Science.gov

Sample records for 23s rrna mutations

  1. 23S rRNA gene mutations contributing to macrolide resistance in Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Operon specific 23S rRNA mutations affecting minimum inhibitory concentrations (MICs) of macrolides (erythromycin [ERY], azithromycin [AZM], tylosin [TYL]) and a lincosamide (clindamycin [CLI]) were examined in a collection of Campylobacter jejuni and C. coli isolates. The three copies of the Campy...

  2. Mutational analysis of the L1 binding site of 23S rRNA in Escherichia coli.

    PubMed Central

    Said, B; Cole, J R; Nomura, M

    1988-01-01

    The L11 ribosomal protein operon of Escherichia coli contains the genes for L11 and L1 and is feedback regulated by the translational repressor L1. Both the L1 binding site on 23S rRNA and the L1 repressor target site on L11 operon mRNA share similar proposed secondary structures and contain some primary sequence identity. Several site-directed mutations in the binding region of 23S rRNA were constructed and their effects on binding were examined. For in vitro analysis, a filter binding method was used. For in vivo analysis, a conditional expression system was used to overproduce a 23S rRNA fragment containing the L1 binding region, which leads to specific derepression of the synthesis of L11 and L1. Changes in the shared region of the 23S rRNA L1 binding site produced effects on L1 binding similar to those found previously in analysis of corresponding changes in the L11 operon mRNA target site. The results support the hypothesis that r-protein L1 interacts with both 23S rRNA and L11 operon mRNA by recognizing similar features on both RNAs. Images PMID:3060846

  3. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum.

    PubMed

    Li, Bei-Bei; Shen, Jian-Zhong; Cao, Xing-Yuan; Wang, Yang; Dai, Lei; Huang, Si-Yang; Wu, Cong-Ming

    2010-07-01

    Mycoplasma gallisepticum is a major etiological agent of chronic respiratory disease (CRD) in chickens and sinusitis in turkeys. The pleuromutilin antibiotics tiamulin and valnemulin are currently used in the treatment of M. gallisepticum infection. We studied the in vitro development of pleuromutilin resistance in M. gallisepticum and investigated the molecular mechanisms involved in this process. Pleuromutilin-resistant mutants were selected by serial passages of M. gallisepticum strains PG31 and S6 in broth medium containing subinhibitory concentrations of tiamulin or valnemulin. A portion of the gene encoding 23S rRNA gene (domain V) and the gene encoding ribosome protein L3 were amplified and sequenced. No mutation could be detected in ribosome protein L3. Mutations were found at nucleotide positions 2058, 2059, 2061, 2447 and 2503 of 23S rRNA gene (Escherichia coli numbering). Although a single mutation could cause elevation of tiamulin and valnemulin MICs, combinations of two or three mutations were necessary to produce high-level resistance. All the mutants were cross-resistant to lincomycin, chloramphenicol and florfenicol. Mutants with the A2058G or the A2059G mutation exhibited cross-resistance to macrolide antibiotics erythromycin, tilmicosin and tylosin. PMID:20487023

  4. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    PubMed

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected. PMID:27100771

  5. Mutations in 23S rRNA and Ribosomal Protein L4 Account for Resistance in Pneumococcal Strains Selected In Vitro by Macrolide Passage

    PubMed Central

    Tait-Kamradt, A.; Davies, T.; Cronan, M.; Jacobs, M. R.; Appelbaum, P. C.; Sutcliffe, J.

    2000-01-01

    The mechanisms responsible for macrolide resistance in Streptococcus pneumoniae mutants, selected from susceptible strains by serial passage in azithromycin, were investigated. These mutants were resistant to 14- and 15-membered macrolides, but resistance could not be explained by any clinically relevant resistance determinant [mef(A), erm(A), erm(B), erm(C), erm(TR), msr(A), mph(A), mph(B), mph(C), ere(A), ere(B)]. An investigation into the sequences of 23S rRNAs in the mutant and parental strains revealed individual changes of C2611A, C2611G, A2058G, and A2059G (Escherichia coli numbering) in four mutants. Mutations at these residues in domain V of 23S rRNA have been noted to confer erythromycin resistance in other species. Not all four 23S rRNA alleles have to contain the mutation to confer resistance. Some of the mutations also confer coresistance to streptogramin B (C2611A, C2611G, and A2058G), 16-membered macrolides (all changes), and clindamycin (A2058G and A2059G). Interestingly, none of these mutations confer high-level resistance to telithromycin (HMR-3647). Further, two of the mutants which had no changes in their 23S rRNA sequences had changes in a highly conserved stretch of amino acids (63KPWRQKGTGRAR74) in ribosomal protein L4. One mutant contained a single amino acid change (G69C), while the other mutant had a 6-base insert, resulting in two amino acids (S and Q) being inserted between amino acids Q67 and K68. To our knowledge, this is the first description of mutations in 23S rRNA genes or ribosomal proteins in macrolide-resistant S. pneumoniae strains. PMID:10898684

  6. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes.

    PubMed

    Chisholm, Stephanie A; Dave, Jayshree; Ison, Catherine A

    2010-09-01

    High-level azithromycin resistance (AZM-HR), defined as a MIC of > or = 256 mg/liter, emerged in Neisseria gonorrhoeae in the United Kingdom in 2004. To determine the mechanism of this novel phenotype, isolates from the United Kingdom that were AZM-HR (n, 19), moderately AZM resistant (MICs, 2 to 8 mg/liter) (n, 26), or sensitive (MICs, 0.12 to 0.25 mg/liter) (n, 4) were screened for methylase (erm) genes and for mutations in the mtrR promoter region, associated with efflux pump upregulation. All AZM-resistant isolates and 12 sensitive isolates were screened for mutations in domain V of each 23S rRNA allele. All AZM-HR isolates contained the A2059G mutation (Escherichia coli numbering) in three (3 isolates) or four (16 isolates) 23S rRNA alleles. Most (22/26) moderately AZM resistant isolates contained the C2611T mutation in at least 3/4 alleles. The remainder contained four wild-type alleles, as did 8/12 sensitive isolates, while one allele was mutated in the remaining four sensitive isolates. Serial passage of AZM-sensitive colonies on an erythromycin-containing medium selected AZM-HR if the parent strain already contained mutation A2059G in one 23S rRNA allele. The resultant AZM-HR strains contained four mutated alleles. Eight isolates (five moderately AZM resistant and three AZM-HR) contained mutations in the mtrR promoter. No methylase genes were detected. This is the first evidence that AZM-HR in gonococci may result from a single point mutation (A2059G) in the peptidyltransferase loop in domain V of the 23S rRNA gene. Mutation of a single allele is insufficient to confer AZM-HR, but AZM-HR can develop under selection pressure. The description of a novel resistance mechanism will aid in screening for the AZM-HR phenotype. PMID:20585125

  7. 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni.

    PubMed

    Hao, Haihong; Dai, Menghong; Wang, Yulian; Peng, Dapeng; Liu, Zhenli; Yuan, Zonghui

    2009-12-01

    To examine the development of macrolide resistance in Campylobacter jejuni and assess the fitness of the macrolide-resistant mutants, two macrolide-susceptible C. jejuni strains, American Type Culture Collection (ATCC) 33291 and H1, from different geographic areas were exposed to tylosin in vitro. Multiple mutant strains were obtained from the selection. Most of the high-level macrolide-resistant strains derived from the selection exhibited the A2074C transversion in all three copies of 23S rRNA and displayed strong stability in the absence of antibiotic selection pressure. The competition experiments demonstrated that the strains containing the A2074C transversion imposed a fitness cost in competition mixtures. In addition, the fitness cost of the mutation was not ameliorated after approximately 500 generations of evolution under laboratory conditions. These findings indicate that the A2074C transversion in C. jejuni is not only correlated with stable and high-level macrolide resistance but also associated with a fitness cost. PMID:19857128

  8. Multicentre surveillance of prevalence of the 23S rRNA A2058G and A2059G point mutations and molecular subtypes of Treponema pallidum in Taiwan, 2009-2013.

    PubMed

    Wu, B-R; Yang, C-J; Tsai, M-S; Lee, K-Y; Lee, N-Y; Huang, W-C; Wu, H; Lee, C-H; Chen, T-C; Ko, W-C; Lin, H-H; Lu, P-L; Chen, Y-H; Liu, W-C; Yang, S-P; Wu, P-Y; Su, Y-C; Hung, C-C; Chang, S-Y

    2014-08-01

    Resistance mutations A2058G and A2059G, within the 23S rRNA gene of Treponema pallidum, have been reported to cause treatment failures in patients receiving azithromycin for syphilis. Genotyping of T. pallidum strains sequentially isolated from patients with recurrent syphilis is rarely performed. From September 2009 to August 2013, we collected 658 clinical specimens from 375 patients who presented with syphilis for genotyping to examine the number of 60-bp repeats in the acidic repeat protein (arp) gene, T. pallidum repeat (tpr) polymorphism, and tp0548 gene, and to detect A2058G and A2059G point mutations by restriction fragment length polymorphism. Treponemal DNA was identified in 45.2% (n = 298) of the specimens that were collected from 216 (57.6%) patients; 268 (40.7%) specimens tested positive for the 23S rRNA gene, and were examined for macrolide resistance. Two isolates (0.7%) harboured the A2058G mutation, and no A2059G mutation was identified. A total of 14 strains of T. pallidum were identified, with 14f/f (57.5%) and 14b/c (10.0%) being the two predominant strains. Forty patients who presented with recurrent episodes of syphilis had T. pallidum DNA identified from the initial and subsequent episodes, with five cases showing strain discrepancies. One patient had two strains identified from different clinical specimens collected in the same episode. Our findings show that 14f/f is the most common T. pallidum strain in Taiwan, where the prevalence of T. pallidum strains that show A2058G or A2059G mutation remains low. Different genotypes of T. pallidum can be identified in patients with recurrent episodes of syphilis. PMID:24438059

  9. Detection of the A2058G and A2059G 23S rRNA Gene Point Mutations Associated with Azithromycin Resistance in Treponema pallidum by Use of a TaqMan Real-Time Multiplex PCR Assay

    PubMed Central

    Chi, Kai-Hua; Pillay, Allan; Nachamkin, Eli; Su, John R.; Ballard, Ronald C.

    2013-01-01

    Macrolide treatment failure in syphilis patients is associated with a single point mutation (either A2058G or A2059G) in both copies of the 23S rRNA gene in Treponema pallidum strains. The conventional method for the detection of both point mutations uses nested PCR combined with restriction enzyme digestions, which is laborious and time-consuming. We initially developed a TaqMan-based real-time duplex PCR assay for detection of the A2058G mutation, and upon discovery of the A2059G mutation, we modified the assay into a triplex format to simultaneously detect both mutations. The point mutations detected by the real-time triplex PCR were confirmed by pyrosequencing. A total of 129 specimens PCR positive for T. pallidum that were obtained from an azithromycin resistance surveillance study conducted in the United States were analyzed. Sixty-six (51.2%) of the 129 samples with the A2058G mutation were identified by both real-time PCR assays. Of the remaining 63 samples that were identified as having a macrolide-susceptible genotype by the duplex PCR assay, 17 (27%) were found to contain the A2059G mutation by the triplex PCR. The proportions of macrolide-susceptible versus -resistant genotypes harboring either the A2058G or the A2059G mutation among the T. pallidum strains were 35.6, 51.2, and 13.2%, respectively. None of the T. pallidum strains examined had both point mutations. The TaqMan-based real-time triplex PCR assay offers an alternative to conventional nested PCR and restriction fragment length polymorphism analyses for the rapid detection of both point mutations associated with macrolide resistance in T. pallidum. PMID:23284026

  10. High frequency of the 23S rRNA A2058G mutation of Treponema pallidum in Shanghai is associated with a current strategy for the treatment of syphilis.

    PubMed

    Lu, Haikong; Li, Kang; Gong, Weimin; Yan, Limeng; Gu, Xin; Chai, Ze; Guan, Zhifang; Zhou, Pingyu

    2015-02-01

    The preferred drugs for the treatment of syphilis, benzathine and procaine penicillin, have not been available in Shanghai for many years, and currently, the incidence of syphilis is increasing. Alternative antibiotics for patients with syphilis during the benzathine and procaine penicillin shortage include macrolides. The failure of macrolide treatment in syphilis patients has been reported in Shanghai, but the reason for this treatment failure remains unclear. We used polymerase chain reaction technology to detect a 23S rRNA A2058G mutation in Treponema pallidum in 109 specimens from syphilis patients. The use of azithromycin/erythromycin in the syphilis patients and the physicians' prescription habits were also assessed based on two questionnaires regarding the use of macrolides. A total of 104 specimens (95.4%) were positive for the A2058G mutation in both copies of the 23S rRNA gene, indicating macrolide resistance. A questionnaire provided to 122 dermatologists showed that during the penicillin shortage, they prescribed erythromycin and azithromycin for 8.24±13.95% and 3.21±6.37% of their patients, respectively, and in the case of penicillin allergy, erythromycin and azithromycin were prescribed 15.24±22.89% and 7.23±16.60% of the time, respectively. A second questionnaire provided to the syphilis patients showed that 150 (33.7%), 106 (23.8%) and 34 (7.6%) individuals had used azithromycin, erythromycin or both, respectively, although the majority did not use the drugs for syphilis treatment. Our findings suggest that macrolide resistance in Treponema pallidum is widespread in Shanghai. More than half of the syphilis patients had a history of macrolide use for other treatment purposes, which may have led to the high prevalence of macrolide resistance. Physicians in China are advised to not use azithromycin for early syphilis. PMID:26038763

  11. High frequency of the 23S rRNA A2058G mutation of Treponema pallidum in Shanghai is associated with a current strategy for the treatment of syphilis

    PubMed Central

    Lu, Haikong; Li, Kang; Gong, Weimin; Yan, Limeng; Gu, Xin; Chai, Ze; Guan, Zhifang; Zhou, Pingyu

    2015-01-01

    The preferred drugs for the treatment of syphilis, benzathine and procaine penicillin, have not been available in Shanghai for many years, and currently, the incidence of syphilis is increasing. Alternative antibiotics for patients with syphilis during the benzathine and procaine penicillin shortage include macrolides. The failure of macrolide treatment in syphilis patients has been reported in Shanghai, but the reason for this treatment failure remains unclear. We used polymerase chain reaction technology to detect a 23S rRNA A2058G mutation in Treponema pallidum in 109 specimens from syphilis patients. The use of azithromycin/erythromycin in the syphilis patients and the physicians' prescription habits were also assessed based on two questionnaires regarding the use of macrolides. A total of 104 specimens (95.4%) were positive for the A2058G mutation in both copies of the 23S rRNA gene, indicating macrolide resistance. A questionnaire provided to 122 dermatologists showed that during the penicillin shortage, they prescribed erythromycin and azithromycin for 8.24±13.95% and 3.21±6.37% of their patients, respectively, and in the case of penicillin allergy, erythromycin and azithromycin were prescribed 15.24±22.89% and 7.23±16.60% of the time, respectively. A second questionnaire provided to the syphilis patients showed that 150 (33.7%), 106 (23.8%) and 34 (7.6%) individuals had used azithromycin, erythromycin or both, respectively, although the majority did not use the drugs for syphilis treatment. Our findings suggest that macrolide resistance in Treponema pallidum is widespread in Shanghai. More than half of the syphilis patients had a history of macrolide use for other treatment purposes, which may have led to the high prevalence of macrolide resistance. Physicians in China are advised to not use azithromycin for early syphilis. PMID:26038763

  12. New Site of Modification of 23S rRNA Associated with Clarithromycin Resistance of Helicobacter pylori Clinical Isolates

    PubMed Central

    Fontana, Carla; Favaro, Marco; Minelli, Silvia; Criscuolo, Anna Angela; Pietroiusti, Antonio; Galante, Alberto; Favalli, Cartesio

    2002-01-01

    Resistance of Helicobacter pylori to clarithromycin occurs with a prevalence ranging from 0 to 15%. This has an important clinical impact on dual and triple therapies, in which clarithromycin seems to be the better choice to achieve H. pylori eradication. In order to evaluate the possibility of new mechanisms of clarithromycin resistance, a PCR assay that amplified a portion of 23S rRNA from H. pylori isolates was used. Gastric tissue biopsy specimens from 230 consecutive patients were cultured for H. pylori isolation. Eighty-six gastric biopsy specimens yielded H. pylori-positive results, and among these 12 isolates were clarithromycin resistant. The latter were studied to detect mutations in the 23S rRNA gene. Sequence analysis of the 1,143-bp PCR product (portion of the 23S rRNA gene) did not reveal mutation such as that described at position 2142 to 2143. On the contrary, our findings show, for seven isolates, a T-to-C transition at position 2717. This mutation conferred a low level of resistance, equivalent to the MIC for the isolates, selected using the E-test as well as using the agar dilution method: 1 μg/ml. Moreover, T2717C transition is located in a highly conserved region of the 23S RNA associated with functional sites: domain VI. This fact has a strong effect on the secondary structure of the 23S RNA and on its interaction with macrolide. Mutation at position 2717 also generated an HhaI restriction site; therefore, restriction analysis of the PCR product also permits a rapid detection of resistant isolates. PMID:12435674

  13. Interactions between 23S rRNA and tRNA in the ribosomal E site.

    PubMed Central

    Bocchetta, M; Xiong, L; Shah, S; Mankin, A S

    2001-01-01

    Interactions between tRNA or its analogs and 23S rRNA in the large ribosomal subunit were analyzed by RNA footprinting and by modification-interference selection. In the E site, tRNA protected bases G2112, A2392, and C2394 of 23S rRNA. Truncated tRNA, lacking the anticodon stem-loop, protected A2392 and C2394, but not G2112, and tRNA derivatives with a shortened 3' end protected only G2112, but not A2392 or C2394. Modification interference revealed C2394 as the only accessible nucleotide in 23S rRNA whose modification interferes with binding of tRNA in the large ribosomal subunit E site. The results suggest a direct contact between A76 of tRNA A76 and C2394 of 23S rRNA. Protections at G2112 may reflect interaction of this 23S rRNA region with the tRNA central fold. PMID:11214181

  14. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A.

    PubMed Central

    Rosendahl, G; Douthwaite, S

    1994-01-01

    The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A. Images PMID:8127673

  15. Roles of helix H69 of 23S rRNA in translation initiation

    PubMed Central

    Liu, Qi; Fredrick, Kurt

    2015-01-01

    Initiation of translation involves the assembly of a ribosome complex with initiator tRNA bound to the peptidyl site and paired to the start codon of the mRNA. In bacteria, this process is kinetically controlled by three initiation factors—IF1, IF2, and IF3. Here, we show that deletion of helix H69 (∆H69) of 23S rRNA allows rapid 50S docking without concomitant IF3 release and virtually eliminates the dependence of subunit joining on start codon identity. Despite this, overall accuracy of start codon selection, based on rates of formation of elongation-competent 70S ribosomes, is largely uncompromised in the absence of H69. Thus, the fidelity function of IF3 stems primarily from its interplay with initiator tRNA rather than its anti-subunit association activity. While retaining fidelity, ∆H69 ribosomes exhibit much slower rates of overall initiation, due to the delay in IF3 release and impedance of an IF3-independent step, presumably initiator tRNA positioning. These findings clarify the roles of H69 and IF3 in the mechanism of translation initiation and explain the dominant lethal phenotype of the ∆H69 mutation. PMID:26324939

  16. Sequences implicated in the processing of Thermus thermophilus HB8 23S rRNA.

    PubMed Central

    Hartmann, R K; Ulbrich, N; Erdmann, V A

    1987-01-01

    Nuclease S1 mapping analyses were performed in order to detect processing intermediates of pre-23S rRNA from Thermus thermophilus HB8. Two processing sites were identified downstream the start of transcription and several consecutive cleavage sites are associated with the mature 5'-end. In the 3'-flanking region one "primary" site and two cleavages which generate short-living intermediates were detected. A series of successive intermediates in the region of the mature 3'-end implies the existence of--in analogy to Escherichia coli--a 3'-exonucleolytic activity. The data were correlated with potential secondary structures within the pre-23S rRNA, which exhibit various repeated sequence elements. M13 sequencing data support the existence of one secondary structural element associated with the strong "primary" cleavage site in the 3'-flanking region. In T. thermophilus we can exclude the formation of an extended base-paired and precursor-specific stem enclosing the 23S rRNA which is inferred to mediate recognition by RNase III in E. coli. Images PMID:3313273

  17. Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates

    PubMed Central

    JIANG, YONG; ZHU, HUI; YANG, LI-NA; LIU, YUAN-JUN; HOU, SHU-PING; QI, MAN-LI; LIU, QUAN-ZHONG

    2015-01-01

    The aim of the present study was to determine the in vitro susceptibility of wild-type and mutant clinical isolates of Chlamydia (C.) trachomatis strains to erythromycin, azithromycin and josamycin, and to identify the resistance-conferring 23S ribosomal (r)RNA mutations in the isolates. The wild-type resistant isolates were defined as those with minimum inhibitory concentration values above the tissue concentration of the antibiotic in the urogenital system. Furthermore, all resistant C. trachomatis isolates were exposed to sub-inhibitory concentrations of macrolides, and 13 resistant mutants were selected following serial passages. Among the 8 wild-type isolates that were resistant to erythromycin, 3 isolates had a mutation at T2611C in the 23S rRNA gene while the others did not show any 23S rRNA mutations. The selected mutant isolates showed a 4- to 16-fold reduction in in vitro sensitivities. With regard to the mutant strains, the T2611C mutation was found in 10 isolates, A2057G mutation in 6 isolates, and A2059G mutation in 1 isolate. Thus, the macrolide-resistant isolates of the wild-type strain had different mutations from those selected by exposure to sub-inhibitory concentrations of macrolides. Also, since 23S rRNA mutations were not identified in certain isolates, it was considered that other molecular mechanisms may also be responsible for the macrolide resistance of C. trachomatis. PMID:26622462

  18. Methylation of 23S rRNA Nucleotide G748 by RlmAII Methyltransferase Renders Streptococcus pneumoniae Telithromycin Susceptible

    PubMed Central

    Sato, Yoshiharu; Shoji, Tatsuma; Yamamoto, Tomoko

    2013-01-01

    Several posttranscriptional modifications of bacterial rRNAs are important in determining antibiotic resistance or sensitivity. In all Gram-positive bacteria, dimethylation of nucleotide A2058, located in domain V of 23S rRNA, by the dimethyltransferase Erm(B) results in low susceptibility and resistance to telithromycin (TEL). However, this is insufficient to produce high-level resistance to TEL in Streptococcus pneumoniae. Inactivation of the methyltransferase RlmAII, which methylates the N-1 position of nucleotide G748, located in hairpin 35 of domain II of 23S rRNA, results in increased resistance to TEL in erm(B)-carrying S. pneumoniae. Sixteen TEL-resistant mutants (MICs, 16 to 32 μg/ml) were obtained from a clinically isolated S. pneumoniae strain showing low TEL susceptibility (MIC, 2 μg/ml), with mutation resulting in constitutive dimethylation of A2058 because of nucleotide differences in the regulatory region of erm(B) mRNA. Primer extension analysis showed that the degree of methylation at G748 in all TEL-resistant mutants was significantly reduced by a mutation in the gene encoding RlmAII to create a stop codon or change an amino acid residue. Furthermore, RNA footprinting with dimethyl sulfate and a molecular modeling study suggested that methylation of G748 may contribute to the stable interaction of TEL with domain II of 23S rRNA, even after dimethylation of A2058 by Erm(B). This novel finding shows that methylation of G748 by RlmAII renders S. pneumoniae TEL susceptible. PMID:23716046

  19. Ribosome origins: The relative age of 23S rRNA Domains

    NASA Astrophysics Data System (ADS)

    Hury, James; Nagaswamy, Uma; Larios-Sanz, Maia; Fox, George E.

    2006-08-01

    The modern ribosome and its component RNAs are quite large and it is likely that at an earlier time they were much smaller. Hence, not all regions of the modern ribosomal RNAs (rRNA) are likely to be equally old. In the work described here, it is hypothesized that the oldest regions of the RNAs will usually be highly integrated into the machinery. When this is the case, an examination of the interconnectivity between local RNA regions can provide insight to the relative age of the various regions. Herein, we describe an analysis of all known long-range RNA/RNA interactions within the 23S rRNA and between the 23S rRNA and the 16S rRNA in order to assess the interconnectivity between the usual Domains as defined by secondary structure. Domain V, which contains the peptidyl transferase center is centrally located, extensively connected, and therefore likely to be the oldest region. Domain IV and Domain II are extensively interconnected with both themselves and Domain V. A portion of Domain IV is also extensively connected with the 30S subunit and hence Domain IV may be older than Domain II. These results are consistent with other evidence relating to the relative age of RNA regions. Although the relative time of addition of the GTPase center can not be reliably deduced it is pointed out that the development of this may have dramatically affected the progenotes that preceded the last common ancestor.

  20. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical

  1. Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR.

    PubMed

    Wang, Dan; Yamahara, Kevan M; Cao, Yiping; Boehm, Alexandria B

    2016-04-01

    We evaluated the ability of chip-based digital PCR (dPCR) to quantify enterococci, the fecal indicator recommended by the United States Environmental Protection Agency (USEPA) for water-quality monitoring. dPCR uses Poisson statistics to estimate the number of DNA fragments in a sample with a specific sequence. Underestimation may occur when a gene is redundantly encoded in the genome and multiple copies of that gene are on one DNA fragment. When genomic DNA (gDNA) was extracted using two commercial DNA extraction kits, we confirmed that dPCR could discern individual copies of the redundant 23s rRNA gene in the enterococcal genome. dPCR quantification was accurate when compared to the nominal concentration inferred from fluorometer measurements (linear regression slope = 0.98, intercept = 0.03, R(2) = 0.99, and p value <0.0001). dPCR quantification was also consistent with quantitative PCR (qPCR) measurements as well as cell counts for BioBall reference standard and 24 environmental water samples. qPCR and dPCR quantification of enterococci in the 24 environmental samples were significantly correlated (linear regression slope =1.08, R(2) of 0.96, and p value <0.0001); the group mean of the qPCR measurements was 0.19 log units higher than that of the dPCR measurements. At environmentally relevant concentrations, dPCR quantification was more precise (i.e., had narrower 95% confidence intervals than qPCR quantification). We observed that humic acid caused a similar level of inhibition in both dPCR and qPCR, but calcium inhibited dPCR to a lesser degree than qPCR. Inhibition of dPCR was partially relieved when the number of thermal cycles was increased. Based on these results, we conclude that dPCR is a viable option for enumerating enterococci in ambient water. PMID:26903207

  2. A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation.

    PubMed Central

    Leviev, I G; Rodriguez-Fonseca, C; Phan, H; Garrett, R A; Heilek, G; Noller, H F; Mankin, A S

    1994-01-01

    The binding site and probable site of action have been determined for the universal antibiotic amicetin which inhibits peptide bond formation. Evidence from in vivo mutants, site-directed mutations and chemical footprinting all implicate a highly conserved motif in the secondary structure of the 23S-like rRNA close to the central circle of domain V. We infer that this motif lies at, or close to, the catalytic site in the peptidyl transfer centre. The binding site of amicetin is the first of a group of functionally related hexose-cytosine inhibitors to be localized on the ribosome. Images PMID:8157007

  3. Case of localized recombination in 23S rRNA genes from divergent bradyrhizobium lineages associated with neotropical legumes.

    PubMed

    Parker, M A

    2001-05-01

    Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5' portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5' 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii. PMID:11319084

  4. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

    PubMed

    Yang, Rui; Cruz-Vera, Luis R; Yanofsky, Charles

    2009-06-01

    Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are inhibited are hydrolysis of TnaC-tRNA(Pro) by release factor 2 and peptidyl transfer of TnaC of TnaC-tRNA(Pro) to puromycin. These events are normally performed in the ribosomal peptidyl transferase center. In the present study, changes of 23S rRNA nucleotides in the 2585 region of the peptidyl transferase center, G2583A and U2584C, were observed to reduce maximum induction of tna operon expression by tryptophan in vivo without affecting the concentration of tryptophan necessary to obtain 50% induction. The growth rate of strains with ribosomes with either of these changes was not altered appreciably. In vitro analyses with mutant ribosomes with these changes showed that tryptophan was not as efficient in protecting TnaC-tRNA(Pro) from puromycin action as wild-type ribosomes. However, added tryptophan did prevent sparsomycin action as it normally does with wild-type ribosomes. These findings suggest that these two mutational changes act by reducing the ability of ribosome-bound tryptophan to inhibit peptidyl transferase activity rather than by reducing the ability of the ribosome to bind tryptophan. Thus, the present study identifies specific nucleotides within the ribosomal peptidyl transferase center that appear to be essential for effective tryptophan induction of tna operon expression. PMID:19329641

  5. Antibiotic interactions at the GTPase-associated centre within Escherichia coli 23S rRNA.

    PubMed Central

    Egebjerg, J; Douthwaite, S; Garrett, R A

    1989-01-01

    A comprehensive range of chemical reagents and ribonucleases was employed to investigate the interaction of the antibiotics thiostrepton and micrococcin with the ribosomal protein L11-23S RNA complex and with the 50S subunit. Both antibiotics block processes associated with the ribosomal A-site but differ in their effects on GTP hydrolysis, which is inhibited by thiostrepton and stimulated by micrococcin. The interaction sites of both drugs were shown to occur within the nucleotide sequences A1067-A1098 within the protein L11 binding site on 23S RNA. This region of the ribosome structure is involved in elongation factor-G-dependent GTP hydrolysis and in the stringent response. No effects of drug binding were detected elsewhere in the 23S RNA. In general, the two drugs afforded 23S RNA similar protection from the chemical and nuclease probes in accord with their similar modes of action. One important exception, however, occurred at nucleotide A1067 within a terminal loop where thiostrepton protected the N-1 position while micrococcin rendered it more reactive. This difference correlates with the opposite effects of the two antibiotics on GTPase activity. Images PMID:2470587

  6. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    PubMed

    Wang, Shuai; Bai, Ge; Wang, Shu; Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-05-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  7. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  8. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics.

    PubMed

    Dewhirst, Floyd E; Shen, Zeli; Scimeca, Michael S; Stokes, Lauren N; Boumenna, Tahani; Chen, Tsute; Paster, Bruce J; Fox, James G

    2005-09-01

    Analysis of 16S rRNA gene sequences has become the primary method for determining prokaryotic phylogeny. Phylogeny is currently the basis for prokaryotic systematics. Therefore, the validity of 16S rRNA gene-based phylogenetic analyses is of fundamental importance for prokaryotic systematics. Discrepancies between 16S rRNA gene analyses and DNA-DNA hybridization and phenotypic analyses have been noted in the genus Helicobacter. To clarify these discrepancies, we sequenced the 23S rRNA genes for 55 helicobacter strains representing 41 taxa (>2,700 bases per sequence). Phylogenetic-tree construction using neighbor-joining, parsimony, and maximum likelihood methods for 23S rRNA gene sequence data yielded stable trees which were consistent with other phenotypic and genotypic methods. The 16S rRNA gene sequence-derived trees were discordant with the 23S rRNA gene trees and other data. Discrepant 16S rRNA gene sequence data for the helicobacters are consistent with the horizontal transfer of 16S rRNA gene fragments and the creation of mosaic molecules with loss of phylogenetic information. These results suggest that taxonomic decisions must be supported by other phylogenetically informative macromolecules, such as the 23S rRNA gene, when 16S rRNA gene-derived phylogeny is discordant with other credible phenotypic and genotypic methods. This study found Wolinella succinogenes to branch with the unsheathed-flagellum cluster of helicobacters by 23S rRNA gene analyses and whole-genome comparisons. This study also found intervening sequences (IVSs) in the 23S rRNA genes of strains of 12 Helicobacter species. IVSs were found in helices 10, 25, and 45, as well as between helices 31' and 27'. Simultaneous insertion of IVSs at three sites was found in H. mesocricetorum. PMID:16109952

  9. 16S–23S rRNA Gene Intergenic Spacer Region Variability Helps Resolve Closely Related Sphingomonads

    PubMed Central

    Tokajian, Sima; Issa, Nahla; Salloum, Tamara; Ibrahim, Joe; Farah, Maya

    2016-01-01

    Sphingomonads comprise a physiologically versatile group many of which appear to be adapted to oligotrophic environments, but several also had features in their genomes indicative of host associations. In this study, the extent variability of the 16S–23S rDNA intergenic spacer (ITS) sequences of 14 ATCC reference sphingomonad strains and 23 isolates recovered from drinking water was investigated through PCR amplification and sequencing. Sequencing analysis of the 16S–23S rRNA gene ITS region revealed that the ITS sizes for all studied isolates varied between 415 and 849 bp, while their G+C content was 42.2–57.9 mol%. Five distinct ITS types were identified: ITSnone (without tRNA genes), ITSAla(TGC), ITSAla(TGC)+Ile(GAT), ITSIle(GAT)+Ala(TGC), and ITS Ile(GAT)+Pseudo. All of the identified tRNAAla(TGC) molecules consisted of 73 bases, and all of the tRNAIle(GAT) molecules consisted of 74 bases. We also detected striking variability in the size of the ITS region among the various examined isolates. Highest variability was detected within the ITS-2. The importance of this study is that this is the first comparison of the 16S–23S rDNA ITS sequence similarities and tRNA genes from sphingomonads. Collectively the data obtained in this study revealed the heterogeneity and extent of variability within the ITS region compared to the 16S rRNA gene within closely related isolates. Sequence and length polymorphisms within the ITS region along with the ITS types (tRNA-containing or lacking and the type of tRNA) and ITS-2 size and sequence similarities allowed us to overcome the limitation we previously encountered in resolving closely related isolates based on the 16S rRNA gene sequence. PMID:26904019

  10. Discrimination among thermophilic Campylobacter species by polymerase chain reaction amplification of 23S rRNA gene fragments.

    PubMed Central

    Eyers, M; Chapelle, S; Van Camp, G; Goossens, H; De Wachter, R

    1993-01-01

    By comparing nucleic acid sequences determined for one of the most variable areas of 23S rRNA genes of 23 Campylobacter strains, we were able to identify regions specific for thermophilic Campylobacter strains. Oligonucleotide primers corresponding to these unique regions were synthesized and used in the polymerase chain reaction. One primer pair selectively detected all thermophilic Campylobacter species, while four other primer pairs allowed discrimination among the thermophilic species Campylobacter coli, Campylobacter jejuni subsp. jejuni, Campylobacter lari, and Campylobacter upsaliensis. All primer sets were tested successfully on a large number of clinical isolates. Images PMID:7508460

  11. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly.

    PubMed

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-08-25

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2'-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2'-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  12. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly

    PubMed Central

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-01-01

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2′-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2′-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  13. Decreased Susceptibility to Macrolide-Lincosamide in Mycoplasma synoviae Is Associated with Mutations in 23S Ribosomal RNA.

    PubMed

    Lysnyansky, Inna; Gerchman, Irena; Flaminio, Barbara; Catania, Salvatore

    2015-12-01

    The mechanism responsible for acquired decreased susceptibility to macrolides (14-membered erythromycin [Ery], 16-membered tylosin [Ty] and tilmicosin [Tm]) and to lincosamides (lincomycin [Ln]) was investigated in Mycoplasma synoviae, a pathogen that causes respiratory infections and synovitis in chicken and turkey. Sequence analysis of domains II and V of the two 23S rRNA alleles and ribosomal proteins L4 and L22 was performed on 49 M. synoviae isolates, M. synoviae type strain WVU1853, and reference strain FMT showing minimal inhibitory concentrations (MICs) to Ty (≤ 0.015 to 2 μg/ml), Tm (0.03 to ≥ 8 μg/ml), and Ln (0.125 to 8 μg/ml); MICs to Ery ranged from 32 to ≥ 128 μg/ml. Our results showed that the nucleotide substitution G748A (Escherichia coli numbering) in domain II of one or both 23S rRNA alleles may account for a slight increase in MICs to Ty and Tm (up to 0.5 and 2 μg/ml, respectively). No correlation between the presence of G748A and decreased susceptibility to Ln was found. However, the presence of the point mutations A2058G or A2059G in domain V of one or both alleles of the 23S rRNAs was correlated with a more significant decrease in susceptibility to Ty (1-2 μg/ml), Tm (≥ 8 μg/ml), and Ln (≥ 8 μg/ml). All M. synoviae isolates tested had a G2057A transition in the 23S rRNAs consistent with previously described intrinsic resistance to Ery. Mutations G64E (one isolate) and Q90K/H (two isolates) were identified in the L4 and L22 proteins, respectively, but their impact on decreased susceptibility to macrolides and lincomycin was not clear. PMID:25734368

  14. Methylation sites in Escherichia coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA.

    PubMed

    Smith, J E; Cooperman, B S; Mitchell, P

    1992-11-10

    Four previously undetermined sites of methylation are mapped in Escherichia coli 23S rRNA employing a novel combination of methods. First, using a double-isotope approach, the total number of methyl groups in 23S rRNA was determined to be 14.9 +/- 1.6. Second, hybridization of methyl-labeled rRNA to complementary DNA restriction fragments and PAGE analysis were used to purify RNA-DNA heteroduplexes and to quantify methyl groups within specific 23S rRNA fragments. Third, the methylated nucleosides in these fragments were identified and quantified using HPLC, confirming the presence of 14 methylation sites in 23S rRNA, four more than had been previously identified. In contrast, a similar set of analyses conducted on 16S rRNA gave evidence for 10 sites of methylation, at all approximate locations consistent with published 16S methylated nucleoside identities and locations. Selected regions of the 23S rRNA molecule containing previously unidentified methylated nucleosides were released by site-directed cleavage with ribonuclease H and isolated by PAGE. Sites of methylation within the RNA fragments were determined by classical oligonucleotide analyses. The four newly identified methylation sites in 23S rRNA are m2G-1835, m5C-1962, m6A-2503, and m2G at one of positions 2445-2447. Together with previously described sites of modification, these new sites form a group that is clustered in a current model for the three-dimensional organization of the 23S rRNA in the 50S ribosomal subunit, at a locus congruent with nucleotides previously implicated in ribosomal function. PMID:1384701

  15. Clinical and Microbiological Aspects of Linezolid Resistance Mediated by the cfr Gene Encoding a 23S rRNA Methyltransferase▿

    PubMed Central

    Arias, Cesar A.; Vallejo, Martha; Reyes, Jinnethe; Panesso, Diana; Moreno, Jaime; Castañeda, Elizabeth; Villegas, Maria V.; Murray, Barbara E.; Quinn, John P.

    2008-01-01

    The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method. PMID:18174304

  16. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase.

    PubMed

    Arias, Cesar A; Vallejo, Martha; Reyes, Jinnethe; Panesso, Diana; Moreno, Jaime; Castañeda, Elizabeth; Villegas, Maria V; Murray, Barbara E; Quinn, John P

    2008-03-01

    The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method. PMID:18174304

  17. VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA.

    PubMed

    Winther, Kristoffer S; Brodersen, Ditlev E; Brown, Alistair K; Gerdes, Kenn

    2013-01-01

    The highly persistent and often lethal human pathogen, Mycobacterium tuberculosis contains at least 88 toxin-antitoxin genes. More than half of these encode VapC PIN domain endoribonucleases that inhibit cell growth by unknown mechanisms. Here we show that VapC20 of M. tuberculosis inhibits translation by cleavage of the Sarcin-Ricin loop (SRL) of 23S ribosomal RNA at the same position where Sarcin and other eukaryotic ribotoxins cleave. Toxin-inhibited cells can be rescued by the expression of the antitoxin, thereby raising the possibility that vapC20 contributes to the extreme persistence exhibited by M. tuberculosis. VapC20 cleavage is inhibited by mutations in the SRL that flank the cleavage site but not by changes elsewhere in the loop. Disruption of the SRL stem abolishes cleavage; however, further mutations that restore the SRL stem structure restore cleavage, revealing that the structure rather than the exact sequence of the SRL is important for this activity. PMID:24225902

  18. The sequence of Methanospirillum hungatei 23S rRNA confirms the specific relationship between the extreme halophiles and the Methanomicrobiales

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Ching, A.; Stetter, K. O.; Woese, C. R.

    1991-01-01

    We have determined the sequence of the 23S rRNA from the methanogenic archaeon Methanospirillum hungatei. This is the first such sequence from a member of the Methanomicrobiales. Moreover, it brings additional evidence to bear on the possible specific relationship between this particular group of methanogens and the extreme halophiles. Such evidence is critical in that several new (and relatively untested) methods of phylogenetic inference have lead to the controversial conclusion that the extreme halophiles are either not related to the archaea, or are only peripherally so. Analysis of the Methanospirillum hungatei 23S rRNA sequence shows the Methanomicrobiales are indeed a sister group of the extreme halophiles, further strengthening the conclusions reached from analysis of 16S rRNA sequences.

  19. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekova, legal representative, Natalia V.; Mirzabekov, deceased, Andrei D.

    2007-12-04

    The present invention relates to methods and compositions for using nucleotide sequence variations of 16S and 23S rRNA within the B. cereus group to discriminate a highly infectious bacterium B. anthracis from closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations and discriminate B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed samples, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  20. Functional Role of the Sarcin-Ricin Loop of the 23S rRNA in the Elongation Cycle of Protein Synthesis

    PubMed Central

    Shi, Xinying; Khade, Prashant K.; Sanbonmatsu, Karissa Y.; Joseph, Simpson

    2012-01-01

    The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S rRNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factors Tu and G (EF-Tu and EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation. PMID:22459262

  1. Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site.

    PubMed

    Schifano, Jason M; Edifor, Regina; Sharp, Jared D; Ouyang, Ming; Konkimalla, Arvind; Husson, Robert N; Woychik, Nancy A

    2013-05-21

    The Mycobacterium tuberculosis genome contains an unusually high number of toxin-antitoxin modules, some of which have been suggested to play a role in the establishment and maintenance of latent tuberculosis. Nine of these toxin-antitoxin loci belong to the mazEF family, encoding the intracellular toxin MazF and its antitoxin inhibitor MazE. Nearly every MazF ortholog recognizes a unique three- or five-base RNA sequence and cleaves mRNA. As a result, these toxins selectively target a subset of the transcriptome for degradation and are known as "mRNA interferases." Here we demonstrate that a MazF family member from M. tuberculosis, MazF-mt6, has an additional role--inhibiting translation through targeted cleavage of 23S rRNA in the evolutionarily conserved helix/loop 70. We first determined that MazF-mt6 cleaves mRNA at (5')UU↓CCU(3') sequences. We then discovered that MazF-mt6 also cleaves M. tuberculosis 23S rRNA at a single UUCCU in the ribosomal A site that contacts tRNA and ribosome recycling factor. To gain further mechanistic insight, we demonstrated that MazF-mt6-mediated cleavage of rRNA can inhibit protein synthesis in the absence of mRNA cleavage. Finally, consistent with the position of 23S rRNA cleavage, MazF-mt6 destabilized 50S-30S ribosomal subunit association. Collectively, these results show that MazF toxins do not universally act as mRNA interferases, because MazF-mt6 inhibits protein synthesis by cleaving 23S rRNA in the ribosome active center. PMID:23650345

  2. Magnesium ions mediate contacts between phosphoryl oxygens at positions 2122 and 2176 of the 23S rRNA and ribosomal protein L1.

    PubMed Central

    Drygin, D; Zimmermann, R A

    2000-01-01

    The complex of ribosomal protein L1 with 23S rRNA from Escherichia coli is of great interest because of the unique structural and functional aspects of this ribonucleoprotein domain. We have minimized the binding site for protein L1 on the 23S rRNA to nt 2120-2129, 2159-2162, and 2167-2178. This RNA fragment consists of two helices as well as an interconnecting loop of unknown structure. RNA molecules corresponding to the minimized L1 binding site, in which G, A, U, or C were individually replaced by their deoxyribo- (dN) or alpha-thio- (rNaS) analogs have been synthesized by T7 transcription in vitro and analyzed for their ability to bind protein L1. It has been demonstrated that the substitution of rNaS at position 2122 or 2176 decreases the affinity of the RNA for the protein in the presence of magnesium five- to tenfold, whereas the same changes have little effect on binding in the presence of manganese. This suggests that Rp oxygens in the phosphates preceding positions 2122 and 2176 are coordinated with Mg2+ and may participate in L1-23S rRNA interaction via magnesium bridges. We have also shown that this interaction is impaired by the presence of dC at position 2122 coupled with the presence of deoxyribonucleotide(s) at other positions in the RNA. This study demonstrates that the ribose-phosphate backbone of the helix encompassing nt 2120-2124/2174-2178 is intimately involved in the interaction of protein L1 with the 23S rRNA. In particular, we suggest that this helix is positioned in the cleft between the two domains of protein L1. PMID:11142372

  3. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils.

    PubMed

    Samant, Suvidha; Amann, Rudolf I; Hahn, Dittmar

    2014-05-01

    The 23S rRNA gene was evaluated as target for the development of Sybr Green-based quantitative PCR (qPCR) for the analysis of nitrogen-fixing members of the genus Frankia or subgroups of these in soil. A qPCR with a primer combination targeting all nitrogen-fixing frankiae (clusters 1, 2 and 3) resulted in numbers similar to those obtained with a previously developed qPCR using nifH gene sequences, both with respect to introduced and indigenous Frankia populations. Primer combinations more specifically targeting three subgroups of the Alnus host infection group (cluster 1) or members of the Elaeagnus host infection group (cluster 3) were specific for introduced strains of the target group, with numbers corresponding to those obtained by quantification of nitrogen-fixing frankiae with both the 23S rRNA and nifH genes as target. Method verification on indigenous Frankia populations in soils, i.e. in depth profiles from four sites at an Alnus glutinosa stand, revealed declining numbers in the depth profiles, with similar abundance of all nitrogen-fixing frankiae independent of 23S rRNA or nifH gene targets, and corresponding numbers of one group of frankiae of the Alnus host infection only, with no detections of frankiae representing the Elaeagnus, Casuarina, or a second subgroup of the Alnus host infection groups. PMID:24315016

  4. Comparative analysis of the genes encoding 23S-5S rRNA intergenic spacer regions of Lactobacillus casei-related strains.

    PubMed

    Chen, H; Lim, C K; Lee, Y K; Chan, Y N

    2000-03-01

    In this study, investigations into the 23S-5S rRNA intergenic spacer regions (ISRs) of the Lactobacillus casei group were performed. A 1.6 kb fragment, from Lactobacillus paracasei strain ATCC 27092, containing part of the 5S rRNA gene (60 bp), the 5S-23S spacer region (198 bp) and part of the 23S rRNA gene (1295 bp) was cloned and sequenced (GenBank no. AF098107). This fragment was used as a probe to determine the rRNA restriction fragment length polymorphism (RFLP) patterns of nine strains belonging to the Lactobacillus casei group, along with four other non-Lactobacillus casei lactobacilli species. A pair of PCR primers, 23-Fl and 5-Ru, was designed and used for PCR amplification of the 23S-5S rRNA ISRs of these strains. The ISR length and sequence polymorphisms provided additional information for the taxonomic study of the Lactobacillus casei group. The spacer-length polymorphism of Lactobacillus rhamnosus was distinct from those of the other strains and this observation is consistent with the classification of Lactobacillus rhamnosus proposed by Mori et al. For all Lactobacillus casei and Lactobacillus paracasei strains, two major bands (approx. 250 and 170 bp in size) were obtained except in the case of Lactobacillus paracasei subsp. tolerans strain NCIMB 9709T, which yielded only one amplified product (250 bp). The sequencing data of the PCR products of seven well-characterized Lactobacillus casei and Lactobacillus paracasei strains revealed the presence of a 76/80 bp insertion/deletion with some random, single-base substitutions between the longer and shorter spacers for each respective strain. A few base variations were also detected within different strains in this group although the overall sequence similarity was very high (95.9-99.5%). The rRNA RFLP and the spacer sequence of Lactobacillus casei type strain ATCC 393T exhibited unique identities in this cluster. On the other hand, Lactobacillus casei strain ATCC 334 showed a high level of similarity

  5. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  6. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOEpatents

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  7. Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera.

    PubMed

    Daffonchio, Daniele; Cherif, Ameur; Brusetti, Lorenzo; Rizzi, Aurora; Mora, Diego; Boudabous, Abdellatif; Borin, Sara

    2003-09-01

    The intergenic transcribed spacers (ITS) between the 16S and 23S rRNA genetic loci are frequently used in PCR fingerprinting to discriminate bacterial strains at the species and intraspecies levels. We investigated the molecular nature of polymorphisms in ITS-PCR fingerprinting of low-G+C-content spore-forming bacteria belonging to the genera Bacillus, Brevibacillus, Geobacillus, and Paenibacillus: We found that besides the polymorphisms in the homoduplex fragments amplified by PCR, heteroduplex products formed during PCR between amplicons from different ribosomal operons, with or without tRNA genes in the ITS, contribute to the interstrain variability in ITS-PCR fingerprinting patterns obtained in polyacrylamide-based gel matrices. The heteroduplex nature of the discriminating bands was demonstrated by fragment separation in denaturing polyacrylamide gels, by capillary electrophoresis, and by cloning, sequencing, and recombination of purified short and tRNA gene-containing long ITS. We also found that heteroduplex product formation is enhanced by increasing the number of PCR cycles. Homoduplex-heteroduplex polymorphisms (HHP) in a conserved region, such as the 16S and 23S rRNA gene ITS, allowed discrimination of closely related strains and species undistinguishable by other methods, indicating that ITS-HHP analysis is an easy and reproducible additional tool for strain typing. PMID:12957895

  8. The Mycoplasma gallisepticum 16S-23S rRNA intergenic spacer region sequence as a novel tool for epizootiological studies.

    PubMed

    Raviv, Ziv; Callison, S; Ferguson-Noel, N; Laibinis, V; Wooten, R; Kleven, S H

    2007-06-01

    Mycoplasma gallisepticum (MG) contains two sets of rRNA genes (5S, 16S and 23S) in its genome, but only one of the two is organized in an operon cluster and contains a unique 660-nucleotide intergenic spacer region (IGSR) between the 16S and the 23S rRNA genes. We designed a polymerase chain reaction (PCR) for the specific amplification of the complete MG IGSR segment. The MG IGSR PCR was tested on 18 avian mollicute species and was confirmed as MG specific. The reaction sensitivity was demonstrated by comparing it to the well-established MG mgc2 PCR. The MG IGSR sequence was found to be highly variable (discrimination [D] index of 0.950) among a variety of MG laboratory strains, vaccine strains, and field isolates. The sequencing of the MG IGSR appears to be a valuable single-locus sequence typing (SLST) tool for MG isolate differentiation in diagnostic cases and epizootiological studies. PMID:17626483

  9. 23S rRNA gene-based enterococci community signatures in Lake Pontchartrain, Louisiana, USA, following urban runoff inputs after Hurricane Katrina.

    PubMed

    Bae, Hee-Sung; Hou, Aixin

    2013-02-01

    Little is known about the impacts of fecal polluted urban runoff inputs on the structure of enterococci communities in estuarine waters. This study employed a 23S rRNA gene-based polymerase chain reaction (PCR) assay with newly designed genus-specific primers, Ent127F-Ent907R, to determine the possible impacts of Hurricane Katrina floodwaters via the 17th Street Canal discharge on the community structure of enterococci in Lake Pontchartrain. A total of 94 phylotypes were identified through the restriction fragment length polymorphism (RFLP) screening of 494 clones while only 8 phylotypes occurred among 88 cultivated isolates. Sequence analyses of representative phylotypes and their temporal and spatial distribution in the lake and the canal indicated the Katrina floodwater input introduced a large portion of Enterococcus flavescens, Enterococcus casseliflavus, and Enterococcus dispar into the lake; typical fecal groups Enterococcus faecium, Enterococcus durans, Enterococcus hirae, and Enterococcus mundtii were detected primarily in the floodwater-impacted waters. This study provides a global picture of enterococci in estuarine waters impacted by Hurricane Katrina-derived urban runoff. It also demonstrates the culture-independent PCR approach using 23S rRNA gene as a molecular marker could be a good alternative in ecological studies of enterococci in natural environments to overcome the limitation of conventional cultivation methods. PMID:23269456

  10. Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains

    PubMed Central

    Molini, Barbara J.; Tantalo, Lauren C.; Sahi, Sharon K.; Rodriguez, Veronica I.; Brandt, Stephanie L.; Fernandez, Mark C.; Godornes, Charmie B.; Marra, Christina M.; Lukehart, Sheila A.

    2016-01-01

    Background High rates of 23S rDNA mutations implicated in macrolide resistance have been identified in Treponema pallidum samples from syphilis patients in many countries. Nonetheless, some clinicians have been reluctant to abandon azithromycin as a treatment for syphilis, citing the lack of a causal association between these mutations and clinical evidence of drug resistance. Although azithromycin resistance has been demonstrated in vivo for the historical Street 14 strain, no recent T. pallidum isolates have been tested. We used the well-established rabbit model of syphilis to determine the in vivo efficacy of azithromycin against 23S rDNA mutant strains collected in 2004 to 2005 from patients with syphilis in Seattle, Wash. Methods Groups of 9 rabbits were each infected with a strain containing 23S rDNA mutation A2058G (strains UW074B, UW189B, UW391B) or A2059G (strains UW228B, UW254B, and UW330B), or with 1 wild type strain (Chicago, Bal 3, and Mexico A). After documentation of infection, 3 animals per strain were treated with azithromycin, 3 were treated with benzathine penicillin G, and 3 served as untreated control groups. Treatment efficacy was documented by darkfield microscopic evidence of T. pallidum, serological response, and rabbit infectivity test. Results Azithromycin uniformly failed to cure rabbits infected with strains harboring either 23S rDNA mutation, although benzathine penicillin G was effective. Infections caused by wild type strains were successfully treated by either azithromycin or benzathine penicillin G. Conclusions A macrolide resistant phenotype was demonstrated for all strains harboring a 23S rDNA mutation, demonstrating that either A2058G or A2059G mutation confers in vivo drug resistance. PMID:27513385

  11. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis

    PubMed Central

    Lu, Yuqing; Li, Cong; Wang, Hai; Chen, Hao; Berg, Howard; Xia, Yiji

    2011-01-01

    SUMMARY Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division. PMID:21435048

  12. A report of cat scratch disease in Korea confirmed by PCR amplification of the 16S-23S rRNA intergenic region of Bartonella henselae.

    PubMed

    Suh, Borum; Chun, Jin-Kyoung; Yong, Dongeun; Lee, Yang Soon; Jeong, Seok Hoon; Yang, Woo Ick; Kim, Dong Soo

    2010-02-01

    We report a case of cat scratch disease in an 8-yr-old girl who presented with fever and enlargement of both axillary lymph nodes. Both aerobic and anaerobic cultures of the lymph node aspirate were negative for microbial growth. Gram staining and Warthin-Starry silver staining did not reveal any organism. Purified DNA from the PCR-amplicon of the 16S-23S rRNA intergenic region was sequenced and showed 99.7% identity with the corresponding sequence of Bartonella henselae strain Houston-1. Our findings suggest that the internal transcribed spacer is a reliable region for PCR identification of Bartonella species. In patients with lymphadenitis, a history of contact with cats or dogs necessitates the use of diagnostic approaches that employ not only the conventional staining and culture but also molecular methods to detect B. henselae. PMID:20197720

  13. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA

    SciTech Connect

    Sunita,S.; Zhenxing, H.; Swaathi, J.; Cygler, M.; Matte, A.; Sivaraman, J.

    2006-01-01

    Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine ({psi}) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E. coli RluF at 2.6 Angstroms resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of {psi}-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.

  14. Processing of a composite large subunit rRNA. Studies with chlamydomonas mutants deficient in maturation of the 23s-like rrna.

    PubMed Central

    Holloway, S P; Herrin, D L

    1998-01-01

    (Cr.LSU). Little is known of the cis and trans requirements or of the processing pathway for this essential RNA. Previous work showed that the ribosome-deficient ac20 mutant overaccumulates an unspliced large subunit (LSU) RNA, suggesting that it might be a splicing mutant. To elucidate the molecular basis of the ac20 phenotype, a detailed analysis of the rrn transcripts in ac20 and wild-type cells was performed. The results indicate that processing of the ITSs, particularly ITS-1, is inefficient in ac20 and that ITS processing occurs after splicing. Deletion of the Cr.LSU intron from ac20 also did not alleviate the mutant phenotype. Thus, the primary defect in ac20 is not splicing but most likely is associated with ITS processing. A splicing deficiency was studied by transforming wild-type cells with rrnL genes containing point mutations in the intron core. Heteroplasmic transformants were obtained in most cases, except for P4 helix mutants; these strains grew slowly, were light sensitive, and had an RNA profile indicative of inefficient splicing. Transcript analysis in the P4 mutants also indicated that ITS processing can occur on an unspliced precursor, although with reduced efficiency. These latter results indicate that although there is not an absolutely required order for LSU processing, there does seem to be a preferred order that results in efficient processing in vivo. PMID:9668137

  15. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling

    PubMed Central

    Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2005-01-01

    Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104

  16. SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana.

    PubMed

    Wu, Wenjuan; Liu, Sheng; Ruwe, Hannes; Zhang, Delin; Melonek, Joanna; Zhu, Yajuan; Hu, Xupeng; Gusewski, Sandra; Yin, Ping; Small, Ian D; Howell, Katharine A; Huang, Jirong

    2016-03-01

    Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid-localized pentatricopeptide repeat (PPR) protein with a small MutS-related domain, is required for maturation of the 23S-4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5' end of the 23S-4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA 'footprint' associated with this site in sot1 mutants. We found that more than half of the 23S-4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5' and 3' ends, and that the endonucleolytic cleavage product normally released from the 5' end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5' extremity of the 23S-4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5' and 3' ends. PMID:26800847

  17. Differentiation of Phylogenetically Related Slowly Growing Mycobacteria Based on 16S-23S rRNA Gene Internal Transcribed Spacer Sequences

    PubMed Central

    Roth, Andreas; Fischer, Marga; Hamid, Mohamed E.; Michalke, Sabine; Ludwig, Wolfgang; Mauch, Harald

    1998-01-01

    Interspecific polymorphisms of the 16S rRNA gene (rDNA) are widely used for species identification of mycobacteria. 16S rDNA sequences, however, do not vary greatly within a species, and they are either indistinguishable in some species, for example, in Mycobacterium kansasii and M. gastri, or highly similar, for example, in M. malmoense and M. szulgai. We determined 16S-23S rDNA internal transcribed spacer (ITS) sequences of 60 strains in the genus Mycobacterium representing 13 species (M. avium, M. conspicuum, M. gastri, M. genavense, M. kansasii, M. malmoense, M. marinum, M. shimoidei, M. simiae, M. szulgai, M. triplex, M. ulcerans, and M. xenopi). An alignment of these sequences together with additional sequences available in the EMBL database (for M. intracellulare, M. phlei, M. smegmatis, and M. tuberculosis) was established according to primary- and secondary-structure similarities. Comparative sequence analysis applying different treeing methods grouped the strains into species-specific clusters with low sequence divergence between strains belonging to the same species (0 to 2%). The ITS-based tree topology only partially correlated to that based on 16S rDNA, but the main branching orders were preserved, notably, the division of fast-growing from slowly growing mycobacteria, separate branching for M. simiae, M. genavense, and M. triplex, and distinct branches for M. xenopi and M. shimoidei. Comparisons of M. gastri with M. kansasii and M. malmoense with M. szulgai revealed ITS sequence similarities of 93 and 88%, respectively. M. marinum and M. ulcerans possessed identical ITS sequences. Our results show that ITS sequencing represents a supplement to 16S rRNA gene sequences for the differentiation of closely related species. Slowly growing mycobacteria show a high sequence variation in the ITS; this variation has the potential to be used for the development of probes as a rapid approach to mycobacterial identification. PMID:9431937

  18. Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes.

    PubMed Central

    Rijpens, N P; Jannes, G; Van Asbroeck, M; Rossau, R; Herman, L M

    1996-01-01

    The 16S-23S rRNA spacer regions of Brucella abortus, B. melitensis, and B. suis were cloned and subcloned after PCR amplification. Sequence analysis of the inserts revealed a spacer of about 800 bp with very high ( > 99%) homology among the three species examined. Two genus-specific primer pairs, BRU-P5-BRU-P8 and BRU-P6-BRU-P7, that could be used in a nested PCR format and three genus-specific DNA probes, BRU-ICG2, BRU-ICG3, and BRU-ICG4, were deduced from this spacer. The specificity and sensitivity of both primer sets and probes were examined by testing them against a collection of 18 Brucella strains and 56 strains from other relevant taxa by using PCR and the Line Probe Assay (LiPA), respectively. A method for direct detection of Brucella spp. in 1 ml of raw milk was developed on the basis of enzymatic treatment of the milk components and subsequent PCR and LiPA hybridization. After a single PCR, sensitivities of 2.8 x 10(5) and 2.8 x 10(4) CFU/ml were obtained for detection by agarose gel electrophoresis and LiPA, respectively. Nested PCR yielded a sensitivity of 2.8 x 10(2) CFU/ml for both methods. PMID:8633866

  19. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Hisada, T.; Takata, K.; Hiraishi, A.

    2013-04-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  20. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis.

    PubMed

    Shi, Xinying; Khade, Prashant K; Sanbonmatsu, Karissa Y; Joseph, Simpson

    2012-06-01

    The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation. PMID:22459262

  1. Prevalence of Mitochondrial 12S rRNA Mutations Associated with Aminoglycoside Ototoxicity

    ERIC Educational Resources Information Center

    Guan, Min-Xin

    2005-01-01

    The mitochondrial DNA (mtDNA) 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region of the 12S rRNA have been associated with hearing loss. These two mutations account for a significant number of…

  2. Bacteria evade immune recognition via TLR13 and binding of their 23S rRNA by MLS antibiotics by the same mechanisms

    PubMed Central

    Hochrein, Hubertus; Kirschning, Carsten J.

    2013-01-01

    The immune system recognizes pathogens and other danger by means of pattern recognition receptors. Recently, we have demonstrated that the orphan Toll-like receptor 13 (TLR13) senses a defined sequence of the bacterial rRNA and that bacteria use specific mechanisms to evade macrolide lincosamide streptogramin (MLS) antibiotics detection via TLR13. PMID:23802068

  3. Cyanobacterial Ecotypes in Different Optical Microenvironments of a 68°C Hot Spring Mat Community Revealed by 16S-23S rRNA Internal Transcribed Spacer Region Variation†

    PubMed Central

    Ferris, Mike J.; Kühl, Michael; Wieland, Andrea; Ward, David M.

    2003-01-01

    We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68°C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O2 and oxygenic photosynthesis demonstrated the existence of physiologically distinct Synechococcus populations at different depths along a light gradient quantified by scalar irradiance microprobes. Molecular methods were used to evaluate whether physiologically distinct populations could be correlated with genetically distinct populations over the vertical interval. We were unable to identify patterns in genetic variation in Synechococcus 16S rRNA sequences that correlate with different vertically distributed populations. However, patterns of variation at the internal transcribed spacer locus separating 16S and 23S rRNA genes suggested the existence of closely related but genetically distinct populations corresponding to different functional populations occurring at different depths. PMID:12732563

  4. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    SciTech Connect

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  5. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    NASA Astrophysics Data System (ADS)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  6. Cooperative assembly of proteins in the ribosomal GTPase centre demonstrated by their interactions with mutant 23S rRNAs.

    PubMed Central

    Rosendahl, G; Douthwaite, S

    1995-01-01

    The ribosomal protein L11 binds to the region of 23S rRNA associated with the GTPase-dependent steps of protein synthesis. Nucleotides 1054-1107 within this region of the Escherichia coli 23S rRNA gene were mutagenized with bisulphite. Twenty point mutations (G-->A and C-->T transitions) and numerous multiple mutations were generated. Expression of mutant 23S rRNAs in vivo shows that all the mutations detectably alter the phenotype, with effects ranging from a slight growth rate reduction to lack of viability. Temperature sensitivity is conferred by 1071G-->A and 1092C-->U substitutions. These effects are relieved by point mutations at other sites, indicating functional interconnections within the higher order structure of this 23S rRNA region. Several mutations prevent direct binding of r-protein L11 to 23S rRNA in vitro. These mutations are mainly in a short irregular stem (1087-1102) and within a hairpin loop (1068-1072), where the protein probably makes nucleotide contacts. Some of these mutations also interfere with binding of the r-protein complex L10.(L12)4 to an adjacent site on the rRNA. When added together to rRNA, proteins L10.(L12)4 and L11 bind cooperatively to overcome the effects of mutations at 1091 and 1099. The proteins also stimulate each others binding to rRNA mutated at 1087 or 1092, although in these cases binding remains clearly substoichiometric. Surprisingly, none of the mutations prevents incorporation of L11 into ribosomes in vivo, indicating that other, as yet unidentified, factors are involved in the cooperative assembly process. Images PMID:7630717

  7. Mutations of mitochondrial 12S rRNA in gastric carcinoma and their significance

    PubMed Central

    Han, Cheng-Bo; Ma, Jia-Ming; Xin, Yan; Mao, Xiao-Yun; Zhao, Yu-Jie; Wu, Dong-Ying; Zhang, Su-Min; Zhang, Yu-Kui

    2005-01-01

    AIM: To detect the variations of mitochondrial 12S rRNA in patients with gastric carcinoma, and to study their significance and the relationship between these variations and the genesis of gastric carcinoma. METHODS: PCR amplified mitochondrial 12S rRNA of 44 samples including 22 from gastric carcinoma tissues and 22 from adjacent normal tissues, was detected by direct DNA sequencing. Then laser capture microdissection technique (LCM) was used to separate the cancerous cells and dysplasia cells with specific mutations. Denaturing high performance liquid chromatography (DHPLC) plus allele-specific PCR (AS-PCR), nest-PCR and polyacrylamide gel electrophoresis (PAGE) were used to further evaluate this mutant property and quantitative difference of mutant type between cancerous and dysplasia cells. Finally, RNAdraw biosoft was used to analyze the RNA secondary structure of mutant-type 12S rRNA. RESULTS: Compared with Mitomap database, some new variations were found, among which np652 G insertion and np716 T-G transversion were found only in cancerous tissues. There was a statistic difference in the frequency of 12S rRNA variation between intestinal type (12/17, 70.59%) and diffusive type (5/17, 29.41%) of gastric carcinoma (P<0.05). DHPLC analysis showed that 12S rRNA np652 G insertion and np716 T-G transversion were heteroplasmic mutations. The frequency of 12S rRNA variation in cancerous cells was higher than that in dysplasia cells (P<0.01). 12S rRNA np652 G insertion showed obviously negative effects on the stability of 12S rRNA secondary structure, while others such as T-G transversion did not. CONCLUSION: The mutations of mitochondrial 12S rRNA may be associated with the occurrence of intestinal-type gastric carcinoma. Most variations exist both in gastric carcinomas and in normal tissues, and they might not be the characteristics of tumors. However, np652 G insertion and np716 T-G transversion may possess some molecular significance in gastric carcinogenesis

  8. GJB2 and mitochondrial 12S rRNA susceptibility mutations in sudden deafness.

    PubMed

    Chen, Kaitian; Sun, Liang; Zong, Ling; Wu, Xuan; Zhan, Yuan; Dong, Chang; Cao, Hui; Tang, Haocheng; Jiang, Hongyan

    2016-06-01

    Genetic susceptibility may play an important role in the pathogenesis of sudden deafness. However, the specific genes involved are largely unknown. We sought to explore the frequency of GJB2 and mitochondrial 12S rRNA susceptibility mutations in patients with sudden deafness. Between September 2011 and May 2012, 62 consecutive patients with sudden deafness were seen. In 50 of these, no etiological factors for sudden deafness were found. We detected GJB2 and mitochondrial 12S rRNA variants by direct sequencing in these 50 patients and in 53-aged matched controls with normal hearing. In addition, we undertook functional analyses of the mitochondrial mutations which we detected, applying structural and phylogenetic analysis. GJB2 sequencing identified six mutations, including three pathogenic mutations (c.235delC, c.299-300delAT, c.109G>A) and three polymorphisms, in the study participants, giving an allele frequency of 15.0 %. A homozygous c.109G>A mutation was detected in two participants. A total of 16 variants in mitochondrial 12S rRNA gene were identified in the participants. No significant differences were found in GJB2 heterozygosity or in mitochondrial 12S rRNA variants between patients with sudden deafness and in controls. Our results suggest that the homozygous GJB2 c.109G>A mutation may be a cause of sudden deafness involving both ears. This finding should increase awareness of the likely role of genetic factors in the etiology of sudden deafness in general. PMID:26119842

  9. A Mutation in the 16S rRNA Decoding Region Attenuates the Virulence of Mycobacterium tuberculosis.

    PubMed

    Watanabe, Shinya; Matsumura, Kazunori; Iwai, Hiroki; Funatogawa, Keiji; Haishima, Yuji; Fukui, Chie; Okumura, Kayo; Kato-Miyazawa, Masako; Hashimoto, Masahito; Teramoto, Kanae; Kirikae, Fumiko; Miyoshi-Akiyama, Tohru; Kirikae, Teruo

    2016-08-01

    Mycobacterium tuberculosis contains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decrease M. tuberculosis viability and virulence. Here, we describe an rRNA mutation, U1406A, which was generated in vitro and confers resistance to kanamycin while highly attenuating M. tuberculosis virulence. The mutant showed decreased expression of 20% (n = 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuated M. tuberculosis virulence by affecting these processes. PMID:27245411

  10. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry.

    PubMed

    Trček, Janja; Barja, François

    2015-03-01

    Acetic acid bacteria have attracted much attention over the past few years, due mainly to their metabolic traits that are of interest to the biotechnology industry. In addition, it turns out that their ecological habitats are almost unlimited since they have been found as symbionts in different insects and also as emerging opportunistic human pathogens. Very surprising is the finding that they colonize niches considered anaerobic, disproving the generalized statement that they are strict aerobes. Since they have taken on different biological roles in our environment, more and more people are charged with the task of identifying them. However, this turns out to be not always easy, especially if we are using phenotypic approaches for identification. A substantial step forward in making the identification of acetic acid bacteria easier was made possible using molecular biological methods, which have been extensively tested since 2000. However, some molecular methods require expensive machines and experienced staff, and moreover the level of their discrimination varies. All these factors must be considered when selecting the most appropriate approach for identifying acetic acid bacteria. With this objective in mind, this review article discusses the benefits and drawbacks of molecular biological methods for identification of acetic acid bacteria, with a focus on the 16S-23S rRNA gene ITS regions and the recently described alternative method for identification of acetic acid bacteria, MALDI-TOF MS. PMID:25589227

  11. Evaluation of a fluorescence-labelled oligonucleotide probe targeting 23S rRNA for in situ detection of Salmonella serovars in paraffin-embedded tissue sections and their rapid identification in bacterial smears.

    PubMed Central

    Nordentoft, S; Christensen, H; Wegener, H C

    1997-01-01

    A method for the detection of Salmonella based on fluorescence in situ hybridization (FISH) has been developed and applied for the direct detection of Salmonella in pure cultures and in formalin-fixed, paraffin-embedded tissue sections. On the basis of the 23S rRNA gene sequences representing all of the S. enterica subspecies and S. bongori, an 18-mer oligonucleotide probe was selected. The specificity of the probe was tested by in situ hybridization to bacterial cell smears of pure cultures. Forty-nine of 55 tested Salmonella serovars belonging to subspecies I, II, IIIb, IV, and VI hybridized with the probe. The probe did not hybridize to serovars from subspecies IIIa (S. arizonae) or to S. bongori. No cross-reaction to 64 other strains of the family Enterobacteriaceae or 18 other bacterial strains outside this family was observed. The probe was tested with sections of formalin-fixed, paraffin-embedded tissue from experimentally infected mice or from animals with a history of clinical salmonellosis. In these tissue sections the probe hybridized specifically to Salmonella serovars, allowing for the detection of single bacterial cells. The development of a fluorescence-labelled specific oligonucleotide probe makes the FISH technique a promising tool for the rapid identification of S. enterica in bacterial smears, as well as for the detection of S. enterica in histological tissue sections. PMID:9316923

  12. Comparison of multiple genes and 16S-23S rRNA intergenic space region for their capacity in high resolution melt curve analysis to differentiate Mycoplasma gallisepticum vaccine strain ts-11 from field strains.

    PubMed

    Ghorashi, Seyed A; Bradbury, Janet M; Ferguson-Noel, Naola M; Noormohammadi, Amir H

    2013-12-27

    Mycoplasma gallisepticum (MG) is an important avian pathogen causing significant economic losses in the global poultry industry. In an attempt to compare and evaluate existing genotyping methods for differentiation of MG strains/isolates, high resolution melt (HRM) curve analysis was applied to 5 different PCR methods targeting vlhA, pvpA, gapA, mgc2 genes and 16S-23S rRNA intergenic space region (IGSR). To assess the discriminatory power of PCR-HRM of examined genes and IGSR, MG strains ts-11, F, 6/85 and S6, and, initially, 8 field isolates were tested. All MG strains/isolates were differentiated using PCR-HRM curve analysis and genotype confidence percentage (GCP) values of vlhA and pvpA genes, while only 0, 3 and 4 out of 12 MG strains/isolates were differentiated using gapA, mgc2 genes and IGSR, respectively. The HRM curve analysis of vlhA and pvpA genes was found to be highly correlated with the genetic diversity of the targeted genes confirmed by sequence analysis of amplicons generated from MG strains. The potential of the vlhA and pvpA genes was also demonstrated for genotyping of 12 additional MG strains from Europe and the USA. Results from this study provide a direct comparison between genes previously used in sequencing-based genotyping methods for MG strain identification and highlight the usefulness of vlhA and pvpA HRM curve analyses as rapid and reliable tools specially for diagnosis and differentiation of MG strains used here. PMID:24238667

  13. Mutation analysis of 16S rRNA in patients with Rett syndrome.

    PubMed

    Armstrong, J; Pineda, M; Monrós, E

    2000-07-01

    Rett syndrome (RTT) is a progressive neurodevelopmental disorder that affects one in 10,000-15,000 females. RTT is mainly sporadic; familial cases have an estimated frequency of less than 1%. Before the recent identification of de novo dominant mutations in the X-linked MECP2 gene, many other hypotheses had been proposed to explain the particular pattern of inheritance and the phenotypic expression of the disease. The involvement of mitochondrial DNA had been investigated because of the structural and functional mitochondrial abnormalities evident in the patients. In 1997 the finding of mutations at 16S rRNA in several affected RTT females and their mothers was reported, suggesting that mitochondrial DNA might play a key role in the pathogenesis of RTT. To investigate the relevance of such mutations, we used the same methodologic approach to analyze RTT mitochondrial DNA in our series. No 16S rRNA alterations were evident in 27 Spanish patients with classic RTT. PMID:10963979

  14. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    PubMed Central

    Emperador, Sonia; Pacheu-Grau, David; Bayona-Bafaluy, M. Pilar; Garrido-Pérez, Nuria; Martín-Navarro, Antonio; López-Pérez, Manuel J.; Montoya, Julio; Ruiz-Pesini, Eduardo

    2015-01-01

    Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA. PMID:25642242

  15. Point mutations in the 3' minor domain of 16S rRNA of E.coli.

    PubMed Central

    Jemiolo, D K; Zwieb, C; Dahlberg, A E

    1985-01-01

    Point mutations were produced near the 3' end of E. coli 16S rRNA by bisulfite mutagenesis in a 121 base loop-out (1385 to 1505) in a heteroduplex of wild type (pKK3535) and deletion mutant plasmids. Two highly conserved, single stranded regions flank an irregular helix (1409-1491) in the area studied. Only a single mutation was isolated in the flanking regions, a transition at C1402, (normally methylated on the base and ribose in rRNA). Mutations occurred throughout the irregular helix. All mutant rRNAs were processed and assembled into 30S subunits capable of interacting with 50S subunits. Growth rates ranged from faster to significantly slower than cells with the wild type transcript. In particular, mutations at C1467 or C1469 cause slow growth. These two transitions (in a bulge region within the helix) reduced the bulge by additional base pairing. PMID:3909106

  16. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    SciTech Connect

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin . E-mail: caoxin@njmu.edu.cn

    2006-08-11

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families.

  17. Mechanistic Study on the Nuclear Modifier Gene MSS1 Mutation Suppressing Neomycin Sensitivity of the Mitochondrial 15S rRNA C1477G Mutation in Saccharomyces cerevisiae

    PubMed Central

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations. PMID:24595024

  18. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation.

    PubMed Central

    Margolin, B S; Garrett-Engele, P W; Stevens, J N; Fritz, D Y; Garrett-Engele, C; Metzenberg, R L; Selker, E U

    1998-01-01

    In an analysis of 22 of the roughly 100 dispersed 5S rRNA genes in Neurospora crassa, a methylated 5S rRNA pseudogene, Psi63, was identified. We characterized the Psi63 region to better understand the control and function of DNA methylation. The 120-bp 5S rRNA-like region of Psi63 is interrupted by a 1.9-kb insertion that has characteristics of sequences that have been modified by repeat-induced point mutation (RIP). We found sequences related to this insertion in wild-type strains of N. crassa and other Neurospora species. Most showed evidence of RIP; but one, isolated from the N. crassa host of Psi63, showed no evidence of RIP. A deletion from near the center of this sequence apparently rendered it incapable of participating in RIP with the related full-length copies. The Psi63 insertion and the related sequences have features of transposons and are related to the Fot1 class of fungal transposable elements. Apparently Psi63 was generated by insertion of a previously unrecognized Neurospora transposable element into a 5S rRNA gene, followed by RIP. We name the resulting inactivated Neurospora transposon PuntRIP1 and the related sequence showing no evidence of RIP, but harboring a deletion that presumably rendered it defective for transposition, dPunt. PMID:9691037

  19. Allele-specific PCR for detecting the deafness-associated mitochondrial 12S rRNA mutations.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Liu, Qi; Li, Mei-Ya; Huang, Shui-Xian; Zhuo, Guang-Chao

    2016-10-10

    Mutations in mitochondrial 12S rRNA (MT-RNR1) are the important causes of sensorineural hearing loss. Of these mutations, the homoplasmic m.1555A>G or m.1494C>T mutation in the highly conserved A-site of MT-RNR1 gene has been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. Since the m.1555A>G and m.1494C>T mutations are sensitive to ototoxic drugs, therefore, screening for the presence of these mutations is important for early diagnosis and prevention of deafness. For this purpose, we recently developed a novel allele-specific PCR (AS-PCR) which is able to simultaneously detect these mutations. To assess its accuracy, in this study, we employed this method to screen the frequency of m.1555A>G and m.1494C>T mutations in 200 deafness patients and 120 healthy subjects. Consequently, four m.1555A>G and four m.1494C>T mutations were identified; among these, only one patient with the m.1494C>T mutation had an obvious family history of hearing loss. Strikingly, clinical evaluation showed that this family exhibited a high penetrance of hearing loss. In particular, the penetrances of hearing loss were 80% with the aminoglycoside included and 20% when excluded. PCR-Sanger sequencing of the mitochondrial genomes confirmed the presence of the m.1494C>T mutation and identified a set of polymorphisms belonging to mitochondrial haplogroup A. However, the lack of functional variants in mitochondrial and nuclear modified genes (GJB2 and TRMU) in this family indicated that mitochondrial haplogroup and nuclear genes may not play important roles in the phenotypic expression of the m.1494C>T mutation. Thus, other modification factors, such as environmental factor, aminoglycosides or epigenetic modification may have contributed to the high penetrance of hearing loss in this family. Taken together, our data showed that this assay is an effective approach that could be used for detection the deafness-associated MT-RNR1

  20. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation

    PubMed Central

    Schäferkordt, Jan; Wagner, Rolf

    2001-01-01

    The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis. PMID:11504877

  1. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA.

    PubMed

    Prescott, C D; Kornau, H C

    1992-04-11

    The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction. PMID:1374555

  2. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA.

    PubMed Central

    Prescott, C D; Kornau, H C

    1992-01-01

    The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction. PMID:1374555

  3. Mutational analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes in Tunisian patients with nonsyndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna . E-mail: emna_mkaouar@mail2world.com; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-02-24

    We explored the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA{sup Ser(UCN)} gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.

  4. 16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis.

    PubMed

    Amram, E; Mikula, I; Schnee, C; Ayling, R D; Nicholas, R A J; Rosales, R S; Harrus, S; Lysnyansky, I

    2015-02-01

    Mycoplasma bovis isolates with decreased susceptibilities to tetracyclines are increasingly reported worldwide. The acquired molecular mechanisms associated with this phenomenon were investigated in 70 clinical isolates of M. bovis. Sequence analysis of the two 16S rRNA-encoding genes (rrs3 and rrs4 alleles) containing the primary binding pocket for tetracycline (Tet-1 site) was performed on isolates with tetracycline hydrochloride MICs of 0.125 to 16 μg/ml. Mutations at positions A965T, A967T/C (Escherichia coli numbering) of helix 31, U1199C of helix 34, and G1058A/C were identified. Decreased susceptibilities to tetracycline (MICs, ≥2 μg/ml) were associated with mutations present at two (A965 and A967) or three positions (A965, A967, and G1058) of the two rrs alleles. No tet(M), tet(O), or tet(L) determinants were found in the genome of any of the 70 M. bovis isolates. The data presented correlate (P<0.0001) the mutations identified in the Tet-1 site of clinical isolates of M. bovis with decreased susceptibility to tetracycline. PMID:25403668

  5. 16S rRNA Gene Mutations Associated with Decreased Susceptibility to Tetracycline in Mycoplasma bovis

    PubMed Central

    Amram, E.; Mikula, I.; Schnee, C.; Ayling, R. D.; Nicholas, R. A. J.; Rosales, R. S.; Harrus, S.

    2014-01-01

    Mycoplasma bovis isolates with decreased susceptibilities to tetracyclines are increasingly reported worldwide. The acquired molecular mechanisms associated with this phenomenon were investigated in 70 clinical isolates of M. bovis. Sequence analysis of the two 16S rRNA-encoding genes (rrs3 and rrs4 alleles) containing the primary binding pocket for tetracycline (Tet-1 site) was performed on isolates with tetracycline hydrochloride MICs of 0.125 to 16 μg/ml. Mutations at positions A965T, A967T/C (Escherichia coli numbering) of helix 31, U1199C of helix 34, and G1058A/C were identified. Decreased susceptibilities to tetracycline (MICs, ≥2 μg/ml) were associated with mutations present at two (A965 and A967) or three positions (A965, A967, and G1058) of the two rrs alleles. No tet(M), tet(O), or tet(L) determinants were found in the genome of any of the 70 M. bovis isolates. The data presented correlate (P < 0.0001) the mutations identified in the Tet-1 site of clinical isolates of M. bovis with decreased susceptibility to tetracycline. PMID:25403668

  6. Secondary structure and domain architecture of the 23S and 5S rRNAs

    PubMed Central

    Petrov, Anton S.; Bernier, Chad R.; Hershkovits, Eli; Xue, Yuzhen; Waterbury, Chris C.; Hsiao, Chiaolong; Stepanov, Victor G.; Gaucher, Eric A.; Grover, Martha A.; Harvey, Stephen C.; Hud, Nicholas V.; Wartell, Roger M.; Fox, George E.; Williams, Loren Dean

    2013-01-01

    We present a de novo re-determination of the secondary (2°) structure and domain architecture of the 23S and 5S rRNAs, using 3D structures, determined by X-ray diffraction, as input. In the traditional 2° structure, the center of the 23S rRNA is an extended single strand, which in 3D is seen to be compact and double helical. Accurately assigning nucleotides to helices compels a revision of the 23S rRNA 2° structure. Unlike the traditional 2° structure, the revised 2° structure of the 23S rRNA shows architectural similarity with the 16S rRNA. The revised 2° structure also reveals a clear relationship with the 3D structure and is generalizable to rRNAs of other species from all three domains of life. The 2° structure revision required us to reconsider the domain architecture. We partitioned the 23S rRNA into domains through analysis of molecular interactions, calculations of 2D folding propensities and compactness. The best domain model for the 23S rRNA contains seven domains, not six as previously ascribed. Domain 0 forms the core of the 23S rRNA, to which the other six domains are rooted. Editable 2° structures mapped with various data are provided (http://apollo.chemistry.gatech.edu/RibosomeGallery). PMID:23771137

  7. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    PubMed Central

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  8. Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparison of the 23S rRNA gene sequences of Edwardsiella tarda and Edwardsiella ictaluri confirmed a close phylogenetic relationship between these two fish pathogen species and a distant relation with the 'core' members of the Enterobacteriaceae family. Analysis of the rrl gene for 23S rRNA in E. i...

  9. Ribosomal Mutations in Streptococcus pneumoniae Clinical Isolates

    PubMed Central

    Pihlajamäki, Marja; Kataja, Janne; Seppälä, Helena; Elliot, John; Leinonen, Maija; Huovinen, Pentti; Jalava, Jari

    2002-01-01

    Eleven clinical isolates of Streptococcus pneumoniae, isolated in Finland during 1996 to 2000, had an unusual macrolide resistance phenotype. They were resistant to macrolides and streptogramin B but susceptible, intermediate, or low-level resistant to lincosamides. No acquired macrolide resistance genes were detected from the strains. The isolates were found to have mutations in domain V of the 23S rRNA or ribosomal protein L4. Seven isolates had an A2059C mutation in two to four out of the four alleles encoding the 23S rRNA, two isolates had an A2059G mutation in two alleles, one isolate had a C2611G mutation in all four alleles, and one isolate had a 69GTG71-to-69TPS71 substitution in ribosomal protein L4. PMID:11850244

  10. Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation

    PubMed Central

    Lu, Jianxin; Qian, Yaping; Li, Zhiyuan; Yang, Aifen; Zhu, Yi; Li, Ronghua; Yang, Li; Tang, Xiaowen; Chen, Bobei; Ding, Yu; Li, Yongyan; You, Junyan; Zheng, Jing; Tao, Zhihua; Zhao, Fuxin; Wang, Jindan; Sun, Dongmei; Zhao, Jianyue; Meng, Yanzi; Guan, Min-Xin

    2009-01-01

    Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G

  11. Prevalence of the A1555G (12S rRNA) and tRNASer(UCN) mitochondrial mutations in hearing-impaired Brazilian patients.

    PubMed

    Abreu-Silva, R S; Lezirovitz, K; Braga, M C C; Spinelli, M; Pirana, S; Della-Rosa, V A; Otto, P A; Mingroni-Netto, R C

    2006-02-01

    Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNASer(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNASer(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNASer(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern. PMID:16470309

  12. Ribosomal ribonucleic acid isolated from Salmonella typhimurium: absence of the intact 23S species.

    PubMed Central

    Winkler, M E

    1979-01-01

    Ribonucleic acid (RNA) isolated by four distinct methods and from a variety of Salmonella typhimurium strains lacked intact 23S ribosomal RNA (rRNA). On sucrose gradients which minimize aggregation, the vast majority of S. typhimurium rRNA sedimented as a 16S peak with a 14S shoulder. RNA from this region of the gradient was resolved into three discrete bands by electrophoresis in formamide. Two very minor S. typhimurium RNA peaks were resolved at 21S and 10S on sucrose gradients, and each peak formed discrete bands in electrophoresis. It is concluded that if S. typhimurium does possess an intact 23S rRNA species, this species is extremely "labile." The absence of isolatable S. typhimurium 23S rRNA possibly reflected in vivo processing of the rRNA before isolation. Under certain conditions, S. typhimurium rRNA formed discrete aggregates which sedimented similarly to intact Escherichia coli 23S rRNA. Images PMID:383696

  13. Correspondence regarding Ballana et al., "Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment".

    PubMed

    Abreu-Silva, R S; Batissoco, A C; Lezirovitz, K; Romanos, J; Rincon, D; Auricchio, M T B M; Otto, P A; Mingroni-Netto, R C

    2006-05-12

    Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism. PMID:16574076

  14. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: Implication for early detection and prevention of deafness

    SciTech Connect

    Dai Pu; Liu Xin; Han Dongyi . E-mail: hdy301@263.net; Qian Yaping; Huang Deliang; Yuan Huijun; Li Weiming; Yu Fei; Zhang Ruining; Lin Hongyan; He Yong; Yu Youjun; Sun Quanzhu; Qin Huaiyi; Li Ronghua; Zhang Xin; Kang Dongyang; Cao Juyang; Young Wieyen . E-mail: ywy301@163.net; Guan Minxin |. E-mail: min-xin.guan@cchmc.org

    2006-02-03

    Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness.

  15. Mutations in TFIIIA that increase stability of the TFIIIA-5 S rRNA gene complex: unusual effects on the kinetics of complex assembly and dissociation.

    PubMed

    Brady, Kristina L; Ponnampalam, Stephen N; Bumbulis, Michael J; Setzer, David R

    2005-07-22

    We have identified four mutations in Xenopus TFIIIA that increase the stability of TFIIIA-5 S rRNA gene complexes. In each case, the mutation has a relatively modest effect on equilibrium binding affinity. In three cases, these equilibrium binding effects can be ascribed primarily to decreases in the rate constant for protein-DNA complex dissociation. In the fourth case, however, a substitution of phenylalanine for the wild-type leucine at position 148 in TFIIIA results in much larger compensating changes in the kinetics of complex assembly and dissociation. The data support a model in which a relatively unstable population of complexes with multi-component dissociation kinetics forms rapidly; complexes then undergo a slow conformational change that results in very stable, kinetically homogeneous TFIIIA-DNA complexes. The L148F mutant protein acts as a particularly potent transcriptional activator when it is fused to the VP16 activation domain and expressed in yeast cells. Substitution of L148 to tyrosine or tryptophan produces an equally strong transcriptional activator. Substitution to histidine results in genetic and biochemical effects that are more modest than, but similar to, those observed with the L148F mutation. We propose that an amino acid with a planar side chain at position 148 can intercalate between adjacent base pairs in the intermediate element of the 5 S rRNA gene. Intercalation occurs slowly but results in a very stable DNA-protein complex. These results suggest that transcriptional activation by a cis-acting sequence element is largely dependent on the kinetic, rather than the thermodynamic, stability of the complex formed with an activator protein. Thus, transcriptional activation is dependent in large part on the lifetime of the activator-DNA complex rather than on binding site occupancy at steady state. Introduction of intercalating amino acids into zinc finger proteins may be a useful tool for producing artificial transcription factors with

  16. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    PubMed Central

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  17. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease

    PubMed Central

    Elson, Joanna L.; Smith, Paul M.; Greaves, Laura C.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón

    2015-01-01

    Mitochondrial DNA mutations are well recognized as an important cause of disease, with over two hundred variants in the protein encoding and mt-tRNA genes associated with human disorders. In contrast, the two genes encoding the mitochondrial rRNAs (mt-rRNAs) have been studied in far less detail. This is because establishing the pathogenicity of mt-rRNA mutations is a major diagnostic challenge. Only two disease causing mutations have been identified at these loci, both mapping to the small subunit (SSU). On the large subunit (LSU), however, the evidence for the presence of pathogenic LSU mt-rRNA changes is particularly sparse. We have previously expanded the list of deleterious SSU mt-rRNA mutations by identifying highly disruptive base changes capable of blocking the activity of the mitoribosomal SSU. To do this, we used a new methodology named heterologous inferential analysis (HIA). The recent arrival of near-atomic-resolution structures of the human mitoribosomal LSU, has enhanced the power of our approach by permitting the analysis of the corresponding sites of mutation within their natural structural context. Here, we have used these tools to determine whether LSU mt-rRNA mutations found in the context of human disease and/or ageing could disrupt the function of the mitoribosomal LSU. Our results clearly show that, much like the for SSU mt-rRNA, LSU mt-rRNAs mutations capable of compromising the function of the mitoribosomal LSU are indeed present in clinical samples. Thus, our work constitutes an important contribution to an emerging view of the mitoribosome as an important element in human health. PMID:26349026

  18. Possible involvement of Escherichia coli 23S ribosomal RNA in peptide bond formation.

    PubMed Central

    Nitta, I; Ueda, T; Watanabe, K

    1998-01-01

    Experimental results are presented suggesting that 23S rRNA is directly involved in the peptide bond formation usually performed on the ribosome. Although several reports have indicated that the eubacterial peptidyltransferase reaction does not necessarily require all the ribosomal proteins, the reconstitution of peptidyltransferase activity by a naked 23S rRNA without the help of any of the ribosomal proteins has not been reported previously. It is demonstrated that an E. coli 23S rRNA transcript synthesized by T7 RNA polymerase in vitro was able to promote peptide bond formation in the presence of 0.5% SDS. The reaction was inhibited by the peptidyltransferase-specific antibiotics chloramphenicol and carbomycin, and by digestion with RNases A and T1. Site-directed mutageneses at two highly conserved regions close to the peptidyltransferase center ring, G2252 to U2252 and C2507G2581 to U2507A2581, also suppressed peptide bond formation. These findings strongly suggest that 23S rRNA is the peptidyltransferase itself. PMID:9510328

  19. The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

    PubMed Central

    Torroni, Antonio; Cruciani, Fulvio; Rengo, Chiara; Sellitto, Daniele; López-Bigas, Núria; Rabionet, Raquel; Govea, Nancy; López de Munain, Adolfo; Sarduy, Maritza; Romero, Lourdes; Villamar, Manuela; del Castillo, Ignacio; Moreno, Felipe; Estivill, Xavier; Scozzari, Rosaria

    1999-01-01

    Summary The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to ⩾30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments. PMID:10521300

  20. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  1. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    SciTech Connect

    Yuan Huijun; Chen Jing; Liu Xin; Cheng Jing; Wang Xinjian; Yang Li; Yang Shuzhi; Cao Juyang; Kang Dongyang; Dai Pu; Zha, Suoqiang; Han Dongyi Young Wieyen Guan Minxin

    2007-10-12

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA{sup Ser(UCN)} G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.

  2. ASSOCIATION OF ERYTHROMYCIN SUSCEPTIBILITY AND ABSENCE OF INTERVENING SEQUENCES IN 23S RIBOSOMAL RNA GENES OF CAMPYLOBACTER COLI ISOLATED FROM TURKEYS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain Campylobacter strains have been found to harbor a transcribed intervening sequence (IVS) in at least one copy of the 23S ribosomal RNA gene. Following transcription, the IVS is excised, leading to fragmentation of the 23S rRNA. The origin and possible functions of the IVS are unknown. Furthe...

  3. pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA

    PubMed Central

    Abeysirigunawardena, Sanjaya C.; Chow, Christine S.

    2008-01-01

    Helix 69 in 23S rRNA is a region in the ribosome that participates in a considerable number of RNA–RNA and RNA–protein interactions. Conformational flexibility is essential for such a region to interact and accommodate protein factors at different stages of protein biosynthesis. In this study, pH-dependent structural and stability changes were observed for helix 69 through a variety of spectroscopic techniques, such as circular dichroism spectroscopy, UV melting, and nuclear magnetic resonance spectroscopy. In Escherichia coli 23S rRNA, helix 69 contains pseudouridine residues at positions 1911, 1915, and 1917. The presence of these pseudouridines was found to be essential for the pH-induced conformational changes. Some of the pH-dependent changes appear to be localized to the loop region of helix 69, emphasizing the importance of the highly conserved nature of residues in this region. PMID:18268024

  4. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss

    SciTech Connect

    Wei Qiping; Zhou Xiangtian; Yang Li; Sun Yanhong; Zhou Jian; Li Guang; Jiang, Robert; Lu Fan; Qu Jia . E-mail: jqu@wzmc.net; Guan Minxin . E-mail: min-xin.guan@cchmc.org

    2007-06-15

    We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.

  5. The 12S rRNA A1555G mutation in the mitochondrial haplogroup D5a is responsible for maternally inherited hypertension and hearing loss in two Chinese pedigrees.

    PubMed

    Chen, Hong; Zheng, Jing; Xue, Ling; Meng, Yanzi; Wang, Yan; Zheng, Bingjiao; Fang, Fang; Shi, Suxue; Qiu, Qiaomeng; Jiang, Pingping; Lu, Zhongqiu; Mo, Jun Qin; Lu, Jianxin; Guan, Min-Xin

    2012-06-01

    We reported here clinical, genetic evaluations and molecular analysis of mitochondrial DNA (mtDNA) in two Han Chinese families carrying the known mitochondrial 12S rRNA A1555G mutation. In contrast with the previous data that hearing loss as a sole phenotype was present in the maternal lineage of other families carrying the A1555G mutation, matrilineal relatives among these two Chinese families exhibited both hearing loss and hypertension. Of 21 matrilineal relatives, 9 subjects exhibited both hearing loss and hypertension, 2 individuals suffered from only hypertension and 1 member had only hearing loss. The average age at onset of hypertension in the affected matrilineal relatives of these families was 60 and 46 years, respectively, whereas those of hearing loss in these two families were 33 and 55 years, respectively. Molecular analysis of their mtDNA identified distinct sets of variants belonging to the Eastern Asian haplogroup D5a. In contrast, the A1555G mutation occurred among other mtDNA haplogroups D, B, R, F, G, Y, M and N, respectively. Our data further support that the A1555G mutation is necessary but by itself insufficient to produce the clinical phenotype. The other modifiers are responsible for the phenotypic variability of matrilineal relatives within and among these families carrying the A1555G mutation. Our investigation provides the first evidence that the 12S rRNA A1555G mutation leads to both of hearing loss and hypertension. Thus, our findings may provide the new insights into the understanding of pathophysiology and valuable information for management and treatment of maternally inherited hearing loss and hypertension. PMID:22317974

  6. The 12S rRNA A1555G mutation in the mitochondrial haplogroup D5a is responsible for maternally inherited hypertension and hearing loss in two Chinese pedigrees

    PubMed Central

    Chen, Hong; Zheng, Jing; Xue, Ling; Meng, Yanzi; Wang, Yan; Zheng, Bingjiao; Fang, Fang; Shi, Suxue; Qiu, Qiaomeng; Jiang, Pingping; Lu, Zhongqiu; Mo, Jun Qin; Lu, Jianxin; Guan, Min-Xin

    2012-01-01

    We reported here clinical, genetic evaluations and molecular analysis of mitochondrial DNA (mtDNA) in two Han Chinese families carrying the known mitochondrial 12S rRNA A1555G mutation. In contrast with the previous data that hearing loss as a sole phenotype was present in the maternal lineage of other families carrying the A1555G mutation, matrilineal relatives among these two Chinese families exhibited both hearing loss and hypertension. Of 21 matrilineal relatives, 9 subjects exhibited both hearing loss and hypertension, 2 individuals suffered from only hypertension and 1 member had only hearing loss. The average age at onset of hypertension in the affected matrilineal relatives of these families was 60 and 46 years, respectively, whereas those of hearing loss in these two families were 33 and 55 years, respectively. Molecular analysis of their mtDNA identified distinct sets of variants belonging to the Eastern Asian haplogroup D5a. In contrast, the A1555G mutation occurred among other mtDNA haplogroups D, B, R, F, G, Y, M and N, respectively. Our data further support that the A1555G mutation is necessary but by itself insufficient to produce the clinical phenotype. The other modifiers are responsible for the phenotypic variability of matrilineal relatives within and among these families carrying the A1555G mutation. Our investigation provides the first evidence that the 12S rRNA A1555G mutation leads to both of hearing loss and hypertension. Thus, our findings may provide the new insights into the understanding of pathophysiology and valuable information for management and treatment of maternally inherited hearing loss and hypertension. PMID:22317974

  7. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation

    SciTech Connect

    Wang Qiuju; Li Qingzhong; Han Dongyi . E-mail: hdy301@263.net; Zhao Yali; Zhao Lidong; Qian Yaping; Yuan Hu; Li Ronghua; Zhai Suoqiang; Young Wieyen . E-mail: ywy301@263.net; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-02-10

    We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family.

  8. MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene

    PubMed Central

    Ballana, Ester; Mercader, Josep Maria; Fischel-Ghodsian, Nathan; Estivill, Xavier

    2007-01-01

    Background Mitochondrial DNA (mtDNA) mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified. Methods With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (DEFA3 gene absence, CLDN23 gene and MRPS18CP2 pseudogene) in a group of 213 A1555G carriers. Results Family based association studies identified a positive association for a polymorphism on MRPS18CP2 and an overrepresentation of DEFA3 gene absence in the deaf group of A1555G carriers. Conclusion Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation. PMID:18154640

  9. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan.

    PubMed

    Martínez, Allyson K; Gordon, Emily; Sengupta, Arnab; Shirole, Nitin; Klepacki, Dorota; Martinez-Garriga, Blanca; Brown, Lewis M; Benedik, Michael J; Yanofsky, Charles; Mankin, Alexander S; Vazquez-Laslop, Nora; Sachs, Matthew S; Cruz-Vera, Luis R

    2014-01-01

    A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome's ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome. PMID:24137004

  10. Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T.

    PubMed Central

    Li, Z; Pandit, S; Deutscher, M P

    1999-01-01

    Ribosomal RNAs are generally synthesized as long, primary transcripts that must be extensively processed to generate the mature, functional species. In Escherichia coli, it is known that the initial 30S precursor is cleaved during its synthesis by the endonuclease RNase III to generate precursors to the 16S, 23S, and 5S rRNAs. However, despite extensive study, the processes by which these intermediate products are converted to their mature forms are poorly understood. In this article, we describe the maturation of 23S rRNA. Based on Northern analysis of RNA isolated from a variety of mutant strains lacking one or multiple ribonucleases, we show that maturation of the 3' terminus requires the action of RNase T, an enzyme previously implicated in the end turnover of tRNA and in the maturation of small, stable RNAs. Although other exoribonucleases can participate in shortening the 3' end of the initial RNase III cleavage product, RNase T is required for removal of the last few residues. In the absence of RNase T, 23S rRNA products with extra 3' residues accumulate and are incorporated into ribosomes, with only small effects on cell growth. Purified RNase T accurately and efficiently converts these immature ribosomes to their mature forms in vitro, whereas free RNA is processed relatively poorly. In vivo, the processing defect at the 3' end has no effect on 5' maturation, indicating that the latter process proceeds independently. We also find that a portion of the 23S rRNA that accumulates in many RNase T- cells becomes polyadenylated because of the action of poly(A) polymerase I. The requirement for RNase T in 23S rRNA maturation is discussed in relation to a model in which only this enzyme, among the eight exoribonucleases present in E. coli, is able to efficiently remove nucleotides close to the double-stranded stem generated by the pairing of the 5' and 3' termini of most stable RNAs. PMID:9917073

  11. Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA.

    PubMed Central

    Zweib, C; Dahlberg, A E

    1984-01-01

    Three different small deletions were produced at a single Pvu 2 restriction site in E. coli 23S rDNA of plasmid pKK 3535 using exonuclease Bal 31. The deletions were located around position 1760 in 23S rRNA and were characterized by DNA sequencing as well as by direct fingerprinting and S1-mapping of the rRNA. Two of the mutant plasmids, Pvu 2-32 and Pvu 2-33, greatly reduced the growth rate of transformed cells while the third mutant, Pvu 2-14 grew as fast as cells containing the wild-type plasmid pKK 3535. All three mutant 23S rRNAs were incorporated into 50S-like particles and were even found in 70S ribosomes and polysomes in vivo. The conformation of mutant 23S rRNA in 50S subunits was probed with a double-strand specific RNase from cobra venom. These analyses revealed changes in the accessibility of cleavage sites near the deletions around position 1760 and in the area around position 800 in all three mutant rRNAs. We suggest, that an altered conformation of the rRNAs at the site of the deletion is responsible for the slow growth of cells containing mutant plasmids Pvu 2-32 and Pvu 2-33. Images PMID:6091057

  12. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA.

    PubMed

    Weitzmann, C J; Cunningham, P R; Ofengand, J

    1990-06-25

    The 23S rRNA gene was excised from the rrnB operon of pKK3535 and ligated into pUC19 behind the strong class III T7 promoter so that the correct 5' end of mature 23S RNA was produced upon transcription by T7 RNA polymerase. At the 3' end, generation of a restriction site for linearization required the addition of 2 adenosine residues to the mature 23S sequence. In vitro runoff transcripts were indistinguishable from natural 23S RNA in size on denaturing gels and in 5'-terminal sequence. The length and sequence of the 3' terminal T1 fragment was also as expected from the DNA sequence, except that an additional C, A, or U residue was added to 21%, 18%, or 5% of the molecules, respectively. Typical transcription reactions yielded 500-700 moles RNA per mole template. This transcript was used as a substrate for methyl transfer from S-adenosyl methionine catalyzed by Escherichia coli cell extracts. The majority (50-65%) of activity observed in a crude (S30) extract appeared in the post-ribosomal supernatant (S100). Activities catalyzing formation of m5C, m5U, m2G, and m6A residues in the synthetic transcript were observed. PMID:2194163

  13. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. PMID:22510214

  14. Designation of Streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes.

    PubMed Central

    Stackebrandt, E; Witt, D; Kemmerling, C; Kroppenstedt, R; Liesack, W

    1991-01-01

    The 16S and 23S rRNA of various Streptomyces species were partially sequenced and screened for the presence of stretches that could define all members of the genus, groups of species, or individual species. Nucleotide 929 (Streptomyces ambofaciens nomenclature [J.L. Pernodet, M.T. Alegre, F. Boccard, and M. Guerineau, Gene 79:33-46, 1989]) is a nucleotide highly unique to Streptomyces species which, in combination with flanking regions, allowed the designation of a genus-specific probe. Regions 158 through 203 of the 16S rRNA and 1518 through 1645 of the 23S rRNA (helix 54 [Pernodet et al., Gene 79:33-46, 1989]) have a high potential to define species, whereas the degree of variation in regions 982 through 998 and 1102 through 1122 of the 16S rRNA is less pronounced but characteristic for at least certain species. Alone or in combination with each other, these regions may serve as target sites for synthetic oligonucleotide probes and primers to be used in the determination of pure cultures and in the characterization of community structures. The specificity of several probes is demonstrated by dot blot hybridization. Images PMID:1854202

  15. Inter- and intra-genomic heterogeneity of the intervening sequence in the 23S ribosomal RNA gene of Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An intervening sequence (IVS) can be present or absent in the 23S rRNA of Campylobacter jejuni and C. coli. As part of a survey, we used a polymerase chain reaction (PCR) assay to detect the presence of the IVS in 43 isolates of C. coli and 82 isolates of C. jejuni. An IVS was present in 40 (93%) ...

  16. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli

    PubMed Central

    Kitahara, Kei; Yasutake, Yoshiaki; Miyazaki, Kentaro

    2012-01-01

    The bacterial ribosome consists of three rRNA molecules and 57 proteins and plays a crucial role in translating mRNA-encoded information into proteins. Because of the ribosome’s structural and mechanistic complexity, it is believed that each ribosomal component coevolves to maintain its function. Unlike 5S rRNA, 16S and 23S rRNAs appear to lack mutational robustness, because they form the structural core of the ribosome. However, using Escherichia coli Δ7 (null mutant of operons) as a host, we have recently shown that an active hybrid ribosome whose 16S rRNA has been specifically substituted with that from non–E. coli bacteria can be reconstituted in vivo. To investigate the mutational robustness of 16S rRNA and the structural basis for its functionality, we used a metagenomic approach to screen for 16S rRNA genes that complement the growth of E. coli Δ7. Various functional genes were obtained from the Gammaproteobacteria and Betaproteobacteria lineages. Despite the large sequence diversity (80.9–99.0% identity with E. coli 16S rRNA) of the functional 16S rRNA molecules, the doubling times (DTs) of each mutant increased only modestly with decreasing sequence identity (average increase in DT, 4.6 s per mutation). The three-dimensional structure of the 30S ribosome showed that at least 40.7% (628/1,542) of the nucleotides were variable, even at ribosomal protein-binding sites, provided that the secondary structures were properly conserved. Our results clearly demonstrate that 16S rRNA functionality largely depends on the secondary structure but not on the sequence itself. PMID:23112186

  17. Improved allele-specific PCR assays for detection of clarithromycin and fluoroquinolone resistant of Helicobacter pylori in gastric biopsies: identification of N87I mutation in GyrA.

    PubMed

    Trespalacios, Alba A; Rimbara, Emiko; Otero, William; Reddy, Rita; Graham, David Y

    2015-04-01

    Molecular testing can rapidly detect Helicobacter pylori susceptibility using gastric biopsies. Allele-specific polymerase chain reaction (ASP-PCR) was used to identify H. pylori 23S rRNA and gyrA mutation using gastric biopsies from Colombian patients and confirmed by PCR and sequencing of the 23S rRNA and gyrA genes. The sensitivity and specificity of ASP-PCR were compared with susceptibilities measured by agar dilution. Samples included gastric biopsies from 107 biopsies with H. pylori infections and 20 H. pylori negative. The sensitivity and specificity of ASP-PCR for the 23S rRNA gene were both 100%. The sensitivity and specificity of ASP-PCR for the gyrA gene, published in 2007 by Nishizawa et al., were 52% and 92.7%, respectively; the lower sensitivity was due to the presence of mutation N87I in our samples, which were not detected by the test. In this study, we designed new primers to detect the mutation N87I in GyrA. The ASP-PCR was performed with the original primers plus the new primers. The molecular test with the new primers improved the sensitivity to 100%. In conclusion, ASP-PCR provides a specific and rapid means of predicting resistance to clarithromycin and levofloxacin in gastric biopsies. PMID:25600075

  18. Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes.

    PubMed Central

    Michot, B; Hassouna, N; Bachellerie, J P

    1984-01-01

    We present a secondary structure model for the entire sequence of mouse 28S rRNA (1) which is based on an extensive comparative analysis of the available eukaryotic sequences, i.e. yeast (2, 3), Physarum polycephalum (4), Xenopus laevis (5) and rat (6). It has been derived with close reference to the models previously proposed for yeast 26S rRNA (2) and for prokaryotic 23S rRNA (7-9). Examination of the recently published eukaryotic sequences confirms that all pro- and eukaryotic large rRNAs share a largely conserved secondary structure core, as already apparent from the previous analysis of yeast 26S rRNA (2). These new comparative data confirm most features of the yeast model (2). They also provide the basis for a few modifications and for new proposals which extend the boundaries of the common structural core (now representing about 85% of E. coli 23S rRNA length) and bring new insights for tracing the structural evolution, in higher eukaryotes, of the domains which have no prokaryotic equivalent and are inserted at specific locations within the common structural core of the large subunit rRNA. PMID:6374617

  19. Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni.

    PubMed

    Hao, Haihong; Yuan, Zonghui; Shen, Zhangqi; Han, Jing; Sahin, Orhan; Liu, Peng; Zhang, Qijing

    2013-03-01

    Macrolide antibiotics are important for clinical treatment of infections caused by Campylobacter jejuni. Development of resistance to this class of antibiotics in Campylobacter is a complex process, and the dynamic molecular changes involved in this process remain poorly defined. Multiple lineages of macrolide-resistant mutants were selected by stepwise exposure of C. jejuni to escalating doses of erythromycin or tylosin. Mutations in target genes were determined by DNA sequencing, and the dynamic changes in the expression of antibiotic efflux transporters and the transcriptome of C. jejuni were examined by real-time reverse transcription-PCR, immunoblotting, and DNA microarray analysis. Multiple types of mutations in ribosomal proteins L4 and L22 occurred early during stepwise selection. On the contrary, the mutations in the 23S rRNA gene, mediating high resistance to macrolides, were observed only in the late-stage mutants. Upregulation of antibiotic efflux genes was observed in the intermediately resistant mutants, and the magnitude of upregulation declined with the occurrence of mutations in the 23S rRNA gene. DNA microarray analysis revealed the differential expression of 265 genes, most of which occurred in the intermediate mutant, including the upregulation of genes encoding ribosomal proteins and the downregulation of genes involved in energy metabolism and motility. These results indicate (i) that mutations in L4 and L22 along with temporal overexpression of antibiotic efflux genes precede and may facilitate the development of high-level macrolide resistance and (ii) that the development of macrolide resistance affects the pathways important for physiology and metabolism in C. jejuni, providing an explanation for the reduced fitness of macrolide-resistant Campylobacter. PMID:23274667

  20. Renibacterium salmoninarum isolates from different sources possess two highly conserved copies of the rRNA operon .

    PubMed

    Grayson, T H; Alexander, S M; Cooper, L F; Gilpin, M L

    2000-07-01

    The nucleotide sequences of the rRNA genes and the 5' flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5' leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S-23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S-5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries. PMID:11016696

  1. 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus and A. xylinum, tRNA genes and antitermination sequences.

    PubMed

    Sievers, M; Alonso, L; Gianotti, S; Boesch, C; Teuber, M

    1996-08-15

    The 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus DSM 6160, A. xylinum NCIB 11664 and A. xylinum CL27 were amplified by PCR. Specific PCR products were obtained from each strain and their nucleotide sequences determined. The spacer region of A. europaeus comprises 768 nucleotides (nt), that of A. xylinum 778 nt and that of A. xylinum CL27 759 nt. Genes encoding tRNAIle and tRNAAla were identified. Putative antitermination sequences were found between the tRNAAla sequence and the 5'-terminus of the 23S rRNA coding sequence. The boxA element has the nucleotide sequence TGCTCTTTGATA. Based on hybridization data of digested chromosomal DNA with spacer-specific probes, the copy number of the rrn operons on the chromosome of Acetobacter strains is estimated to be four. PMID:8759788

  2. Arabidopsis Chloroplast Mini-Ribonuclease III Participates in rRNA Maturation and Intron Recycling

    PubMed Central

    Hotto, Amber M.; Castandet, Benoît; Gilet, Laetitia; Higdon, Andrea; Condon, Ciarán; Stern, David B.

    2015-01-01

    RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3′ end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3′ extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation. PMID:25724636

  3. rRNA gene restriction patterns of Haemophilus influenzae biogroup aegyptius strains associated with Brazilian purpuric fever.

    PubMed Central

    Irino, K; Grimont, F; Casin, I; Grimont, P A

    1988-01-01

    The rRNA gene restriction patterns of 92 isolates of Haemophilus influenzae biogroup aegyptius, associated with conjunctivitis or Brazilian purpuric fever in the State of São Paulo, Brazil, were studied with 16 + 23S rRNA from Escherichia coli as a probe. All strains were classified into 15 patterns. Isolates from Brazilian purpuric fever cases were seen only in patterns 3 (most frequently) and 4 (rarely), whereas isolates from conjunctivitis were found in all 15 patterns. The study demonstrated that rRNA from E. coli can serve as a probe for molecular epidemiology. Images PMID:2459153

  4. Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.

    PubMed Central

    Tu, J; Zillig, W

    1982-01-01

    In the archaebacterium Thermoplasma acidophilum, each of the structural genes for 5S, 16S and 23S rRNA occur once per genome. In contrast to those of eubacteria and eukaryotes, they appear unlinked. The distance between the 16S and the 23S rDNA is at least 7.5 Kb, that between 23S and 5S rDNA at least 6 Kb and that between 16S and 5S rDNA at least 1.5 Kb. No linkage between those genes has been found by the analysis of recombinant plasmids carrying Bam HI and Hind III rDNA fragments as by hybridizing those plasmids to fragments of Thermoplasma DNA generated by 6 individual restriction endonucleases, recognizing hexanucleotide sequences. Images PMID:7155894

  5. Restriction Profiling of 23S Microheterogenic Ribosomal Repeats for Detection and Characterizing of E. coli and Their Clonal, Pathogenic, and Phylogroups

    PubMed Central

    Jayasree Rajagopalan Nair, Parvathi

    2015-01-01

    Correlating ribosomal microheterogenicity with unique restriction profiles can prove to be an efficacious and cost-effective approach compared with sequencing for microbial identification. An attempt to peruse restriction profiling of 23S ribosomal assemblage was ventured; digestion patterns with Bfa I discriminated E. coli from its colony morphovars, while Hae III profiles assisted in establishing distinct clonal groups. Among the gene pool of 399 ribosomal sequences extrapolated from 57 E. coli genomes, varying degree of predominance (I > III > IV > II) of Hae III pattern was observed. This was also corroborated in samples collected from clinical, commensal, and environmental origin. K-12 and its descendants showed type I pattern whereas E. coli-B and its descendants exhibited type IV, both of these patterns being exclusively present in E. coli. A near-possible association between phylogroups and Hae III profiles with presumable correlation between the clonal groups and different pathovars was established. The generic nature, conservation, and barcode gap of 23S rRNA gene make it an ideal choice and substitute to 16S rRNA gene, the most preferred region for molecular diagnostics in bacteria. PMID:26885397

  6. Measurement of the helium 23S metastable atom density by observation of the change in the 23S-23P emission line shape due to radiation reabsorption

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Ogane, S.; Iida, Y.; Hasuo, M.

    2016-01-01

    In helium discharge plasmas, the relative emission intensities of the fine-structure transitions belonging to the HeI 23S-23P transition can be affected by radiation reabsorption. Since the magnitude of the reabsorption depends on the density and temperature of the 23S metastable atoms, their density can be determined by measuring the 23S-23P emission line shape using a high wavelength-resolution spectrometer. In this study, the applicable conditions of the method in terms of the opacity and line broadening are revealed, and possible causes of errors in the measurement, i.e. spatial distributions of the density and temperature and the effects of external magnetic and electric fields, are investigated. The effect of reabsorption under an external magnetic field is experimentally confirmed using a glow discharge plasma installed in a superconducting magnet.

  7. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes. PMID:11166101

  8. Effects of induction of rRNA overproduction on ribosomal protein synthesis and ribosome subunit assembly in Escherichia coli.

    PubMed Central

    Yamagishi, M; Nomura, M

    1988-01-01

    Overproduction of rRNA was artificially induced in Escherichia coli cells to test whether the synthesis of ribosomal protein (r-protein) is normally repressed by feedback regulation. When rRNA was overproduced more than twofold from a hybrid plasmid carrying the rrnB operon fused to the lambda pL promoter (pL-rrnB), synthesis of individual r-proteins increased by an average of about 60%. This demonstrates that the synthesis of r-proteins is repressed under normal conditions. The increase of r-protein production, however, for unknown reasons, was not as great as the increase in rRNA synthesis and resulted in an imbalance between the amounts of rRNA and r-protein synthesis. Therefore, only a small (less than 20%) increase in the synthesis of complete 30S and 50S ribosome subunits was detected, and a considerable fraction of the excess rRNA was degraded. Lack of complete cooperativity in the assembly of ribosome subunits in vivo is discussed as a possible explanation for the absence of a large stimulation of ribosome synthesis observed under these conditions. In addition to the induction of intact rRNA overproduction from the pL-rrnB operon, the effects of unbalanced overproduction of each of the two large rRNAs, 16S rRNA and 23S rRNA, on r-protein synthesis were examined using pL-rrnB derivatives carrying a large deletion in either the 23S rRNA gene or the 16S rRNA gene. Operon-specific derepression after 23S or 16S rRNA overproduction correlated with the overproduction of rRNA containing the target site for the operon-specific repressor r-protein. These results are discussed to explain the apparent coupling of the assembly of one ribosomal subunit with that of the other which was observed in earlier studies on conditionally lethal mutants with defects in ribosome assembly. PMID:3053641

  9. Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance

    PubMed Central

    Klitgaard, Rasmus N.; Ntokou, Eleni; Nørgaard, Katrine; Biltoft, Daniel; Hansen, Lykke H.; Trædholm, Nicolai M.; Kongsted, Jacob

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3 background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin. PMID:25845869

  10. Rapid detection of mutations associated with resistance to erythromycin in Campylobacter jejuni/coli by PCR and line probe assay.

    PubMed

    Niwa, H; Chuma, T; Okamoto, K; Itoh, K

    2001-10-01

    Mutation of 23S rDNA is one of the mechanisms of erythromycin resistance. PCR and line probe assay (PCR-LiPA) with ten oligonucleotide probes were developed to detect the mutations associated with macrolide resistance at positions of 2072, 2073 and 2074 in 23S rDNA of Campylobacter jejuni/coli. A2074-->G mutation was detected in 12 of 25 isolates, which were resistant to erythromycin. No other mutations in 23S rDNA were detected. The rest of the strains were susceptible to erythromycin and no mutation in 23S rDNA was detected. Six laboratory induced erythromycin resistant mutants had no mutations in 23S rDNA. PCR-LiPA is a useful and rapid method to detect mutations in 23S rDNA associated with erythromycin resistance in C. jejuni/coli. PMID:11691569

  11. Differentiation of bacterial 16S rRNA genes and intergenic regions and Mycobacterium tuberculosis katG genes by structure-specific endonuclease cleavage.

    PubMed Central

    Brow, M A; Oldenburg, M C; Lyamichev, V; Heisler, L M; Lyamicheva, N; Hall, J G; Eagan, N J; Olive, D M; Smith, L M; Fors, L; Dahlberg, J E

    1996-01-01

    We describe here a new approach for analyzing nucleic acid sequences using a structure-specific endonuclease, Cleavase I. We have applied this technique to the detection and localization of mutations associated with isoniazid resistance in Mycobacterium tuberculosis and for differentiating bacterial genera, species and strains. The technique described here is based on the observation that single strands of DNAs can assume defined conformations, which can be detected and cleaved by structure-specific endonucleases such as Cleavase I. The patterns of fragments produced are characteristic of the sequences responsible for the structure, so that each DNA has its own structural fingerprint. Amplicons, containing either a single 5'-fluorescein or 5'-tetramethyl rhodamine label were generated from a 620-bp segment of the katG gene of isoniazid-resistant and -sensitive M. tuberculosis, the 5' 350 bp of the 16S rRNA genes of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, Shigella dysenteriae, Campylobacter jejuni, staphylococcus, hominis, Staphylococcus warneri, and Staphylococcus aureus and an approximately 550-bp DNA segment comprising the intergenic region between the 16S and 23S rRNA genes of Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, and Shigella dysenteriae serotypes 1, 2, and 8. Changes in the structural fingerprints of DNA fragments derived from the katG genes of isoniazid-resistant M. tuberculosis isolates were clearly identified and could be mapped to the site of the actual mutation relative to the labeled end. Bland patterns which clearly differentiated bacteria to the level of genus and, in some cases, species were generated from the 16S genes. Cleavase I analysis of the intergenic regions of Salmonella and Shigella species differentiated genus, species, and serotypes. Structural fingerprinting by digestion with Cleavase I is a rapid, simple, and sensitive

  12. rRNA fragmentation induced by a yeast killer toxin.

    PubMed

    Kast, Alene; Klassen, Roland; Meinhardt, Friedhelm

    2014-02-01

    Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins. PMID:24308908

  13. Higher-order structure of rRNA

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Woese, C. R.

    1986-01-01

    A comparative search for phylogenetically covarying basepair replacements within potential helices has been the only reliable method to determine the correct secondary structure of the 3 rRNAs, 5S, 16S, and 23S. The analysis of 16S from a wide phylogenetic spectrum, that includes various branches of the eubacteria, archaebacteria, eucaryotes, in addition to the mitochondria and chloroplast, is beginning to reveal the constraints on the secondary structures of these rRNAs. Based on the success of this analysis, and the assumption that higher order structure will also be phylogenetically conserved, a comparative search was initiated for positions that show co-variation not involved in secondary structure helices. From a list of potential higher order interactions within 16S rRNA, two higher-order interactions are presented. The first of these interactions involves positions 570 and 866. Based on the extent of phylogenetic covariation between these positions while maintaining Watson-Crick pairing, this higher-order interaction is considered proven. The other interaction involves a minimum of six positions between the 1400 and 1500 regions of the 16S rRNA. Although these patterns of covariation are not as striking as the 570/866 interaction, the fact that they all exist in an anti-parallel fashion and that experimental methods previously implicated these two regions of the molecule in tRNA function suggests that these interactions be given serious consideration.

  14. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma.

    PubMed Central

    Liefting, L W; Andersen, M T; Beever, R E; Gardner, R C; Forster, R L

    1996-01-01

    Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data. PMID:8795200

  15. Determining RNA quality for NextGen sequencing: some exceptions to the gold standard rule of 23S to 16S rRNA ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using next-generation-sequencing technology to assess entire transcriptomes requires high quality starting RNA. Currently, RNA quality is routinely judged using automated microfluidic gel electrophoresis platforms and associated algorithms. Here we report that such automated methods generate false-n...

  16. Mutations Outside the Anisomycin-Binding Site Can Make Ribosomes Drug-Resistant

    SciTech Connect

    Blaha,G.; Gurel, G.; Schroeder, S.; Moore, P.; Steitz, T.

    2008-01-01

    Eleven mutations that make Haloarcula marismortui resistant to anisomycin, an antibiotic that competes with the amino acid side chains of aminoacyl tRNAs for binding to the A-site cleft of the large ribosomal unit, have been identified in 23S rRNA. The correlation observed between the sensitivity of H. marismortui to anisomycin and the affinity of its large ribosomal subunits for the drug indicates that its response to anisomycin is determined primarily by the binding of the drug to its large ribosomal subunit. The structures of large ribosomal subunits containing resistance mutations show that these mutations can be divided into two classes: (1) those that interfere with specific drug-ribosome interactions and (2) those that stabilize the apo conformation of the A-site cleft of the ribosome relative to its drug-bound conformation. The conformational effects of some mutations of the second kind propagate through the ribosome for considerable distances and are reversed when A-site substrates bind to the ribosome.

  17. Molecular analysis of 16S-23S spacer regions of Acetobacter species.

    PubMed

    Kretová, M; Grones, J

    2005-01-01

    16S-23S rDNA internal transcribed spacer regions (ITS) similarities were determined in 8 Acetobacter and 1 Gluconacetobacter strains. ITS-PCR amplification of the 16S-23S spacers showed 2 products of similar size in 7 strains; only 1 product of similar size was found in the 2 remaining strains. Analysis of the PCR products using restriction endonucleases HaeIII, HpaII and AluI revealed 3 different restriction groups of A. pasteurianus for AluI and HaeIII, and 4 restriction groups for HpaII. ITS nucleotide sequences of all studied strains exhibited a 52-98% similarity. PMID:16408846

  18. High rate of A2142G point mutation associated with clarithromycin resistance among Iranian Helicobacter pylori clinical isolates.

    PubMed

    Khashei, Reza; Dara, Mahintaj; Bazargani, Abdollah; Bagheri Lankarani, Kamran; Taghavi, Alireza; Moeini, Maryam; Dehghani, Behzad; Sohrabi, Maryam

    2016-09-01

    This study aimed to investigate the clarithromycin resistance and its associated molecular mechanisms among Helicobacter pylori isolates from dyspeptic patients in Shiraz, Iran. From January to May 2014, 100 H. pylori strains were isolated from patients with gastroduodenal disorders. The resistance to clarithromycin was quantitatively evaluated, using Epsilometer (E-test) method. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed on all the isolates to detect A2143G and A2142G mutations in 23S rRNA gene. The H. pylori isolation rate was found to be 31.4%. E-test showed that 20% of isolates were resistant to clarithromycin (MIC ≥ 1 mg/L). MIC of clarithromycin ranged between 0.016 and 24 mg/L. Findings of PCR-RFLP showed that the A2142G was the most (90%) frequently point mutation, followed by the A2143G (10%). No statistically significant difference was found between H. pylori clarithromycin resistance point mutations and patients' gender or age. To the best of our knowledge, this is the first report of high frequency of A2142G point mutation in Iran and probably in other regions of the world. Considering the increasing trend of H. pylori resistance to clarithromycin due to these mutations, it is crucial to investigate the new therapeutic approaches against H. pylori infection. PMID:27357065

  19. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  20. Improved Identification of Rapidly Growing Mycobacteria by a 16S–23S Internal Transcribed Spacer Region PCR and Capillary Gel Electrophoresis

    PubMed Central

    Gray, Timothy J.; Kong, Fanrong; Jelfs, Peter; Sintchenko, Vitali; Chen, Sharon C-A.

    2014-01-01

    The identification of rapidly growing mycobacteria (RGM) remains problematic because of evolving taxonomy, limitations of current phenotypic methods and absence of a universal gene target for reliable speciation. This study evaluated a novel method of identification of RGM by amplification of the mycobacterial 16S–23S rRNA internal transcribed spacer (ITS) followed by resolution of amplified fragments by capillary gel electrophoresis (CGE). Nineteen American Type Culture Collection (ATCC) Mycobacterium strains and 178 clinical isolates of RGM (12 species) were studied. All RGM ATCC strains generated unique electropherograms with no overlap with slowly growing mycobacteria species, including M. tuberculosis. A total of 47 electropherograms for the 178 clinical isolates were observed allowing the speciation of 175/178 (98.3%) isolates, including the differentiation of the closely related species, M. massiliense (M. abscessus subspecies bolletii) and M. abscessus (M. abscessus sensu stricto). ITS fragment size ranged from 332 to 534 bp and 33.7% of clinical isolates generated electropherograms with two distinct peaks, while the remainder where characterized with a single peak. Unique peaks (fragment lengths) were identified for 11/12 (92%) RGM species with only M. moriokaense having an indistinguishable electropherogram from a rarely encountered CGE subtype of M. fortuitum. We conclude that amplification of the 16S–23S ITS gene region followed by resolution of fragments by CGE is a simple, rapid, accurate and reproducible method for species identification and characterization of the RGM. PMID:25013955

  1. A nested array of rRNA targeted probes for the detection and identification of enterococci by reverse hybridization.

    PubMed

    Behr, T; Koob, C; Schedl, M; Mehlen, A; Meier, H; Knopp, D; Frahm, E; Obst, U; Schleifer, K; Niessner, R; Ludwig, W

    2000-12-01

    Complete 23S and almost complete 16S rRNA gene sequences were determined for the type strains of the validly described Enterococcus species, Melissococcus pluton and Tetragenococcus halophilus. A comprehensive set of rRNA targeted specific oligonucleotide hybridization probes was designed according to the multiple probe concept. In silico probe design and evaluation was performed using the respective tools of the ARB program package in combination with the ARB databases comprising the currently available 16S as well as 23S rRNA primary structures. The probes were optimized with respect to their application for reverse hybridization in microplate format. The target comprising 16S and 23S rDNA was amplified and labeled by PCR (polymerase chain reaction) using general primers targeting a wide spectrum of bacteria. Alternatively, amplification of two adjacent rDNA fragments of enterococci was performed by using specific primers. In vitro evaluation of the probe set was done including all Enterococcus type strains, and a selection of other representatives of the gram-positive bacteria with a low genomic DNA G+C content. The optimized probe set was used to analyze enriched drinking water samples as well as original samples from waste water treatment plants. PMID:11249027

  2. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes.

    PubMed Central

    Manz, W; Szewzyk, U; Ericsson, P; Amann, R; Schleifer, K H; Stenström, T A

    1993-01-01

    Free-water-phase and surface-associated microorganisms from drinking water were detected and roughly identified by hybridization with fluorescence-labeled oligonucleotide probes complementary to regions of 16S and 23S rRNA characteristic for the domains Bacteria, Archaea, and Eucarya and the beta and gamma subclasses of Proteobacteria. Samples of glass-attached biofilms and plankton were taken from a Robbins device installed in a water distribution system. More than 70% of the surface-associated cells and less than 40% of the planktonic cells visualized by 4',6-diamidino-2-phenylindole staining bound detectable amounts of rRNA-targeted probes. These findings are an indication for higher average rRNA content and consequently higher physiological activity of the attached microbial cells compared with the free-living cells. All detectable cells hybridized with the bacterial probe, whereas no Archaea and no Eucarya cells could be detected. Simultaneous hybridization with probes specific for the beta and gamma subclasses of Proteobacteria revealed that microcolonies already consisted of mixed populations in early stages with fewer than 50 cells. These observations provide further evidence that the coexistence and interaction of bacteria in drinking water biofilms may be an integral part of their growth and survival strategies. Images PMID:8357261

  3. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA.

    PubMed Central

    La Teana, A; Gualerzi, C O; Dahlberg, A E

    2001-01-01

    During initiation of protein synthesis in bacteria, translation initiation factor IF2 is responsible for the recognition of the initiator tRNA (fMet-tRNA). To perform this function, IF2 binds to the ribosome interacting with both 30S and 50S ribosomal subunits. Here we report the topographical localization of translation initiation factor IF2 on the 70S ribosome determined by base-specific chemical probing. Our results indicate that IF2 specifically protects from chemical modification two sites in domain V of 23S rRNA, namely A2476 and A2478, and residues around position 2660 in domain VI, the so-called sarcin-ricin loop. These footprints are generated by IF2 regardless of the presence of fMet-tRNA, GTP, mRNA, and IF1. IF2 causes no specific protection of 16S rRNA. We observe a decreased reactivity of residues A1418 and A1483, which is an indication that the initiation factor has a tightening effect on the association of ribosomal subunits. This result, confirmed by sucrose density gradient analysis, seems to be a universally conserved property of IF2. PMID:11497435

  4. Exchange of Spacer Regions between Rrna Operons in Escherichia Coli

    PubMed Central

    Harvey, S.; Hill, C. W.

    1990-01-01

    The Escherichia coli rRNA operons each have one of two types of spacer separating the 16S and 23S coding regions. The spacers of four operons encode tRNA(Glu2) and the other three encode both tRNA(Ile) and tRNA(Ala 1 B). We have prepared a series of mutants in which the spacer region of a particular rrn operon has been replaced by the opposite type. Included among these were a mutant retaining only a single copy of the tRNA(Glu2) spacer (at rrnG) and another retaining only a single copy of the tRNA(Ile)-tRNA(Ala 1 B) spacer (at rrnA). While both mutants grew more slowly than controls, the mutant deficient in tRNA(Glu2) spacers was more severely affected. At a frequency of 6 X 10(-5), these mutants phenotypically reverted to faster growing types by increasing the copy number of the deficient spacer. In most of these phenotypic revertants, the deficient spacer type appeared in a rrn operon which previously contained the surplus type, bringing the ratio of spacer types closer to normal. In a few cases, these spacer changes were accompanied by an inversion of the chromosomal material between the donor and recipient rrn operons. Two examples of inversion of one-half of the E. coli chromosome between rrnG and rrnH were observed. The correlation of spacer change with inversion indicated that, in these particular cases, the change was due to an intrachromatid gene conversion event accompanied by a reciprocal crossover rather than reciprocal exchange between sister chromatids. PMID:2168847

  5. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization.

    PubMed Central

    Poulsen, L K; Lan, F; Kristensen, C S; Hobolth, P; Molin, S; Krogfelt, K A

    1994-01-01

    Fluorescent oligonucleotide probes targeting rRNA were used to develop an in situ hybridization technique by which the spatial distribution of Escherichia coli in the large intestines of streptomycin-treated mice was determined. Single E. coli cells were identified in thin frozen sections from the large intestines by the use of a probe specific for E. coli 23S rRNA. Furthermore, the total bacterial population was visualized with an rRNA probe targeting the domain Bacteria. By this technique, all E. coli cells were seen embedded in the mucosal material overlying the epithelial cells of the large intestine, and no direct attachment to the epithelium was observed. Images PMID:7927805

  6. Regarding the Charmed-Strange Member of the 23S1 Meson State

    PubMed Central

    Feng, Xue-Chao; Chen, Jing

    2013-01-01

    By employing the mass relations derived from the mass matrix and Regge trajectory, we investigate the masses of charmed and charmed-strange members of the 23S1 meson. The masses are compared with the values predicted by other theoretical approaches and experimental data. The results may be useful for the discovery of the unobserved meson and the determination of the quantum number of the newly discovered states. PMID:24250272

  7. Mutational analysis of basic residues in the N-terminus of the rRNA:m6A methyltransferase ErmC'.

    PubMed

    Maravić, G; Bujnicki, J M; Flögel, M

    2004-01-01

    Erm methyltransferases mediate the resistance to the macrolide-lincosamide-streptogramin B antibiotics via dimethylation of a specific adenine residue in 23S rRNA. The role of positively charged N-terminal residues of the ErmC' methyltransferase in RNA binding and/or catalysis was determined. Mutational analysis of amino acids K4 and K7 was performed and the mutants were characterized in in vivo and in vitro experiments. The K4 and K7 residues were suggested not to be essential for the enzyme activity but to provide a considerable support for the catalytic step of the reaction, probably by maintaining the optimum conformation of the transition state through interactions with the phosphate backbone of RNA. PMID:15114858

  8. RRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica.

    PubMed

    Parker, Matthew A

    2004-05-01

    Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events. PMID:15214639

  9. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data.

    PubMed

    Bengtsson-Palme, Johan; Hartmann, Martin; Eriksson, Karl Martin; Pal, Chandan; Thorell, Kaisa; Larsson, Dan Göran Joakim; Nilsson, Rolf Henrik

    2015-11-01

    The ribosomal rRNA genes are widely used as genetic markers for taxonomic identification of microbes. Particularly the small subunit (SSU; 16S/18S) rRNA gene is frequently used for species- or genus-level identification, but also the large subunit (LSU; 23S/28S) rRNA gene is employed in taxonomic assignment. The METAXA software tool is a popular utility for extracting partial rRNA sequences from large sequencing data sets and assigning them to an archaeal, bacterial, nuclear eukaryote, mitochondrial or chloroplast origin. This study describes a comprehensive update to METAXA - METAXA2 - that extends the capabilities of the tool, introducing support for the LSU rRNA gene, a greatly improved classifier allowing classification down to genus or species level, as well as enhanced support for short-read (100 bp) and paired-end sequences, among other changes. The performance of METAXA2 was compared to other commonly used taxonomic classifiers, showing that METAXA2 often outperforms previous methods in terms of making correct predictions while maintaining a low misclassification rate. METAXA2 is freely available from http://microbiology.se/software/metaxa2/. PMID:25732605

  10. Characterization of Xanthomonas campestris Pathovars by rRNA Gene Restriction Patterns

    PubMed Central

    Berthier, Yvette; Verdier, Valérie; Guesdon, Jean-Luc; Chevrier, Danièle; Denis, Jean-Baptiste; Decoux, Guy; Lemattre, Monique

    1993-01-01

    Genomic DNA of 191 strains of the family Pseudomonadaceae, including 187 strains of the genus Xanthomonas, was cleaved by EcoRI endonuclease. After hybridization of Southern transfer blots with 2-acetylamino-fluorene-labelled Escherichia coli 16+23S rRNA probe, 27 different patterns were obtained. The strains are clearly distinguishable at the genus, species, and pathovar levels. The variability of the rRNA gene restriction patterns was determined for four pathovars of Xanthomonas campestris species. The 16 strains of X. campestris pv. begoniae analyzed gave only one pattern. The variability of rRNA gene restriction patterns of X. campestris pv. manihotis strains could be related to ecotypes. In contrast, the variability of patterns observed for X. campestris pv. malvacearum was not correlated with pathogenicity or with the geographical origins of the strains. The highest degree of variability of DNA fingerprints was observed within X. campestris pv. dieffenbachiae, which is pathogenic to several hosts of the Araceae family. In this case, variability was related to both host plant and pathogenicity. Images PMID:16348894

  11. Unequal Crossing over at the Rrna Tandon as a Source of Quantitative Genetic Variation in Drosophila

    PubMed Central

    Frankham, R.; Briscoe, D. A.; Nurthen, R. K.

    1980-01-01

    Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 x 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination. PMID:7439683

  12. A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products.

    PubMed

    Straub, J A; Hertel, C; Hammes, W P

    1999-10-01

    A polymerase chain reaction-based system for detection of Staphylococcus aureus was developed. The system consisted of the following components: (i) selective enrichment, (ii) DNA isolation, (iii) amplification of DNA with primers targeted against the 23S rRNA gene, and (iv) evaluation of the specificity of the polymerase chain reaction by Southern hybridization and nested polymerase chain reaction. The method achieved a high degree of sensitivity and unambiguity as required for the detection of contaminants in food starter preparations. The method permitted detection of Staphylococcus aureus in preparations of meat starter cultures containing Staphylococcus carnosus either alone or in combination with lactobacilli, pediococci, and/or Kocuria varians. Detection limits were sufficiently low to show within 12 h the presence of 10(0) CFU of S. aureus in starter preparations containing 10(10) CFU of S. carnosus. The system was also applied to dried skim milk and cream. For detection without selective enrichment, a protocol was developed and permitted detection of 120 CFU of S. aureus in 1 ml of cream within 6 h. With nested polymerase chain reaction, the detection limit was decreased by one order of magnitude. PMID:10528718

  13. Diversity of 16S-23S rDNA Internal Transcribed Spacer (ITS) Reveals Phylogenetic Relationships in Burkholderia pseudomallei and Its Near-Neighbors

    PubMed Central

    Liguori, Andrew P.; Warrington, Stephanie D.; Ginther, Jennifer L.; Pearson, Talima; Bowers, Jolene; Glass, Mindy B.; Mayo, Mark; Wuthiekanun, Vanaporn; Engelthaler, David; Peacock, Sharon J.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Tuanyok, Apichai

    2011-01-01

    Length polymorphisms within the 16S-23S ribosomal DNA internal transcribed spacer (ITS) have been described as stable genetic markers for studying bacterial phylogenetics. In this study, we used these genetic markers to investigate phylogenetic relationships in Burkholderia pseudomallei and its near-relative species. B. pseudomallei is known as one of the most genetically recombined bacterial species. In silico analysis of multiple B. pseudomallei genomes revealed approximately four homologous rRNA operons and ITS length polymorphisms therein. We characterized ITS distribution using PCR and analyzed via a high-throughput capillary electrophoresis in 1,191 B. pseudomallei strains. Three major ITS types were identified, two of which were commonly found in most B. pseudomallei strains from the endemic areas, whereas the third one was significantly correlated with worldwide sporadic strains. Interestingly, mixtures of the two common ITS types were observed within the same strains, and at a greater incidence in Thailand than Australia suggesting that genetic recombination causes the ITS variation within species, with greater recombination frequency in Thailand. In addition, the B. mallei ITS type was common to B. pseudomallei, providing further support that B. mallei is a clone of B. pseudomallei. Other B. pseudomallei near-neighbors possessed unique and monomorphic ITS types. Our data shed light on evolutionary patterns of B. pseudomallei and its near relative species. PMID:22195045

  14. A Single Acetylation of 18 S rRNA Is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae*

    PubMed Central

    Ito, Satoshi; Akamatsu, Yu; Noma, Akiko; Kimura, Satoshi; Miyauchi, Kenjyo; Ikeuchi, Yoshiho; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Biogenesis of eukaryotic ribosome is a complex event involving a number of non-ribosomal factors. During assembly of the ribosome, rRNAs are post-transcriptionally modified by 2′-O-methylation, pseudouridylation, and several base-specific modifications, which are collectively involved in fine-tuning translational fidelity and/or modulating ribosome assembly. By mass-spectrometric analysis, we demonstrated that N4-acetylcytidine (ac4C) is present at position 1773 in the 18 S rRNA of Saccharomyces cerevisiae. In addition, we found an essential gene, KRE33 (human homolog, NAT10), that we renamed RRA1 (ribosomal RNA cytidine acetyltransferase 1) encoding an RNA acetyltransferase responsible for ac4C1773 formation. Using recombinant Rra1p, we could successfully reconstitute ac4C1773 in a model rRNA fragment in the presence of both acetyl-CoA and ATP as substrates. Upon depletion of Rra1p, the 23 S precursor of 18 S rRNA was accumulated significantly, which resulted in complete loss of 18 S rRNA and small ribosomal subunit (40 S), suggesting that ac4C1773 formation catalyzed by Rra1p plays a critical role in processing of the 23 S precursor to yield 18 S rRNA. When nuclear acetyl-CoA was depleted by inactivation of acetyl-CoA synthetase 2 (ACS2), we observed temporal accumulation of the 23 S precursor, indicating that Rra1p modulates biogenesis of 40 S subunit by sensing nuclear acetyl-CoA concentration. PMID:25086048

  15. The weak measurement process and the weak value of spin for metastable helium 23S1

    NASA Astrophysics Data System (ADS)

    Monachello, Vincenzo; Barker, Peter; Flack, Robert; Hiley, Basil

    2016-05-01

    An experiment is being designed and constructed in order to measure the weak value of spin for an atomic system. The principle of the ``weak measurement'' process was first proposed by Aharonov, Albert and Vaidman, and describes a scenario in which a system is weakly coupled to a pointer between well-defined pre- and post-selected states. This experiment will utilise a pulsed supersonic beam of spin-1 metastable Helium (He*) atoms in the 23S1 state. The spin of the pre-selected He* atoms will be weakly coupled to its centre-of-mass. During its flight, the atomic beam will be prepared in a desired quantum state and travel through two inhomogeneous magnets (weak and strong) which both comprise the ``weak measurement'' process. The deviation of the post-selected ms = + 1 state as measured using a micro-channel plate, phosphor screen and CCD camera setup will allow for the determination of the weak value of spin. This poster will report on the methods used and the experimental realisation.

  16. Spin-dependent, optogalvanic effects of laser-pumped He(2/3/S1) atoms

    NASA Astrophysics Data System (ADS)

    Schearer, L. D.; Tin, Pedetha

    1989-10-01

    Spin-dependent optogalvanic effects of laser-pumped He(2/3/S1) atoms are demonstrated. As helium atoms are excited with an IR tunable laser, changes in the conductivity of helium radio-frequency discharge are observed. With approximately 1 mW/sq cm of tunable laser power near 1.083 microns, the intensity-modulated optogalvanic effect signals are obtained as the laser is tuned through the D0(2/3/S1-2/3/P0), D1(2/3/S1-2/3/P1), and D2(2/3/S1-2/3/P2) transitions at 1.082908, 1.083025, and 1.083034 microns, respectively. If the laser emission is now circularly polarized and directed onto the helium discharge cell with the applied field parallel to the pump axis, some of the metastable atoms are oriented with their electronic spins along the field direction, modulating the coil current. One of the important applications of spin-polarized ensembles of metastable 4He is in extremely sensitive magnetic-field measuring devices.

  17. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae

    PubMed Central

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-01-01

    Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  18. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae.

    PubMed

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-02-27

    Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  19. Sequence analysis and structure prediction of 23S rRNA:m1G methyltransferases reveals a conserved core augmented with a putative Zn-binding domain in the N-terminus and family-specific elaborations in the C-terminus.

    PubMed

    Bujnicki, Janusz M; Blumenthal, Robert M; Rychlewski, Leszek

    2002-01-01

    N1-methylation of G748 within 23S ribosomal RNA results in resistance to the macrolide tylosin in Streptomyces. In contrast, the Escherichia coli mutant lacking N1-methylation of G745 exhibits increased resistance to viomycin, in addition to severe defects of growth characteristics. Both methylated guanines are located in hairpin 35, in domain II of prokaryotic 23S rRNA. G748 and G745 are modified by related S-adenosylmethionine-dependent methyltransferases (MTases), TlrB and RrmA respectively. Earlier sequence comparisons allowed identification of the AdoMet-binding site, however the catalytic site and the target-recognition region of these enzymes could not be delineated unambiguously. In this work, we carried out sequence-to-structure threading of the rRNA:m1G MTase family against the database of known structures to Identify those "missing regions". Our analysis confirms the earlier prediction of the AdoMet-binding site, but suggests a different location of the putative catalytic center than was previously postulated. We predict that RrmA and TlrB possess two regions that may be responsible for specific interactions with their target nucleic acid sequences: a putative Zn-finger domain in the N-terminus and the variable domain close to the C-terminus, which indicates that 23S rRNA MTases exhibit the primary structural organization distinct from other nucleic acid MTases, despite sharing the common catalytic domain. PMID:11763974

  20. Variable rRNA gene copies in extreme halobacteria

    SciTech Connect

    Sanz, J.L.; Marin, I.; Ramirez, L.; Amils, R. ); Abad, J.P.; Smith, C.L. )

    1988-08-25

    Using PFG electrophoresis techniques, the authors have examined the organization of rRNA gene in halobacterium species. The results show that the organization of rRNA genes among closely related halobacteria is quite heterogeneous. This contrasts with the high degree of conservation of rRNA sequence. The possible mechanism of such rRNA gene amplification and its evolutionary implications are discussed.

  1. Genetic Diversity and Phylogeny of Rhizobia That Nodulate Acacia spp. in Morocco Assessed by Analysis of rRNA Genes

    PubMed Central

    Khbaya, Bouchaib; Neyra, Marc; Normand, Philippe; Zerhari, Karim; Filali-Maltouf, Abdelkarim

    1998-01-01

    Forty rhizobia nodulating four Acacia species (A. gummifera, A. raddiana, A. cyanophylla, and A. horrida) were isolated from different sites in Morocco. These rhizobia were compared by analyzing both the 16S rRNA gene (rDNA) and the 16S-23S rRNA spacer by PCR with restriction fragment length polymorphism (RFLP) analysis. Analysis of the length of 16S-23S spacer showed a considerable diversity within these microsymbionts, but RFLP analysis of the amplified spacer revealed no additional heterogeneity. Three clusters were identified when 16S rDNA analysis was carried out. Two of these clusters include some isolates which nodulate, nonspecifically, the four Acacia species. These clusters, A and B, fit within the Sinorhizobium lineage and are closely related to S. meliloti and S. fredii, respectively. The third cluster appeared to belong to the Agrobacterium-Rhizobium galegae phylum and is more closely related to the Agrobacterium tumefaciens species. These relations were confirmed by sequencing a representative strain from each cluster. PMID:9835582

  2. 5 S Rrna Is Involved in Fidelity of Translational Reading Frame

    PubMed Central

    Dinman, J. D.; Wickner, R. B.

    1995-01-01

    Chromosomal mutants (maintenance of frame = mof) in which the efficiency of -1 ribosomal frame-shifting is increased can be isolated using constructs in which lacZ expression is dependent upon a -1 shift of reading frame. We isolate a new mof mutation, mof9, in Saccharomyces cerevisiae and show that it is complemented by both single and multi-copy 5 S rDNA clones. Two independent insertion mutations in the rDNA locus (rDNA::LEU2 and rDNA::URA3) also display the Mof(-) phenotype and are also complemented by single and multi-copy 5 S rDNA clones. Mutant 5 S rRNAs expressed from a plasmid as 20-50% of total 5 S rRNA in a wild-type host also induced the Mof(-) phenotype. The increase in frameshifting is greatest when the lacZ reporter gene is expressed on a high copy, episomal vector. No differences were found in 5 S rRNA copy number or electrophoretic mobilities in mof9 strains. Both mof9 and rDNA::LEU2 increase the efficiency of +1 frameshifting as well but have no effect on readthrough of UAG or UAA termination codons, indicating that not all translational specificity is affected. These data suggest a role for 5 S rRNA in the maintenance of frame in translation. PMID:8536994

  3. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins.

    PubMed Central

    Jacob, W F; Santer, M; Dahlberg, A E

    1987-01-01

    A single base mutation was constructed at position 1538 of Escherichia coli 16S rRNA, changing a cytidine to a uridine. This position is in the Shine-Dalgarno region, thought to be involved in base-pairing to mRNA during initiation of protein synthesis. The mutation was constructed by using a synthetic oligodeoxynucleotide that differs in sequence by one base from the wild-type sequence of 16S rRNA. This oligonucleotide was used as a primer on single-stranded DNA of phage M13, into which was cloned a specific region of DNA encoding 16S rRNA. The mutation is lethal when expressed from the normal promoters of rRNA operons, P1 and P2, in a high-copy-number plasmid. Expression can be repressed by a temperature-sensitive repressor, cI857, in combination with the bacteriophage lambda PL promoter. Induction of transcription by temperature shift yields mutant 16S rRNA that is processed and assembled into functional ribosomal subunits. The presence of mutant ribosomes retards cell growth and dramatically alters incorporation of [35S]methionine into a large proportion of the cellular proteins. The change in level of synthesis of individual proteins correlates with the change in base-pairing between mutant rRNA and the Shine-Dalgarno region of the mRNA. Images PMID:2440027

  4. Specific Detection of Bradyrhizobium and Rhizobium Strains Colonizing Rice (Oryza sativa) Roots by 16S-23S Ribosomal DNA Intergenic Spacer-Targeted PCR

    PubMed Central

    Tan, Zhiyuan; Hurek, Thomas; Vinuesa, Pablo; Müller, Peter; Ladha, Jagdish K.; Reinhold-Hurek, Barbara

    2001-01-01

    In addition to forming symbiotic nodules on legumes, rhizobial strains are members of soil or rhizosphere communities or occur as endophytes, e.g., in rice. Two rhizobial strains which have been isolated from root nodules of the aquatic legumes Aeschynomene fluminensis (IRBG271) and Sesbania aculeata (IRBG74) were previously found to promote rice growth. In addition to analyzing their phylogenetic positions, we assessed the suitability of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (IGS) sequences for the differentiation of closely related rhizobial taxa and for the development of PCR protocols allowing the specific detection of strains in the environment. 16S rDNA sequence analysis (sequence identity, 99%) and phylogenetic analysis of IGS sequences showed that strain IRBG271 was related to but distinct from Bradyrhizobium elkanii. Rhizobium sp. (Sesbania) strain IRBG74 was located in the Rhizobium-Agrobacterium cluster as a novel lineage according to phylogenetic 16S rDNA analysis (96.8 to 98.9% sequence identity with Agrobacterium tumefaciens; emended name, Rhizobium radiobacter). Strain IRBG74 harbored four copies of rRNA operons whose IGS sequences varied only slightly (2 to 9 nucleotides). The IGS sequence analyses allowed intraspecies differentiation, especially in the genus Bradyrhizobium, as illustrated here for strains of Bradyrhizobium japonicum, B. elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium sp. (Chamaecytisus) strain BTA-1. It also clearly differentiated fast-growing rhizobial species and strains, albeit with lower statistical significance. Moreover, the high sequence variability allowed the development of highly specific IGS-targeted nested-PCR assays. Strains IRBG74 and IRBG271 were specifically detected in complex DNA mixtures of numerous related bacteria and in the DNA of roots of gnotobiotically cultured or even of soil-grown rice plants after inoculation. Thus, IGS sequence analysis is an attractive technique for both microbial

  5. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing

    PubMed Central

    Tang, Thean Hock; Rozhdestvensky, Timofey S.; d’Orval, Béatrice Clouet; Bortolin, Marie-Line; Huber, Harald; Charpentier, Bruno; Branlant, Christiane; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2002-01-01

    The bulge–helix–bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularisation of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5′ external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA. PMID:11842103

  6. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss

    PubMed Central

    Lu, Jianxin; Li, Zhiyuan; Zhu, Yi; Yang, Aifen; Li, Ronghua; Zheng, Jing; Cai, Qin; Peng, Guanghua; Zheng, Wuwei; Tang, Xiaowen; Chen, Bobei; Chen, Jianfu; Liao, Zhisu; Yang, Li; Li, Yongyan; You, Junyan; Ding, Yu; Yu, Hong; Wang, Jindan; Sun, Dongmei; Zhao, Jianyue; Xue, Ling; Wang, Jieying; Guan, Min-Xin

    2010-01-01

    In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity. PMID:20100600

  7. Mycoplasma genitalium infection: current treatment options, therapeutic failure, and resistance-associated mutations.

    PubMed

    Couldwell, Deborah L; Lewis, David A

    2015-01-01

    Mycoplasma genitalium is an important cause of non-gonococcal urethritis, cervicitis, and related upper genital tract infections. The efficacy of doxycycline, used extensively to treat non-gonococcal urethritis in the past, is relatively poor for M. genitalium infection; azithromycin has been the preferred treatment for several years. Research on the efficacy of azithromycin has primarily focused on the 1 g single-dose regimen, but some studies have also evaluated higher doses and longer courses, particularly the extended 1.5 g regimen. This extended regimen is thought to be more efficacious than the 1 g single-dose regimen, although the regimens have not been directly compared in clinical trials. Azithromycin treatment failure was first reported in Australia and has subsequently been documented in several continents. Recent reports indicate an upward trend in the prevalence of macrolide-resistant M. genitalium infections (transmitted resistance), and cases of induced resistance following azithromycin therapy have also been documented. Emergence of antimicrobial-resistant M. genitalium, driven by suboptimal macrolide dosage, now threatens the continued provision of effective and convenient treatments. Advances in techniques to detect resistance mutations in DNA extracts have facilitated correlation of clinical outcomes with genotypic resistance. A strong and consistent association exists between presence of 23S rRNA gene mutations and azithromycin treatment failure. Fluoroquinolones such as moxifloxacin, gatifloxacin, and sitafloxacin remain highly active against most macrolide-resistant M. genitalium. However, the first clinical cases of moxifloxacin treatment failure, due to bacteria with coexistent macrolide-associated and fluoroquinolone-associated resistance mutations, were recently published by Australian investigators. Pristinamycin and solithromycin may be of clinical benefit for such multidrug-resistant infections. Further clinical studies are required to

  8. Mycoplasma genitalium infection: current treatment options, therapeutic failure, and resistance-associated mutations

    PubMed Central

    Couldwell, Deborah L; Lewis, David A

    2015-01-01

    Mycoplasma genitalium is an important cause of non-gonococcal urethritis, cervicitis, and related upper genital tract infections. The efficacy of doxycycline, used extensively to treat non-gonococcal urethritis in the past, is relatively poor for M. genitalium infection; azithromycin has been the preferred treatment for several years. Research on the efficacy of azithromycin has primarily focused on the 1 g single-dose regimen, but some studies have also evaluated higher doses and longer courses, particularly the extended 1.5 g regimen. This extended regimen is thought to be more efficacious than the 1 g single-dose regimen, although the regimens have not been directly compared in clinical trials. Azithromycin treatment failure was first reported in Australia and has subsequently been documented in several continents. Recent reports indicate an upward trend in the prevalence of macrolide-resistant M. genitalium infections (transmitted resistance), and cases of induced resistance following azithromycin therapy have also been documented. Emergence of antimicrobial-resistant M. genitalium, driven by suboptimal macrolide dosage, now threatens the continued provision of effective and convenient treatments. Advances in techniques to detect resistance mutations in DNA extracts have facilitated correlation of clinical outcomes with genotypic resistance. A strong and consistent association exists between presence of 23S rRNA gene mutations and azithromycin treatment failure. Fluoroquinolones such as moxifloxacin, gatifloxacin, and sitafloxacin remain highly active against most macrolide-resistant M. genitalium. However, the first clinical cases of moxifloxacin treatment failure, due to bacteria with coexistent macrolide-associated and fluoroquinolone-associated resistance mutations, were recently published by Australian investigators. Pristinamycin and solithromycin may be of clinical benefit for such multidrug-resistant infections. Further clinical studies are required to

  9. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  10. The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics

    PubMed Central

    Long, Katherine S.; Poehlsgaard, Jacob; Kehrenberg, Corinna; Schwarz, Stefan; Vester, Birte

    2006-01-01

    A novel multidrug resistance phenotype mediated by the Cfr rRNA methyltransferase is observed in Staphylococcus aureus and Escherichia coli. The cfr gene has previously been identified as a phenicol and lincosamide resistance gene on plasmids isolated from Staphylococcus spp. of animal origin and recently shown to encode a methyltransferase that modifies 23S rRNA at A2503. Antimicrobial susceptibility testing shows that S. aureus and E. coli strains expressing the cfr gene exhibit elevated MICs to a number of chemically unrelated drugs. The phenotype is named PhLOPSA for resistance to the following drug classes: Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Each of these five drug classes contains important antimicrobial agents that are currently used in human and/or veterinary medicine. We find that binding of the PhLOPSA drugs, which bind to overlapping sites at the peptidyl transferase center that abut nucleotide A2503, is perturbed upon Cfr-mediated methylation. Decreased drug binding to Cfr-methylated ribosomes has been confirmed by footprinting analysis. No other rRNA methyltransferase is known to confer resistance to five chemically distinct classes of antimicrobials. In addition, the findings described in this study represent the first report of a gene conferring transferable resistance to pleuromutilins and oxazolidinones. PMID:16801432

  11. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    PubMed Central

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-01-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033

  12. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics

    PubMed Central

    2011-01-01

    Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females) had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel) variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S rRNA accounted for ~30% cases

  13. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene

    PubMed Central

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-01-01

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese’s complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes. PMID:26220935

  14. Occurrence of 20S RNA and 23S RNA replicons in industrial yeast strains and their variation under nutritional stress conditions.

    PubMed

    López, Victoria; Gil, Rosario; Vicente Carbonell, José; Navarro, Alfonso

    2002-04-01

    We have characterized industrial yeast strains used in the brewing, baking, and winemaking industries for the presence or absence of cytoplasmic single-stranded 20S and 23S RNAs. Furthermore, the variation of intracellular concentrations of these replicons in brewing and laboratory strains under nutritional stress conditions was determined. Our results show a correlation between the relative abundance of these replicons and exposure of yeast to nutritionally stressful conditions, indicating that these RNAs could be employed as molecular probes to evaluate the exposure of 20S(+) and/or 23S(+) yeast strains to stress situations during industrial manipulation. During this study, several 20S(-)23S(+) Saccharomyces cerevisiae strains were isolated and identified. This is the first time that a yeast strain containing only 23S RNA has been reported, demonstrating that 20S RNA is not required for 23S RNA replication. PMID:11921103

  15. Species identification of oral viridans streptococci by restriction fragment polymorphism analysis of rRNA genes.

    PubMed Central

    Rudney, J D; Larson, C J

    1993-01-01

    Oral streptococci formerly classified as Streptococcus sanguis have been divided into six genetic groups. Methods to identify those species by genotype are needed. This study compared restriction fragment polymorphisms of rRNA genes (ribotypes) for seven S. gordonii, three S. sanguis, four S. oralis, three S. mitis, one S. crista, and seven S. parasanguis strains classified in previous DNA hybridization studies, as well as one clinical isolate. DNA was digested with HindIII, PvuII, HindIII and PvuII combined, EcoRI, BamHI, AatII, AlwNI, and DraII. DNA fragments were hybridized with a digoxigenin-labeled cDNA probe obtained by reverse transcription of Escherichia coli 16S and 23S rRNA. S. oralis, S. mitis, and S. parasanguis all showed an isolated 2,290-bp band in AatII ribotypes that was absent from S. gordonii, S. sanguis, and S. crista. The last three groups showed species-specific bands with AatII and also with PvuII. S. oralis could be distinguished from S. mitis and S. parasanguis in AlwNI and DraII ribotypes. S. mitis and S. parasanguis could not be distinguished, since they shared multiple bands in PvuII, AlwNI, and EcoRI patterns. The clinical isolate in the panel was very similar to S. sanguis by all enzymes used. Our findings suggest that ribotyping may be useful for genotypic identification of oral viridans streptococci. Initial digests of clinical isolates might be made with AatII, followed by PvuII or AlwNI. Isolates then could be identified by comparing ribotype patterns with those of reference strains. This approach could facilitate clinical studies of these newly defined species. Images PMID:7691875

  16. Calculation and Comparative Analysis of the IR Spectra of Homobrassinolide and (22S,23S)-Homobrassinolide

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Korolevich, M. V.

    2015-09-01

    Normal vibrational frequencies and absolute IR band intensities of the biologically active steroid phytohormones homobrassinolide and (22S,23S)-homobrassinolide were calculated in the framework of an original approach that combined classical analysis of normal modes using molecular mechanics with quantum-chemical estimation of the absolute intensities. IR absorption bands were interpreted based on a comparison of the experimental and theoretical absorption spectra. The impact of structural differences in the side chains of these molecules on the formation of their IR spectra in the region 1500-950 cm -1 was estimated.

  17. 16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes1

    PubMed Central

    Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott

    2014-01-01

    Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships. PMID:25937672

  18. Simulation of the structures and calculation of IR Spectra of (22 s,23 s)-Homobrassinolide conformers

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Korolevich, M. V.

    2012-07-01

    Frequencies and intensities of normal vibrations of (22 S,23 S)-homobrassinolide, a biologically active representative of steroidal phytohormones, were calculated within the framework of an original approach that combined a classical analysis of normal vibrations by a molecular mechanics method with a quantum-chemical estimation of absolute intensities. Two molecular structures with different side-chain conformations were considered. The molecular IR absorption bands in the range 1500-900 cm-1 were interpreted for the first time and the influence of the side-chain conformation on the IR spectrum was analyzed based on a comparison of the experimental and calculated spectra.

  19. Structural and functional insights into the molecular mechanism of rRNA m6A methyltransferase RlmJ.

    PubMed

    Punekar, Avinash S; Liljeruhm, Josefine; Shepherd, Tyson R; Forster, Anthony C; Selmer, Maria

    2013-11-01

    RlmJ catalyzes the m(6)A2030 methylation of 23S rRNA during ribosome biogenesis in Escherichia coli. Here, we present crystal structures of RlmJ in apo form, in complex with the cofactor S-adenosyl-methionine and in complex with S-adenosyl-homocysteine plus the substrate analogue adenosine monophosphate (AMP). RlmJ displays a variant of the Rossmann-like methyltransferase (MTase) fold with an inserted helical subdomain. Binding of cofactor and substrate induces a large shift of the N-terminal motif X tail to make it cover the cofactor binding site and trigger active-site changes in motifs IV and VIII. Adenosine monophosphate binds in a partly accommodated state with the target N6 atom 7 Å away from the sulphur of AdoHcy. The active site of RlmJ with motif IV sequence 164DPPY167 is more similar to DNA m(6)A MTases than to RNA m(6)2A MTases, and structural comparison suggests that RlmJ binds its substrate base similarly to DNA MTases T4Dam and M.TaqI. RlmJ methylates in vitro transcribed 23S rRNA, as well as a minimal substrate corresponding to helix 72, demonstrating independence of previous modifications and tertiary interactions in the RNA substrate. RlmJ displays specificity for adenosine, and mutagenesis experiments demonstrate the critical roles of residues Y4, H6, K18 and D164 in methyl transfer. PMID:23945937

  20. Ribosomal Protein S14 of Saccharomyces cerevisiae Regulates Its Expression by Binding to RPS14B Pre-mRNA and to 18S rRNA

    PubMed Central

    Fewell, Sheara W.; Woolford, John L.

    1999-01-01

    Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure. PMID:9858605

  1. Insertions or Deletions (Indels) in the rrn 16S-23S rRNA Gene Internal Transcribed Spacer Region (ITS) Compromise the Typing and Identification of Strains within the Acinetobacter calcoaceticus-baumannii (Acb) Complex and Closely Related Members

    PubMed Central

    Maslunka, Christopher; Gifford, Bianca; Tucci, Joseph; Gürtler, Volker; Seviour, Robert J.

    2014-01-01

    To determine whether ITS sequences in the rrn operon are suitable for identifying individual Acinetobacter Acb complex members, we analysed length and sequence differences between multiple ITS copies within the genomes of individual strains. Length differences in ITS reported previously between A. nosocomialis BCRC15417T (615 bp) and other strains (607 bp) can be explained by presence of an insertion (indel 13i/1) in the longer ITS variant. The same Indel 13i/1 was also found in ITS sequences of ten strains of A. calcoaceticus, all 639 bp long, and the 628 bp ITS of Acinetobacter strain BENAB127. Four additional indels (13i/2–13i/5) were detected in Acinetobacter strain c/t13TU 10090 ITS length variants (608, 609, 620, 621 and 630 bp). These ITS variants appear to have resulted from horizontal gene transfer involving other Acinetobacter species or in some cases unrelated bacteria. Although some ITS copies in strain c/t13TU 10090 are of the same length (620 bp) as those in Acinetobacter strains b/n1&3, A. pittii (10 strains), A. calcoaceticus and A. oleivorans (not currently acknowledged as an Acb member), their individual ITS sequences differ. Thus ITS length by itself can not by itself be used to identify Acb complex strains. A shared indel in ITS copies in two separate Acinetobacter species compromises the specificity of ITS targeted probes, as shown with the Aun-3 probe designed to target the ITS in A. pitti. The presence of indel 13i/5 in the ITS of Acinetobacter strain c/t13TU means it too responded positively to this probe. Thus, neither ITS sequencing nor the currently available ITS targeted probes can distinguish reliably between Acb member species. PMID:25141005

  2. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5’-UAA/5’-GAN internal loops studied by molecular dynamics methods

    PubMed Central

    Réblová, Kamila; Střelcová, Zora; Kulhánek, Petr; Beššeová, Ivana; Mathews, David H.; Nostrand, Keith Van; Yildirim, Ilyas; Turner, Douglas H.; Šponer, Jiří

    2010-01-01

    Functional RNA molecules such as ribosomal RNAs frequently contain highly conserved internal loops with a 5’-UAA/5’-GAN (UAA/GAN) consensus sequence. The UAA/GAN internal loops adopt distinctive structure inconsistent with secondary structure predictions. The structure has a narrow major groove and forms a trans Hoogsteen/Sugar edge (tHS) A/G base pair followed by an unpaired stacked adenine, a trans Watson-Crick/Hoogsteen (tWH) U/A base pair and finally by a bulged nucleotide (N). The structure is further stabilized by a three-adenine stack and base-phosphate interaction. In the ribosome, the UAA/GAN internal loops are involved in extensive tertiary contacts, mainly as donors of A-minor interactions. Further, this sequence can adopt an alternative 2D/3D pattern stabilized by a four-adenine stack involved in a smaller number of tertiary interactions. The solution structure of an isolated UAA/GAA internal loop shows substantially rearranged base pairing with three consecutive non-Watson-Crick base pairs. Its A/U base pair adopts an incomplete cis Watson-Crick/Sugar edge (cWS) A/U conformation instead of the expected Watson-Crick arrangement. We performed 3.1 µs of explicit solvent molecular dynamics (MD) simulations of the X-ray and NMR UAA/GAN structures, supplemented by MM-PBSA free energy calculations, locally enhanced sampling (LES) runs, targeted MD (TMD) and nudged elastic band (NEB) analysis. We compared parm99 and parmbsc0 force fields and net-neutralizing Na+ vs. excess salt KCl ion environments. Both force fields provide a similar description of the simulated structures, with the parmbsc0 leading to modest narrowing of the major groove. The excess salt simulations also cause a similar effect. While the NMR structure is entirely stable in simulations, the simulated X-ray structure shows considerable widening of the major groove, loss of base-phosphate interaction and other instabilities. The alternative X-ray geometry even undergoes conformational transition towards the solution 2D structure. Free energy calculations confirm that the X-ray arrangement is less stable than the solution structure. LES, TMD and NEB provide a rather consistent pathway for interconversion between the X-ray and NMR structures. In simulations, the incomplete cWS A/U base pair of the NMR structure is water mediated and alternates with the canonical A–U base pair, which is not indicated by the NMR data. Completion of full cWS A/U base pair is prevented by the overall internal loop arrangement. In summary, the simulations confirm that the UAA/GAN internal loop is a molecular switch RNA module that adopts its functional geometry upon specific tertiary contexts. PMID:21132104

  3. Formation of Tertiary Interactions during rRNA GTPase Center Folding.

    PubMed

    Rau, Michael J; Welty, Robb; Tom Stump, W; Hall, Kathleen B

    2015-08-28

    The 60-nt GTPase center (GAC) of 23S rRNA has a phylogenetically conserved secondary structure with two hairpin loops and a 3-way junction. It folds into an intricate tertiary structure upon addition of Mg(2+) ions, which is stabilized by the L11 protein in cocrystal structures. Here, we monitor the kinetics of its tertiary folding and Mg(2+)-dependent intermediate states by observing selected nucleobases that contribute specific interactions to the GAC tertiary structure in the cocrystals. The fluorescent nucleobase 2-aminopurine replaced three individual adenines, two of which make long-range stacking interactions and one that also forms hydrogen bonds. Each site reveals a unique response to Mg(2+) addition and temperature, reflecting its environmental change from secondary to tertiary structure. Stopped-flow fluorescence experiments revealed that kinetics of tertiary structure formation upon addition of MgCl2 are also site specific, with local conformational changes occurring from 5 ms to 4s and with global folding from 1 to 5s. Site-specific substitution with (15)N-nucleobases allowed observation of stable hydrogen bond formation by NMR experiments. Equilibrium titration experiments indicate that a stable folding intermediate is present at stoichiometric concentrations of Mg(2+) and suggest that there are two initial sites of Mg(2+) ion association. PMID:26210661

  4. Bases in 16S rRNA Important for Subunit Association, tRNA binding, and Translocation

    PubMed Central

    Shi, Xinying; Chiu, Katie; Ghosh, Srikanta; Joseph, Simpson

    2009-01-01

    Ribosomes are the cellular machinery responsible for protein synthesis. A well-orchestrated step in the elongation cycle of protein synthesis is the precise translocation of the tRNA-mRNA complex within the ribosome. Here we report the application of a new in vitro modification-interference method for the identification of bases in 16S rRNA that are essential for translocation. Our results suggest that conserved bases U56, U723, A1306, A1319, and A1468 in 16S rRNA are important for translocation. These five bases were deleted or mutated in order to study their role in translation. Depending on the type of mutation, we observed inhibition of growth rate, subunit association, tRNA binding and/or translocation. Interestingly, deletion of U56 or A1319 or mutation of A1319 to C showed a lethal phenotype and were defective in protein synthesis in vitro. Further analysis showed that deletion of U56 or A1319 caused defects in 30S subunit assembly, subunit association and tRNA binding. In contrast, A1319C mutation showed no defects in subunit association; however, the extent of tRNA binding and translocation was significantly reduced. These results show that conserved bases located as far away as 100 Å from the tRNA binding sites can be important for translation. PMID:19545171

  5. Promoter of the Mycoplasma pneumoniae rRNA operon.

    PubMed Central

    Hyman, H C; Gafny, R; Glaser, G; Razin, S

    1988-01-01

    RNA transcripts starting from the 5' end of the single Mycoplasma pneumoniae rRNA operon were analyzed by several methods. By primer extension analysis a start site was found 62 nucleotides upstream from the start site of the 16S rRNA. This site was preceded by a putative Pribnow box; however, a defined -35 recognition region was absent. The cloned rRNA operon was transcribed in vitro by using purified RNA polymerase of Escherichia coli. A single start site could be demonstrated within a few nucleotides of the start site found by primer extension analysis of M. pneumoniae transcripts. When fragments from the cloned operon were used as hybridization probes, S1 nuclease mapping yielded a single transcript extending approximately 193 nucleotides upstream from the 16S rRNA start site. The region surrounding this endpoint did not resemble any known promoter sequence. Dot blot hybridization of M. pneumoniae RNA to three oligonucleotides consisting of nucleotides -5 to -21, -38 to -54, and -112 to -132 (from the start of the 16S rRNA gene) indicated that most rRNA transcripts were processed at the stem site preceding the 16S rRNA gene. The majority of the longer precursor transcripts, extending beyond this point, did not extend further upstream to an oligonucleotide consisting of nucleotides -112 to -132. It was concluded that transcription of the rRNA operon of M. pneumoniae is initiated by a single promoter. The nucleotide sequence of the region is presented. Images PMID:2838465

  6. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    PubMed Central

    Almutairi, Mashal M.; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A.; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H.; Mankin, Alexander S.

    2015-01-01

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism. PMID:26438831

  7. Characterization of Mycobacterium leprae Genotypes in China—Identification of a New Polymorphism C251T in the 16S rRNA Gene

    PubMed Central

    You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China. PMID:26196543

  8. Characterization of Mycobacterium leprae Genotypes in China--Identification of a New Polymorphism C251T in the 16S rRNA Gene.

    PubMed

    Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China. PMID:26196543

  9. Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis.

    PubMed Central

    Haltiner, M M; Smale, S T; Tjian, R

    1986-01-01

    A cell-free RNA polymerase I transcription system was used to evaluate the transcription efficiency of 21 linker scanning mutations that span the human rRNA gene promoter. Our analysis revealed the presence of two major control elements, designated the core and upstream elements, that affect the level of transcription initiation. The core element extends from -45 to +18 relative to the RNA start site, and transcription is severely affected (up to 100-fold) by linker scanning mutations in this region. Linker scanning and deletion mutations in the upstream element, located between nucleotides -156 and -107, cause a three- to fivefold reduction in transcription. Under certain reaction conditions, such as the presence of a high ratio of protein to template or supplementation of the reaction with partially purified protein fractions, sequences upstream of the core element can have an even greater effect (20- to 50-fold) on RNA polymerase I transcription. Primer extension analysis showed that RNA synthesized from all of these mutant templates is initiated at the correct in vivo start site. To examine the functional relationship between the core and the upstream region, mutant promoters were constructed that alter the orientation, distance, or multiplicity of these control elements relative to each other. The upstream control element appears to function in only one orientation, and its position relative to the core is constrained within a fairly narrow region. Moreover, multiple core elements in close proximity to each other have an inhibitory effect on transcription. Images PMID:3785147

  10. Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection

    PubMed Central

    Gao, Wei; Chua, Kyra; Davies, John K.; Newton, Hayley J.; Seemann, Torsten; Harrison, Paul F.; Holmes, Natasha E.; Rhee, Hyun-Woo; Hong, Jong-In; Hartland, Elizabeth L.; Stinear, Timothy P.; Howden, Benjamin P.

    2010-01-01

    Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3′, 5′-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens. PMID:20548948

  11. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  12. Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data.

    PubMed Central

    Rogers, M J; Simmons, J; Walker, R T; Weisburg, W G; Woese, C R; Tanner, R S; Robinson, I M; Stahl, D A; Olsen, G; Leach, R H

    1985-01-01

    The 5S rRNA sequences of eubacteria and mycoplasmas have been analyzed and a phylogenetic tree constructed. We determined the sequences of 5S rRNA from Clostridium innocuum, Acholeplasma laidlawii, Acholeplasma modicum, Anaeroplasma bactoclasticum, Anaeroplasma abactoclasticum, Ureaplasma urealyticum, Mycoplasma mycoides mycoides, Mycoplasma pneumoniae, and Mycoplasma gallisepticum. Analysis of these and published sequences shows that mycoplasmas form a coherent phylogenetic group that, with C. innocuum, arose as a branch of the low G+C Gram-positive tree, near the lactobacilli and streptococci. The initial event in mycoplasma phylogeny was formation of the Acholeplasma branch; hence, loss of cell wall probably occurred at the time of genome reduction to approximately to 1000 MDa. A subsequent branch produced the Spiroplasma. This branch appears to have been the origin of sterol-requiring mycoplasmas. During development of the Spiroplasma branch there were several independent genome reductions, each to approximately 500 MDa, resulting in Mycoplasma and Ureaplasma species. Mycoplasmas, particularly species with the smallest genomes, have high mutation rates, suggesting that they are in a state of rapid evolution. PMID:2579388

  13. Functional Specialization of Domains Tandemly Duplicated Witin 16S rRNA Methyltransferase RsmC

    SciTech Connect

    Sunita,S.; Purta, E.; Durawa, M.; Tkaczuk, K.; Swaathi, J.; Bujnicki, J.; Sivaraman, J.

    2007-01-01

    RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 Angstroms resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.

  14. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  15. Quantitative Northern Blot Analysis of Mammalian rRNA Processing.

    PubMed

    Wang, Minshi; Pestov, Dimitri G

    2016-01-01

    Assembly of eukaryotic ribosomes is an elaborate biosynthetic process that begins in the nucleolus and requires hundreds of cellular factors. Analysis of rRNA processing has been instrumental for studying the mechanisms of ribosome biogenesis and effects of stress conditions on the molecular milieu of the nucleolus. Here, we describe the quantitative analysis of the steady-state levels of rRNA precursors, applicable to studies in mammalian cells and other organisms. We include protocols for gel electrophoresis and northern blotting of rRNA precursors using procedures optimized for the large size of these RNAs. We also describe the ratio analysis of multiple precursors, a technique that facilitates the accurate assessment of changes in the efficiency of individual pre-rRNA processing steps. PMID:27576717

  16. KRAS Mutation

    PubMed Central

    Franklin, Wilbur A.; Haney, Jerry; Sugita, Michio; Bemis, Lynne; Jimeno, Antonio; Messersmith, Wells A.

    2010-01-01

    Treatment of colon carcinoma with the anti-epidermal growth factor receptor antibody Cetuximab is reported to be ineffective in KRAS-mutant tumors. Mutation testing techniques have therefore become an urgent concern. We have compared three methods for detecting KRAS mutations in 59 cases of colon carcinoma: 1) high resolution melting, 2) the amplification refractory mutation system using a bifunctional self-probing primer (ARMS/Scorpion, ARMS/S), and 3) direct sequencing. We also evaluated the effects of the methods of sectioning and coring of paraffin blocks to obtain tumor DNA on assay sensitivity and specificity. The most sensitive and specific combination of block sampling and mutational analysis was ARMS/S performed on DNA derived from 1-mm paraffin cores. This combination of tissue sampling and testing method detected KRAS mutations in 46% of colon tumors. Four samples were positive by ARMS/S, but initially negative by direct sequencing. Cloned DNA samples were retested by direct sequencing, and in all four cases KRAS mutations were identified in the DNA. In six cases, high resolution melting abnormalities could not be confirmed as specific mutations either by ARMS/S or direct sequencing. We conclude that coring of the paraffin blocks and testing by ARMS/S is a sensitive, specific, and efficient method for KRAS testing. PMID:20007845

  17. Imprint of Ancient Evolution on rRNA Folding.

    PubMed

    Lanier, Kathryn A; Athavale, Shreyas S; Petrov, Anton S; Wartell, Roger; Williams, Loren Dean

    2016-08-23

    In a model describing the origin and evolution of the translation system, ribosomal RNA (rRNA) grew in size by accretion [Petrov, A. S., et al. (2015) History of the Ribosome and the Origin of Translation. Proc. Natl. Acad. Sci. U.S.A. 112, 15396-15401]. Large rRNAs were built up by iterative incorporation and encasement of small folded RNAs, in analogy with addition of new LEGOs onto the surface of a preexisting LEGO assembly. In this model, rRNA robustness in folding arises from inherited autonomy of local folding. We propose that rRNAs can be decomposed at various granularities, retaining folding mechanism and folding competence. To test these predictions, we disassembled Domain III of the large ribosomal subunit (LSU). We determined whether local rRNA structure, stability, and folding pathways are autonomous. Thermal melting, chemical footprinting, and circular dichroism were used to infer rules that govern folding of rRNA. We deconstructed Domain III of the LSU rRNA by mapping out its complex multistep melting pathway. We studied Domain III and two equal-size "sub-Domains" of Domain III. The combined results are consistent with a model in which melting transitions of Domain III are conserved upon cleavage into sub-Domains. Each of the eight melting transitions of Domain III corresponds in Tm and ΔH with a transition observed in one of the two isolated sub-Domains. The results support a model in which structure, stability, and folding mechanisms are dominated by local interactions and are unaffected by separation of the sub-Domains. Domain III rRNA is distinct from RNAs that form long-range cooperative interaction networks at early stages of folding or that do not fold reversibly. PMID:27428664

  18. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss.

    PubMed

    O'Sullivan, Mary; Rutland, Paul; Lucas, Deirdre; Ashton, Emma; Hendricks, Sebastian; Rahman, Shamima; Bitner-Glindzicz, Maria

    2015-02-15

    The mitochondrial DNA mutation m.1555A>G predisposes to hearing loss following aminoglycoside antibiotic exposure in an idiosyncratic dose-independent manner. However, it may also cause maternally inherited hearing loss in the absence of aminoglycoside exposure or any other clinical features (non-syndromic hearing loss). Although m.1555A>G was identified as a cause of deafness more than twenty years ago, the pathogenic mechanism of this mutation of ribosomal RNA remains controversial. Different mechanistic concepts have been proposed. Most recently, evidence from cell lines and animal models suggested that patients with m.1555A>G may have more 12S rRNA N6, N6-dimethyladenosine (m(6) 2A) methylation than controls, so-called 'hypermethylation'. This has been implicated as a pathogenic mechanism of mitochondrial dysfunction but has yet to be validated in patients. 12S m(6) 2A rRNA methylation, by the mitochondrial transcription factor 1 (TFB1M) enzyme, occurs at two successive nucleotides (m.1584A and m.1583A) in close proximity to m.1555A>G. We examined m(6) 2A methylation in 14 patients with m.1555A>G, and controls, and found all detectable 12S rRNA transcripts to be methylated in both groups. Moreover, different RNA samples derived from the same patient (lymphocyte, fibroblast and lymphoblast) revealed that only transformed cells contained some unmethylated 12S rRNA transcripts, with all detectable 12S rRNA transcripts derived from primary samples m(6) 2A-methylated. Our data indicate that TFB1M 12S m(6) 2A rRNA hypermethylation is unlikely to be a pathogenic mechanism and may be an artefact of previous experimental models studied. We propose that RNA methylation studies in experimental models should be validated in primary clinical samples to ensure that they are applicable to the human situation. PMID:25305075

  19. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  20. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    PubMed

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  1. Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase

    PubMed Central

    Challand, Martin R.; Salvadori, Enrico; Driesener, Rebecca C.; Kay, Christopher W. M.; Roach, Peter L.; Spencer, James

    2013-01-01

    The ‘radical S-adenosyl-L-methionine (AdoMet)’ enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage. PMID:23861844

  2. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna Tlili, Abdelaziz; Masmoudi, Saber; Charfeddine, Ilhem; Fakhfakh, Faiza

    2008-05-09

    The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.

  3. Differentiation of Closely Related Carnobacterium Food Isolates Based on 16S-23S Ribosomal DNA Intergenic Spacer Region Polymorphism

    PubMed Central

    Kabadjova, Petia; Dousset, Xavier; Le Cam, Virginie; Prevost, Hervé

    2002-01-01

    A novel strategy for identification of Carnobacterium food isolates based on restriction fragment length polymorphism (RFLP) of PCR-amplified 16S-23S ribosomal intergenic spacer regions (ISRs) was developed. PCR amplification from all Carnobacterium strains studied always yielded three ISR amplicons, which were designated the small ISR (S-ISR), the medium ISR (M-ISR), and the large ISR (L-ISR). The lengths of these ISRs varied from one species to another. Carnobacterium divergens NCDO 2763T and C. mobile DSM 4849T generated one major S-ISR band (ca. 400 bp) and minor M-ISR and L-ISR bands (ca. 500 and ca. 600 bp, respectively). The ISRs amplified from C. gallinarum NCFB 2766T and C. piscicola NCDO 2762T were larger (S-ISR, ca. 600 bp; M-ISR, ca. 700 bp; and L-ISR, ca. 800 bp). The L-ISR contained two tDNAs coding for tRNAIle and tRNAAla genes. The M-ISR included one tRNAAla gene, and the S-ISR did not contain a tDNA gene. The RFLP scheme devised involves estimation of variable PCR product sizes together with HinfI, TaqI, and HindIII restriction analysis. Forty-two isolates yielded four unique band patterns that correctly resolved these isolates into four Carnobacterium species. This method is very suitable for rapid, low-cost identification of a wide variety of Carnobacterium species without sequencing. PMID:12406725

  4. rRNA Pseudouridylation Defects Affect Ribosomal Ligand Binding and Translational Fidelity from Yeast to Human Cells

    PubMed Central

    Jack, Karen; Bellodi, Cristian; Landry, Dori M.; Niederer, Rachel; Meskauskas, Arturas; Musalgaonkar, Sharmishtha; Kopmar, Noam; Krasnykh, Olya; Dean, Alison M.; Thompson, Sunnie R.; Ruggero, Davide; Dinman, Jonathan D.

    2011-01-01

    Summary How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked Dyskeratosis Congenita (X-DC) and Hoyeraal-Hreidarsson syndrome (HH). Here we characterize ribosomes isolated from a yeast strain where Cbf5p, the yeast homologue of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A- and P-sites as well as the cricket paralysis virus IRES (Internal Ribosome Entry Site), which interacts with both the P- and E-sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans. PMID:22099312

  5. Alternate rRNA secondary structures as regulators of translation.

    PubMed

    Feng, Shu; Li, Heng; Zhao, Jing; Pervushin, Konstantin; Lowenhaupt, Ky; Schwartz, Thomas U; Dröge, Peter

    2011-02-01

    Structural dynamics of large molecular assemblies are intricately linked to function. For ribosomes, macromolecular changes occur especially during mRNA translation and involve participation of ribosomal RNA. Without suitable probes specific to RNA secondary structure, however, elucidation of more subtle dynamic ribosome structure-function relationships, especially in vivo, remains challenging. Here we report that the Z-DNA- and Z-RNA-binding domain Zα, derived from the human RNA editing enzyme ADAR1-L, binds with high stability to specific rRNA segments of Escherichia coli and human ribosomes. Zα impaired in Z-RNA recognition does not associate with ribosomes. Notably, Zα(ADAR1)-ribosome interaction blocks translation in vitro and in vivo, with substantial physiological consequences. Our study shows that ribosomes can be targeted by a protein that specifically recognizes an alternate rRNA secondary structure, and suggests a new mechanism of translational regulation on the ribosome. PMID:21217697

  6. Robust Computational Analysis of rRNA Hypervariable Tag Datasets

    PubMed Central

    Sipos, Maksim; Jeraldo, Patricio; Chia, Nicholas; Qu, Ani; Dhillon, A. Singh; Konkel, Michael E.; Nelson, Karen E.; White, Bryan A.; Goldenfeld, Nigel

    2010-01-01

    Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gastrointestinal microbiomes, where it is important to be able to quantify measures of abundance and diversity. The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to the recognition that the results of such analyses are potentially contaminated by a variety of artifacts, both experimental and computational. Here we quantify how multiple alignment and clustering errors contribute to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We show that straightforward procedural optimizations, combining preexisting tools, are effective in handling large () 16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained. We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that complete linkage clustering greatly outperforms other widely used methods. PMID:21217830

  7. Complete sequence and gene organization of the Nosema spodopterae rRNA gene.

    PubMed

    Tsai, Shu-Jen; Huang, Wei-Fone; Wang, Chung-Hsiung

    2005-01-01

    By sequencing the entire ribosomal RNA (rRNA) gene of Nosema spodopterae, we show here that its gene organization follows a pattern similar to the Nosema type species, Nosema bombycis, i.e. 5'-large subunit rRNA (2,497 bp)-internal transcribed spacer (185 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (277 bp)-5S rRNA (114 bp)-3'. Gene sequences and the secondary structures of large subunit rRNA, small subunit rRNA, and 5S rRNA are compared with the known corresponding sequences and structures of closely related microsporidia. The results suggest that the Nosema genus may be heterogeneous and that the rRNA gene organization may be a useful characteristic for determining which species are closely related to the type species. PMID:15702980

  8. Leuconostoc pseudomesenteroides WCFur3 partial 16S rRNA gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a partial 535 base pair 16S rRNA gene sequence to identify a bacterial isolate. Fatty acid profiles are consistent with the 16S rRNA gene sequence identification of this bacterium. The isolate was obtained from a compost bin in Fort Collins, Colorado, USA. The 16S rRNA gene sequen...

  9. Decoupled distance-decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate-reducing bacteria.

    PubMed

    Angermeyer, Angus; Crosby, Sarah C; Huber, Julie A

    2016-01-01

    In many habitats, microorganisms exhibit significant distance-decay patterns as determined by analysis of the 16S rRNA gene and various other genetic elements. However, there have been few studies that examine how the similarities of both taxonomic and functional genes co-vary over geographic distance within a group of ecologically related microbes. Here, we determined the biogeographic patterns of the functional dissimilatory sulfite reductase gene (dsrA) and the 16S rRNA gene in sulfate-reducing bacterial communities of US East Coast salt marsh sediments. Distance-decay, ordination and statistical analyses revealed that the distribution of 16S rRNA genes is strongly influenced by geographic distance and environmental factors, whereas the dsrA gene is not. Together, our results indicate that 16S rRNA genes are likely dispersal limited and under environmental selection, whereas dsrA genes appear randomly distributed and not selected for by any expected environmental variables. Selection, drift, dispersal and mutation are all factors that may help explain the decoupled biogeographic patterns for the two genes. These data suggest that both the taxonomic and functional elements of microbial communities should be considered in future studies of microbial biogeography to aid in our understanding of the diversity, distribution and function of microorganisms in the environment. PMID:25727503

  10. Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Sharma, Sunny; Yang, Jun; Düttmann, Simon; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter

    2014-01-01

    RNA contains various chemical modifications that expand its otherwise limited repertoire to mediate complex processes like translation and gene regulation. 25S rRNA of the large subunit of ribosome contains eight base methylations. Except for the methylation of uridine residues, methyltransferases for all other known base methylations have been recently identified. Here we report the identification of BMT5 (YIL096C) and BMT6 (YLR063W), two previously uncharacterized genes, to be responsible for m3U2634 and m3U2843 methylation of the 25S rRNA, respectively. These genes were identified by RP-HPLC screening of all deletion mutants of putative RNA methyltransferases and were confirmed by gene complementation and phenotypic characterization. Both proteins belong to Rossmann-fold–like methyltransferases and the point mutations in the S-adenosyl-l-methionine binding pocket abolish the methylation reaction. Bmt5 localizes in the nucleolus, whereas Bmt6 is localized predominantly in the cytoplasm. Furthermore, we showed that 25S rRNA of yeast does not contain any m5U residues as previously predicted. With Bmt5 and Bmt6, all base methyltransferases of the 25S rRNA have been identified. This will facilitate the analyses of the significance of these modifications in ribosome function and cellular physiology. PMID:24335083

  11. Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae.

    PubMed

    Sharma, Sunny; Yang, Jun; Düttmann, Simon; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter

    2014-03-01

    RNA contains various chemical modifications that expand its otherwise limited repertoire to mediate complex processes like translation and gene regulation. 25S rRNA of the large subunit of ribosome contains eight base methylations. Except for the methylation of uridine residues, methyltransferases for all other known base methylations have been recently identified. Here we report the identification of BMT5 (YIL096C) and BMT6 (YLR063W), two previously uncharacterized genes, to be responsible for m3U2634 and m3U2843 methylation of the 25S rRNA, respectively. These genes were identified by RP-HPLC screening of all deletion mutants of putative RNA methyltransferases and were confirmed by gene complementation and phenotypic characterization. Both proteins belong to Rossmann-fold-like methyltransferases and the point mutations in the S-adenosyl-L-methionine binding pocket abolish the methylation reaction. Bmt5 localizes in the nucleolus, whereas Bmt6 is localized predominantly in the cytoplasm. Furthermore, we showed that 25S rRNA of yeast does not contain any m5U residues as previously predicted. With Bmt5 and Bmt6, all base methyltransferases of the 25S rRNA have been identified. This will facilitate the analyses of the significance of these modifications in ribosome function and cellular physiology. PMID:24335083

  12. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  13. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-01-01

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels. PMID:19048493

  14. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic

    PubMed Central

    Drewniak, Lukasz; Stasiuk, Robert; Uhrynowski, Witold; Sklodowska, Aleksandra

    2015-01-01

    The purpose of this study was a detailed characterization of Shewanella sp. O23S, a strain involved in arsenic transformation in ancient gold mine waters contaminated with arsenic and other heavy metals. Physiological analysis of Shewanella sp. O23S showed that it is a facultative anaerobe, capable of growth using arsenate, thiosulfate, nitrate, iron or manganite as a terminal electron acceptor, and lactate or citrate as an electron donor. The strain can grow under anaerobic conditions and utilize arsenate in the respiratory process in a broad range of temperatures (10–37 °C), pH (4–8), salinity (0%–2%), and the presence of heavy metals (Cd, Co, Cr, Cu, Mn, Mo, Se, V and Zn). Under reductive conditions this strain can simultaneously use arsenate and thiosulfate as electron acceptors and produce yellow arsenic (III) sulfide (As2S3) precipitate. Simulation of As-removal from water containing arsenate (2.5 mM) and thiosulfate (5 mM) showed 82.5% efficiency after 21 days of incubation at room temperature. Based on the obtained results, we have proposed a model of a microbially mediated system for self-cleaning of mine waters contaminated with arsenic, in which Shewanella sp. O23S is the main driving agent. PMID:26121297

  15. Determining Fungi rRNA Copy Number by PCR

    PubMed Central

    Black, Jonathan; Dean, Timothy; Byfield, Grace; Foarde, Karin; Menetrez, Marc

    2013-01-01

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction. The first control developed was the internal standard control gene, benA. This gene encodes for β-tubulin and was selected based on its single-copy nature. The second control developed was the standard control plasmid, which contained a fragment of the ribosomal RNA (rRNA) gene and produced a specific PCR product. The results confirm the multicopy nature of the rRNA region in several filamentous fungi and show that we can quantify fungi of unknown genome size over a range of spore extractions by inclusion of these two standard controls. Advances in qPCR have led to extremely sensitive and quantitative methods for single-copy genes; however, it has not been well established that the rRNA can be used to quantitate fungal contamination. We report on the use of qPCR, combined with two controls, to identify and quantify indoor fungal contaminants with a greater degree of confidence than has been achieved previously. Advances in indoor environmental health have demonstrated that contamination of the built environment by the filamentous fungi has adverse impacts on the health of building occupants. This study meets the need for more accurate and reliable methods for fungal identification and quantitation in the indoor environment. PMID:23543828

  16. Interactions of aminoglycoside antibiotics with rRNA.

    PubMed

    Trylska, Joanna; Kulik, Marta

    2016-08-15

    Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target. PMID:27528743

  17. Growth rate regulation of rRNA content of a marine Synechococcus (cyanobacterium) strain

    SciTech Connect

    Binder, B.J.; Liu, Y.C.

    1998-09-01

    The relationship between growth rate and rRNA content in a marine Synechococcus strain was examined. A combination of flow cytometry and whole-cell hybridization with fluorescently labeled 16S rRNA-targeted oligonucleotide probes was used to measure the rRNA content of Synechococcus strain WH8101 cells grown at a range of light-limited growth rates. The sensitivity of this approach was sufficient for the analysis of rRNA even in very slowly growing Synechococcus cells. The relationship between growth rate and cellular rRNA content comprised three phases: (1) at low growth rates, rRNA cell{sup {minus}1} remained approximately constant; (2) at intermediate rates, rRNA cell{sup {minus}1} increased proportionally with growth rate; and (3) at the highest, light-saturated rates, rRNA cell{sup {minus}1} dropped abruptly. Total cellular RNA was well correlated with the probe-based measure of rRNA and varied in a similar manner with growth rate. Mean cell volume and rRNA concentration were related to growth rate in a manner similar to rRNA cell{sup {minus}1}, although the overall magnitude linear increase in ribosome efficiency with increasing growth rate, which is consistent with the prevailing prokaryotic model at low growth rates. Taken together, these results support the notion that measurements of cellular rRNA content might be useful for estimating in situ growth rates in natural Synechococcus populations.

  18. Effects of single-base substitutions within the acanthamoeba castellanii rRNA promoter on transcription and on binding of transcription initiation factor and RNA polymerase I

    SciTech Connect

    Kownin, P.; Bateman, E.; Paule, M.R.

    1988-02-01

    Single-point mutations were introduced into the promoter region of the Acanthamoeba castellanii rRNA gene by chemical mutagen treatment of a single-stranded clone in vitro, followed by reverse transcription and cloning of the altered fragment. The promoter mutants were tested for transcription initiation factor (TIF) binding by a template commitment assay plus DNase I footprinting and for transcription by an in vitro runoff assay. Point mutations within the previously identified TIF interaction region (between -20 and -47, motifs A and B) indicated that TIF interacts most strongly with a sequence centered at -29 and less tightly with sequences upstream and downstream. Some alterations of the base sequence closer to the transcription start site (and outside the TIF-protected site) also significantly decrease specific RNA synthesis in vitro. These were within the region which is protected from DNAse I digestion by polymerase I, but these mutations did not detectably affect the binding of polymerase to the promoter.

  19. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules.

    PubMed

    McDonald, James E; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J; Hall, Neil; McCarthy, Alan J; Allison, Heather E

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, 'universal' SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by 'universal' primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology. PMID:27276347

  20. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules

    PubMed Central

    McDonald, James E.; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J.; Hall, Neil; McCarthy, Alan J.; Allison, Heather E.

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, ‘universal’ SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by ‘universal’ primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology. PMID:27276347

  1. The rRNA evolution and procaryotic phylogeny

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1986-01-01

    Studies of ribosomal RNA primary structure allow reconstruction of phylogenetic trees for prokaryotic organisms. Such studies reveal major dichotomy among the bacteria that separates them into eubacteria and archaebacteria. Both groupings are further segmented into several major divisions. The results obtained from 5S rRNA sequences are essentially the same as those obtained with the 16S rRNA data. In the case of Gram negative bacteria the ribosomal RNA sequencing results can also be directly compared with hybridization studies and cytochrome c sequencing studies. There is again excellent agreement among the several methods. It seems likely then that the overall picture of microbial phylogeny that is emerging from the RNA sequence studies is a good approximation of the true history of these organisms. The RNA data allow examination of the evolutionary process in a semi-quantitative way. The secondary structures of these RNAs are largely established. As a result it is possible to recognize examples of local structural evolution. Evolutionary pathways accounting for these events can be proposed and their probability can be assessed.

  2. Chromosomal Organization of Rrna Operons in Bacillus Subtilis

    PubMed Central

    Jarvis, E. D.; Widom, R. L.; LaFauci, G.; Setoguchi, Y.; Richter, I. R.; Rudner, R.

    1988-01-01

    Integrative mapping with vectors containing ribosomal DNA sequences were used to complete the mapping of the 10 rRNA gene sets in the endospore forming bacterium Bacillus subtilis. Southern hybridizations allowed the assignment of nine operons to distinct BclI restriction fragments and their genetic locus identified by transductional crosses. Nine of the ten rRNA gene sets are located between 0 and 70° on the genomic map. In the region surrounding cysA14, two sets of closely spaced tandem clusters are present. The first (rrnJ and rrnW) is located between purA16 and cysA14 closely linked to the latter; the second (rrnI, rrnH and rrnG) previously mapped within this area is located between attSPO2 and glpT6. The operons at or near the origin of replication (rrnO,rrnA and rrnJ,rrnW) represent ``hot spots'' of plasmid insertion. PMID:2465199

  3. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis.

    PubMed Central

    Tapprich, W E; Goss, D J; Dahlberg, A E

    1989-01-01

    A single base was mutated from guanine to adenine at position 791 in 16S rRNA in the Escherichia coli rrnB operon on the multicopy plasmid pKK3535. The plasmid-coded rRNA was processed and assembled into 30S ribosomal subunits in E. coli and caused a retardation of cell growth. The mutation affected crucial functional roles of the 30S subunit in the initiation of protein synthesis. The affinity of the mutant 30S subunits for 50S subunits was reduced and the association equilibrium constant for initiation factor 3 was decreased by a factor of 10 compared to wild-type 30S subunits. The interrelationship among the region of residue 790 in 16S rRNA, subunit association, and initiation factor 3 binding during initiation complex formation, as revealed by this study, offers insights into the functional role of rRNA in protein synthesis. PMID:2662189

  4. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15.

    PubMed

    Serganov, A; Bénard, L; Portier, C; Ennifar, E; Garber, M; Ehresmann, B; Ehresmann, C

    2001-01-26

    Ribosomal protein S15 recognizes a highly conserved target on 16 S rRNA, which consists of two distinct binding regions. Here, we used extensive site-directed mutagenesis on a Escherichia coli 16 S rRNA fragment containing the S15 binding site, to investigate the role of conserved nucleotides in protein recognition and to evaluate the relative contribution of the two sites. The effect of mutations on S15 recognition was studied by measuring the relative binding affinity, RNA probing and footprinting. The crystallographic structure of the Thermus thermophilus complex allowed molecular modelling of the E. coli complex and facilitated interpretation of biochemical data. Binding is essentially driven by site 1, which includes a three-way junction constrained by a conserved base triple and cross-strand stacking. Recognition is based mainly on shape complementarity, and the role of conserved nucleotides is to maintain a unique backbone geometry. The wild-type base triple is absolutely required for protein interaction, while changes in the conserved surrounding nucleotides are partially tolerated. Site 2, which provides functional groups in a conserved G-U/G-C motif, contributes only modestly to the stability of the interaction. Binding to this motif is dependent on binding at site 1 and is allowed only if the two sites are in the correct relative orientation. Non-conserved bulged nucleotides as well as a conserved purine interior loop, although not directly involved in recognition, are used to provide an appropriate flexibility between the two sites. In addition, correct binding at the two sites triggers conformational adjustments in the purine interior loop and in a distal region, which are known to be involved for subsequent binding of proteins S6 and S18. Thus, the role of site 1 is to anchor S15 to the rRNA, while binding at site 2 is aimed to induce a cascade of events required for subunit assembly. PMID:11162092

  5. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Liu, Zhong; Zhao, Rui; Giles, Keith E.

    2016-01-01

    It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells. PMID:27299313

  6. Estimating mutation rate: how to count mutations?

    PubMed Central

    Fu, Yun-Xin; Huai, Haying

    2003-01-01

    Mutation rate is an essential parameter in genetic research. Counting the number of mutant individuals provides information for a direct estimate of mutation rate. However, mutant individuals in the same family can share the same mutations due to premeiotic mutation events, so that the number of mutant individuals can be significantly larger than the number of mutation events observed. Since mutation rate is more closely related to the number of mutation events, whether one should count only independent mutation events or the number of mutants remains controversial. We show in this article that counting mutant individuals is a correct approach for estimating mutation rate, while counting only mutation events will result in underestimation. We also derived the variance of the mutation-rate estimate, which allows us to examine a number of important issues about the design of such experiments. The general strategy of such an experiment should be to sample as many families as possible and not to sample much more offspring per family than the reciprocal of the pairwise correlation coefficient within each family. To obtain a reasonably accurate estimate of mutation rate, the number of sampled families needs to be in the same or higher order of magnitude as the reciprocal of the mutation rate. PMID:12807798

  7. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories. PMID:25725268

  8. Dyskerin is required for tumor cell growth through mechanisms that are independent of its role in telomerase and only partially related to its function in precursor rRNA processing

    PubMed Central

    Alawi, Faizan; Lin, Ping

    2010-01-01

    Dyskerin is an essential nucleolar protein required for the biogenesis of ribonucleoproteins that incorporate H/ACA RNAs. Through binding to specific H/ACA RNAs, dyskerin exerts most of its influence in the cell. To that end, dyskerin is a core component of the telomerase complex and is required for normal telomere maintenance. Dyskerin is also required for post-transcriptional processing of precursor rRNA. Germline dyskerin mutations increase cancer susceptibility. Conversely, wild-type dyskerin is usually overexpressed and not mutated in sporadic cancers. However, the contributions of dyskerin to sporadic tumorigenesis are unknown. Described herein, we demonstrate that acute loss of dyskerin function by RNA interference significantly reduced steady-state levels of H/ACA RNAs, disrupted the morphology and inhibited anchorage-independent growth of telomerase-positive and telomerase-negative human cell lines. Unexpectedly, dyskerin depletion only transiently delayed rRNA maturation but with no appreciable effect on the levels of total 18S or 28S rRNA. Instead, while rRNA processing defects typically trigger p53-dependent G1 arrest, dyskerin-depleted cells accumulated in G2/M by a p53-independent mechanism, and this was associated with an accumulation of aberrant mitotic figures that were characterized by multi-polar spindles. Telomerase activity and the rate of rRNA processing are typically increased during neoplasia. However, our cumulative findings indicate that dyskerin contributes to tumor cell growth through mechanisms which do not require the presence of cellular telomerase activity, and which may be only partially dependent upon the protein’s role in rRNA processing. These data also reinforce the notion that loss and gain of dyskerin function may play important roles in tumorigenesis. PMID:21480387

  9. Insights into the phylogenetic positions of photosynthetic bacteria obtained from 5S rRNA and 16S rRNA sequence data

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1985-01-01

    Comparisons of complete 16S ribosomal ribonucleic acid (rRNA) sequences established that the secondary structure of these molecules is highly conserved. Earlier work with 5S rRNA secondary structure revealed that when structural conservation exists the alignment of sequences is straightforward. The constancy of structure implies minimal functional change. Under these conditions a uniform evolutionary rate can be expected so that conditions are favorable for phylogenetic tree construction.

  10. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is organized under the following headings: Plenary lectures; Brook mutational mechanisms; Adduction and DNA damage; Recombination and gene conversion; Repair: Prokoyote mechanisms and induction; Repair: Lower eukaryote and plant mechanisms; Repair: Higher eukaryote mechanisms and selectivity; Repair: Human genes and mechanisms; Mutation: Spectra and mechanisms; Mutation: Shuttle vectors; Mutation: Transgenic animals; New methods: Polymerase chain reaction.

  11. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    PubMed

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. PMID:22196401

  12. Ribosome heterogeneity in tumorigenesis: the rRNA point of view

    PubMed Central

    Marcel, Virginie; Catez, Frédéric; Diaz, Jean-Jacques

    2015-01-01

    The "specialized ribosome" concept proposes that ribosome variants are produced and differentially regulate translation. Examples supporting this notion demonstrated heterogeneity of ribosomal protein composition. However, ribosome translational activity is carried out by rRNA. We, and others, recently showed that rRNA heterogeneity regulates translation to generate distinct translatomes promoting tumorigenesis. PMID:27305893

  13. Tetrathiobacter kashmirensis Strain CA-1 16S rRNA gene complete sequence.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1326 base pair 16S rRNA gene sequence methods to confirm the identification of a bacterium as Tetrathiobacter kashmirensis. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification of the bacterium. The isolate...

  14. Characteristic archaebacterial 16S rRNA oligonucleotides

    NASA Technical Reports Server (NTRS)

    McGill, T. J.; Jurka, J.; Sobieski, J. M.; Pickett, M. H.; Woese, C. R.; Fox, G. E.

    1986-01-01

    A method of analyzing 16S rRNA catalog data has been developed in which groupings at various taxonomic levels can be characterized in terms of specific "signature" oligonucleotides. This approach provides an alternative means for evaluating higher order branching possibilities and can be used to assess the phylogenetic position of isolates that are poorly placed by the usual clustering procedures. This signature approach has been applied to forty archaebacterial catalogs and every oligonucleotide with significant signature value has been identified. Sets of specific oligonucleotides were identified for every major group on a dendrogram produced by cluster analysis procedures. Signatures that would establish between group relationships were also sought and found. In the case of the Methanobacteriaceae the clustering methods suggest a specific relationship to the Methanococcaceae. This inclusion is in fact supported by six strong signature oligonucleotides. However there are also significant numbers of signature oligonucleotides supporting a specific relationship of the Methanobacteriaceae to either the Halobacteriaceae or the Methanomicrobiaceae. Thus the placement of the Methanobacteriaceae is less certain than the usual dendrograms imply. The signature approach also was used to assess the phylogenetic position of Thermoplasma acidophilum which is found to be more closely related to the methanogen/halophile Division than to the sulfur dependent Division of the archaebacteria. This does not imply however that Thermoplasma acidophilum is properly regarded as being in the methanogen/halophile Division.

  15. Involvement of multiple basic amino acids in yeast ribosomal protein L1 in 5S rRNA recognition.

    PubMed

    Yeh, L C; Lee, J C

    1995-01-01

    The role of basic amino acid residues located at the C-terminal region of the yeast ribosomal protein L1 in 5S rRNA binding was characterized in vitro and in vivo. Mutant proteins containing single or multiple amino acid substitutions were generated by site-directed mutagenesis of the L1 gene carried on a plasmid. In vitro RNP formation was examined by production of the mutant protein in the presence of the RNA molecule. The thermostability of the resultant RNP was also studied. Effects of these mutations on cell viability and ribosome assembly were characterized by transformation of a conditional null L1 yeast mutant with the mutated L1 gene expressed from the plasmid. Substitution of any one of the lysine or arginine residue did not affect significantly RNA binding in vitro or cell growth in vivo. However, several mutant proteins with substitutions of two of these basic amino acids bound RNA weakly and the RNPs were less stable. Cells expressing these mutant proteins were lethal. Theoretical structural prediction of these amino acids further provided information regarding their collective contributions to RNA recognition and to interaction between the RNP and other components of the 60S ribosomal subunit. PMID:8643400

  16. Evidence for the presence of 5S rRNA in mammalian mitochondria.

    PubMed

    Magalhães, P J; Andreu, A L; Schon, E A

    1998-09-01

    Mammalian mitochondrial ribosomes contain two prokaryotic-like rRNAs, 12S and 16S, both encoded by mitochondrial DNA. As opposed to cytosolic ribosomes, however, these ribosomes are not thought to contain 5S rRNA. For this reason, it has been unclear whether 5S rRNA, which can be detected in mitochondrial preparations, is an authentic organellar species imported from the cytosol or is merely a copurifying cytosol-derived contaminant. We now show that 5S rRNA is tightly associated with highly purified mitochondrial fractions of human and rat cells and that 5S rRNA transcripts derived from a synthetic gene transfected transiently into human cells are both expressed in vivo and present in highly purified mitochondria and mitoplasts. We conclude that 5S rRNA is imported into mammalian mitochondria, but its function there still remains to be clarified. PMID:9725900

  17. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae

    PubMed Central

    Kiparisov, S.; Sergiev, P. V.; Dontsova, O. A.; Petrov, A.; Meskauskas, A.; Dinman, J. D.

    2005-01-01

    5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semidominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression. PMID:16047201

  18. Strain identification and 5S rRNA gene characterization of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Durovic, P; Kutay, U; Schleper, C; Dennis, P P

    1994-01-01

    A commonly used laboratory Sulfolobus strain has been unambiguously identified as Sulfolobus acidocaldarius DSM639. The 5S rRNA gene from this strain was cloned and sequenced. It differs at 17 of 124 positions from the identical 5S rRNA sequences from Sulfolobus solfataricus and a strain apparently misidentified as S. acidocaldarius. Analysis of the transcripts from the 5S rRNA gene failed to identify any precursor extending a significant distance beyond the 5' or 3' boundary of the 5S rRNA-coding sequence. This result suggests that the primary transcript of the 5S rRNA gene corresponds in length (within 1 or 2 nucleotides) to the mature 5S rRNA sequence found in 50S ribosomal subunits. Images PMID:8288546

  19. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states

    PubMed Central

    Pontvianne, Frederic; Blevins, Todd; Chandrasekhara, Chinmayi; Mozgová, Iva; Hassel, Christiane; Pontes, Olga M.F.; Tucker, Sarah; Mokroš, Petr; Muchová, Veronika; Fajkus, Jiří; Pikaard, Craig S.

    2013-01-01

    Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic–nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state. PMID:23873938

  20. rRNA Suppressor of a Eukaryotic Translation Initiation Factor 5B/Initiation Factor 2 Mutant Reveals a Binding Site for Translational GTPases on the Small Ribosomal Subunit▿

    PubMed Central

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G.; Maher, Kathryn N.; Lorsch, Jon R.; Dever, Thomas E.

    2009-01-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit. PMID:19029250

  1. Specific interactions of the L10(L12)4 ribosomal protein complex with mRNA, rRNA, and L11.

    PubMed

    Iben, James R; Draper, David E

    2008-03-01

    Large ribosomal subunit proteins L10 and L12 form a pentameric protein complex, L10(L12) 4, that is intimately involved in the ribosome elongation cycle. Its contacts with rRNA or other ribosomal proteins have been only partially resolved by crystallography. In Escherichia coli, L10 and L12 are encoded from a single operon for which L10(L12) 4 is a translational repressor that recognizes a secondary structure in the mRNA leader. In this study, L10(L12) 4 was expressed from the moderate thermophile Bacillus stearothermophilus to quantitatively compare strategies for binding of the complex to mRNA and ribosome targets. The minimal mRNA recognition structure is widely distributed among bacteria and has the potential to form a kink-turn structure similar to one identified in the rRNA as part of the L10(L12) 4 binding site. Mutations in equivalent positions between the two sequences have similar effects on L10(L12) 4-RNA binding affinity and identify the kink-turn motif and a loop AA sequence as important recognition elements. In contrast to the larger rRNA structure, the mRNA apparently positions the kink-turn motif and loop for protein recognition without the benefit of Mg (2+)-dependent tertiary structure. The mRNA and rRNA fragments bind L10(L12) 4 with similar affinity ( approximately 10 (8) M (-1)), but fluorescence binding studies show that a nearby protein in the ribosome, L11, enhances L10(L12) 4 binding approximately 100-fold. Thus, mRNA and ribosome targets use similar RNA features, held in different structural contexts, to recognize L10(L12) 4, and the ribosome ensures the saturation of its L10(L12) 4 binding site by means of an additional protein-protein interaction. PMID:18247578

  2. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays.

    PubMed

    Small, J; Call, D R; Brockman, F J; Straub, T M; Chandler, D P

    2001-10-01

    We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 microg of total RNA, representing approximately 7.5 x 10(6) Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR. PMID:11571176

  3. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria

    PubMed Central

    Valach, Matus; Moreira, Sandrine; Kiethega, Georgette N.; Burger, Gertraud

    2014-01-01

    Mitochondrial ribosomal RNAs (rRNAs) often display reduced size and deviant secondary structure, and sometimes are fragmented, as are their corresponding genes. Here we report a mitochondrial large subunit rRNA (mt-LSU rRNA) with unprecedented features. In the protist Diplonema, the rnl gene is split into two pieces (modules 1 and 2, 534- and 352-nt long) that are encoded by distinct mitochondrial chromosomes, yet the rRNA is continuous. To reconstruct the post-transcriptional maturation pathway of this rRNA, we have catalogued transcript intermediates by deep RNA sequencing and RT-PCR. Gene modules are transcribed separately. Subsequently, transcripts are end-processed, the module-1 transcript is polyuridylated and the module-2 transcript is polyadenylated. The two modules are joined via trans-splicing that retains at the junction ∼26 uridines, resulting in an extent of insertion RNA editing not observed before in any system. The A-tail of trans-spliced molecules is shorter than that of mono-module 2, and completely absent from mitoribosome-associated mt-LSU rRNA. We also characterize putative antisense transcripts. Antisense-mono-modules corroborate bi-directional transcription of chromosomes. Antisense-mt-LSU rRNA, if functional, has the potential of guiding concomitantly trans-splicing and editing of this rRNA. Together, these findings open a window on the investigation of complex regulatory networks that orchestrate multiple and biochemically diverse post-transcriptional events. PMID:24259427

  4. Depletion of pre-16S rRNA in starved Escherichia coli cells.

    PubMed

    Cangelosi, G A; Brabant, W H

    1997-07-01

    Specific hybridization assays for intermediates in rRNA synthesis (pre-rRNA) may become useful for monitoring the growth activity of individual microbial species in complex natural systems. This possibility depends upon the assumption that rRNA processing in microbial cells continues after growth and pre-rRNA synthesis cease, resulting in drainage of the pre-rRNA pool. This is not the case in many eukaryotic cells, but less is known about the situation in bacteria. Therefore, we used DNA probes to measure steady-state cellular pre-16S rRNA pools during growth state transitions in Escherichia coli. Pre-16S rRNA became undetectable when cells entered the stationary phase on rich medium and was replenished upon restoration of favorable growth conditions. These fluctuations were of much greater magnitude than concurrent fluctuations in the mature 16S rRNA pool. The extent of pre-16S rRNA depletion depended upon the circumstances limiting growth. It was significantly more pronounced in carbon-energy-starved cells than in nitrogen-starved cells or in cells treated with energy uncouplers. In the presence of the transcriptional inhibitor rifampin, rates of pre-16S rRNA depletion in carbon-energy-starved cells and nitrogen-starved cells were similar, suggesting that the difference between these conditions resides primarily at the level of pre-rRNA synthesis. Chloramphenicol, which inhibits the final steps in rRNA maturation, halted pre-16S rRNA depletion under all conditions. The data show that E. coli cells continue to process pre-rRNA after growth and rrn operon transcription cease, leading to drainage of the pre-rRNA pool. This supports the feasibility of using pre-rRNA-targeted probes to monitor bacterial growth in natural systems, with the caveat that patterns of pre-rRNA depletion vary with the conditions limiting growth. PMID:9226253

  5. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP

    PubMed Central

    Sardana, Richa; White, Joshua P.; Johnson, Arlen W.

    2013-01-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome. PMID:23604635

  6. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    PubMed

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome. PMID:23604635

  7. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing.

    PubMed

    Balzer, M; Wagner, R

    1998-02-27

    The biogenesis of functional ribosomes is regulated in a very complex manner, involving different proteins and RNA molecules. RNAs are not only essential components of both ribosomal subunits but also transiently interacting factors during particle formation. In eukaryotes snoRNAs act as molecular chaperones to assist maturation, modification and assembly. In a very similar way highly conserved leader sequences of bacterial rRNA operons are involved in the correct formation of 30 S ribosomal subunits. Certain mutations in the rRNA leader region cause severe growth defects due to malfunction of ribosomes which are assembled from such transcription units. To understand how the leader sequences act to facilitate the formation of the correct 30 S subunits we performed in vivo chemical probing to assess structural differences between ribosomes assembled either from rRNA transcribed from wild-type operons or from operons which contain mutations in the rRNA leader region. Cells transformed with plasmids containing the respective rRNA operons were reacted with dimethylsulphate (DMS). Ribosomes were isolated by sucrose gradient centrifugation and modified nucleotides within the 16 S rRNA were identified by primer extension reaction. Structural differences between ribosomes from wild-type and mutant rRNA operons occur in several clusters within the 16 S rRNA secondary structure. The most prominent differences are located in the central domain including the universally conserved pseudoknot structure which connects the 5', the central and the 3' domain of 16 S rRNA. Two other clusters with structural differences fall in the 5' domain where the leader had been shown to interact with mature 16 S rRNA and within the ribosomal protein S4 binding site. The other differences in structure are located in sites which are also known as sites for the action of several antibiotics. The data explain the functional defects of ribosomes from rRNA operons with leader mutations and help to

  8. CF Mutation Panel

    MedlinePlus

    ... page: Was this page helpful? Also known as: Cystic Fibrosis Genotyping; CF DNA Analysis; CF Gene Mutation Panel; CF Molecular Genetic Testing Formal name: Cystic Fibrosis Gene Mutation Panel Related tests: Sweat Test ; Trypsinogen ; ...

  9. Colorectal cancer prognosis: is it all mutation, mutation, mutation?

    PubMed Central

    Hassan, A B; Paraskeva, C

    2005-01-01

    For the 500 000 new cases of colorectal cancer in the world each year, identification of patients with a worse prognosis and those who are more likely to respond to treatment is a challenge. There is an increasing body of evidence correlating genetic mutations with outcome in tumours derived from human colorectal cancer cohorts. K-ras, but not p53 or APC, mutations appear to be associated with poorer overall survival in colorectal cancer patients. PMID:16099785

  10. Comparative 16S rRNA signatures and multilocus sequence analysis for the genus Salinicola and description of Salinicola acroporae sp. nov., isolated from coral Acropora digitifera.

    PubMed

    Lepcha, Rinchen T; Poddar, Abhijit; Schumann, Peter; Das, Subrata K

    2015-07-01

    A novel Gram-negative, aerobic, motile marine bacterium, strain S4-41(T), was isolated from mucus of the coral Acropora digitifera from the Andaman Sea. Heterotrophic growth was observed in 0-25 % NaCl, at 15-45 °C and pH 4.5-9. In phylogenetic trees, strain S4-41(T) was grouped within the genus Salinicola but formed a separate branch distant from a cluster composed of Salinicola salarius M27(T) and Salinicola socius SMB35(T). DNA-DNA relatedness between strain S4-41(T) and these reference strains were well below 70 %. Q-9 was the sole respiratory quinone. The DNA G+C content was determined to be 63.6 mol%. Based on a polyphasic analysis, strain S4-41(T) is concluded to represent a novel species in the genus Salinicola for which the name Salinicola acroporae sp. nov. is proposed. The type strain is S4-41(T) (=JCM 30412(T) = LMG 28587(T)). Comparative 16S rRNA analysis of the genera Salinicola, Kushneria, Chromohalobacter and Cobetia revealed the presence of genus specific sequence signatures. Multilocus sequence analysis based on concatenated sequences of rRNAs (16S and 23S) and four protein coding housekeeping genes (atpA, gyrB, secA, rpoD) was found to be unnecessary for phylogenetic studies of the genus Salinicola. PMID:25944083

  11. Thermus thermophilus 16S rRNA is transcribed from an isolated transcription unit.

    PubMed Central

    Hartmann, R K; Erdmann, V A

    1989-01-01

    A cloned 16S rRNA gene from the extreme thermophilic eubacterium Thermus thermophilus HB8 was used to characterize the in vivo expression of the 16S rRNA genes in this organism by nuclease S1 mapping. The gene represents an isolated transcription unit encoding solely 16S rRNA. Under exponential growth conditions, transcription was initiated at a single promoter, which represents the structural equivalent of Escherichia coli rrn P2 promoters. The promoter-leader region was very similar to the E. coli rrn P2 promoter-leader segment that is responsible for antitermination. The T. thermophilus leader region was approximately 85 nucleotides shorter than its E. coli P2 counterpart. Potential processing intermediates were correlated with a proposed secondary structure of T. thermophilus pre-16S rRNA. Images PMID:2722737

  12. Diversity of 5S rRNA genes within individual prokaryotic genomes

    PubMed Central

    Pei, Anna; Li, Hongru; Oberdorf, William E; Alekseyenko, Alexander V.; Parsons, Tamasha; Yang, Liying; Gerz, Erika A.; Lee, Peng; Xiang, Charlie; Nossa, Carlos W.; Pei, Zhiheng

    2012-01-01

    We examined intragenomic variation of paralogous 5S rRNA genes to evaluate the concept of ribosomal constraints. In a dataset containing 1168 genomes from 779 unique species, 96 species exhibited >3% diversity. Twenty seven species with >10% diversity contained a total of 421 mismatches between all pairs of the most dissimilar copies of 5S rRNA genes. The large majority (401 of 421) the diversified positions were conserved at the secondary structure level. The high diversity was associated with partial rRNA operon, split operon, or spacer length-related divergence. In total, these findings indicated that there were tight ribosomal constraints on paralogous 5S rRNA genes in a genome despite of the high degree of diversity at the primary structure level. There is supplementary material. PMID:22765222

  13. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  14. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications.

    PubMed

    Herzog, M; Maroteaux, L

    1986-11-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  15. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications

    PubMed Central

    Herzog, Michel; Maroteaux, Luc

    1986-01-01

    We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage. PMID:16578795

  16. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis.

    PubMed Central

    Houge, G; Robaye, B; Eikhom, T S; Golstein, J; Mellgren, G; Gjertsen, B T; Lanotte, M; Døskeland, S O

    1995-01-01

    Bona fide apoptosis in rat and human leukemia cells, rat thymocytes, and bovine endothelial cells was accompanied by limited and specific cleavage of polysome-associated and monosome-associated 28S rRNA, with 18S rRNA being spared. Specific 28S rRNA cleavage was observed in all instances of apoptotic death accompanied by internucleosomal DNA fragmentation, with cleavage of 28S rRNA and of DNA being linked temporally. This indicates that 28S rRNA fragmentation may be as general a feature of apoptosis as internucleosomal DNA fragmentation and that concerted specific cleavage of intra- and extranuclear polynucleotides occurs in apoptosis. Apoptosis-associated cleavage sites were mapped to the 28S rRNA divergent domains D2, D6 (endothelial cells), and D8. The D2 cuts occurred in hairpin loop junctions considered to be buried in the intact ribosome, suggesting that this rRNA region becomes a target for RNase attack in apoptotic cells. D8 was cleaved in two exposed UU(U) sequences in bulge loops. Treatment with agents causing necrotic cell death or aging of cell lysates failed to produce any detectable limited D2 cleavage but did produce a more generalized cleavage in the D8 region. Of potential functional interest was the finding that the primary cuts in D2 exactly flanked a 0.3-kb hypervariable subdomain (D2c), allowing excision of the latter. The implication of hypervariable rRNA domains in apoptosis represents the first association of any functional process with these enigmatic parts of the ribosomes. PMID:7891700

  17. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers

    PubMed Central

    Liu, Zongzhi; DeSantis, Todd Z.; Andersen, Gary L.; Knight, Rob

    2008-01-01

    The recent introduction of massively parallel pyrosequencers allows rapid, inexpensive analysis of microbial community composition using 16S ribosomal RNA (rRNA) sequences. However, a major challenge is to design a workflow so that taxonomic information can be accurately and rapidly assigned to each read, so that the composition of each community can be linked back to likely ecological roles played by members of each species, genus, family or phylum. Here, we use three large 16S rRNA datasets to test whether taxonomic information based on the full-length sequences can be recaptured by short reads that simulate the pyrosequencer outputs. We find that different taxonomic assignment methods vary radically in their ability to recapture the taxonomic information in full-length 16S rRNA sequences: most methods are sensitive to the region of the 16S rRNA gene that is targeted for sequencing, but many combinations of methods and rRNA regions produce consistent and accurate results. To process large datasets of partial 16S rRNA sequences obtained from surveys of various microbial communities, including those from human body habitats, we recommend the use of Greengenes or RDP classifier with fragments of at least 250 bases, starting from one of the primers R357, R534, R798, F343 or F517. PMID:18723574

  18. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis.

    PubMed

    Ramesh, Madhumitha; Woolford, John L

    2016-08-01

    The secondary structure of ribosomal RNA (rRNA) is largely conserved across all kingdoms of life. However, eukaryotes have evolved extra blocks of rRNA sequences, relative to those of prokaryotes, called expansion segments (ES). A thorough characterization of the potential roles of ES remains to be done, possibly because of limitations in the availability of robust systems to study rRNA mutants. We sought to systematically investigate the potential functions, if any, of the ES in 25S rRNA of Saccharomyces cerevisiae by deletion mutagenesis. We deleted 14 of the 16 different eukaryote-specific ES in yeast 25S rRNA individually and assayed their phenotypes. Our results show that all but two of the ES tested are necessary for optimal growth and are required for production of 25S rRNA, suggesting that ES play roles in ribosome biogenesis. Further, we classified expansion segments into groups that participate in early nucleolar, middle, and late nucleoplasmic steps of ribosome biogenesis, by assaying their pre-rRNA processing phenotypes. This study is the first of its kind to systematically identify the functions of eukaryote-specific expansion segments by showing that they play roles in specific steps of ribosome biogenesis. The catalog of phenotypes we identified, combined with previous investigations of the roles ribosomal proteins in large subunit biogenesis, leads us to infer that assembling ribosomes are composed of distinct RNA and protein structural neighborhood clusters that participate in specific steps of ribosome biogenesis. PMID:27317789

  19. Direct 5S rRNA Assay for Monitoring Mixed-Culture Bioprocesses

    PubMed Central

    Stoner, D. L.; Browning, C. K.; Bulmer, D. K.; Ward, T. E.; MacDonell, M. T.

    1996-01-01

    This study demonstrates the efficacy of a direct 5S rRNA assay for the characterization of mixed microbial populations by using as an example the bacteria associated with acidic mining environments. The direct 5S rRNA assay described herein represents a nonselective, direct molecular method for monitoring and characterizing the predominant, metabolically active members of a microbial population. The foundation of the assay is high-resolution denaturing gradient gel electrophoresis (DGGE), which is used to separate 5S rRNA species extracted from collected biomass. Separation is based on the unique migration behavior of each 5S rRNA species during electrophoresis in denaturing gradient gels. With mixtures of RNA extracted from laboratory cultures, the upper practical limit for detection in the current experimental system has been estimated to be greater than 15 different species. With this method, the resolution was demonstrated to be effective at least to the species level. The strength of this approach was demonstrated by the ability to discriminate between Thiobacillus ferrooxidans ATCC 19859 and Thiobacillus thiooxidans ATCC 8085, two very closely related species. Migration patterns for the 5S rRNA from members of the genus Thiobacillus were readily distinguishable from those of the genera Acidiphilium and Leptospirillum. In conclusion, the 5S rRNA assay represents a powerful method by which the structure of a microbial population within acidic environments can be assessed. PMID:16535333

  20. UV Signature Mutations

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  1. Novel Approach to Quantitative Detection of Specific rRNA in a Microbial Community, Using Catalytic DNA

    PubMed Central

    Suenaga, Hikaru; Liu, Rui; Shiramasa, Yuko; Kanagawa, Takahiro

    2005-01-01

    We developed a novel method for the quantitative detection of the 16S rRNA of a specific bacterial species in the microbial community by using deoxyribozyme (DNAzyme), which possesses the catalytic function to cleave RNA in a sequence-specific manner. A mixture of heterogeneous 16S rRNA containing the target 16S rRNA was incubated with a species-specific DNAzyme. The cleaved target 16S rRNA was separated from the intact 16S rRNA by electrophoresis, and then their amounts were compared for the quantitative detection of target 16S rRNA. This method was used to determine the abundance of the 16S rRNA of a filamentous bacterium, Sphaerotilus natans, in activated sludge, which is a microbial mixture used in wastewater treatment systems. The result indicated that this DNAzyme-based approach would be applicable to actual microbial communities. PMID:16085888

  2. Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals.

    PubMed

    Kakumanu, Madhavi L; Ponnusamy, Loganathan; Sutton, Haley T; Meshnick, Steven R; Nicholson, William L; Apperson, Charles S

    2016-04-01

    A novel nested PCR assay was developed to detectRickettsiaspp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) ofRickettsiaspp. The newly designed primers were evaluated using genomic DNA from 11Rickettsiaspecies belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to otherRickettsia-specific PCR targets (ompA,gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11Rickettsiaspp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from "CandidatusRickettsia amblyommii." Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adultDermacentor variabilisticks. The nested 23S-5S IGS assay detectedRickettsiaDNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species ofRickettsia The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species ofRickettsiain the ticks. "CandidatusRickettsia amblyommii,"R. montanensis,R. felis, andR. belliiwere frequently identified species, along with some potentially novelRickettsiastrains that were closely related toR. belliiandR. conorii. PMID:26818674

  3. Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals

    PubMed Central

    Kakumanu, Madhavi L.; Ponnusamy, Loganathan; Sutton, Haley T.; Meshnick, Steven R.; Nicholson, William L.

    2016-01-01

    A novel nested PCR assay was developed to detect Rickettsia spp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) of Rickettsia spp. The newly designed primers were evaluated using genomic DNA from 11 Rickettsia species belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to other Rickettsia-specific PCR targets (ompA, gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11 Rickettsia spp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from “Candidatus Rickettsia amblyommii.” Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adult Dermacentor variabilis ticks. The nested 23S-5S IGS assay detected Rickettsia DNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species of Rickettsia. The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species of Rickettsia in the ticks. “Candidatus Rickettsia amblyommii,” R. montanensis, R. felis, and R. bellii were frequently identified species, along with some potentially novel Rickettsia strains that were closely related to R. bellii and R. conorii. PMID:26818674

  4. UV signature mutations.

    PubMed

    Brash, Douglas E

    2015-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  5. Two Mutations associated with Macrolide Resistance in Treponema pallidum: Increasing Prevalence and Correlation with Molecular Strain Type in Seattle, Washington

    PubMed Central

    Grimes, Matthew; Sahi, Sharon K.; Godornes, B. Charmie; Tantalo, Lauren C.; Roberts, Neal; Bostick, David; Marra, Christina M.; Lukehart, Sheila A.

    2013-01-01

    Background Although azithromycin promised to be a safe and effective single dose oral treatment for early syphilis, azithromycin treatment failure has been documented and is associated with mutations in the 23S rDNA of corresponding Treponema pallidum strains. The prevalence of strains harboring these mutations varies throughout the US and the world. We examined T. pallidum strains circulating in Seattle, Washington, from 2001–2010 to determine the prevalence of two mutations associated with macrolide resistance, and to determine whether these mutations were associated with certain T. pallidum strain types. Methods Subjects were enrolled in a separate ongoing study of cerebrospinal fluid (CSF) abnormalities in patients with syphilis. T. pallidum DNA purified from blood and T. pallidum strains isolated from blood or CSF were analyzed for two 23S rDNA mutations and for the molecular targets used in an enhanced molecular stain typing system. Results Nine molecular strain types of T. pallidum were identified in Seattle from 2001–2010. Both macrolide resistance mutations were identified in Seattle strains, and the prevalence of resistant T. pallidum exceeded 80% in 2005 and increased through 2010. Resistance mutations were associated with discrete molecular strain types of T. pallidum. Conclusions Macrolide resistant T. pallidum strains are highly prevalent in Seattle, and each mutation is associated with discrete strain types. Macrolides should not be considered for treatment of syphilis in regions where prevalence of the mutations is high. Combining the resistance mutations with molecular strain typing permits a finer analysis of the epidemiology of syphilis in a community. PMID:23191949

  6. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence

    PubMed Central

    Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  7. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  8. Stationary mutation models.

    PubMed

    Simonsson, Ivar; Mostad, Petter

    2016-07-01

    Probability calculations for relationship inference based on DNA tests are often performed with computer packages such as Familias. When mutations are assumed to be a possibility, one may notice a curious and problematic effect of including untested parents: results tend to change slightly. In this paper, we trace this effect back to fundamental model-formulating issues which can only be resolved by using stationary mutation models. We present several methods for obtaining such stationary mutation matrices from original mutation matrices, and evaluate essential properties of these methods. Our conclusion is that typically, stationary mutation models can be obtained, but for many types of markers, it may be impossible to combine specific biologically reasonable requirements for a mutation matrix with the requirement of stationarity. PMID:27231805

  9. Effective Temperature of Mutations

    NASA Astrophysics Data System (ADS)

    Derényi, Imre; Szöllősi, Gergely J.

    2015-02-01

    Biological macromolecules experience two seemingly very different types of noise acting on different time scales: (i) point mutations corresponding to changes in molecular sequence and (ii) thermal fluctuations. Examining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins, we show that the effects of single point mutations are statistically indistinguishable from those of an increase in temperature by a few tens of kelvins. The existence of such an effective mutational temperature establishes a quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.

  10. ATRX driver mutation in a composite malignant pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Tejera, Águeda M; Currás-Freixes, María; Remacha, Laura; Gonzalvo, Pablo; Tonda, Raúl; Letón, Rocío; Blasco, María A; Robledo, Mercedes; Cascón, Alberto

    2016-06-01

    Pheochromocytomas (PCCs) and paragangliomas (PGLs) are tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia, respectively. Approximately 40% of PCCs/PGLs are due to germline mutations in one of 16 susceptibility genes, and a further 30% are due to somatic alterations in 5 main genes. Recently, somatic ATRX mutations have been found in succinate dehydrogenase (SDH)-associated hereditary PCCs/PGLs. In the present study we applied whole-exome sequencing to the germline and tumor DNA of a patient with metastatic composite PCC and no alterations in known PCC/PGL susceptibility genes. A somatic loss-of-function mutation affecting ATRX was identified in tumor DNA. Transcriptional profiling analysis classified the tumor within cluster 2 of PCCs/PGLs (without SDH gene mutations) and identified downregulation of genes involved in neuronal development and homeostasis (NLGN4, CD99 and CSF2RA) as well as upregulation of Drosha, an important gene involved in miRNA and rRNA processing. CpG island methylator phenotype typical of SDH gene-mutated tumors was ruled out, and SNP array data revealed a unique profile of gains and losses. Finally, we demonstrated the presence of alternative lengthening of telomeres in the tumor, probably associated with the failure of ATRX functions. In conclusion, somatic variants affecting ATRX may play a driver role in sporadic PCC/PGL. PMID:27209355

  11. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species.

    PubMed

    Park, Y K; Park, K C; Park, C H; Kim, N S

    2000-02-29

    Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens. PMID:10774742

  12. Decreases in average bacterial community rRNA operon copy number during succession.

    PubMed

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  13. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data

    PubMed Central

    Aßhauer, Kathrin P.; Wemheuer, Bernd; Daniel, Rolf; Meinicke, Peter

    2015-01-01

    Motivation: The characterization of phylogenetic and functional diversity is a key element in the analysis of microbial communities. Amplicon-based sequencing of marker genes, such as 16S rRNA, is a powerful tool for assessing and comparing the structure of microbial communities at a high phylogenetic resolution. Because 16S rRNA sequencing is more cost-effective than whole metagenome shotgun sequencing, marker gene analysis is frequently used for broad studies that involve a large number of different samples. However, in comparison to shotgun sequencing approaches, insights into the functional capabilities of the community get lost when restricting the analysis to taxonomic assignment of 16S rRNA data. Results: Tax4Fun is a software package that predicts the functional capabilities of microbial communities based on 16S rRNA datasets. We evaluated Tax4Fun on a range of paired metagenome/16S rRNA datasets to assess its performance. Our results indicate that Tax4Fun provides a good approximation to functional profiles obtained from metagenomic shotgun sequencing approaches. Availability and implementation: Tax4Fun is an open-source R package and applicable to output as obtained from the SILVAngs web server or the application of QIIME with a SILVA database extension. Tax4Fun is freely available for download at http://tax4fun.gobics.de/. Contact: kasshau@gwdg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25957349

  14. The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction

    PubMed Central

    Fritz, Brian R.; Jewett, Michael C.

    2014-01-01

    In vitro ribosome construction could enable studies of ribosome assembly and function, provide a route toward constructing minimal cells for synthetic biology, and permit the construction of ribosome variants with new functions. Toward these long-term goals, we recently reported on an integrated, one-pot ribosomal RNA synthesis (rRNA), ribosome assembly, and translation technology (termed iSAT) for the construction of Escherichia coli ribosomes in crude ribosome-free S150 extracts. Here, we aimed to improve the activity of iSAT through transcriptional tuning. Specifically, we increased transcriptional efficiency through 3′ modifications to the rRNA gene sequences, optimized plasmid and polymerase concentrations, and demonstrated the use of a T7-promoted rRNA operon for stoichiometrically balanced rRNA synthesis and native rRNA processing. Our modifications produced a 45-fold improvement in iSAT protein synthesis activity, enabling synthesis of 429 ± 15 nmol/l green fluorescent protein in 6 h batch reactions. Further, we show that the translational activity of ribosomes purified from iSAT reactions is about 20% the activity of native ribosomes purified directly from E. coli cells. Looking forward, we believe iSAT will enable unique studies to unravel the systems biology of ribosome biogenesis and open the way to new methods for making and studying ribosomal variants. PMID:24792158

  15. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces

    PubMed Central

    Orsi, William; Biddle, Jennifer F.; Edgcomb, Virginia

    2013-01-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface. PMID:23418556

  16. Affinity chromatography of Drosophila melanogaster ribosomal proteins to 5S rRNA.

    PubMed

    Stark, B C; Chooi, W Y

    1985-02-20

    The binding of Drosophila melanogaster ribosomal proteins to D. melanogaster 5S rRNA was studied using affinity chromatography of total ribosomal proteins (TP80) on 5S rRNA linked via adipic acid dihydrazide to Sepharose 4B. Ribosomal proteins which bound 5S rRNA at 0.3 M potassium chloride and were eluted at 1 M potassium chloride were identified as proteins 1, L4, 2/3, L14/L16, and S1, S2, S3, S4, S5, by two-dimensional polyacrylamide gel electrophoresis. Using poly A-Sepharose 4B columns as a model of non-specific binding, we found that a subset of TP80 proteins is also bound. This subset, while containing some of the proteins bound by 5S rRNA columns, was distinctly different from the latter subset, indicating that the binding to 5S rRNA was specific for that RNA species. PMID:3923010

  17. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia.

    PubMed

    Dong, ShiNan; Shen, ZhongYuan; Xu, Li; Zhu, Feng

    2010-01-01

    The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosema heliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia. PMID:19768503

  18. Development of a Broad-Range 23S rDNA Real-Time PCR Assay for the Detection and Quantification of Pathogenic Bacteria in Human Whole Blood and Plasma Specimens

    PubMed Central

    Gaibani, Paolo; Mariconti, Mara; Bua, Gloria; Bonora, Sonia; Sassera, Davide; Landini, Maria Paola; Mulatto, Patrizia; Novati, Stefano; Bandi, Claudio; Sambri, Vittorio

    2013-01-01

    Molecular methods are important tools in the diagnosis of bloodstream bacterial infections, in particular in patients treated with antimicrobial therapy, due to their quick turn-around time. Here we describe a new broad-range real-time PCR targeting the 23S rDNA gene and capable to detect as low as 10 plasmid copies per reaction of targeted bacterial 23S rDNA gene. Two commercially available DNA extraction kits were evaluated to assess their efficiency for the extraction of plasma and whole blood samples spiked with different amount of either Staphylococcus aureus or Escherichia coli, in order to find the optimal extraction method to be used. Manual QIAmp extraction method with enzyme pre-treatment resulted the most sensitive for detection of bacterial load. Sensitivity of this novel assay ranged between 10 and 103 CFU per PCR reaction for E. coli and S. aureus in human whole blood samples depending on the extraction methods used. Analysis of plasma samples showed a 10- to 100-fold reduction of bacterial 23S rDNA in comparison to the corresponding whole blood specimens, thus indicating that whole blood is the preferential sample type to be used in this real-time PCR protocol. Our results thus show that the 23S rDNA gene represents an optimal target for bacteria quantification in human whole blood. PMID:23586027

  19. Molecular phylogeny of pneumocystis based on 5.8S rRNA gene and the internal transcribed spacers of rRNA gene sequences.

    PubMed

    Li, ZiHui; Feng, XianMin; Lu, SiQi; Zhang, Fan; Wang, FengYun; Huang, Song

    2008-05-01

    To clarify the phylogenetic relationships and species status of Pneumocystis, the 5.8S rRNA gene and the internal transcribed spacers (ITS, 1 and 2) of Pneumocystis rRNA derived from rat, gerbil and human were amplified, cloned and sequenced. The genetic distance matrix of six Pneumocystis species compared with other fungi like Taphrina and Saccharomyces indicated that the Pneumocystis genus contained multiple species including Pneumocystis from gerbil. The phylogenetic tree also showed that Pneumocystis from human and monkey formed one group and four rodent Pneumocystis formed another group. Among the four members, Pneumocystis wakefieldiae was most closely related to Pneumocystis murina and Pneumocystis carinii, and was least related to gerbil Pneumocystis. PMID:18785590

  20. Homology of the 3' terminal sequences of the 18S rRNA of Bombyx mori and the 16S rRNA of Escherchia coli.

    PubMed Central

    Samols, D R; Hagenbuchle, O; Gage, L P

    1979-01-01

    The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA. Images PMID:390496

  1. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  2. Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis

    SciTech Connect

    T Tanaka; P Smith; S Shuman

    2011-12-31

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  3. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis

    PubMed Central

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2015-01-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. PMID:25851604

  4. Mutations in Lettuce Improvement.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations can make profound impact on the evolution and improvement of a self-pollinated crop such as lettuce. Since it is nontransgenic, mutation breeding is more acceptable to consumers. Combined with genomic advances in new technologies like TILLING, mutagenesis is becoming an even more powerfu...

  5. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences.

    PubMed Central

    Shah, J S; Pieciak, W; Liu, J; Buharin, A; Lane, D J

    1996-01-01

    We have amplified by PCR Pneumocystis carinii cytoplasmic small-subunit rRNA (variously referred to as 16S-like or 18S-like rRNA) genes from DNA extracted from bronchoalveolar lavage and induced sputum specimens from patients positive for P. carinii and from infected ferret lung tissue. The amplification products were cloned into pUC18, and individual clones were sequenced. Comparison of the determined sequences with each other and with published rat and partial human P.carinii small-subunit rRNA gene sequences reveals that, although all P. carinii small-subunit rRNAs are closely related (approximately 96% identity), small-subunit rRNA genes isolated from different host species (human, rat, and ferret) exhibit distinctive patterns of sequence variation. Two types of sequences were isolated from the infected ferret lung tissue, one as a predominant species and the other as a minor species. There was 96% identity between the two types. In situ hybridization of the infected ferret lung tissue with oligonucleotide probes specific for each type revealed that there were two distinct strains of P. carinii present in the ferret lung tissue. Unlike the ferret P. carinii isolates, the small-subunit rRNA gene sequences from different human P. carinii isolates have greater than 99% identity and are distinct from all rat and ferret sequences so far inspected or reported in the literature. Southern blot hybridization analysis of PCR amplification products from several additional bronchoalveolar lavage or induced sputum specimens from P. carinii-infected patients, using a 32P-labeled oligonucleotide probe specific for human P. carinii, also suggests that all of the human P. carinii isolates are identical. These findings indicate that human P. carinii isolates may represent a distinct species of P. carinii distinguishable from rat and ferret P. carinii on the basis of characterization of small-subunit rRNA gene sequences. PMID:8770515

  6. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  7. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

    PubMed

    Wang, Qiong; Garrity, George M; Tiedje, James M; Cole, James R

    2007-08-01

    The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/. PMID:17586664

  8. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  9. Mutation rates as adaptations.

    PubMed

    Maley, C

    1997-06-01

    In order to better understand life, it is helpful to look beyond the envelop of life as we know it. A simple model of coevolution was implemented with the addition of a gene for the mutation rate of the individual. This allowed the mutation rate itself to evolve in a lineage. The model shows that when the individuals interact in a sort of zero-sum game, the lineages maintain relatively high mutation rates. However, when individuals engage in interactions that have greater consequences for one individual in the interaction than the other, lineages tend to evolve relatively low mutation rates. This model suggests that one possible cause for differential mutation rates across genes may be the coevolutionary pressure of the various forms of interactions with other genes. PMID:9219670

  10. Strength and Regulation of Seven rRNA Promoters in Escherichia coli

    PubMed Central

    Maeda, Michihisa; Shimada, Tomohiro; Ishihama, Akira

    2015-01-01

    The model prokaryote Escherichia coli contains seven copies of the rRNA operon in the genome. The presence of multiple rRNA operons is an advantage for increasing the level of ribosome, the key apparatus of translation, in response to environmental conditions. The complete sequence of E. coli genome, however, indicated the micro heterogeneity between seven rRNA operons, raising the possibility in functional heterogeneity and/or differential mode of expression. The aim of this research is to determine the strength and regulation of the promoter of each rRNA operon in E. coli. For this purpose, we used the double-fluorescent protein reporter pBRP system that was developed for accurate and precise determination of the promoter strength of protein-coding genes. For application of this promoter assay vector for measurement of the rRNA operon promoters devoid of the signal for translation, a synthetic SD sequence was added at the initiation codon of the reporter GFP gene, and then approximately 500 bp-sequence upstream each 16S rRNA was inserted in front of this SD sequence. Using this modified pGRS system, the promoter activity of each rrn operon was determined by measuring the rrn promoter-directed GFP and the reference promoter-directed RFP fluorescence, both encoded by a single and the same vector. Results indicated that: the promoter activity was the highest for the rrnE promoter under all growth conditions analyzed, including different growth phases of wild-type E. coli grown in various media; but the promoter strength of other six rrn promoters was various depending on the culture conditions. These findings altogether indicate that seven rRNA operons are different with respect to the regulation mode of expression, conferring an advantage to E. coli through a more fine-tuned control of ribosome formation in a wide range of environmental situations. Possible difference in the functional role of each rRNA operon is also discussed. PMID:26717514

  11. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  12. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  13. Phylogeny of protostome worms derived from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1995-07-01

    The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade. PMID:7659019

  14. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis

    PubMed Central

    Chandrasekhara, Chinmayi; Mohannath, Gireesha; Blevins, Todd; Pontvianne, Frederic; Pikaard, Craig S.

    2016-01-01

    In eukaryotes, scores of excess ribosomal RNA (rRNA) genes are silenced by repressive chromatin modifications. Given the near sequence identity of rRNA genes within a species, it is unclear how specific rRNA genes are reproducibly chosen for silencing. Using Arabidopsis thaliana ecotype (strain) Col-0, a systematic search identified sequence polymorphisms that differ between active and developmentally silenced rRNA gene subtypes. Recombinant inbred mapping populations derived from three different ecotype crosses were then used to map the chromosomal locations of silenced and active RNA gene subtypes. Importantly, silenced and active rRNA gene subtypes are not intermingled. All silenced rRNA gene subtypes mapped to the nucleolus organizer region (NOR) on chromosome 2 (NOR2). All active rRNA gene subtypes mapped to NOR4. Using an engineered A. thaliana line in which a portion of Col-0 chromosome 4 was replaced by sequences of another ecotype, we show that a major rRNA gene subtype silenced at NOR2 is active when introgressed into the genome at NOR4. Collectively, these results reveal that selective rRNA gene silencing is not regulated gene by gene based on mechanisms dependent on subtle gene sequence variation. Instead, we propose that a subchromosomal silencing mechanism operates on a multimegabase scale to inactivate NOR2. PMID:26744421

  15. Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors

    PubMed Central

    Cocozaki, Alexis I.; Altman, Roger B.; Huang, Jian; Buurman, Ed T.; Kazmirski, Steven L.; Doig, Peter; Prince, D. Bryan; Blanchard, Scott C.; Cate, Jamie H. D.; Ferguson, Andrew D.

    2016-01-01

    Mutations conferring resistance to translation inhibitors often alter the structure of rRNA. Reduced susceptibility to distinct structural antibiotic classes may, therefore, emerge when a common ribosomal binding site is perturbed, which significantly reduces the clinical utility of these agents. The translation inhibitors negamycin and tetracycline interfere with tRNA binding to the aminoacyl-tRNA site on the small 30S ribosomal subunit. However, two negamycin resistance mutations display unexpected differential antibiotic susceptibility profiles. Mutant U1060A in 16S Escherichia coli rRNA is resistant to both antibiotics, whereas mutant U1052G is simultaneously resistant to negamycin and hypersusceptible to tetracycline. Using a combination of microbiological, biochemical, single-molecule fluorescence transfer experiments, and X-ray crystallography, we define the specific structural defects in the U1052G mutant 70S E. coli ribosome that explain its divergent negamycin and tetracycline susceptibility profiles. Unexpectedly, the U1052G mutant ribosome possesses a second tetracycline binding site that correlates with its hypersusceptibility. The creation of a previously unidentified antibiotic binding site raises the prospect of identifying similar phenomena in antibiotic-resistant pathogens in the future. PMID:27382179

  16. Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors.

    PubMed

    Cocozaki, Alexis I; Altman, Roger B; Huang, Jian; Buurman, Ed T; Kazmirski, Steven L; Doig, Peter; Prince, D Bryan; Blanchard, Scott C; Cate, Jamie H D; Ferguson, Andrew D

    2016-07-19

    Mutations conferring resistance to translation inhibitors often alter the structure of rRNA. Reduced susceptibility to distinct structural antibiotic classes may, therefore, emerge when a common ribosomal binding site is perturbed, which significantly reduces the clinical utility of these agents. The translation inhibitors negamycin and tetracycline interfere with tRNA binding to the aminoacyl-tRNA site on the small 30S ribosomal subunit. However, two negamycin resistance mutations display unexpected differential antibiotic susceptibility profiles. Mutant U1060A in 16S Escherichia coli rRNA is resistant to both antibiotics, whereas mutant U1052G is simultaneously resistant to negamycin and hypersusceptible to tetracycline. Using a combination of microbiological, biochemical, single-molecule fluorescence transfer experiments, and X-ray crystallography, we define the specific structural defects in the U1052G mutant 70S E. coli ribosome that explain its divergent negamycin and tetracycline susceptibility profiles. Unexpectedly, the U1052G mutant ribosome possesses a second tetracycline binding site that correlates with its hypersusceptibility. The creation of a previously unidentified antibiotic binding site raises the prospect of identifying similar phenomena in antibiotic-resistant pathogens in the future. PMID:27382179

  17. Molecular Diagnosis of Actinomadura madurae Infection by 16S rRNA Deep Sequencing

    PubMed Central

    SenGupta, Dhruba J.; Hoogestraat, Daniel R.; Cummings, Lisa A.; Bryant, Bronwyn H.; Natividad, Catherine; Thielges, Stephanie; Monsaas, Peter W.; Chau, Mimosa; Barbee, Lindley A.; Rosenthal, Christopher; Cookson, Brad T.; Hoffman, Noah G.

    2013-01-01

    Next-generation DNA sequencing can be used to catalog individual organisms within complex, polymicrobial specimens. Here, we utilized deep sequencing of 16S rRNA to implicate Actinomadura madurae as the cause of mycetoma in a diabetic patient when culture and conventional molecular methods were overwhelmed by overgrowth of other organisms. PMID:24108607

  18. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    PubMed

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples. PMID:25343859

  19. Ribosomal Database Project: data and tools for high throughput rRNA analysis

    PubMed Central

    Cole, James R.; Wang, Qiong; Fish, Jordan A.; Chai, Benli; McGarrell, Donna M.; Sun, Yanni; Brown, C. Titus; Porras-Alfaro, Andrea; Kuske, Cheryl R.; Tiedje, James M.

    2014-01-01

    Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/) provides the research community with aligned and annotated rRNA gene sequence data, along with tools to allow researchers to analyze their own rRNA gene sequences in the RDP framework. RDP data and tools are utilized in fields as diverse as human health, microbial ecology, environmental microbiology, nucleic acid chemistry, taxonomy and phylogenetics. In addition to aligned and annotated collections of bacterial and archaeal small subunit rRNA genes, RDP now includes a collection of fungal large subunit rRNA genes. RDP tools, including Classifier and Aligner, have been updated to work with this new fungal collection. The use of high-throughput sequencing to characterize environmental microbial populations has exploded in the past several years, and as sequence technologies have improved, the sizes of environmental datasets have increased. With release 11, RDP is providing an expanded set of tools to facilitate analysis of high-throughput data, including both single-stranded and paired-end reads. In addition, most tools are now available as open source packages for download and local use by researchers with high-volume needs or who would like to develop custom analysis pipelines. PMID:24288368

  20. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra

    PubMed Central

    Ota-Tsuzuki, C.; Brunheira, A.T.P.; Mayer, M.P.A.

    2008-01-01

    The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes. PMID:24031274

  1. Common 5S rRNA variants are likely to be accepted in many sequence contexts

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.

    2003-01-01

    Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The

  2. High-level expression and reconstitution of active Cfr, a radical-SAM rRNA methyltransferase that confers resistance to ribosome-acting antibiotics.

    PubMed

    Booth, Michael P S; Challand, Martin R; Emery, David C; Roach, Peter L; Spencer, James

    2010-12-01

    Cfr is a radical-SAM (S-adenosyl-L-methionine) enzyme that methylates the 8 position of 23S rRNA residue A2503 to confer resistance to multiple antibiotic classes acting upon the large subunit of the bacterial ribosome. Radical-SAM enzymes use an Fe-S cluster to generate the 5'-deoxyadenosyl (DOA) radical from SAM, enabling them to modify intrinsically unreactive centres such as adenosine C8. However, despite its mechanistic interest and clinical relevance, until recently Cfr remained little characterised. Accordingly we have used co-expression with the Azotobacter vinelandii isc operon, encoding genes responsible for Fe-S cluster biosynthesis, to express hexahistidine-tagged Cfr in Escherichia coli BL21Star, and purified the recombinant protein in a yield more than 20 times greater than has been previously reported. As aerobically purified, Cfr contains secondary structure, is monomeric in solution and has an absorbance spectrum suggestive of a 2Fe-2S cluster. After anaerobic purification a 4Fe-4S cluster is indicated, while on reconstitution with excess iron and sulphide a further increase in metal content suggests that an additional, most likely 4Fe-4S, cluster is formed. Acquisition of additional secondary structure under these conditions indicates that Fe-S clusters are of structural, as well as functional, importance to Cfr. In the presence of sodium dithionite reconstituted Cfr is both reducible and able to cleave SAM to 5'-deoxyadeonsine (DOA), demonstrating that the purified reconstituted enzyme has radical-SAM activity. Co-expression with isc proteins thus enables recombinant active Cfr to be obtained in yields that facilitate its future spectroscopic and structural characterisation. PMID:20678576

  3. DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression

    PubMed Central

    Bäreclev, Caroline; Vaitkevicius, Karolis; Netterling, Sakura; Johansson, Jörgen

    2014-01-01

    RNA-helicases are proteins required for the unwinding of occluding secondary RNA structures, especially at low temperatures. In this work, we have deleted all 4 DExD-box RNA helicases in various combinations in the Gram-positive pathogen Listeria monocytogenes. Our results show that 3 out of 4 RNA-helicases were important for growth at low temperatures, whereas the effect was less prominent at 37°C. Over-expression of one RNA-helicase, Lmo1450, was able to overcome the reduced growth of the quadruple mutant strain at temperatures above 26°C, but not at lower temperatures. The maturation of ribosomes was affected in different degrees in the various strains at 20°C, whereas the effect was marginal at 37°C. This was accompanied by an increased level of immature 23S rRNA precursors in some of the RNA-helicase mutants at low temperatures. Although the expression of the PrfA regulated virulence factors ActA and LLO decreased in the quadruple mutant strain, this strain showed a slightly increased infection ability. Interestingly, even though the level of the virulence factor LLO was decreased in the quadruple mutant strain as compared with the wild-type strain, the hly-transcript (encoding LLO) was increased. Hence, our results could suggest a role for the RNA-helicases during translation. In this work, we show that DExD-box RNA-helicases are involved in bacterial virulence gene-expression and infection of eukaryotic cells. PMID:25590644

  4. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.

    PubMed Central

    Schmidt, T M; DeLong, E F; Pace, N R

    1991-01-01

    The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms. Images PMID:2066334

  5. Magnetic and electrical properties of Fe{sub 0.9}Ag{sub 0.1}In{sub 2.3}S{sub 4.4} single crystals

    SciTech Connect

    Bodnar, I. V.; Trukhanov, S. V.; Barugu, T. H.

    2015-10-15

    The magnetic and electrical properties of the Fe{sub 0.9}Ag{sub 0.1}In{sub 2.3}S{sub 4.4} single crystal are studied in the temperature range 4–300 K and in magnetic fields of 0–14 T. It is established that the sample under study is paramagnetic. In the ground state, short-range-order correlations typical of a spin glass with a freezing temperature of 10 K are detected. The magnetic ordering temperature is 15 K. The sample is a semiconductor with a resistivity of 3.5 kΩ cm at room temperature. For the Fe{sub 0.9}Ag{sub 0.1}In{sub 2.3}S{sub 4.4} single crystal, a mechanism for the formation of magnetic and electrical states is suggested.

  6. Mutations in man

    SciTech Connect

    Obe, G.

    1984-01-01

    This book contains 13 selections that cover some of the following topics: DNA repair, gene or point mutations, aspects of nondisjunction, origin and significance of chromosomal alterations, structure and organization of the human genome, and mutagenic activity of cigarette smoke.

  7. Comparing Mutational Variabilities

    PubMed Central

    Houle, D.; Morikawa, B.; Lynch, M.

    1996-01-01

    We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model. PMID:8807316

  8. Rhizobium sp. strain BN4 (a selenium oxyanion-reducing bacterium) 16S rRNA gene complete sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1482 base pair 16S rRNA gene sequence methods in conjunction with other biochemical and morphological studies to confirm the identification of a bacterium (refer to as the BN4 strain) as a Rhizobium sp. The 16S rRNA gene sequence places it with the Rhizobium clade that includes R. d...

  9. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    PubMed

    Pontvianne, Frédéric; Abou-Ellail, Mohamed; Douet, Julien; Comella, Pascale; Matia, Isabel; Chandrasekhara, Chinmayi; Debures, Anne; Blevins, Todd; Cooke, Richard; Medina, Francisco J; Tourmente, Sylvette; Pikaard, Craig S; Sáez-Vásquez, Julio

    2010-11-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis. PMID:21124873

  10. Nucleolin Is Required for DNA Methylation State and the Expression of rRNA Gene Variants in Arabidopsis thaliana

    PubMed Central

    Pontvianne, Frédéric; Abou-Ellail, Mohamed; Douet, Julien; Comella, Pascale; Matia, Isabel; Chandrasekhara, Chinmayi; DeBures, Anne; Blevins, Todd; Cooke, Richard; Medina, Francisco J.; Tourmente, Sylvette; Pikaard, Craig S.; Sáez-Vásquez, Julio

    2010-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1). Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre–rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis. PMID:21124873

  11. Guanine nucleotide metabolism in a mutant strain of Escherichia coli with a temperature sensitive lesion in rRNA synthesis.

    PubMed

    Harris, J S; Chaney, S G

    1978-12-21

    We have described a mutant of Escherichia coli (designated 2S142) which shows specific inhibition of rRNA synthesis at 42 degrees C. ppGpp levels increase at the restrictive temperature, as expected. However, when the cells are returned to 30 degrees C, rRNA synthesis resumes before ppGpp levels have returned to normal. Furthermore, when ppGpp levels are decreased by the addition of tetracycline or choramphenicol, rRNA synthesis does not resume at 42 degrees C. Also, a derivative of 2S142 with a temperature-sensitive G factor (which cannot synthesize either protein or ppGpp at 42 degrees C) shows identical kinetics of rRNA shut-off at 42 degrees C as 2S142. Thus, the elevated ppGpp levels in this mutant do not appear to be directly responsible for the cessation of rRNA synthesis at 42 degrees C. PMID:367439

  12. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    SciTech Connect

    Wang Chengye; Kong Qingpeng; Yao Yonggang . E-mail: ygyaozh@yahoo.com; Zhang Yaping

    2006-09-22

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.

  13. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment.

    PubMed

    Kwasniewska, Jolanta; Jaskowiak, Joanna

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  14. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences.

    PubMed Central

    Lane, D J; Stahl, D A; Olsen, G J; Heller, D J; Pace, N R

    1985-01-01

    5S rRNA nucleotide sequences from Thiobacillus neapolitanus, Thiobacillus ferrooxidans, Thiobacillus thiooxidans, Thiobacillus intermedius, Thiobacillus perometabolis, Thiobacillus thioparus, Thiobacillus versutus, Thiobacillus novellus, Thiobacillus acidophilus, Thiomicrospira pelophila, Thiomicrospira sp. strain L-12, and Acidiphilium cryptum were determined. A phylogenetic tree, based upon comparison of these and other related 5S rRNA sequences, is presented. The results place the thiobacilli, Thiomicrospira spp., and Acidiphilium spp. in the "purple photosynthetic" bacterial grouping which also includes the enteric, vibrio, pseudomonad, and other familiar eubacterial groups in addition to the purple photosynthetic bacteria. The genus Thiobacillus is not an evolutionarily coherent grouping but rather spans the full breadth of the purple photosynthetic bacteria. PMID:3924899

  15. A renaissance for the pioneering 16S rRNA gene

    SciTech Connect

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  16. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment

    PubMed Central

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  17. Rapid identification of Renibacterium salmoninarum using an oligonucleotide probe complementary to 16S rRNA.

    PubMed

    Mattsson, J G; Gersdorf, H; Jansson, E; Hongslo, T; Göbel, U B; Johansson, K E

    1993-02-01

    Bacterial kidney disease in salmonid fish is caused by the slow-growing Gram-positive rod, Renibacterium salmoninarum. The partial sequence of 16S rRNA from R. salmoninarum was determined and compared with published bacterial 16S rRNA sequences. From this sequence information, a 30-bases-long oligonucleotide was designed and used as a specific probe for identification of R. salmoninarum in filter hybridization experiments. Strong specific hybridization signals were observed for all strains of R. salmoninarum tested. Furthermore, no cross-hybridization could be seen against 22 other bacterial species, among them other salmonid fish pathogens. The detection limit for the probe in direct filter hybridization by the dot-blot technique was 2.5 x 10(4) bacteria. It was also possible to detect R. salmoninarum in clinical samples by direct filter hybridization. PMID:8455640

  18. Structural Analysis of Base Substitutions in Thermus thermophilus 16S rRNA Conferring Streptomycin Resistance

    PubMed Central

    Demirci, Hasan; Murphy, Frank V.; Murphy, Eileen L.; Connetti, Jacqueline L.; Dahlberg, Albert E.; Jogl, Gerwald

    2014-01-01

    Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation. PMID:24820088

  19. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene.

    PubMed

    Nedbal, M A; Allard, M W; Honeycutt, R L

    1994-09-01

    Nucleotide sequence variation among 22 representatives of 14 families of hystricognathid rodents was examined using an 814-bp region of the mitochondrial 12S ribosomal RNA (rRNA) gene composing domains I-III. The purpose of this study was twofold. First, the phylogenetic relationships among Old World phiomorph (primarily African) and New World caviomorph (primarily South American) families were investigated, with a special emphasis on testing hypotheses pertaining to the origin of New World families and the identification of major monophyletic groups. Second, divergence times derived from molecular data were compared to those suggested by the fossil record. The resultant 12S rRNA gene phylogeny, analyzed separately and in combination with other morphological and molecular data, supported a monophyletic Caviomorpha. This finding is counter to the idea of a multiple origin for the South American families. The most strongly supported relationships within the Caviomorpha were a monophyletic Octodontoidea (containing five families) and the placement of New World porcupines (family Erethizontidae) as the most divergent family. Although comparisons to other data were more equivocal, the most parsimonious 12S rRNA trees also supported a monophyletic Phiomorpha that could be subdivided into two major groups, a clade containing the Thryonomyoidea (Thryonomyidae and Petromuridae) plus Bathyergidae and the more divergent Hystricidae (Old World porcupines). No significant differences in rates of 12S rRNA gene divergence were observed for hystricognathids in comparison to other rodent groups. Although time since divergence estimates were influenced by the fossil dates chosen to calibrate absolute rates, the overall divergence times derived from both transversions only and Kimura corrected distances and calibrations using two independent dates revealed a divergence time between Old and New World groups dating in the Eocene. PMID:7820285

  20. Application of 12S rRNA gene for the identification of animal-derived drugs.

    PubMed

    Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe

    2011-01-01

    PURPOSE. Animal-derived drugs are the major source of biological products and traditional medicine, but they are often difficult to identify, causing confusion in the clinical application. Among these medicinal animals, a number of animal species are endangered, leading to the destruction of biodiversity. The identification of animal-derived drugs and their alternatives would be a first step toward biodiversity conservation and safe medication. Until now, no effective method for identifying animal-derived drugs has been demonstrated; DNA-based species identification presents a brand-new technique. METHODS. We designed primers to amplify a 523-bp fragment of 12S rRNA and generated sequences for 13 individuals within six medicinal animal species. We examined the efficiency of species recognition based on this sequence, and we also tested the taxonomic affiliations against the GenBank database. RESULTS. All the tested drugs were identified successfully, and a visible gap was found between the inter-specific and intra-specific variation. We further demonstrated the importance of data exploration in DNA-based species identification practice by examining the sequence characteristics of relative genera in GenBank. This region of the 12S rRNA gene had a 100% success rate of species recognition within the six medicinal animal species. CONCLUSIONS. We propose that the 12S rRNA locus might be universal for identifying animal-derived drugs and their adulterants. The development of 12S rRNA for indentifying animal-derived drugs that share a common gene target would contribute significantly to the clinical application of animal-derived drugs and the conservation of medicinal animal species. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:21906480

  1. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    SciTech Connect

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  2. Characterization of the genus Bifidobacterium by automated ribotyping and 16S rRNA gene sequences.

    PubMed

    Sakata, Shinji; Ryu, Chun Sun; Kitahara, Maki; Sakamoto, Mitsuo; Hayashi, Hidenori; Fukuyama, Masafumi; Benno, Yoshimi

    2006-01-01

    In order to characterize the genus Bifidobacterium, ribopatterns and approximately 500 bp (Escherichia coli positions 27 to 520) of 16S rRNA gene sequences of 28 type strains and 64 reference strains of the genus Bifidobacterium were determined. Ribopatterns obtained from Bifidobacterium strains were divided into nine clusters (clusters I-IX) with a similarity of 60%. Cluster V, containing 17 species, was further subdivided into 22 subclusters with a similarity of 90%. In the genus Bifidobacterium, four groups were shown according to Miyake et al.: (i) the Bifidobacterium longum infantis-longum-suis type group, (ii) the B. catenulatum-pseudocatenulatum group, (iii) the B. gallinarum-saeculare-pullorum group, and (iv) the B. coryneforme-indicum group, which showed higher than 97% similarity of the 16S rRNA gene sequences in each group. Using ribotyping analysis, unique ribopatterns were obtained from these species, and they could be separated by cluster analysis. Ribopatterns of six B. adolescentis strains were separated into different clusters, and also showed diversity in 16S rRNA gene sequences. B. adolescentis consisted of heterogeneous strains. The nine strains of B. pseudolongum subsp. pseudolongum were divided into five subclusters. Each type strain of B. pseudolongum subsp. pseudolongum and B. pseudolongum subsp. globosum and two intermediate groups, which were suggested by Yaeshima et al., consisted of individual clusters. B. animalis subsp. animalis and B. animalis subsp. lactis could not be separated by ribotyping using Eco RI. We conclude that ribotyping is able to provide another characteristic of Bifidobacterium strains in addition to 16S rRNA gene sequence phylogenetic analysis, and this information suggests that ribotyping analysis is a useful tool for the characterization of Bifidobacterium species in combination with other techniques for taxonomic characterization. PMID:16428867

  3. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

    PubMed Central

    Kiryk, Anna; Sowodniok, Katharina; Kreiner, Grzegorz; Rodriguez-Parkitna, Jan; Sönmez, Aynur; Górkiewicz, Tomasz; Bierhoff, Holger; Wawrzyniak, Marcin; Janusz, Artur K.; Liss, Birgit; Konopka, Witold; Schütz, Günther; Kaczmarek, Leszek; Parlato, Rosanna

    2013-01-01

    Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer's disease (AD) and may play a role in dementia. Moreover, aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3, and dentate gyrus (DG). Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that 36 transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF) binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the DG a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving neuronal function. PMID:24273493

  4. Mutations in lettuce improvement.

    PubMed

    Mou, Beiquan

    2011-01-01

    Lettuce is a major vegetable in western countries. Mutations generated genetic variations and played an important role in the domestication of the crop. Many traits derived from natural and induced mutations, such as dwarfing, early flowering, male sterility, and chlorophyll deficiency, are useful in physiological and genetic studies. Mutants were also used to develop new lettuce products including miniature and herbicide-tolerant cultivars. Mutant analysis was critical in lettuce genomic studies including identification and cloning of disease-resistance genes. Mutagenesis combined with genomic technology may provide powerful tools for the discovery of novel gene alleles. In addition to radiation and chemical mutagens, unconventional approaches such as tissue or protoplast culture, transposable elements, and space flights have been utilized to generate mutants in lettuce. Since mutation breeding is considered nontransgenic, it is more acceptable to consumers and will be explored more in the future for lettuce improvement. PMID:22287955

  5. Mutations in Lettuce Improvement

    PubMed Central

    Mou, Beiquan

    2011-01-01

    Lettuce is a major vegetable in western countries. Mutations generated genetic variations and played an important role in the domestication of the crop. Many traits derived from natural and induced mutations, such as dwarfing, early flowering, male sterility, and chlorophyll deficiency, are useful in physiological and genetic studies. Mutants were also used to develop new lettuce products including miniature and herbicide-tolerant cultivars. Mutant analysis was critical in lettuce genomic studies including identification and cloning of disease-resistance genes. Mutagenesis combined with genomic technology may provide powerful tools for the discovery of novel gene alleles. In addition to radiation and chemical mutagens, unconventional approaches such as tissue or protoplast culture, transposable elements, and space flights have been utilized to generate mutants in lettuce. Since mutation breeding is considered nontransgenic, it is more acceptable to consumers and will be explored more in the future for lettuce improvement. PMID:22287955

  6. Elucidating the role of C/D snoRNA in rRNA processing and modification in Trypanosoma brucei.

    PubMed

    Barth, Sarit; Shalem, Boaz; Hury, Avraham; Tkacz, Itai Dov; Liang, Xue-Hai; Uliel, Shai; Myslyuk, Inna; Doniger, Tirza; Salmon-Divon, Mali; Unger, Ron; Michaeli, Shulamit

    2008-01-01

    Most eukaryotic C/D small nucleolar RNAs (snoRNAs) guide 2'-O methylation (Nm) on rRNA and are also involved in rRNA processing. The four core proteins that bind C/D snoRNA in Trypanosoma brucei are fibrillarin (NOP1), NOP56, NOP58, and SNU13. Silencing of NOP1 by RNA interference identified rRNA-processing and modification defects that caused lethality. Systematic mapping of 2'-O-methyls on rRNA revealed the existence of hypermethylation at certain positions of the rRNA in the bloodstream form of the parasites, suggesting that this modification may assist the parasites in coping with the major temperature changes during cycling between their insect and mammalian hosts. The rRNA-processing defects of NOP1-depleted cells suggest the involvement of C/D snoRNA in trypanosome-specific rRNA-processing events to generate the small rRNA fragments. MRP RNA, which is involved in rRNA processing, was identified in this study in one of the snoRNA gene clusters, suggesting that trypanosomes utilize a combination of unique C/D snoRNAs and conserved snoRNAs for rRNA processing. PMID:17981991

  7. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  8. Details of gastropod phylogeny inferred from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Steiner, G; Backeljau, T; De Wachter, R

    1998-02-01

    Some generally accepted viewpoints on the phylogenetic relationships within the molluscan class Gastropoda are reassessed by comparing complete 18S rRNA sequences. Phylogenetic analyses were performed using the neighbor-joining and maximum parsimony methods. The previously suggested basal position of Archaeogastropoda, including Neritimorpha and Vetigastropoda, in the gastropod clade is confirmed. The present study also provides new molecular evidence for the monophyly of both Caenogastropoda and Euthyneura (Pulmonata and Opisthobranchia), making Prosobranchia paraphyletic. The relationships within Caenogastropoda and Euthyneura data turn out to be very unstable on the basis of the present 18S rRNA sequences. The present 18S rRNA data question, but are insufficient to decide on, muricacean (Neogastropoda), neotaenioglossan, pulmonate, or stylommatophoran monophyly. The analyses also focus on two systellommatophoran families, namely, Veronicellidae and Onchidiidae. It is suggested that Systellommatophora are not a monophyletic unit but, due to the lack of stability in the euthyneuran clade, their affinity to either Opisthobranchia or Pulmonata could not be determined. PMID:9479694

  9. Oligodeoxynucleotide probes for Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequences.

    PubMed Central

    Wesley, I V; Wesley, R D; Cardella, M; Dewhirst, F E; Paster, B J

    1991-01-01

    Deoxyoligonucleotide probes were constructed for the identification of Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequence data. Probes were targeted to hypervariable regions of 16S rRNA. Specificity of oligonucleotide probes was tested in a colony blot assay with type strains of 15 Campylobacter and Arcobacter species as well as in a slot blot format using genomic DNA extracted from field strains of C. fetus and C. hyointestinalis. Two oligonucleotides were constructed for C. fetus that hybridized with equal specificity with each of 57 biochemically confirmed isolates of C. fetus but not with any other Campylobacter species. The C. hyointestinalis probe reacted with 47 of 48 biochemically confirmed field isolates of C. hyointestinalis. In Southern blot hybridization of BglII digests of genomic DNA, the respective probes reacted within three restriction fragments of either C. hyointestinalis (7.2, 8.2, and 10.1 kb) or C. fetus (7.0, 7.7, and 9.0 kb). This suggests multiple copies of genes encoding 16S rRNA. Images PMID:1723076

  10. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  11. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses. PMID:18430591

  12. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization.

    PubMed

    Anahtar, Melis N; Bowman, Brittany A; Kwon, Douglas S

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  13. Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.

    PubMed

    Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric

    2016-02-01

    Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. PMID:26776729

  14. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization

    PubMed Central

    Anahtar, Melis N.; Bowman, Brittany A.; Kwon, Douglas S.

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  15. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines.

    PubMed

    Chukwudi, Chinwe U

    2016-08-01

    The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions. PMID:27246781

  16. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.

  17. Phylogenetic analysis of complete rRNA gene sequence of Nosema philosamiae isolated from the lepidopteran Philosamia cynthia ricini.

    PubMed

    Zhu, Feng; Shen, Zhongyuan; Xu, Xiaofang; Tao, Hengping; Dong, Shinan; Tang, Xudong; Xu, Li

    2010-01-01

    ABSTRACT. The microsporidian Nosema philosamiae is a pathogen that infects the eri-silkworm Philosamia cynthia ricini. The complete sequence of rRNA gene (4,314 bp) was obtained by polymerase chain reaction amplification with specific primers and sequencing. The sequence analysis showed that the organization of the rRNA of N. philosamiae was similar to the pattern of Nosema bombycis. Phylogenetic analysis of rRNA gene sequences revealed that N. philosamiae had a close relationship with other Nosema species, confirming that N. philosamiae is correctly assigned to the genus Nosema. PMID:20384905

  18. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions.

    PubMed

    Jiang, Jun; Seo, Hyosuk; Chow, Christine S

    2016-05-17

    Post-transcriptional modifications play important roles in modulating the functions of RNA species. The presence of modifications in RNA may directly alter its interactions with binding partners or cause structural changes that indirectly affect ligand recognition. Given the rapidly growing list of modifications identified in noncoding and mRNAs associated with human disease, as well as the dynamic control over modifications involved in various physiological processes, it is imperative to understand RNA structural modulation by these modifications. Among the RNA species, rRNAs provide numerous examples of modification types located in differing sequence and structural contexts. In addition, the modified rRNA motifs participate in a wide variety of ligand interactions, including those with RNA, protein, and small molecules. In fact, several classes of antibiotics exert their effects on protein synthesis by binding to functionally important and highly modified regions of the rRNAs. These RNA regions often display conservation in sequence, secondary structure, tertiary interactions, and modifications, trademarks of ideal drug-targeting sites. Furthermore, ligand interactions with such regions often favor certain modification-induced conformational states of the RNA. Our laboratory has employed a combination of biophysical methods such as nuclear magnetic resonance spectroscopy (NMR), circular dichroism, and UV melting to study rRNA modifications in functionally important motifs, including helix 31 (h31) and helix h44 (h44) of the small subunit rRNA and helix 69 (H69) of the large subunit rRNA. The modified RNA oligonucleotides used in these studies were generated by solid-phase synthesis with a variety of phosphoramidite chemistries. The natural modifications were shown to impact thermal stability, dynamic behavior, and tertiary structures of the RNAs, with additive or cooperative effects occurring with multiple, clustered modifications. Taking advantage of the

  19. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation.

    PubMed

    Tummala, Hemanth; Walne, Amanda J; Williams, Mike; Bockett, Nicholas; Collopy, Laura; Cardoso, Shirleny; Ellison, Alicia; Wynn, Rob; Leblanc, Thierry; Fitzgibbon, Jude; Kelsell, David P; van Heel, David A; Payne, Elspeth; Plagnol, Vincent; Dokal, Inderjeet; Vulliamy, Tom

    2016-07-01

    A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit. PMID:27346687

  20. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families.

    PubMed

    Mirabello, Lisa; Macari, Elizabeth R; Jessop, Lea; Ellis, Steven R; Myers, Timothy; Giri, Neelam; Taylor, Alison M; McGrath, Katherine E; Humphries, Jessica M; Ballew, Bari J; Yeager, Meredith; Boland, Joseph F; He, Ji; Hicks, Belynda D; Burdett, Laurie; Alter, Blanche P; Zon, Leonard; Savage, Sharon A

    2014-07-01

    Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model. PMID:24829207

  1. Association between idiopathic hearing loss and mitochondrial DNA mutations: A study on 169 hearing-impaired subjects

    PubMed Central

    GUARAN, VALERIA; ASTOLFI, LAURA; CASTIGLIONE, ALESSANDRO; SIMONI, EDI; OLIVETTO, ELENA; GALASSO, MARCO; TREVISI, PATRIZIA; BUSI, MICOL; VOLINIA, STEFANO; MARTINI, ALESSANDRO

    2013-01-01

    Mutations in mitochondrial DNA (mtDNA) have been shown to be an important cause of sensorineural hearing loss (SNHL). In this study, we performed a clinical and genetic analysis of 169 hearing-impaired patients and some of their relatives suffering from idiopathic SNHL, both familial and sporadic. The analysis of four fragments of their mtDNA identified several polymorphisms, the well known pathogenic mutation, A1555G, and some novel mutations in different genes, implying changes in the aminoacidic sequence. A novel sporadic mutation in 12S rRNA (MT-RNR1), not previously reported in the literature, was found in a case of possible aminoglycoside-induced progressive deafness. PMID:23969527

  2. Simultaneous alignment and folding of 28S rRNA sequences uncovers phylogenetic signal in structure variation.

    PubMed

    Letsch, Harald O; Greve, Carola; Kück, Patrick; Fleck, Günther; Stocsits, Roman R; Misof, Bernhard

    2009-12-01

    Secondary structure models of mitochondrial and nuclear (r)RNA sequences are frequently applied to aid the alignment of these molecules in phylogenetic analyses. Additionally, it is often speculated that structure variation of (r)RNA sequences might profitably be used as phylogenetic markers. The benefit of these approaches depends on the reliability of structure models. We used a recently developed approach to show that reliable inference of large (r)RNA secondary structures as a prerequisite of simultaneous sequence and structure alignment is feasible. The approach iteratively establishes local structure constraints of each sequence and infers fully folded individual structures by constrained MFE optimization. A comparison of structure edit distances of individual constraints and fully folded structures showed pronounced phylogenetic signal in fully folded structures. As model sequences we characterized secondary structures of 28S rRNA sequences of selected insects and examined their phylogenetic signal according to established phylogenetic hypotheses. PMID:19654047

  3. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity

    NASA Technical Reports Server (NTRS)

    Fox, G. E.; Wisotzkey, J. D.; Jurtshuk, P. Jr

    1992-01-01

    16S rRNA (genes coding for rRNA) sequence comparisons were conducted with the following three psychrophilic strains: Bacillus globisporus W25T (T = type strain) and Bacillus psychrophilus W16AT, and W5. These strains exhibited more than 99.5% sequence identity and within experimental uncertainty could be regarded as identical. Their close taxonomic relationship was further documented by phenotypic similarities. In contrast, previously published DNA-DNA hybridization results have convincingly established that these strains do not belong to the same species if current standards are used. These results emphasize the important point that effective identity of 16S rRNA sequences is not necessarily a sufficient criterion to guarantee species identity. Thus, although 16S rRNA sequences can be used routinely to distinguish and establish relationships between genera and well-resolved species, very recently diverged species may not be recognizable.

  4. Primary and secondary structure of 5.8S rRNA from the silkgland of Bombyx mori.

    PubMed Central

    Fujiwara, H; Kawata, Y; Ishikawa, H

    1982-01-01

    Nucleotide sequence of 5.8S rRNA of the silkworm, Bombyx mori has been determined by gel sequencing methods. The 5.8S rRNA was the longest so far reported, with the 5'-terminal sequence several nucleotides longer than those of the other organisms. Upon constructing the secondary structure in accordance with the "burp gun" model (12), the Bombyx 5.8S rRNA formed a wide-open "muzzle" due to several unpaired bases at the ends. The overall structure also appeared less stable with less G . C pairs and more unpaired bases than that of the HeLa 5.8S rRNA. These structural features may be essential for those 5.8S rRNAs which interact with 28S rRNAs containing the hidden break to form a stable complex. PMID:7088713

  5. Molecular Evolution of Mycoplasma capricolum subsp. capripneumoniae Strains, Based on Polymorphisms in the 16S rRNA Genes

    PubMed Central

    Pettersson, Bertil; Bölske, Göran; Thiaucourt, François; Uhlén, Mathias; Johansson, Karl-Erik

    1998-01-01

    Mycoplasma capricolum subsp. capripneumoniae belongs to the so-called Mycoplasma mycoides cluster and is the causal agent of contagious caprine pleuropneumonia (CCPP). All members of the M. mycoides cluster have two rRNA operons. The sequences of the 16S rRNA genes of both rRNA operons from 20 strains of M. capricolum subsp. capripneumoniae of different geographical origins in Africa and Asia were determined. Nucleotide differences which were present in only one of the two operons (polymorphisms) were detected in 24 positions. The polymorphisms were not randomly distributed in the 16S rRNA genes, and some of them were found in regions of low evolutionary variability. Interestingly, 11 polymorphisms were found in all the M. capricolum subsp. capripneumoniae strains, thus defining a putative ancestor. A sequence length difference between the 16S rRNA genes in a poly(A) region and 12 additional polymorphisms were found in only one or some of the strains. A phylogenetic tree was constructed by comparative analysis of the polymorphisms, and this tree revealed two distinct lines of descent. The nucleotide substitution rate of strains within line II was up to 50% higher than within line I. A tree was also constructed from individual operonal 16S rRNA sequences, and the sequences of the two operons were found to form two distinct clades. The topologies of both clades were strikingly similar, which supports the use of 16S rRNA sequence data from homologous operons for phylogenetic studies. The strain-specific polymorphism patterns of the 16S rRNA genes of M. capricolum subsp. capripneumoniae may be used as epidemiological markers for CCPP. PMID:9573185

  6. Mitochondrial DNA mutations in blood samples from HIV-1-infected children undergoing long-term antiretroviral therapy.

    PubMed

    Ouyang, Yabo; Qiao, Luxin; Liu, Kai; Zang, Yunjin; Sun, Yu; Dong, Yaowu; Liu, Daojie; Guo, Xianghua; Wei, Feili; Lin, Minghua; Zhang, Fujie; Chen, Dexi

    2016-07-01

    We have analyzed mutations in whole mitochondrial (mt) genomes of blood samples from HIV-1-infected children treated with long-term antiretroviral therapy (ART), who had an excellent virological response. HIV-1-infected children who have undergone ART for 4 y with an excellent virological response (group A; 15 children) and ten healthy children (controls) without HIV-1 infection were enrolled retrospectively. Peripheral blood mononuclear cells (PBMCs) were obtained and mt DNA mutations were studied. The total number of mtDNA mutations in group A was 3 H more than in the controls (59 vs. 19, P<0.001) and the same trend was seen in all mtDNA regions. Among these mtDNA mutations, 140 and 28 mutations were detected in group A and the controls, respectively. The D-loop, CYTB and 12s rRNA were the three most common mutation regions in both groups, with significant differences between the groups observed at nucleotide positions C309CC, T489C CA514deletion, T16249C and G16474GG (D-loop); T14783C, G15043A, G15301A, and A15662G (CYTB); and G709A (12s rRNA). G15043A and A15662G had been associated with mitochondrial diseases. Our findings suggest that mtDNA mutations occur frequently in long-term ART-treated, HIV-1-infected children who have an excellent virological response, although they did not have obvious current symptoms. The CYTB region may play an important role in mtDNA mutation during ART, which might contribute to the development of subsequent mitochondrial diseases. PMID:27402477

  7. rRNA Gene Expression of Abundant and Rare Activated-Sludge Microorganisms and Growth Rate Induced Micropollutant Removal.

    PubMed

    Vuono, David C; Regnery, Julia; Li, Dong; Jones, Zackary L; Holloway, Ryan W; Drewes, Jörg E

    2016-06-21

    The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems. PMID:27196630

  8. Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes.

    PubMed

    Soni, Dharmendra Kumar; Dubey, Suresh Kumar

    2014-12-01

    The discrimination between Listeria monocytogenes and Listeria species has been detected. The 16S rRNA and hlyA were PCR amplified with set of oligonucleotide primers with flank 1,500 and 456 bp fragments, respectively. Based on the differences in 16S rRNA and hlyA genes, a total 80 isolates from different environmental, food and clinical samples confirmed it to be L. monocytogenes. The 16S rRNA sequence similarity suggested that the isolates were similar to the previously reported ones from different habitats by others. The phylogenetic interrelationships of the genus Listeria were investigated by sequencing of 16S rRNA and hlyA gene. The 16S rRNA sequence indicated that genus Listeria is comprised of following closely related but distinct lines of descent, one is the L. monocytogenes species group (including L. innocua, L. ivanovii, L. seeligeri and L. welshimeri) and other, the species L. grayi, L. rocourtiae and L. fleischmannii. The phylogenetic tree based on hlyA gene sequence clearly differentiates between the L. monocytogenes, L. ivanovii and L. seeligeri. In the present study, we identified 80 isolates of L. monocytogenes originating from different clinical, food and environmental samples based on 16S rRNA and hlyA gene sequence similarity. PMID:25205124

  9. rRNA distribution during microspore development in anthers of Beta vulgaris L. quantitative in situ hybridization analysis.

    PubMed

    Majewska-Sawka, A; Rodriguez-Garcia, M I

    1996-04-01

    We related changes in the ultrastructural organization of the nucleoli with the results of quantitative in situ hybridizations to characterize rRNA metabolism during the development of microspore mother cells in the sugar beet anther (Beta vulgaris L.). In the course of meiotic prophase and early postmeiotic interphase the morphological characteristics of the nucleoli are typical of low or no transcriptional activity and a low rate of rRNA processing. However, we found evidence of an apparent increase in the relative numbers of 18 S rRNA transcripts in some stages of microsporogenesis. This was found in both the nucleoli and cytoplasm of pachytene meiocytes, and in later stages there was a spectacular accumulation of rRNA transcripts in nucleoli of the tetrad cells. Quantitative data are analyzed in the light of morphometric findings in the cell and their compartments to elucidate the degree to which changes in cell size are related to changes in labeling density and distribution. The results are discussed in terms of rRNA synthesis, transport and degradation as processes involved in the regulation of rRNA within microsporocytes and microspores. PMID:8718677

  10. Control by Phytochrome of Cytoplasmic Precursor rRNA Synthesis in the Cotyledons of Mustard Seedlings 1

    PubMed Central

    Thien, Wilfried; Schopfer, Peter

    1982-01-01

    The influence of phytochrome (high irradiance reaction; operationally, continuous far red light) on the incorporation of [3H]uridine into the cytoplasmic 2.5 megadalton precursor rRNA in the cotyledons of mustard (Sinapis alba L.) seedlings has been investigated. After irradiating 36-hour-old etiolated seedlings with 12 hours of far red light, the rate of incorporation is stimulated about 2-fold, leading to 50% labeling of the precursor rRNA pool about 15 minutes after the tracer has reached the nucleotide precursor pool. In the dark control, there is a significantly smaller pool of precursor rRNA which is half-saturated with label only after about 27 minutes. Since neither the specific radioactivity of the UTP pool nor the processing of the precursor rRNA demonstrate a corresponding light-dependent change, it is concluded that phytochrome mediates an increase of the transcription of the rRNA genes. This gene activation accounts for the increased accumulation of mature cytoplasmic rRNA during the course of photomorphogenesis of the cotyledons. PMID:16662362

  11. Multi-site-specific 16S rRNA Methyltransferase RsmF from Thermus thermophilus

    SciTech Connect

    Demirci, H.; Larsen, L; Hansen, T; Rasmussen, A; Cadambi, A; Gregory, S; Kirpekar, F; Jogl, G

    2010-01-01

    Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m{sup 5}C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m{sup 5}C967. In contrast to E. coli RsmF, which introduces a single m{sup 5}C1407 modification, T. thermophilus RsmF modifies three positions, generating m{sup 5}C1400 and m{sup 5}C1404 in addition to m{sup 5}C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 {angstrom} resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.

  12. Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys

    PubMed Central

    Nelson, Michael C.; Morrison, Hilary G.; Benjamino, Jacquelynn; Grim, Sharon L.; Graf, Joerg

    2014-01-01

    The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity. PMID:24722003

  13. Simultaneous Screening of Multiple Mutations by Invader Assay Improves Molecular Diagnosis of Hereditary Hearing Loss: A Multicenter Study

    PubMed Central

    Usami, Shin-ichi; Nishio, Shin-ya; Nagano, Makoto; Abe, Satoko; Yamaguchi, Toshikazu

    2012-01-01

    Although etiological studies have shown genetic disorders to be a common cause of congenital/early-onset sensorineural hearing loss, there have been no detailed multicenter studies based on genetic testing. In the present report, 264 Japanese patients with bilateral sensorineural hearing loss from 33 ENT departments nationwide participated. For these patients, we first applied the Invader assay for screening 47 known mutations of 13 known deafness genes, followed by direct sequencing as necessary. A total of 78 (29.5%) subjects had at least one deafness gene mutation. Mutations were more frequently found in the patients with congenital or early-onset hearing loss, i.e., in those with an awareness age of 0–6 years, mutations were significantly higher (41.8%) than in patients with an older age of awareness (16.0%). Among the 13 genes, mutations in GJB2 and SLC26A4 were mainly found in congenital or early-onset patients, in contrast with mitochondrial mutations (12S rRNA m.1555A>G, tRNA(Leu(UUR)) m.3243A>G), which were predominantly found in older-onset patients. The present method of simultaneous screening of multiple deafness mutations by Invader assay followed by direct sequencing will enable us to detect deafness mutations in an efficient and practical manner for clinical use. PMID:22384008

  14. Greengenes, a Chimera-checked 16S rRNA gene database and workbenchcompatible with ARB

    SciTech Connect

    DeSantis, Todd Z.; Hugenholtz, Philip; Larsen, Neils; Rojas,Mark; Brodie, Eoin L.; Keller, Keith; Huber, Thomas; Dalevi, Daniel; Hu,Ping; Andersen, Gary L.

    2006-04-10

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that in congruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3 percent of environmental sequences and 0.2 percent of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  15. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  16. Detection of Deafness-Causing Mutations in the Greek Mitochondrial Genome

    PubMed Central

    Kokotas, Haris; Grigoriadou, Maria; Korres, George S.; Ferekidou, Elisabeth; Kandiloros, Dimitrios; Korres, Stavros; Petersen, Michael B.

    2011-01-01

    Mitochondrion harbors its own DNA, known as mtDNA, encoding certain essential components of the mitochondrial respiratory chain and protein synthesis apparatus. mtDNA mutations have an impact on cellular ATP production and many of them are undoubtedly a factor that contributes to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA, the MTTS1 gene, encoding the tRNA for Ser(UCN), and the MTTL1 gene, encoding the tRNA for Leu(UUR). We investigated the impact of mtDNA mutations in the Greek hearing impaired population, by testing a cohort of 513 patients suffering from childhood onset prelingual or postlingual, bilateral, sensorineural, syndromic or non-syndromic hearing loss of any degree for six mitochondrial variants previously associated with deafness. Screening involved the MTRNR1 961delT/insC and A1555G mutations, the MTTL1 A3243G mutation, and the MTTS1 A7445G, 7472insC and T7510C mutations. Although two patients were tested positive for the A1555G mutation, we failed to identify any subject carrying the 961delT/insC, A3243G, A7445G, 7472insC, or T7510C mutations. Our findings strongly support our previously raised conclusion that mtDNA mutations are not a major risk factor for sensorineural deafness in the Greek population. PMID:21725156

  17. OXPHOS mutations and neurodegeneration

    PubMed Central

    Koopman, Werner J H; Distelmaier, Felix; Smeitink, Jan AM; Willems, Peter HGM

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI–CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce ‘primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration. PMID:23149385

  18. Mutation detection by chemical cleavage.

    PubMed

    Cotton, R G

    1999-02-01

    Detection and amplification of mutations in genes in a cheap, 100% effective manner is a major objective in modern molecular genetics. This ideal is some way away and many methods are used each of which have their own particular advantages and disadvantages. Sequencing is often thought of as the 'gold standard' for mutation detection. This perception is distorted due to the fact that this is the ONLY method of mutation identification but this does not mean it is the best for mutation detection. The fact that many scanning methods detect 5-10% of mutant molecules in a wild type environment immediately indicates these methods are advantageous over sequencing. One such method, the Chemical Cleavage method, is able to cut the costs of detecting a mutation on order of magnitude and guarantees mutation detection as evidenced by track record and the fact that each mutation has two chances of being detected. PMID:10084109

  19. Calreticulin Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Lavi, Noa

    2014-01-01

    With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph−) myeloproliferative neoplasms (MPNs) in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET) and primary myelofibrosis (PMF). At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR) using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations) and recurrent 5-bp insertions (type 2 mutations) in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin) were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review. PMID:25386351

  20. Calreticulin mutations in myeloproliferative neoplasms.

    PubMed

    Lavi, Noa

    2014-10-01

    With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph(-)) myeloproliferative neoplasms (MPNs) in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET) and primary myelofibrosis (PMF). At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR) using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations) and recurrent 5-bp insertions (type 2 mutations) in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin) were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph(-) MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review. PMID:25386351

  1. Greengenes: 16S rRNA Database and Workbench Compatible with ARB

    DOE Data Explorer

    DeSantis, T. Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E. L.; Keller, K.; Huber, T.; Dalevi, D. Hu, P. Andersen, G. L.

    Greengenes was developed, as the abstract of an AEM reprint states, to "addresse limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies. It was found that there is incongruent taxonomic nomenclature among curators even at the phylum level. Putative chimeras were identified in 3% of environmental sequences and in 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages in the Archaea and Bacteria....Greengenes is also a functional workbench to assist in analysis of user-generated 16S rRNA gene sequences. Batches of sequencing reads can be uploaded for quality-based trimming and creation of multiple-sequence alignments (9). Three types of non-MSA similarity searches are also available, seed extension by BLAST (1), similarity based on shared 7-mers by a tool called Simrank, and a direct degenerative pattern match for probe/primer evaluation. Results are displayed using user-preferred taxonomic nomenclature and can be saved between sessions. [Taken from DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol 72:5069-72, pages 1 and 3] (Specialized Interface)

  2. The Unique 16S rRNA Genes of Piezophiles Reflect both Phylogeny and Adaptation▿ †

    PubMed Central

    Lauro, Federico M.; Chastain, Roger A.; Blankenship, Lesley E.; Yayanos, A. Aristides; Bartlett, Douglas H.

    2007-01-01

    In the ocean's most extreme depths, pressures of 70 to 110 megapascals prevent the growth of all but the most hyperpiezophilic (pressure-loving) organisms. The physiological adaptations required for growth under these conditions are considered to be substantial. Efforts to determine specific adaptations permitting growth at extreme pressures have thus far focused on relatively few γ-proteobacteria, in part due to the technical difficulties of obtaining piezophilic bacteria in pure culture. Here, we present the molecular phylogenies of several new piezophiles of widely differing geographic origins. Included are results from an analysis of the first deep-trench bacterial isolates recovered from the southern hemisphere (9.9-km depth) and of the first gram-positive piezophilic strains. These new data allowed both phylogenetic and structural 16S rRNA comparisons among deep-ocean trench piezophiles and closely related strains not adapted to high pressure. Our results suggest that (i) the Circumpolar Deep Water acts as repository for hyperpiezophiles and drives their dissemination to deep trenches in the Pacific Ocean and (ii) the occurrence of elongated helices in the 16S rRNA genes increases with the extent of adaptation to growth at elevated pressure. These helix changes are believed to improve ribosome function under deep-sea conditions. PMID:17158629

  3. PhylOPDb: a 16S rRNA oligonucleotide probe database for prokaryotic identification

    PubMed Central

    Jaziri, Faouzi; Parisot, Nicolas; Abid, Anis; Denonfoux, Jérémie; Ribière, Céline; Gasc, Cyrielle; Boucher, Delphine; Brugère, Jean-François; Mahul, Antoine; Hill, David R.C.; Peyretaillade, Eric; Peyret, Pierre

    2014-01-01

    In recent years, high-throughput molecular tools have led to an exponential growth of available 16S rRNA gene sequences. Incorporating such data, molecular tools based on target-probe hybridization were developed to monitor microbial communities within complex environments. Unfortunately, only a few 16S rRNA gene-targeted probe collections were described. Here, we present PhylOPDb, an online resource for a comprehensive phylogenetic oligonucleotide probe database. PhylOPDb provides a convivial and easy-to-use web interface to browse both regular and explorative 16S rRNA-targeted probes. Such probes set or subset could be used to globally monitor known and unknown prokaryotic communities through various techniques including DNA microarrays, polymerase chain reaction (PCR), fluorescent in situ hybridization (FISH), targeted gene capture or in silico rapid sequence identification. PhylOPDb contains 74 003 25-mer probes targeting 2178 genera including Bacteria and Archaea. Database URL: http://g2im.u-clermont1.fr/phylopdb/ PMID:24771669

  4. rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes.

    PubMed Central

    Degnan, B M; Yan, J; Hawkins, C J; Lavin, M F

    1990-01-01

    Ascidians, primitive chordates that have retained features of the likely progenitors to all vertebrates, are a useful model to study the evolutionary relationship of chordates to other animals. We have selected the well characterized ribosomal RNA (rRNA) genes to investigate this relationship, and we describe here the cloning and characterization of an entire ribosomal DNA (rDNA) tandem repeat unit from a lower chordate, the ascidian Herdmania momus. rDNA copy number and considerable sequence differences were observed between two H. momus populations. Comparison of rDNA primary sequence and rRNA secondary structures from H. momus with those from other well characterized organisms, demonstrated that the ascidians are more closely related to other chordates than invertebrates. The rDNA tandem repeat makes up a larger percentage (7%) of the genome of this animal than in other higher eukaryotes. The total length of the spacer and transcribed region in H. momus rDNA is small compared to most higher eukaryotes, being less than 8 kb, and the intergenic spacer region consists of smaller internal repeats. Comparative analysis of rDNA sequences has allowed the construction of secondary structures for the 18S, 5.8S and 26S rRNAs. Images PMID:2263465

  5. Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells.

    PubMed

    Angelier, Nicole; Tramier, Marc; Louvet, Emilie; Coppey-Moisan, Maïté; Savino, Tula M; De Mey, Jan R; Hernandez-Verdun, Danièle

    2005-06-01

    Reorganization of the nuclear machinery after mitosis is a fundamental but poorly understood process. Here, we investigate the recruitment of the nucleolar processing proteins in the nucleolus of living cells at the time of nucleus formation. We question the role of the prenucleolar bodies (PNBs), during migration of the processing proteins from the chromosome periphery to sites of rDNA transcription. Surprisingly, early and late processing proteins pass through the same PNBs as demonstrated by rapid two-color four-dimensional imaging and quantification, whereas a different order of processing protein recruitment into nucleoli is supported by differential sorting. Protein interactions along the recruitment pathway were investigated using a promising time-lapse analysis of fluorescence resonance energy transfer. For the first time, it was possible to detect in living cells the interactions between proteins of the same rRNA processing machinery in nucleoli. Interestingly interactions between such proteins also occur in PNBs but not at the chromosome periphery. The dynamics of these interactions suggests that PNBs are preassembly platforms for rRNA processing complexes. PMID:15814843

  6. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.

    PubMed

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-04-01

    Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  7. Modified Method of rRNA Structure Analysis Reveals Novel Characteristics of Box C/D RNA Analogues.

    PubMed

    Filippova, J A; Stepanov, G A; Semenov, D V; Koval, O A; Kuligina, E V; Rabinov, I V; Richter, V A

    2015-01-01

    Ribosomal RNA (rRNA) maturation is a complex process that involves chemical modifications of the bases or sugar residues of specific nucleotides. One of the most abundant types of rRNA modifications, ribose 2'-O-methylation, is guided by ribonucleoprotein complexes containing small nucleolar box C/D RNAs. Since the majority of 2'-O-methylated nucleotides are located in the most conserved regions of rRNA that comprise functionally important centers of the ribosome, an alteration in a 2'-O-methylation profile can affect ribosome assembly and function. One of the key approaches for localization of 2'-O-methylated nucleotides in long RNAs is a method based on the termination of reverse transcription. The current study presents an adaptation of this method for the use of fluorescently labeled primers and analysis of termination products by capillary gel electrophoresis on an automated genetic analyzer. The developed approach allowed us to analyze the influence of the synthetic analogues of box C/D RNAs on post-transcriptional modifications of human 28S rRNA in MCF-7 cells. It has been established that the transfection of MCF-7 cells with a box C/D RNA analogue leads to an enhanced modification level of certain native sites of 2'-O-methylation in the target rRNA. The observed effect of synthetic RNAs on the 2'-O-methylation of rRNA in human cells demonstrates a path towards targeted regulation of rRNA post-transcriptional maturation. The described approach can be applied in the development of novel diagnostic methods for detecting diseases in humans. PMID:26085946

  8. The phylogeny of intestinal porcine spirochetes (Serpulina species) based on sequence analysis of the 16S rRNA gene.

    PubMed Central

    Pettersson, B; Fellström, C; Andersson, A; Uhlén, M; Gunnarsson, A; Johansson, K E

    1996-01-01

    Four type or reference strains and twenty-two field strains of intestinal spirochetes isolated from Swedish pig herds were subjected to phylogenetic analysis based on 16S rRNA sequences. Almost complete (>95%) 16S rRNA sequences were obtained by solid-phase DNA sequencing of in vitro-amplified rRNA genes. The genotypic patterns were compared with a previously proposed biochemical classification scheme, comprising beta-hemolysis, indole production, hippurate hydrolysis, and alpha-galactosidase, alpha-glucosidase, and beta-glucosidase activities. Comparison of the small-subunit rRNA sequences showed that the strains of the genus Serpulina were closely related. Phylogenetic trees were constructed, and three clusters were observed. This was also confirmed by signature nucleotide analysis of the serpulinas. The indole-producing strains, including the strains of S. hyodysenteriae and some weakly beta-hemolytic Serpulina strains, formed one cluster. A second cluster comprised weakly beta-hemolytic strains that showed beta-galactosidase activity but lacked indole production and hippurate-hydrolyzing capacity. The second cluster contained two subclusters with similar phenotypic profiles. A third cluster involved strains that possessed a hippurate-hydrolyzing capacity which was distinct from that of the former two clusters, because of 17 unique nucleotide positions of the 16S rRNA gene. Interestingly, the strains of this third cluster were found likely to have a 16S rRNA structure in the V2 region of the molecule different from that of the serpulinas belonging to the other clusters. As a consequence of these findings, we propose that the intestinal spirochetes of this phenotype (i.e., P43/6/78-like strains) should be regarded as a separate Serpulina species. Furthermore, this cluster was found to be by far the most homogeneous one. In conclusion, the biochemical classification of porcine intestinal spirochetes was comparable to that by phylogenetic analysis based on 16S rRNA

  9. Technologically important extremophile 16S rRNA sequence Shannon entropy and fractal property comparison with long term dormant microbes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2011-10-01

    Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.

  10. Analysis of the Precursor rRNA Fractions of Rapidly Growing Mycobacteria: Quantification by Methods That Include the Use of a Promoter (rrnA P1) as a Novel Standard†

    PubMed Central

    Menéndez, María del Carmen; Rebollo, María José; Núñez, María del Carmen; Cox, Robert A.; García, María Jesús

    2005-01-01

    Mycobacterial species are able to control rRNA production through variations in the number and strength of promoters controlling their rrn operons. Mycobacterium chelonae and M. fortuitum are members of the rapidly growing mycobacterial group. They carry a total of five promoters each, encoded, respectively, by one and two rrn operons per genome. Quantification of precursor rrn transcriptional products (pre-rrn) has allowed detection of different promoter usage during cell growth. Bacteria growing in several culture media with different nutrient contents were compared. Balanced to stationary phases were analyzed. Most promoters were found to be used at different levels depending on the stage of bacterial growth and the nutrient content of the culture medium. Some biological implications are discussed. Sequences of the several promoters showed motifs that could be correlated to their particular level of usage. A product corresponding to the first rrnA promoter in both species, namely, rrnA P1, was found to contribute at a low and near-constant level to pre-rRNA synthesis, regardless of the culture medium used and the stage of growth analyzed. This product was used as a standard to quantitate rRNA gene expression by real-time PCR when M. fortuitum infected macrophages. It was shown that this bacterium actively synthesizes rRNA during the course of infection and that one of its rrn operons is preferentially used under such conditions. PMID:15629925

  11. Design of Novel Aminoglycoside Derivatives with Enhanced Suppression of Diseases-Causing Nonsense Mutations.

    PubMed

    Sabbavarapu, Narayana Murthy; Shavit, Michal; Degani, Yarden; Smolkin, Boris; Belakhov, Valery; Baasov, Timor

    2016-04-14

    New pseudotrisaccharide derivatives of aminoglycosides that exploit additional interaction on the shallow groove face of the decoding-site rRNA of eukaryotic ribosome were designed, synthesized and biologically evaluated. Novel lead structures (6 and 7 with an additional 7'-OH), exhibiting enhanced specificity to eukaryotic cytoplasmic ribosome, and superior nonsense mutation suppression activity than those of gentamicin, were discovered. The comparative benefit of new leads was demonstrated in four different nonsense DNA-constructs underling the genetic diseases cystic fibrosis, Usher syndrome, and Hurler syndrome. PMID:27096052

  12. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes

    PubMed Central

    Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael

    2015-01-01

    The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. PMID:25916849

  13. Development of a tunable Fabry-Perot etalon-based near-infrared interference spectrometer for measurement of the HeI 23S-23P spectral line shape in magnetically confined torus plasmas

    NASA Astrophysics Data System (ADS)

    Ogane, S.; Shikama, T.; Zushi, H.; Hasuo, M.

    2015-10-01

    In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 23S-23P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.

  14. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema.

    PubMed

    Stanley, Susan E; Gable, Dustin L; Wagner, Christa L; Carlile, Thomas M; Hanumanthu, Vidya Sagar; Podlevsky, Joshua D; Khalil, Sara E; DeZern, Amy E; Rojas-Duran, Maria F; Applegate, Carolyn D; Alder, Jonathan K; Parry, Erin M; Gilbert, Wendy V; Armanios, Mary

    2016-08-10

    Chronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients. The mutations segregated with short telomere length, low telomerase RNA levels, and extrapulmonary manifestations including myelodysplastic syndrome and liver disease. A truncated NAF1 was detected in cells derived from patients, and, in cells in which the frameshift mutation was introduced by genome editing, telomerase RNA levels were reduced. The mutant NAF1 lacked a conserved carboxyl-terminal motif, which we show is required for nuclear localization. To understand the disease mechanism, we used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) to generate Naf1(+/-) mice and found that they had half the levels of telomerase RNA. Other box H/ACA RNA levels were also decreased, but rRNA pseudouridylation, which is guided by snoRNAs, was intact. Moreover, first-generation Naf1(+/-) mice showed no evidence of ribosomal pathology. Our data indicate that disease in NAF1 mutation carriers is telomere-mediated; they show that NAF1 haploinsufficiency selectively disturbs telomere length homeostasis by decreasing the levels of telomerase RNA while sparing rRNA pseudouridylation. PMID:27510903

  15. [Strategy of selecting 16S rRNA hypervariable regions for metagenome-phylogenetic marker genes based analysis].

    PubMed

    Zhang, Jun-yi; Zhu, Bing-chuan; Xu, Chao; Ding, Xiao; Li, Jun-feng; Zhang, Xue-gong; Lu, Zu-hong

    2015-11-01

    The advent of next generation sequencing technology enables parallel analysis of the whole microbial community from multiple samples. Particularly, sequencing 16S rRNA hypervariable tags has become the most efficient and cost-effective method for assessing microbial diversity. Due to its short read length of the 2nd-generation sequencing methods that cannot cover the full 16S rRNA genomic region, specific hypervariable regions or V-regions must be selected to act as the proxy. Over the past decade, selection of V-regions has not been consistent in assessing microbial diversity. Here we evaluated the current strategies of selecting 16S rRNA hypervariable regions for surveying microbial diversity. The environmental condition was considered as one of the important factors for selection of 16S rRNA hypervariable regions. We suggested that a pilot study to test different V-regions is required in bacterial diversity studies based on 16S rRNA genes. PMID:26915214

  16. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes.

    PubMed

    Zhang, Yanming; Ji, Peifeng; Wang, Jinfeng; Zhao, Fangqing

    2016-06-01

    16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classifications. Here we propose a novel approach, RiboFR-Seq (Ribosomal RNA gene flanking region sequencing), for capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. Through extensive testing on clonal bacterial strain, salivary microbiome and bacterial epibionts of marine kelp, we demonstrated that RiboFR-Seq could detect the vast majority of bacteria not only in well-studied microbiomes but also in novel communities with limited reference genomes. Combined with classical amplicon sequencing and shotgun metagenome sequencing, RiboFR-Seq can link the annotations of 16S rRNA and metagenomic contigs to make a consensus classification. By recognizing almost all 16S rRNA copies, the RiboFR-seq approach can effectively reduce the taxonomic abundance bias resulted from 16S rRNA copy number variation. We believe that RiboFR-Seq, which provides an integrated view of 16S rRNA profiles and metagenomes, will help us better understand diverse microbial communities. PMID:26984526

  17. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes

    PubMed Central

    Zhang, Yanming; Ji, Peifeng; Wang, Jinfeng; Zhao, Fangqing

    2016-01-01

    16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classifications. Here we propose a novel approach, RiboFR-Seq (Ribosomal RNA gene flanking region sequencing), for capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. Through extensive testing on clonal bacterial strain, salivary microbiome and bacterial epibionts of marine kelp, we demonstrated that RiboFR-Seq could detect the vast majority of bacteria not only in well-studied microbiomes but also in novel communities with limited reference genomes. Combined with classical amplicon sequencing and shotgun metagenome sequencing, RiboFR-Seq can link the annotations of 16S rRNA and metagenomic contigs to make a consensus classification. By recognizing almost all 16S rRNA copies, the RiboFR-seq approach can effectively reduce the taxonomic abundance bias resulted from 16S rRNA copy number variation. We believe that RiboFR-Seq, which provides an integrated view of 16S rRNA profiles and metagenomes, will help us better understand diverse microbial communities. PMID:26984526

  18. Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics

    PubMed Central

    Poretsky, Rachel; Rodriguez-R, Luis M.; Luo, Chengwei; Tsementzi, Despina; Konstantinidis, Konstantinos T.

    2014-01-01

    This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-FLX-Ti yielding ∼40,000 rRNA gene sequences from each sample and representing ∼300 observed OTUs. Replicates obtained from the same biological sample clustered together but several biases were observed, linked to either the PCR or sequencing-preparation steps. In comparisons with companion whole-community shotgun metagenome datasets, the estimated number of OTUs at each timepoint was concordant, but 1.5 times and ∼10 times as many phyla and genera, respectively, were identified in the metagenomes. Our analyses showed that the 16S rRNA gene captures broad shifts in community diversity over time, but with limited resolution and lower sensitivity compared to metagenomic data. We also identified OTUs that showed marked shifts in abundance over four close timepoints separated by perturbations and tracked these taxa in the metagenome vs. 16S rRNA amplicon data. A strong summer storm had less of an effect on community composition than did seasonal mixing, which revealed a distinct succession of organisms. This study provides insights into freshwater microbial communities and advances the approaches for assessing community diversity and dynamics in situ. PMID:24714158

  19. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  20. Two new Gaucher disease mutations.

    PubMed

    Beutler, E; Gelbart, T

    1994-02-01

    Recently, a mutation at nucleotide 1193 of the glucocerebrosidase gene was described in a patient with type 1 Gaucher disease. This mutation destroys a TaqI site in a polymerase chain reaction (PCR)-amplified fragment. We used digestion with this enzyme to screen DNA samples from Gaucher disease patients representing 23 previously unidentified alleles and discovered that this site had been destroyed in three samples. However, the mutation that caused this change proved to be a CT substitution at cDNA nucleotide 1192 (Genomic 5408; 359Arg-->End). Fortuitously, another TaqI site was destroyed by a different mutation, a GA mutation at nt 1312 (Genomic 5927; 399AspAsn). Both of these mutations were functionally severe in that they were associated with type 2 (acute neuronopathic) Gaucher disease. PMID:8112750

  1. BRAF Mutations in Canine Cancers

    PubMed Central

    Mochizuki, Hiroyuki; Kennedy, Katherine; Shapiro, Susan G.; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers. PMID:26053201

  2. PCR primers to amplify 16S rRNA genes from cyanobacteria.

    PubMed Central

    Nübel, U; Garcia-Pichel, F; Muyzer, G

    1997-01-01

    We developed and tested a set of oligonucleotide primers for the specific amplification of 16S rRNA gene segments from cyanobacteria and plastids by PCR. PCR products were recovered from all cultures of cyanobacteria and diatoms that were checked but not from other bacteria and archaea. Gene segments selectively retrieved from cyanobacteria and diatoms in unialgal but nonaxenic cultures and from cyanobionts in lichens could be directly sequenced. In the context of growing sequence databases, this procedure allows rapid and phylogenetically meaningful identification without pure cultures or molecular cloning. We demonstrate the use of this specific PCR in combination with denaturing gradient gel electrophoresis to probe the diversity of oxygenic phototrophic microorganisms in cultures, lichens, and complex microbial communities. PMID:9251225

  3. Identification of Scopulariopsis species by partial 28S rRNA gene sequence analysis.

    PubMed

    Jagielski, Tomasz; Kosim, Kinga; Skóra, Magdalena; Macura, Anna Barbara; Bielecki, Jacek

    2013-01-01

    The genus Scopulariopsis contains over 30 species of mitosporic moulds, which although usually saprophytic may also act as opportunistic pathogens in humans. They have mainly been associated with onychomycosis, and only sporadically reported as a cause of deep tissue infections or systemic disease. Identification of Scopulariopsis species still largely relies on phenotype-based methods. There is a need for a molecular diagnostic approach, that would allow to reliably discriminate between different Scopulariopsis species. The aim of this study was to apply sequence analysis of partial 28S rRNA gene for species identification of Scopulariopsis clinical isolates. Although the method employed did reveal some genetic polymorphism among Scopulariopsis isolates tested, it was not enough for species delineation. For this to be achieved, other genetic loci, within and beyond the rDNA operon, need to be investigated. PMID:24459837

  4. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. PMID:10603259

  5. Preliminary study on mitochondrial 16S rRNA gene sequences and phylogeny of flatfishes (Pleuronectiformes)

    NASA Astrophysics Data System (ADS)

    You, Feng; Liu, Jing; Zhang, Peijun; Xiang, Jianhai

    2005-09-01

    A 605 bp section of mitochondrial 16S rRNA gene from Paralichthys olivaceus, Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus, which represent 3 families of Order Pleuronectiformes was amplified by PCR and sequenced to show the molecular systematics of Pleuronectiformes for comparison with related gene sequences of other 6 flatfish downloaded from GenBank. Phylogenetic analysis based on genetic distance from related gene sequences of 10 flatfish showed that this method was ideal to explore the relationship between species, genera and families. Phylogenetic trees set-up is based on neighbor-joining, maximum parsimony and maximum likelihood methods that accords to the general rule of Pleuronectiformes evolution. But they also resulted in some confusion. Unlike data from morphological characters, P. olivaceus clustered with K. bicoloratus, but P. cinnamomeus did not cluster with P. olivaceus, which is worth further studying.

  6. 16S rRNA amplicon sequencing dataset for conventionalized and conventionally raised zebrafish larvae.

    PubMed

    Davis, Daniel J; Bryda, Elizabeth C; Gillespie, Catherine H; Ericsson, Aaron C

    2016-09-01

    Data presented here contains metagenomic analysis regarding the sequential conventionalization of germ-free zebrafish embryos. Zebrafish embryos that underwent a germ-free sterilization process immediately after fertilization were promptly exposed to and raised to larval stage in conventional fish water. At 6 days postfertilization (dpf), these "conventionalized" larvae were compared to zebrafish larvae that were raised in conventional fish water never undergoing the initial sterilization process. Bacterial 16S rRNA amplicon sequencing was performed on DNA isolated from homogenates of the larvae revealing distinct microbiota variations between the two groups. The dataset described here is also related to the research article entitled "Microbial modulation of behavior and stress responses in zebrafish larvae" (Davis et al., 2016) [1]. PMID:27508247

  7. Phylogenetic tree derived from bacterial, cytosol and organelle 5S rRNA sequences.

    PubMed Central

    Küntzel, H; Heidrich, M; Piechulla, B

    1981-01-01

    A phylogenetic tree was constructed by computer analysis of 47 completely determined 5S rRNA sequences. The wheat mitochondrial sequence is significantly more related to prokaryotic than to eukaryotic sequences, and its affinity to that of the thermophilic Gram-negative bacterium Thermus aquaticus is comparable to the affinity between Anacystis nidulans and chloroplastic sequences. This strongly supports the idea of an endosymbiotic origin of plant mitochondria. A comparison of the plant cytosol and chloroplast sub-trees suggests a similar rate of nucleotide substitution in nuclear genes and chloroplastic genes. Other features of the tree are a common precursor of protozoa and metazoa, which appears to be more related to the fungal than to the plant protosequence, and an early divergence of the archebacterial sequence (Halobacterium cutirubrum) from the prokaryotic branch. PMID:6785727

  8. Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

    PubMed Central

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  9. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  10. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria.

    PubMed

    He, Zhanfei; Wang, Jiaqi; Hu, Jiajie; Zhang, Hao; Cai, Chaoyang; Shen, Jiaxian; Xu, Xinhua; Zheng, Ping; Hu, Baolan

    2016-06-01

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction (AOM-NIR) is ecologically significant for mitigating the methane-induced greenhouse effect. The microbes responsible for this reaction, NC10 bacteria, have been widely detected in diverse ecosystems. However, some defects were discovered in the commonly used NC10-specific primers, 202F and qP1F. In the present work, the primers were redesigned and improved to overcome the defects found in the previous primers. A new nested PCR method was developed using the improved primers to amplify 16S ribosomal RNA (rRNA) genes from NC10 bacteria. In the new nested PCR method, the qP1mF/1492R and 1051F/qP2R primer sets were used in the first and second rounds, respectively. The PCR products were sequenced, and more operational taxonomic units (OTUs) of the NC10 phylum were obtained using the new primers compared to the previous primers. The sensitivity of the new nested PCR was tested by the serial dilution method, and the limit of detection was approximately 10(3) copies g(-1) dry sed. for the environmental samples compared to approximately 10(5) copies g(-1) dry sed. by the previous method. Finally, the improved primer, qP1mF, was used in quantitative PCR (qPCR) to determine the abundance of NC10 bacteria, and the results agreed well with the activity of AOM-NIR measured by isotope tracer experiments. The improved primers are able to amplify NC10 16S rRNA genes more efficiently than the previous primers and useful to explore the microbial community of the NC10 phylum in different systems. PMID:27020287

  11. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.

    PubMed

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  12. Measurement of rRNA Variations in Natural Communities of Microorganisms on the Southeastern U.S. Continental Shelf †

    PubMed Central

    Kramer, Jonathan G.; Singleton, Fred L.

    1993-01-01

    The development of a clear understanding of the physiology of marine prokaryotes is complicated by the difficulties inherent in resolving the activity of various components of natural microbial communities. Application of appropriate molecular biological techniques offers a means of overcoming some of these problems. In this regard, we have used direct probing of bulk RNA purified from selective size fractions to examine variations in the rRNA content of heterotrophic communities and Synechococcus populations on the southeastern U.S. continental shelf. Heterotrophic communities in natural seawater cultures amended with selected substrates were examined. Synechococcus populations were isolated from the water column by differential filtration. The total cellular rRNA content of the target populations was assayed by probing RNA purified from these samples with an oligonucleotide complementing a universally conserved region in the eubacterial 16S rRNA (heterotrophs) or with a 1.5-kbp fragment encoding the Synechococcus sp. strain WH 7803 16S rRNA (cyanobacteria). The analyses revealed that heterotrophic bacteria responded to the addition of glucose and trace nutrients after a 6-h lag period. However, no response was detected after amino acids were added. The cellular rRNA content increased 48-fold before dropping to a value 20 times that detected before nutrients were added. Variations in the rRNA content from Synechococcus spp. followed a distinct diel pattern imposed by the phasing of cell division within the irradiance cycle. The results indicate that careful application of these appropriate molecular biological techniques can be of great use in discerning basic physiological characteristics of selected natural populations and the mechanisms which regulate growth at the subcellular level. Images PMID:16349009

  13. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons.

    PubMed

    Olson, Nathan D; Lund, Steven P; Zook, Justin M; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B

    2015-03-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing(®), or Ion Torrent PGM(®). The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  14. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences. PMID:25523504

  15. Comparative structural analysis of eubacterial 5S rRNA by oxidation of adenines in the N-1 position.

    PubMed Central

    Pieler, T; Schreiber, A; Erdmann, V A

    1984-01-01

    Adenines in free 5S rRNA from Escherichia coli, Bacillus stearothermophilus and Thermus thermophilus have been oxidized at their N-1 position using monoperphthalic acid. The determination of the number of adenine 1-N-oxides was on the basis of UV spectroscopic data of the intact molecule. Identification of the most readily accessible nucleotides by sequencing gel analysis reveals that they are located in conserved positions within loops, exposed hairpin loops and single-base bulge loops. Implications for the structure and function of 5S rRNA will be discussed on the basis of this comparative analysis. Images PMID:6201825

  16. Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam

    PubMed Central

    2013-01-01

    Background 16S rRNA methylase-producing Gram-negative bacteria are highly resistant to all clinically important aminoglycosides. We analyzed clinical strains of 16S rRNA methylase-producing Acinetobactor baumannii and Pseudomonas aeruginosa obtained from clinical isolates in medical settings in Vietnam. Methods From 2008 to 2011, 101 clinical strains of A. baumannii and 15 of P. aeruginosa were isolated from patients in intensive care units (ICUs) in two medical settings in Vietnam. Antimicrobial susceptibilities were determined using the microdilution method and epidemiological analysis was performed by pulsed-field gel electrophoresis and MLST. Genes encoding the 16S rRNA methylases, OXAs and CTX-Ms were analyzed by PCR and sequence analysis. Results 16S rRNA methylase-producing Gram-negative pathogens were detected in two hospitals in Vietnam. Of the 101 clinical isolates of A. baumannii and the 15 of P. aeruginosa isolated from two ICUs in these hospitals, 72 (71.3%) were highly resistant to amikacin, arbekacin and gentamicin, with MICs greater than 1,024 mg/L. The 16S rRNA methylases ArmA and RmtB were produced by 61 and 9 isolates of A. baumannii, respectively, and RmtB was produced by 2 isolates of P. aeruginosa. Moreover, 52 of the A. baumannii isolates producing 16S rRNA methylases harbored both blaOXA-23-like and blaOXA-51-like genes. Most A. baumannii isolates producing 16S rRNA methylase obtained in hospital A in Hanoi were ST91 and ST231, whereas most from hospital B in Ho Chi Minh City were ST136, ST195, and ST254. The two P. aeruginosa isolates harboring rmtB showed different patterns on PFGE, one each corresponding to ST217 and ST313. Conclusions Gram-negative bacteria producing the 16S rRNA methylases ArmA and RmtB are emerging in medical settings in Vietnam. A. baumannii isolates in northern and southern regions of Vietnam may be of different lineages. PMID:23721359

  17. Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol

    PubMed Central

    Foroni, Elena; Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Sanchez, Borja; Martín, Rebeca; Gueimonde, Miguel; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2013-01-01

    Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota. PMID:23869230

  18. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    PubMed

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families. PMID:25315165

  19. Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6

    SciTech Connect

    Allison E. Ray; Stephanie A. Connon; Peter P. Sheridan; Jeremy Gilbreath; Malcolm S. Shields; Deborah T. Newby; Yoshiko Fujita; Timothy S. Magnuson

    2010-06-01

    The determination of variation in 16S rRNA gene sequences is perhaps the most common method for assessing microbial community diversity. However, the occurrence of multiple copies of 16S rRNA genes within some organisms can bias estimates of microbial diversity. During phylogenetic characterization of a metal-transforming, fermentative bacterium (strain UFO1) isolated from the Field Research Center (FRC) in Oak Ridge, TN, we detected an apparent 16S rRNA pseudogene. The putative 16S rRNA pseudogene was first detected in clone libraries constructed with 16S rRNA genes amplified from UFO1 genomic DNA. Sequencing revealed two distinct 16S rRNA genes, with one differing from the other by a 100 bp insert near the 5’ end. Ribosomal RNA was extracted from strain UFO1 and analyzed by RT-qPCR with insert and non-insert specific primers; however, only the non-insert 16S rRNA sequence was expressed. Reverse-transcribed rRNA from strain UFO1 was also used to construct a cDNA library. Of 190 clones screened by PCR, none contained the 16S rRNA gene with the 100 bp insert. Examination of GenBank 16S rRNA gene sequences revealed that the same insert sequence was present in other clones, including those from an environmental library constructed from FRC enrichments. These findings demonstrate the existence of widely disparate copies of the 16S rRNA gene in the same species and a putative 16S rRNA pseudogene, which may confound 16S rRNA-based methods for assessments of microbial diversity in environmental samples.

  20. Driver Mutations in Uveal Melanoma

    PubMed Central

    Decatur, Christina L.; Ong, Erin; Garg, Nisha; Anbunathan, Hima; Bowcock, Anne M.; Field, Matthew G.; Harbour, J. William

    2016-01-01

    IMPORTANCE Frequent mutations have been described in the following 5 genes in uveal melanoma (UM): BAP1, EIF1AX, GNA11, GNAQ, and SF3B1. Understanding the prognostic significance of these mutations could facilitate their use in precision medicine. OBJECTIVE To determine the associations between driver mutations, gene expression profile (GEP) classification, clinicopathologic features, and patient outcomes in UM. DESIGN, SETTING, AND PARTICIPANTS Retrospective study of patients with UM treated by enucleation by a single ocular oncologist between November 1, 1998, and July 31, 2014. MAIN OUTCOMES AND MEASURES Clinicopathologic features, patient outcomes, GEP classification (class 1 or class 2), and mutation status were recorded. RESULTS The study cohort comprised 81 participants. Their mean age was 61.5 years, and 37% (30 of 81) were female. The GEP classification was class 1 in 35 of 81 (43%), class 2 in 42 of 81 (52%), and unknown in 4 of 81 (5%). BAP1 mutations were identified in 29 of 64 (45%), GNAQ mutations in 36 of 81 (44%), GNA11 mutations in 36 of 81 (44%), SF3B1 mutations in 19 of 81 (24%), and EIF1AX mutations in 14 of 81 (17%). Sixteen of the mutations in BAP1 and 6 of the mutations in EIF1AX were previously unreported in UM. GNAQ and GNA11 mutations were mutually exclusive. BAP1, SF3B1, and EIF1AX mutations were almost mutually exclusive with each other. Using multiple regression analysis, BAP1 mutations were associated with class 2 GEP and older patient. EIF1AX mutations were associated with class 1 GEP and the absence of ciliary body involvement. SF3B1 mutations were associated with younger patient age. GNAQ mutations were associated with the absence of ciliary body involvement and greater largest basal diameter. GNA11 mutations were not associated with any of the analyzed features. Using Cox proportional hazards modeling, class 2 GEP was the prognostic factor most strongly associated with metastasis (relative risk, 9.4; 95% CI, 3.1–28.5) and

  1. Long-Term Cochlear Implant Outcomes in Children with GJB2 and SLC26A4 Mutations

    PubMed Central

    Wu, Che-Ming; Ko, Hui-Chen; Tsou, Yung-Ting; Lin, Yin-Hung; Lin, Ju-Li; Chen, Chin-Kuo; Chen, Pei-Lung; Wu, Chen-Chi

    2015-01-01

    Objectives To investigate speech and language outcomes in children with cochlear implants (CIs) who had mutations in common deafness genes and to compare their performances with those without mutations. Study Design Prospective study. Methods Patients who received CIs before 18 years of age and had used CIs for more than 3 years were enrolled in this study. All patients underwent mutation screening of three common deafness genes: GJB2, SLC26A4 and the mitochondrial 12S rRNA gene. The outcomes with CIs were assessed at post-implant years 3 and 5 using the Categories of Auditory Performance (CAP) scale, Speech Intelligibility Rating (SIR) scale, speech perception tests and language skill tests. Results Forty-eight patients were found to have confirmative mutations in GJB2 or SLC26A4, and 123 without detected mutations were ascertained for comparison. Among children who received CIs before 3.5 years of age, patients with GJB2 or SLC26A4 mutations showed significantly higher CAP/SIR scores than those without mutations at post-implant year 3 (p = 0.001 for CAP; p = 0.004 for SIR) and year 5 (p = 0.035 for CAP; p = 0.038 for SIR). By contrast, among children who received CIs after age 3.5, no significant differences were noted in post-implant outcomes between patients with and without mutations (all p > 0.05). Conclusion GJB2 and SLC26A4 mutations are associated with good post-implant outcomes. However, their effects on CI outcomes may be modulated by the age at implantation: the association between mutations and CI outcomes is observed in young recipients who received CIs before age 3.5 years but not in older recipients. PMID:26397989

  2. Ramifications of four concurrent thrombophilic mutations and one hypofibrinolytic mutation.

    PubMed

    Glueck, Charles J; Goldenberg, Naila; Wang, Ping; Aregawi, Dawit

    2004-10-01

    A kindred was examined in which the 48-year-old white female proband with three deep venous thrombosis-pulmonary emboli events had four thrombophilic and one hypofibrinolytic mutations, and in which her 14-year-old asymptomatic daughter had four thrombophilic mutations. The proband was heterozygous for the G1691A factor V Leiden, G20210A prothrombin, and platelet glycoprotein IIIa PL A1/A2 mutations, had high factor VIII (221%), and was homozygous for the 4G4G plasminogen activator inhibitor-1 gene mutation, with high plasminogen activator inhibitor activity (23.7 U/mL). Her 14-year-old daughter was homozygous for the G1691A factor V Leiden and platelet glycoprotein IIb-IIIa PL A2/A2 mutations, compound heterozygous for the C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) mutations, and heterozygous for the G20210A prothrombin mutation, a combination with an estimated likelihood of 1.6 x 10(-7). In 247 white healthy controls, there was no V Leiden homozygosity and no V Leiden-prothrombin gene compound heterozygosity. Heterozygosity for the V Leiden and prothrombin gene mutations was 3.2% and 4.1%, respectively. Homozygosity for the platelet glycoprotein IIb-IIIa PL A2A2, PAI-1 gene 4G4G, and C677T MTHFR mutations was 3.2%, 22.7%, and 12%, respectively. The proband will receive anticoagulation therapy for life. Beyond aspirin, avoidance of exogenous estrogens, and enoxaparin prophylaxis during pregnancy, it is not known whether the proband's daughter should have lifelong anticoagulation therapy, or only after her first thrombotic event. PMID:15497023

  3. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome

    PubMed Central

    Sharma, Divya; Cukras, Anthony R.; Rogers, Elizabeth J.; Southworth, Daniel R.; Green, Rachel

    2007-01-01

    The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S rRNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit referred to as “closure”. Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a “restrictive” phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity modulating binding site for paromomycin in the 16S rRNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations. PMID:17967466

  4. Effect of mutations on the detection of translational signals based on a communications theory approach.

    PubMed

    Bataineh, Mohammad Al; Alonso, Maria; Huang, Lun; Atkin, G E; Menhart, Nick

    2009-01-01

    Gene and regulatory sequence identification is the first step in the functional annotation of any genome. Identification and annotation of such elements in the genome is a fundamental challenge in genomics and computational biology. Since regulatory elements are often short and variable, their identification and discovery using computational algorithms is difficult. However, significant advances have been made in the computational methods for modeling and detection of DNA regulatory elements. This paper proposes a novel use of techniques and principles from communications engineering and coding theory for modeling, identification and analysis of genomic regulatory elements and biological sequences. The last 13 bases sequence in the 16S rRNA molecule was used as a test sequence and was detected using the proposed models. Results show that the proposed models are not only able to identify this regulatory element (RE) in the mRNA sequence, but also can help identify coding from noncoding regions. The models described in this work where used to study the effect of mutations in the last 13 bases sequence of the 16S rRNA molecule. The obtained results showed total agreement with published investigations on mutations which further certify the biological relevance of the proposed models. PMID:19963598

  5. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and relevance to genomovar assignment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variability in 16S rRNA gene sequences has been demonstrated among isolates of Flavobacterium columnare and a restriction fragment length polymorphism (RFLP) assay is available for genetic typing this important fish pathogen. Interpretation of restriction patterns can be difficult due to th...

  6. Functional importance of individual rRNA 2′-O-ribose methylations revealed by high-resolution phenotyping

    PubMed Central

    Esguerra, Jonathan; Warringer, Jonas; Blomberg, Anders

    2008-01-01

    Ribosomal RNAs contain numerous modifications at specific nucleotides. Despite their evolutionary conservation, the functional role of individual 2′-O-ribose methylations in rRNA is not known. A distinct family of small nucleolar RNAs, box C/D snoRNAs, guides the methylating complex to specific rRNA sites. Using a high-resolution phenotyping approach, we characterized 20 box C/D snoRNA gene deletions for altered growth dynamics under a wide array of environmental perturbations, encompassing intraribosomal antibiotics, inhibitors of specific cellular features, as well as general stressors. Ribosome-specific antibiotics generated phenotypes indicating different and long-ranging structural effects of rRNA methylations on the ribosome. For all studied box C/D snoRNA mutants we uncovered phenotypes to extraribosomal growth inhibitors, most frequently reflected in alteration in growth lag (adaptation time). A number of strains were highly pleiotropic and displayed a great number of sensitive phenotypes, e.g., deletion mutants of snR70 and snR71, which both have clear human homologues, and deletion mutants of snR65 and snR68. Our data indicate that individual rRNA ribose methylations can play either distinct or general roles in the workings of the ribosome. PMID:18256246

  7. Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Oger, P.; Morin, E.; Frey-Klett, P.

    2012-01-01

    Analysis of the 16S rRNA gene sequences generated from Xerocomus pruinatus and Scleroderma citrinum ectomycorrhizospheres revealed that similar bacterial communities inhabited the two ectomycorrhizospheres in terms of phyla and genera, with an enrichment of the Burkholderia genus. Compared to the bulk soil habitat, ectomycorrhizospheres hosted significantly more Alpha-, Beta-, and Gammaproteobacteria. PMID:22307291

  8. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  9. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  10. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    PubMed Central

    2014-01-01

    Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae. PMID:25023072

  11. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  12. Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences

    PubMed Central

    Lay, Christophe; Ho, Eliza Xin Pei; Low, Louie; Hibberd, Martin Lloyd; Nagarajan, Niranjan

    2013-01-01

    The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to amplify more than 90% of sequences in the Greengenes database and with the ability to distinguish nearly twice as many species-level OTUs compared to existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the constituents of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization. PMID:23579286

  13. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei

    PubMed Central

    Chikne, Vaibhav; Doniger, Tirza; Rajan, K. Shanmugha; Bartok, Osnat; Eliaz, Dror; Cohen-Chalamish, Smadar; Tschudi, Christian; Unger, Ron; Hashem, Yaser; Kadener, Sebastian; Michaeli, Shulamit

    2016-01-01

    The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts. PMID:27142987

  14. Gradual reduction in rRNA transcription triggers p53 acetylation and apoptosis via MYBBP1A

    PubMed Central

    Kumazawa, Takuya; Nishimura, Kazuho; Katagiri, Naohiro; Hashimoto, Sayaka; Hayashi, Yuki; Kimura, Keiji

    2015-01-01

    The nucleolus, whose primary function is ribosome biogenesis, plays an essential role in p53 activation. Ribosome biogenesis is inhibited in response to cellular stress and several nucleolar proteins translocate from the nucleolus to the nucleoplasm, where they activate p53. In this study, we analysed precisely how impaired ribosome biogenesis regulates the activation of p53 by depleting nucleolar factors involved in rRNA transcription or rRNA processing. Nucleolar RNA content decreased when rRNA transcription was inhibited. In parallel with the reduced levels of nucleolar RNA content, the nucleolar protein Myb-binding protein 1 A (MYBBP1A) translocated to the nucleoplasm and increased p53 acetylation. The acetylated p53 enhanced p21 and BAX expression and induced apoptosis. In contrast, when rRNA processing was inhibited, MYBBP1A remained in the nucleolus and nonacetylated p53 accumulated, causing cell cycle arrest at the G1 phase by inducing p21 but not BAX. We propose that the nucleolus functions as a stress sensor to modulate p53 protein levels and its acetylation status, determining cell fate between cell cycle arrest and apoptosis by regulating MYBBP1A translocation. PMID:26044764

  15. Phylogenetic Analysis of Bacteroidales 16S rRNA Genes Unveils Sequences Specific to Diverse Swine Fecal Sources

    EPA Science Inventory

    Two of the currently available methods to assess swine fecal pollution (Bac1 and PF163) target Bacteroidales 16S rRNA genes. However, these assays have been shown to exhibit poor host-specificity and low detection limits in environmental waters, in part due to the limited number...

  16. Ureaplasma urealyticum continuous ambulatory peritoneal dialysis-associated peritonitis diagnosed by 16S rRNA gene PCR.

    PubMed

    Yager, Jessica E; Ford, Emily S; Boas, Zachary P; Haseley, Leah A; Cookson, Brad T; Sengupta, Dhruba J; Fang, Ferric C; Gottlieb, Geoffrey S

    2010-11-01

    In some patients with peritonitis complicating continuous ambulatory peritoneal dialysis (CAPD), a causative organism is never identified. We report a case of Ureaplasma urealyticum CAPD-associated peritonitis diagnosed by 16S rRNA gene PCR. Ureaplasma may be an underrecognized cause of peritonitis because it cannot be recovered using routine culture methods. PMID:20739488

  17. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  18. Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro.

    PubMed

    Yu, Y T; Nilsen, T W

    1992-05-01

    Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s). PMID:1577760

  19. Complication of Corticosteroid Treatment by Acute Plasmodium malariae Infection Confirmed by Small-Subunit rRNA Sequencing▿

    PubMed Central

    To, Kelvin K. W.; Teng, Jade L. L.; Wong, Samson S. Y.; Ngan, Antonio H. Y.; Yuen, Kwok-Yung; Woo, Patrick C. Y.

    2010-01-01

    We report a case of acute Plasmodium malariae infection complicating corticosteroid treatment for membranoproliferative glomerulonephritis in a patient from an area where P. malariae infection is not endemic. A peripheral blood smear showed typical band-form trophozoites compatible with P. malariae or Plasmodium knowlesi. SSU rRNA sequencing confirmed the identity to be P. malariae. PMID:20739487

  20. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei.

    PubMed

    Chikne, Vaibhav; Doniger, Tirza; Rajan, K Shanmugha; Bartok, Osnat; Eliaz, Dror; Cohen-Chalamish, Smadar; Tschudi, Christian; Unger, Ron; Hashem, Yaser; Kadener, Sebastian; Michaeli, Shulamit

    2016-01-01

    The protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa, undergoes a complex life cycle between the mammalian host and the blood-feeding tsetse fly vector. However, little is known about how the parasite performs most molecular functions in such different environments. Here, we provide evidence for the intriguing possibility that pseudouridylation of rRNA plays an important role in the capacity of the parasite to transit between the insect midgut and the mammalian bloodstream. Briefly, we mapped pseudouridines (Ψ) on rRNA by Ψ-seq in procyclic form (PCF) and bloodstream form (BSF) trypanosomes. We detected 68 Ψs on rRNA, which are guided by H/ACA small nucleolar RNAs (snoRNA). The small RNome of both life cycle stages was determined by HiSeq and 83 H/ACAs were identified. We observed an elevation of 21 Ψs modifications in BSF as a result of increased levels of the guiding snoRNAs. Overexpression of snoRNAs guiding modification on H69 provided a slight growth advantage to PCF parasites at 30 °C. Interestingly, these modifications are predicted to significantly alter the secondary structure of the large subunit (LSU) rRNA suggesting that hypermodified positions may contribute to the adaption of ribosome function during cycling between the two hosts. PMID:27142987

  1. Intragenomic heterogeneity in the 16S rRNA genes of Flavobacterium columnare and relevance to genomovar assignment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is the causative agent of columnaris disease which severely impacts channel catfish production in the USA and may be emerging as an important pathogen in the rainbow trout industry. The 16S rRNA gene is a housekeeping gene commonly used for bacterial taxonomy and genotyping...

  2. Parkinsonism Associated with Glucocerebrosidase Mutation

    PubMed Central

    Sunwoo, Mun-Kyung; Kim, Seung-Min; Lee, Sarah

    2011-01-01

    Background Gaucher's disease is an autosomal recessive, lysosomal storage disease caused by mutations of the β-glucocerebrosidase gene (GBA). There is increasing evidence that GBA mutations are a genetic risk factor for the development of Parkinson's disease (PD). We report herein a family of Koreans exhibiting parkinsonism-associated GBA mutations. Case Report A 44-year-old woman suffering from slowness and paresthesia of the left arm for the previous 1.5years, visited our hospital to manage known invasive ductal carcinoma. During a preoperative evaluation, she was diagnosed with Gaucher's disease and double mutations of S271G and R359X in GBA. Parkinsonian features including low amplitude postural tremors, rigidity, bradykinesia and shuffling gait were observed. Genetic analysis also revealed that her older sister, who had also been diagnosed with PD and had been taking dopaminergic drugs for 8-years, also possessed a heterozygote R359X mutation in GBA. 18F-fluoropropylcarbomethoxyiodophenylnortropane positron-emission tomography in these patients revealed decreased uptake of dopamine transporter in the posterior portion of the bilateral putamen. Conclusions This case study demonstrates Korean familial cases of PD with heterozygote mutation of GBA, further supporting the association between PD and GBA mutation. PMID:21779299

  3. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  4. Prevalence of 16S rRNA methylase genes among β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi Arabia

    PubMed Central

    Al Sheikh, Yazeed A.; Marie, Mohammed Ali M.; John, James; Krishnappa, Lakshmana Gowda; Dabwab, Khaled Homoud M.

    2014-01-01

    Background Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp. Results Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were bla TEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone. Conclusion β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae. PMID:25005152

  5. Combining denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S-23S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages.

    PubMed

    Blaiotta, Giuseppe; Pennacchia, Carmelina; Ercolini, Danilo; Moschetti, Giancarlo; Villani, Francesco

    2003-09-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (PCR-DGGE) and 16S-23S rDNA intergenic spacer region polymorphism (ISR-PCR) analyses were tested as tool for differentiation of staphylococcal strains commonly isolated from fermented sausages. Variable V3 regions of 25 staphylococcal reference strains and 96 wild strains of species belonging to the genera Staphylococcus, Micrococcus and Kocuria were analyzed. PCR-DGGE profiles obtained were species-specific for S. sciuri, S. haemolyticus, S. hominis, S. auricularis, S. condimenti, S. kloosi, S. vitulus, S. succinus, S. pasteuri, S. capitis and S. (Macrococcus) caseolyticus. Moreover, 7 groups could be distinguished gathering the remaining species as result of the separation of the V3 rDNA amplicons in DGGE. Furthermore, the combination of the results obtained by PCR-DGGE and ISR-PCR analyses allowed a clear differentiation of all the staphylococcal species analysed, with exception of the pairs S. equorum-S. cohnii and S. carnosus-S. schleiferi. The suitability of both molecular techniques and of the combination their results for the identification of staphylococci was validated analysing partial nucleotide sequence of the 16S rDNA of a representative number of wild strains. PMID:14529185

  6. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    PubMed

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  7. De novo Synthesis and Assembly of rRNA into Ribosomal Subunits during Cold Acclimation in Escherichia coli.

    PubMed

    Piersimoni, Lolita; Giangrossi, Mara; Marchi, Paolo; Brandi, Anna; Gualerzi, Claudio O; Pon, Cynthia L

    2016-04-24

    During the cold adaptation that follows a cold stress, bacterial cells undergo many physiological changes and extensive reprogramming of their gene expression pattern. Bulk gene expression is drastically reduced, while a set of cold shock genes is selectively and transiently expressed. The initial stage of cold acclimation is characterized by the establishment of a stoichiometric imbalance of the translation initiation factors (IFs)/ribosomes ratio that contributes to the preferential translation of cold shock transcripts. Whereas de novo synthesis of the IFs following cold stress has been documented, nothing was known concerning the activity of the rrn operons during the cold acclimation period. In this work, we focus on the expression of the rrn operons and the fate of rRNA after temperature downshift. We demonstrate that in Escherichia coli, rRNA synthesis does not stop during the cold acclimation phase, but continues with greater contribution of the P2 compared to the P1 promoter and all seven rrn operons are active, although their expression levels change with respect to pre-stress conditions. Eight hours after the 37°→10°C temperature downshift, the newly transcribed rRNA represents up to 20% of total rRNA and is preferentially found in the polysomes. However, with respect to the de novo synthesis of the IFs, both rRNA transcription and maturation are slowed down drastically by cold stress, thereby accounting in part for the stoichiometric imbalance of the IFs/ribosomes. Overall, our data indicate that new ribosomes, which are possibly suitable to function at low temperature, are slowly assembled during cold acclimation. PMID:26953262

  8. Bladder Cancer and Genetic Mutations.

    PubMed

    Zhang, Xiaoying; Zhang, Yangde

    2015-09-01

    The most common type of urinary bladder cancer is called as transitional cell carcinoma. The major risk factors for bladder cancer are environmental, tobacco smoking, exposure to toxic industrial chemicals and gases, bladder inflammation due to microbial and parasitic infections, as well as some adverse side-effects of medications. The genetic mutations in some chromosomal genes, such as FGFR3, RB1, HRAS, TP53, TSC1, and others, occur which form tumors in the urinary bladder. These genes play an important role in the regulation of cell division which prevents cells from dividing too quickly. The changes in the genes of human chromosome 9 are usually responsible for tumor in bladder cancer, but the genetic mutation of chromosome 22 can also result in bladder cancer. The identification of p53 gene mutation has been studied at NIH, Washington, DC, USA, in urine samples of bladder cancer patients. The invasive bladder cancers were determined for the presence of gene mutations on p53 suppressor gene. The 18 different bladder tumors were evaluated, and 11 (61 %) had genetic mutations of p53 gene. The bladder cancer studies have suggested that 70 % of bladder cancers involve a specific mutation in a particular gene, namely telomerase reverse transcriptase (TERT) gene. The TERT gene is involved in DNA protection, cellular aging processes, and cancer. The Urothelial carcinomas of the bladder have been described in Atlas of genetics and cytogenetics in oncology and hematology. HRAS is a proto-oncogene and has potential to cause cancer in several organs including the bladder. The TSC1 c. 1907 1908 del (E636fs) mutation in bladder cancer suggests that the location of the mutation is Exon 15 with frequency of TSC1 mutation of 11.7 %. The recent findings of BAP1 mutations have shown that it contributes to BRCA pathway alterations in bladder cancer. The discoveries of more gene mutations and new biomarkers and polymerase chain reaction bioassays for gene mutations in bladder

  9. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  10. Glucocerebrosidase mutations in Gaucher disease.

    PubMed Central

    Beutler, E.; Demina, A.; Gelbart, T.

    1994-01-01

    BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature. PMID:8790604

  11. Problem-Based Test: Functional Analysis of Mutant 16S rRNAs

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: ribosome, ribosomal subunits, antibiotics, point mutation, 16S, 5S, and 23S rRNA, Shine-Dalgarno sequence, mRNA, tRNA, palindrome, hairpin, restriction endonuclease, fMet-tRNA, peptidyl transferase, initiation, elongation, termination of translation, expression plasmid, transformation,…

  12. Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks: Comparison of Prevalences and Partial 16S rRNA Gene Variants in Urban, Pasture, and Natural Habitats

    PubMed Central

    Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-01-01

    Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected. PMID:23263964

  13. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  14. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  15. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  16. CATCh, an ensemble classifier for chimera detection in 16S rRNA sequencing studies.

    PubMed

    Mysara, Mohamed; Saeys, Yvan; Leys, Natalie; Raes, Jeroen; Monsieurs, Pieter

    2015-03-01

    In ecological studies, microbial diversity is nowadays mostly assessed via the detection of phylogenetic marker genes, such as 16S rRNA. However, PCR amplification of these marker genes produces a significant amount of artificial sequences, often referred to as chimeras. Different algorithms have been developed to remove these chimeras, but efforts to combine different methodologies are limited. Therefore, two machine learning classifiers (reference-based and de novo CATCh) were developed by integrating the output of existing chimera detection tools into a new, more powerful method. When comparing our classifiers with existing tools in either the reference-based or de novo mode, a higher performance of our ensemble method was observed on a wide range of sequencing data, including simulated, 454 pyrosequencing, and Illumina MiSeq data sets. Since our algorithm combines the advantages of different individual chimera detection tools, our approach produces more robust results when challenged with chimeric sequences having a low parent divergence, short length of the chimeric range, and various numbers of parents. Additionally, it could be shown that integrating CATCh in the preprocessing pipeline has a beneficial effect on the quality of the clustering in operational taxonomic units. PMID:25527546

  17. Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rRNA genes.

    PubMed

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  18. Primer and platform effects on 16S rRNA tag sequencing

    SciTech Connect

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; Kirton, Edward S.; He, Shaomei; Woyke, Tanja; Lee, Janey; Chen, Feng; Dangl, Jeffery L.; Tringe, Susannah G.

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.

  19. Evolution of green plants as deduced from 5S rRNA sequences

    PubMed Central

    Hori, Hiroshi; Lim, Byung-Lak; Osawa, Syozo

    1985-01-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other. PMID:16593540

  20. Evolution of green plants as deduced from 5S rRNA sequences.

    PubMed

    Hori, H; Lim, B L; Osawa, S

    1985-02-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other. PMID:16593540

  1. Primer and platform effects on 16S rRNA tag sequencing

    PubMed Central

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; Kirton, Edward S.; He, Shaomei; Woyke, Tanja; Lee, Janey; Chen, Feng; Dangl, Jeffery L.; Tringe, Susannah G.

    2015-01-01

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. Beta diversity metrics are surprisingly robust to both primer and sequencing platform biases. PMID:26300854

  2. Molecular identification of adulteration in mutton based on mitochondrial 16S rRNA gene.

    PubMed

    Xu, Jia; Zhao, Wei; Zhu, Mengru; Wen, Yuanju; Xie, Tao; He, Xiaoqian; Zhang, Yongfeng; Cao, Suizhong; Niu, Lili; Zhang, Hongping; Zhong, Tao

    2016-01-01

    The aim of this study is to set up a protocol for identification of the adulteration in mutton based on mitochondrial 16S rRNA gene. The multiplex polymerase chain reaction (multi-PCR) assay was carried out to trace the impure DNA in mutton. A universal primer pair yielded an approximate 610 bp fragment in mutton, pork, duck, chicken, horse and cat meats. The amplicons of multi-PCR assay represented the species-specific products, which could be discriminated by the size ranging from 106 bp to 532 bp. Subsequently, the authentication of each fragment was also confirmed by sequencing. Random analyses of adulterants with various meats yielded the identical results to their components, showing the suitability of the multi-PCR assay for tracing of adulterant meats with high-accuracy and precision. This assay was sensitive to detect the species-specific DNA in different proportional mixtures of mutton and duck/pork (9.1%-90.9%). In conclusion, this multi-PCR assay successfully discriminated the double-, triple-, quadruple-, and quintuple-mixtures containing variant counterparts. This method will be particularly useful in the detection of mutton adulteration in processed foods further. PMID:24739005

  3. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  4. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    PubMed Central

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  5. Analysis of a 5S rRNA gene cloned from Euplotes eurstomus

    SciTech Connect

    Roberson, A.E.; Wolffe, A.; Olins, D.E.

    1987-05-01

    The macronucleus of the hypotrichous ciliated protozoan Euplotes eurystomus lends itself to the study of eukaryotic gene and chromatin structure because native macronuclear DNA exists as linear, gene-sized fragments between 400 and 20,000 bp in length. The macronuclear chromatin, while arranged in a typical nucleosomal structure, is freely soluble in low ionic strength buffers without treatment by nucleases. Thus, specific genes may be enriched as native, intact chromatin molecules. The 5S rRNA gene from Euplotes has been cloned to facilitate investigation of 5S gene-chromatin following characterization of the gene at the DNA level. It has been demonstrated that the gene, while in circular or linear form, can be transcribed in vitro by a Xenopus oocyte nuclear extract. The transcript generated in vitro is 120 nucleotides in length and is synthesized by RNA polymerase III. Anti-Xenopus TFIIIA antibodies recognize a Euplotes macronuclear chromatin-associated protein which is approx. 80 KD in size. It has been established that the sequence of the telomere flanking the 5S gene in Euplotes eurystomus is the same telomeric sequence published for Euplotes aediculatus.

  6. The nuclear phenotypic plasticity observed in fish during rRNA regulation entails Cajal bodies dynamics

    SciTech Connect

    Alvarez, Marco; Nardocci, Gino; Thiry, Marc; Alvarez, Rodrigo; Reyes, Mauricio; Molina, Alfredo; Vera, M. Ines . E-mail: mvera@unab.cl

    2007-08-17

    Cajal bodies (CBs) are small mobile organelles found throughout the nucleoplasm of animal and plant cells. The dynamics of these organelles involves interactions with the nucleolus. The later has been found to play a substantial role in the compensatory response that evolved in eurythermal fish to adapt to the cyclic seasonal habitat changes, i.e., temperature and photoperiod. Contrary to being constitutive, rRNA synthesis is dramatically regulated between summer and winter, thus affecting ribosomal biogenesis which plays a central role in the acclimatization process. To examine whether CBs, up to now, never described in fish, were also sustaining the phenotypic plasticity observed in nuclei of fish undergoing seasonal acclimatization, we identified these organelles both, by transmission electronic microscopy and immunodetection with the marker protein p80-coilin. We found transcripts in all tissues analyzed. Furthermore we assessed that p80-coilin gene expression was always higher in summer-acclimatized fish when compared to that adapted to the cold season, indicating that p80-coilin expression is modulated upon seasonal acclimatization. Concurrently, CBs were more frequently found in summer-acclimatized carp which suggests that the organization of CBs is involved in adaptive processes and contribute to the phenotypic plasticity of fish cell nuclei observed concomitantly with profound reprogramming of nucleolar components and regulation of ribosomal rRNAs.

  7. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA.

    PubMed Central

    Rousset, F; Pélandakis, M; Solignac, M

    1991-01-01

    It has often been suggested that the frequently observed Watson-Crick base-pair compensatory substitutions in RNA helical structures occur mainly through a slightly deleterious G.U intermediate state. We have scored base substitutions in a set of 82 related Drosophila species for the D1 and D2 variable domains of the large rRNA subunit. In all locations where a G-C in equilibrium with A-U compensatory base change occurred, a G.U pair has been observed in one or several species. As this dominant process implies two transitions, their rate was far higher in paired regions (92%) than in unpaired regions (47%). The other types of compensation were rarer and no intermediate states were observed. Most of the G.U base pairs observed in a species are not slightly deleterious. The rate of evolution of compensatory substitution is close to that predicted by a simple model of compensatory substitution through slightly deleterious or slightly advantageous G.U pairs, although some exceptions are presented. PMID:1946420

  8. Primer and platform effects on 16S rRNA tag sequencing

    DOE PAGESBeta

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; Kirton, Edward S.; He, Shaomei; Woyke, Tanja; Lee, Janey; Chen, Feng; Dangl, Jeffery L.; Tringe, Susannah G.

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less

  9. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  10. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  11. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister

  12. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes.

    PubMed

    Groben, René; Medlin, Linda

    2005-01-01

    Phytoplankton are one of the major components of ecosystem processes and play an important role in many biogeochemical cycles in the marine and freshwater environment. Despite their importance, many microalgae are poorly described and little is known of broad spatial and temporal scale trends in their abundance and distribution. Reasons for this are that microalgae are often small, lack distinct morphological features, and are unculturable, which make analyses difficult. It is now possible by using molecular biological techniques to advance our knowledge of aquatic biodiversity and to understand how biodiversity supports ecosystem structure, dynamics, and resilience. We present in this chapter a brief review of the progress that has been made in analyzing microalgae from populations to the species level. The described methods range from DNA fingerprinting techniques, such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLPs), and simple sequence repeats (SSRs), to microsatellites, which are used in population studies, to sequence analysis, which help to reconstruct the evolutionary history of organisms and to examine relationships at various taxonomic levels. Special emphasis is given to the application of molecular probes for the identification and characterization of microalgal taxa. The fast and secure identification of phytoplankton, especially of toxic species, is important from an ecological and economical point of view and whole-cell hybridization with specific fluorochrome-labeled probes followed by fluorescence microscopy or flow cytometry offers a fast method for this purpose. In this context, we present a detailed protocol for fluorescence in situ hybridization (FISH) of ribosomal RNA (rRNA) probes that can be applied to many algal cell types and discuss practical considerations of its use. PMID:15865974

  13. Sequence variation within the rRNA gene loci of 12 Drosophila species

    PubMed Central

    Stage, Deborah E.; Eickbush, Thomas H.

    2007-01-01

    Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8–8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10–20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species. PMID:17989256

  14. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  15. Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase

    PubMed Central

    Wang, Yang; Zhang, Maojun; Deng, Fengru; Shen, Zhangqi; Wu, Congming; Zhang, Jianzhong

    2014-01-01

    Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread. PMID:24982085

  16. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis

    PubMed Central

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-01-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  17. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis.

    PubMed

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-10-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  18. 16S rRNA Gene Survey of Microbial Communities in Winogradsky Columns

    PubMed Central

    Rundell, Ethan A.; Banta, Lois M.; Ward, Doyle V.; Watts, Corey D.; Birren, Bruce; Esteban, David J.

    2014-01-01

    A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities. PMID:25101630

  19. Identification of goat cashmere and sheep wool by PCR-RFLP analysis of mitochondrial 12S rRNA gene.

    PubMed

    Geng, Rong-Qing; Yuan, Chao; Chen, Yu-Lin

    2012-12-01

    The efficacy of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial 12S rRNA gene in identification of goat cashmere and sheep wool samples was evaluated. The specific fragments of the mitochondrial 12S rRNA gene, which were about 440 bp, were obtained using the PCR. Restriction enzyme digestion of the PCR products with endonucleases BspT I and Hinf I revealed species-specific RFLP patterns. Application of this technique on mixed samples could identify goat cashmere and sheep wool from each other within the proportion of 8:1. The technique, however, could detect only one species when the proportion of mixture was more than 9:1. The PCR-RFLP technique was demonstrated to possess potential value in precise identification of goat cashmere and sheep wool. PMID:22943150

  20. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  1. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction

    NASA Technical Reports Server (NTRS)

    Weisburg, W. G.; Giovannoni, S. J.; Woese, C. R.

    1989-01-01

    Through comparative analysis of 16S ribosomal RNA sequences, it can be shown that two seemingly dissimilar types of eubacteria Deinococcus and the ubiquitous hot spring organism Thermus are distantly but specifically related to one another. This confirms an earlier report based upon 16S rRNA oligonucleotide cataloging studies (Hensel et al., 1986). Their two lineages form a distinctive grouping within the eubacteria that deserved the taxonomic status of a phylum. The (partial) sequence of T. aquaticus rRNA appears relatively close to those of other thermophilic eubacteria. e.g. Thermotoga maritima and Thermomicrobium roseum. However, this closeness does not reflect a true evolutionary closeness; rather it is due to a "thermophilic convergence", the result of unusually high G+C composition in the rRNAs of thermophilic bacteria. Unless such compositional biases are taken into account, the branching order and root of phylogenetic trees can be incorrectly inferred.

  2. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes.

    PubMed

    Jeon, Yoon-Seong; Lee, Kihyun; Park, Sang-Cheol; Kim, Bong-Soo; Cho, Yong-Joon; Ha, Sung-Min; Chun, Jongsik

    2014-02-01

    EzEditor is a Java-based molecular sequence editor allowing manipulation of both DNA and protein sequence alignments for phylogenetic analysis. It has multiple features optimized to connect initial computer-generated multiple alignment and subsequent phylogenetic analysis by providing manual editing with reference to biological information specific to the genes under consideration. It provides various functionalities for editing rRNA alignments using secondary structure information. In addition, it supports simultaneous editing of both DNA sequences and their translated protein sequences for protein-coding genes. EzEditor is, to our knowledge, the first sequence editing software designed for both rRNA- and protein-coding genes with the visualization of biologically relevant information and should be useful in molecular phylogenetic studies. EzEditor is based on Java, can be run on all major computer operating systems and is freely available from http://sw.ezbiocloud.net/ezeditor/. PMID:24425826

  3. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    PubMed

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies. PMID:16083008

  4. Functional variants of 5S rRNA in the ribosomes of common sea urchin Paracentrotus lividus.

    PubMed

    Dimarco, Eufrosina; Cascone, Eleonora; Bellavia, Daniele; Caradonna, Fabio

    2012-10-15

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus; this study, performed at DNA level only, lends itself as starting point to verify that these clusters could contain transcribed genes, then, to demonstrate the presence of heterogeneity at functional RNA level, also. In the present work we report in P. lividus ribosomes the existence of several transcribed variants of the 5S rRNA and we associate all transcribed variants to the cluster to which belong. Our finding is the first demonstration of the presence of high heterogeneity in functional 5S rRNA molecules in animal ribosomes, a feature that had been considered a peculiarity of some plants. PMID:22967708

  5. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis. PMID:26618590

  6. Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa.

    PubMed

    Ohama, T; Kumazaki, T; Hori, H; Osawa, S

    1984-06-25

    The nucleotide sequences of 5S rRNA from a mesozoan Dicyema misakiense and three metazoan species, i.e., an acorn-worm Saccoglossus kowalevskii, a moss-animal Bugula neritina, and an octopus Octopus vulgaris have been determined. A phylogenic tree of multicellular animals has been constructed from 73 5S rRNA sequences available at present including those from the above four sequences. The tree suggests that the mesozoan is the most ancient multicellular animal identified so far, its emergence time being almost the same as that of flagellated or ciliated protozoans. The branching points of planarians and nematodes are a little later than that of the mesozoan but are clearly earlier than other metazoan groups including sponges and jellyfishes. Many metazoan groups seem to have diverged within a relatively short period. PMID:6539911

  7. The Identification of Discriminating Patterns from 16S rRNA Gene to Generate Signature for Bacillus Genus.

    PubMed

    More, Ravi P; Purohit, Hemant J

    2016-08-01

    The 16S ribosomal RNA (16S rRNA) gene has been widely used for the taxonomic classification of bacteria. A molecular signature is a set of nucleotide patterns, which constitute a regular expression that is specific to each particular taxon. Our main goal was to identify discriminating nucleotide patterns in 16S rRNA gene and then to generate signatures for taxonomic classification. To demonstrate our approach, we used the phylum Firmicutes as a model using representative taxa Bacilli (class), Bacillales (order), Bacillaceae (family), and Bacillus (genus), according to their dominance at each hierarchical taxonomic level. We applied combined composite vector and multiple sequence alignment approaches to generate gene-specific signatures. Further, we mapped all the patterns into the different hypervariable regions of 16S rRNA gene and confirmed the most appropriate distinguishing region as V3-V4 for targeted taxa. We also examined the evolution in discriminating patterns of signatures across taxonomic levels. We assessed the comparative classification accuracy of signatures with other methods (i.e., RDP Classifier, KNN, and SINA). Results revealed that the signatures for taxa Bacilli, Bacillales, Bacillaceae, and Bacillus could correctly classify isolate sequences with sensitivity of 0.99, 0.97, 0.94, and 0.89, respectively, and specificity close to 0.99. We developed signature-based software DNA Barcode Identification (DNA BarID) for taxonomic classification that is available at website http://www.neeri.res.in/DNA_BarID.htm . This pattern-based study provides a deeper understanding of taxon-specific discriminating patterns in 16S rRNA gene with respect to taxonomic classification. PMID:27104769

  8. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds. PMID:26189016

  9. Molecular characterization of Sarcocystis species from Polish roe deer based on ssu rRNA and cox1 sequence analysis.

    PubMed

    Kolenda, Rafał; Ugorski, Maciej; Bednarski, Michał

    2014-08-01

    Sarcocysts from four Polish roe deer were collected and examined by light microscopy, small subunit ribosomal RNA (ssu rRNA), and the subunit I of cytochrome oxidase (cox1) sequence analysis. This resulted in identification of Sarcocystis gracilis, Sarcocystis oviformis, and Sarcocystis silva. However, we were unable to detect Sarcocystis capreolicanis, the fourth Sarcocystis species found previously in Norwegian roe deer. Polish sarcocysts isolated from various tissues differed in terms of their shape and size and were larger than the respective Norwegian isolates. Analysis of ssu rRNA gene revealed the lack of differences between Sarcocystis isolates belonging to one species and a very low degree of genetic diversity between Polish and Norwegian sarcocysts, ranging from 0.1% for Sarcocystis gracilis and Sarcocystis oviformis to 0.44% for Sarcocystis silva. Contrary to the results of the ssu rRNA analysis, small intraspecies differences in cox1 sequences were found among Polish Sarcocystis gracilis and Sarcocystis silva isolates. The comparison of Polish and Norwegian cox1 sequences representing the same Sarcocystis species revealed similar degree of sequence identity, namely 99.72% for Sarcocystis gracilis, 98.76% for Sarcocystis silva, and 99.85% for Sarcocystis oviformis. Phylogenetic reconstruction and genetic population analyses showed an unexpected high degree of identity between Polish and Norwegian isolates. Moreover, cox1 gene sequences turned out to be more accurate than ssu rRNA when used to reveal phylogenetic relationships among closely related species. The results of our study revealed that the same Sarcocystis species isolated from the same hosts living in different geographic regions show a very high level of genetic similarity. PMID:24948101

  10. Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean

    PubMed Central

    Shi, Xiao Li; Lepère, Cécile; Scanlan, David J.; Vaulot, Daniel

    2011-01-01

    The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image. PMID:21552558

  11. 5S rRNA sequences from four marine invertebrates and implications for base pairing models of metazoan sequences.

    PubMed

    Walker, W F; Doolittle, W F

    1983-08-11

    The nucleotide sequences of 5S rRNAs from the starfish Asterias vulgaris, the squid Illex illecebrosus, the sipunculid Phascolopsis gouldii and the jellyfish Aurelia aurita were determined. The sequence from Asterias lends support for one of two previous base pairing models for helix E in metazoan sequences. The Aurelia sequence differs by five nucleotides from that previously reported and does not violate the consensus secondary structure model for eukaryotic 5S rRNA. PMID:6136024

  12. Archaea box C/D enzymes methylate two distinct substrate rRNA sequences with different efficiency.

    PubMed

    Graziadei, Andrea; Masiewicz, Pawel; Lapinaite, Audrone; Carlomagno, Teresa

    2016-05-01

    RNA modifications confer complexity to the 4-nucleotide polymer; nevertheless, their exact function is mostly unknown. rRNA 2'-O-ribose methylation concentrates to ribosome functional sites and is important for ribosome biogenesis. The methyl group is transferred to rRNA by the box C/D RNPs: The rRNA sequence to be methylated is recognized by a complementary sequence on the guide RNA, which is part of the enzyme. In contrast to their eukaryotic homologs, archaeal box C/D enzymes can be assembled in vitro and are used to study the mechanism of 2'-O-ribose methylation. In Archaea, each guide RNA directs methylation to two distinct rRNA sequences, posing the question whether this dual architecture of the enzyme has a regulatory role. Here we use methylation assays and low-resolution structural analysis with small-angle X-ray scattering to study the methylation reaction guided by the sR26 guide RNA fromPyrococcus furiosus We find that the methylation efficacy at sites D and D' differ substantially, with substrate D' turning over more efficiently than substrate D. This observation correlates well with structural data: The scattering profile of the box C/D RNP half-loaded with substrate D' is similar to that of the holo complex, which has the highest activity. Unexpectedly, the guide RNA secondary structure is not responsible for the functional difference at the D and D' sites. Instead, this difference is recapitulated by the nature of the first base pair of the guide-substrate duplex. We suggest that substrate turnover may occur through a zip mechanism that initiates at the 5'-end of the product. PMID:26925607

  13. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones. PMID:24681200

  14. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  15. SQSTM1 Mutations and Glaucoma

    PubMed Central

    Scheetz, Todd E.; Roos, Ben R.; Solivan-Timpe, Frances; Miller, Kathy; DeLuca, Adam P.; Stone, Edwin M.; Kwon, Young H.; Alward, Wallace L. M.; Wang, Kai; Fingert, John H.

    2016-01-01

    Glaucoma is the most common cause of irreversible blindness worldwide. One subset of glaucoma, normal tension glaucoma (NTG) occurs in the absence of high intraocular pressure. Mutations in two genes, optineurin (OPTN) and TANK binding kinase 1 (TBK1), cause familial NTG and have known roles in the catabolic cellular process autophagy. TKB1 encodes a kinase that phosphorylates OPTN, an autophagy receptor, which ultimately activates autophagy. The sequestosome (SQSTM1) gene also encodes an autophagy receptor and also is a target of TBK1 phosphorylation. Consequently, we hypothesized that mutations in SQSTM1 may also cause NTG. We tested this hypothesis by searching for glaucoma-causing mutations in a cohort of NTG patients (n = 308) and matched controls (n = 157) using Sanger sequencing. An additional 1098 population control samples were also analyzed using whole exome sequencing. A total of 17 non-synonymous mutations were detected which were not significantly skewed between cases and controls when analyzed separately, or as a group (p > 0.05). These data suggest that SQSTM1 mutations are not a common cause of NTG. PMID:27275741

  16. [Founder mutation in Lynch syndrome].

    PubMed

    Cajal, Andrea R; Piñero, Tamara A; Verzura, Alicia; Santino, Juan Pablo; Solano, Angela R; Kalfayan, Pablo G; Ferro, Alejandra; Vaccaro, Carlos

    2016-01-01

    Lynch syndrome is the most frequent syndrome in hereditary colorectal cancer, a family-specific deleterious mutations in genes encoding DNA reparation proteins: MLH1 (mutL homolog 1), MSH2, MSH6 (mutS homolog 2 y 6, respectively), PMS2 (PMS1 homolog 2, mismatch repair system component) y MUTYH (mutY DNA glycosylase). The c.2252_2253delAA, p.Lys751Serfs*3 mutation in MLH1 gene segregates with a haplotype reported in the northern region of Italy and whose origin was attributed to a founder effect. This mutation co-segregates with typical characteristics of Lynch syndrome, including early age at onset and multiple primary tumors in the same individual, a high frequency of pancreatic cancer, high microsatellite instability and lack of PMS2 expression. This report describes a mutation in an Argentinian patient with endometrioid adenocarcinoma of uterus. Her first-degree relatives had a history of colon cancer diagnosed before 50 years, fulfilling the Amsterdam Criteria I and Lynch syndrome II. The high pathogenicity associated to this mutation makes necessary the study of all members from families with hereditary cancer, allowing pre-symptomatic genetic diagnosis, early assessment and the instauration of preventive treatments. PMID:27295708

  17. Driver mutations of cancer epigenomes.

    PubMed

    Roy, David M; Walsh, Logan A; Chan, Timothy A

    2014-04-01

    Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies. PMID:24622842

  18. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  19. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats

    PubMed Central

    Nübel, Ulrich; Garcia-Pichel, Ferran; Kühl, Michael; Muyzer, Gerard

    1999-01-01

    We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied. PMID:9925563

  20. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences.

    PubMed

    Distel, D L; Lane, D J; Olsen, G J; Giovannoni, S J; Pace, B; Pace, N R; Stahl, D A; Felbeck, H

    1988-06-01

    The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis [C. R. Woese, Microbiol. Rev. 51: 221-271, 1987]). Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species. PMID:3286609

  1. Micelle PCR reduces chimera formation in 16S rRNA profiling of complex microbial DNA mixtures.

    PubMed

    Boers, Stefan A; Hays, John P; Jansen, Ruud

    2015-01-01

    16S rRNA gene profiling has revolutionized the field of microbial ecology. Many researchers in various fields have embraced this technology to investigate bacterial compositions of samples derived from many different ecosystems. However, it is important to acknowledge the current limitations and drawbacks of 16S rRNA gene profiling. Although sample handling, DNA extraction methods and the choice of universal 16S rRNA gene PCR primers are well known factors that could seriously affect the final results of microbiota profiling studies, inevitable amplification artifacts, such as chimera formation and PCR competition, are seldom appreciated. Here we report on a novel micelle based amplification strategy, which overcomes these limitations via the clonal amplification of targeted DNA molecules. Our results show that micelle PCR drastically reduces chimera formation by a factor of 38 (1.5% vs. 56.9%) compared with traditional PCR, resulting in improved microbial diversity estimates. In addition, compartmentalization during micelle PCR prevents PCR competition due to unequal amplification rates of different 16S template molecules, generating robust and accurate 16S microbiota profiles required for comparative studies (e.g. longitudinal surveys). PMID:26373611

  2. Microbial community of salt crystals processed from Mediterranean seawater based on 16S rRNA analysis.

    PubMed

    Baati, Houda; Guermazi, Sonda; Gharsallah, Neji; Sghir, Abdelghani; Ammar, Emna

    2010-01-01

    Phylogenetic analysis of 16S rRNA was used to investigate for the first time the structure of the microbial community that inhabits salt crystals retrieved from the bottom of a solar saltern, located in the coastal area of the Mediterranean Sea (Sfax, Tunisia). This community lives in an extremely salty environment of 250-310 g/L total dissolved salt. A total of 78 bacterial 16S rRNA clone sequences making up to 21 operational taxonomic units (OTUs), determined by the DOTUR program to 97% sequence similarity, was analyzed. These OTUs were affiliated to Bacteroidetes (71.4% of OTUs), and gamma-Proteobacteria and alpha-Proteobacteria (equally represented by 14.2% of the OTUs observed). The archaeal community composition appeared more diverse with 68 clones, resulting in 44 OTUs, all affiliated with the Euryarchaeota phylum. Of the bacterial and archaeal clones showing <97% 16S rRNA sequence identity with sequences in public databases, 47.6% and 84.1% respectively were novel clones. Both rarefaction curves and diversity measurements (Simpson, Shannon-Weaver, Chao) showed a more diverse archaeal than bacterial community at the Tunisian solar saltern pond. The analysis of an increasing clone's number may reveal additional local diversity. PMID:20130693

  3. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences.

    PubMed

    Hahn, Martin W; Jezberová, Jitka; Koll, Ulrike; Saueressig-Beck, Tanja; Schmidt, Johanna

    2016-07-01

    Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strain