Borah

    1998-12-09

    From September, 1996 through July, 1997, EET, Inc. conducted a series of experiments under a U.S. Department of Energy (DOE) Program Research and Development Agreement (PRDA). This project, entitled "Removal of Contaminants from Equipment and Debris and Waste Minimization Using the TECHXTRACT â Technology" was conducted under DOE Contract DE-AC21- 96MC33138, administered by the Federal Energy Technology Center. The contract is divided into two phases - a base phase during which bench scale testing was conducted; and an optional phase for a field demonstration of a full-scale system. This report documents the results from the base phase of the contract. The base phase included the following major elements: - Evaluation of the effectiveness of various decontamination options, using both surrogate and radioactively contaminated samples. - Evaluation of various methods for the treatment of the secondary waste streams from the preferred decontamination system(s). - Evaluation of decontamination effectiveness for concrete rubble. - Preliminary engineering design and cost estimation for a full-scale system. - Preliminary economic analysis of the proposed system versus other currently available options for disposition of the materials. Results from the base phase, which are described in the following report, are very positive. Testing has shown that free release requirements and extremely high decontamination factors can be achieved for a variety of materials and radionuclides. Results for concrete rubble decontamination were less conclusive. The bench scale testing has led to the design of two different systems, both based on the TECHXTRACT â chemistry, for potential full-scale demonstration. Based on the preliminary economic analysis, this system compares favorably with currently available commercial options, including disposal.

  16. Environmental considerations for the disposal of PBB-contaminated animals and wastes.

    PubMed

    Shah, B P

    1978-04-01

    Accidental contamination of livestock feed in 1973 by polybrominated biphenyls (PBB) led to the destruction of over 30,000 animals in Michigan. Animal carcasses of mostly dairy cattle along with some beef cattle, hogs, sheep and rabbits destroyed under the Federal Food and Drug Administration guidelines were disposed on the land at an environmentally safe site in Kalkaska County, Michigan. The geology and hydrology of the disposal site on state-owned land is considered favorable for the disposal of contaminated carcasses and to prevent any migration of PBBs into ground and surface waters of the area. Materials underneath the site are predominantly sand with layers of silts and clays of glacial origin. The vertical isolation from the surface to the water table is over 90 ft, and the horizontal isolation to the privately owned properties and surface water bodies is well over 1.5 mile in all directions. The site design provides necessary safeguards for minimizing surface water infiltration into disposal trenches and maximizing the protection to the environment. A series of water wells in the direction of flow are established for monitoring groundwater quality for years to come. A 40-acre Gratiot County landfill located near St. Louis, Michigan, has received 269,000 lb of wastes containing 60 to 70% PBBs between 1971 and 1973. PBB wastes are intermixed with general refuse at various depths predominantly in the eastern half of the landfill. Phase I of the hydrogeological investigation shows that the landfill is situated immediately above the groundwater aquifer and a divide. Recently drilled test wells show traces of PBBs in the aquifer in all directions. Additional studies are planned in the near future for corrective measures and monitoring. PMID:209986

  17. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    PubMed

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites. PMID:24652574

  18. Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils.

    PubMed

    Hmid, Amine; Al Chami, Ziad; Sillen, Wouter; De Vocht, Alain; Vangronsveld, Jaco

    2015-01-01

    The potential use of biochar from olive mill waste for in situ remediation of metal contaminated soils was evaluated. Biochar was mixed with metal contaminated soil originating from the vicinity of an old zinc smelter. Soil-biochar mixtures were equilibrated for 30 and 90 days. At these time points, Ca(NO3)2 exchangeable metals were determined, and effects of the biochar amendment on soil toxicity were investigated using plants, bacteria, and earthworms. Bean (Phaseolus vulgaris) growth, metal content, antioxidative enzymes activities, and soluble protein contents were determined. Furthermore, effects on soil microbial communities (activity, diversity, richness) were examined using Biolog ECOplates. After 120 days of soil-biochar equilibration, effects on weight and reproduction of Eisenia foetida were evaluated. With increasing biochar application rate and equilibration period, Ca(NO3)2 exchangeable metals decreased, and growth of bean plants improved; leaf metal contents reduced, the activities of antioxidative stress enzymes decreased, and soluble protein contents increased. Soil microbial activity, richness, and diversity were augmented. Earthworm mortality lowered, and their growth and reproduction showed increasing trends. PMID:25146122

  19. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk. PMID:25956643

  20. Susceptibility of the Memphis water supply to contamination from the pesticide waste-disposal site in northeastern Hardeman County, Tennessee

    USGS Publications Warehouse

    Rima, Donald Robert

    1979-01-01

    Public concern has been expressed over the possiblity that leachates from a pesticide waste-disposal site in northeastern Hardeman County, Tennessee, might eventually reach the Memphis area and endanger the city 's water supply. An examination of the possible pathways and means of transport of these contaminants reveals that, the Memphis area in detectable concentrations is unlikely. (USGS)

  1. REPORT ON THE HOMELAND SECURITY WORKSHOP ON TRANSPORT AND DISPOSAL OF WASTES FROM FACILITIES CONTAMINATED WITH CHEMICAL AND BIOLOGICAL AGENTS

    EPA Science Inventory

    This report summarizes discussions from the "Homeland Security Workshop on Transport and Disposal of Wastes From Facilities Contaminated With Chemical or Biological Agents." The workshop was held on May 28-30, 2003, in Cincinnati, Ohio, and its objectives were to:

    .Documen...

  2. Recommendations for dealing with waste contaminated with Ebola virus: a Hazard Analysis of Critical Control Points approach

    PubMed Central

    Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark

    2016-01-01

    Abstract Objective To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. Methods A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. Findings The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. Conclusion The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease. PMID:27274594

  3. Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One proposed method for stabilizing lead (Pb) and zinc (Zn) contaminated mine wastes is to apply large quantities of organic matter in order to improve soil physical, chemical, and biological characteristics, which should stimulate nutrient cycling, reduce metal availability, and facilitate vegetati...

  4. PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator.

    PubMed

    Vassura, Ivano; Passarini, Fabrizio; Ferroni, Laura; Bernardi, Elena; Morselli, Luciano

    2011-05-01

    Bulk depositions and surface soil were collected in a suburban area, near the Adriatic Sea, in order to assess the contribution of a municipal solid waste incinerator to the area's total contamination with polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs and PCDFs). Samples were collected at two sites, situated in the area most affected by plant emissions (according to the results of the Calpuff air dispersion model), and at an external site, considered as a reference. Results show that the studied area is subject to low contamination, as far as these compounds are concerned. Deposition fluxes range from 14.3 pg m(-2)d(-1) to 89.9 pg m(-2)d(-1) (0.75 pg-TEQ m(-2)d(-1) to 3.73 pg-TEQ m(-2)d(-1)) and no significant flow differences are observed among the three monitored sites. Total soil concentration amounts to 93.8 ng kg(-1) d.w. and 1.35 ng-TEQ kg(-1)d.w, on average, and confirms a strong homogeneity in the studied area. Furthermore, from 2006 to 2009, no PCDD/Fs enrichment in the soil was noticed. Comparing the relative congener distributions in environmental samples with those found in stack emissions from the incineration plant, significant differences are observed in the PCDD:PCDF ratio and in the contribution of the most chlorinated congeners. From this study we can conclude that the incineration plant is not the main source of PCDD/Fs in the studied area, which is apparently characterized by a homogeneous and widespread contamination situation, typical of an urban area. PMID:21459405

  5. De-oiled two-phase olive mill waste may reduce water contamination by metribuzin.

    PubMed

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Rato-Nunes, José Manuel; Sánchez-Llerena, Javier; Becerra, Daniel; Ramírez, Manuel

    2016-01-15

    The impact of de-oiled two-phase olive mill waste (DW) on the behavior of metribuzin in Mediterranean agricultural soils is evaluated, and the effects of the transformation of organic matter from this waste under field conditions are assessed. Four soils were selected and amended in the laboratory with DW at the rates of 2.5% and 5%. One of these soils was also amended in the field with 27 and 54 Mg ha(-1) of DW for 9 years. Significant increases in metribuzin sorption were observed in all the amended soils. In the laboratory, the 5% DW application rate increased the t1/2 values of metribuzin from 22.9, 35.8, 29.1, and 20.0 d for the original soils to 59.2, 51.1, 45.7, and 29.4d, respectively. This was attributable mainly to the inhibitory effect of the amendment on microbial activity. However, the addition of DW transformed naturally under field conditions decreased the persistence down to 3.93 d at the greater application rate. Both amendments (fresh and field-aged DW) significantly reduced the amount of metribuzin leached. This study showed that DW amendment may be an effective and sustainable management practice for controlling groundwater contamination by metribuzin. PMID:26437341

  6. Technical assessment of processes to enable recycling of low-level contaminated metal waste

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

  7. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost.

    PubMed

    Tsang, Daniel C W; Yip, Alex C K; Olds, William E; Weber, Paul A

    2014-09-01

    In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation. PMID:24859701

  8. Demonstration of GTS Duratek Process for Stabilizing Mercury Contaminated (<260 ppm) Mixed Wastes. Mixed Waste Focus Area. OST Reference No. 2409

    SciTech Connect

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities, totaling approximately 6,000 m3. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. They must also be proven feasible in terms of economics, operability, and safety. This report summarizes the findings from a stabilization technology demonstration conducted by GTS Duratek, Inc. Phase I of the study involved receipt and repackaging of the material, followed by preparations for waste tracking. Phase II examined the bench-scale performance of grouting at two different loadings of waste to grouted mass. Phase III demonstrated in-drum mixing and solidification using repackaged drums of sludge. Phase IV initially intended to ship final residues to Envirocare for disposal. The key results of the demonstration are as follows: (1) Solidification tests were performed at low and high waste loading, resulting in stabilization of mercury to meet the Universal Treatment Standard of 0.025 mg/L at the low loading and for two of the three runs at the high loading. The third high-loading run had a Toxicity Characteristic Leaching Procedure (TCLP) of 0.0314 mg/L. (2) Full-drum stabilization using the low loading formula was demonstrated. (3) Organic compound levels were discovered to be higher than originally reported, including the presence of some pesticides. Levels of some radionuclides were much higher than initially reported. (4

  9. Final Report: Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration and Sequestration

    SciTech Connect

    O'Day, Peggy A.; Chorover, J.; Mueller, K.T.; Serne, R.J.

    2006-12-11

    The principal goal of this project was to assess the molecular nature and stability of radionuclide (137-Cs, 90-Sr, and 129-I) immobilization during weathering reactions in bulk Hanford sediments and their high surface area clay mineral constituents. We focused on the unique aqueous geochemical conditions that are representative of waste-impacted locations in the Hanford site vadose zone: high ionic strength, high pH and high Al concentrations. The specific objectives of the work were to (i) measure the coupling of clay mineral weathering and contaminant uptake kinetics of Cs+, Sr2+ and I-; (ii) determine the molecular structure of contaminant binding sites and their change with weathering time during and after exposure to synthetic tank waste leachate (STWL); (iii) establish the stability of neoformed weathering products and their sequestered contaminants upon exposure of the solids to more “natural” soil solutions (i.e., after removal of the caustic waste source); and (iv) integrate macroscopic, microscopic and spectroscopic data to distinguish labile from non-labile contaminant binding environments, including their dependence on system composition and weathering time. During this funding period, we completed a large set of bench-scale collaborative experiments and product characterization aimed at elucidating the coupling between mineral transformation reactions and contaminant sequestration/stabilization. Our experiments included three representative Hanford sediments: course and fine sediments collected from the Hanford Formation and Ringold Silt, in addition to investigations with specimen clay minerals illite, vermiculite, smectite and kaolinite. These experiments combined macroscopic measurements of element release, contaminant uptake and subsequent neoformed mineral dissolution behavior, with detailed studies of solid phase products using SEM and TEM microscopy, NMR, XAS and FTIR spectroscopy. Our studies have shown direct coupling between mineral

  10. Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea.

    PubMed

    Jung, Myung Chae

    2008-06-01

    The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10-100 microm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L(-1) HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone. PMID:17687627

  11. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    PubMed

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  12. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    PubMed

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. PMID:26151484

  13. Process and equipment for the utilization of thermal energy of waste having been subjected to oil contamination

    SciTech Connect

    Vajdovich, G.; Csorba, I.

    1984-02-07

    A process and apparatus is discussed for recovering the heat content of oil-contaminated waste water wherein the waste water is collected and is conducted through a plurality of waste water carrying ducts with shut-off valves, from an oil manipulating system into a single duct with a shut-off valve. A duct with two branches is attached to and leads from the shut-off valve. Each branch of the branched duct has a magnet valve which operates contrarily to the magnet valve in the other branch. Each of the magnet valves are connected by means of a cable to an instrument which senses the oil content of the waste water. If the instrument does not sense oil, one magnet valve is open and the other is closed, and if the instrument senses oil, the other magnet valve is open and the one magnet valve is closed. A pressurized sample collector is connected via a duct to one of the magnet valves, and the sensing instrument. A pressurized collector having a sampling place on a float is connected by a duct to a sampling vessel and the sensing instrument. A duct for carrying the waste water from the collector is connected to a shut-off means and a pump which is connected to and controlled by a sensing instrument. This waste water duct transports the uncontaminated waste water through a check valve for further utilization and carries the contaminated waste water through a duct leading from the other magnet valve to an external repository.

  14. Solid-waste leach characteristics and contaminant-sediment interactions. Volume 1, Batch leach and adsorption tests and sediment characterization

    SciTech Connect

    Serne, R.J.; LeGore, V.L.; Cantrell, K.J.; Lindenmeier, C.W.; Campbell, J.A.; Amonette, J.E.; Conca, J.L.; Wood, M.I.

    1993-10-01

    The objectives of this report and subsequent volumes include describing progress on (1) development of conceptual-release models for Hanford Site defense solid-waste forms; (2) optimization of experimental methods to quantify the release from contaminants from solid wastes and their subsequent interactions with unsaturated sediments; and (3) creation of empirical data for use as provisional source term and retardation factors that become input parameters for performance assessment analyses for future Hanford disposal units and baseline risk assessments for inactive and existing disposal units.

  15. Characterization of iron- and manganese-cemented redoximorphic aggregates in wetland soils contaminated with mine wastes.

    PubMed

    Hickey, Patrick J; McDaniel, Paul A; Strawn, Daniel G

    2008-01-01

    In wetlands, translocation of Fe and Mn from reducing to oxidizing zones creates localized enrichments and depletions of oxide minerals. In zones of enrichment, oxides cement matrix particles together into aggregates. In this paper, we describe the various Fe- and Mn-cemented features present in the 1 to 2-mm size fraction of mine-waste contaminated wetland soils of the Coeur d'Alene (CDA) River Basin in northern Idaho. These aggregates are categorized based on color and morphology. Total Fe and Mn concentrations are also reported. Distribution of the aggregates in soil profiles along an elevation transect with varying water table heights was investigated. Six distinct categories of aggregates were characterized in the 1 to 2-mm size fraction. The two most predominant categories were aggregates cemented by only Fe oxides and aggregates cemented by a mixture of Fe and Mn oxides. Iron-depleted aggregates, Fe and Mn-cemented sand aggregates, and root channel linings were also identified. The remaining aggregates were categorized into a catch-all category that consisted of primarily charcoal particles. The highest Fe content was in the root channel linings, and the highest Mn content was in the Fe/Mn cemented particles. Iron-cemented aggregates were most common in surface horizons at all sites, and root channels were most common in the 30 to 45-cm core at the lowland point, reflecting the presence of deep rooting vegetation at this site. Spatial distributions of other aggregates at the site were not significant. PMID:18948492

  16. Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics.

    PubMed

    Banerjee, Souvik; Dastidar, M G

    2005-11-01

    A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC. PMID:16084372

  17. Assessment of contamination of the Issyk-Kul' valley natural waters with uranium mine wastes

    NASA Astrophysics Data System (ADS)

    Palesski, S. V.; Nikolaeva, I. V.; Saprykin, A. I.; Gavshin, V. M.

    2003-05-01

    The Lake Issyk-Kul' of the central Tyan-Shan is characterized by increased natural uranium content. Uranium-carbon deposit situated on the southern bank of the Lake can be the reason of chemical and radioactive contamination of this unique basin by exploitation wastes. ln order to estimate possible danger, a project “Assessment and prognosis of environmental changes in Lake Issyk-Kul' (Kyrghyzstan)” was developed and supported by the Program ofthe European Commission “Copernicus-2” (2001-2003). According to this project the water assays were sampled from different depths near the banks of the Lake and from low-debit sources draining the dumping grounds of the uranium-carbon deposit. Elemental and isotopic examinations of these water samples were performed using an ELEMENT HR-ICP-MS (Finnigan Mat). The results obtained are the evidence that the ecological status of the Lake Issyk-Kul'is not damaged at present. Wastewaters from the uranium-carbon mine do not make decisive contribution into the natural radioactive background.

  18. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  19. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  20. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated. PMID:26577215

  1. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    SciTech Connect

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  2. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  3. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems. PMID:24507146

  4. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial.

    PubMed

    Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip

    2011-02-28

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations. PMID:21227583

  5. Alpha-contaminated solid waste sorting and conditioning at Belgoprocess (Belgium): lessons learned from the first three years operation

    SciTech Connect

    Cuchet, J.M.; Lahaye, J.P.; Luycx, P.; Van Nueten, E.; Goeyse, A. de

    2007-07-01

    The alpha-contaminated solid waste generated in Belgium results from past activities in the fuel cycle (R and D + Reprocessing and MOX fabrication pilot plants) and operation of BELGONUCLEAIRE's MOX fuel fabrication plant. After the main steps in the management of alpha-contaminated solid waste were established, BELGONUCLEAIRE, with the support of BELGOPROCESS and ONDRAF/NIRAS, started the design and construction of the T and C and interim-storage facilities for this alpha waste. The accumulated solid alpha radwaste containing a mixture of combustible and non-combustible material must be sorted and characterized. After sorting, both the accumulated and recently-generated alpha waste will be compacted and the pellets will be embedded in a cement matrix in a 400-1 drum. The commissioning of the sorting unit which includes glove boxes was completed at BP, at the beginning of year 2005; the sorting campaign of 30-1 cans has been achieved in March 2007. The paper describes the project environment and gives a short description of the used facilities; the lessons learned from the sorting campaign and from the first T/C period, will be presented, as well. (authors)

  6. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  7. Fate of selected microorganisms when introduced as cross-contamination inocula into simulated food trash compartment waste

    NASA Astrophysics Data System (ADS)

    Strayer, Richard; Hummerick, Mary; Richards, Jeffrey; Birmele, Michele; Roberts, Michael

    counts and general cultivation-based methods. Detection and enumeration of challenge microbes was accomplished by cultivation-based microbiological methods with specific selective media and by molecular methods using quantitative stocktickerPCR (qPCR) with stocktickerDNA primers specific for each challenge organism. stocktickerDNA was extracted and purified from residual wastes with a stocktickerDNA isolation kit (Mo Bio), and quantified (NanoDrop) from standard curves prepared from pure culture isolates of each challenge organism. QPCR was conducted on a Roche LightCycler 480 using the Roche stocktickerSYBR Green Master Mix Kit. The identity of all challenge microbes in recovered isolates was verified by stocktickerDNA sequencing (stocktickerABI 3130 Genetic Analyzer - Applied Biosystems). To date, concentrations of challenge microbial populations at concentrations ranging from ˜107 - 108 have been added to simulated food waste and extracted either immediately after mixing or after 1 week of storage. Cultivation-based counts indicated that 5 of 6 challenge microbes could be recovered from simulated food wastes after inoculation for both concentrations. Only S. enterica serovar typhimurium could not be detected at week 0 for the 107 inoculum. Between week 0 and 1, challenge microbes increased in density: S. aureus, E. coli, and P. aeruginosa increasing up to 4 orders of magnitude from the 107 inoculum. Molecular results for the week 0 and week 1 stored samples indicated that the relative concentrations of target stocktickerDNA for the challenge microbes had increased between 1 and 3 orders of magnitude. These preliminary studies demonstrate that potential problems regarding pathogens as cross-contaminants from other waste streams could develop during storage of space mission solid wastes. Ongoing studies are examining longer storage times up to 6 weeks. The results can be used to determine requirements and criteria for waste treatment prior to storage and provides a

  8. Enhanced electrokinetic (E/K) remediation on copper contaminated soil by CFW (carbonized foods waste).

    PubMed

    Han, Jung-Geun; Hong, Ki-Kwon; Kim, Young-Woong; Lee, Jong-Young

    2010-05-15

    The E/K remediation method is presented to purify low permeable contaminated soils due to Cu(2+), and carbonized foods waste (CFW) was used as a permeable reactive barrier (PRB) material. For adsorption and precipitation of the Cu(2+) in the PRB during its motion, PRB was installed in a zone of rapidly changing pH values. The adsorption efficiency of CFW used as PRB material was found to be 4-8 times more efficient than that of Zeolite. Throughout the experiment, a voltage slope of 1V/cm was implemented and acetic acid was injected on the anode to increase the remediation efficiency. The electrode exchange was executed to more completely remove precipitated heavy metals in the vicinity of the cathode. The majority of Cu(2+) was adsorbed or sedimented by CFW prior to the exchange of the electrode, and the remaining quantity of precipitated Cu(2+) on the cathode had decreased with an increase in the operating time. Experiments of seven cases with different E/K operating times were performed, and the average removal ratios were 53.4-84.6%. The removal efficiencies for the majority of cases increased proportionally with an increase in the operating time. After the experiments were completed, the adsorbed Cu(2+) on CFW was 75-150 mg. This means that the role of CFW as the material in PRB for remediating heavy metals was confirmed. The cost of energies needed to remove Cu(2+), CFW, and acetic acid are estimated at US$ 13.3-40/m(3). PMID:20080337

  9. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  10. Remediation of inorganic contaminants and polycyclic aromatic hydrocarbons from soils polluted by municipal solid waste incineration residues.

    PubMed

    Jobin, Philippe; Coudert, Lucie; Taillard, Vincent; Blais, Jean-Francois; Mercier, Guy

    2016-08-01

    Three soils polluted by municipal solid waste (MSW) incineration residues and containing various concentrations of Cu, Pb, Sb, Sn and Zn were treated using magnetism, gravity separation (jig and shaking table) and flotation/leaching. The process removed between 18% and 39% of the contaminants present in soil 1, between 31% and 53% of the contaminants present in soil 2 and between 42% and 56% of the contaminants present in soil 3. Polycyclic aromatic hydrocarbons were present only in soil 3, and the process removed 64% of its PAHs total content. Magnetism seemed to be the most efficient technique to remove metals from contaminated soils, followed by gravity separation and finally flotation/leaching. The global efficiency of the process was higher when the initial contaminant concentrations were lower (smaller proportions of MSW incineration residues). The estimated costs of the process, including direct and indirect costs, varied from $82 to $88 per ton of treated soil depending on the proportion of MSW incineration residues mixed with the soil. PMID:26729603

  11. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    SciTech Connect

    Green, Stefan; Prakash, Om; Jasrotia, Puja; Overholt, Will; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka, Joel

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  12. CANCER MORTALITY AMONG UNITED STATES COUNTIES WITH HAZARDOUS WASTE SITES AND SOLE SOURCE DRINKING WATER CONTAMINATION

    EPA Science Inventory

    Since the late 1950's more than 750 million tons of toxic wastes have been discarded in an estimated 30,000 to 50,000 hazardous waste sies (HWS). he uncontrolled discarding of chemical wastes creates the potential for risks to human health. tilizing the National Priorities Listin...

  13. Investigation of Contaminated Groundwater at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2008

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.

    2009-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. Engineered remediation aspects at the site consist of a zero-valent-iron permeable reactive barrier (PRB) installed in December 2002 intercepting the contamination plume and a phytoremediation test stand of loblolly pine trees planted in the source area in May 2003. The U.S. Geological Survey planted an additional phytoremediation test stand of loblolly pine trees on the upgradient side of the southern end of the PRB in February 2008. At least once during the summer, however, the trees were inadvertently mowed during lawn cutting activity. The PRB along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells upgradient from the PRB showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest downgradient from the PRB showed a sharp increase in 2005, followed by a decrease in 2006. Farther downgradient in the forest, the VOC concentrations began to increase in 2007 and continued to increase into 2008. The VOC-concentration changes in groundwater beneath the forest appear to indicate movement of a groundwater-contaminant pulse through the forest. It also is possible that the data may represent lateral shifting of the plume in response to changes in groundwater-flow direction.

  14. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    PubMed

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. PMID:23360773

  15. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    SciTech Connect

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R.StJ.; Möller, Kenneth

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  16. In situ vitrification of a mixed-waste contaminated soil site: The 116-B-6A crib at Hanford

    SciTech Connect

    Luey, J.; Koegler, S.S.; Kuhn, W.L.; Lowery, P.S.; Winkelman, R.G.

    1992-09-01

    The first large-scale mixed-waste test of in situ vitrification (ISV) has been completed. The large-scale test was conducted at an actual contaminated soil site, the 116-B-6A crib, on the Department of Energy's Hanford Site. The large-scale test was a demonstration of the ISV technology and not an interim action for the 116-B-6A crib. This demonstration has provided technical data to evaluate the ISV process for its potential in the final disposition of mixed-waste contaminated soil sites at Hanford. Because of the test's successful completion. technical data on the vitrified soil are available on how well the process incorporates transuranics and heavy metals into the waste form. how well the form resists leaching of transuranics and heavy metals. how well the process handles sites with high combustible loadings, and the important site parameters which may affect the achievable process depth. This report describes the 116-B-6A crib site, the objectives of the ISV demonstration, the results in terms of the objectives, and the overall process performance.

  17. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    PubMed

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste. PMID:21286847

  18. Graphic products used in the evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.

  19. Opportunities for Cost Effective Disposal of Radioactively Contaminated Solid Waste on the Oak Ridge Reservation, Oak Ridge, TN - 13045

    SciTech Connect

    DeMonia, Brian; Dunning, Don; Hampshire John

    2013-07-01

    recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)

  20. Adsorption/Membrane Filtration as a Contaminant Concentration and Separation Process for Mixed Wastes and Tank Wastes - Final Report

    SciTech Connect

    Benjamin, M.M.

    1999-10-01

    This project was conducted to evaluate novel approaches for removing radioactive strontium (Sr) and cesium (Cs) from the tank wastes. The bulk of the Sr removal research conducted as part of this project investigated adsorption of Sr onto a novel adsorbent known as iron-oxide-coated sand. The second major focus of the work was on the removal of cesium. Since the chemistries of strontium and cesium have little commonality, different materials (namely, cesium scavengers known as hexacyanoferrates, HCFs) were employed in these tests. This study bridged several scientific areas and yielded valuable knowledge for implementing new technological processes. The applicability of the results extends beyond the highly specialized application niches investigated experimentally to other issues of potential interest for EMSP programs (e.g., separation of chromium from a variety of wastes using IOCS, separation of Cs from neutral and acidic wastes with EC-controlled HCFs).

  1. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  2. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 2. Contaminant release model.

    PubMed

    Cantrell, Kirk J; Krupka, Kenneth M; Deutsch, William J; Lindberg, Michael J

    2006-06-15

    Release of U and 99Tc from residual sludge in Hanford waste tanks 241-C-203 and 241-C-204 atthe U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington state was quantified by water-leaching, selective extractions, empirical solubility measurements, and thermodynamic modeling. A contaminant release model was developed based on these experimental results and solid-phase characterization results presented elsewhere. Uranium release was determined to be controlled by two phases and occurred in three stages. In the first stage, U release is controlled by the solubility of tejkaite, which is suppressed by high concentrations of sodium released from the dissolution of NaNO3 in the residual sludges. Equilibrium solubility calculations indicate the U released during this stage will have a maximum concentration of 0.021 M. When all the NaNO3 has dissolved from the sludge, the solubility of the remaining cejkaite will increase to 0.28 M. After cejkaite has completely dissolved, the majority of the remaining U is in the form of poorly crystalline Na2U2O7 [or clarkeite Na[(UO2)O(OH)](H20)0-1]. In contact with Hanford groundwater this phase is not stable, and becquerelite becomes the U solubility controlling phase, with a calculated equilibrium concentration of 1.2 x 10(-4) M. For Tc, a significant fraction of its concentration in the residual sludge was determined to be relatively insoluble (20 wt % for C-203 and 80 wt % for C-204). Because of the low concentrations of Tc in these sludge materials, the characterization studies did not identify any discrete Tc solids phases. Release of the soluble fraction of Tc was found to occur concomitantly with NO3-. It was postulated that a NaNO3-NaTcO4 solid solution could be responsible for this behavior. The Tc release concentrations for the soluble fraction were estimated to be 2.4 x 10-6 M for C-203 and 2.7 x 10(-5) M for C-204. Selective extraction results indicated that the recalcitrant fraction of Tc was

  3. Metal contamination of urban soils in the vicinity of a municipal waste incinerator: one source among many.

    PubMed

    Rimmer, David L; Vizard, Catherine G; Pless-Mulloli, Tanja; Singleton, Ian; Air, Vivienne S; Keatinge, Zoe A F

    2006-03-01

    Concern from local residents about possible contamination with metals and PCDD/F (dioxins and furans) from fugitive and stack emissions from the Byker municipal solid waste incinerator in Newcastle upon Tyne led the City Council to initiate a study of the concentration of these pollutants in soils. We report here the results for the metals and arsenic. Soils were sampled at distances up to 2.25 km from the incinerator stack. The intensity of sampling in concentric zones was four times greater in the northeast (down-wind) direction, and twice as great in the northwest and southeast directions, compared to the southwest (up-wind) direction. In total 163 samples were collected and analyzed for total As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Concentrations were generally elevated above background levels, but were typical of those found in other urban areas. For As, Cd, Cu, Hg, Pb, and Zn, contamination hotspots were identified. These were spread throughout the sampling area, and there was no evidence of greater concentrations down-wind of the incinerator compared to other directions, nor of any trend in concentration at increasing distance from the incinerator. We concluded that metal contamination resulting from the incinerator could not be detected in an environment with generally elevated concentrations. Potential sources for many of the hotspots of contamination were identified in a survey of historic land use based on maps of the locality dating back to 1856. Detailed investigations of particular areas with serious contamination will now be undertaken by the local authorities using the CLEA (Contaminated Land Exposure Assessment) model. PMID:15935448

  4. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  5. Detection of Septic System Waste in the Groundwaters of Southern California Using Emerging Contaminants and Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Huang, W.; Conkle, J.; Sickman, J. O.; Lucero, D.; Pang, F.; Gan, J.

    2011-12-01

    In California, groundwater supplies 30-40% of the State's water and in rapidly growing regions like the Inland Empire, groundwater makes up 80-90% of the municipal water supply. However, anthropogenic contamination could adversely affect groundwater quality and thereby reduce available supplies. Appropriate tracers are needed to identify groundwater contamination and protect human health. Stable isotopes δ15N and δ 18O offer unique information about the importance of nitrate sources and processes affecting nitrate in aquifers. We investigated the influence of septic systems on groundwater quality in and around the city of Beaumont, CA during 2010-11. Groundwater samples were collected from 38 active wells and 10 surface water sites in the region (urban and natural streams, agricultural drainage and groundwater recharge basins supplied by the California State Water Project). Stable isotopes and pharmaceuticals and personal care products (PPCPs) were analyzed for all the water samples. The variations of δ15N and δ 18O of nitrate were 2 - 21 per mil and -4 - 9 per mil respectively. δ15N-NO3 values greater than 10 per mil have been associated with nitrate inputs from sewage and animal waste, but in the Beaumont wells, PPCP concentrations were at or below the detection limit in most wells with high isotope ratios. We also observed a strong linear relationship between δ15N and δ 18O of nitrate (slope of~ 0.5) in the vast majority of our samples including those with high isotope ratios. Our results suggest that denitrification was widespread in the Beaumont aquifer and strongly affected the isotope composition of nitrate. In some wells, PPCPs (carbamazepine, sulfamethoxazole, primidone, meprobamate and diuron) and isotope measurements indicated inputs from human waste, but these sites were affected primarily by local waste-water treatment plant effluent. A mixing model was developed using multiple tracers to determine sources and contributions of groundwater

  6. OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS

    SciTech Connect

    LLOYD, E.R.

    2006-11-02

    The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

  7. ADSORPTION/MEMBRANE FILTRATION AS A CONTAMINANT CONCENTRATION AND SEPARATION PROCESS FOR MIXED WASTES AND TANK WASTES

    EPA Science Inventory

    The Hanford Reservation is the largest and perhaps most complex Superfund site in the U.S., containing numerous hazardous chemicals and medium- to long-lived radionuclides. Each category of waste presents a different set of scientific and technological challenges for characteriza...

  8. Addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect

    2013-07-31

    This addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, DOE/NV--1480, dated July 2012, documents repairs of erosion and construction of engineered erosion protection features at Corrective Action Site (CAS) 02-37-02 (MULLET) and CAS 09-99-06 (PLAYER). The final as-built drawings are included in Appendix A, and photographs of field work are included in Appendix B. Field work was completed on March 11, 2013.

  9. Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

    2007-09-13

    As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

  10. Removal of Heavy Metal Contamination from Peanut Skin Extracts by Waste Biomass Adsorbents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each year, 3.6 million pounds of peanuts are harvested in the United States. Consequent processing, however, generates large amounts of waste biomass as only the seed portion of the fruit is consumed. The under-utilization of waste biomass is a lost economic opportunity to the industry. In particula...

  11. Development of a Phosphate Ceramic as a Host for Halide-contaminated Plutonium Pyrochemical Reprocessing Wastes

    SciTech Connect

    Metcalfe, Brian; Fong, Shirley K.; Gerrard, Lee A.; Donald, Ian W.; Strachan, Denis M.; Scheele, Randall D.

    2007-03-31

    The presence of halide anions in four types of wastes arising from the pyrochemical reprocessing of plutonium required an immobilization process to be developed in which not only the actinide cations but also the halide anions were immobilized in a durable waste form. At AWE, we have developed such a process using Ca3(PO4)2 as the host material. Successful trials of the process with actinide- and Cl-bearing Type I waste were carried out at PNNL where the immobilization of the waste in a form resistant to aqueous leaching was confirmed. Normalized mass losses determined at 40°C and 28 days were 12 x 10-6 g∙m-2 and 2.7 x 10-3 g∙m-2 for Pu and Cl, respectively. Accelerated radiation-induced damage effects are being determined with specimens containing 238Pu. No changes in the crystalline lattice have been detected with XRD after the 239Pu equivalent of 400 years ageing. Confirmation of the process for Type II waste (a oxyhydroxide-based waste) is currently underway at PNNL. Differences in the ionic state of Pu in the four types of waste have required different surrogates to be used. Samarium chloride was used successfully as a surrogate for both Pu(III) and Am(III) chlorides. Initial investigations into the use of HfO2 as the surrogate for Pu(IV) oxide in Type II waste indicated no significant differences.

  12. NEARBY LAKE SEDIMENT QUALITY AND SEEDLING TREE SURVIVAL ON ERODED OILY WASTE/BRINE CONTAMINATED SOIL

    EPA Science Inventory

    An ecosystem restoration study is being conducted at an old oil production area in Northeast Oklahoma. Surface soil samples from areas impacted by discarded crude oil and brine wastes have been chemically characterized. Surface erosion has occurred in areas impacted by waste disc...

  13. TECHNICAL REPORT - ADVANCES IN ENCAPSULATION TECHNOLOGIES FOR THE MANAGEMENT OF MERCURY-CONTAMINATED HAZARDOUS WASTES

    EPA Science Inventory

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is
    a demonstrated need for the development of reliable hazardous waste management techniques
    because of ongoing hazardous waste generation and historic operations that have led to<...

  14. ADVANCES IN ENCAPSULATION TECHNOLOGIES FOR THE MANAGEMENT OF MERCURY-CONTAMINATED HAZARDOUS WASTES

    EPA Science Inventory

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of ongoing hazardous waste generation and historic operations that have led to signif...

  15. ASSESSING DETOXIFICATION AND DEGRADATION OF WOOD PRESERVING AND PETROLEUM WASTES IN CONTAMINATED SOIL

    EPA Science Inventory

    This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for two types of wood preserving wastes and two types of petroleum refining wastes at high concentrations in an unacclimated soil. The soil solid phase, water so...

  16. Single-Pass Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste

    SciTech Connect

    Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.

    2013-01-01

    Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.

  17. Gas generation and migration studies involving recently generated /sup 238/Pu-contaminated waste for the TRU Waste Sampling Program

    SciTech Connect

    Zerwekh, A.; Warren, J.L.

    1986-07-01

    This study is part of the multicontractor TRU Waste Sampling Program. Radiolytically generated gases were vented through a filtering device to determine its effectiveness in maintaining hydrogen concentrations within acceptably safe levels. In the second part of the study measurements were made to determine the ability of these gases, particularly hydrogen, to migrate through a sealed rigid polyethylene drum liner. Void volumes in these drums were found to be generally in excess of 90%. The carbon composite filter was found to satisfactorily vent hydrogen up to moderately high levels of alpha activity in the waste substrate. The sealed 90-mil liner was found to inhibit, but not prevent, the migration of hydrogen and other radiolytically generated gases.

  18. Preliminary systems design study assessment report. [Evaluation of using specific technologies and system concepts for testing the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L. ); Feizollahi, F. ); Del Signore, J.C. )

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  19. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  20. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    PubMed

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233

  1. Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site

    PubMed Central

    Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2012-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233

  2. New regulations for radiation protection for work involving radioactive fallout emitted by the TEPCO Fukushima Daiichi APP accident--disposal of contaminated soil and wastes.

    PubMed

    Yasui, Shojiro

    2014-01-01

    The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011, released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work and manage the waste resulting from decontamination. In the summer of 2013, the Ministry of the Environment planned to begin a full-scale process for waste disposal of contaminated soil and wastes removed as part of the decontamination work. The existing regulations were not developed to address such a large amount of contaminated wastes. The Ministry of Health, Labour and Welfare (MHLW), therefore, had to amend the existing regulations for waste disposal workers. The amendment of the general regulation targeted the areas where the existing exposure situation overlaps the planned exposure situation. The MHLW established the demarcation lines between the two regulations to be applied in each situation. The amendment was also intended to establish provisions for the operation of waste disposal facilities that handle large amounts of contaminated materials. Deliberation concerning the regulation was conducted when the facilities were under design; hence, necessary adjustments should be made as needed during the operation of the facilities. PMID:24856781

  3. An application of geoelectrical methods for contamination plume recognition in Urbanowice waste disposal

    NASA Astrophysics Data System (ADS)

    Mycka, Mateusz; Mendecki, Maciej Jan

    2013-09-01

    The purpose of this work was to detect groundwater pollution and to identify the conditions of soil and groundwater near the Urbanowice landfill site using geoelectrical measurements. Presented measurements are preliminary results from tested site and are beginning of continuous monitoring. Contamination outflows detected by resistivity and IP technique show a good correlation with available hydrological data. Contamination plume were found in Eastern part of survey profil.

  4. Microbial characterization of a radionuclide- and metal-contaminated waste site

    SciTech Connect

    Bolton, H. Jr.; Lumppio, H.L.; Ainsworth, C.C.; Plymale, A.E.

    1993-04-01

    The operation of nuclear processing facilities and defense-related nuclear activities has resulted in contamination of near-surface and deep-subsurface sediments with both radionuclides and metals. The presence of mixed inorganic contaminants may result in undetectable microbial populations or microbial populations that are different from those present in uncontaminated sediments. To determine the impact of mixed radionuclide and metal contaminants on sediment microbial communities, we sampled a processing pond that was used from 1948 to 1975 for the disposal of radioactive and metal-contaminated wastewaters from laboratories and nuclear fuel fabrication facilities on the Hanford Site in Washington State. Because the Hanford Site is located in a semiarid environment with average rainfall of 159 mm/year, the pond dried and a settling basin remained after wastewater input into the pond ceased in 1975. This processing pond basin offered a unique opportunity to obtain near-surface sediments that had been contaminated with both radionuclides and metals for several decades. Our objectives were to determine the viable populations of microorganisms in the sediments and to test several hypotheses about how the addition of both radionuclides and metals influenced the microbial ecology of the sediments. Our first hypothesis was that viable populations of microorganisms would be lower in the more contaminated sediments. Second, we expected that long-term metal exposure would result in enhanced metal resistance. Finally, we hypothesized that microorganisms from the most radioactive sediments should have had enhanced radiation resistance.

  5. Release of trace metals, sulfate and complexed cyanide from soils contaminated with gas-purifier wastes: a microcosm study.

    PubMed

    Rennert, T; Mansfeldt, T

    2006-01-01

    Deposited gas-purifier wastes are commonly contaminated with trace metals, sulfate and cyanide (CN) compounds. We investigated their release from three soils contaminated with gas-purifier wastes into solution in microcosm experiments under varying redox conditions (E(H) 170-620 mV). The soils differed in pH (2.2; 4.9; 7.4) and featured low amounts of trace metals, but large amounts of total S and total CN. The pH governed trace metal release in the case of the acidic soil and CN release in the case of the slightly alkaline soil. The redox potential controlled trace metal and CN release in the case of the moderately acidic soil. Sources of dissolved SO(4)(2-) were dissolution of gypsum, desorption from Fe oxides and probably oxidation of elemental S. The geochemical behaviors of trace metals (soluble under acidic and reducing conditions) and CN (soluble under alkaline and oxidizing conditions) were diametrically opposed. PMID:16019115

  6. Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste.

    PubMed

    Huang, Ke; Chen, Chuan; Shen, Qirong; Rosen, Barry P; Zhao, Fang-Jie

    2015-10-01

    Organic manures may contain high levels of arsenic (As) due to the use of As-containing growth-promoting substances in animal feed. To develop a bioremediation strategy to remove As from organic waste, Bacillus subtilis 168, a bacterial strain which can grow at high temperature but is unable to methylate and volatilize As, was genetically engineered to express the arsenite S-adenosylmethionine methyltransferase gene (CmarsM) from the thermophilic alga Cyanidioschyzon merolae. The genetically engineered B. subtilis 168 converted most of the inorganic As in the medium into dimethylarsenate and trimethylarsine oxide within 48 h and volatized substantial amounts of dimethylarsine and trimethylarsine. The rate of As methylation and volatilization increased with temperature from 37 to 50°C. When inoculated into an As-contaminated organic manure composted at 50°C, the modified strain significantly enhanced As volatilization. This study provides a proof of concept of using genetically engineered microorganisms for bioremediation of As-contaminated organic waste during composting. PMID:26187966

  7. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed. PMID:26676540

  8. Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste

    PubMed Central

    Huang, Ke; Chen, Chuan; Shen, Qirong; Rosen, Barry P.

    2015-01-01

    Organic manures may contain high levels of arsenic (As) due to the use of As-containing growth-promoting substances in animal feed. To develop a bioremediation strategy to remove As from organic waste, Bacillus subtilis 168, a bacterial strain which can grow at high temperature but is unable to methylate and volatilize As, was genetically engineered to express the arsenite S-adenosylmethionine methyltransferase gene (CmarsM) from the thermophilic alga Cyanidioschyzon merolae. The genetically engineered B. subtilis 168 converted most of the inorganic As in the medium into dimethylarsenate and trimethylarsine oxide within 48 h and volatized substantial amounts of dimethylarsine and trimethylarsine. The rate of As methylation and volatilization increased with temperature from 37 to 50°C. When inoculated into an As-contaminated organic manure composted at 50°C, the modified strain significantly enhanced As volatilization. This study provides a proof of concept of using genetically engineered microorganisms for bioremediation of As-contaminated organic waste during composting. PMID:26187966

  9. PILOT-SCALE INCINERATION TEST BURN OF TCDD-CONTAMINATED TRICHLOROPHENOL PRODUCTION WASTE

    EPA Science Inventory

    A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This w...

  10. Pilot-scale incineration test burn of TCDD-contaminated trichlorophenol production waste

    SciTech Connect

    Ross, R.W.; Backhouse, T.H.; Vocque, R.H.; Lee, J.W.; Waterland, L.R.

    1986-12-01

    A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This waste contained 37 ppm 2,3,7,8-TCDD as its principal organic hazardous constituent (POHC). Flue gas 2,3,7,8-TCDD levels were less than detectable at all locations sampled. Corresponding incinerator destruction and removal efficiencies (DREs) were greater than 99.9997 percent, based on individual sampling train analyses. By analyzing combined extracts from four simultaneous sampling trains, it was concluded that 2,3,7,8-TCDD DRE was indeed greater than 99.9999 percent. These results suggest that incineration of the Vertac waste is capable of achieving the required DRE and should be considered a treatment option for this waste.

  11. Handling and Treatment of Uranium Contaminated Combustible Radioactive Low Level Waste (LLW)

    SciTech Connect

    Lorenzen, J,; Lindberg, M.; Luvstrand, J.

    2002-02-26

    Studsvik RadWaste in Sweden has many years of experience in handling of low-level radioactive waste, such as burnable waste for incineration and scrap metal for melting. In Erwin, TN, in the USA, Studsvik Inc also operates a THOR (pyrolysis) facility for treatment of various kinds of ion-exchange resins. The advantage of incineration of combustible waste as well as of ion-exchange resins by pyrolysis, is the vast volume reduction which minimizes the cost for final storage and results in an inert end-product which is feasible for safe final disposal. The amount of uranium in the incinerable waste has impact on the quality of the resulting ash. The quality improves with lower U-content. One way of reducing the Ucontent is leaching using a chemical process before and if necessary also after the incineration. Ranstad Mineral AB has been established in the 1960s to support the Swedish national program for uranium mining in southern Sweden. Ranstad Mineral works among others wit h chemical processes to reduce uranium content by leaching. During 1998-2000 about 150 tons/year have been processed. The goal was to reach uranium residues of less than 0.02% for disposal on the municipal waste disposal.

  12. Waste crankcase oil: an environmental contaminant with potential to modulate estrogenic responses.

    PubMed

    Ssempebwa, John; Carpenter, David; Yilmaz, Bayram; DeCaprio, Anthony; O'Hehir, David; Arcaro, Kathleen

    2004-07-23

    Used engine, or crankcase, oil is frequently discarded into the environment resulting in significant pollution of both aquatic and terrestrial ecosystems. The chemical composition of crankcase oils changes with use, and in general, used, or waste, crankcase oil is considered more toxic than the original oil. Polycyclic aromatic hydrocarbons (PAHs) are major constituents of crankcase oil and may exhibit both estrogenic and antiestrogenic activity. In the present study, the estrogenic activity and antiestrogenic activity of both new (unused) and waste crankcase oils were examined in a human breast cancer cell culture assay. Concentrations of 5, 10, 15, 20, or 25 ppm of new oil or waste oil did not alter either the preconfluent or postconfluent cell growth when tested in control medium. In contrast, waste crankcase oil significantly reduced the postconfluent growth of cells grown in medium containing 0.1 nM 17 beta-estradiol. Results from mechanistic assays using [3H]-17 beta-estradiol demonstrated that waste crankcase oil both increased the metabolism of 17 beta-estradiol, and displaced 17 beta-estradiol from the estrogen receptor in MCF-7 cells. The observed antiestrogenic activity of the waste crankcase oil suggests that this pollutant has the potential to alter estrogenic responses, and therefore its presence in the environment may be of concern for reproductive health. PMID:15205025

  13. E-waste environmental contamination and harm to public health in China.

    PubMed

    Xu, Xijin; Zeng, Xiang; Boezen, H Marike; Huo, Xia

    2015-06-01

    The adverse effects of electronic waste (e-waste) on the human body have stirred up concern in recent years. China is one of the countries that confront serious pollution and human exposure of e-waste, and the majority of the population is exposed to potentially hazardous substances that are derived from informal e-waste recycling processes. This study reviews recent reports on human exposure to e-waste in China, with particular focus on exposure routes (e.g., inhalation and ingestion) and several toxicities of human (e.g., endocrine system, respiratory system, reproductive system, developmental toxicity, neurotoxicity, and genetic toxicity). Pieces of evidence that associate e-waste exposure with human health effects in China are assessed. The role of toxic heavy metals (e.g., lead, cadmium, chromium, mercury, and nickel) and organic pollutants (e.g., polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenyls (PBBs), polyhalogenated aromatic hydrocarbons (PHAHs), bisphenol A (BPA)) on human health is also briefly discussed. PMID:25808646

  14. SimER: An advanced three-dimensional environmental risk assessment code for contaminated land and radioactive waste disposal applications

    SciTech Connect

    Kwong, S.; Small, J.; Tahar, B.

    2007-07-01

    SimER (Simulations of Environmental Risks) is a powerful performance assessment code developed to undertake assessments of both contaminated land and radioactive waste disposal. The code can undertake both deterministic and probabilistic calculations, and is fully compatible with all available best practice guidance and regulatory requirements. SimER represents the first time-dependent performance assessment code capable of providing a detailed representation of system evolution that is designed specifically to address issues found across UK nuclear sites. The code adopts flexible input language with build-in unit checking to model the whole system (i.e. near-field, geosphere and biosphere) in a single code thus avoiding the need for any time consuming data transfer and the often laborious interface between the different codes. This greatly speeds up the assessment process and has major quality assurance advantages. SimER thus provides a cost-effective tool for undertaking projects involving risk assessment from contaminated land assessments through to full post-closure safety cases and other work supporting key site endpoint decisions. A Windows version (v1.0) of the code was first released in June 2004. The code has subsequently been subject to further testing and development. In particular, Viewers have been developed to provide users with visual information to assist the development of SimER models, and output can now be produced in a format that can be used by the FieldView software to view the results and produce animation from the SimER calculations. More recently a Linux version of the code has been produced to extend coverage to the commonly used platform bases and offer an improved operating environment for probabilistic assessments. Results from the verification of the SimER code for a sample of test cases for both contaminated land and waste disposal applications are presented. (authors)

  15. Groundwater contamination from waste management sites: The interaction between risk-based engineering design and regulatory policy: 1. Methodology

    NASA Astrophysics Data System (ADS)

    Massmann, Joel; Freeze, R. Allan

    1987-02-01

    This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While

  16. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents

    USGS Publications Warehouse

    McGuire, Jennifer T.; Smith, Erik W.; Long, David T.; Hyndman, David W.; Haack, Sheridan K.; Klug, Michael J.; Velbel, Michael A.

    2000-01-01

    A fundamental issue in aquifer biogeochemistry is the means by which solute transport, geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation. In this paper, we describe the temporal variability of TEAP conditions in shallow groundwater contaminated with both waste fuel and chlorinated solvents. TEAP parameters (including methane, dissolved iron, and dissolved hydrogen) were measured to characterize the contaminant plume over a 3-year period. We observed that concentrations of TEAP parameters changed on different time scales and appear to be related, in part, to recharge events. Changes in all TEAP parameters were observed on short time scales (months), and over a longer 3-year period. The results indicate that (1) interpretations of TEAP conditions in aquifers contaminated with a variety of organic chemicals, such as those with petroleum hydrocarbons and chlorinated solvents, must consider additional hydrogen-consuming reactions (e.g., dehalogenation); (2) interpretations must consider the roles of both in situ (at the sampling point) biogeochemical and solute transport processes; and (3) determinations of microbial communities are often necessary to confirm the interpretations made from geochemical and hydrogeological measurements on these processes.

  17. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  18. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation.

    PubMed

    Takeda, Nobuo; Takaoka, Masaki

    2013-04-01

    Significant dioxin (polychlorinated dibenzo-para-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)) pollution from a municipal solid waste incinerator was discovered in 1997 in Osaka prefecture/Japan. The cause and mechanism of pollution was identified by a detailed assessment of the environment and incinerator plant. The primary sources of PCDD/PCDF pollution were high dioxin releases from an intermittently operated waste incinerator with PCDD/PCDF emissions of 150 ng-TEQ/Nm(3). PCDD/PCDF also accumulated in the wet scrubber system (3,000 μg TEQ/L) by adsorption and water recirculation in the incinerator. Scrubber water was air-cooled with a cooling tower located on the roof of the incinerator. High concentrations of dioxins in the cooling water were released as aerosols into the surrounding and caused heavy soil pollution in the area near the plant. These emissions were considered as the major contamination pathway from the plant. Decontamination and soil remediation in and around the incinerator plant were conducted using a variety of destruction technologies (including incineration, photochemical degradation and GeoMelt technology). Although the soil remediation process was successfully finished in December 2006 about 3% of the waste still remains. The case demonstrates that releases from incinerators which do not use best available technology or which are not operated according to best environmental practices can contaminate their operators and surrounding land. This significant pollution had a large impact on the Japanese government's approach toward controlling dioxin pollution. Since this incident, a ministerial conference on dioxins has successfully strengthened control measures. PMID:23263763

  19. Characterization of chemical waste site contamination and its extent using bioassays

    SciTech Connect

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.; Greene, J.C.; McShane, M.C.; Miller, W.E.; Peterson, S.A.; Simpson, J.C.; Skalski, J.R.

    1984-12-01

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountain Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.

  20. ORGANIC CONTAMINANTS

    EPA Science Inventory

    Organic pollutants may constitute the most widespread waste loadings into the waters of Lake Superior. There are essentially three categories of organic contaminants. The first grouping consists of those organic compounds that readily degrade biologically or chemically. The secon...

  1. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    PubMed

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. PMID:26318969

  2. Combined column and cell flotation process for the treatment of PAH contaminated hazardous wastes produced by an aluminium production plant.

    PubMed

    Dhenain, Aurélie; Mercier, Guy; Blais, Jean-François; Chartier, Myriam

    2009-06-15

    The aluminium electrolytic plants generate PAH and fluoride contaminated wastes which are usually classified as hazardous material. These residues are generally disposed in secure landfill sites. A flotation cell process was previously developed to remove PAH from these aluminium industry wastes. The tests were done on composite samples made of particle size fractions under 50mm. The efficiency of the flotation cell process was demonstrated but the high quantity of concentrate produced (14.0%) during the air injection period, because of the solid entrainment, raised the treatment cost. The aim of this study was to reduce the entrainment of fine particles in order to obtain an efficient and economic technology. The process initially developed was modified: the smallest particle size fraction (<0.5mm) of the composite sample was treated in a flotation column, whereas the other particle size fractions (0.5-50mm) were treated in a flotation cell. The separated treatment allowed to reduce the entrainment during the air injection period of the flotation cell step from 14.0% to 10.1%. The optimum total solids of the pulp and cocamidopropylhydroxysultaine (CAS) concentration were 3.33% and 0.50% (ww(-1)) for the flotation column, and 15% and 0.25% (ww(-1)) for the flotation cell. This combined flotation process minimized the total entrainment which allowed a 23.6% abatement of the concentrate quantity initially produced, and reduced the PAH concentrations of the wastes under the authorized limit of 1000 mg kg(-1). PMID:19013712

  3. Limitations and feasibility of the land disposal of organic solvent-contaminated wastes

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.; Mitchell, J.K.; Mitchell, R.A.

    1989-01-01

    The limitations and feasibility of the land disposal of solid wastes containing inorganic solvents and refrigerants (chlorinated fluorocarbons) were investigated by evaluating the attenuation capacity of a hypothetical waste-disposal site by numerical modeling. The basic theorem of this approach was that the land disposal wastes would be environmentally acceptable if subsurface attenuation reduced groundwater concentrations of organic compounds to concentrations that were less than health-based, water-quality criteria. Computer simulations indicated that the predicted concentrations of 13 of 33 organic compounds in groundwater would be less than their health-based criteria. Hence, solid wastes containing these compounds could be safely disposed at the site. The attenuation capacity of the site was insufficient to reduce concentrations of four compounds to safe levels without limiting the amount of mass available to leach into groundwater. Threshold masses based on time-dependent migration simulations were estimated for these compounds. The remaining 16 compounds, which consisted mainly of chlorinated hydrocarbons and fluorocarbons could not be safely landfilled without severe restrictions on the amounts disposed. These organic compounds were candidates to ban from land disposal.The limitations and feasibility of the land disposal of solid wastes containing organic solvents and refrigerants (chlorinated fluorocarbons) were investigated by evaluating the attenuation capacity of a hypothetical waste-disposal site by numerical mdoeling. Computer simulations indicated that the predicted concentrations of 13 of 33 organic compounds in groundwater would be less than their health-based criteria. Hence, solid wastes containing these compounds could be safely disposed at the site. The attenuation capacity of the site was insufficient to reduce concentrations of four compounds to safe levels without limiting the amount of mass available to leach into groundwater. The

  4. High metal reactivity and environmental risks at a site contaminated by glass waste.

    PubMed

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in <2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment. PMID:27077538

  5. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model. 2: Doped waste contaminants in cement porewaters

    SciTech Connect

    Park, J.Y.; Batchelor, B.

    1999-01-01

    In the previous paper, SOLTEQ demonstrated its ability to represent chemical speciation in the pure s/s binder systems. The objective of this paper is to provide a method for representing doped waste contaminants in SOLTEQ so that their speciation can be determined. To evaluate this method, model predictions were compared with measured concentrations in the porewaters expressed from cement pastes doped with various metal salts. Among doped metals, only mercury showed concentrations that indicated primary control by precipitation. The other metals, such as Cr(VI), Cd, Pb, and Na, showed behaviors that imply sorption as a major immobilization mechanism. The Langmuir isotherm was found to be well suited to describe the sorption of Na{sup +} ions onto the effective surface of CSH. To support the sorption of metal anions onto presumably negatively charged silica surface in cement porewater, a hypothesis of super-equivalent adsorption is proposed.

  6. Quantification of chemical contaminants in the paper and board fractions of municipal solid waste.

    PubMed

    Pivnenko, K; Olsson, M E; Götze, R; Eriksson, E; Astrup, T F

    2016-05-01

    Chemicals are used in materials as additives in order to improve the performance of the material or the production process itself. The presence of these chemicals in recyclable waste materials may potentially affect the recyclability of the materials. The addition of chemicals may vary depending on the production technology or the potential end-use of the material. Paper has been previously shown to potentially contain a large variety of chemicals. Quantitative data on the presence of chemicals in paper are necessary for appropriate waste paper management, including the recycling and re-processing of paper. However, a lack of quantitative data on the presence of chemicals in paper is evident in the literature. The aim of the present work is to quantify the presence of selected chemicals in waste paper derived from households. Samples of paper and board were collected from Danish households, including both residual and source-segregated materials, which were disposed of (e.g., through incineration) and recycled, respectively. The concentration of selected chemicals was quantified for all of the samples. The quantified chemicals included mineral oil hydrocarbons, phthalates, phenols, polychlorinated biphenyls, and selected toxic metals (Cd, Co, Cr, Cu, Ni, and Pb). The results suggest large variations in the concentration of chemicals depending on the waste paper fraction analysed. Research on the fate of chemicals in waste recycling and potential problem mitigation measures should be focused on in further studies. PMID:26969284

  7. Characterization of uranium-contaminated sediments from beneath a nuclear waste storage tank from Hanford, Washington: Implications for contaminant transport and fate

    NASA Astrophysics Data System (ADS)

    Um, Wooyong; Icenhower, Jonathan P.; Brown, Christopher F.; Serne, R. Jeffery; Wang, Zheming; Dodge, Cleveland J.; Francis, Arokiasamy J.

    2010-02-01

    The concentration and distribution of uranium (U) in sediment samples from three boreholes recovered near radioactive waste storage tanks at Hanford, Washington, USA, were determined in detail using bulk and micro-analytical techniques. The source of contamination was a plume that contained an estimated 7000 kg of dissolved U that seeped into the subsurface as a result of an accident that occurred during filling of tank BX-102. The desorption character and kinetics of U were also determined by experiment in order to assess the mobility of U in the vadose zone. Most samples contained too little moisture to obtain quantitative information on pore water compositions. Concentrations of U (and contaminant phosphate—P) in pore waters were therefore estimated by performing 1:1 sediment-to-water extractions and the data indicated concentrations of these elements were above that of uncontaminated "background" sediments. Further extraction of U by 8 N nitric acid indicated that a significant fraction of the total U is relatively immobile and may be sequestered in mobilization-resistant phases. Fine- and coarse-grained samples in sharp contact with one another were sub-sampled for further scrutiny and identification of U reservoirs. Segregation of the samples into their constituent size fractions coupled with microwave-assisted digestion of bulk samples showed that most of the U contamination was sequestered within the fine-grained fraction. Isotope exchange ( 233U) tests revealed that ˜51% to 63% of the U is labile, indicating that the remaining fund of U is locked up in mobilization-resistant phases. Analysis by Micro-X-ray Fluorescence and Micro-X-ray Absorption Near-Edge Spectroscopy (μ-XRF and μ-XANES) showed that U is primarily associated with Ca and is predominately U(VI). The spectra obtained on U-enriched "hot spots" using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIFS) provide strong evidence for uranophane-type [Ca(UO 2) 2(SiO 3OH) 2(H 2O) 5

  8. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    SciTech Connect

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  9. Human dietary intake of organohalogen contaminants at e-waste recycling sites in Eastern China.

    PubMed

    Labunska, Iryna; Abdallah, Mohamed Abou-Elwafa; Eulaers, Igor; Covaci, Adrian; Tao, Fang; Wang, Mengjiao; Santillo, David; Johnston, Paul; Harrad, Stuart

    2015-01-01

    This study reports concentrations and human dietary intake of hexabromocyclododecanes (HBCDs), polychlorinated biphenyls (PCBs) as well as selected "novel" brominated flame retardants (NBFRs) and organochlorine pesticides, in ten staple food categories. Samples were sourced from areas in Taizhou City, eastern China, where rudimentary recycling and disposal of e-waste is commonplace, as well as from nearby non-e-waste impacted control areas. In most instances, concentrations in foods from e-waste recycling areas exceeded those from control locations. Concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-TBP) in samples from e-waste sites were 3.09-62.2ng/g and 0.81-16.3ng/g lipid weight (lw), respectively; exceeding consistently those in foods acquired from control sites by an order of magnitude in many cases. In contrast, while concentrations of HBCD in some foods from e-waste impacted areas exceed those from control locations; concentrations in pork, shrimp, and duck liver are higher in control samples. This highlights the potential significance of non-e-waste sources of HBCD (e.g. building insulation foam) in our study areas. While concentrations of DDT in all foods examined except pork were higher in e-waste impacted samples than controls; our exposure estimates were well below the provisional tolerable daily intake of 0.01mg/kgbw/day derived by the Joint FAO/WHO Meeting on Pesticide Residues. Concentrations of ΣPCBs resulted in exposures (650 and 2340ng/kgbw/day for adults and children respectively) that exceed substantially the Minimal Risk Levels (MRLs) for ΣPCBs of 20ng/kgbw/day derived by the Agency for Toxic Substances & Disease Registry. Moreover, when expressed in terms of dioxin-like toxicity equivalency based on the four dioxin-like PCBs monitored in this study (DL-PCBs) (PCB-105, 118, 156, and 167); concentrations in e-waste impacted foods exceed limits set by the European Union in

  10. APPROACHES FOR REMEDIATION OF FEDERAL FACILITY SITES CONTAMINATED WITH EXPLOSIVE/RADIOACTIVE WASTE

    EPA Science Inventory

    Military operations have resulted in the contamination of soil and ground water at many federal facility sites. everal of these sites are undergoing corrective action to reduce risk. his handbook covers safety concerns, sampling methods, and treatment and management options for e...

  11. Photocatalytic oxidation of gas-phase BTEX-contaminated waste streams

    SciTech Connect

    Gratson, D A; Nimlos, M R; Wolfrum, E J

    1995-03-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been exploring heterogeneous photocatalytic oxidation (PCO) as a remediation technology for air streams contaminated with benzene, toluene, ethyl-benzene, and xylenes (BTEX). This research is a continuation of work performed on chlorinated organics. The photocatalytic oxidation of BTEX has been studied in the aqueous phase, however, a study by Turchi et al. showed a more economical system would involve stripping organic contaminants from the aqueous phase and treating the resulting gas stream. Another recent study by Turchi et al. indicated that PCO is cost competitive with such remediation technologies as activated carbon adsorption and catalytic incineration for some types of contaminated air streams. In this work we have examined the photocatalytic oxidation of benzene using ozone (0{sub 3}) as an additional oxidant. We varied the residence time in the PCO reactor, the initial concentration of the organic pollutant, and the initial ozone concentration in a single-pass reactor. Because aromatic hydrocarbons represent only a small fraction of the total hydrocarbons present in gasoline and other fuels, we also added octane to the reaction mixture to simulate the composition of air streams produced from soil-vapor-extraction or groundwater-stripping of sites contaminated with gasoline.

  12. Past and Current Groundwater Flow and Contaminant Distribution at Single-Shell Tank Waste Management Areas

    SciTech Connect

    Horton, Duane G.

    2008-01-17

    This will be part of a CH2M HILL document. It summarizes important finidings from historic and recent groundwater investigations of the uppermost aquifer beneath the 200 East and 200 West Areas. The document also summarizes ongoing work to further characterize the unconfined aquifer and contaminants in that aquifer.

  13. Appendix H: Past and Current Groundwater Flow and Contamination beneath Shell Tank Waste Management Areas

    SciTech Connect

    Horton, Duane G.

    2008-01-17

    This is being prepared as an appendix for CH2M HILL Hanford Group, Inc. and is part of PNNL support of the RCRA Facility Investigation Report. The document contains a detailed description of groundwater flow and contamination under the Central Plateau, emphasizing the areas around the tank farms.

  14. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to

  15. Contaminated Groundwater N flux to Surface Waters from Biosolid Waste Application Fields at a Waste Water Treatment Facility

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Fountain, M.; Fountain, J. C.

    2006-05-01

    Biosolids have been land applied at the Neuse River Waste Water Treatment Plant (NRWWTP) since 1980. The long biosolid application history at this site has resulted in a build up of nitrate in the ground water beneath the Waste Application Fields (WAFs). We have used an innovative river monitoring system that measures in situ nitrate concentrations and discharge above and below the plant to determine the amount of nitrate gained in the reach from the WAFs. The nitrogen and oxygen isotopic composition of nitrate in the WAF groundwater indicates that 18% of the monitoring wells are impacted by fertilizer N, 57% of the wells are impacted by biosolid N, 22% of the wells are affected by denitrification, and one well is impacted by A.D.N. The net daily contribution of surface / ground water and nitrate to the reach was calculated from the sum of the flux into the reach at the upper RiverNet station plus the plant discharge minus the flux out of the reach at the lower RiverNet station. The difference between the flux into the reach and plant discharge minus the flux out of the reach is termed the non-point source gain (NPS gain). The NPS gain could come from groundwater and/or surface drainage additions to the reach. On an annual basis, daily integrated NPS nitrate gains were ~70,000 kg in year 2004 and ~27,900 kg in 2005. This represents an average over the two year period of ~12% of the total nitrate flux out of the reach and 43% of the nitrate discharged from the plant. During the past year groundwater wells were installed in the river riparian buffer and N Flux was measured in a surface water drainage in the WAF. The results indicate that N is not migrating through the shallow groundwater, and most of the NPS gains in the reach can come from surface drainages which have nitrate concentrations of 30-80 mg/l. Over the next year wetlands will be reconstructed in the surface drainages to attenuate the N flux and protect river water quality.

  16. Limitations and feasibility of the land disposal of organic solvent-contaminated wastes

    NASA Astrophysics Data System (ADS)

    Roy, W. R.; Griffin, R. A.; Mitchell, J. K.; Mitchell, R. A.

    1989-05-01

    The limitations and feasibility of the land disposal of solid wastes containing organic solvents and refrigerants (chlorinated fluorocarbons) were investigated by evaluating the attenuation capacity of a hypothetical waste-disposal site by numerical modeling. The basic theorem of this approach was that the land disposal of wastes would be environmentally acceptable if subsurface attenuation reduced groundwater concentrations of organic compounds to concentrations that were less than health-based, water-quality criteria. Computer simulations indicated that the predicted concentrations of 13 of 33 organic compounds in groundwater would be less than their health-based criteria. Hence, solid wastes containing these compounds could be safely disposed at the site. The attenuation capacity of the site was insufficient to reduce concentrations of four compounds to safe levels without limiting the amount of mass available to leach into groundwater. Threshold masses based on time-dependent migration simulations were estimated for these compounds. The remaining 16 compounds, which consisted mainly of chlorinated hydrocarbons and fluorocarbons could not be safely landfilled without severe restrictions on the amounts disposed. These organic compounds were candidates to ban from land disposal.

  17. PHYTOREMEDIATION OF CONTAMINATED SOIL AND GROUND WATER AT HAZARDOUS WASTE SITES

    EPA Science Inventory

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is provided. The different fo...

  18. Towards identifying the next generation of superfund and hazardous waste site contaminants

    USGS Publications Warehouse

    Ela, Wendell P.; Sedlak, David L.; Barlaz, Morton A.; Henry, Heather F.; Muir, Derek C.G.; Swackhamer, Deborah L.; Weber, Eric J.; Arnold, Robert G.; Ferguson, P. Lee; Field, Jennifer A.; Furlong, Edward T.; Giesy, John P.; Halden, Rolf U.; Henry, Tala; Hites, Ronald A.; Hornbuckle, Keri C.; Howard, Philip H.; Luthy, Richard G.; Meyer, Anita K.; Saez, A. Eduardo; vom Saal, Frederick S.; Vulpe, Chris D.; Wiesner, Mark R.

    2011-01-01

    Conclusions A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention.

  19. Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...

  20. ASSESSING DETOXIFICATION AND DEGRADATION OF WOOD PRESERVING AND PETROLEUM WASTES IN CONTAMINATED SOIL

    EPA Science Inventory

    This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for wood preserving and petroleum refining wastes at high concentrations in an unacclimated soil. he soil solid phase, water soluble fractions of soil, and colum...

  1. Remaining Sites Verification Package for the 600-243 Petroleum-Contaminated Soil Bioremediation Pad, Waste Site Reclassification Form 2007-033

    SciTech Connect

    J. M. Capron

    2008-11-07

    The 600-243 waste site consisted of a bioremediation pad for petroleum-contaminated soils resulting from the 1100 Area Underground Storage Tank (UST) upgrades in 1994. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. Migration of a groundwater contaminant plume by stratabound flow in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Ketelle, R.H.; Lee, R.R.

    1992-08-01

    The discovery of radiologically contaminated groundwater in core hole CH-8 in the western portion of Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) prompted a detailed investigation to identify the contaminant plume. Utilizing a working hypothesis of stratabound groundwater flow and contaminant transport, investigators analyzed existing subsurface geologic data to predict the contaminant plume discharge location in first Creek and locations of contaminated groundwater seepage into storm drains. The hypothesis states that differential lithologic/fracture conditions lead to the development of preferred flow and transport pathways, of discrete vertical extent, which may not be coincident with the hydraulic gradient. Leakage out of the stratabound pathway is a minor component of the overall plume configuration.

  3. Migration of a groundwater contaminant plume by stratabound flow in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Ketelle, R.H.; Lee, R.R.

    1992-08-01

    The discovery of radiologically contaminated groundwater in core hole CH-8 in the western portion of Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) prompted a detailed investigation to identify the contaminant plume. Utilizing a working hypothesis of stratabound groundwater flow and contaminant transport, investigators analyzed existing subsurface geologic data to predict the contaminant plume discharge location in first Creek and locations of contaminated groundwater seepage into storm drains. The hypothesis states that differential lithologic/fracture conditions lead to the development of preferred flow and transport pathways, of discrete vertical extent, which may not be coincident with the hydraulic gradient. Leakage out of the stratabound pathway is a minor component of the overall plume configuration.

  4. Full-scale experimental facility for the development technologies for the reprocessing of tritium contaminated light and heavy water wastes by CECE process and cryogenic distillation

    SciTech Connect

    Trenin, V.D.; Alekseev, I.A.; Karpov, S.P.; Bondarenko, S.D.; Vasyanina, T.V.; Konoplev, K.A.; Fedorchenko, O.A.; Uborski, V.V.; Voronina, T.

    1995-10-01

    The problem of the formation and accumulation of the tritiated heavy and light water wastes produced under operation of the various nuclear facilities is considered. It is shown that the tritium contaminated wastes may have a wide spectrum of isotope concentrations of H:D:T and correlation one with other. Reprocessing of these wastes is expensive matter due to the small tritium concentration respectfully to other hydrogen isotopes and as well as the small value of separation factor. It requires the development of the versatile technology. The description of the full scale experimental facility constructed at PNPI is given. 18 refs., 1 fig.

  5. Characterization of a site contaminated by waste from a monazite ore processing plant

    SciTech Connect

    Lauria, D.C.; Reis, V.R.; Nouailhetas, Y.; Godoy, J.M.; Agudo, E.G.

    1993-12-31

    A radiological survey of an area of 60,000 m{sup 2}, previously occupied by the Usina de Interlagos (USIN), a branch of the Brazilian State Monazite Company was conducted. External exposure gamma rates, surface soil, subsurface soil and groundwater concentration of the long-life radionuclides from the uranium and thorium decay chain were determined. Two areas, one of 4,800 m{sup 2} and other of 1,750 m{sup 2}, were found to be contaminated with different radioactive materials, originating from the chemical and physical processing of the monazite sand. {sup 228}Ra is present up to 2.2 {times} 10{sup 4} Bq/kg in soil and 93 Bq/l in groundwater. Based on future scenarios, an allowable residual contamination level of {sup 232}Th and {sup 226}Ra of around 200 Bq/kg was derived. Clean-up actions are suggested.

  6. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    An, Da; Jiang, Yonghai; Xi, Beidou; Ma, Zhifei; Yang, Yu; Yang, Queping; Li, Mingxiao; Zhang, Jinbao; Bai, Shunguo; Jiang, Lei

    2013-09-01

    A groundwater flow and solute transport model was developed using Visual Modflow for forecasting contaminant transport and assessing effects of remedial alternatives based on a case study of an unregulated landfill leachate-contaminated groundwater in eastern China. The results showed that arsenic plume was to reach the pumping well in the downstream farmland after eight years, and the longest lateral and longitudinal distance of arsenic plume was to reach 200 m and 260 m, respectively. But the area of high concentration region of arsenic plume was not to obviously increase from eight years to ten years and the plume was to spread to the downstream river and the farmland region after 20 years; while the landfill's ground was hardened, the plume was not to reach the downstream farmland region after eight years; when the pumping well was installed in the plume downstream and discharge rate was 200m3/d, the plume was to be effectively restrained; for leakage-proof barriers, it might effectively protect the groundwater of sensitive objects within an extent time range. But for the continuous point source, the plume was still to circle the leakage-proof barrier; when discharge rate of drainage ditches was 170.26 m3/d, the plume was effectively controlled; the comprehensive method combining ground-harden with drainage ditches could get the best effect in controlling contaminant diffusion, and the discharge rate was to be reduced to 111.43 m3/d. Therefore, the comprehensive remedial alternative combining ground-harden with drainage ditch will be recommended for preventing groundwater contamination when leachate leakage has happened in unregulated landfills.

  7. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    SciTech Connect

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage.

  8. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    SciTech Connect

    G. B. Cotten; J. D. Navratil; H. B. Eldredge

    1999-03-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

  9. Ageing of a phosphate ceramic used to immobilize chloride-contaminated actinide waste

    SciTech Connect

    Metcalfe, Brian; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-03-31

    At AWE, we have developed a process for the immobilization of ILW waste containing a significant quantity of chloride with Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed at AWE with Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, wer performed at PNNL where the waste form was found to be resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7 x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD patterns after the samples had experienced an α radiation dose of 4 x 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  10. Pilot-test of the calcium sodium phosphate (CNP) process for the stabilization/solidification of various mercury-contaminated wastes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-12-01

    A pilot-scale calcium sodium phosphate (CNP) plant was designed and manufactured to examine the performance of recently developed stabilization/solidification (S/S) technology. Hg-contaminated wastes samples generated via various industrial processes in Korea, including municipal, industrial, and medical waste incineration, wastewater treatment, and lime production, were collected and treated using the pilot-scale CNP plant. S/S samples were fabricated according to various operating conditions, including waste type, the dose of the stabilization reagent (Na2S), and the waste loading ratio. Although the performances (Hg leaching value and compressive strength) were reduced as the waste loading ratio increased, most of the S/S samples exhibited Hg leaching values that were below the universal treatment standard limit of 25 μg L(-1) and compressive strengths that exceeded the criterion of 3.45 MPa. PMID:25169648

  11. Preliminary systems design study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  12. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    SciTech Connect

    Arora, H.S.; Tamura, T.; Boegly, W.J.

    1980-09-01

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references.

  13. Cesium distribution and phases in proxy experiments on the incineration of radioactively contaminated waste from the Fukushima area.

    PubMed

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kakuta, Yoshitada; Kawano, Takashi

    2014-10-01

    After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. PMID:24911259

  14. ANNUAL REPORT. FIXATION MECHANISMS AND DESORPTION RATES OF SORBED CS IN HIGH-LEVEL WASTE CONTAMINATED SUBSURFACE SEDIMENTS: IMPLICATIONS TO FUTURE BEHAVIOR AND IN-GROUND STABILITY

    EPA Science Inventory

    Research is investigating mineralogic and geochemical factors controlling the desorption rate of 137Cs+ from subsurface sediments on the Hanford Site contaminated with different types of high-level waste. The project will develop kinetic data and models that describe the release ...

  15. Effects on residential property values of proximity to a site contaminated with radioactive waste

    SciTech Connect

    Payne, B.A.; Olshansky, S.J.; Segel, T.E.

    1985-01-01

    An issue often raised by the public regarding projects that involve hazardous chemical or radioactive waste sites is whether distance from these sites affects residential property values. Previous research has studied changes in the housing market in communities near Three Mile Island after the 1979 accident and legal precedents of compensation for loss of property value because of proximity to hazardous areas. However, this research has not addressed effects on residential property values of proximity specifically to hazardous chemical or radioactive waste sites. The effects of the proximity of residence to such a site in West Chicago, Illinois - used for many years for disposal of thorium waste from processing ores - were investigated in this study. Single-family residence sales located within about 0.4 km of the West Chicago site were compared with residence sales located between 0.4 km and 1.6 km from the site. Trends in average annual selling prices were analyzed both before and after publicity appeared about the existence of the radioactive material at the site. Results indiate that older residences (built before 1950) located within about 0.4 km of the disposal site experienced a prolonged depression in selling prices after the publicity, in comparison with older residences located farther from the site and with all transactions on newer residences. These results confirm to some extent public perceptions and potentially raise legal issues associated with property values. Suggestions are provided for mitigative measures to alleviate these issues. 22 references, 1 figure.

  16. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    NASA Astrophysics Data System (ADS)

    Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2009-03-01

    A process for the immobilization of intermediate level waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material has been developed. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed using Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, were performed at PNNL which confirmed the wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu/241Am loaded ceramic at 313 K/28 days gave normalized mass losses of 1.2 × 10-5 g m-2 and 2.7 × 10-3 g m-2 for Pu and Cl, respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD spectra after the samples had experienced an α radiation fluence of 4 × 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  17. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    SciTech Connect

    Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-03-31

    AWE has developed a process for the immobilization of ILW waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate based phases, chlorapatite, Ca5(PO4)3Cl, and spodiosite, Ca2(PO4)Cl. Non-active trials performed at AWE using samarium as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process using actinide-doped material were performed at PNNL which confirmed the immobilized wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7 x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced by 238Pu. No changes to the crystalline structure of the waste were detected using XRD after the samples had experienced a radiation dose of 4 x 1018 α.g-1. Leach trials showed that there had been an increase in the P and Ca release rates but no change in the Pu release rate.

  18. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. PMID:25460954

  19. Use of EDTA in modified kinetic testing for contaminated drainage prediction from waste rocks: case of the Lac Tio mine.

    PubMed

    Plante, Benoît; Benzaazoua, Mostafa; Bussière, Bruno; Kandji, El-Hadji-Babacar; Chopard, Aurélie; Bouzahzah, Hassan

    2015-05-01

    The tools developed for acid mine drainage (AMD) prediction were proven unsuccessful to predict the geochemical behavior of mine waste rocks having a significant chemical sorption capacity, which delays the onset of contaminated neutral drainage (CND). The present work was performed in order to test a new approach of water quality prediction, by using a chelating agent solution (0.03 M EDTA, or ethylenediaminetetraacetic acid) in kinetic testing used for the prediction of the geochemical behavior of geologic material. The hypothesis underlying the proposed approach is that the EDTA solution should chelate the metals as soon as they are released by sulfide oxidation, inhibiting their sorption or secondary precipitation, and therefore reproduce a worst-case scenario where very low metal attenuation mechanisms are present in the drainage waters. Fresh and weathered waste rocks from the Lac Tio mine (Rio tinto, Iron and Titanium), which are known to generate Ni-CND at the field scale, were submitted to small-scale humidity cells in control tests (using deionized water) and using an EDTA solution. Results show that EDTA effectively prevents the metals to be sorbed or to precipitate as secondary minerals, therefore enabling to bypass the delay associated with metal sorption in the prediction of water quality from these materials. This work shows that the use of a chelating agent solution is a promising novel approach of water quality prediction and provides general guidelines to be used in further studies, which will help both practitioners and regulators to plan more efficient management and disposal strategies of mine wastes. PMID:25604563

  20. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  1. Characterization of uranium-contaminated sediments 3 from beneath a nuclear waste storage tank from Hanford, 4 Washington: Implications for contaminant transport and fate

    SciTech Connect

    Um, W.; Francis, A.; Icenhower, J. P.; Brown, C. F.; Serne, R. J.; Wang, Z.; Dodge, C. J.

    2010-01-01

    The concentration and distribution of uranium (U) in sediment samples from three boreholes recovered near radioactive waste storage tanks at Hanford, Washington, USA, were determined in detail using bulk and micro-analytical techniques. The source of contamination was a plume that contained an estimated 7000 kg of dissolved U that seeped into the subsurface as a result of an accident that occurred during filling of tank BX-102. The desorption character and kinetics of U were also determined by experiment in order to assess the mobility of U in the vadose zone. Most samples contained too little moisture to obtain quantitative information on pore water compositions. Concentrations of U (and contaminant phosphate-P) in pore waters were therefore estimated by performing 1:1 sediment-to-water extractions and the data indicated concentrations of these elements were above that of uncontaminated 'background' sediments. Further extraction of U by 8 N nitric acid indicated that a significant fraction of the total U is relatively immobile and may be sequestered in mobilization-resistant phases. Fine- and coarse-grained samples in sharp contact with one another were sub-sampled for further scrutiny and identification of U reservoirs. Segregation of the samples into their constituent size fractions coupled with microwave-assisted digestion of bulk samples showed that most of the U contamination was sequestered within the fine-grained fraction. Isotope exchange ({sup 233}U) tests revealed that {approx}51% to 63% of the U is labile, indicating that the remaining fund of U is locked up in mobilization-resistant phases. Analysis by Micro-X-ray Fluorescence and Micro-X-ray Absorption Near-Edge Spectroscopy ({mu}-XRF and {mu}-XANES) showed that U is primarily associated with Ca and is predominately U(VI). The spectra obtained on U-enriched 'hot spots' using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIFS) provide strong evidence for uranophane-type [Ca(UO{sub 2}){sub 2

  2. Characterization of Uranium-Contaminated Sediments From Beneath A Nuclear Waste Storage Tank From Hanford, Washington: Implications for Contaminant Transport and Fate

    SciTech Connect

    Um, Wooyong; Icenhower, Jonathan P; Brown, Christopher F; Serne, R Jeffrey; Wang, Zheming; Dodge, Cleveland J; FRANCIS, AROKIASAMY J

    2010-02-15

    The concentration and distribution of uranium (U) in sediment samples from three boreholes recovered near radioactive waste storage tanks at Hanford, Washington State, USA, were determined in detail using bulk and micro-analytical techniques. The source of contamination was a plume that contained an estimated 7000 kg of dissolved U that seeped into the subsurface as a result of an accident that occurred during filling of tank BX-102. The desorption character and kinetics of U were also determined by experiment in order to assess the mobility of U in the vadose zone. Most samples contained too little moisture to obtain quantitative information on pore water compositions. Concentrations of U (and contaminant phosphate—P) in pore waters were therefore estimated by performing 1:1 sediment-to-water extractions and the data indicated concentrations of these elements were above that of uncontaminated “background” sediments. Further extraction of U by 8 N nitric acid indicated that a significant fraction of the total U is relatively immobile and may be sequestered in mobilization-resistant phases. Fine- and coarse-grained samples in sharp contact with one another were sub-sampled for further scrutiny and identification of U reservoirs. Segregation of the samples into their constituent size fractions coupled with microwave-assisted digestion of bulk samples showed that most of the U contamination was sequestered within the fine-grained fraction. Isotope exchange (233U) tests revealed that ~51 to 63% of the U is labile, indicating that the remaining fund of U is locked up in mobilization-resistant phases. Analysis by micro-X-Ray Fluorescence and micro-X-Ray Absorption Near-Edge Spectroscopy (μ-XRF and μ-XANES) showed that U is primarily associated with Ca and is predominately U(VI). The spectra obtained on U-enriched “hot spots” using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIFS) provide strong evidence for uranophane-type [Ca(UO2

  3. Arsenic mobility in soils contaminated with metallurgical wastes as a function of variable chemical conditions

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Villalobos, M.; Ceniceros, A.; Lopez, J. L.; Gutierrez, M.

    2008-12-01

    Arsenic is a pervasive contaminant of natural aqueous systems, such as groundwater and soils, its sources being both natural and anthropogenic. The present investigation was performed on soils contaminated with residues from ore processing activities and revealed the presence of arsenate [As(V)] species with a very low mobility, through natural attenuation processes. The stability of this attenuation was investigated by varying two specific equilibrium chemical conditions: pH and presence of bicarbonate ions. One-unit changes in equilibrium pH generally caused small increases in As mobility, whereas the presence of bicarbonate ions considerably increased this mobility. The results were compared to thermodinamic simulations of equilibrium conditions using the total elemental composition of each individual soil, but excluding sorption reactions. Close matches between experimental data and simulations revealed the predominance of solubility-controlled As mobility via heavy-metal arsenate solid formation. Bicarbonate ions were found to be highly unsuitable for extraction of sorbed arsenate fractions due to indirect As release from solid arsenates, via heavy-metal carbonate precipitation processes.

  4. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.

    PubMed

    Padmapriya, S; Murugan, N; Ragavendran, C; Thangabalu, R; Natarajan, D

    2016-01-01

    The Pot culture experiment performed for phytoextraction potential of selected agricultural plants [millet (Eleusine coracana), mustard (Brassica juncea), jowar (Sorghum bicolor), black gram (Vigna mungo), pumpkin (Telfairia occidentalis)] grown in metal contaminated soils around the Salem region, Tamilnadu, India. Physiochemical characterization of soils, reported as low to medium level of N, P, K was found in test soils. The Cr content higher in mine soils than control and the values are 0.176 mg/L in Dalmia soil and 0.049 mg/L in Burn & Co soil. The germination rate low in mine soil than control soils (25 to 85%). The content of chlorophyll, carotenoid, carbohydrate and protein decreased in mine soils than control. The morphological parameters and biomass values decreased in experimental plants due to metal accumulation. Proline content increased in test plants and ranged from 0.113 mg g(-1) to 0.858 mg g(-1) which indicate the stress condition due to toxicity of metals. Sorghum and black gram plants reported as metal tolerant capacity. Among the plants, Sorghum produced good results (both biomass and biochemical parameters) which equal to control plant and suggests Sorghum plant is an ideal for remediation of metal contaminated soils. PMID:26366709

  5. Morphological, biochemical, and histopathological indices and contaminant burdens of cotton rats (Sigmodon hispidus) at three hazardous waste sites near Houston, Texas, USA

    USGS Publications Warehouse

    Rattner, B.A.; Flickinger, Edward L.; Hoffman, D.J.

    1993-01-01

    Male cotton rats (Sigmodon hispidus) were studied at three industrial waste sites near Houston, Texas, to determine whether various morphological, biochemical, and histopathological indices provided evidence of contaminant exposure and toxic insult. Only modest changes were detected in cotton rats residing at waste sites compared with reference sites. No single parameter was consistently altered, except hepatic cytochrome P-450 concentration which was lower ( [Formula: see text] ) at two waste sites, and tended to be lower ( [Formula: see text] ) at a third waste site. Elevated petroleum hydrocarbon concentrations were detected in rats at one waste site, but contaminant burdens of rats from the other sites were unremarkable. Unlike rats captured in summer, those trapped in winter exhibited hepatocellular hypertrophy and up to a 65% increase in liver: body weight ratio, cytochrome P-450 concentration, and activities of aniline hydroxylase, aryl hydrocarbon hydroxylase, and glutathione S-transferase. Although genotoxicity has been previously documented in cotton rats residing at two of the waste sites, biomarkers in the present study provided little evidence of exposure and damage

  6. Popular epidemiology and toxic waste contamination: lay and professional ways of knowing

    SciTech Connect

    Brown, P. )

    1992-09-01

    Building on a detailed study of the Woburn, Massachusetts, childhood leukemia cluster, this paper examines lay and professional ways of knowing about environmental health risks. Of particular interest are differences between lay and professional groups' definitions of data quality, methods of analysis, traditionally accepted levels of measurement and statistical significance, and relations between scientific method and public policy. This paper conceptualizes the hazard-detection and solution-seeking activities of Love Canal, Woburn, and other communities as popular epidemiology: the process by which lay persons gather data and direct and marshal the knowledge and resources of experts in order to understand the epidemiology of disease, treat existing and prevent future disease, and remove the responsible environmental contaminants. Based on different needs, goals, and methods, laypeople and professionals have conflicting perspectives on how to investigate and interpret environmental health data.

  7. Popular epidemiology and toxic waste contamination: lay and professional ways of knowing.

    PubMed

    Brown, P

    1992-09-01

    Building on a detailed study of the Woburn, Massachusetts, childhood leukemia cluster, this paper examines lay and professional ways of knowing about environmental health risks. Of particular interest are differences between lay and professional groups' definitions of data quality, methods of analysis, traditionally accepted levels of measurement and statistical significance, and relations between scientific method and public policy. This paper conceptualizes the hazard-detection and solution-seeking activities of Love Canal, Woburn, and other communities as popular epidemiology: the process by which lay persons gather data and direct and marshal the knowledge and resources of experts in order to understand the epidemiology of disease, treat existing and prevent future disease, and remove the responsible environmental contaminants. Based on different needs, goals, and methods, laypeople and professionals have conflicting perspectives on how to investigate and interpret environmental health data. PMID:1401851

  8. Hydrogels for immobilization of bacteria used in the treatment of metal-contaminated wastes

    NASA Astrophysics Data System (ADS)

    Degiorgi, C. Fernández; Pizarro, R. A.; Smolko, E. E.; Lora, S.; Carenza, M.

    2002-01-01

    Polymeric matrices prepared by gamma irradiation of 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate at -78°C in the presence of water and glycerol and poly(vinyl alcohol) membranes were examined as carriers for immobilization of bacterial cells in experiments of metal decontamination. Bacterial strains capable of growing in the presence of heavy metals were selected from soil and water from the Rı´o de la Plata coasts in Argentina and cultured in the hydrophilic membranes with the aim of bioremediation of the standard contaminated solutions. The results obtained indicate that removal from free bacteria was more efficient for Pb(II) and Cd(II) than for Cr(III) and Cu(II). It was ascertained that all metals could be immobilized in the polymer matrices to some extent. The Cr(III) ion concentration in bacteria immobilized on the acrylic hydrogel was approximately double of that found in the poly(vinyl alcohol) membrane.

  9. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    SciTech Connect

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs.

  10. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    SciTech Connect

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  11. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contam¬inants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  12. Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration and Sequestration

    SciTech Connect

    Chorover, Jon D.

    2003-06-01

    We are studying Cs, Sr and I uptake and release during clay mineral weathering under conditions representative of caustic tank waste leachate. Cesium sorption after 1 year reaction was the greatest in the order of vermiculite, illite, montmorillonite and kaolinite. Vermiculite showed highest Sr sorption, followed by kaolinite, montmorillonite and illite. Secondary phase products were feldspathoid sodium aluminum nitrate silicate, sodium aluminum nitrate silicate hydrate, Na-Al chabazite and zeolite X. Discrete Sr phases were found in kaolinite and illite systems after at 10{sup -3} M Cs/Sr. Transmission electron microscopy with EDS indicates a high single Sr phase in illite systems. Spheroidal secondary phases are common in all clay consisting of intergrown Na-containing sodalite and cancrinite. In the case of illite, montmorillonite and kaolinite, Cs or Sr are found in association with these neoformed spheroidal secondary phases, but this is not the case in vermiculite systems. In vermiculite, most of Cs and Sr is associated with clay particle, presumably because of its high charge density, rather than secondary phases. For detailed investigations of Cs/Sr coprecipitation with neoformed alumosilicate during the clay weathering process, we are conducting homogeneous nucleation experiments in the absence of clay minerals. Silica is reacted with synthetic tank waste to elucidate sites of Cs, Sr and I uptake in products. We are varying the Si/Al and the initial Cs, Sr and I concentrations to examine effects on mineral formation and uptake rate. To date, we have observed that precipitation kinetics and the nature of reaction products varies with initial Cs, Sr and I concentration. Solid phase products are being investigated by XRD, FTIR, NMR and EXAFS, and are also being subjected to dissolution kinetics studies to assess long term stability.

  13. Feasibility studies on electrochemical recovery of uranium from solid wastes contaminated with uranium using 1-butyl-3-methylimidazorium chloride as an electrolyte

    NASA Astrophysics Data System (ADS)

    Ohashi, Yusuke; Harada, Masayuki; Asanuma, Noriko; Ikeda, Yasuhisa

    2015-09-01

    In order to examine feasibility of the electrochemical deposition method for recovering uranium from the solid wastes contaminated with uranium using ionic liquid as electrolyte, we have studied the electrochemical behavior of each solution prepared by soaking the spent NaF adsorbents and the steel waste contaminated with uranium in BMICl (1-butyl-3-methyl- imidazolium chloride). The uranyl(VI) species in BMICl solutions were found to be reduced to U(V) irreversibly around -0.8 to -1.3 V vs. Ag/AgCl. The resulting U(V) species is followed by disproportionation to U(VI) and U(IV). Based on the electrochemical data, we have performed potential controlled electrolysis of each solution prepared by soaking the spent NaF adsorbents and steel wastes in BMICl at -1.5 V vs. Ag/AgCl. Black deposit was obtained, and their composition analyses suggest that the deposit is the mixtures of U(IV) and U(VI) compounds containing O, F, Cl, and N elements. From the present study, it is expected that the solid wastes contaminated with uranium can be decontaminated by treating them in BMICl and the dissolved uranium species are recovered electrolytically.

  14. Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination

    NASA Astrophysics Data System (ADS)

    El Bakouri, Hicham; Morillo, José; Usero, José; Ouassini, Abdelhamid

    2008-05-01

    SummaryThe heavy use of pesticides in agriculture has meant that the fate due to their movement after their application continue to be a real problem for the environment. In this work, a viable eco-remediation technique based on the use of natural organic substances (NOS) that characterize the Mediterranean region is proposed to demonstrate the efficiency of endosulfan sulphate removal from water. Experimental results showed that the pH of pesticide solutions and temperature negatively affect the adsorption process. According to adsorption kinetic data, 5 h were considered as the equilibrium time for realizing adsorption isotherm. The Freundlich isotherm model describes better the adsorption process of endosulfan sulphate on NOS tested. The Freundlich constant Kf depended mainly on the nature of each adsorbent and ranged from 5.56 for straw to 13.54 for date stones. The adsorption tests gave very satisfying results and point to the possible application of these supports as an ecological remediation technique to reduce pesticide contamination of aquatic ecosystems.

  15. Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration & Separation - Final Report

    SciTech Connect

    Tyburczy, James A. : Chorover, John; O'Day, Peggy

    2005-09-15

    Studies of the reactivity of radionuclides (Cs, Sr, I) in STWL with model clays and natural sediments were conducted by coupling macroscopic sorption-desorption experiments with spectroscopic and microscopic investigations over a wide range of reaction times. Three experimental systems were studied: (1) model clay minerals, (2) products of homogeneous precipitation from STWL, and (3) representative Hanford sediments, with (1) and (3) reacted with STWL from 1 h to 369 d. The clay minerals included illite, vermiculite, smectite and kaolinite, which constitute a sequence of micaceous weathering products with variable reactivity toward Cs+, Sr2+ and I-. Coarse and fine sediments collected from the Hanford formation (HC and HF, respectively) and Ringold Silt (RS) were studied in batch experiments and Warden silt loam was used in batch and column experiments. Solutions were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). Solid products (referred to here as ''secondary phases'' relative to the initial reactant minerals) were analyzed for time-dependent changes in mineralogy and modes of contaminant bonding by a variety of methods, including X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) with energy dispersive spectrometry (EDS), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), X-ray absorption spectroscopy (XAS), including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) analysis, and Fourier-transform infrared spectroscopy (FTIR).

  16. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost.

    PubMed

    Sizmur, Tom; Palumbo-Roe, Barbara; Hodson, Mark E

    2011-07-01

    The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mg As kg(-1) and 362 mg Cu kg(-1)) and Pb/Zn mine (4550 mg Pb kg(-1) and 908 mg Zn kg(-1)) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element. PMID:21501909

  17. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments - a developing country case study from Owerri, Nigeria.

    PubMed

    Arukwe, Augustine; Eggen, Trine; Möder, Monika

    2012-11-01

    In developing countries, there are needs for scientific basis to sensitize communities on the problems arising from improper solid waste deposition and the acute and long-term consequences for areas receiving immobilized pollutants. In Nigeria, as in many other African countries, solid waste disposal by way of open dumping has been the only management option for such wastes. Herein, we have highlighted the challenges of solid waste deposit and management in developing countries, focusing on contaminants of emerging concern and leaching into the environment. We have analyzed sediments and run-off water samples from a solid waste dumping site in Owerri, Nigeria for organic load and compared these with data from representative world cities. Learning from previous incidents, we intend to introduce some perspective for awareness of contaminants of emerging concerns such as those with potential endocrine disrupting activities in wildlife and humans. Qualitative and quantitative data obtained by gas chromatography and mass spectrometric analysis (GC-MS) provide an overview on lipophilic and semi-polar substances released from solid waste, accumulated in sediments and transported via leachates. The chromatograms of the full scan analyses of the sediment extracts clearly point to contamination related to heavy oil. The homologous series of n-alkanes with chain lengths ranging between C16 and C30, as well as detected polyaromatic hydrocarbon (PAH) compounds such as anthracene, phenanthrene, fluoranthene and pyrene support the assumption that diesel fuel or high boiling fractions of oil are deposited on the site. Targeted quantitative analysis for selected compounds showed high concentration of substances typically released from man-made products such as plastics, textiles, household and consumer products. Phthalate, an integral component of plastic products, was the dominant compound group in all sediment samples and run-off water samples. Technical nonylphenols (mixture of

  18. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya; Parkpian, Preeda

    2009-08-15

    The suitability for land application of anaerobically digested sewage sludge treated with naturally fermented and Aspergillus niger (A. niger) fermented raw liquid from pineapple wastes, in terms of changes in the forms and amount of heavy metals and nutrient and pathogen content, were investigated in this study. Leaching studies for fermented liquid at optimum conditions (pH and contact time with best metal removal efficiencies) were carried out for the removal of Cd, Cr, Cu, Pb, Ni and Zn from sewage sludge, with citric acid as a reference. Using the same sludge before and after leaching, sequential fractionation studies were done to observe the effect of treatment on the forms of metals in sludge and their mobility and bioavailability. Results of laboratory scale studies revealed that leaching with all extractants at selected optimum conditions resulted in a decrease in heavy metals and pathogen content of the treated sludge, presence of sufficient amount of nutrients (nitrogen and phosphorous) and dominance of residual fractions in most metals, with sludge treated with A. niger, having the best quality. The results, therefore, indicate the high potential of the treated sludge for land application, with no harm from heavy metals released and no toxicity to the soil and groundwater. PMID:19232826

  19. Indoor Air Contamination from Hazardous Waste Sites: Improving the Evidence Base for Decision-Making.

    PubMed

    Johnston, Jill; MacDonald Gibson, Jacqueline

    2015-12-01

    At hazardous waste sites, volatile chemicals can migrate through groundwater and soil into buildings, a process known as vapor intrusion. Due to increasing recognition of vapor intrusion as a potential indoor air pollution source, in 2015 the U.S. Environmental Protection Agency (EPA) released a new vapor intrusion guidance document. The guidance specifies two conditions for demonstrating that remediation is needed: (1) proof of a vapor intrusion pathway; and (2) evidence that human health risks exceed established thresholds (for example, one excess cancer among 10,000 exposed people). However, the guidance lacks details on methods for demonstrating these conditions. We review current evidence suggesting that monitoring and modeling approaches commonly employed at vapor intrusion sites do not adequately characterize long-term exposure and in many cases may underestimate risks. On the basis of this evidence, we recommend specific approaches to monitoring and modeling to account for these uncertainties. We propose a value of information approach to integrate the lines of evidence at a site and determine if more information is needed before deciding whether the two conditions specified in the vapor intrusion guidance are satisfied. To facilitate data collection and decision-making, we recommend a multi-directional community engagement strategy and consideration of environment justice concerns. PMID:26633433

  20. Indoor Air Contamination from Hazardous Waste Sites: Improving the Evidence Base for Decision-Making

    PubMed Central

    Johnston, Jill; MacDonald Gibson, Jacqueline

    2015-01-01

    At hazardous waste sites, volatile chemicals can migrate through groundwater and soil into buildings, a process known as vapor intrusion. Due to increasing recognition of vapor intrusion as a potential indoor air pollution source, in 2015 the U.S. Environmental Protection Agency (EPA) released a new vapor intrusion guidance document. The guidance specifies two conditions for demonstrating that remediation is needed: (1) proof of a vapor intrusion pathway; and (2) evidence that human health risks exceed established thresholds (for example, one excess cancer among 10,000 exposed people). However, the guidance lacks details on methods for demonstrating these conditions. We review current evidence suggesting that monitoring and modeling approaches commonly employed at vapor intrusion sites do not adequately characterize long-term exposure and in many cases may underestimate risks. On the basis of this evidence, we recommend specific approaches to monitoring and modeling to account for these uncertainties. We propose a value of information approach to integrate the lines of evidence at a site and determine if more information is needed before deciding whether the two conditions specified in the vapor intrusion guidance are satisfied. To facilitate data collection and decision-making, we recommend a multi-directional community engagement strategy and consideration of environment justice concerns. PMID:26633433

  1. Groundwater modeling of source terms and contaminant plumes for DOE low-level waste performance assessments

    SciTech Connect

    McDowell-Boyer, L.M.; Wilson, J.E.

    1994-06-01

    Under US Department of Energy (DOE) Order 5820.2A, all sites within the DOE complex must analyze the performance of planned radioactive waste disposal facilities before disposal takes place through the radiological performance assessment process. These assessments consider both exposures to the public from radionuclides potentially released from disposal facilities and protection of groundwater resources. Compliance with requirements for groundwater protection is often the most difficult to demonstrate as these requirements are generally more restrictive than those for other pathways. Modeling of subsurface unsaturated and saturated flow and transport was conducted for two such assessments for the Savannah River site. The computer code PORFLOW was used to evaluate release and transport of radionuclides from different types of disposal unit configurations: vault disposal and trench disposal. The effectiveness of engineered barriers was evaluated in terms of compliance with groundwater protection requirements. The findings suggest that, due to the limited lifetime of engineered barriers, overdesign of facilities for long-lived radionuclides is likely to occur if compliance must be realized for thousands of years.

  2. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil].

    PubMed

    Liu, Zhao-Bing; Ji, Xiong-Hui; Tian, Fa-Xiang; Peng, Hua; Wu, Jia-Mei; Shi, Li-Hong

    2011-04-01

    quality was guaranteed by determination of rational amount of alkaline wastes and a proportion of zinc fertilizer which was in accord with soil Cd contamination level and chemical properties, etc. PMID:21717764

  3. Activated soil filters for removal of biocides from contaminated run-off and waste-waters.

    PubMed

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael; Janzen, Niklas; Niederstrasser, Bernd; Scheytt, Traugott

    2011-11-01

    Building facades can be equipped with biocides to prevent formation of algal, fungal and bacterial films. Thus run-off waters may contain these highly active compounds. In this study, the removal of several groups of biocides from contaminated waters by means of an activated soil filter was studied. A technical scale activated vertical soil filter (biofilter) with different layers (peat, sand and gravel), was planted with reed (Phragmites australis) and used to study the removal rates and fate of hydrophilic to moderate hydrophobic (log K(ow) 1.8-4.4) biocides and biocide metabolites such as: Terbutryn, Cybutryn (Irgarol® 1051), Descyclopropyl-Cybutryn (Cybutryn and Terbutryn metabolite), Isoproturon, Diuron, and its metabolite Diuron-desmonomethyl, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone and Iodocarbamate (Iodocarb). Three experiments were performed: the first one (36 d) under low flow conditions (61 L m(-2) d(-1)) reached removal rates between 82% and 100%. The second one was performed to study high flow conditions: During this experiment, water was added as a pulse to the filter system with a hydraulic load of 255 L m(-2) within 5 min (retention time <1 h). During this experiment the removal rates of the compounds decreased drastically. For five compounds (Cybutryn, Descyclopropyl-Cybutryn, Diuron, Isoproturon, and Iodocarb) the removal dropped temporarily below 60%, while it was always above 70% for the others (Terbutryn, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone). However, this removal is a considerable improvement compared to direct discharge into surface waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer was responsible for most of the removal, the sand and gravel layers also contributed significantly for some compounds. All compounds are rather removed by

  4. Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes.

    PubMed

    Janyasuthiwong, Suthee; Phiri, Sheila M; Kijjanapanich, Pimluck; Rene, Eldon R; Esposito, Giovanni; Lens, Piet N L

    2015-01-01

    The use of agricultural wastes (groundnut shell, orange and banana peel, rice husk, coconut husk and Wawa tree saw dust) as potential cost-effective adsorbent for heavy metal removal from wastewater was evaluated. The effect of pH (2.0-6.0), adsorbent dosage (0.6-2.2 g), contact time (10-130 min) and initial concentration (Pb: 5-105 mg/L, Cu and Zn: 2.5-52.7 mg/L) on the metal removal efficiency and uptake capacity were investigated using response surface methodology to optimize the process conditions. Groundnut shell showed a high potential to remove Cu, Pb and Zn from synthetic wastewater. The highest removal efficiencies with groundnut as the adsorbent were 85% at pH 5.0 for Cu and 98% at pH 3.0 for Pb and Zn. The optimum conditions obtained were 2.5 g adsorbent with 40.7 mg/L Cu at pH 4.4 and 64 min contact time, 2.5 g adsorbent with 196.1 mg/L Pb at pH 5.6 and 60 min contact time and 3.1 g adsorbent with 70.2 mg/L Zn at pH 4.3 and 50 min contact time, for Cu, Pb and Zn, respectively. The regeneration of the groundnut shell was possible for a maximum of three cycles using 0.2 M HCl as the desorbing solution without any significant change in the adsorbing efficiency. PMID:26001037

  5. Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain).

    PubMed

    Fernández-Caliani, J C; Barba-Brioso, C

    2010-09-15

    A one-year field trial was conducted at the abandoned mine site of Tharsis (Spain) in order to assess the potential value of waste sludge generated during the processing of marble stone, as an additive for assisting natural remediation of heavily contaminated acid mine soils. An amendment of 22 cmol(c) of lime per kilogram of soil was applied to raise the pH level from 3.2 to above 6. The amendment application was effective in reducing concentrations of Al, Fe, Mn, sulfate and potentially hazardous trace elements (mainly Cu, Pb, Zn and Cd) in the most labile metal pools (water-soluble and EDTA-extractable fractions). Geochemical equilibrium calculations indicate that sulfate complexes and free metal ions were the dominant aqueous species in the soil solution. Metal coprecipitation with nanocrystalline ferric oxyhydroxides may be the major chemical mechanism of amendment-induced immobilization. The alleviating effect of the soil amendment on the metal bioavailability and phytotoxicity showed promise for assisting natural revegetation of the mine land. PMID:20541314

  6. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure

    USGS Publications Warehouse

    Kim, C.S.; Wilson, K.M.; Rytuba, J.J.

    2011-01-01

    The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.

  7. Amino acid compositon and microbial contamination of spirulina maxima, a blue-green alga, grown on the effluent of different fermented animal wastes

    SciTech Connect

    Wu, J.F.; Pond, W.G.

    1981-01-01

    The nutrient compositions of various fermented manures were compared. Large differences in the mineral concentration were observed. There were no important differences among the amino acid composition of S. spirulina grown on the different nutrient media. All were low in methionine, but were rich in glutamic acid, aspartic acid, arginine, and leucine. The crude protein content was 71.8-60.1%. Considerable contamination of the waste-grown algae with yeast, fungi, and sporogenous bacteria was experienced.

  8. Investigation of Contaminated Ground Water at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2006-2007

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2008-01-01

    The U.S. Geological Survey investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. The permeable reactive barrier (PRB) along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells 12MW-10S and 12MW-03S, upgradient from the PRB, showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest showed a sharp increase, followed by a decrease. In 2007, the VOC concentrations began to increase in well 12MW-12S, downgradient from the PRB and thought to be unaffected by the PRB. The VOC-concentration changes in the forest, such as at well 12MW-12S, may represent lateral shifting of the plume in response to changes in ground-water-flow direction or may represent movement of a contamination pulse through the forest.

  9. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  10. Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Ding, Dahu; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan; Cai, Tianming

    2016-02-01

    The radiation contamination after the Fukushima Daiichi Nuclear Power Plant accident attracts considerable concern all over the world. Many countries, areas, and oceans are greatly affected by the emergency situation other than Japan. An effective remediation strategy is in a highly urgent demand. Though plenty of works have been carried out, progressive achievements have not yet been well summarized. Here, we review the recent advances on the remediation of radiocesium-contaminated liquid waste, soil, and ash. The overview of the radiation contamination is firstly given. Afterwards, the current remediation strategies are critically reviewed in terms of the environmental medium. Special attentions are paid on the adsorption/ion exchange and electrically switched ion exchange methods. Finally, the present review outlines the possible works to do for the large-scale application of the novel remediation strategies. PMID:26604196

  11. Mercury Contamination - Amalgamate (contract with NFS and ADA). Demonstration of DeHgSM Process. Mixed Waste Focus Area. OST Reference Number 1675

    SciTech Connect

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U.S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U.S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scalable equipment is needed that can produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-h worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  12. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  13. HIGH BREAST MILK LEVELS OF POLYCHLORINATEDE BIPHENYLS (PCBS) AMONG FOUR WOMEN LIVING ADJACENT TO A PCB-CONTAMINATED WASTE SITE

    EPA Science Inventory

    As a consequence of contamination by effluents from local electronics manufacturing facilities, the New Bedford Harbor and estuary in southeastern Massachusetts is among the sites in the United States that are considered the most highly contaminated by polychlorinated biphenyls (...

  14. Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites.

    PubMed

    Tue, Nguyen Minh; Takahashi, Shin; Suzuki, Go; Isobe, Tomohiko; Viet, Pham Hung; Kobara, Yuso; Seike, Nobuyasu; Zhang, Gan; Sudaryanto, Agus; Tanabe, Shinsuke

    2013-01-01

    This study investigated the occurrence of polychlorinated biphenyls (PCBs), and several additive brominated flame retardants (BFRs) in indoor dust and air from two Vietnamese informal e-waste recycling sites (EWRSs) and an urban site in order to assess the relevance of these media for human exposure. The levels of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in settled house dust from the EWRSs (130-12,000, 5.4-400, 5.2-620 and 31-1400 ng g(-1), respectively) were significantly higher than in urban house dust but the levels of PCBs (4.8-320 ng g(-1)) were not higher. The levels of PCBs and PBDEs in air at e-waste recycling houses (1000-1800 and 620-720 pg m(-3), respectively), determined using passive sampling, were also higher compared with non-e-waste houses. The composition of BFRs in EWRS samples suggests the influence from high-temperature processes and occurrence of waste materials containing older BFR formulations. Results of daily intake estimation for e-waste recycling workers are in good agreement with the accumulation patterns previously observed in human milk and indicate that dust ingestion contributes a large portion of the PBDE intake (60%-88%), and air inhalation to the low-chlorinated PCB intake (>80% for triCBs) due to their high levels in dust and air, respectively. Further investigation of both indoor dust and air as the exposure media for other e-waste recycling-related contaminants and assessment of health risk associated with exposure to these contaminant mixtures is necessary. PMID:23228866

  15. Fundamental studies of the removal of contaminants from ground and waste waters via reduction by zero-valent metals. 1998 annual progress report

    SciTech Connect

    Yarmoff, J.A.; Amrhein, C.

    1998-06-01

    'Contaminated groundwater and surface waters are a problem throughout the US and the world. In many instances, the types of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium, chromium, uranium, arsenic, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition, the careless disposal of cleaning solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. Oxyanions of selenium, nitrogen, arsenic, vanadium, uranium, chromium, and molybdenum are contaminants in agricultural areas of the Western US. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California, the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis. Both in-situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental

  16. PERFORMANCE OF AN AIR CLASSIFIER TO REMOVE LIGHT ORGANIC CONTAMINATION FROM ALUMINUM RECOVERED FROM MUNICIPAL WASTE BY EDDY CURRENT SEPARATION. TEST NO. 5.03, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    The report describes a test in which aluminum cans recovered from municipal waste, together with known amounts of contaminant, were processed by a 'zig-zag' vertical air classifier to remove aerodynamically light contaminant. Twelve test runs were conducted; the proportions of co...

  17. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 3

    SciTech Connect

    1995-05-01

    This is the third volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.

  18. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 2

    SciTech Connect

    1995-05-01

    This is the second volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.

  19. Corrective Action Decision Document for Corrective Action Unit 168: Area 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada, Rev. No.: 2 with Errata Sheet

    SciTech Connect

    Wickline, Alfred

    2006-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 168: Area 25 and 26, Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for each corrective action site (CAS) within CAU 168. The corrective action investigation (CAI) was conducted in accordance with the ''Corrective Action Investigation Plan for Corrective Action Unit 168: Area 25 and 26, Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada'', as developed under the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 168 is located in Areas 25 and 26 of the Nevada Test Site, Nevada and is comprised of the following 12 CASs: CAS 25-16-01, Construction Waste Pile; CAS 25-16-03, MX Construction Landfill; CAS 25-19-02, Waste Disposal Site; CAS 25-23-02, Radioactive Storage RR Cars; CAS 25-23-13, ETL - Lab Radioactive Contamination; CAS 25-23-18, Radioactive Material Storage; CAS 25-34-01, NRDS Contaminated Bunker; CAS 25-34-02, NRDS Contaminated Bunker; CAS 25-99-16, USW G3; CAS 26-08-01, Waste Dump/Burn Pit; CAS 26-17-01, Pluto Waste Holding Area; and CAS 26-19-02, Contaminated Waste Dump No.2. Analytes detected during the CAI were evaluated against preliminary action levels (PALs) to determine contaminants of concern (COCs) for CASs within CAU 168. Radiological measurements of railroad cars and test equipment were compared to unrestricted (free) release criteria. Assessment of the data generated from the CAI activities revealed the following: (1) Corrective Action Site 25-16-01 contains hydrocarbon-contaminated soil at concentrations exceeding the PAL. The contamination is at discrete locations associated with asphalt debris. (2) No COCs were identified at CAS 25-16-03. Buried construction waste is present in at least two disposal cells contained within the

  20. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    SciTech Connect

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  1. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    SciTech Connect

    Vijayan, S.; Wong, Chi Fun; Buckley, L.P.

    1992-12-31

    It is an object of the claimed invention to combine chemical treatment with microfiltration process to treat groundwater, leachate from contaminated soil washing, surface and run-off waters contaminated with toxic metals, radionuclides and trace amounts of organics from variety of sources. The process can also be used to treat effluents from industrial processes such as discharges associated with smelting, mining and refining operations. Influent contaminants amenable to treatment are from a few mg/L to hundreds of mg/L. By selecting appropriate precipitation, ion exchange and adsorption agents and conditions, efficiencies greater than 99.9 percent can be achieved for removal of contaminants. The filtered water for discharge can be targeted with either an order of magnitude greater or lower than contaminant levels for drinking water.

  2. Remaining Sites Verification Package for the 600-111, P-11 Critical Mass Laboratory Crib, and UPR-600-16, Fire and Contamination Spread Waste Sites, Waste Site Reclassification Form 2008-045

    SciTech Connect

    J. M. Capron

    2008-10-28

    The UPR-600-16, Fire and Contamination Spread waste site is an unplanned release that occurred on December 4, 1951, when plutonium contamination was spread by a fire that ignited inside the 120 Experimental Building. The 120 Experimental Building was a laboratory building that was constructed in 1949 and used for plutonium criticality studies as part of the P-11 Project. In November 1951, a criticality occurred in the 120 Experimental Building that resulted in extensive plutonium contamination inside the building. The confirmatory evaluation supports a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of the extensive radiological survey of the surface soil and the confirmatory and verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  3. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil.

    PubMed

    Wei, Liu; Wang, Shutao; Zuo, Qingqing; Liang, Shuxuan; Shen, Shigang; Zhao, Chunxia

    2016-06-15

    The crude recycling activities of e-waste have led to the severe and complex contamination of e-waste workshop topsoil (0-10 cm) by heavy metals. After nano-hydroxyapatite (NHAp) application in June 2013, plant and soil samples were obtained in November 2013, December 2013, March 2014 and June 2014. The results showed that NHAp effectively reduced the concentration of CaCl2-extractable Pb, Cu, Cd, and Zn in the topsoil and significantly reduced the metal content in ryegrass and also increased the plant biomass compared with that of the control. Moreover, the concentrations of CaCl2-extractable metals in the soil decreased with increasing NHAp. NHAp application also increased the activities of soil urease, phosphatase and dehydrogenase. Moreover, the soil bacterial diversity and community structure were also altered after NHAp application. Particularly, Stenotrophomonas sp. and Bacteroides percentages were increased. Our work proves that NHAp application can alleviate the detrimental effects of heavy metals on plants grown in e-waste-contaminated soil and soil enzyme activities, as well as soil microbial diversity. PMID:27264778

  4. A comprehensive inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the INEL RWMC during the years 1984-2003, Volume 1

    SciTech Connect

    1995-05-01

    This report presents a comprehensive inventory of the radiological and nonradiological contaminants in waste buried or projected to be buried from 1984 through 2003 in the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The project to compile the inventory is referred to as the recent and projected data task. The inventory was compiled primarily for use in a baseline risk assessment under the Comprehensive Environmental Response, Compensation, and Liability Act. The compiled information may also be useful for environmental remediation activities that might be necessary at the RWMC. The information that was compiled has been entered into a database termed CIDRA-the Contaminant Inventory Database for Risk Assessment. The inventory information was organized according to waste generator and divided into waste streams for each generator. The inventory is based on waste information that was available in facility operating records, technical and programmatic reports, shipping records, and waste generator forecasts. Additional information was obtained by reviewing the plant operations that originally generated the waste, by interviewing personnel formerly employed as operators, and by performing nuclear physics and engineering calculations. In addition to contaminant inventories, information was compiled on the physical and chemical characteristics and the packaging of the 99 waste streams. The inventory information for waste projected to be buried at the SDA in the future was obtained from waste generator forecasts. The completeness of the contaminant inventories was confirmed by comparing them against inventories in previous reports and in other databases, and against the list of contaminants detected in environmental monitoring performed at the RWMC.

  5. Corrective action investigation plan for Corrective Action Unit 143: Area 25 contaminated waste dumps, Nevada Test Site, Nevada, Revision 1 (with Record of Technical Change No. 1 and 2)

    SciTech Connect

    USDOE Nevada Operations Office

    1999-06-28

    This plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate correction action alternatives appropriate for the closure of Corrective Action Unit (CAU) 143 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 143 consists of two waste dumps used for the disposal of solid radioactive wastes. Contaminated Waste Dump No.1 (CAS 25-23-09) was used for wastes generated at the Reactor Maintenance Assembly and Disassembly (R-MAD) Facility and Contaminated Waste Dump No.2 (CAS 25-23-03) was used for wastes generated at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility. Both the R-MAD and E-MAD facilities are located in Area 25 of the Nevada Test Site. Based on site history, radionuclides are the primary constituent of concern and are located in these disposal areas; vertical and lateral migration of the radionuclides is unlikely; and if migration has occurred it will be limited to the soil beneath the Contaminated Waste Disposal Dumps. The proposed investigation will involve a combination of Cone Penetrometer Testing within and near the solid waste disposal dumps, field analysis for radionuclides and volatile organic compounds, as well as sample collection from the waste dumps and surrounding areas for off-site chemical, radiological, and geotechnical analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  6. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    SciTech Connect

    Becker, D.L.

    1997-11-03

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

  7. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    PubMed

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased. PMID:27206753

  8. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect

    Lowry, N.

    2010-11-05

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste

  9. An evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.

  10. The risk of overestimating the risk-metal leaching to groundwater near contaminated glass waste deposits and exposure via drinking water.

    PubMed

    Augustsson, A; Uddh Söderberg, T; Jarsjö, J; Åström, M; Olofsson, B; Balfors, B; Destouni, G

    2016-10-01

    This study investigates metal contamination patterns and exposure to Sb, As, Ba, Cd and Pb via intake of drinking water in a region in southeastern Sweden where the production of artistic glass has resulted in a large number of contaminated sites. Despite high total concentrations of metals in soil and groundwater at the glassworks sites properties, all drinking water samples from households with private wells, located at a 30-640m distance from a glassworks site, were below drinking water criteria from the WHO for Sb, As, Ba and Cd. A few drinking water samples showed concentrations of Pb above the WHO guideline, but As was the only element found in concentrations that could result in human exposure near toxicological reference values. An efficient retention of metals in the natural soil close to the source areas, which results in a moderate impact on local drinking water, is implied. Firstly, by the lack of significant difference in metal concentrations when comparing households located upstream and downstream of the main waste deposits, and secondly, by the lack of correlation between the metal concentration in drinking water and distance to the nearest glassworks site. However, elevated Pb and Cd concentrations in drinking water around glassworks sites when compared to regional groundwater indicate that diffuse contamination of the soils found outside the glassworks properties, and not only the glass waste landfills, may have a significant impact on groundwater quality. We further demonstrate that different mobilization patterns apply to different metals. Regarding the need to use reliable data to assess drinking water contamination and human exposure, we finally show that the conservative modelling approaches that are frequently used in routine risk assessments may result in exposure estimates many times higher than those based on measured concentrations in the drinking water that is actually being used for consumption. PMID:27318517

  11. Research Implementation and Quality Assurance Project Plan: An Evaluation of Hyperspectral Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2009-01-01

    This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.

  12. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 34: Area 3 Contaminated Waste Sites, Nevada Test Site, Nevada

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the April 2002, Corrective Action Decision Document/Closure Report for Corrective Action Unit 34: Area 3 Contaminated Waste Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications.

  13. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  14. ORD WASTE RESEARCH STRATEGY

    EPA Science Inventory

    The "Waste Research Strategy" covers research necessary to support both the proper management of solid and hazardous wastes and the effective remediation of contaminated waste sites.This research includes improving the assessment of existing environmental risks,...

  15. WASTE RESEARCH STRATEGY

    EPA Science Inventory

    The Waste Research Strategy covers research necessary to support both the proper management of solid and hazardous wastes and the effective remediation of contaminated waste sites. This research includes improving the assessment of existing environmental risks, as well as develop...

  16. Remaining Sites Verification Package for the 600-111, P-11 Critical Mass Laboratory Crib, and UPR-600-16, Fire and Contamination Spread Waste Sites, Waste Site Reclassification Form 2004-065

    SciTech Connect

    J. M. Capron

    2008-10-28

    The 600-111, P-11 Critical Mass Laboratory Crib waste site, also referred to as the P-11 Facility, included the 120 Experimental Building, the 123 Control Building, and the P-11 Crib. The facility was constructed in 1949 and was used as a laboratory for plutonium criticality studies. In accordance with this evaluation, the confirmatory and verification sampling results support a reclassification of this site to Interim Closed Out. The results of confirmatory and verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  17. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    1984-01-01

    The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less.

  18. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    SciTech Connect

    Binning, P.; Celia, M.A.; Johnson, J.C.

    1995-05-01

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  19. Reducing waste contamination from animal-processing plants by anaerobic thermophilic fermentation and by flesh fly digestion.

    PubMed

    Marchaim, U; Gelman, A; Braverman, Y

    2003-01-01

    There is currently no market in Israel for the large amounts of waste from fish- and poultry-processing plants. Therefore, this waste is incinerated, as part of the measures to prevent the spread of pathogens. Anaerobic methanogenic thermophilic fermentation (AMTF) of wastes from the cattle-slaughtering industry was examined previously, as an effective system to treat pathogenic bacteria, and in this article, we discuss a combined method of digestion by thermophilic anaerobic bacteria and by flesh flies, as a means of waste treatment. The AMTF process was applied to the wastes on a laboratory scale, and digestion by rearing of flesh fly (Phaenicia sericata) and housefly (Musca domestica) larvae on the untreated raw material was done on a small scale and showed remarkable weight conversion to larvae. The yield from degradation of poultry waste by flesh fly was 22.47% (SD = 3.89) and that from fish waste degradation was 35.34% (SD = 12.42), which is significantly higher than that from rearing houseflies on a regular rearing medium. Bacterial contents before and after thermophilic anaerobic digestion, as well as the changes in the chemical composition of the components during the rearing of larvae, were also examined. PMID:12794287

  20. Use of the p,p'-DDD: p,p'-DDE concentration ratio to trace contaminant migration from a hazardous waste site.

    PubMed

    Pinkney, Alfred E; McGowan, Peter C

    2006-09-01

    For approximately 50 years, beginning in the 1920s, hazardous wastes were disposed in an 11-hectare area of the Marine Corps Base (MCB) Quantico, Virginia, USA known as the Old Landfill. Polychlorinated biphenyls (PCBs) and DDT compounds were the primary contaminants of concern. These contaminants migrated into the sediments of a 78-hectare area of the Potomac River, the Quantico Embayment. Fish tissue contamination resulted in the MCB posting signs along the embayment shoreline warning fishermen to avoid consumption. In this paper, we interpret total PCB (t-PCBs) and total DDT (t-DDT, sum of six DDT, DDD, and DDE isomers) data from monitoring studies. We use the ratio of p,p'-DDD to p,p'-DDE concentrations as a tracer to distinguish site-related from regional contamination. The median DDD/DDE ratio in Quantico Embayment sediments (3.5) was significantly higher than the median ratio (0.71) in sediments from nearby Powells Creek, used as a reference area. In general, t-PCBs and t-DDT concentrations were significantly higher in killifish (Fundulus diaphanus) and carp (Cyprinus carpio) from the Quantico Embayment compared with Powells Creek. For both species, Quantico Embayment fish had mean or median DDD/DDE ratios greater than one. Median ratios were significantly higher in Quantico Embayment (4.6) than Powells Creek (0.28) whole body carp. In contrast, t-PCBs and t-DDT in channel catfish (Ictalurus punctatus) fillets were similar in Quantico Embayment and Powells Creek collections, with median ratios of 0.34 and 0.26, respectively. Differences between species may be attributable to movement (carp and killifish being more localized) and feeding patterns (carp ingesting sediment while feeding). We recommend that environmental scientists use this ratio when investigating sites with DDT contamination. PMID:16758288

  1. Canyon Disposal Initiative - Numerical Modeling of Contaminant Transport from Grouted Residual Waste in the 221-U Facility (U Plant)

    SciTech Connect

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    2004-10-12

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that is essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.

  2. Potential for transfer of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Senftenberg from contaminated food waste derived compost and anaerobic digestate liquid to lettuce plants.

    PubMed

    Murphy, Suzannah; Gaffney, Michael T; Fanning, Seamus; Burgess, Catherine M

    2016-10-01

    The diversion of food wastes from landfill to sustainable disposal methods, such as composting and anaerobic digestion, has led to an increase in the soil amendment products that are now commercially available and which are derived from both of these processes. The use of such products as soil amendments during the production of ready-to-eat (RTE) crops is increasing worldwide. The aim of this study was to investigate the potential of three well-recognised bacterial pathogens of importance to public health, namely Escherichia coli O157:H7, Salmonella Senftenberg and Listeria monocytogenes, to become internalised in lettuce plants from peat growing media amended with contaminated food waste derived compost and anaerobic digestion liquid. The results demonstrated both S. Senftenberg and E. coli O157:H7 are capable of internalisation at lower inoculation levels, compared to previous studies. The internalisation was visualised through confocal microscopy. Internalisation of L. monocytogenes did not occur, however significant levels of L. monocytogenes contamination occurred on the non-sterilised plant surface. Assessing the internalisation potential for each of these pathogens, through the compost and anaerobic digestate matrices, allows for better risk assessment of the use of these products in a horticultural setting. PMID:27375239

  3. Complete reduction of highly concentrated contaminants in piggery waste by a novel process scheme with an algal-bacterial symbiotic photobioreactor.

    PubMed

    Lee, Young-Shin; Han, Gee-Bong

    2016-07-15

    The complete reduction of highly concentrated contaminants in piggery waste was achieved with an innovative process scheme consecutively combining autothermal thermophilic aerobic digestion (ATAD), an expanded granular sludge bed (EGSB) and a microalgal-bacterial symbiotic vertical photobioreactor (VPBR), followed by biomass recycling for effluent polishing. Contaminants in piggery waste, such as high organic and inorganic matter, total nitrogen (TN), and total phosphorus (TP) contents, were successfully reduced in the newly implemented system. The concentrations of volatile solids (VS) and the chemical oxygen demand (COD) for organic matter in the feed were reduced by approximately 99.3% and 99.7%, respectively, in the innovative system. The overall reduction efficiencies in TN, ammoniacal nitrogen, and TP were 98.8, 98.4, and 93.5%, respectively, through ammonia gas emission, coagulated sludge disposal, and the algal-bacterial symbiotic polishing process. Fecal coliform density was decreased to <1.7 × 10(4) CFU g(-1) total solids. Biogas and CH4 in the EGSB were generated in the range of 0.36-0.79 and 0.18-0.44 L g(-1) [VS removed], respectively, and contained 245 ± 19 ppm (v/v) [H2S]. PMID:27100332

  4. Effects of Mine Waste Contamination on Fish and Wildlife Habitat at Multiple Levels of Biological Organization in the Methow River, 2001-2002 Annual Report.

    SciTech Connect

    Peplow, Dan; Edmonds, Robert.

    2002-06-01

    A three-year multidisciplinary study was conducted on the relationship between mine waste contamination and the effects on aquatic and terrestrial habitats in the Methow River below abandoned mines near Twisp in Okanogan County, Washington (U.S.A.). Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's. An above-and-below-mine approach was used to study potentially impacted sites. Although the dissolved metal content of water in the Methow River was below the limits of detection, eleven chemicals of potential environmental concern were identified in the tailings, mine effluents, groundwater, streamwater and sediments (Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se and Zn). The potential for ecosystem level impacts was reflected in the risk of contamination in the mine waste to communities and populations that are valued for their functional properties related to energy storage and nutrient cycling. Dissolved and sediment metal contamination changed the benthic insect community structure in a tributary of the Methow River below Alder Mine, and at the population level, caddisfly larval development in the Methow River was delayed. Arsenic accumulation in bear hair and Cd in fish liver suggest top predators are effected. In situ exposure of juvenile triploid trout (Oncorhynchus mykiss) to conditions at the downstream site resulted in reduced growth and increased mortality among exposed individuals. Histopathological studies of their tissues revealed extensive glycogen inclusions suggesting food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body. Subcellular observations revealed mitochondrial changes including a decrease in the number and increase in the size of electron-dense metrical granules, the presence of glycogen bodies in the cytoplasm, and glycogen nuclei in exposed trout hepatocytes, which are signs that Type IV

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-03-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 190, Contaminated Waste Sites, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended January 2007). Corrective Action Unit 190 is comprised of the following four corrective action sites (CASs): • 11-02-01, Underground Centrifuge • 11-02-02, Drain Lines and Outfall • 11-59-01, Tweezer Facility Septic System • 14-23-01, LTU-6 Test Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 190 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from March 21 through June 26, 2007. All CAI activities were conducted as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada (NNSA/NSO, 2006). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 190 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs.

  6. Using vadose zone data and spatial statistics to assess the impact of cultivated land and dairy waste lagoons on groundwater contamination

    NASA Astrophysics Data System (ADS)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Peeters, A.; Dahan, O.

    2013-12-01

    Land cultivation and dairy waste lagoons are considered to be nonpoint and point sources of groundwater contamination by chloride (Cl-) and nitrate (NO3-). The objective of this work is to introduce a methodology to assess the past and future impacts of such agricultural activities on regional groundwater quality. The method is based on mass balances and on spatial statistical analysis of Cl- and NO3-concentration distributions in the saturated and unsaturated zones. The method enables quantitative analysis of the relation between the locations of pollution point sources and the spatial variability in Cl- and NO3- concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming along with land cultivation has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that leachates from lagoons and the cultivated land have contributed 6.0 and 89.4 % of the total mass of Cl- added to the aquifer and 12.6 and 77.4 % of the total mass of NO3-. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl- and NO3- to the groundwater. A low spatial correlation between the Cl- and NO3- concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl- and NO3-. Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps.

  7. Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk.

    PubMed

    Rigo, Chiarafrancesca; Zamengo, Luca; Rampazzo, Giancarlo; Argese, Emanuele

    2009-10-01

    Bottom ash from a municipal solid waste incinerator on a former contaminated site, the island of Sacca San Biagio (Lagoon of Venice), was examined in order to evaluate levels of pollutants and their potential mobility and availability. Heavy metal concentrations were determined and the actual contamination of the site was compared with national legislation on polluted sites. The site was mainly contaminated by zinc, copper and lead. Physico-chemical characterization of bottom ash was carried out by SEM (Scanning Electron Microscopy) with micro-analysis by EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffractometry), for information on newly formed minerals. SEM-EDS analysis revealed the presence of particles, compounds and clusters containing heavy metals and, in particular, the presence of barium sulfate, which was assumed to be a site-specific compound. Similarities between bottom ash and atmospheric PM10 collected on the adjacent island of Sacca Fisola were studied and a risk of aerodispersion of the fine fraction of ash was assumed. Lastly, in order to evaluate the potentially available fraction of metals (non-residual fraction) and the directly exchangeable fraction, two single extraction procedures with HCl and citric acid were carried out, respectively. Results showed a relatively low concentration of readily phyto-available metals, as well as the high concentrations found for some heavy metals (Cu, Pb, Zn) in the potentially mobilizable fraction. PMID:19695669

  8. Fundamental studies of the removal of contaminants from ground and waste waters via reduction by zero-valent metals. Annual progress report, September 1, 1996--August 31, 1997

    SciTech Connect

    Yarmoff, J.A.; Amrhein, C.

    1997-01-01

    'Contaminated groundwater is a problem throughout the US and the world. In many instances the tvpes of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium. chromium. uranium. arsenic. and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition. the careless disposal of cleaning solvents. such as carbon tetrachloride and trichloroethylene. has further contaminated many groundwaters at these sites. In agricultural areas of the western US, shallow groundwaters have become contaminated with high levels of selenate, chromate, and uranyl. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California. the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. At sites where solid-propellant rocket motors were tested or disposed of, high concentrations of perchlorate and trichloroethylene are being found in the groundwater. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used, on an experimental basis, for the reductive dechlorination of solvents and the removal of toxic trace elements. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the

  9. Influence of the contaminated wastes/soils on the geochemical characteristics of the Bodelhão stream waters and sediments from Panasqueira mine area, Portugal

    NASA Astrophysics Data System (ADS)

    Abreu, Maria Manuela; Godinho, Berta; Magalhães, Maria Clara F.; Anjos, Carla; Santos, Erika

    2013-04-01

    Panasqueira is a famous Portuguese tin-tungsten mine operating more or less continuously since the end of the nineteenth century. This mine is located in the Central Iberian Zone, northwest of Castelo Branco, about 35 km from Fundão, being the greatest producer of tungsten in Europe. Panasqueira mine also produces copper and tin. The ore exploitation has caused huge local visual and chemical impact from the large waste tailings, together with water drainage from mine galleries, seepage and effluents from water plant treatment. The objective of this work was to evaluate the influence of the contaminated wastes and soils on the water and sediments characteristics of the Bodelhão stream. This stream crosses the mine area at the bottom of the main tailings, receiving sediments, seepage and drainage waters from wastes and/or soils developed on the waste materials which cover the host rocks (schists), and also from the water treatment plant. Waste materials contain different levels of hazardous chemical elements depending on their age and degree of weathering (mg/kg - As: 466-632; Cd: 2.6-4.2; Cu: 264-457; Zn: 340-456; W: 40-1310). Soils developed on old wastes (60-80 years old) are mainly silty loam, acidic (except one soil (pH 8.2) developed on waste materials covered by leakage mud from a pipe conducting effluent to a pond), with relatively high concentration of organic carbon (median 48.6 g/kg). The majority of soils are heavily contaminated in As (158-7790 mg/kg), Cd (0.6-138 mg/kg), Cu (51-4081 mg/kg), W (19-1450 mg/kg), and Zn (142-12300 mg/kg). The fraction of these elements extracted with DTPA solution, relatively to total concentration, varies from low to As (< 4%) to high, as for Cd (4-76%) or Zn (1.5-60%). Surface waters collected after the water treatment plant are less acidic (pH: 5.6-6.5) than those collected upper stream (pH 4.9) and showed high electric conductivity (up to 1.5 mS/cm), high concentrations of sulfate (618-1030 mg/L), and hazardous

  10. Leachability of organic and inorganic contaminants in ashes from lime-based air pollution control devices on a municipal waste incinerator

    SciTech Connect

    Sawell, S.E.; Bridle, T.R.; Constable, T.W. )

    1987-01-01

    Concern for public health, coupled with the implementation of more stringent guidelines for exhaust gas emissions from municipal solid waste (MSW) incineration units, has resulted in the development of more efficient flue gas cleaning systems. While these systems help reduce emissions of airborne contaminants, they also increase the quantities of ash which require proper disposal. Although recent studies have identified MSW incinerator bottom ash as a relatively benign waste, they have also indicated that MSW incinerator flue gas ashes may not be environmentally acceptable for landfilling. In 1984, the Wastewater Technology Centre began conducting a series of studies on the leachability of MSW incinerator ash, under Environment Canada's National Incinerator Testing and Evaluation Program (NITEP). The studies were undertaken to obtain additional information on the chemical and physical characteristics of these ashes and to assist in the development of solid waste management criteria for their ultimate disposal. This paper focuses on the results from the second study in the series, which was conducted on residues collected from an air pollution control (APC) pilot plant built by FLAKT Canada.

  11. INEEL Subregional Conceptual Model Report Volume 3: Summary of Existing Knowledge of Natural and Anthropogenic Influences on the Release of Contaminants to the Subsurface Environment from Waste Source Terms at the INEEL

    SciTech Connect

    Paul L. Wichlacz

    2003-09-01

    This source-term summary document is intended to describe the current understanding of contaminant source terms and the conceptual model for potential source-term release to the environment at the Idaho National Engineering and Environmental Laboratory (INEEL), as presented in published INEEL reports. The document presents a generalized conceptual model of the sources of contamination and describes the general categories of source terms, primary waste forms, and factors that affect the release of contaminants from the waste form into the vadose zone and Snake River Plain Aquifer. Where the information has previously been published and is readily available, summaries of the inventory of contaminants are also included. Uncertainties that affect the estimation of the source term release are also discussed where they have been identified by the Source Term Technical Advisory Group. Areas in which additional information are needed (i.e., research needs) are also identified.

  12. FUNDAMENTAL STUDIES OF THE REMOVAL OF CONTAMINANTS FROM GROUND AND WASTE WATERS VIA REDUCTION BY ZERO-VALENT METALS

    SciTech Connect

    Yarmoff, Jory A.; Amrhein, Christopher

    2000-06-01

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many sites. Both in situ reactive barriers and above-ground reactors are being developed and field tested at this time. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  13. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    SciTech Connect

    Jory A. Yarmoff; Christopher Amrhein

    2002-04-23

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  14. Major pollutants in soils of abandoned agricultural land contaminated by e-waste activities in Hong Kong.

    PubMed

    Lopez, Brenda Natalia; Man, Yu Bon; Zhao, Yin Ge; Zheng, Jin Shu; Leung, Anna Oi Wah; Yao, Jun; Wong, Ming Hung

    2011-07-01

    Polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyl (PCB), polybrominated diphenyl ether (PBDE) compounds and five heavy metals (cadmium, copper, chromium, lead, and zinc) were determined in soil samples collected from six sites of abandoned agricultural land affected by electronic-waste: e-waste dismantling workshop [EW (DW)], e-waste open burning site [EW (OBS)], e-waste storage [EW (S)], and agricultural (A) in the New Territories, Hong Kong. Persistent organic pollutants (POPs) and heavy metals were detected in all soil samples. EW (DW) contained the highest concentrations of PAHs, Cr, Cu, and Zn, whereas EW (OBS) had the highest concentrations of PCBs, PBDEs, Cd, and Pb. PAH at EW (DW) and EW (OBS) and PCB concentrations at EW (OBS) exceeded the target values of the New Dutch list, whereas Cd, Cu, Cr, Pb, and Zn levels exceeded the Chinese legislation for the protection of agricultural production and safeguarding of human health, by 3-11 times at EW (OBS) and 5-8 times at EW (DW). Lead at EW (OBS) and EW (DW) and Cr at EW (DW) greatly exceeded the Canadian Soil Quality Guidelines by 46 and 20 times and 27 times, respectively. Concentrations of POPs and heavy metals at EW (DW) and EW (OBS) were significantly higher than at EW (S) and A. It was concluded that e-waste activities led to increases of toxic chemicals at these abandoned agricultural land, which would hinder the redevelopment of the land. PMID:20811881

  15. Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site

    SciTech Connect

    Kevin Cabble , Mark Krauss and Patrick Matthews

    2011-03-03

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site

  16. DELTA-13C VALUES OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) COLLECTED FROM TWO CREOSOTE-CONTAMINATED WASTE SITES

    EPA Science Inventory

    Groundwater samples were collected from the American Creosote Works (ACW) Superfund site in Pensacola, Florida in June and September 1994. Sampling wells were located along a transect leading away from the most contaminated area. PAHs were extracted from the groundwater samples w...

  17. FUNDAMENTAL STUDIES OF THE REMOVAL OF CONTAMINANTS FROM GROUND AND WASTE WATERS VIA REDUCTION BY ZERO-VALENT METALS

    EPA Science Inventory

    In an effort to remove trace contaminants from wastewaters and groundwaters, elemental iron is being used for the reductive dechlorination of solvents and the removal of toxic trace elements, such as Se, Cr, and U. Both in situ reactive barriers and above-ground reactors are bein...

  18. Contamination of livestock due to the operation of a small waste incinerator: a case incident in Skutulsfjörður, Iceland, in 2010

    PubMed Central

    2012-01-01

    Summary Background In 2010 contamination by dioxins and dioxin-like PCBs was detected in milk and meat in the valley Engidalur situated at the bottom of a fjord (Skutulsfjörður) in North West Iceland. The valley is narrow and surrounded by high mountains resulting in prevailing calm weather. The contamination was traced to a small municipal waste incinerator operating in the valley. Annual agricultural production in Engidalur was modest (≈6 tons of meat and 45 tons of milk). The Icelandic Food and Veterinary Authority conducted a series of measurements examining the contamination and the results are reported in this paper. Results Earlier inspection of the waste incinerator had shown dioxin levels in fly ash of 2.1 ng I-TEQ/m3, which exceeded the EU maximum limit of 0.1 ng I-TEQ/m3. Late in 2010 routine inspection found 4.0 pg WHO-TEQ/g for PCDD/Fs and 7.4 pg total WHO-TEQ/g fat in one milk sample from a farm in Engidalur; levels exceeding the EU maximum limits of 3.0 and 6.0 pg WHO-TEQ/fat for dairy fat, respectively. These results were confirmed in an additional milk sample. Elevated levels exceeding the maximum limits were also observed in one out of two beef samples collected from the farm (4.7 pg WHO-TEQ/g for dioxins and 12.3 pg total WHO-TEQ/g fat). Elevated levels in lamb and ewe meat were also observed but concentration varied greatly, reflecting different migration routes of animals during summer grazing and different sources of hay used during winter. A composite sample of hay from Engidalur had levels of PCDD/Fs of 0.85 pg WHO-TEQ/g and 1.36 pg total WHO-TEQ/g; levels that were marginally, but not significantly, above the EU maximum limit of 0.75 pg WHO-TEQ/g and 1.25 pg WHO-TEQ/g, respectively. Conclusions Operation of a small municipal waste incinerator, not fulfilling modern standards, may lead to elevated levels of dioxins in local livestock.

  19. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-contaminated equipment and other items that are disposed of as waste, through the application of waste minimization principles. (b) Beryllium-containing waste, and beryllium-contaminated equipment and other...

  20. Resistance of fallow deer (dama dama) to chronic wasting disease under natural exposure in a heavily contaminated environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease or CWD is a transmissible spongiform encephalopathy or prion disorder of cervid ruminants in several regions of the US and Canada. The prion disorders are characterized by misfolding of the host cellular prion protein into a relatively protease resistant and potentially neur...

  1. Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement.

    PubMed

    Zhang, Xin-Yan; Wang, Qi-Chao; Zhang, Shao-Qing; Sun, Xiao-Jing; Zhang, Zhong-Sheng

    2009-09-15

    Stabilization/solidification (S/S) of mercury-containing solid wastes using thiol-functionalized zeolite and cement was investigated in this study. The thiol-functionalized zeolite (TFZ) used in the study was obtained by grafting the thiol group (-SH) to the natural clinoptilolite zeolites, and the mercury adsorption by TFZ was investigated. TFZ was used to stabilize mercury in solid wastes, and then the stabilized wastes were subjected to cement solidification to test the effectiveness of the whole S/S process. The results show that TFZ has a high level of -SH content (0.562 mmol g(-1)) and the adsorption of mercury by TFZ conform to the Freundlich adsorption isotherm. The mercury adsorption capacity is greatly enhanced upon thiol grafting, the maximum of which is increased from 0.041 mmol Hg g(-1) to 0.445 mmol Hg g(-1). TFZ is found to be effective in stabilizing Hg in the waste surrogate. In the stabilization process, the optimum pH for the stabilization reaction is about 5.0. The optimum TFZ dosage is about 5% and the optimum cement dosage is about 100%. Though Cl(-) and PO(4)(3-) have negative effects on mercury adsorption by TFZ, the Portland cement solidification of TFZ stabilized surrogates containing 1000 mg Hg/kg can successfully pass the TCLP leaching test. It can be concluded that the stabilization/solidification process using TFZ and Portland cement is an effective technology to treat and dispose mercury-containing wastes. PMID:19376646

  2. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application.

    PubMed

    Hartley, William; Dickinson, Nicholas M; Riby, Philip; Leese, Elizabeth; Morton, Jackie; Lepp, Nicholas W

    2010-12-01

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. PMID:20864234

  3. Lessons learned for a more efficient knowledge and technology transfer to South American countries in the fields of solid waste and contaminated sites management.

    PubMed

    Bezama, Alberto; Szarka, Nóra; Navia, Rodrigo; Konrad, Odorico; Lorber, Karl E

    2007-04-01

    The present paper describes the development, performance and conclusions derived from three know-how and technology transfer projects to South American countries. The first project comprised a collaborative study by European and South American universities to find sustainable solutions for Chilean and Ecuadorian leather tanneries which had underachieving process performances. The second project consisted of investigations carried out in a Brazilian municipality to enhance its municipal solid waste management system. The final collaborative programme dealt with the initial identification, evaluation and registration of suspected contaminated sites in an industrial region of Chile. The detailed objectives, methods and procedures applied as well as the results and conclusions obtained in each of the three mentioned projects are presented, giving special attention to the organizational aspects and to the practical approach of each programme, concluding with their main advantages and disadvantages for identifying a set of qualitative and quantitative suggestions, and to establish transferable methods for future applications. PMID:17439050

  4. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn.

    PubMed

    Mignardi, Silvano; Corami, Alessia; Ferrini, Vincenzo

    2012-01-01

    The effectiveness of phosphate treatment for Cd, Cu, Pb, and Zn immobilization in mine waste soils was examined using batch conditions. Application of synthetic hydroxyapatite (HA) and natural phosphate rock (FAP) effectively reduced the heavy metal water solubility generally by about 84-99%. The results showed that HA was slightly superior to FAP for immobilizing heavy metals. The possible mechanisms for heavy metal immobilization in the soil involve both surface complexation of the metal ions on the phosphate grains and partial dissolution of the phosphate amendments and precipitation of heavy metal-containing phosphates. HA and FAP could significantly reduce Cd, Cu, Pb, and Zn availability in terms of water solubility in contaminated soils while minimizing soil acidification and potential risk of eutrophication associated with the application of highly soluble phosphate sources. PMID:22024096

  5. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil.

    PubMed

    Luo, Chunling; Wang, Shaorui; Wang, Yan; Yang, Renxiu; Zhang, Gan; Shen, Zhenguo

    2015-04-01

    The present study investigated the effects of the biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS) and the plant-growth-promoting bacterium DGS6 on pollutant uptake by corn from e-waste-contaminated soils. The highest concentration and total uptake of Cu and Zn in corn shoots were observed in the presence of EDDS and DGS6+EDDS, respectively. The ΣPCB concentrations in shoots ranged from 0.53 to 0.72 ng g(-1), and the highest PCB concentration was observed in the presence of EDDS. This could be ascribed to the enhanced dissolved organic carbon, increased dissolution and efficient translocation of PCBs from roots to shoots, as well as potential root damage due to increased soluble metal levels in soil solution. In contrast, the highest total uptake of PCBs in shoots was observed in the presence of DGS6, likely due to enhanced shoot biomass and high levels of air deposition. PMID:25658198

  6. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    PubMed

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. PMID:23891947

  7. Subterranean drilling and in situ treatment of wastes using a contamination control system and methods relating thereto

    DOEpatents

    Jessmore, James J.; Loomis, Guy G.; Pettet, Mark C.; Flyckt, Melissa C.

    2004-09-28

    Systems and methods relating to subterranean drilling while maintaining containment of any contaminants released during the drilling. A thrust block installed over a zone of interest provides an overflow space for retaining any contaminants and excess sealant returns. Negative air pressure may be maintained in the overflow space by a ventilation system. Access ports in the thrust block seal the overflow space from the surrounding environment with a membrane seal. A flexible sack seal in the access port may be connected to a drill shroud prior to drilling, providing containment during drilling after the drill bit penetrates the membrane seal. The drill shroud may be adapted to any industry standard drilling rig and includes a connection conduit for connecting to the flexible sack seal and a flexible enclosure surrounding the drill shaft and of a length to accommodate full extension thereof. Upon withdrawal, the sack seal may be closed off and separated, maintaining containment of the overflow space and the drill shroud.

  8. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Chang, Yoon-Young; Hyun, Seunghun; Ok, Yong Sik; Park, Jeong-Hun

    2016-02-01

    A novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S. sieve size no. 20 (0.85 mm) calcined oyster shells (COS) and CMDS materials with a curing time of 1 and 28 days. The As immobilization treatments were evaluated using the 1-N HCl extraction fluid, whereas the Pb and Cu immobilization treatments were evaluated using the 0.1-N HCl extraction fluid based on the Korean leaching standards. The treatment results showed that the immobilization of As, Cu, and Pb was best achieved using a combination mix of 10 wt% COS and 10 wt% CMDS. This treatment mix was highly effective leading to superior leachability reductions for all three target contaminants (>93 % for As and >99 % for Cu and Pb) for a curing period of 28 days. The X-ray absorption near-edge structure (XANES) results showed that As was present in the form of As(V) in the control sample and that no changes in As speciation were observed following the COS-CMDS treatments. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) sample treated with 10 wt% COS and 10 wt% CMDS indicated that As immobilization may be associated with the formation of Ca-As and Fe-As precipitates while Pb and Cu immobilization was most probably linked to calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs). PMID:26411449

  9. Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  10. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2004-10-28

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  11. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  12. Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation.

    PubMed

    Bieda, Bogusław

    2013-01-01

    The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. PMID:23194922

  13. Verification and sensitivity of the calculational methods used in the PATHRAE code to predict subsurface contaminant transport for risk assessments of SRP waste sites

    SciTech Connect

    Fjeld, R.A.; Elzerman, A.W.; Overcamp, T.J.; Giannopoulos, N.; Crider, S.; Sill, B.L.

    1986-10-01

    Presented in this report are an independent verification of the subsurface contaminant transport calculations contained in the code and an assessment of the sensitivity of predicted contaminant concentrations to uncertainties in transport parameters. The subsurface transport approximation incorporated in the PATHRAE risk assessment code was compared with alternate two-dimensional and three-dimensional approximations and with the EPA VHS model. Agreement between the PATHRAE approximation and the alternate two-dimensional approximation was good. Due to its neglect of vertical dispersion, the PATHRAE model predicted higher groundwater (undiluted) concentrations than the three-dimensional approximation and, for EPA parameters, the VHS model. The use of a value of zero for horizontal dispersivity, as specified for 1 m and 100 m wells in SPR waste site analyses, was found to add an additional degree of conservatism to PATHRAE estimates of groundwater concentration, yielding levels that were more than three orders of magnitude higher than those of the three-dimensional model for a 100 m well. Implementation of the transport approximation in the PATHRAE code was verified by comparing code generated concentrations with those of an independent calculation for wide ranges of the input parameters. Agreement between PATHRAE and the independent calculations was excellent.

  14. Corrective Action Plan for Corrective Action Unit 168: Area 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada, REV 1

    SciTech Connect

    NSTec Environmental Restoration

    2007-12-01

    Corrective Action Unit (CAU) 168 is identified in the Federal Facility Agreement and Consent Order of 1996 as Area 25 and 26 Contaminated Materials and Waste Dumps. CAU 168 consists of twelve Corrective Action Sites (CASs) in Areas 25 and 26 of the Nevada Test Site, which is approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. The CASs contain surface and subsurface debris, impacted soil, and contaminated materials. Site characterization activities were conducted in 2002, and the results are presented in the Corrective Action Decision Document (CADD) for CAU 168 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). Site characterization results indicated that soil at several sites exceeded the clean-up criteria for total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), and radionuclides. The Nevada Division of Environmental Protection approved the proposed corrective actions specified in the CADD (NNSA/NSO, 2006). The approved corrective actions include no further action, clean closure, and closure in place with administrative controls.

  15. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    EPA Science Inventory

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  16. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste.

    PubMed

    Walker, David J; Clemente, Rafael; Bernal, M Pilar

    2004-10-01

    Chenopodium album L. was found to be one of the initial plant species colonising a heavy metal-contaminated site, polluted by pyritic (sulphide-rich) waste from the Aznalcóllar mine spill (South-western Spain). This indicates its importance in the re-vegetation of this soil. In a pot experiment, C. album was sown in soil collected from the contaminated site, either non-amended or amended with cow manure or compost produced from olive leaves and olive mill wastewater, in order to study the effect on heavy metal bioavailability and soil pH. In non-amended and compost-amended soils, soil acidification, probably resulting from oxidation and hydrolysis of sulphide, led to increases in the concentrations of soluble sulphate and plant-available Cu, Zn and Mn in the soil (extractable with 0.1 M CaCl(2)). Under these conditions, shoot growth of C. album was negligible and shoot concentrations of Zn (2,420-5,585 microg g(-1)) and Mn (5,513-8,994 microg g(-1)) were phytotoxic. Manure application greatly increased shoot growth and reduced the shoot concentrations of Cu, Zn, and Mn, and their plant-available concentrations in the soil. These effects appeared to be related to an increase of soil pH, due to an inhibition of sulphide oxidation/hydrolysis, relative to the non-amended soil. For metal sulphides-contaminated soil, liable to acidification, manure application appears to be able to enhance the initial stages of re-vegetation, by species such as C. album. PMID:15312738

  17. Investigation of groundwater flow zones and contaminant transport in Solid Waste Storage Area 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Hicks, D.S.; Solomon, D.K.; Farrow, N.D.

    1992-09-01

    An understanding of subsurface transport processes is essential to produce realistic predictions of future contaminant discharge from Solid Waste Storage Areas (SWSAs) at Oak Ridge National Laboratory (ORNL). Locating groundwater flow zones (permeable pathways) and determining the relative contributions of primary vs secondary contaminant sources are critical to the proper selection and evaluation of remedial actions. Because groundwater discharge from SWSA 5 contributes significant amounts of [sup 3]H and [sup 90]Sr to the White Oak Creek watershed, an area on the southeastern edge of SWSA 5 was chosen for an investigation aimed at understanding and characterizing the subsurface movement of contaminants. Preliminary data collected in 1991 indicated that the vertical distribution of [sup 3]H (0.02 to 279 [mu]Ci/L) observed over the sampled interval (O to 10 ft deep) may be a result of upward diffusion from a hydraulically dominant fracture (or fractured zone) below the sampled interval. The investigation continued this year (1992) with the primary objective of defining where the most permeable zones exist in the subsurface and how they relate to the vertical extent of [sup 3]H. An open borehole was drilled on the southeastern edge of SWSA 5 through the upper zones of soil and saprolite and then through interbedded shales and limestones to a depth of about 26 ft. Two methods were used to determine permeable zones within the borehole. In addition, samples were collected monthly from a nearby well and seep (where tritiated groundwater discharges) to determine seasonal variability in the transport of [sup 3]H and [sup 90]Sr from the study area.

  18. Investigation of groundwater flow zones and contaminant transport in Solid Waste Storage Area 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Hicks, D.S.; Solomon, D.K.; Farrow, N.D.

    1992-09-01

    An understanding of subsurface transport processes is essential to produce realistic predictions of future contaminant discharge from Solid Waste Storage Areas (SWSAs) at Oak Ridge National Laboratory (ORNL). Locating groundwater flow zones (permeable pathways) and determining the relative contributions of primary vs secondary contaminant sources are critical to the proper selection and evaluation of remedial actions. Because groundwater discharge from SWSA 5 contributes significant amounts of {sup 3}H and {sup 90}Sr to the White Oak Creek watershed, an area on the southeastern edge of SWSA 5 was chosen for an investigation aimed at understanding and characterizing the subsurface movement of contaminants. Preliminary data collected in 1991 indicated that the vertical distribution of {sup 3}H (0.02 to 279 {mu}Ci/L) observed over the sampled interval (O to 10 ft deep) may be a result of upward diffusion from a hydraulically dominant fracture (or fractured zone) below the sampled interval. The investigation continued this year (1992) with the primary objective of defining where the most permeable zones exist in the subsurface and how they relate to the vertical extent of {sup 3}H. An open borehole was drilled on the southeastern edge of SWSA 5 through the upper zones of soil and saprolite and then through interbedded shales and limestones to a depth of about 26 ft. Two methods were used to determine permeable zones within the borehole. In addition, samples were collected monthly from a nearby well and seep (where tritiated groundwater discharges) to determine seasonal variability in the transport of {sup 3}H and {sup 90}Sr from the study area.

  19. Comparison of long-term stability of containment systems for residues and wastes contaminated with naturally occurring radionuclides at an arid site and two humid sites

    SciTech Connect

    Winters, M.; Merry-Libby, P.; Hinchman, R.

    1985-01-01

    The long-term stability of near-surface containment systems designed for the management of radioactive wastes and residues contaminated with naturally occurring radionuclides are compared at the three different sites. The containment designs are: (1) a diked 8.9-m high mound, including a 3.2-m layered cap at a site (humid) near Lewiston, New York, (2) a 6.8-m-high mound, including a similar 3.2-m cap at a site (humid) near Oak Ridge, Tennessee, and (3) 4.8-m deep trenches with 3.0-m backfilled caps at a site (arid) near Hanford, Washington. Geological, hydrological, and biological factors affecting the long-term (1000-year) integrity of the containment systems at each site are examined, including: erosion, flooding, drought, wildfire, slope and cover failure, plant root penetration, burrowing animals, other soil-forming processes, and land-use changes. For the containment designs evaluated, releases of radon-222 at the arid site are predicted to be several orders of magnitude higher than at the two humid sites - upon initial burial and at 1000 years (after severe erosion). Transfer of wastes containing naturally occurring radionuclides from a humid to an arid environment offers little or no advantage relative to long-term stability of the containment system and has a definite disadvantage in terms of gaseous radioactive releases. 26 references, 3 figures, 4 tables.

  20. Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-03-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and laboratory

  1. Waste and cost reduction using dual wall reverse circulation drilling with multi-level groundwater sampling for contaminant plume delineation

    SciTech Connect

    Smuin, D.R.

    1995-12-01

    This paper describes the drilling and sampling methods used to delineate a groundwater contaminant plume at the Paducah Gaseous Diffusion Plant (PGDP) during the Groundwater Monitoring IV characterization. The project was unique in that it relied upon dual wall reverse circulation drilling instead of the traditional hollow stem auger method. The Groundwater Monitoring program sought to characterize the boundaries, both vertically and horizontally, of the northeast plume which contains both {sup 99}Tc and trichloroethene. This paper discusses the strengths and weaknesses of the drilling method used by investigators.

  2. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.

    PubMed

    Hyks, Jiri; Astrup, Thomas

    2009-08-01

    Leaching of metals and Cl from fresh, naturally aged, and lab-scale aged bottom ashes generated during full-scale incineration experiments with different operational conditions (OC) and waste input (WI) was assessed. Although significant differences in the bulk contents of the generated bottom ashes were observed between the individual experiments, addition of 5.5 wt.% PVC, 11.1 wt.% chromated-copper-arsenate impregnated wood, 14.2 wt.% automotive shredder residue, 1.6 wt.% shoes, and 0.5 wt.% batteries to the normal municipal solid waste received at the incinerator (in six individual experiments) had no significant effect on metal leaching from the bottom ash. Likewise, changes in OC (furnace oxygen level and air distribution) could not be correlated to changes in leaching. The effects on metal leaching from ageing were generally larger than the effects from changes in OC and WI. Ash ageing caused a significant decrease in leaching of Cu, Zn, and Pb while leaching of Sb and particularly Cr increased. For Cl, a clear correlation between the bulk contents and leaching was observed for bottom ash generated in experiments with changes in WI. Comparison of leaching data obtained in this study with leaching from "typical" aged Danish bottom ash revealed no significant differences when the typical variations in leaching data over time and between different Danish incinerators were accounted. Generally, this indicates that metal leaching from bottom ash is not sensitive to limited changes in WI and OC as suggested in this paper, only Cl(-) leaching appeared to be affected. PMID:19595431

  3. Phenolic contamination in the sand-and-gravel aquifer from a surface impoundment of wood treatment wastes, Pensacola, Florida

    USGS Publications Warehouse

    Troutman, D.E.; Godsy, E.M.; Goerlitz, D.F.; Ehrlich, G.G.

    1984-01-01

    Creosote and pentachlorophenol wastewaters discharged to unlined surface impoundments have resulted in groundwater contamination in the vicinity of an industrial site near Pensacola, Florida. Total phenol concentrations of 36,000 microgm/liter have been detected 40 ft below land surface in a test hole 100 ft south of an overflow impoundment but less than 10 microgm/liter 90 ft below land surface. Samples collected in test holes 1,350 ft downgradient from the surface impoundments and 100 ft north of Pensacola Bay, above and immediately below a clay lens, indicate that phenol contaminated groundwater may not be discharging directly into Pensacola Bay. Phenol concentrations exceeding 20 microgm/liter were detected in samples from a drainage ditch discharging directly into Bayou Chico. Microbiological data collected near the test site suggest that an anaerobic methanogenic ecosystem contributes to a reduction in phenol concentrations in groundwater. A laboratory study using bacteria isolated from the study site indicates that phenol, 2-methylphenol, and 3-methylphenol are significantly degraded and that methanogenesis reduces total phenol concentrations in laboratory digestors by 45%. Pentachlorophenol may inhibit methanogenesis at concentrations exceeding 0.45 milligm/liter. (USGS)

  4. Geochemical Characteristics of the Contaminant Waste Plume in the F-Area of the Savannah River Site: From Kilometer to Micrometer Scales

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Denham, M.; Seaman, J. C.; Rakshit, S.; Tokunaga, T. K.; Spycher, N.; Hubbard, S. S.

    2010-12-01

    The Savannah River Site (SRS) was a major DOE facility for plutonium production during the Cold War. Low-level radioactivity acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955-1989. Although the site has gone through many years of active remediation, the groundwater remains acidic with pH values as low as 3.2, and the concentrations of U and other radionuclides are still up to ten times higher than their maximum contaminant levels (MCLs). In order to understand the current and predict the future contaminant behavior, a comprehensive investigation is being conducted, funded jointly by the DOE’s offices of Biological and Environmental Resources (BER) and Environmental Management (EM). Five boreholes were drilled outside and within the plume along the groundwater flow path. Samples were collected from varied depths of each borehole, sediment pore-waters were extracted by ultracentrifugation, and the solid phase and pore-water were characterized. We identified the sediment mineralogy as being composed predominantly fine quartz sand with 2 to 12% clay. Kaolinite and goethite are the major minerals of the clay-sized fraction, residing primarily as coatings of varied thicknesses on quartz sand grains, providing reactive surfaces for contaminant adsorption. The measured U “field” distribution coefficients (Kd) and U concentrations in the pore waters are strongly pH dependent. These results are consistent with laboratory equilibrium adsorption studies, where U adsorption onto SRS sediments increases sharply from pH 3 to 5, and reaches ≈100% at pH 6-7. The variability in U adsorption capacity in these sediments is mainly caused by differences in goethite/clay content and effective reactive specific surface area. Measured “field” Kd values are smaller than those obtained from laboratory equilibrium adsorption studies with the same contaminated sediments. The equilibrium pH-dependent U adsorption

  5. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes.

    PubMed

    Obi, Chioma C; Adebusoye, Sunday A; Ugoji, Esther O; Ilori, Mathew O; Amund, Olukayode O; Hickey, William J

    2016-01-01

    Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa's largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH

  6. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes

    PubMed Central

    Obi, Chioma C.; Adebusoye, Sunday A.; Ugoji, Esther O.; Ilori, Mathew O.; Amund, Olukayode O.; Hickey, William J.

    2016-01-01

    Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH

  7. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    PubMed

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. PMID:23467183

  8. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  9. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, P.A.

    1998-02-24

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  10. Radionuclide bioconcentration factors and sediment partition coefficients in Arctic Seas subject to contamination from dumped nuclear wastes

    SciTech Connect

    Fisher, N.S. . Marine Sciences Research Center); Fowler, S.W.; Boisson, F.; Carroll, J. . Marine Environment Lab.); Rissanen, K. ); Salbu, B. . Lab. for Analytical Chemistry); Sazykina, T.G. ); Sjoeblom, K.L. )

    1999-06-15

    The disposal of large quantities of radioactive wastes in Arctic Seas by the former Soviet Union has prompted interest in the behavior of long-lived radionuclides in polar waters. Previous studies on the interactions of radionuclides prominent in radioactive wastes have focused on temperate waters; the extent to which the bioconcentration factors and sediment partitioning from these earlier studies could be applied to risk assessment analyses involving high latitude systems is unknown. Here the authors present concentrations in seawater and calculated in situ bioconcentration factors for [sup 90]Sr, [sup 137]Cs, and [sup 239+240]Pu (the three most important radionuclides in Arctic risk assessment models) in macroalgae, crustaceans, bivalve molluscs, sea birds, and marine mammals as well as sediment K[sub d] values for 13 radionuclides and other elements in samples taken from the Kara and Barents Seas. The data analysis shows that, typically, values for polar and temperate waters are comparable, but exceptions include 10-fold higher concentration factors for [sup 239+240]Pu in Arctic brown macroalgae, 10-fold lower K[sub d] values for [sup 90]Sr in Kara Sea sediment than in typical temperate coastal sediment, and 100-fold greater Ru K[sub d] values in Kara Sea sediment. For most elements application of temperate water bioconcentration factors and K[sub d] values to Arctic marine systems appears to be valid.

  11. An evaluation of remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites in Pennsylvania

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2014-01-01

    This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.

  12. Carbon isotopic evidence for biodegradation of organic contaminants in the shallow vadose zone of the radioactive waste management complex

    SciTech Connect

    Conrad, Mark E.; DePaolo, Donald J.

    2003-09-04

    Waste material buried in drums in the shallow subsurface at the Radioactive Waste Management Facility (RWMC) of the Idaho National Engineering and Environmental Laboratory (INEEL) contained significant amounts of organic compounds including lubricating oils and chlorinated solvents. CO{sub 2} concentrations in pore gas samples from monitoring wells in the vicinity of the disposal pits are 3 to 5 times higher than the concentrations in nearby background wells. The stable carbon isotope ratios ({delta}{sup 13}C values) of CO{sub 2} from the disposal pits averaged 2.4. less than CO{sub 2} from the background wells, indicating that the elevated CO{sub 2} concentrations around the pits were derived from source materials with {delta}{sup 13}C values in the range of -24{per_thousand} to -29{per_thousand}. These {delta}{sup 13}C values are typical of lubricating oils, but higher than most solvents. The radiocarbon ({sup 14}C) contents of CO{sub 2} across most of the site were significantly elevated above modern concentrations due to reactor blocks buried in a subsurface vault at the site. However, several samples collected from the high-CO{sub 2} zone on the far side of the RWMC from the reactor blocks had very low {sup 14}C contents (less than 0.13 times modern), confirming production from lubricating oils manufactured from fossil hydrocarbons. The magnitude of the CO{sub 2} anomaly observed at the site is consistent with intrinsic biodegradation rates on the order of 0.5 to 3.0 metric tons of carbon per year.

  13. Coupling extraction-flotation with surfactant and electrochemical degradation for the treatment of PAH contaminated hazardous wastes.

    PubMed

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-10-30

    The performance of a two-stage process combining extraction of polycyclic aromatic hydrocarbons (PAHs) with an amphoteric surfactant (CAS) followed by electro-oxidation of PAH-foam concentrate was studied for the decontamination of aluminum industry wastes (AIW) and polluted soils. The PAH suspensions extracted from AIW and soils were treated in a 2L-parallelepipedic electrolytic cell containing Ti/RuO2 anodes and stainless steel cathodes. Current densities varying from 4.6 to 18.5 mA cm(-2) have been tested with and without addition of a supporting electrolyte (6.25 to 50 kg Na2SO4 t(-1) of dry waste). The best performance for PAH degradation was obtained while the electrolytic cell was operated during 90 min at a current density of 9.2 mA cm(-2), with a total solids concentration of 2.0%, and in presence 12.5 kg Na(2)SO(4)t(-1). The application of the process on AIW (initial PAH content: 3424 mg kg(-1)) allowed extracting 42% of PAH, whereas 50% of PAH was electrochemically degraded in the resulting foam suspensions. By comparison, 44% to 60% of PAH was extracted from polluted soils (initial PAH content: 1758 to 4160 mg kg(-1)) and 21% to 55% of PAH was oxidized in the foam suspensions. The electrochemical treatment cost (including only electrolyte and energy consumption) recorded in the best experimental conditions varied from 99 to 188 USD $ t(-1) of soils or AIW treated. PMID:19525064

  14. Parallel inversion of a massive ERT data set to characterize deep vadose zone contamination beneath former nuclear waste infiltration galleries at the Hanford Site B-Complex (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Rucker, D. F.; Wellman, D.

    2013-12-01

    The Hanford Site, located in south-central Washington, USA, originated in the early 1940's as part of the Manhattan Project and produced plutonium used to build the United States nuclear weapons stockpile. In accordance with accepted industrial practice of that time, a substantial portion of relatively low-activity liquid radioactive waste was disposed of by direct discharge to either surface soil or into near-surface infiltration galleries such as cribs and trenches. This practice was supported by early investigations beginning in the 1940s, including studies by Geological Survey (USGS) experts, whose investigations found vadose zone soils at the site suitable for retaining radionuclides to the extent necessary to protect workers and members of the general public based on the standards of that time. That general disposal practice has long since been discontinued, and the US Department of Energy (USDOE) is now investigating residual contamination at former infiltration galleries as part of its overall environmental management and remediation program. Most of the liquid wastes released into the subsurface were highly ionic and electrically conductive, and therefore present an excellent target for imaging by Electrical Resistivity Tomography (ERT) within the low-conductivity sands and gravels comprising Hanford's vadose zone. In 2006, USDOE commissioned a large scale surface ERT survey to characterize vadose zone contamination beneath the Hanford Site B-Complex, which contained 8 infiltration trenches, 12 cribs, and one tile field. The ERT data were collected in a pole-pole configuration with 18 north-south trending lines, and 18 east-west trending lines ranging from 417m to 816m in length. The final data set consisted of 208,411 measurements collected on 4859 electrodes, covering an area of 600m x 600m. Given the computational demands of inverting this massive data set as a whole, the data were initially inverted in parts with a shared memory inversion code, which

  15. Stontium-90 contamination in vegetation from radioactive waste seepage areas at ORNL, and theoretical calculations of /sup 90/Sr accumulation by deer

    SciTech Connect

    Garten, C.T. Jr.; Lomax, R.D.

    1987-06-01

    This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.

  16. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. PMID:27337434

  17. Remediation of metal-contaminated soils with the addition of materials--part I: characterization and viability studies for the selection of non-hazardous waste materials and silicates.

    PubMed

    González-Núñez, R; Alba, M D; Orta, M M; Vidal, M; Rigol, A

    2011-11-01

    Contamination episodes in soils require interventions to attenuate their impact. These actions are often based on the addition of materials to increase contaminant retention in the soil and to dilute the contaminant concentration. Here, non-hazardous wastes (such as sugar foam, fly ash and a material produced by the zeolitization of fly ash) and silicates (including bentonites) were tested and fully characterized in the laboratory to select suitable materials for remediating metal-contaminated soils. Data from X-ray fluorescence (XRF), N(2) adsorption/desorption isotherms, X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) analyses revealed the chemical composition, specific surface area and the phases appearing in the materials. A pH titration test allowed the calculation of their acid neutralization capacity (ANC). The metal sorption and desorption capacities of the waste materials and silicates were also estimated. Sugar foam, fly ash and the zeolitic material were the best candidate materials. Sugar foam was selected because of its high ANC (17000 meq kg(-1)), and the others were selected because of their larger distribution coefficients and lower sorption reversibilities than those predicted in the contaminated soils. PMID:22018740

  18. Geochemical features of fossil fuel contaminants found in urban wastes (Siemianowice Śląskie, Poland)

    NASA Astrophysics Data System (ADS)

    Wojtoń, Anna; Fabiańska, Monika

    2011-01-01

    In sludge samples collected in the "Centrum" wastewater treatment plant in Siemianowice Śląskie, Poland, the composition of aliphatic- and aromatic hydrocarbons and polar compound fractions were investigated by gas chromatography-mass spectrometry (GC-MS). Samples collected in accordance with Polish standards were extracted, the extracts were separated into fractions with preparative thin layer chromatography (TLC), which next were investigated by GC-MS. The following compound groups of the geochemical origin were identified: n-alkanes in the range of n-C14 to n-C.39, acyclic isoprenoids (mainly pristane and phytane), steranes, tri- and pentacyclic triterpanes. Based on the distribution of biomarkers and their parameters, it was established that the dominant component of extractable organic matter in sluge is petroleum material of an unspecified origin. Its geochemical features indicate that its most likely source was crude oil (or its products) of a relatively high degree of thermal maturity (catagenic stage of thermal evolution corresponding to vitrinite reflectance 0.7-0.8%). Aromatic hydrocarbons probably originated from petroleum also, though some of them can be attributed to the products of combustion or to sources such as bituminous coals, the ash from coal/biofuel combustion or coal wastes stored nearby.

  19. High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae.

    PubMed

    Chen, Lianguo; Zhu, Biran; Guo, Yongyong; Xu, Tao; Lee, Jae-Seong; Qian, Pei-Yuan; Zhou, Bingsheng

    2016-07-01

    PBDEs and heavy metals are two major contaminants at e-waste disposal sites, but their combined effects remain largely unexplored. In the present study, the transcriptomic profiles of zebrafish larvae were examined after acute exposure of embryos to 200 μg/L BDE-209, 20 μg/L lead (Pb) or their mixture (Mix). Stimulation of steroidogenic pathway and vitellogenesis in the BDE-209 and Mix treatments indicated the estrogenic activities of BDE-209, while Pb antagonized those estrogenic effects in the Mix treatment. Increased heart rates were observed in zebrafish exposed to the Pb and Mix treatments. The cardiac dysfunction probably resulted from the promotion of angiogenesis, increased adrenergic drive and induction of the formation of blood clot. Furthermore, the Pb and Mix treatments activated neuroendocrine regulation of the pituitary in a positive feedback loop, via the thyrotropin-releasing hormone receptor, thus increasing thyroid hormone production self-adaptively. Overall, the interaction between BDE-209 and Pb led to synergistic and antagonistic effects on gene transcriptions, with concerted contribution from their individual toxicological properties. PMID:27107256

  20. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    PubMed

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. PMID:26355411

  1. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. PMID:23478128

  2. Use of a New Simltaneous Absorbance-Fluorescene Instrument to Monitor Hydraluic Fracture Mining Waste Water to Prevent Drinking Water Contamination

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2013-05-01

    Recently, the issue of waste water effuse from oil and gas mining, especially that including hydraulic fracturing, has resurfaced on the news and the political atmosphere as an area of concern. One of the key concerns is drinking water contamination from the hydraulic fracturing chemicals and chemicals contained in the water introduced into the well at high-pressure and the flowback and produced water associate with the petroleum product extraction. The key to successfully meeting drinking water safety requirements lies in the drinking water treatment plant's ability to deal with often dramatic source-water variations in natural organic matter (NOM) content that can react during disinfection with high levels of chloride and bromide found in hydraulic facture waste water to form toxc disinfection by-products (DBPs). Importantly, the brominated DBP species are particularly dangerous. Whereas the regulated levels of NOM can roughly determined by measuring total organic carbon (TOC), often this parameter does not provide rapid or cost-effective qualitative or quantitative assessment of the various humic, fulvic and other aromatic NOM components associated with DBP formation. However, two main optical techniques namely UV absorbance and fluorescence excitation-emission mapping can be used for rapid assessment with precise identification of humic and fulvic components that cause DBPs. This study presents data from a new type of instrument which simultaneously measures the UV-VIS absorbance spectrum and EEM. The rapid absorbance-EEM is facilitated by a single system that is more than 100 time faster than conventional scanning absorbance and fluorescence optical benches. The new system can continuously collect EEMs and absorbance spectra at a rate often greater than 1 per min with the extra capacity to monitor the UV254 absorbance and fluorescence emission spectrum excited at 254 nm in 4 ms intervals (an equivalent scan rate of 5.5 million nm/min). The EEM spectral data is

  3. International Space Station External Contamination Status

    NASA Technical Reports Server (NTRS)

    Mikatarian, Ron; Soares, Carlos

    2000-01-01

    PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.

  4. Contamination movement around a permeable reactive barrier at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2009

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Conlon, Kevin J.

    2010-01-01

    The ability to monitor the fate and behavior of the plume in the forest is severely limited because the present axis of maximum contamination in that area bypasses all but one of the existing monitoring wells (12MW-12S). Moreover, the 2009 data indicate that there are no optimally placed sentinel wells in the probable path of contaminant transport. Thus the monitoring network is no longer adequate to monitor the groundwater contamination downgradient from the PRB.

  5. SAMPLING OF CONTAMINATED SITES

    EPA Science Inventory

    A critical aspect of characterization of the amount and species of contamination of a hazardous waste site is the sampling plan developed for that site. f the sampling plan is not thoroughly conceptualized before sampling takes place, then certain critical aspects of the limits o...

  6. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    advective movement of contaminants from selected sites within the solid waste management units to discharge points was simulated using MODPATH. Most of the particles were discharged to the nearest surface-water feature after traveling less than 1,000 feet in the ground-water system. Most areas within 1,000 feet of a surface-water feature or storm sewer had traveltimes of less than 50 years, based on an effective porosity of 40 percent. Contributing areas, traveltimes, and pathlines were identified for 224 wells at Naval Station Mayport under steady-state and transient conditions by back-tracking a particle from the midpoint of the wetted screen of each well. Traveltimes to contributing areas that ranged between 15 and 50 years, estimated by the steady-state model, differed most from the transient traveltime estimates. Estimates of traveltimes and pathlines based on steady-state model results typically were 10 to 20 years more and about twice as long as corresponding estimates from the transient model. The models differed because the steady-state model simulated 1996 conditions when Naval Station Mayport had more impervious surfaces than at any earlier time. The expansion of the impervious surfaces increased the average distance between contributing areas and observation wells.

  7. FINAL REPORT. FUNDAMENTAL STUDIES OF THE REMOVAL OF CONTAMINANTS FROM GROUND AND WASTE WATER VIA REDUCTION BY ZERO-VALENT METALS

    EPA Science Inventory

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We ar...

  8. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Moriarty, K.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  9. Contamination of shallow wells in Nigeria from surface contaminant migration

    SciTech Connect

    Ademoroti, C.M.A. )

    1987-01-01

    Contaminated wells, located in six south/western and western states of Nigeria, were sampled and analyzed for pollution characteristics. Results of analysis indicated migration of contaminants into the wells from places where there was a potential source. There was a significant microbiological population in the wells placed near domestic waste sites. Also, there were excessive levels of trace heavy metals in those placed near metal dumping sites. On the other hand, the contaminants were minimal in wells that were not close to polluting sources. The studies revealed that groundwater contamination occurred primarily by dumping of wastes, wrong placement of waste disposal facilities, and improper construction of wells. The groundwater sources (wells, etc.) are used when pipe-borne water facilities are inadequate.

  10. BLT-MS (Breach, Leach, and Transport -- Multiple Species) data input guide. A computer model for simulating release of contaminants from a subsurface low-level waste disposal facility

    SciTech Connect

    Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M.; MacKinnon, R.J. |

    1996-11-01

    The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS.

  11. Back contamination.

    NASA Technical Reports Server (NTRS)

    Phillips, G. B.

    1971-01-01

    Discussion of the concept and implications of back contamination and of the ways and means for its prevention. Back contamination is defined as contamination of the terrestrial biosphere with organisms or materials returned from outer space that are capable of potentially harmful terrestrial activity. Since the question of whether or not life exists on other planets may, in reality, not be answered until many samples are returned to earth for detailed study, requirements for the prevention of back contamination are necessary. A review of methods of microbiologic contamination control is followed by a discussion of the nature of back contamination and its risk levels, contamination sources and locations, and possible defenses against back contamination. The U.S. lunar back contamination program is described and shown to provide a valuable basis for further refining the technology for the control of planetary back contamination.

  12. Biological Remediation of Petroleum Contaminants

    NASA Astrophysics Data System (ADS)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  13. Composition, distribution, and hydrologic effects of contaminated sediments resulting from the discharge of gold milling wastes to Whitewood Creek at Lead and Deadwood, South Dakota

    USGS Publications Warehouse

    Goddard, K.E.

    1989-01-01

    The Whitewood Creek-Belle Fourche-Cheyenne River stream system in western South Dakota has been extensively contaminated by the discharge to Whitewood Creek of about 100 million tons of mill tailings from gold-mining operations. The resulting contaminated sediments contain unusually large concentrations of arsenic, as much as 11,000 micrograms/g, derived from the mineral arsenopyrite, as well as potentially toxic constituents derived from the ore-body minerals or from the milling processes. Because of the anomalous arsenic concentrations associated with the contamination, arsenic was used as an indicator for a geochemically based, random, sediment-sampling program. Arsenic concentrations in shallow, contaminated sediments along the flood plains of the streams were from 1 to 3 orders of magnitude larger than arsenic concentrations in uncontaminated sediments in about 75% of the flood plains of Whitewood Creek and the Belle Fourche River. Appreciable surface-water contamination resulting from the contaminated sediments is confined to Whitewood Creek and a reach of the Belle Fourche River downstream from the mouth of Whitewood Creek. In Whitewood Creek , dissolved-arsenic concentrations vary from about 20 to 80 microgram/L during the year in response to variations in groundwater inflow and dilution, whereas total-recoverable-arsenic concentrations vary from about 20 to 8 ,000 micrograms/L during short periods in response to rapid changes in suspended-sediment concentration. Contamination of the alluvial aquifer along the stream system is limited to areas in direct contact with large deposits of contaminated sediments. Within the aquifer, arsenic concentrations are thought to be controlled by sorption-desorption on metallic hydroxides. (USGS)

  14. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Mark Krauss

    2011-09-01

    the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.

  15. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  16. Overall strategy and program plan for management of radioactively contaminated liquid wastes and transuranic sludges at the Oak Ridge National Laboratory

    SciTech Connect

    McNeese, L.E.; Berry, J.B.; Butterworth, G.E. III; Collins, E.D.; Monk, T.H.; Patton, B.D.; Snider, J.W.

    1988-12-01

    The use of hydrofracture was terminated after 1984, and LW concentrate has been accumulated and stored since that time. Currently, the volume of stored LW concentrate is near the safe fill limit for the 11 storage tanks in the active LW system, and significant operational constraints are being experienced. The tanks that provide the storage capacity of the active LW system contain significant volumes of TRU sludges that have been designated remote-handled transuranic (RH-TRU) wastes because of associated quantities of other radioisotopes, including /sup 90/Sr and /sup 137/Cs. Thirty-three additional tanks, which are inactive, also contain significant volumes of TRU waste and radioactive LW. A lack of adequate storage volume for LW jeopardizes ORNL's ability to ensure continued conduct of research and development (RandD) activities that generate LW because an unexpected operational incident could quickly deplete the remaining storage volume. Accordingly, a planning team comprised of staff members from the ORNL Nuclear and Chemical Waste Programs (NCWP) was created for developing recommended actions to be taken for management of LW. A program plan is presented which outlines work required for the development of a disposal method for each of the likely future waste streams associated with LW management and the disposal of the bulk of the resulting solid waste on the ORR. 8 refs., 20 figs., 12 tabs.

  17. The use of food waste-based diets and Napier grass to culture grass carp: growth performance and contaminants contained in cultured fish.

    PubMed

    Cheng, Zhang; Mo, Wing-Yin; Nie, Xiang-Ping; Li, Kai-Bing; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The present study used commercial feeds, food waste feeds, Napier grass, and mixed feeds (food waste feed to Napier grass ratio, 1:10) to feed grass carp (Ctenopharyngodon idellus). The results indicated that grass carp fed with food waste feeds and mix feeds achieved growth performance (based on specific growth rate and feed conversion ratio) that was similar to commercial feeds (p > 0.05). Concentrations of metalloid/metals in food waste feeds and polycyclic aromatic hydrocarbons (PAHs) in Napier grass were relatively higher than other types of fish feeds (p < 0.05). However, most of the metalloid/metals and PAH levels in fish fed with four types of fish feeds were not significantly different (p > 0.05). These findings show that food waste feeds are suitable for using in the production of fish feed and Napier grass can be served as supplemental feeds for grass carp, and hence reducing the production cost. PMID:26289329

  18. Study of extraterrestrial disposal of radioactive wastes. Part 3: Preliminary feasibility screening study of space disposal of the actinide radioactive wastes with 1 percent and 0.1 percent fission product contamination

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.

    1973-01-01

    A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.

  19. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  20. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  1. Long-Term Studies of Radionuclide Contamination of Migratory Waterfowl at the Savannah River Site: Implications for Habitat Management and Nuclear Waste Site Remediation

    SciTech Connect

    Brisbin, I.L.; Kennamer, R.A.

    2000-10-01

    Past nuclear activities at SRS have resulted in low level contamination in various wetlands. The wetlands and reservoirs serve a major wintering ground for migratory waterfowl. American coots have the highest level of cesium accumulation among the birds. The concentration has decreased exponentially with a four year half-life. The current levels pose no threat to human consumption.

  2. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer. PMID:17386516

  3. MULTIMEDIA CONTAMINANT FATE, TRANSPORT, AND EXPOSURE MODEL (MMSOILS)

    EPA Science Inventory

    The Multimedia Contaminant Fate, Transport, and Exposure Model (MMSOILS) estimates the human exposure and health risk associated with releases of contamination from hazardous waste sites. The methodology consists of a multimedia model that addresses the transport of a chemical in...

  4. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants

    SciTech Connect

    Gerlach, Robin; Cunningham, Al; Peyton, Brent

    2005-06-01

    The collaborative project was designed to evaluate the possibility developing a subsurface remediation technology for mixed wastes at Department of Energy sites using a group of common soil bacteria of the genus Cellulomonas. We have been gaining a better understanding of microbial transformation of chromium, uranium, iron minerals, and trinitrotoluene (TNT) by Cellulomonas spp. in simulated subsurface environments.

  5. Waste classification sampling plan

    SciTech Connect

    Landsman, S.D.

    1998-05-27

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  6. [The assessment of biocenosis contamination in the region of radioactive waste storage (RWS) placing and influence of this storage on rodents].

    PubMed

    Vasil'ev, A N; Synzynys, B I; Ul'ianova, L P; Kovalev, O A; Smoryzanova, O A; Starkov, O V; Latynova, N E; Kruglov, S V; Momot, O A; Koz'min, G V

    2007-01-01

    The results of radiative and of chemical monitoring show definite contamination of this zone by 90Sr and toxic metals. The essential local contaminations of geosystems (up to 2.3 x 10(4) Bk/kg of soil) require in environmental condition assessment at biocenosis level. Biotesting found the increase of metallothioneines levels in kidney (up to 15.63 microg/g of tissue) and liver (up to 19.22 microg/g of tissue) of rodents inhabited in the region of RWS placing as compared with the control group (3.51 and 4.44 microg/g of tissue accordingly). Besides, the decrease of total quantity of leucocytes (by 14.5% as compared with the control group) and absolute quantity all forms of them in animal blood were noted. It was assumed the increase of protein--MT is the result of complex influence by ionizing radiation and toxic metals. PMID:18051689

  7. Immobilization of Pb from contaminated water, soils, and wastes by phosphate rock. Annual report, 15 March 1993-14 September 1994

    SciTech Connect

    Ma, Q.Y.; Logan, T.J.; Traina, S.J.

    1994-10-01

    This research studies the feasibility of using phosphate rock and hydroxyapatite to immobilize Pb from aqueous solutions and contaminated soils, investigated the effects of CaCO3, aqueous Ca, Na, and K, and EDTA on aqueous Pb immobilization by hydroxyapatite, examined the stability of hydroxypyromorphite in the presence of high concentrations of anion exhange resin, aqueous Ca(+2), and EDTA, and determined the feasibility of using hydroxyapatite in immobilizing AsO4-3.

  8. Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Garratt, Eva J.; Laws, Andrew P.; Gunn, John; Humphreys, Paul N.

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643

  9. Evidence of the generation of isosaccharinic acids and their subsequent degradation by local microbial consortia within hyper-alkaline contaminated soils, with relevance to intermediate level radioactive waste disposal.

    PubMed

    Rout, Simon P; Charles, Christopher J; Garratt, Eva J; Laws, Andrew P; Gunn, John; Humphreys, Paul N

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643

  10. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to

  11. Shiga toxin-producing Escherichia coli O100:H⁻: stx2e in drinking water contaminated by waste water in Finland.

    PubMed

    Lienemann, Taru; Pitkänen, Tarja; Antikainen, Jenni; Mölsä, Elina; Miettinen, Ilkka; Haukka, Kaisa; Vaara, Martti; Siitonen, Anja

    2011-04-01

    In November 2007, 450 m(3) of treated wastewater leaked into the drinking water distribution system contaminating the drinking water of over 10,000 inhabitants of Nokia, Southern Finland. Nearly 1,000 people visited the health centre because of gastroenteritis during the following 5 weeks. A wide range of enteric pathogens was found in the patients. The authors used the 16-plex PCR to investigate whether the five major diarrheagenic Escherichia coli pathotypes (EPEC, ETEC, STEC, EIEC or EAEC) were present in the contaminated drinking water and in the patients' stool samples. The contaminated drinking water was positive for genes characteristic of various E. coli pathotypes: pic, invE, hlyA, ent, escV, eae, aggR, stx(2) , estIa and astA. These genes, except stx(2), hlyA and invE, were also detected in the stool samples of the patients linked to this outbreak. A sorbitol positive, streptomycin resistant STEC strain was isolated from the drinking water, and belonged to the serotype O100:H(-), produced Stx2 toxin (titre 1:8 by reversed-passive latex agglutination method), and carried the genes stx(2e), estIa and irp2. PMID:21188590

  12. Effects of land use on ground-water quality in central Florida - Preliminary results: U. S. Geological Survey Toxic Waste - Ground-Water Contamination Program

    SciTech Connect

    Rutledge, A.T.

    1987-01-01

    Activities of man in areas of recharge to the Floridian aquifer system that may be affecting groundwater quality include: (1) the use of drainage wells for stormwater disposal in urban areas, (2) the use of pesticides and fertilizers in citrus groves, and (3) the mining and processing of phosphate ore in mining areas. Preliminary findings about the impact of these land uses on groundwater quality are presented. Drainage wells convey excess urban stormwater directly to the Upper Floridian aquifer. The volatile organic compounds are the most common contaminants in ground water. Trace elements such as chromium and lead are entering the aquifer but their movement is apparently attenuated by precipitation reactions associated with high pH or by cation-exchange reactions. Among the trace elements and organic chemicals, most ground-water contamination in citrus production areas is caused by pesticide; other contaminants include benzene, toluene, naphthalene, and indene compounds. In the phosphate mining area, constituents of concern are arsenic, selenium, and mercury, and secondarily lead, chromium, cadmium, and others. Organic compounds such as fluorene, naphthalene, di-n-butyl phthalate, alkylated benzenes and naphthalenes, and indene compounds also are entering groundwater. 29 refs., 13 figs., 16 tabs.

  13. Corrective Action Decision Document for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-08-08

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of recommended corrective action alternatives (CAAs) to facilitate the closure of Corrective Action Unit (CAU)168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 25 and 26 at the NTS in Nevada, CAU 168 is comprised of twelve Corrective Action Sites (CASs). Review of data collected during the corrective action investigation, as well as consideration of current and future operations in Areas 25 and 26 of the NTS, led the way to the development of three CAAs for consideration: Alternative 1 - No Further Action; Alternative 2 - Clean Closure; and Alternative 3 - Close in Place with Administrative Controls. As a result of this evaluation, a combination of all three CAAs is recommended for this CAU. Alternative 1 was the preferred CAA for three CASs, Alternative 2 was the preferred CAA for six CASs (and nearly all of one other CAS), and Alternative 3 was the preferred CAA for two CASs (and a portion of one other CAS) to complete the closure at the CAU 168 sites. These alternatives were judged to meet all requirements for the technical components evaluated as well as all applicable state and federal regulations for closure of the sites and elimination of potential future exposure pathways to the contaminated soils at CAU 168.

  14. Behavior of polychlorinated benzenes, PCDD/Fs and dioxin-like PCBs during incineration of solid waste contaminated with mg/kg levels of hexachlorobenzene.

    PubMed

    Watanabe, Mafumi; Noma, Yukio

    2010-01-01

    Hexachlorobenzene (HCB), one of the well-known Persistent Organic Pollutants (POPs), is present in some pigments and these raw materials with maximum level of several thousand of mg/kg. Considering that these pigments have been used in long-life products, such as car parts, construction materials and electrical and electronic equipments, the articles containing HCB at a concentration of several hundred mg/kg still have to undergo waste management. In this study, we performed a combustion experiment involving solid waste containing 300 mg/kg of HCB as the input material using a pilot-scale incinerator to determine the destruction of HCB and its influence on the behavior of other polychlorinated benzenes (CBzs) and unintentionally produced POPs, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs). HCB at a concentration of 300 mg/kg in the input material was destroyed mainly in the primary combustion zone. Overall the destruction efficiency of HCB was > 99.9985%. The input concentration of HCB did not significantly affect the formation and destruction or the final emissions of other CBzs, PCDD/Fs and dl-PCBs. These results indicate that incineration, when operated and structured to minimize emissions of dioxin-related compounds, is considered to be one of the Best Available Technologies for the appropriate treatment of waste containing HCB with a concentration in the order of mg/kg. PMID:20401777

  15. [Migration of industrial radionuclides in soils and benthal deposits at the coastal margins of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management (SevRAO) and its influence on the possible contamination of the sea offshore waters].

    PubMed

    Filonova, A A; Seregin, V A

    2014-01-01

    For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters. PMID:25051732

  16. PHYTOREMEDIATION OF ORGANIC AND NUTRIENT CONTAMINANTS

    EPA Science Inventory

    Phytoremediation, the use of vegetation for the in situ treatment of contaminated soils and sediments, is an emerging technology that promises effective and inexpensive cleanup of certain hazardous waste sites. otential applications of phytoremediation would be bioremediation of ...

  17. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.

    PubMed

    Gupta, Amit K; Sinha, Sarita

    2007-10-01

    Various single extractant (DTPA, EDTA, NH(4)NO(3), CaCl(2), and NaNO(3)) was used to evaluate the bioavailability of heavy metals from tannery wastewater contaminated soil and translocation of metals to the plant of Brassica juncea L. Czern. (var. Vaibhav). The extraction capacity of the metals was found in the order: EDTA>DTPA>NH(4)NO(3)>CaCl(2)>NaNO(3). Cluster analysis between different extractants showed close relationship between DTPA, CaCl(2), NH(4)NO(3) except EDTA and NaNO(3), which showed dispersed relationship. Principal components analysis (PCA) applied to metals extracted with EDTA showed different grouping of metals (i) Na, Co, Pb, Ni and (ii) K, Mn, Zn, Cr, in the loading plot which showed similar availability from contaminated soil. PCA applied on metals accumulation data in the plants also exhibited different grouping of variables (i) Cu, Co, Ni, Cd and (ii) Mn, Zn, Pb, Fe showed almost similar accumulation pattern in the plants. The data displayed positive loading for Mn and negative loading for Cr with PC(2). Cd and Zn have shown high loadings in PC(1) and PC(2), respectively. The translocation of most of the tested metals (Pb, Mn, Cd, Ni, Fe) in the shoot of the plant was found better except Cr, Cu, Co and K. The correlation analysis between different extractable metals and metal accumulation in the shoot of the plant showed significant positive correlation with Pb and Cr. Overall, extraction capacity and cluster analysis augmented that EDTA was found suitable extractant for tannery wastewater contaminated soil to B. juncea. PMID:17475401

  18. The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil.

    PubMed

    Pardo, Tania; Martínez-Fernández, Domingo; Clemente, Rafael; Walker, David J; Bernal, M Pilar

    2014-01-01

    The applicability of a mature compost as a soil amendment to promote the growth of native species for the phytorestoration of a mine-affected soil from a semi-arid area (SE Spain), contaminated with trace elements (As, Cd, Cu, Mn, Pb and Zn), was evaluated in a 2-year field experiment. The effects of an inorganic fertiliser were also determined for comparison. Bituminaria bituminosa was the selected native plant since it is a leguminous species adapted to the particular local pedoclimatic conditions. Compost addition increased total organic-C concentrations in soil with respect to the control and fertiliser treatments, maintained elevated available P concentrations throughout the duration of the experiment and stimulated soil microbial biomass, while trace elements extractability in the soil was rather low due to the calcareous nature of the soil and almost unaltered in the different treatments. Tissue concentrations of P and K in B. bituminosa increased after the addition of compost, associated with growth stimulation. Leaf Cu concentration was also increased by the amendments, although overall the trace elements concentrations can be considered non-toxic. In addition, the spontaneous colonisation of the plots by a total of 29 species of 15 different families at the end of the experiment produced a greater vegetation cover, especially in plots amended with compost. Therefore, the use of compost as a soil amendment appears to be useful for the promotion of a vegetation cover and the phytostabilisation of moderately contaminated soils under semi-arid conditions. PMID:23868726

  19. Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    SciTech Connect

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

  20. Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products.

    PubMed

    Kizinievič, Olga; Balkevičius, Valdas; Pranckevičienė, Jolanta; Kizinievič, Viktor

    2014-08-01

    Large amounts of centrifuging waste of mineral wool melt (CMWW) are created during the production of mineral wool. CMWW is technogenic aluminum silicate raw material, formed from the particles of undefibred melt (60-70%) and mineral wool fibers (30-40%). 0.3-0.6% of organic binder with phenol and formaldehyde in its composition exists in this material. Objective of the research is to investigate the possibility to use CMWW as an additive for the production of ceramic products, by neutralising phenol and formaldehyde existing in CMWW. Formation masses were prepared by incorporating 10%, 20% and 30% of CMWW additive and burned at various temperatures. It was identified that the amount of 10-30% of CMWW additive influences the following physical and mechanical properties of the ceramic body: lowers drying and firing shrinkage, density, increases compressive strength and water absorption. Investigations carried out show that CMWW waste can be used for the production of ceramic products of various purposes. PMID:24569044

  1. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  2. BASIC CONCEPTS OF CONTAMINANT SORPTION

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of ISSUE PAPERS and BRIEFING DOCUMENTS which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. n an attemp...

  3. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    EPA Science Inventory

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  4. Mixed waste: Proceedings

    SciTech Connect

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  5. Characterisation of weathered hydrocarbon wastes at contaminated sites by GC-simulated distillation and nitrous oxide chemical ionisation GC-MS, with implications for bioremediation.

    PubMed

    Pollard, Simon J T; Hrudey, Steve E; Rawluk, Marv; Fuhr, Bryan J

    2004-08-01

    An extended analytical characterisation of weathered hydrocarbons isolated from historically contaminated sites in Alberta is presented. The characterisation of soil extracts, chromatographically separated into component classes, by GC-simulated distillation and nitrous oxide (N2O) chemical ionisation (CI) GC-MS provides new insights into the composition of the residual oil at these sites, the principal partition medium for risk critical components. The combined polar and asphaltene content of representative soil extracts ranged from 40% w/w to 70% w/w of the oils encountered. An abundance of C14-C22 2-4 ring alicyclics, alkylbenzenes and benzocycloparaffins is prevalent within the saturate fractions of site soils. Implications for the partitioning of risk critical compounds at sites with weathered hydrocarbons and the practical application of bioremediation technologies are discussed. PMID:15292955

  6. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  7. COMPARATIVE ANALYSIS OF CONTAMINATED HEATING OILS

    EPA Science Inventory

    The report gives results of an exploratory investigation of the possible contamination of virgin heating oils by hazardous waste in the New Jersey/New York area. Twenty oil samples, including some that were suspected to be contaminated, were analyzed for 39 volatile organic compo...

  8. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  9. ELECTROCHEMICAL PROCESSES FOR IN-SITU TREATMENT OF CONTAMINATED SOILS

    EPA Science Inventory

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected from selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic per...

  10. Contamination Control

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Upjohn Company sought a solution to their problem of potential particulate contamination of sterile injectable drugs. Contamination was caused by dust particles attracted by static electrical charge, which clung to plastic curtains in clean rooms. Upjohn found guidance in NASA Tech Briefs which provided detailed information for reducing static electricity. Guidelines for setting up static free work stations, materials and equipment needed to maintain antistatic protection.

  11. Electromagnetic Induction and Electrical Resistivity Tomography Applied to evaluate contamination at a site of disposal of animal wastes from a feedlot

    NASA Astrophysics Data System (ADS)

    Sainato, C. M.; Marquez Molina, J.; Losinno, B.; Urricariet, A. S.

    2012-12-01

    In Argentina, the systems of animal feeding in pens (feedlots) are expanding the production, generating a great quantity of solids and liquid residuals, being a highly risky source of soil and groundwater contamination. The aim of this work was to evaluate the relation between soil bulk conductivity and the distribution of concentrations of nitrates and other potential contaminants of groundwater from animal manure. Shallow electromagnetic induction (EMI) and electrical resistivity tomography (ERT) surveys were carried out at a pen of a feedlot at San Pedro , Bs. As. Province , Argentina, where large quantities of manure (3.5 m height) had been placed at the center of them, for a few months of activity. Soil sampling up to 2 m depth was performed for physical and chemical analysis. Wells were drilled for monitoring groundwater level (12 m depth) and water quality. Soil texture was defined as loamy clayey silty. Distribution of electrical conductivity obtained from the two exploration methods was similar, being higher the values at the pen than at the background site, coinciding with laboratory measurements of electrical conductivity of the saturation paste extract. At the center of the pen, bellow the manure accumulation, the highest values of conductivity were found (greater than 120mS/m), decreasing to the surroundings. However, values of N-NO3 in soil were lower at the center of the pen than at the surroundings. Concentration decreases with depth at sites of the pen with high soil compaction. Water content showed a strong influence on values of conductivity. Groundwater values of NO3 concentration do not exceed the level for human consumption although SO4 concentration increases respect to background deeper well.Values of conductivity and N-NO3 were still lower compared with the ones found at another pen with 10 years of use. An EMI survey carried out two years later showed an increase of twice the values of electrical conductivity. We conclude that higher

  12. Preventing ground water contamination

    SciTech Connect

    Thompson, R.

    1985-07-12

    A recent Office of Technology Assessment report to Congress indicates that the associated health risks from ground water contamination are likely to increase because federal and state laws provide inadequate protection. Road de-icing salts, pesticide runoff, septic tanks, and seepage from livestock manure and fertilizers are all major causes that are difficult to control. A primary source that can be corrected is improper or unsafe disposal of hazardous wastes that are dumped into landfills or surface ponds or injected into deep wells. Congress has tried to deal with the problem by strengthening existing and introducing new legislation. Because getting rid of hazardous waste is increasingly expensive and difficult, companies are beginning to look for ways to prevent pollution at the source by using new technologies that are economically sound. 17 references, 4 figures.

  13. Mass transport contamination study

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1972-01-01

    A theoretical analysis was performed to determine the effects of outgassing and waste dumping on the contamination field around an orbiting spacecraft. The spacecraft was assumed to be spherical in shape with the mass flow emitting uniformly from the spherical surface at a constant rate and in a D'Lambertian spatial distribution. The outflow of gases were assumed to be neutrally charged and of a single species with a molecular weight characteristic of a composite of the actual species involved in the mass flow. The theoretical analysis showed that, for outgassing only, less than 1.5 percent of the outgas products will return to the Skylab spacecraft as a result of intermolecular collisions. When the total mass flow from the spacecraft, including waste dumps and reaction control motor firings, was considered, it was estimated that about 30 percent will return to the spacecraft.

  14. Uranium ((234)U, (235)U and (238)U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland).

    PubMed

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    2015-08-01

    The aim of this work was to determine the uranium concentration ((234)U, (235)U and (238)U) and values of the activity ratio (234)U/(238)U in soil samples collected near phosphogypsum waste heap in Wiślinka (northern Poland). On the basis of the studies it was found that the values of the (234)U/(238)U activity ratio in the analyzed soils collected in the vicinity of phosphogypsum dump in Wiślinka are in most cases close to one and indicate the phosphogypsum origin of the analyzed nuclides. The obtained results of uranium concentrations are however much lower than in previous years before closing of the phosphogypsum stockpile. After this process and covering the phosphogypsum stockpile in Wiślinka with sewage sludge, phosphogypsum particles are successfully immobilized. In the light of the results the use of phosphate fertilizers seems to be a major problem. Prolonged and heavy rains can cause leaching accumulated uranium isotopes in the phosphogypsum stockpile, which will be washed into the Martwa Wisła and on the fields in the immediate vicinity of this storage. PMID:25913057

  15. Distributions and compositions of old and emerging flame retardants in the rhizosphere and non-rhizosphere soil in an e-waste contaminated area of South China.

    PubMed

    Wang, Shaorui; Wang, Yan; Song, Mengke; Luo, Chunling; Li, Jun; Zhang, Gan

    2016-01-01

    We investigated rhizosphere effects on the distributions and compositions of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DPs) in rhizosphere soils (RS) and non-rhizosphere soils (NRS) in an e-waste recycling area in South China. The concentrations of PBDEs, NBFRs, and DPs ranged from 13.9 to 351, 11.6 to 70.8, and 0.64 to 8.74 ng g(-1) in RS and 7.56 to 127, 8.98 to 144, and 0.38 to 8.45 ng g(-1) in NRS, respectively. BDE-209 and DBDPE were the dominant congeners of PBDEs and NBFRs, respectively. PBDEs, NBFRs, and DPs were more enriched in RS than NRS in most vegetables species. Further analysis suggested that the differentiation of the rhizosphere effect on halogenated flame retardants (HFRs) was not solely controlled by the octanol-water coefficients. This difference was also reflected by the correlations between total organic carbon (TOC) and PBDEs, NBFRs, or DPs, which indicated that organic carbon was a more pivotal controlling factor for PBDEs and DPs than for NBFRs in soil. We also found significant positive correlations between PBDEs and their replacement products, which indicated a similar emission pattern and environmental behaviour. PMID:26552538

  16. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind

  17. Sorting of solid radioactive wastes

    SciTech Connect

    Marek, J.; Pecival, I.; Hejtman, J.; Wildman, J.; Cechak, T.

    1993-12-31

    In the nuclear power plants solid radioactive wastes are produced during regular operation and during small repairs. It is necessary to sort them into the highly contaminated wastes for which a special procedure for storage is necessary and waste that is not radioactive and can be stored in the environment under specific regulations. The aim of the project was to propose and to construct equipment, which is able to sort the waste with a high degree of reliability and to distinguish highly contaminated wastes from wastes which are less dangerous to the environment. The sensitivity of the detection system was tested by a mathematical model. The radioactive wastes from the primary part of the nuclear power plant can have three composition types. Details of the composition of the radioisotopes mixture are presented.

  18. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specific prohibitions—petroleum refining wastes. (a) Effective February 8, 1999, the wastes specified in 40 CFR part 261 as EPA Hazardous Wastes Numbers K169, K170, K171, and K172, soils and debris contaminated... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific...

  19. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specific prohibitions—petroleum refining wastes. (a) Effective February 8, 1999, the wastes specified in 40 CFR part 261 as EPA Hazardous Wastes Numbers K169, K170, K171, and K172, soils and debris contaminated... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific...

  20. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specific prohibitions—petroleum refining wastes. (a) Effective February 8, 1999, the wastes specified in 40 CFR part 261 as EPA Hazardous Wastes Numbers K169, K170, K171, and K172, soils and debris contaminated... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific...

  1. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specific prohibitions—petroleum refining wastes. (a) Effective February 8, 1999, the wastes specified in 40 CFR part 261 as EPA Hazardous Wastes Numbers K169, K170, K171, and K172, soils and debris contaminated... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific...

  2. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specific prohibitions—petroleum refining wastes. (a) Effective February 8, 1999, the wastes specified in 40 CFR part 261 as EPA Hazardous Wastes Numbers K169, K170, K171, and K172, soils and debris contaminated... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific...

  3. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site- An introduction: Chapter A in Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    1984-01-01

    The U.S. Geological Survey has begun a research project to improve understanding of the mobilization, transport, and fate of petroleum contaminants in the shallow subsurface and to use this understanding to develop predictive models of contaminant behavior. The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less. 

  4. Recovery of polypropylene and polyethylene from packaging plastic wastes without contamination of chlorinated plastic films by the combination process of wet gravity separation and ozonation.

    PubMed

    Reddy, Mallampati Srinivasa; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2011-08-01

    Wet gravity separation technique has been regularly practiced to separate the polypropylene (PP) and polyethylene (PE) (light plastic films) from chlorinated plastic films (CP films) (heavy plastic films). The CP films including poly vinyl chloride (PVC) and poly vinylidene chloride (PVDC) would float in water even though its density is more than 1.0g/cm(3). This is because films are twisted in which air is sometimes entrapped inside the twisted CP films in real existing recycling plant. The present research improves the current process in separating the PP and PE from plastic packaging waste (PPW), by reducing entrapped air and by increasing the hydrophilicity of the CP films surface with ozonation. The present research also measures the hydrophilicity of the CP films. In ozonation process mixing of artificial films up to 10min reduces the contact angle from 78° to 62°, and also increases the hydrophilicity of CP films. The previous studies also performed show that the artificial PVDC films easily settle down by the same. The effect of ozonation after the wet gravity separation on light PPW films obtained from an actual PPW recycling plant was also evaluated. Although actual light PPW films contained 1.3% of CP films however in present case all the CP films were removed from the PPW films as a settled fraction in the combination process of ozonation and wet gravity separation. The combination process of ozonation and wet gravity separation is the more beneficial process in recovering of high purity PP and PE films from the PPW films. PMID:21530222

  5. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2016-07-01

    In this study, batch experiments were conducted to investigate the effects of nanoparticles (NPs) (MgO, ZnO, TiO2) and clay minerals (bentonite, zeolite) on the release of chromium (Cr) from leather factory waste (LFW) and LFW treated soil using organic acids. Chromium release from all treatments was studied in the presence of citric acid, oxalic acid and CaCl2 solutions. The results showed that, in all treatments, organic acids released more Cr than inorganic salt (CaCl2). The release of Cr by citric acid was higher than that by oxalic acid. In LFW treated soil and LFW, the release of Cr from the all treatments with NPs was less than that from the clay mineral treatments. On the other hand, in the presence of organic acids, Cr release by NPs and clay minerals decreased. Two kinetic models including pseudo-first- and pseudo-second-order model were tested to describe the time dependent Cr release data. Among the kinetic models used, the pseudo-second-order model generally gave the best fits to experimental data. Before and after release experiments, Cr in LFW, treated LFW, control soil and LFW treated soils were fractionated. In all treatments, the greatest amounts of Cr were found in the residual fraction (RES). The organic acids were effective in reducing the exchangeable (EXC), bound to organic matter (OM) and bound to carbonate (CAR) fractions of Cr in all treatments, whereas, after release of Cr from treated soils, Cr remained mainly in the RES fraction. The application of NPs and clay minerals in soil led to a significant transformation of Cr from mobile fractions to the RES fraction. Therefore, organic ligands played a dominant role in mobility and bioavailability of Cr and the removal of Cr by adsorbents. PMID:27139119

  6. [Evaluation of the partial contribution of naturally occurring radionuclides and nonradioactive chemically toxic elements in formation of biological effects within the Vicia cracca population inhabiting the area contaminated with uranium-radium production wastes in the Komi Republic].

    PubMed

    Evseeva, T I; Geras'kin, S A; Vakhrusheva, O M

    2014-01-01

    The site contaminated with uranium-radium production wastes in the Komi Republic was studied. The activity concentration of naturally occurring radionuclides (226Ra, 228Th, 238U, 230Th, 232Th, 210Po, and 210Pb), as well as concentrations of nonradioactive chemically toxic elements (Pb, Zn, Cu, As, V, Mo, Sr, Y, and Ba) in the soil samples from the experimental site is 10-183 times higher than reference levels. A chronic exposure to alpha-emitters and nonradioactive chemically toxic elements causes adverse effects in tufted vetch (Vacia cracca L.) both at the cellular (aberration of chromosomes) and population (decrease in the reproductive ability) levels. Radionuclides are the main contributors to the decrease in the reproductive capacity and an increase in the level of the cytogenetic damage in root tip cells of tufted vetch seedlings. As and Pb significantly influence the reproductive capacity of plants. Sr, Zn, Y and P modify the biological effects caused by exposure to radionuclides. Moreover, P and Zn reduce the adverse effects of radionuclides; however, Sr and Y enhance these effects. PMID:25764850

  7. Mercury Contamination

    PubMed Central

    Thompson, Marcella R.

    2013-01-01

    IN BRIEF A residential elemental mercury contamination incident in Rhode Island resulted in the evacuation of an entire apartment complex. To develop recommendations for improved response, all response-related documents were examined; personnel involved in the response were interviewed; policies and procedures were reviewed; and environmental monitoring data were compiled from specific phases of the response for analysis of effect. A significant challenge of responding to residential elemental mercury contamination lies in communicating risk to residents affected py a HazMat spill. An ongoing, open and honest dialogue is emphasized where concerns of the public are heard and addressed, particularly when establishing and/or modifying policies and procedures for responding to residential elemental mercury contamination. PMID:23436951

  8. Treatment options for tank farms long-length contaminated equipment

    SciTech Connect

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  9. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  10. Reconstruction of radionuclide contamination of the Techa River caused by liquid waste discharge from radiochemical production at the Mayak Production Association.

    PubMed

    Mokrov, Y; Glagolenko, Y; Napier, B

    2000-07-01

    Because of its importance to reconstructing radiation doses for ongoing epidemiological studies, a feasibility study was undertaken to determine if the source term of radioactive materials released to the Techa River from the Mayak Production Association, the first facility in the former Soviet Union for the production of plutonium, could be reconstructed from historical measurements made at a limited number of downriver locations. The feasibility study used historically measured water flow rates and total-beta radioactivity measurements, and considered the processes of radioactive decay and of sorption/desorption. A simple radionuclide mass balance approach was used. To determine the rate of input of radionuclides to the Techa River system, the Techa River was depicted as a series of segments for which measurements are available. For each segment of the river, a system of recurrent (with time) equations was compiled for radioactivity balance accounting for the radioactivity inflow at the inflowing end, activity discharge with water at the outflowing end, and the reduction of activity because of radioactive decay. The equations change with time to account for the changing nature of the river regime. Effective sorption constants for 90Sr and 137Cs, which characterize the transport of radionuclides among the river system components (water and bottom sediments), were defined based on the inventory of these radionuclides deposited at each of the studied river segments and data on water concentration and radioactive removal. All the information on radioactive contamination of the river system components during the period 1949-1996 was used. Solution of the series of equations provided information on the rate of input of these radionuclides into the upper end of the river. The pilot study indicated that it is possible to determine the historical releases of a wider suite of radionuclides using the historical monitoring data from numerous locations along the river, rather

  11. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  12. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    SciTech Connect

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson; John D. Huchton; Teralene S. Foxx

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and

  13. Contamination control

    SciTech Connect

    Jackson, L.C.

    1983-11-01

    An evaluation showed that fluoropolymer plastic squeeze bottles can replace polyethylene bottles when used for in-process cleaning. Fluoropolymer plastic squeeze bottles do not contaminate solvents stored in the bottles as polyethylene bottles do. In addition, a limited survey of industrial practices regarding aerosol spray container control showed containers are being controlled without inconveniencing production.

  14. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  15. How to deal with radiologically contaminated vegetation

    SciTech Connect

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-12-31

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

  16. Ground water contamination

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Ground water contamination and basic concepts of water law; Federal law governing water contamination and remediation; Ground water flow and contaminant migration; Ground water cleanup under CERCLA; Technical methods of remediation and prevention of contamination; Liability for ground water contamination; State constraints on contamination of ground water; Water quantity versus water quality; Prevention of use of contaminated ground water as an alternative to remediation; Economic considerations in liability for ground water contamination; and Contamination, extraction, and injection issues.

  17. MICROBIAL ECOLOGY OF THE SUBSURFACE AT AN ABANDONED CREOSOTE WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine, slightly contaminated, and heavily contaminated subsurface materials, and four subsurface materials on the periphery of the plume at an abandoned creosote waste site was investigated. xcept for the unsaturated zone of the heavily contaminated ma...

  18. MICROBIAL ECOLOGY OF THE SUBSURFACE AT AN ABANDONED CREOSOTE WASTE SITE

    EPA Science Inventory

    The microbial ecology of pristine, slightly contaminated, and heavily contaminated subsurface materials, and four subsurface materials on the periphery of the plume at an abandoned creosote waste site was investigated. Except for the unsaturated zone of the heavily contaminated m...

  19. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and beryllium... minimization principles. (b) Beryllium-containing waste, and beryllium-contaminated equipment and other...

  20. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and beryllium... minimization principles. (b) Beryllium-containing waste, and beryllium-contaminated equipment and other...