Science.gov

Sample records for 241-c-106 waste retrieval

  1. Interim safety equipment list for 241-C-106 waste retrieval, project W-320

    SciTech Connect

    Conner, J.C.

    1996-01-25

    The purpose of this supporting document is to provide safety classifications for systems, structures, and components of the Tank 241-C-106 Waste Retrieval Sluicing System (WRSS) and to document the methodology used to develop these safety classifications. The WRSS requires two transfer lines, one to carry sluiced waste slurry to tank 241-AY-102 and the other to return supernatant to tank 241-C-106; pumps in each tank; sluicers to direct the supernatant stream inside tank 241-C-106; a slurry distributor in tank 241-AY-102; heating, ventilation, and air conditioning for tank 241-C-106; and instrumentation and control devices.

  2. Tank 241-C-106 waste retrieval sluicing system process control plan

    SciTech Connect

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  3. Fire hazard analysis for Project W-320 Tank 241-C-106 waste retrieval

    SciTech Connect

    Conner, J.C.

    1995-09-12

    This Fire Hazards Analysis (FHA) for Project W-320, `Tank 241-C-106 Waste Retrieval` addresses fire hazards or fire related concerns in accordance with DOE 5480.7A (DOE 1998), resulting from or related to the processes and equipment to be installed or modified under Project W-320 to ensure that there are no undue fire hazards to site personnel and the public; the potential for the occurrence of a fire is minimized, process control and safety systems are not damaged by fire or related perils; and property damage from fire and related perils does not exceed an acceptable level.

  4. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    SciTech Connect

    Conner, J.C.

    1994-10-18

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue.

  5. Tank 241-C-106 past-practice sluicing waste retrieval, Hanford Site, Richland, Washington. Environmental Assessment

    SciTech Connect

    1995-02-01

    The US Department of Energy (DOE) needs to take action to eliminate safety concerns with storage of the high-heat waste in Tank 241-C-106 (Tank C-106), and demonstrate a tank waste retrieval technology. This Environmental Assessment (EA) was prepared to analyze the potential impacts associated with the proposed action, past-practice sluicing of Tank C-106, an underground single-shell tank (SST). Past-practice sluicing is defined as the mode of waste retrieval used extensively in the past at the Hanford Site on the large underground waste tanks, and involves introducing a high-volume, low-pressure stream of liquid to mobilize sludge waste prior to pumping. It is proposed to retrieve the waste from Tank C-106 because this waste is classified not only as transuranic and high-level, but also as high-heat, which is caused by the radioactive decay of strontium. This waste characteristic has led DOE to place Tank C-106 on the safety ``Watchlist.``

  6. Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1

    SciTech Connect

    Conner, J.C.

    1994-11-15

    The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

  7. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    SciTech Connect

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  8. Safety Evaluation of Phase 1 retrieval of 241-C-106 for closure [SEC 1 & 2

    SciTech Connect

    GRAMS, W.H.

    2003-04-30

    This report documents a Hazard and Operability Analysis (HAZOP) for using project W-320 sluicing equipment to dissolve the soluble material in the sludge followed by transfer of the liquid waste in single-shell tank 241-C-106. Provides an analysis of the retrieval activities, hazardous conditions, and allocated controls as they related to the safety basis.

  9. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-06-03

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  10. Permitting plan for project W-320 tank 241-C-106 waste retrievalsluicing system (WRSS)

    SciTech Connect

    Symons, G.A.

    1997-02-21

    This document describes the permitting plan for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). A comprehensive review of environmental regulations have indicated that several environmental reviews [e.g. National Environmental Policy Act (NEPA), State Environmental Policy Act (SEPA)], permits, and approvals are required prior to construction or operation of the facility. The environmental reviews, permits and approvals, as well the regulatory authority, potentially applicable to the Tank 241-C-106 WRSS include the following: for NEPA - U.S. Department of Energy-Headquarters: Action Description Memorandum, Environmental Assessment, Categorical Exclusion, and Environmental Impact Statement; and for SEPA - State of Washington Department of Ecology (Ecology) Determination of Nonsignificance, Mitigated Determination of Nonsignificance, Determination of Significance, and SEPA Environmental Checklist.

  11. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contam¬inants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  12. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-09-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  13. Chemical compatibility of tank wastes in tanks 241-C-106, 241-AY-101, and 241-AY-102. Revision 1

    SciTech Connect

    Sederburg, J.P.

    1994-05-04

    This report documents the chemical compatibility of waste types within tanks 241-C-106, 241-AY-101, and 241-AY-102. This information was compiled to facilitate the transfer of tank 241-C-106 waste to tank 241-AY-102 utilizing supernatant from tank 241-AY-101 as the sluicing medium. This document justifies that no chemical compatibility safety issues currently understood, or theorized from thermodynamic modeling, will result from the intended sluice transfer operation.

  14. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    SciTech Connect

    KP Recknagle; Y Onishi

    1999-05-19

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how well a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.

  15. Action plan for response to excessive temperatures in Hanford site high-heat waste tank 241-C-106

    SciTech Connect

    Rensink, G.E., Westinghouse Hanford

    1996-08-23

    Tank 241-C-106 is a single shell tank at the Hanford Site in south central Washington State, and is the only tank on Hanford`s High-Heat Tank Watch List. This action plan defines possible abnormal conditions (such as ventilation system failure or a leaking tank) that could lead to excessive temperature increases in tank 241-C-106, and documents pre-planned contingency actions would effectively mitigate the consequences of such increased temperatures. Potential structural damage may result from high temperatures caused by inadequate cooling. Tank 241-C-106 contains a significant amount of high-heat radioactive waste, mainly strontium, and requires forced ventilation combined with evaporation for adequate cooling. Forced ventilation at 2,400 ft/min, along with periodic water additions of approximately 6,000 gal/month, is currently maintaining the tank temperature within the required range. This action plan addresses high-heat concerns and corrective measures unique to tank 241-C-106 and to proposed sluicing activities in tank 241-C-106. Other general emergency actions for the 200 Area Tank Farms, such as those forest fires and earthquakes, are described in WHC-CM-4-43, `Emergency Management Procedures` and are not included in this document.

  16. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  17. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    SciTech Connect

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  18. Criticality safety assessment of tank 241-C-106 remediation

    SciTech Connect

    Waltar, A.E., Westinghouse Hanford

    1996-07-19

    A criticality safety assessment was performed in support of Project 320 for the retrieval of waste from tank 241-C-106 to tank 241-AY-102. The assessment was performed by a multi-disciplined team consisting of expertise covering the range of nuclear engineering, plutonium and nuclear waste chemistry,and physical mixing hydraulics. Technical analysis was performed to evaluate the physical and chemical behavior of fissile material in neutralized Hanford waste as well as modeling of the fluid dynamics for the retrieval activity. The team has not found evidence of any credible mechanism to attain neutronic criticality in either tank and has concluded that a criticality accident is incredible.

  19. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    SciTech Connect

    Hays, C.B.

    1998-01-28

    closure of this safety issue. The sluicing will also fulfill a Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone to resolve the high-heat issue and demonstrate waste retrieval. The waste will be transferred to 241-AY-102 tank, a double-shell tank (DST) with greater heat load capacity than the 241-C-106 tank.

  20. Project W-320, 241-C-106 sluicing piping calculations, Volume 7

    SciTech Connect

    Bailey, J.W.

    1998-07-29

    The object of this report is to calculate the hydraulic forces imposed at the sluicer nozzle. This is required by Project W-320 waste retrieval for tank 241-C-106. The method of analysis used is Bernoulli`s momentum equation for stead flow.

  1. Monitoring gas retention and slurry transport during the transfer of waste from Tank 241-C-106 to Tank 241-AY-102

    SciTech Connect

    Stewart, C.W.; Erian, F.F.; Meyer, P.A.

    1997-07-01

    The retained gas volume can be estimated by several methods. All of these methods have significant uncertainties, but together they form a preponderance of evidence that describes the gas retention behavior of the tank. The methods are (1) an increase in nonconvective layer thickness; (2) a waste surface level rise (surface level effect [SLE] model); (3) the barometric pressure effect (BPE model); (4) direct void measurement; and (5) the consequences of the transfer process. The nonconvective layer thickness can be determined with sufficient accuracy to describe the overall waste configuration by means of temperature profiles or densitometer indications. However, the presence of a nonconvective layer does not necessarily indicate significant gas retention, and small changes in layer thickness that could quantify gas retention cannot be detected reliably with the methods available. The primary value of this measurement is in establishing the actual {open_quotes}fluffing factor{close_quotes} for thermal calculations. Surface level rise is not a useful measure of gas retention in Tank 241-C-106 (C-106) since the waste level fluctuates with regular makeup water additions. In Tank 241-AY-102 (AY-102) with the existing ventilation system it should be possible to determine the gas retention rate within 30-60% uncertainty from the surface level rise, should a significant rise be observed. The planned ventilation system upgrades in AY- 102 will greatly reduce the exhaust flow and the headspace humidity, and the evaporation rate should be significantly lower when transfers begin. This could reduce the uncertainty in gas retention rate estimates to around {+-} 10%.

  2. Characterization of a Washed 241-C-106 Sludge Sample

    SciTech Connect

    Nash, C.A.

    2001-05-15

    An Envelope D Tank 241-C-106 sample was characterized for solids, elemental, and radioactive isotope content. The work was done by the Savannah River Technology Center (SRTC) to support the Hanford River Protection Project (RPP). The sludge from Hanford Tank 241-C-106 is high level waste that is to be included in the first ten years of processing by the RPP Waste Treatment Plant (WTP). The sample was a composite of caustic-leached and washed sludge from previous work at the Pacific Northwest National Lab (PNNL). Sludge analysis results were found to compare well with those of previous researchers analyzing leached samples from Tank 241-C-106. Composition of the liquid accompanying the sample was also measured.

  3. Project W-320, 241-C-106 sluicing master calculation list

    SciTech Connect

    Bailey, J.W.

    1998-08-07

    This supporting document has been prepared to make the Master Calculation List readily retrievable. The list gives the status of the calculation (as-built, not used, applied, etc.), the calculation title, its originator, comments, and report number under which it was issued. Tank 241-C-106 has been included on the High Heat Load Watch List.

  4. Project W-320, 241-C-106 sluicing supporting documentation bibliography

    SciTech Connect

    Bailey, J.W.

    1998-08-06

    This supporting document has been prepared to make the listing of documentation used to develop, or in support of Project W-320, readily retrievable. All documents are sorted by document number and list the document type. Tank 241-C-106 has been included on the High Heat Load Watch List.

  5. Tank 241-C-106 sampling data requirements developed through the data quality objectives (DQO) process

    SciTech Connect

    Wang, O.S.; Bell, K.E.; Anderson, C.M.; Peffers, M.S.; Pulsipher, B.A.; Scott, J.L.

    1994-01-01

    The rate of heat generation for tank 241-C-106 at the Hanford Site is estimated at more then 100,000 Btu/h. The heat is generated primarily from the radioactive decay of {sup 90}Sr waste that was inadvertently transferred into the tank in the late 1960s. If proper tank cooling is not maintained for this tank, heat-induced structural damage to the tank`s concrete shell could result in the release of nuclear waste to the environment. Because of high-heat concerns in January 1991, tank 241-C-106 was designated as a Watch List tank and deemed as a Priority 1 safety issue. Waste Tank Safety Program (WTSP) is responsible for the resolution of this safety issue. Although forced cooling is effective for short term, the long-term resolution for tank cooling is waste retrieval. Single-shell Tank Retrieval Project (Retrieval) is responsible for the safe retrieval and transfer of radioactive waste from tank 241-C-106 to a selected double-shell tank. This data quality objective (DQO) study is an effort to determine engineering and design data needs for WTSP and assist Retrieval in designing contingency action retrieval systems. The 7-step DQO process is a tool developed by the Environmental Protection Agency with a goal of identifying needs and reducing costs. This report discusses the results of two DQO efforts for WTSP and Retrieval. The key data needs to support WTSP are thermal conductivity, permeability, and heat load profile. For the Retrieval support, there are nine and three data needs identified, respectively, for retrieval engineering system design and HVAC system design. The updated schedule to drill two core samples using rotary mode is set for March 1994. The analysis of the sample is expected to be completed by September 1994.

  6. Project W-320, 241-C-106 waste retrieval spare parts list

    SciTech Connect

    Hays, W.H.

    1998-03-23

    Spare parts for equipment installed in the tank dome space or pump or valve pits should not be inventoried onsite due to the extensive, time-consuming work package planning, personnel/equipment mobilization, and funding requirements that are prerequisites to any repair or replacement. These issues provide adequate time to procure parts from offsite sources. All parts listed in this inventory can either be stocked in the DynCorp Tri-Cities Services, Inc., 2101-M Warehouse, or are available from the vendor/manufacturer.

  7. Tank 241-C-106 waste retrieval sluicing system (WRSS) sluicer assembly test reports

    SciTech Connect

    May, T.H., Westinghouse Hanford

    1996-08-26

    The sluicer test report documents the results of the Project W-320 factory testing conducted at the Olympic Tool and Engineering facility. Included are background information, test goals, a brief discussion on the sluicer hose problem, and conclusions.

  8. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    SciTech Connect

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  9. Assessment of Tank 241-C-106 temperature response indications

    SciTech Connect

    Eyler, L.L.

    1995-03-01

    This report presents an assessment of waste tank 241-C-106 temperature response indications. The results are obtained through evaluation of historical data for FIC surface level data and temperature indication data from thermocouples in risers 8 and 14, contained in the SACS and TMACS databases. Computer analysis is used to augment observations and conclusions about hypothesized mechanisms present in the tank that could explain the data observations. From the historical temperature indications of risers 8 and 14 (neglecting the ventilation outages), several general observational conclusions are drawn that support hypotheses explaining more recently observed behavior.

  10. Tank characterization report for single-shell tank 241-C-106

    SciTech Connect

    Schreiber, R.D.

    1996-09-25

    This tank characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in single-shell underground tank 241-C-106. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-C-106 is the only tank on the High-Heat Load Watch List. As a result of the analyses addressed by this report, the supernate and upper 60 percent of the sludge in the tank do not pose any safety concerns in addition to the high-heat load issue based on the decision limits of the safety screening data quality objective (DQO) (Dukelow et al. 1995). The lower 40 percent of the sludge was not sampled; therefore, no statements regarding the safety of this waste can be made. A portion of the tank sludge is scheduled to be retrieved in fiscal year 1997 in order to mitigate the high-heat load in the tank.

  11. Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 6

    SciTech Connect

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The purpose of this calculation is to conservatively estimate the weight of equipment and structures being added over Tank 241-C-106 as a result of Project W-320 and combine these weights with the estimated weights of existing structures and equipment as calculated in Attachment 1. The combined weights will be compared to the allowable live load limit to provide a preliminary assessment of loading conditions above Tank 241-C-106.

  12. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 1

    SciTech Connect

    Bailey, J.W.

    1998-08-07

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following calculations: Exhaust airflow sizing for Tank 241-C-106; Equipment sizing and selection recirculation fan; Sizing high efficiency mist eliminator; Sizing electric heating coil; Equipment sizing and selection of recirculation condenser; Chiller skid system sizing and selection; High efficiency metal filter shielding input and flushing frequency; and Exhaust skid stack sizing and fan sizing.

  13. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 2

    SciTech Connect

    Bailey, J.W.

    1998-07-25

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objectives of this calculation are (1) To perform static and Safety Class 2 dynamic stress analysis of the Slurry and Supernate Process (inner) piping connecting Tanks 241-C-106 and 241-AY-102 in order to be in compliance with the Code requirements; (2) To assure the thermal expansion of the process pipe not be strained by the outer encasement pipe; and (3) To furnish process pipe support to the Civil Engineering group.

  14. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    SciTech Connect

    Pedersen, L.T.

    1998-05-22

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer`s (OEM) specifications. This document reports the results of the testing.

  15. Baseline estimate of the retained gas volume in Tank 241-C-106

    SciTech Connect

    Stewart, C.W.; Chen, G.

    1998-06-01

    This report presents the results of a study of the retained gas volume in Hanford Tank 241-C-106 (C-106) using the barometric pressure effect method. This estimate is required to establish the baseline conditions for sluicing the waste from C-106 into AY-102, scheduled to begin in the fall of 1998. The barometric pressure effect model is described, and the data reduction and detrending techniques are detailed. Based on the response of the waste level to the larger barometric pressure swings that occurred between October 27, 1997, and March 4, 1998, the best estimate and conservative (99% confidence) retained gas volumes in C-106 are 24 scm (840 scf) and 50 scm (1,770 scf), respectively. This is equivalent to average void fractions of 0.025 and 0.053, respectively.

  16. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    SciTech Connect

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  17. Type B Investigation Report for 241-SY-101 Pump Start and 241-C-106 Pit Cleanout

    SciTech Connect

    Ewalt, J.R.

    1993-09-01

    In accordance with the direction of the Department of Energy (DOE) Manager, Richland Operations Office, a Type ``B`` investigation in accordance with the DOE Order 5484.1, Environmental Protection, Safety and Health Protection Information Reporting Requirements, has been conducted. The scope of the investigation included two events: The ``Inadvertent Mixer Pump Operation at 241-SY-101`` (RL-WHC-TANK FARM-1993-069); ``Inadequate Work Control Results in Personnel Skin Contamination at 241-C-106, Pit B`` (RL-WHC-TANK FARM-1993-071) events. Additionally, at the request of the President of the WHC, a broader investigation into Waste Tank Farm ``safety practices`` and ``Conduct of Operations`` was also conducted. The review was focused on (1) WHC organizations performing operations, maintenance, and radiological safety tasks; and (2) KEH organizations performing major maintenance tasks.

  18. Origins of volatile organic compounds emerging from tank 241-C-106 during sluicing

    SciTech Connect

    STAUFFER, L.A.

    1999-06-02

    Unexpectedly high concentrations of inorganic gases and volatile organic compounds (VOC) were released from the ventilation stack of tank 241-C-106 during sluicing operations on November 18, 1998. Workers experienced serious discomfort. They reported an obnoxious acrid odor and the 450 ppm VOC in ventilation stack 296-C-006 exceeded the level approved in the air discharge permit. Consequently, the operation was terminated. Subsequent analyses of samples collected opportunistically from the stack indicated many organic compounds including heptenes, heptanones, and normal paraffin hydrocarbons (NPH) and their remnants were present. Subsequently, a process test designed to avoid unnecessary worker exposure and enable collection of analytical samples from the stack, the breathing area, and the receiver tank was conducted on December 16, 1998. The samples obtained during that operation, in which the maximum VOC content of the stack was approximately 35 ppm, have been analyzed by teams at Pacific Northwest National Laboratory and Special Analytic Services (SAS). This report examines the results of these investigations. Future revisions of the report will examine the analytical results obtained for samples collected during sluicing operations in March. This report contains the available evidence about the source term for these emissions. Chapter 2 covers characterization work, including historical information about the layers of waste in the tank, the location of organic compounds in these layers, the total organic carbon (TOC) content and the speciation of organic compounds. Chapter 3 covers the data for the samples from the ventilation stack, which has the highest concentrations of organic compounds. Chapter 4 contains an interpretation of the information connecting the composition of the organic emissions with the composition of the original source term. Chapter 5 summarizes the characterization work, the sample data, and the interpretation of the results.

  19. Acceptance test procedure, 241-SY-101/241-C-106 shot loading system

    SciTech Connect

    Ostrom, M.J.

    1994-11-01

    This Acceptance Test Procedure is for the 241-SY-101/241-C-106 Shot Loading System. The procedure will test the components of the Shot Loading System and its capability of adequately loading shot into the annular space of the Container. The loaded shot will provide shielding as required for transporting and storage of a contaminated pump after removal from the tank. This test serves as verification that the SLS is acceptable for use in the pump removal operations for Tanks 241-SY-101, 241-C-106 and 241-AY-102. The pump removal operation for these three tanks will be performed by two different organizations with different equipment, but the Shot Loading System will be compatible between the two operations.

  20. AX Tank Farm waste retrieval alternatives cost estimates

    SciTech Connect

    Krieg, S.A.

    1998-07-21

    This report presents the estimated costs associated with retrieval of the wastes from the four tanks in AX Tank Farm. The engineering cost estimates developed for this report are based on previous cost data prepared for Project W-320 and the HTI 241-C-106 Heel Retrieval System. The costs presented in this report address only the retrieval of the wastes from the four AX Farm tanks. This includes costs for equipment procurement, fabrication, installation, and operation to retrieve the wastes. The costs to modify the existing plant equipment and systems to support the retrieval equipment are also included. The estimates do not include operational costs associated with pumping the waste out of the waste receiver tank (241-AY-102) between AX Farm retrieval campaigns or transportation, processing, and disposal of the retrieved waste.

  1. Project W-320, 241-C-106 sluicing: Construction specification W-320-C6

    SciTech Connect

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  2. Project W-320, 241-C-106 sluicing: Construction specification W-320-C7

    SciTech Connect

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  3. Project W-320, 241-C-106 sluicing: Construction specification W-320-C1

    SciTech Connect

    Bailey, J.W.

    1998-07-20

    Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  4. Project W-320, 241-C-106 sluicing: Construction specification W-320-C5

    SciTech Connect

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  5. Project W-320, 241-C-106 sluicing: Construction specification W-320-C2

    SciTech Connect

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  6. Consequences of a radioactive surface pool resulting from waste transfer operations between tanks 214-C-106 and 241-AY-102

    SciTech Connect

    Van Vleet, R.J.

    1997-08-05

    This document contains supporting calculations for quantifying the dose consequences from a pool formed from an underground leak or a-leak from an above grade structure for the Waste Retrieval Sluicing System (Project W-320), i.e., sluicing the contents of Tank 241-C-106 (high heat, SST) into Tank 241-AY-102 (aging waste, DST).

  7. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 4

    SciTech Connect

    Bailey, J.W.

    1998-07-30

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following design calculations: Cooling load in pump pit 241-AY-102; Pressure relief seal loop design; Process building piping stress analysis; Exhaust skid maximum allowable leakage criteria; and Recirculation heat, N509 duct requirements.

  8. Project W-320, 241-C-106 sluicing electrical calculations, Volume 2

    SciTech Connect

    Bailey, J.W.

    1998-08-07

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing; Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.

  9. Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 2

    SciTech Connect

    Bailey, J.W.

    1998-07-22

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The Equipment Removal System (ERS) has been identified by WHC as not having any safety class 1 items present in the tank pits during equipment removal activities. Documentation of this finding is provided in Letter of Instruction 3/1 Analysis Requirements for Project W-320 Equipment Removal System (REF: LOI KGS-94-013). Based on this specific direction from WHC, 3/1 analysis for any component of the Project W-320 ERS is required. No further documentation of non-safety impacting safety items is required per DOE-RL Audit finding No. 90-02, and filing of this memorandum in the W-320 project files satisfies the intent of the referenced DOE observation.

  10. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    SciTech Connect

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

  11. Structural analysis of the equipment removal system for tanks 241C106 and 241AY102

    SciTech Connect

    Mackey, T.C.

    1994-10-01

    The calculations documented in this report show that the ERS major components are structurally qualified to complete the objective: install the removed equipment into a shipping container, transport and store the container at the Central Waste Complex (CWC). The analysis for the structural members of the ERS components considers live load with an impact factor of 125% and dead load. An allowable stress of 1/3 yield is used for all structural components carrying the load based on DOE-RL-92-36. Adherence to DOE-RL-92-36 is not a code requirement. However, due to the loads considered, this factor of safety is appropriate. The calculations meet the strength requirements of the American Institute for Steel Construction (AISC 1989) for all non-critical structural elements.

  12. Waste compatibility assessments to support project W-320

    SciTech Connect

    BLAAK, T.M.

    1999-04-06

    The intent of this internal memo is to provide a recommendation for the transfer of tank 241-C-106 waste, Attachment 2, to tank 241-AY-102. This internal memo also identifies additional requirements which have been deemed necessary for safely receiving and storing the waste documented in Attachment 2 from tank 241-C-106 in tank 241-AY-102. This waste transfer is planned in support of tank 241-C-106 solids sluicing activities. Approximately 200,000 gallons of waste and flush water are expected to be pumped from tank 241-C-106 into tank 241-AY-102. Several transfers will be necessary to complete the sluicing of tank 241-C-106 solids. To assure ourselves that this waste transfer will not create any compatibility concerns, a waste compatibility assessment adhering to current waste compatibility requirements has been performed.

  13. Tank 241-C-106 process test report

    SciTech Connect

    Bander, T.J.

    1995-05-30

    This report evaluates the thermal hydraulic behavior of tank C-106 during and following the process test conducted from March 10, 1994 to June 15, 1994. During and following the process test the thermocouples on the thermocouple tree in riser No. 14 began to indicate significantly higher temperatures in the sludge than the low temperatures typically observed at this location. The thermocouples on the thermocouple tree in riser No. 8 during this same time period indicated temperature variations consistent with normal seasonal effects. This report summarizes the analyses conducted to understand the phenomena that caused the temperature history at riser No. 14.

  14. Process Test Evaluation Report Waste Retrieval Sluicing System Emissions Collection (Phase 1 - 2 and 3)

    SciTech Connect

    PARKMAN, D.B.

    1999-12-29

    During sluicing of the first batch of sludge from tank 241-C-106 on November 18, 1998, an unexpected high concentration of volatile organic compounds was measured in the 296-C-006 ventilation stack. Eleven workers reported irritation related symptoms and were sent to Hanford Environmental Health Foundation (HEHF) and Kadlec Hospital for medical evaluations. No residual health effects were reported. As a result of the unexpectedly high concentrations of volatile organic compounds encountered during this November sluicing event, a phased process test designed to characterize the emission constituents was conducted on December 16, 1998, March 7, 1999, and March 28, 1999. The primary focus of this evaluation was to obtain samples of the 296-C-006 ventilation stack effluent and surrounding areas at elevated levels of volatile organic compounds initiated by sluicing. Characterization of the emission constituents was necessary to establish appropriate procedural and administrative exposure controls for continued sluicing. Additionally, this information would be used to evaluate the need for engineered equipment to mitigate any further potential chemical stack emissions. This evaluation confirms that the following actions taken during Phase I, Phase II, and Phase III of the Waste Retrieval Sluicing System Emissions Collection Process Test were conservative and appropriate for continued sluicing: Implement stack limit of 500 ppm volatile organic compounds, with lower administrative limits; Ensure worker involvement through enhanced planning; Continue using the existing fenced boundary location; Continue using pressure demand fresh air respiratory protection inside the C-Farm as recommended by Industrial Hygiene; Continue using the existing respiratory protection/ take cover requirements outside the C-Farm boundary as recommended by Industrial Hygiene; Continue using existing anti-contamination clothing; Minimize the number of workers exposed to emissions; Maintain the

  15. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    SciTech Connect

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.; Minichan, Richard L.; Poirier, Micheal R.; Gauglitz, Phillip A.; Martin, Bruce A.; Hatchell, Brian K.; Saldivar, Eloy; Mullen, O Dennis; Chapman, Noel F.; Wells, Beric E.; Gibbons, Peter W.

    2009-04-10

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information. The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.

  16. Solid waste retrieval. Phase 1, Operational basis

    SciTech Connect

    Johnson, D.M.

    1994-09-30

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

  17. Technical requirements specification for tank waste retrieval

    SciTech Connect

    Lamberd, D.L.

    1996-09-26

    This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

  18. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect

    MCDONALD, K.M.

    1999-08-27

    Phase I retrieval of post-1970 TRU wastes from burial ground 218-W-4C can be done in a safe, efficient, and cost-effective manner. Initiating TRU retrieval by retrieving uncovered drums from Trenches 1, 20, and 29, will allow retrieval to begin under the current SWBG safety authorization basis. The retrieval of buried drums from Trenches 1, 4, 20, and 29, which will require excavation, will commence once the uncovered drum are retrieved. This phased approach allows safety analysis for drum venting and drum module excavation to be completed and approved before the excavation proceeds. In addition, the lessons learned and the operational experience gained from the retrieval of uncovered drums can be applied to the more complicated retrieval of the buried drums. Precedents that have been set at SRS and LANL to perform retrieval without a trench cover, in the open air, should be followed. Open-air retrieval will result in significant cost savings over the original plans for Phase I retrieval (Project W-113). Based on LANL and SRS experience, open-air retrieval will have no adverse impacts to the environment or to the health and safety of workers or the public. Assaying the waste in the SWBG using a mobile assay system, will result in additional cost savings. It is expected that up to 50% of the suspect-TRU wastes will assay as LLW, allowing those waste to remain disposed of in the SWBG. Further processing, with its associated costs, will only occur to the portion of the waste that is verified to be TRU. Retrieval should be done, to the extent possible, under the current SWBG safety authorization basis as a normal part of SWBG operations. The use of existing personnel and existing procedures should be optimized. By working retrieval campaigns, typically during the slow months, it is easier to coordinate the availability of necessary operations personnel, and it is easier to coordinate the availability of a mobile assay vendor.

  19. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    SciTech Connect

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  20. Project W-320, WRSS PCP: Procedure implementation verification

    SciTech Connect

    Bailey, J.W.

    1998-07-25

    This document provides verification that the methodology for the safe retrieval of high-heat waste from Tank 241-C-106 as specified in the WRSS Process Control Plan HNF-SD-PCP-013, Revision 1, has been adequately implemented into the Tank Waste Remediation System (TWRS) operational procedures. Tank 241-C-106 is listed on the High Heat Load Watch List.

  1. Stability of disposal rooms during waste retrieval

    SciTech Connect

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ``fair to good`` using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs.

  2. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect

    MCDONALD, K.M.

    2000-09-28

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  3. Waste Emplacement/Retrieval System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Waste Emplacement/Retrieval System transports Waste Packages (WPs) from the Waste Handling Building (WHB) to the subsurface area of emplacement, and emplaces the WPs once there. The Waste Emplacement/Retrieval System also, if necessary, removes some or all of the WPs from the underground and transports them to the surface. Lastly, the system is designed to remediate abnormal events involving the portions of the system supporting emplacement or retrieval. During emplacement operations, the system operates on the surface between the WHB and North Portal, and in the subsurface in the North Ramp, access mains, and emplacement drifts. During retrieval or abnormal conditions, the operations areas may also extend to a surface retrieval storage site and South Portal on the surface, and the South Ramp in the subsurface. A typical transport and emplacement operation involves the following sequence of events. A WP is loaded into a WP transporter at the WHB, and coupled to a pair of transport locomotives. The locomotives transport the WP from the WHB, down the North Ramp, and to the entrance of an emplacement drift. Once docked at the entrance of the emplacement drift, the WP is moved outside of the WP transporter, and engaged by a WP emplacement gantry. The WP emplacement gantry lifts the WP, and transports it to its emplacement location, where the WP is then lowered to its final resting position. The WP emplacement gantry remains in the drift while the WP transporter is returned to the WHB by the locomotives. When the transporter reaches the WHB, the sequence of operations is repeated. Retrieval of all the WPs, or a large group of WPs, under normal conditions is achieved by reversing the emplacement operations. Retrieval of a small set of WPs, under normal or abnormal conditions, is known as recovery. Recovery performed under abnormal conditions will involve a suite of specialized equipment designed to perform a variety of tasks to enable the recovery process. Recovery

  4. Waste Emplacement/Retrieval System Description Document

    SciTech Connect

    2000-10-12

    The Waste Emplacement/Retrieval System transports Waste Packages (WPs) from the Waste Handling Building (WHB) to the subsurface area of emplacement, and emplaces the WPs once there. The system also, if necessary, removes some or all of the WPs from the underground and transports them to the surface. Lastly, the system is designed to remediate abnormal events involving the portions of the system supporting emplacement or retrieval. During emplacement operations, the system operates on the surface between the WHB and North Portal, and in the subsurface in the North Ramp, access mains, and emplacement drifts. During retrieval or abnormal conditions, the operations areas may also extend to a surface retrieval storage site and South Portal on the surface, and the South Ramp in the subsurface. A typical transport and emplacement operation involves the following sequence of events. A WP is loaded into a WP transporter at the WHB, and coupled to a pair of transport locomotives. The locomotives transport the WP from the WHB, down the North Ramp, and to the entrance of an emplacement drift. Once docked at the entrance of the emplacment drift, the WP is moved outside of the WP transporter, and engaged by a WP emplacement gantry. The gantry lifts the WP, and transports it to its emplacement location, where the WP is then lowered to its final resting position. The gantry remains in the drift while the WP transporter is returned to the WHB by the locomotives. When the transporter reaches the WHB, the sequence of operations is repeated. Retrieval of all the WPs, or a large group of WPs, under normal conditions is achieved by reversing the emplacement operations. Retrieval of a small set of WPs, under normal or abnormal conditions, is known as recovery. Recovery performed under abnormal conditions will involve a suite of specialized equipment designed to perform a variety of tasks to enable the recovery process. Recovery after abnormal events may require clearing of equipment

  5. Waste retrieval plan for the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called bin tests'' and alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met.

  6. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  7. Concept of Operation for Waste Transport, Emplacement, and Retrieval

    SciTech Connect

    Norman T. Raczka

    2001-07-02

    The preparation of this technical report has two objectives. The first objective is to discuss the base case concepts of waste transport, emplacement, and retrieval operations and evaluate these operations relative to a lower-temperature repository design. Aspects of the operations involved in waste transport, emplacement and retrieval may be affected by the lower-temperature operating schemes. This report evaluates the effects the lower-temperature alternatives may have on the operational concepts involved in emplacing and retrieving waste. The second objective is to provide backup material for the design description, in a traceable and defensible format, for Section 2 of the Waste Emplacement/Retrieval System Description Document.

  8. Retrieval & Transfer of Stored Radioactive Waste Content of Process Vessels

    SciTech Connect

    GIBBONS, P.W.

    2002-05-01

    The overall objective of this book is to provide guidance on the retrieval and transfer of stored, bulk radioactive waste in tanks, silos, or similar containment systems. Information is based on the experiences of particular Member States and is intended to provide the people planning retrieval operations with the information they need to develop the most appropriate strategy and supporting processes for their application. It can also provide those in ongoing programs with information to measure their progress and identify additional resources. To this end, a generic methodology for addressing waste retrieval in specific situations is presented with information on the waste retrieval and transportation processes.

  9. Safeguards and retrievability from waste forms

    SciTech Connect

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  10. Small Waste Tank Sampling and Retrieval System

    SciTech Connect

    Magleby, Mary Theresa

    2002-08-01

    At the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL), four 1500-gal catch tanks were found to contain RCRAhazardous waste. A system was needed to obtain a representative sample of the liquid, as well as the hardpacked heels, and to ultimately homogenize and remove the tank contents for disposal. After surveying the available technologies, the AEA Fluidic Pulse Mixing and Retrieval System was chosen for a technology demonstration. A demonstration, conducted with nonhazardous surrogate material, proved that the system was capable of loosening the hard-packed heel, homogenizing the entire tank contents, and collecting a representative sample. Based on the success of the demonstration, a detailed evaluation was done to determine the applicability of the system to other tanks. The evaluation included the sorting of data on more than 700 tanks to select candidates for further deployment of the system. A detailed study was also done to determine if the purchase of a second system would be cost effective. The results of the evaluation indicated that a total of thirteen tanks at the INEEL are amenable to sampling and/or remediation using the AEA Fluidic Pulse Mixing and Retrieval System. Although the currently-owned system appears sufficient for the needs of one INEEL program, it is insufficient to meet the combined needs at the INEEL. The INEEL will commence operation of the system on the TRA-730 Catch Tank System in June 2002.

  11. Waste retrieval sluicing system data acquisition system acceptance test report

    SciTech Connect

    Bevins, R.R.

    1998-07-31

    This document describes the test procedure for the Project W-320 Tank C-106 Sluicing Data Acquisition System (W-320 DAS). The Software Test portion will test items identified in the WRSS DAS System Description (SD), HNF-2115. Traceability to HNF-2115 will be via a reference that follows in parenthesis, after the test section title. The Field Test portion will test sensor operability, analog to digital conversion, and alarm setpoints for field instrumentation. The W-320 DAS supplies data to assist thermal modeling of tanks 241-C-106 and 241-AY-102. It is designed to be a central repository for information from sources that would otherwise have to be read, recorded, and integrated manually. Thus, completion of the DAS requires communication with several different data collection devices and output to a usable PC data formats. This test procedure will demonstrate that the DAS functions as required by the project requirements stated in Section 3 of the W-320 DAS System Description, HNF-2115.

  12. Technology Successes in Hanford Tank Waste Storage and Retrieval

    SciTech Connect

    Cruz, E. J.

    2002-02-26

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage.

  13. Maintenance study for W-340 Waste Retrieval System

    SciTech Connect

    Christensen, C.; Conner, C.C.; Sekot, J.P.

    1994-05-01

    This study was performed to identify attributes and maintainability requirements for the Tank Waste Retrieval System (TWRS). The system will be developed for Westinghouse Hanford Company in Richland, Washington, as an integrated system to perform waste removal in Tank C-106 and, thus, demonstrate technologies for tank remediation that will satisfy requirements of the Tri-Party Agreement. The study examines attributes of the TWRS, scope of maintenance operations required for the TWRS, maintenance requirements, and potential methods of performing maintenance functions. Recommendations are provided for consideration in the development of both the conceptual design and performance specification, which will be used in procuring the W-340 Waste Retrieval System.

  14. Legacy Waste Retrieval from Cladding Hulls and Fuel Hardware Storage

    SciTech Connect

    Wattecamps, J.B.; Hubert, N.; Zanife, T.

    2007-07-01

    Waste generated during nuclear fuel shearing and dissolution operations from 1976 to 1998 at the UP2-400 plant at La Hague, has been stored in bulk in a silo and in metal canisters. The waste has to be retrieved and conditioned before the implementation of the shutdown program. This paper gives a general presentation of the project to retrieve and condition this waste stored in the High Activity Oxide (HAO) facility. The topics discussed include a presentation of scenarios and technical solutions as well as a presentation of AREVA NC's approach to meet schedule commitment and to minimize overall project cost. (authors)

  15. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect

    DOVALLE, O.R.

    1999-12-29

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  16. Houdini: a remote mobile platform for tank waste retrieval tasks

    SciTech Connect

    Denmeade, T.J.; SSlifko, A.D.; Thompson, B.R.; White, D.W.

    1996-12-31

    RedZone has developed Houdini{trademark}, a folding frame vehicle for work in waste storage tanks and other confined-access areas. Houdini is a tethered, hydraulically-powered platform that folds to fit through small openings. Once deployed, the vehicle unfolds to provide a substantial work platform for the deployment of a wide variety of tools. The Houdini system will perform wheel removal, waste retrieval, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. Within the DOE Complex, 332 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. The ultimate goal of the program is to develop and commercialize the Houdini system for broad application throughout the DOE Complex.

  17. COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS

    SciTech Connect

    FM SIMMONS

    2009-06-30

    {sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

  18. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect

    DODD, R.A.

    2006-01-17

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met.

  19. Review Guidance for the TWRS FSAR amendment for Waste Retrieval and waste feed delivery

    SciTech Connect

    GRIFFITH, R.W.

    1999-10-01

    This review guidance (Guide) was developed for Office of River Protection (ORP) reviewers to use in reviewing the amendment to the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) covering waste retrieval and waste feed delivery. Waste retrieval and waste feed delivery are necessary to supply nuclear waste from TWRS storage tanks to the TWRS Privatization (TWRS-P) Contractor's vitrification facility and to receive intermediate waste from the vitrification facility back into the TWRS tank farms for interim storage. An amendment to the approved TWRS FSAR (HNF-SD-WM-SAR-067, Rev. 0) is necessary to change the authorization basis to accommodate waste retrieval and waste feed delivery. The ORP'S safety responsibility in reviewing the FSAR amendment is to determine that reasonable assurance exists that waste retrieval and waste feed delivery operations can be accomplished with adequate safety for the workers, the public, and the environment. To carry out this responsibility, the ORP will evaluate the Contractor's amendment to the TWRS FSAR for waste retrieval and waste feed delivery to determine whether the submittal provides adequate safety and complies with applicable regulatory requirements.

  20. Houdini: A remote mobile platform for tank waste retrieval tasks

    SciTech Connect

    Denmeade, T.; Slifko, A.

    1997-12-01

    Many tasks in nuclear facilities are challenging to accomplish manually or with the aid of remote equipment because of access constraints. The classic example is the retrieval of waste materials from storage tanks. In the U.S. Department of Energy (DOE) complex, these tanks vary widely in size and content but typically have smaller openings than would be optimal for deploying conventional waste-retrieval equipment. There are many other applications that would benefit from the ability to fit substantial work platforms through small access points, including hot cell decommissioning, vault decontamination, and piping inspection and repair.

  1. Retrieval process development and enhancements waste simulant compositions and defensibility

    SciTech Connect

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD&E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD&E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties.

  2. Risk and cost tradeoffs for remote retrieval of buried waste

    SciTech Connect

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  3. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H., Jr.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  4. Advanced Waste Retrieval System. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    At West Valley, following the baseline removal operations, bulk waste retrieval methods may be augmented if required, with the deployment of the Advanced Waste Retrieval System (AWRS). The AWRS is a hydraulic boom mounted on a trolley on the Mast-Mounted Tool Delivery System. The boom is about 15 ft long with a pan and tilt mechanism at the end. On the end is a steam jet with a suction tool that can reach down around the tank internal structure and vacuum up zeolite or sludge off the bottom of the tank from a thirty-foot diameter reach. A grinder is included topside in the discharge path to pulverize the zeolite so it can be readily retrieved from the destination tank.

  5. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  6. Double-shell tank waste retrieval survey package

    SciTech Connect

    Berglin, E.J.

    1995-12-01

    Westinghouse Hanford Company is seeking industry solutions to underground double-shell tank waste retrieval at the Hanford Site located in southeastern Washington. This is not a request for proposals; it is a request for information to facilitate continued discussion. Westinghouse Hanford Company will not reimburse any costs incurred for providing the information requested.

  7. Tank Bump Accident Potential and Consequences During Waste Retrieval

    SciTech Connect

    BRATZEL, D.R.

    2000-09-27

    This report provides an evaluation of Hanford tank bump accident potential and consequences during waste retrieval operations. The purpose of this report is to consider the best available new information to support recommendations for safety controls. A new tank bump accident analysis for safe storage (Epstein et al. 2000) is extended for this purpose. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. Tank bump scenarios, physical models, and frequency and consequence methods are fully described in Epstein et al. (2000). The analysis scope is waste retrieval from double-shell tanks (DSTs) including operation of equipment such as mixer pumps and air lift circulators. The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential during retrieval, application of the criteria to the DSTs, evaluation of bump frequency, and consequence analysis of a bump. The result of the consequence analysis is the mass of waste released from tanks; radiological dose is calculated using standard methods (Cowley et al. 2000).

  8. Full-scale retrieval of simulated buried transuranic waste

    SciTech Connect

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd{sup 3} volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed.

  9. Russian technology advancements for waste mixing and retrieval

    SciTech Connect

    GIBBONS, P.W.

    2002-01-21

    Engineers at the Mining and Chemical Combine nuclear facility, located in Zheleznogorsk, Russia, have developed a pulsating mixer/sluicer to mobilize a layer of consolidated, hardened sludge at the bottom of their 12-m-diameter by 30-m-high nuclear waste tanks. This waste has resisted mobilization by conventional sluicing jets. The new pulsating mixer/sluicer draws tank liquid into a pressure vessel, then expels it at elevated pressure either through a set of submerged mixing jets or a steerable through-air jet. Four versions (or generations) of this technology have been developed. Following testing of three other Russian mobilization and transfer systems at Pacific Northwest National Laboratory, a first generation of the new pulsating mixer/sluicer was identified for possible waste retrieval applications in U.S. high-level waste tanks (1). A second-generation pulsating mixer/sluicer was developed and successfully deployed in Tank TH-4 at the Oak Ridge Reservation, located in Tennessee, US (2). A thud-generation pulsating mixed/sluicer with a dual nozzle design was developed and is being tested for possible use by the Hanford Site's River Protection Project to retrieve waste from Tank 241-S-102, a single-shell tank containing radioactive saltcake and sludge. In cooperation with the U.S. Department of Energy Tanks Focus Area, the Mining and Chemical Combine is conducting cold (that is, nonradioactive) tests and demonstrations of the third-generation system in 2001 and 2002. This work is being conducted through the Tank Retrieval and Closure Demonstration Center, which is sponsored by the National Nuclear Safety Administration's Office of Arms Control and Nonproliferation (NN-40). A fourth-generation dual-nozzle pulsating mixer/sluicer is undergoing cold testing for use at the Mining and Chemical Combine to retrieve radioactive sludge there in 2004.

  10. In Situ Modular Waste Retrieval and Treatment System

    SciTech Connect

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches.

  11. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  12. W-320, waste retrieval sluicing system: Operational start up plan

    SciTech Connect

    Bevins, R.R.

    1998-07-25

    This plan details the sequence of activities and identifies the organizational roles and responsibilities to ensure a safe startup of the Waste Retrieval Sluicing System (WRSS). This start up plan identifies the activities which must be performed during the initial startup as well as the document which directs each step. This startup plan does not authorize or direct any specific field activities or authorize a change of configuration. As such, this plan does not require a USQ screening.

  13. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  14. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    SciTech Connect

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

  15. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  16. Descriptive models for single-jet sluicing of sludge waste

    SciTech Connect

    Erian, F.F.; Mahoney, L.A.; Terrones, G.

    1997-12-01

    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  17. Retrieval of Hanford Single Shell Nuclear Waste Tanks using Technologies Foreign and Domestic

    SciTech Connect

    EACKER, J.A.; GIBBONS, P.W.

    2003-01-01

    The Hanford Site is accelerating its SST retrieval mission. One aspect of this acceleration is the identification of new baseline retrieval technologies that can be applied to all tank conditions for salt & sludge wastes in both sound & leaking tanks.

  18. THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516

    SciTech Connect

    Fellinger, A.

    2009-12-08

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same

  19. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    SciTech Connect

    Berry, D.L.; Jardine, L.J.

    1993-10-01

    Hanford`s underground storage tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report. The IRG`s Preliminary Report assessed retrieval systems for underground storage tank wastes at Hanford in 1992. Westinghouse Hanford Company (WHC) concurred with the report`s recommendation that a tool should be developed for evaluating retrieval concepts. The report recommended that this tool include (1) important considerations identified previously by the IRG, (2) a means of documenting important decisions concerning retrieval systems, and (3) a focus on evaluations and assessments for the Tank Waste Remediation System (TWRS) and the Underground Storage Tank-Integrated Demonstration (UST-ID).

  20. Decontamination system study for the Tank Waste Retrieval System

    SciTech Connect

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory`s decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO{sub 2} blasting decontamination technique was chosen as the best technology for the TWRS.

  1. MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT

    SciTech Connect

    GREENWLL, R.D.

    2005-01-20

    A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks.

  2. RETRIEVING SUSPECT TRANSURANIC (TRU) WASTE FROM THE HANFORD BURIAL GROUNDS PROGRESS PLANS & CHALLENGES

    SciTech Connect

    FRENCH, M.S.

    2006-02-01

    This paper describes the scope and status of the program for retrieval of suspect transuranic (TRU) waste stored in the Hanford Site low-level burial grounds. Beginning in 1970 and continuing until the late 1980's, waste suspected of containing significant quantities of transuranic isotopes was placed in ''retrievable'' storage in designated modules in the Hanford burial grounds, with the intent that the waste would be retrieved when a national repository for disposal of such waste became operational. Approximately 15,000 cubic meters of waste, suspected of being TRU, was placed in storage modules in four burial grounds. With the availability of the national repository (the Waste Isolation Pilot Plant), retrieval of the suspect TRU waste is now underway. Retrieval efforts, to date, have been conducted in storage modules that contain waste, which is in general, contact-handled, relatively new (1980's and later), is stacked in neat, engineered configurations, and has a relatively good record of waste characteristics. Even with these optimum conditions, retrieval personnel have had to deal with a large number of structurally degraded containers, radioactive contamination issues, and industrial hazards (including organic vapors). Future retrieval efforts in older, less engineered modules are expected to present additional hazards and difficult challenges.

  3. Waste retrieval plan for the Waste Isolation Pilot Plant. Revision 1

    SciTech Connect

    Not Available

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ``bin tests`` and ``alcove test(s)`` with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met.

  4. Engineering development of waste retrieval end effectors for the Oak Ridge gunite waste tanks

    SciTech Connect

    Mullen, O.D.

    1997-05-01

    The Gunite and Associated Tanks Treatability Study at Oak Ridge National Laboratory selected the waterjet scarifying end effector, the jet pump conveyance system, and the Modified Light Duty Utility Arm and Houdini Remotely Operated Vehicle deployment and manipulator systems for evaluation. The waterjet-based retrieval end effector had been developed through several generations of test articles targeted at deployment in Hanford underground storage tanks with a large robotic arm. The basic technology had demonstrated effectiveness at retrieval of simulants bounding the foreseen range of waste properties and indicated compatibility with the planned deployment systems. The Retrieval Process Development and Enhancements team was tasked with developing a version of the retrieval end effector tailored to the Oak Ridge tanks, waste and deployment platforms. The finished prototype was delivered to PNNL and subjected to a brief round of characterization and performance testing at the Hydraulic Testbed prior to shipment to Oak Ridge. It has undergone extensive operational testing in the Oak Ridge National Laboratory Tanks Technology Cold Test Facility and performed well, as expected. A second unit has been delivered outfitted with the high pressure manifold.

  5. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    SciTech Connect

    Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.

    2000-06-01

    Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation.

  6. Hazards associated with retrieval and storage of legacy waste at the Transuranic Waste Inspectable Storage Project

    SciTech Connect

    Pannell, M.A.; Grogin, P.W.; Langford, R.R.

    1998-03-01

    Approximately 17,000 containers of solid transuranic and hazardous waste have been stored beneath earthen cover for nearly twenty years at Technical Area 4 of the Los Alamos National Laboratory. The mission of the Transuranic Waste Inspectable Storage Project (TWISP) is to retrieve, vent, and place these containers into an inspectable storage configuration in compliance with the Resource Conservation and Recovery Act, prior to final disposition at the Waste Isolation Pilot Plant. Significant hazards currently identified with TWISP activities include: (1) the pressurization of drums; (2) volatilization of organic compounds (VOCs) within the drums; and (3) the generation of elevated hydrogen levels by certain waste streams. Based on the retrieval of 15% of the waste containers, the following preliminary conclusions are presented to better protect personnel and the environment: (1) the likelihood of unvented drums becoming pressurized increases when environmental conditions change; (2) pressurized drums must be vented before they become bulging drums; (3) vented drums present the potential for VOC emissions and personnel exposure; (4) the vapor pressure and boiling points of waste stream constituents may be an indication of the likelihood of VOC emissions from stored hazardous waste containers; (5) large numbers of co-located vented drums may present the potential of increased hydrogen and VOC concentrations within unventilated storage domes; (6) monitoring and sampling vented drum storage domes is necessary to ensure that the levels of risk to drum handlers and inspection personnel are acceptable; (7) identifying, tagging, and segregating special case drums is necessary to prevent personnel overexposures and preclude environmental contamination; (8) applying rust inhibitor prolongs the useful life of waste containers stored under earthen cover; (9) acoustic drum pressure detection may be a viable tool in assessing elevated drum pressures.

  7. High-heat tank safety issues evaluation

    SciTech Connect

    Conner, J.C.

    1993-05-10

    Subsection (b) of Public Law 101-510, Section 3137, {open_quotes}Safety Measures for Waste Tanks at Hanford Nuclear Reservation{close_quotes} (PL 101-510), requires the Secretary of Energy to {open_quotes}identify those tanks that may have a serious potential for release of high-level waste due to uncontrolled increase in temperature or pressure{close_quotes}. One of the tanks that has been identified to meet this criteria is single-shell tank (SST) 241-C-106 (Wilson and Reep 1991). This report presents the results of an evaluation of the safety issue associated with tank 241-C-106: the continued cooling required for high heat generation in tank 241-C-106. If tank 241-C-106 should start leaking, continued addition of water for cooling could possibly increase the amount of leakage to the soil column. In turn, if the current methods of cooling tank 241-C-106 are stopped, the sludge temperatures may exceed established temperature limits, the long term structural integrity of the tank liner and concrete would be jeopardized, leading to an unacceptable release to the environment. Among other conclusions, this evaluation has determined that tank 241-C-106 contains enough heat generating wastes to justify retaining this tank on the list {open_quotes}Single-Shell Tanks With High Heat Loads (>40,000 Btu/H){close_quotes} and that to confirm the structural integrity needed for the retrieval of the contents of tank 241-C-106, an updated structural analysis and thermal analysis need to be conducted. Other findings of this evaluation are also reported.

  8. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    SciTech Connect

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200 West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.

  9. MANAGEING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    SciTech Connect

    WOJTASEK, R.D.; GREENWELL, R.D.

    2005-11-17

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO{sub 2}), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective roll in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics.

  10. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    SciTech Connect

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing.

  11. Tank 241-C-106 sluicing project W-320 integrity assessment report

    SciTech Connect

    Symons, G.A., Fluor Daniel Hanford

    1997-02-11

    This Integrity Assessment Report is prepared by ICF Kaiser Hanford Co. (ICFKH) for Westinqhouse Hanford Company (WHC), operations contractor and the Department of Energy (DOE), the system owner. It is a revision of the original report dated 10/26/94 (ICFKH Transmittal TR-W-320-295). The original project scope has been modified, necessitating with WAC-173-303-640.

  12. Project W-320, 241-C-106 sluicing civil/structural calculations, Volume 7

    SciTech Connect

    Bailey, J.W.

    1998-07-24

    The structural skid supporting the Process Building and equipment is designed based on the criteria, codes and standards, referenced in the calculation. The final members and the associated elements satisfy the design requirements of the structure. Revision 1 incorporates vendor data for the weight of the individual equipment components. The updated information does not affect the original conclusion of the calculation, since the overall effect is a reduction in the total weight of the equipment and a nominal relocation of the center of gravity for the skid assembly.

  13. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    SciTech Connect

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  14. Characterizing Solids in Residual Wastes from Single-Shell Tanks at the Hanford Site.

    SciTech Connect

    Krupka, Kenneth M.; Cantrell, Kirk J.; Schaef, Herbert T.; Arey, Bruce W.; Heald, Steve M.; Deutsch, William J.; Lindberg, Michael J.

    2010-03-03

    Solid-phase characterization methods have been used in an ongoing study of residual wastes (i.e., waste remaining after final retrieval operations) from underground single-shell storage tanks 241-C-103, 241 C 106, 241-C-202, 241-C-203, and 241-S-112 at the U.S. Department of Energy’s Hanford Site in Washington State. The results of studies completed to date show variability in the compositions of those residual wastes and the compositions, morphologies, and crystallinities of the individual phases that make up these wastes. These differences undoubtedly result from the various waste types stored and transferred into and out of each tank and the different sluicing and retrieval operations used for waste retrieval. The studies indicate that these residual wastes are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or coprecipitated within oxide/hydroxide phases. Depending on the specific tank, various solids (e.g., gibbsite; böhmite; dawsonite; cancrinite; Fe oxides/hydroxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and numerous amorphous or poorly crystalline phases) have been identified by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy in residual wastes studied to date. The studies also show that contact of residual wastes with Ca(OH)2- and CaCO3-saturated aqueous solutions, which were used as surrogates for the compositions of pore-fluid leachants derived from young and aged cements, respectively, may alter the composition of solid phases present in the contacted wastes. Iron oxides/hydroxides have been identified in all residual wastes studied to date. They occur in these wastes as discrete particles, particles intergrown within a matrix of other phases, and surface coatings on other particles or particle aggregates. These Fe oxides/hydroxides typically contain trace concentrations of other

  15. EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS

    SciTech Connect

    Fellinger, A.

    2010-02-16

    The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval options and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River

  16. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    SciTech Connect

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  17. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    SciTech Connect

    Reynolds, D.A.

    1997-04-04

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106.

  18. Radioactive waste shipments to Hanford retrievable storage from Babcock and Wilcox, Leechburg, Pennsylvania

    SciTech Connect

    Duncan, D.R.

    1994-02-14

    This report characterizes, as far as possible, the solid radioactive wastes generated by Babcock and Wilcox`s Park Township Plutonium Facility near Leechburg, Pennsylvania that were sent to retrievable storage at the Hanford Site. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. The objective is a description of characteristics of solid wastes that are or will be managed by the Restoration and Upgrades Program; gaseous or liquid effluents are discussed only at a summary level This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations, including the Waste Receiving and Processing (WRAP) Facility, because Babcock and Wilcox generated greater than 2.5 percent of the total volume of TRU waste currently stored at the Hanford Site.

  19. AIR PERMIT COMPLIANCE FOR WASTE RETRIEVAL OEPRATIONS INVOLVING MULTI-UNIT OPERATIONS

    SciTech Connect

    SIMMONS FM

    2007-11-05

    Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and .contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits.

  20. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  1. NUMERICAL MODELING OF MIXING OF CHEMICALLY REACTING, NON-NEWTONIAN SLURRY FOR TANK WASTE RETRIEVAL

    EPA Science Inventory

    There are 100 million gallons of radioactive wastes stored in 281 tanks, resulting from the production of nuclear weapons. Retrieval and subsequent solidification of these tank waste require processes costing tens of billions of dollars and demand a strong scientific basis to su...

  2. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    SciTech Connect

    Lowe, S.S.

    1993-11-16

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers.

  3. ISOCELL{trademark} proof-of-concept for retrieval of wastes and contaminated soil

    SciTech Connect

    Chatwin, T.D.; Krieg, R.K.

    1992-08-01

    ISOCELL{sup TM} cryogenic technology is designed to immobilize buried hazardous, radioactive, and mixed waste and contaminated soil by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust or aerosol production. A ``proof-of-concept`` test of the ISOCELL process was conducted in clean soil by RKK, Ltd., for the Idaho National Engineering Laboratory (INEL). Results indicate ISOCELL technology successfully froze moist soil into a solid block capable of being lifted and retrieved. Test conditions were compared to characteristics of possible buried waste sites in the INEL.

  4. ISOCELL trademark proof-of-concept for retrieval of wastes and contaminated soil

    SciTech Connect

    Chatwin, T.D. ); Krieg, R.K. )

    1992-01-01

    ISOCELL{sup TM} cryogenic technology is designed to immobilize buried hazardous, radioactive, and mixed waste and contaminated soil by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust or aerosol production. A proof-of-concept'' test of the ISOCELL process was conducted in clean soil by RKK, Ltd., for the Idaho National Engineering Laboratory (INEL). Results indicate ISOCELL technology successfully froze moist soil into a solid block capable of being lifted and retrieved. Test conditions were compared to characteristics of possible buried waste sites in the INEL.

  5. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    SciTech Connect

    D.A. Yuen; Y. Onishi; J.R. Rustand; B.E. Wells; T.E. Michener; A.R. Felmy; D.S. Trent; A.A. Ten; C.A. Hier

    2002-02-06

    Fifty-four million gallons of wastes containing 180-million curies of radioactivity are stored in single (SSTs)- and double-shell underground tanks (DSTs) at the U.S. Department of Energy's Hanford Site in eastern Washington (Gephart and Lundgren 1997). They are a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids, solids, and, in some cases, gases. Mixer pumps will be installed in twenty-eight 4,0000-m DSTs to stir radioactive sludge/saltcake and supernatant liquid (and possibly a solvent) so the waste can be retrieved from the tanks for subsequent treatment and disposal. During the retrieval operation, complex interactions occur between waste mixing, chemical reactions, and rheology. Thus, decisions made about waste retrieval must account for these complex interactions.

  6. Report of the remote-handled transuranic waste mock retrieval demonstration

    SciTech Connect

    Not Available

    1987-05-01

    This report documents the results of the mock, onsite retrieval demonstration that was conducted on May 19 and 20, 1987, for representatives of the New Mexico Environmental Evaluation Group (EEG). Demonstration of the retrievability of remote-handled transuranic (RH TRU) waste is part of a milestone included in the Agreement for Consultation and Cooperation between the state of New Mexico and the United States Department of Energy. Retrieval equipment design documents and a retrievability demonstration plan for RH TRU waste were previously transmitted to the EEG. This report documents the results of the demonstration by evaluating the demonstration against the acceptance criteria that were established in the Demonstration Plan. 1 fig., 2 tabs.

  7. Fluid dynamic demonstrations for waste retrieval and treatment

    SciTech Connect

    Youngblood, E.L. Jr.; Hylton, T.D.; Berry, J.B.; Cummins, R.L.; Ruppel, F.R.; Hanks, R.W.

    1994-02-01

    The objective of this study was to develop or identify flow correlations for predicting the flow parameters needed for the design and operation of slurry pipeline systems for transporting radioactive waste of the type stored in the Hanford single-shell tanks and the type stored at the Oak Ridge National Laboratory (ORNL). This was done by studying the flow characteristics of simulated waste with rheological properties similar to those of the actual waste. Chemical simulants with rheological properties similar to those of the waste stored in the Hanford single-shell tanks were developed by Pacific Northwest Laboratories, and simulated waste with properties similar to those of ORNL waste was developed at ORNL for use in the tests. Rheological properties and flow characteristics of the simulated slurry were studied in a test loop in which the slurry was circulated through three pipeline viscometers (constructed of 1/2-, 3/4-, and 1-in. schedule 40 pipe) at flow rates up to 35 gal/min. Runs were made with ORNL simulated waste at 54 wt % to 65 wt % total solids and temperatures of 25{degree}C and 55{degree}C. Grinding was done prior to one run to study the effect of reduced particle size. Runs were made with simulated Hanford single-shell tank waste at approximately 43 wt % total solids and at temperatures of 25{degree}C and 50{degree}C. The rheology of simulated Hanford and ORNL waste supernatant liquid was also measured.

  8. Engineering development of a lightweight high-pressure scarifier for tank waste retrieval

    SciTech Connect

    Hatchell, B.K.

    1997-09-01

    The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

  9. Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)

    SciTech Connect

    Not Available

    1980-10-01

    Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

  10. Simulation analysis of control strategies for a tank waste retrieval manipulator system

    SciTech Connect

    Schryver, J.C.; Draper, J.V.

    1995-02-01

    A network simulation model was developed for the Tank Waste Retrieval Manipulator System, incorporating two distinct levels of control: teleoperation and supervisory control. The model included six error modes, an attentional resource model, and a battery of timing variables. A survey questionnaire administered to subject matter experts provided data for estimating timing distributions for level of control-critical tasks. Simulation studies were performed to evaluate system behavior as a function of control level and error modes. The results provide important insights for development of waste retrieval manipulators.

  11. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    SciTech Connect

    O'Brien, Luke; Baker, Stephen; Bowen, Bob; Mallick, Pramod; Smith, Gary; King, Bill; Judd, Laurie

    2013-07-01

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  12. Characterization of Solids in Residual Wastes from Single-Shell Tanks at the Hanford Site, Washington, USA - 9277

    SciTech Connect

    Krupka, Kenneth M.; Cantrell, Kirk J.; Schaef, Herbert T.; Arey, Bruce W.; Heald, Steve M.; Deutsch, William J.; Lindberg, Michael J.

    2009-06-01

    Solid-phase characterization methods have been used in an ongoing study of residual wastes (i.e., waste remaining after final retrieval operations) from the underground single-shell storage tanks 241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112 at the U.S. Department of Energy’s Hanford Site in Washington State. The results of studies completed to date show significant variability in the compositions of those residual wastes and the compositions, morphologies, and crystallinities of the individual phases that make up these wastes. These differences undoubtedly result from the various waste types stored and transferred in and out each tank and the sluicing and retrieval operations used for waste retrieval. Our studies indicate that these residual wastes are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases. Depending on the specific tank, various solids (e.g., gibbsite; boehmite; dawsonite; cancrinite; Fe oxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and numerous amorphous or poorly crystalline phases) have been identified by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy in residual wastes studied to date. Our studies also show that contact of residual wastes with Ca(OH)2- and CaCO3-saturated aqueous solutions, which were used as surrogates for the compositions of pore-fluid leachants derived from young and aged cements respectively, may alter the compositions of solid phases present in the contacted wastes. Fe oxides/hydroxides have been identified in all residual wastes studied to date. They occur in these wastes as discrete particles, particles intergrown within a matrix of other phases, and surface coatings on other particles or particle aggregates. These Fe oxides/hydroxides typically contain trace concentrations of other transition metals, such Cr, Mn

  13. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    SciTech Connect

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  14. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    SciTech Connect

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  15. Performance benefits of telerobotics and teleoperation - enhancements for an arm-based tank waste retrieval system

    SciTech Connect

    Horschel, D.S.; Gibbons, P.W.; Draper, J.V.

    1995-06-01

    This report evaluates telerobotic and teleoperational arm-based retrieval systems that require advanced robotic controls. These systems will be deployed in waste retrieval activities in Hanford`s Single Shell Tanks (SSTs). The report assumes that arm-based, retrieval systems will combine a teleoperational arm and control system enhanced by a number of advanced and telerobotic controls. The report describes many possible enhancements, spanning the full range of the control spectrum with the potential for technical maturation. The enhancements considered present a variety of choices and factors including: the enhancements to be included in the actual control system, safety, detailed task analyses, human factors, cost-benefit ratios, and availability and maturity of technology. Because the actual system will be designed by an offsite vendor, the procurement specifications must have the flexibility to allow bidders to propose a broad range of ideas, yet build in enough restrictions to filter out infeasible and undesirable approaches. At the same time they must allow selection of a technically promising proposal. Based on a preliminary analysis of the waste retrieval task, and considering factors such as operator limitations and the current state of robotics technology, the authors recommend a set of enhancements that will (1) allow the system to complete its waste retrieval mission, and (2) enable future upgrades in response to changing mission needs and technological advances.

  16. Hazardous waste retrieval strategies using a high-pressure water jet scarifier

    SciTech Connect

    Hatchell, B.K.; Rinker, M.W.; Mullen, O.D.

    1995-08-01

    The Waste Dislodging and Conveyance Program is sponsored by the US Department of Energy Office of Technology Development to investigate waste dislodging and conveyance processes suitable for the retrieval of high-level radioactive waste. This program, represented by industry, national laboratories, and academia, has proposed a baseline technology of high-pressure water jet dislodging and pneumatic conveyance integrated as a scarifier as a means of retrieval of waste inside Hanford single-shell tanks. A testing program has been initiated to investigate system deployment techniques to determine appropriate mining strategies, level of control, sensor requirements, and address integration issues associated with deploying the scarifier by a long robotic manipulator arm. A test facility denoted the Hydraulics Testbed (HTB) is being constructed to achieve these objectives and to allow longer-duration, multiple-pass tests on large waste fields using a versatile gantry-style manipulator. Mining strategy tests with materials simulating salt cake and sludge waste forms will be conducted to evaluate the effectiveness of mining strategies, forces related to scarifier and conveyance line, and retrieval rate. This paper will describe the testbed facility and testing program and present initial test results to date.

  17. Tank Waste Remediation System (TWRS) Retrieval Authorization Basis Amendment Task Plan

    SciTech Connect

    HARRIS, J.P.

    2000-03-27

    This task plan is a documented agreement between Nuclear Safety and Licensing and Retrieval Engineering. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Delivery Program, Project W-211, Project W-521, and Project W-522.

  18. Tank Waste Remediation System (TWRS) Retrieval Authorization Basis Amendment Task Plan

    SciTech Connect

    HARRIS, J.P.

    1999-08-31

    This task plan is a documented agreement between Nuclear Safety and Licensing and Retrieval Engineering. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Delivery Program, Project W-211, Project W-521, and Project W-522.

  19. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    SciTech Connect

    Sundstrom, E.; Draper, J.V.; Fausz, A.

    1995-02-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations.

  20. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    SciTech Connect

    CW Enderlin; DG Alberts; JA Bamberger; M White

    1998-09-25

    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  1. Decision Document for Single Shell Tank (SST) 241-C-104 Preferred Waste Retrieval Technology

    SciTech Connect

    CARPENTER, K.E.

    2001-04-11

    This supporting document is the decision paper for selection of the preferred technology for Project W-523, Tank 241-C-104 waste retrieval system. This document completes the decision management process prescribed in the decision plan KPP-6878, in accordance with HNF-IP-0842, Volume IV, Section 2.7.

  2. Field performance of the waste retrieval end effectors in the Oak Ridge gunite tanks

    SciTech Connect

    Mullen, O.D.

    1997-09-01

    Waterjet-based tank waste retrieval end effectors have been developed by Retrieval Process Development and Enhancements through several generations of test articles targeted at deployment in Hanford underground storage tanks with a large robotic arm. The basic technology has demonstrated effectiveness for retrieval of simulants bounding a wide range of waste properties and compatibility with foreseen deployment systems. The Oak Ridge National Laboratory (ORNL) selected the waterjet scarifying end effector, the jet pump conveyance system, and the Modified Light Duty Utility Arm and Houdini Remotely Operated Vehicle deployment and manipulator systems for evaluation in the Gunite and Associated Tanks Treatability Study (GAAT-TS). The Retrieval Process Development and Enhancements (RPD&E) team was tasked with developing a version of the retrieval end effector tailored to the Oak Ridge tanks, waste, and deployment platforms. The conceptual design was done by the University of Missouri-Rolla in FY 1995-96. The university researchers conducted separate effects tests of the component concepts, scaled the basic design features, and constructed a full-scale test article incorporating their findings in early FY 1996. The test article was extensively evaluated in the Hanford Hydraulic Testbed and the design features were further refined. Detail design of the prototype item was started at Waterjet Technology, Inc. before the development testing was finished, and two of the three main subassemblies were substantially complete before final design of the waterjet manifold was determined from the Hanford hydraulic testbed (HTB) testing. The manifold on the first prototype was optimized for sludge retrieval; assembled with that manifold, the end effector is termed the Sludge Retrieval End Effector (SREE).

  3. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  4. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    SciTech Connect

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.

    2012-07-01

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera arm will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the

  5. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    SciTech Connect

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ``past practice`` sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods.

  6. Decision analysis for the selection of tank waste retrieval technology

    SciTech Connect

    DAVIS,FREDDIE J.; DEWEESE,GREGORY C.; PICKETT,WILLIAM W.

    2000-03-01

    The objective of this report is to supplement the C-104 Alternatives Generation and Analysis (AGA) by providing a decision analysis for the alternative technologies described therein. The decision analysis used the Multi-Attribute Utility Analysis (MUA) technique. To the extent possible information will come from the AGA. Where data are not available, elicitation of expert opinion or engineering judgment is used and reviewed by the authors of the AGA. A key element of this particular analysis is the consideration of varying perspectives of parties interested in or affected by the decision. The six alternatives discussed are: sluicing; sluicing with vehicle mounted transfer pump; borehole mining; vehicle with attached sluicing nozzle and pump; articulated arm with attached sluicing nozzle; and mechanical dry retrieval. These are evaluated using four attributes, namely: schedule, cost, environmental impact, and safety.

  7. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  8. Retrieval effects on ventilation and cooling requirements for a nuclear waste repository

    SciTech Connect

    Hambley, D.F.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the regulations promulgated in Title 10, Part 60 of the Code of Federal Regulations (10CFR60) by the US Nuclear Regulatory Commission (NRC) for an underground repository for spent fuel and high level nuclear waste (HLW) require that it is possible to retrieve waste, for whatever reason, from such a facility for a period of 50 years from initial storage or until the completion of the performance confirmation period, whichever comes first. This paper considers the effects that the retrievability option mandates on ventilation and cooling systems required for normal repository operations. An example is given for a hypothetical repository in salt. 18 refs., 1 tab.

  9. Cryofracture as a tool for preprocessing retrieved buried and stored transuranic waste

    SciTech Connect

    Loomis, G.G.; Winberg, M.R.; Ancho, M.L. ); Osborne, D. )

    1992-01-01

    This paper summarizes important features of an experimental demonstration of applying the Cryofracture process to size-reduce retrieved buried and stored transuranic-contaminated wastes. By size reducing retrieved buried and stored waste, treatment technologies such as thermal treatment can be expedited. Additionally, size reduction of the waste can decrease the amount of storage space required by reducing the volume requirements of storage containers. A demonstration program was performed at the Cryofracture facility by Nuclear Remedial Technologies for the Idaho National Engineering Laboratory. Cryofracture is a size-reducing process whereby objects are frozen to liquid nitrogen temperatures and crushed in a large hydraulic press. Material s at cryogenic temperatures have low ductility and are easily size-reduced by fracturing. Six 55-gallon drums and six 2 {times} 2 {times} 8 ft boxes containing simulated waste with tracers were subjected to the Cryofracture process. Data was obtained on (a) cool-down time, (b) yield strength of the containers, (c) size distribution of the waste before and after the Cryofracture process, (d) volume reduction of the waste, and (e) sampling of air and surface dusts for spread of tracers to evaluate potential contamination spread. The Cryofracture process was compared to conventional shredders and detailed cost estimates were established for construction of a Cryofracture facility at the Idaho National Engineering Laboratory.

  10. Cryofracture as a tool for preprocessing retrieved buried and stored transuranic waste

    SciTech Connect

    Loomis, G.G.; Winberg, M.R.; Ancho, M.L.; Osborne, D.

    1992-08-01

    This paper summarizes important features of an experimental demonstration of applying the Cryofracture process to size-reduce retrieved buried and stored transuranic-contaminated wastes. By size reducing retrieved buried and stored waste, treatment technologies such as thermal treatment can be expedited. Additionally, size reduction of the waste can decrease the amount of storage space required by reducing the volume requirements of storage containers. A demonstration program was performed at the Cryofracture facility by Nuclear Remedial Technologies for the Idaho National Engineering Laboratory. Cryofracture is a size-reducing process whereby objects are frozen to liquid nitrogen temperatures and crushed in a large hydraulic press. Material s at cryogenic temperatures have low ductility and are easily size-reduced by fracturing. Six 55-gallon drums and six 2 {times} 2 {times} 8 ft boxes containing simulated waste with tracers were subjected to the Cryofracture process. Data was obtained on (a) cool-down time, (b) yield strength of the containers, (c) size distribution of the waste before and after the Cryofracture process, (d) volume reduction of the waste, and (e) sampling of air and surface dusts for spread of tracers to evaluate potential contamination spread. The Cryofracture process was compared to conventional shredders and detailed cost estimates were established for construction of a Cryofracture facility at the Idaho National Engineering Laboratory.

  11. Tank waste remediation system retrieval and disposal mission phase 1 financial analysis

    SciTech Connect

    Wells, M.W.

    1998-01-09

    The purpose of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Phase 1 Financial Analysis is to provide a quantitative and qualitative cost and schedule risk analysis of HNF-1946, Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (Swita et al. 1998). The Updated Baseline (Section 3.0) is compared to the current TWRS Project Multi-Year Work Plan (MYWP) for fiscal year (FY) 1998 and target budgets for FY 1999 through FY 2011 (Section 4.1). The analysis then evaluates the executability of HNF-1946 (Sections 4.2 through 4.5) and recommends a path forward for risk mitigation (Sections 4.6, 4.7, and 5.0). A sound systems engineering approach was applied to understand and analyze the Phase 1B Retrieval and Disposal mission. Program and Level 1 Logics were decomposed to Level 8 of the Work Breakdown Structure (WBS) where logic was detailed, scope was defined, detail durations and estimates prepared, and resource loaded schedules developed. Technical Basis Review (TBR) packages were prepared which include this information and, in addition, defined the enabling assumptions for each task, and the risks associated with performance. This process is discussed in Section 2.1. Detailed reviews at the subactivity within the Level 1 Logic TBR levels were conducted to provide the recommended solution to the Phase 1B Retrieval and Disposal Mission. Independent cost analysis and risk assessments were performed by members of the Lockheed Martin Hanford Corporation (LMHC) Business Management and Chief Financial Officer organization along with specialists in risk analysis from TRW, Inc. and Lockheed Martin Energy Systems. The process evaluated technical, schedule, and cost risk by category (program specific fixed and variable, integrated program, and programmatic) based on risk certainly from high probability well defined to very low probability that is not bounded or priceable as discussed in Section 2.2. The results have been

  12. UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048

    SciTech Connect

    Chabeuf, Jean-Michel; Varet, Thierry

    2013-07-01

    The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for the definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to

  13. Preliminary assessment of candidate immobilization technologies for retrieved single-shell tank wastes

    SciTech Connect

    Wiemers, K.D.; Mendel, J.E.; Kruger, A.A.; Bunnell, L.R.; Mellinger, G.B.

    1992-01-01

    This report describes the initial work that has been performed to select technologies for immobilization of wastes that may be retrieved from Hanford single-shell tanks (SSTs). Two classes of waste will require immobilization. One is the combined high-level waste/transuranic (HLW/TRU) fraction, the other the low-level waste (LLW) fraction. A number of potential immobilization technologies are identified for each class of waste. Immobilization technologies were initially selected based on a number of considerations, including (1) the waste loading that could likely be achieved within the constraint of producing acceptable waste forms, (2) process flexibility (primarily compatibility with anticipated waste variability), (3) process complexity, and (4) state of development. Immobilization technologies selected for further development include the following: for HLW/TRU waste -- borosilicate glass, lead-iron phosphate glass, glass-calcine composites, glass-ceramics, and cement based forms; for non-denitrated LLW -- grout, laxtex-modified concrete, and polyethylene; and for denitrated LLW -- silicate glass, phosphate glass, and clay calcination or tailored ceramic in various matrices.

  14. High-performance gamma spectroscopy for equipment retrieval from Hanford high-level nuclear waste tanks

    NASA Astrophysics Data System (ADS)

    Troyer, Gary L.; Hillesand, K. E.; Goodwin, S. G.; Kessler, S. F.; Killian, E. W.; Legare, D.; Nelson, Joseph V., Jr.; Richard, R. F.; Nordquist, E. M.

    1999-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to ninety per cent saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  15. Task analysis for the single-shell Tank Waste Retrieval Manipulator System

    SciTech Connect

    Draper, J.V.

    1993-03-01

    This document describes a task analysis for the Tank Waste Retrieval Manipulator System. A task analysis is a formal method of examining work that must be done by the operators of human-machine systems. The starting point for a task analysis is the mission that a human-machine system must perform, and the ending point is a list of requirements for human actions and the displays and controls that must be provided to support them. The task analysis approach started with a top-down definition of the steps in a tank retrieval campaign. It started by dividing a waste retrieval campaign for one single-shell tank into the largest logical components (mission phases), then subdivided these into secondary components (sub functions), and then further subdivided the secondary components into tertiary units (tasks). Finally, the tertiary units were divided into potentially observable operator behaviors (task elements). In the next stage of the task analysis, the task elements were evaluated by completing an electronic task analysis form patterned after one developed by the Nuclear Regulatory Commission for task analysis of nuclear power plant control rooms. In the final stage, the task analysis data base was used in a bottom-up approach to develop clusters of controls and displays called panel groups and to prioritize these groups for each subfunction. Panel groups are clusters of functionally related controls and displays. Actual control panels will be designed from panel groups, and panel groups will be organized within workstations to promote efficient operations during retrieval campaigns.

  16. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    SciTech Connect

    ROMERO, S.G.

    2000-01-10

    Describes the hardware and software for the AZ-101 Mixer Pump Data Acquisition System. The purpose of the tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste (NCAW), and eventual disposal as glass via the Hanford Waste Vitrification Plant.

  17. Proposed strategy for leak detection, monitoring, and mitigation during Hanford single-shell tank waste retrieval

    SciTech Connect

    Hertzel, J.S.

    1996-07-18

    The objective of this document is to propose a strategy for addressing applicable LDMM-related criteria in order to determine an allowable leakage volume for SSTs targeted for waste retrieval using sluicing. A strategy is required to work through the individual ALV criterion (and related issues) in a prioritized,orderly, and efficient manner. All components of the strategy are based upon LDMM-related issues, functions and requirements,and technology alternatives.

  18. W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation

    SciTech Connect

    Bailey, J.W.

    1997-11-05

    The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 24 I-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen build up in the transfer lines and to provide ALARA conditions for maintenance personnel.

  19. Project W-320 Tank 106-C waste retrieval study analysis session report

    SciTech Connect

    Bailey, J.W.

    1998-03-25

    This supporting document has been prepared to make the Kaiser Engineers Hanford Company Project W-320 Tank 106-C Waste Retrieval Study Analysis Session Report readily retrievable. This facilitated session was requested by Westinghouse Hanford Company (WHC) to review the characterization data and select the best alternatives for a double-shell receiver tank and for a sluicing medium for Tank 106-C waste retrieval. The team was composed of WHC and Kaiser Engineers Hanford Company (KEH) personnel knowledgeable about tank farm operations, tank 106-C requirements, tank waste characterization and analysis, and chemical processing. This team was assembled to perform a structured decision analysis evaluation and recommend the best alternative-destination double-shell tank between tanks 101-AY and 102-AY, and the best alternative sluicing medium among dilute complexant (DC), dilute noncomplexant (DNC), and water. The session was facilitated by Richard Harrington and Steve Bork of KEH and was conducted at the Bookwalter Winery in Richland from 7:30 a.m. to 4:00 p.m. from July 27 through July 29, 1993. Attachment 1 (Scope Statement Sheet) identifies the team members, scope, objectives, and deliverables for the session.

  20. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    SciTech Connect

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.

  1. Evaluation of the Contamination Control Unit during simulated transuranic waste retrieval

    SciTech Connect

    Thompson, D.N.; Freeman, A.L.; Wixom, V.E.

    1993-11-01

    This report presents the results of a field demonstration at the INEL of the Contamination Control Unit (CCU). The CCU is a field deployable self-contained trailer mounted system to control contamination spread at the site of transuranic (TRU) handling operations. This is accomplished primarily by controlling dust spread. This demonstration was sponsored by the US Department of Energy`s Office of Waste Technology Development Buried Waste Integrated Demonstration. The CCU, housed in a mobile trailer for easy transport, supports four different contamination control systems: water misting, dust suppression application, soil fixative application, and vacuuming operations. Assessment of the CCU involved laboratory operational performance testing, operational testing and contamination control at a decommissioned Idaho National Engineering Laboratory reactor, and field testing in conjunction with a simulated TRU buried waste retrieval effort at the Cold Test Pit.

  2. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    SciTech Connect

    ROMERO, S.G.

    2000-02-14

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.

  3. Function analysis of the single-shell Tank Waste Retrieval Manipulator System. Environmental Restoration and Waste Management Program

    SciTech Connect

    Draper, J.V.

    1993-08-01

    This document lists the functions likely to be performed by each proposed component of the Tank Waste Retrieval Manipulator System (TWRMS) and the user functions that must be performed to operate each component. While the information contained in this document is tentative because the systems are still evolving, it provides a foundation for task analysis and control room design efforts. These efforts will support the design of a test-bed control room in the near future and an operational control room later. The information in this document is based on specifications published for the TWRMS.

  4. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  5. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  6. Remote systems for waste retrieval from the Oak Ridge National Laboratory gunite tanks

    SciTech Connect

    Falter, D.D.; Babcock, S.M.; Burks, B.L.; Lloyd, P.D.; Randolph, J.D.; Rutenber, J.E.; Van Hoesen, S.D.

    1995-12-31

    As part of a Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study funded by the Department of Energy, the Oak Ridge National Laboratory (ORNL) is preparing to demonstrate and evaluate two approaches for the remote retrieval of wastes in underground storage tanks. This work is being performed to identify the most cost-effective and efficient method of waste removal before full-scale remediation efforts begin in 1998. System requirements are based on the need to dislodge and remove sludge wastes ranging in consistency from broth to compacted clay from Gunite (Shotcrete) tanks that are approaching fifty years in age. Systems to be deployed must enter and exit through the existing 0.6 m (23.5 in.) risers and conduct retrieval operations without damaging the layered concrete walls of the tanks. Goals of this project include evaluation of confined sluicing techniques and successful demonstration of a telerobotic arm-based system for deployment of the sluicing system. As part of a sister project formed on the Old Hydrofracture Facility tanks at ORNL, vehicle-based tank remediation will also be evaluated.

  7. Scarab III Remote Vehicle Deployment for Waste Retrieval and Tank Inspection

    SciTech Connect

    Burks, B.L.; Falter, D.D.; Noakes, M.; Vesco, D.

    1999-04-25

    The Robotics Technology Development Program now known as the Robotics Crosscut Program, funded the development and deployment of a small remotely operated vehicle for inspection and cleanout of small horizontal waste storage tanks that have limited access. Besides the advantage of access through tank risers as small as 18-in. diameter, the small robotic system is also significantly less expensive to procure and to operate than larger remotely operated vehicle (ROV) systems. The vehicle specified to support this activity was the ROV Technologies, Inc., Scarab. The Scarab is a tracked vehicle with an independently actuated front and rear ''toe'' degree-of-freedom which allows the stand-off and angle of the vehicle platform with respect to the floor to be changed. The Scarab is a flexible remote tool that can be used for a variety of tasks with its primary uses targeted for inspection and small scale waste retrieval. The vehicle and any necessary process equipment are mounted in a deployment and containment enclosure to simplify deployment and movement of the system from tank to tank. This paper outlines the technical issues related to the Scarab vehicle and its deployment for use in tank inspection and waste retrieval operation

  8. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    SciTech Connect

    Baldwin, J.H.

    1998-01-09

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed. An analysis of the programmatic, management and technical activities necessary to declare Readiness to Proceed with execution of the mission demonstrates that the system, people, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2002. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed, transfer piping routes were mapped on it, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. Personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled.

  9. Management and Retrieval of Historical Nuclear Waste Previously Prepared and Concreted for Sea Disposal

    SciTech Connect

    Abbott, H.; Davies, E.

    2002-02-27

    This paper describes the approach of dealing with an historic legacy of pharmaceutical manufacturing operations, which arose as a result of the temporary cessation of sea disposal in 1983. The result of that cessation was an accumulation of 1,000 reinforced concrete lined steel drums containing intermediate level nuclear waste of mixed chemical and physical form. Included are the steps taken which established a policy, the resulting strategy and the unique and innovative means by which the plan was implemented. The objective was to reduce the financial liability of the waste contained within the drums by removing those portions that had already decayed, segregating the waste in terms of non disposable and disposable isotopes, size reduction and long-term storage of the residues in a retrievable waste form. As part of this process the Company established a UK strategy which would ensure that the Company was self sufficient in radioactive waste handling storage facilities until the provision of a national facility, currently predicted to be approximately 2040.

  10. Evaluation of AY/AZ tank farm ventilation system during aging waste retrieval operations

    SciTech Connect

    Wong, J.J.; Waters, E.D.

    1995-01-01

    Waste Management is currently planning to demonstrate mobilization of radioactive waste sludges in Tank 101-AZ beginning in October 1991. The retrieval system being designed will utilize mixer pumps that generate high-velocity, high-volume submerged liquid jets to mobilize settled solids. There is concern that these jets may also generate radioactive aerosols, some of which may be carried into the tank Ventilation system. The purpose of this study is to determine if the current AY/AZ ventilation system or the proposed ventilation system upgrade (Project W-030) will provide adequate deentrainment of liquid and solid aerosols during mixer pump operations, or if the radioactive aerosols will overload the HEPA filters.

  11. Advanced sluicing system test report for single shell tank waste retrieval integrated testing

    SciTech Connect

    Berglin, E.J.

    1997-05-29

    This document describes the testing performed by ARD Environmental, Inc., and Los Alamos Technical Associates of the LATA/ARD Advanced Sluicing System, in support of ACTR Phase 1 activities. Testing was to measure the impact force and pressures of sluicing streams at three different distances, as measured by the Government supplied load cell. Simulated sluicing of large simulated salt cake and hard pan waste coupons was also performed. Due to operational difficulties experienced with the Government supplied load cell, no meaningful results with respect to sluice stream impact pressure distribution or stream coherence were obtained. Sluice testing using 3000 psi salt cake simulants measured waste retrieval rates of approximately 12 Ml/day (17.6 ft{sup 3}/hr). Rates as high as 314 m{sup 3}/day (463 ft{sup 3}/hr) were measured against the lower strength salt cake simulants.

  12. Implications of access hole size on tank waste retrieval system design and cost

    SciTech Connect

    Babcock, S.M.; Kwon, D.S.; Burks, B.L.; Stoughton, R.S.; Evans, M.S.

    1994-05-01

    The DOE Environmental Restoration and Waste Management Robotics Technology Development Program has been investigating the application of robotics technology to the retrieval of waste from single-shell storage tanks for several years. The use of a large, ``long-reach`` manipulator to position and orient a variety of tools and other equipment has been recommended. The objective of this study is to determine the appropriate access hole size for the tank waste retrieval system installation. Previous reports on the impact of access hole size on manipulator performance are summarized. In addition, the practical limitation for access hole size based on structural limitations of the waste storage tanks, the state-of-the-art size limitations for the installation of new risers, the radiation safety implications of various access hole sizes, and overall system cost implications are considered. Basic conclusions include: (1) overall cost of remediation will; be dominated by the costs of the balance of plant and time required to perform the task rather than the cost of manipulator hardware or the cost of installing a riser, (2) the most desirable solution from a manipulator controls point of view is to make the manipulator as stiff as possible and have as high as possible a natural frequency, which implies a large access hole diameter, (3) beyond some diameter; simple, uniform cross-section elements become less advantageous from a weight standpoint and alternative structures should be considered, and (4) additional shielding and contamination control measures would be required for larger holes. Parametric studies summarized in this report considered 3,790,000 1 (1,000,000 gal) tanks, while initial applications are likely to be for 2,840,000 1 (750,000 gal) tanks. Therefore, the calculations should be somewhat conservative, recognizing the limitations of the specific conditions considered.

  13. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    SciTech Connect

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

  14. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect

    Swita, W.R.

    1998-01-09

    This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors` operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors` facilities.

  15. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  16. Human factors analysis and design methods for nuclear waste retrieval systems. Volume IV. Computerized Event-Tree Analysis Technique

    SciTech Connect

    Deretsky, Z.; Casey, S.M.

    1980-08-01

    This document contains a program listing and brief description of CETAT, the Computerized Event-Tree Analysis Technique. CETAT was developed to serve as a tool for developing, organizing, and analyzing operator-initiated event probabilities associated with the tasks required during the retrieval of spent fuel canisters. The principal uses of CETAT in the waste retrieval development project will be to develop models of system reliability and evaluate alternative equipment designs and operator tasks.

  17. Historical Waste Retrieval and Clean-up Operations at Nuclear facility no.56, at the Cadarache Nuclear Research Centre

    SciTech Connect

    Santucci, C.

    2008-01-15

    Among the different activities of the CEA research centre in Cadarache, located in the south of France, one of the most important involves cleaning, cleansing dismantling, decommissioning, and recovery of legacy wastes. This presentation will give an overview of the waste retrieval project from the historical interim storage facility called INB 56. The project is divided into three different sub-projects: the historical unpacked waste retrieval, the historical canister retrieval and the draining and clean-up of the spent fuel pools. All the described operations are conducted in accordance with the ALARA principle and the optimization of the waste categorization. The overall project, including the complete clean-up of the facility and its de-licensing, is due to end by 2020. The aim of this document is to outline the general ongoing historical waste retrieval operations and future projects on the INB 56 at the Cadarache research centre. In the final analysis, it can be seen that most of the waste is to be sent to the new CEDRA facility. Nevertheless one major goal of this project is to optimize the waste categorization and therefore to send the canisters to the ANDRA LLW site whenever possible. Two means will allow us to reach this goal: - The sorting out of un-packed waste in order to constitute a LLW canister - A wide range of measurements (gamma spectrometry, neutron measurement, tomography) in order to assess the exact nature of the contents in the historical canisters. Taking waste treatment and conditioning into account well in advance is a factor of prime importance that must be managed early in the elaboration of the decommissioning scenario. Precise knowledge of the physical and radiological inventories is of the utmost importance in defining the best waste pathway. Overall operations on the facility are due to end by 2020 including complete clean-up of the facility and its de-licensing.

  18. Issues associated with manipulator-based waste retrieval from Hanford underground storage tanks with a preliminary review of commercial concepts

    SciTech Connect

    Berglin, E.J.

    1996-09-17

    Westinghouse Hanford Company (WHC) is exploring commercial methods for retrieving waste from the underground storage tanks at the Hanford site in south central Washington state. WHC needs data on commercial retrieval systems equipment in order to make programmatic decisions for waste retrieval. Full system testing of retrieval processes is to be demonstrated in phases through September 1997 in support of programs aimed to Acquire Commercial Technology for Retrieval (ACTR) and at the Hanford Tanks Initiative (HTI). One of the important parts of the integrated testing will be the deployment of retrieval tools using manipulator-based systems. WHC requires an assessment of a number of commercial deployment systems that have been identified by the ACTR program as good candidates to be included in an integrated testing effort. Included in this assessment should be an independent evaluation of manipulator tests performed to date, so that WHC can construct an integrated test based on these systems. The objectives of this document are to provide a description of the need, requirements, and constraints for a manipulator-based retrieval system; to evaluate manipulator-based concepts and testing performed to date by a number of commercial organizations; and to identify issues to be resolved through testing and/or analysis for each concept.

  19. MRS (monitored retrievable storage) Systems Study Task 1 report: Waste management system reliability analysis

    SciTech Connect

    Clark, L.L.; Myers, R.S.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study evaluates the relative reliabilities of systems with and without an MRS facility using current facility design bases. The principal finding of this report is that the MRS system has several operational advantages that enhance system reliability. These are: (1) the MRS system is likely to encounter fewer technical issues, (2) the MRS would assure adequate system surface storage capacity to accommodate repository construction and startup delays of up to five years or longer if the Nuclear Waste Policy Amendments Act (NWPAA) were amended, (3) the system with an MRS has two federal acceptance facilities with parallel transportation routing and surface storage capacity, and (4) the MRS system would allow continued waste acceptance for up to a year after a major disruption of emplacement operations at the repository.

  20. Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan

    SciTech Connect

    BUSSELL, J.H.

    1999-08-02

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K compliance for Project W-151, Tank 101-AZ Waste Retrieval System. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. Two mixer pumps and instrumentation have been or are planned to be installed in waste tank 101-AZ to demonstrate solids mobilization. The information and experience gained during this process test will provide data for comparison with sludge mobilization prediction models and provide indication of the effects of mixer pump operation on an Aging Waste Facility tank. A limited description of system dates, functions, interfaces, potential Y2K problems, and date resolutions is presented. The project is presently on hold, and definitive design and procurement have been completed. This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems.

  1. Final test report: demonsration testing in support of the Track 3system waste dislodging, retrieval and conveyance concepts

    SciTech Connect

    Berglin, E.J.

    1997-07-24

    This report contains the quantitative and qualitative data and information collected during performance of the Track 3 System testing protocol. Information contained herein focuses on the data collected during performance ofthe following Tests Procedures. *Test Procedure-1, Position Management Test Procedure-2, Waste Dislodging, Retrieval, and Conveyance and Decontamination *Test Procedure-3, Dynamic Response Test procedures, Safety Demonstration

  2. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    SciTech Connect

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  3. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 2: Solid waste retrieval facilities -- Phase 1, detail design drawings

    SciTech Connect

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 2 provides the complete set of the Detail Design drawings along with a listing of the drawings. Once approved by WHC, these drawings will be issued and baselined for the Title 3 construction effort.

  4. Repository of not readily available documents for project W-320

    SciTech Connect

    Conner, J.C.

    1997-04-18

    The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

  5. Use of Multiple Innovative Technologies for Retrieval and Handling of Low-Level Radioactive Tank Wastes at Oak Ridge National Laboratory

    SciTech Connect

    Noble-Dial, J.; Riner, G.; Robinson, S.; Lewis, B.; Bolling, D.; Ganapathi, G.; Harper, M.; Billingsley, K.; Burks, B.

    2002-02-26

    The U.S. Department of Energy (DOE) successfully implemented an integrated tank waste management plan at Oak Ridge National Laboratory (ORNL) (1), which resulted in the cleanup, removal, or stabilization of 37 inactive underground storage tanks (USTs) since 1998, and the reduction of risk to human health and the environment. The integrated plan helped accelerate the development and deployment of innovative technologies for the retrieval of radioactive sludge and liquid waste from inactive USTs. It also accelerated the pretreatment of the retrieved waste and newly generated waste from ORNL research and development activities to provide for volume and contamination reduction of the liquid waste. The integrated plan included: retrieval of radioactive sludge, contaminated material, and other debris from USTs at ORNL using a variety of robotic and remotely operated equipment; waste conditioning and transfer of retrieved waste to pretreatment facilities and interim, double contained storage tanks; the development and deployment of technologies for pretreating newly generated and retrieved waste transferred to interim storage tanks; waste treatment and packaging for final off-site disposal; stabilization of the inactive USTs that did not meet the regulatory requirements of the Federal Facilities Agreement between the DOE, the Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC); and the continued monitoring of the active USTs that remain in long-term service. This paper summarizes the successful waste retrieval and tank stabilization operations conducted during two ORNL tank remediation projects (The Gunite Tanks Remediation Project and the Old Hydrofracture Facility Tanks Remediation Project), the sludge retrieval operations from the active Bethel Valley Evaporator Service Tanks, and pretreatment operations conducted for the tank waste. This paper also provides the status of ongoing activities conducted in preparation

  6. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    SciTech Connect

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project.

  7. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    SciTech Connect

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses.

  8. Risk assessment of the retrieval of transuranic waste: Pads 1, 2, and 4, Technical Area-54, Area G, Los Alamos National Laboratory

    SciTech Connect

    Wilbert, K.A.; Lyon, B.F.; Hutchison, J.; Holmes, J.A.; Legg, J.L.; Simek, M.P.; Travis, C.C.; Wollert, D.A.

    1995-05-01

    The Risk Assessment for the Retrieval of Transuranic Waste is a comparative risk assessment of the potential adverse human health effects resulting from exposure to contaminants during retrieval and post-retrieval aboveground storage operations of post-1970 earthen-covered transuranic waste. Two alternatives are compared: (1) Immediate Retrieval and (2) Delayed Retrieval. Under the Immediate Retrieval Alternative, retrieval of the waste is assumed to begin immediately, Under the Delayed Retrieval Alternative, retrieval is delayed 10 years. The current risk assessment is on Pads 1, 2, and 4, at Technical Area-54, Area-G, Los Alamos National Laboratory (LANL). Risks are assessed independently for three scenarios: (1) incident-free retrieval operations, (2) incident-free storage operations, and (3) a drum failure analysis. The drum failure analysis evaluates container integrity under both alternatives and assesses the impacts of potential drum failures during retrieval operations. Risks associated with a series of drum failures are potentially severe for workers, off-site receptors, and general on-site employees if retrieval is delayed 10 years and administrative and engineering controls remain constant. Under the Delayed Retrieval Alternative, an average of 300 drums out of 16,647 are estimated to fail during retrieval operations due to general corrosion, while minimal drums are predicted to fail under the Immediate Retrieval Alternative. The results of the current study suggest that, based on risk, remediation of Pads 1, 2, and 4 at LANL should not be delayed. Although risks from incident-free operations in the Delayed Retrieval Alternative are low, risks due to corrosion and drum failures are potentially severe.

  9. Waste Transfer Leaks Control Decision Record

    SciTech Connect

    RYAN, G.W.

    2000-06-27

    Control decision meetings for Waste Transfer Leaks were held on April 24,25,26, and 27, 2000. The agenda for the control decision meetings is included in Appendix A, and attendee lists are included in Appendix B. The purpose of the control decision meetings was to review and revise previously selected controls for the prevention or mitigation of waste transfer leak accidents. Re-evaluation of the controls is warranted due to revisions in the hazard and accident analysis for these Tank Farm events. In particular, calculated radiological consequences are significantly reduced from those currently reported in the Final Safety Analysis Report (FSAR). Revised hazard and accident analysis and a revised control recommendation will be reflected in an Authorization Basis Amendment to be submitted at the Department of Energy, Office of River Protection's (ORP's) request by June 30, 2000 to satisfy ORP Performance Incentive (PI) 2.1.1, Revision 1, ''Authorization Basis Management Process Efficiency Improvement''. The scope of the control decision meetings was to address all waste transfer leak-related hazardous conditions identified in the Tank Farm hazard analysis database, excluding those associated with the use of the Replacement Cross-Site Transfer System (RCSTS) slurry line and sluicing of Tank 241-C-106, which is addressed in FSAR Addendum 1. The scope of this control decision process does include future waste feed delivery waste transfer operations.

  10. Overview of Remote Retrieval Equipment and the Strategy for removal of Radon Bearing Waste from Silos 1 and 2 at the Fernald Site

    SciTech Connect

    Rinker, Michael W.; Samuel, Todd J.

    2001-12-29

    This document provides an overview of the remote retrieval equipment and strategy for the retrieval of waste from Silos 1 and 2 at the Department of Energy's Fernald site in southwestern Ohio. The scope of this paper is limited to general descriptions of remote equipment specifically related in-silo retrieval. The retrieval strategy describes how the contractor team is planning to utilize the various remote subsystems to efficiently remove the waste from the silos from a philosophical standpoint as opposed to a procedural and operational standpoint. The retrieval strategy and approach is based upon the successful tank retrieval operations conducted at DOE's Oak Ridge and Hanford Sites. Lessons learned from these previous operations have been utilized in planning an approach for the Fernald Silo Retrieval Project. The equipment overview includes discussion of the retrieval system configurations together with descriptions of the robotic arm and retrieval end effectors, the conditioning and transfer pumping system, the sluicer and sluicing pump, as well as the debris retrieval system. A unique challenge being addressed as part of this project is the waste contents. Silos 1 and 2 contain two distinct layers of material that need to be retrieved. The first layer is a Bentonite (trade name BentogroutTM) cap that was placed in the silos to prevent radon migration into the dome space and out of the silos. The Bentonite layer varies, but in general it is approximately six inches deep in the center of the silo and thirty-six inches near the silo walls. The material may have dried out on the surface, and may still be wetted near the bottom of the bentonite layer. The K-65 ore tailings, which were slurried into the silos, are the remainder of the waste that is over 20' in depth. This paper provides an overview of the retrieval strategies, technologies, and techniques that will be used to safely and efficiently retrieve the waste from the Fernald Silos.

  11. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    SciTech Connect

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations.

  12. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    SciTech Connect

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  13. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  14. Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory

    SciTech Connect

    Lewis, B.E

    2000-10-23

    Waste retrieval and transfer operations at the Gunite{trademark} and Associated Tanks (GAATs) Remediation Project have been successfully accomplished using the Tank Waste Retrieval System. This system is composed of the Modified Light-Duty Utility Arm, Houdini Vehicle, Waste Dislodging and Conveyance System, Hose Management Arm, and Sludge Conditioning System. GAAT W-9 has been used as a waste-consolidation and batch-transfer tank during the retrieval of sludges and supernatants from the seven Gunite tanks in the North and South tank farms at Oak Ridge National Laboratory. Tank W-9 was used as a staging tank for the transfers to the Melton Valley Storage Tanks (MVSTs). A total of 18 waste transfers from W-9 occurred between May 25, 1999, and March 30, 2000. Most of these transfers were accomplished using the PulsAir Mixer to mobilize and mix the slurry and a submersible retrieval-transfer pump to transfer the slurry through the Sludge Conditioning System and the {approx}1-mile long, 2-in.-diam waste-transfer line to the MVSTs. The transfers from W-9 have consisted of low-solids-content slurries with solids contents ranging from {approx}2.8 to 6.8 mg/L. Of the initial {approx}88,000 gal of wet sludge estimated in the GAATs, a total of {approx}60,451 gal have been transferred to the MVSTs via tank W-9 as of March 30, 2000. Once the waste-consolidation operations and transfers from W-9 to the MVSTs are completed, the remaining material in W-9 will be mobilized and transferred to the active waste system, Bethel Valley Evaporator Service Tank W-23. Tank W-23 will serve as a batch tank for the final waste transfers from tank W-9 to the MVSTs. This report provides a summary of the requirements and recommendations for the final waste retrieval system for tank W-9, a compilation of the sample analysis data for the sludge in W-9, and brief descriptions of the various waste-retrieval system concepts that were considered for this task. The recommended residual waste retrieval

  15. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    SciTech Connect

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V.

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

  16. Evaluation of the TORE(R)Lance for Radioactive Waste Mobilization and Retrieval from Underground Storage Tanks

    SciTech Connect

    Bamberger, Judith A.; Bates, Cameron J.; Bates, James M.; White, M.

    2002-09-25

    The TORE? Lance is a hand-held hydro transportation device with the ability to convey solids at pre-determined slurry concentrations over great distances. The TORE? Lance head generates a precessing vortex core to mobilize solids. Solids retrieval is accomplished using an eductor. The device contains no parts and requires pressurized fluid to operate the eductor and produce mobilization. Three configurations of TORE? Lance operation were evaluated for mobilization and eduction during these tests: compressed air, water, and an air and water mixture. These tests have shown that the TORE? Lance is a tool that can be used at Hanford for mobilization and retrieval of wastes. The system is versatile and can be configured for many types of applications. These studies showed that the diverse applications require unique solutions so care is recommended for TORE? Lance equipment selection for each application. The two components of the TORE? Lance are the precessing vortex for mobilizing and the eductor for retrieval. The precessing vortex is sensitive to fluid flow rate and pressure. In the hand-held unit these parameters are controlled both internally, by changing shim spacing, and externally by controlling the flow split between the eductor and the head. For in-tank applications out-of-tank control of both these parameters are recommended.

  17. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  18. Tank waste remediation system retrieval and disposal mission authorization basis amendment task plan

    SciTech Connect

    Goetz, T.G.

    1998-01-08

    This task plan is a documented agreement between Nuclear Safety and Licensing and the Process Development group within the Waste Feed Delivery organization. The purpose of this task plan is to identify the scope of work, tasks and deliverables, responsibilities, manpower, and schedules associated with an authorization basis amendment as a result of the Waste Feed Waste Delivery Program, Project W-211, and Project W-TBD.

  19. Field measurements and assessment of retrievable-stored TRU waste at Savannah River Site

    SciTech Connect

    Hochel, R.C.; Winn, W.G.; Hofstetter, K.A.; Sigg, R.A.; Chay, S.C.

    1990-12-31

    Accountability and nuclear safety concerns arising from uncertainties in Pu-239 loadings of a number of waste containers at SRS were investigated by in situ neutron and gamma-ray measurements and an assessment of risk stemming from past waste analysis and packaging practices. The neutron and gamma measurements largely confirmed the correctness of original waste analysis and accountability, while the risk assessment and measurement implications suggested no present or foreseeable nuclear safety problems.

  20. Field measurements and assessment of retrievable-stored TRU waste at Savannah River Site

    SciTech Connect

    Hochel, R.C.; Winn, W.G.; Hofstetter, K.A.; Sigg, R.A. ); Chay, S.C. . Science and Technology Center)

    1990-01-01

    Accountability and nuclear safety concerns arising from uncertainties in Pu-239 loadings of a number of waste containers at SRS were investigated by in situ neutron and gamma-ray measurements and an assessment of risk stemming from past waste analysis and packaging practices. The neutron and gamma measurements largely confirmed the correctness of original waste analysis and accountability, while the risk assessment and measurement implications suggested no present or foreseeable nuclear safety problems.

  1. Human factors analysis and design methods for nuclear waste retrieval systems. Human factors design methodology and integration plan

    SciTech Connect

    Casey, S.M.

    1980-06-01

    The purpose of this document is to provide an overview of the recommended activities and methods to be employed by a team of human factors engineers during the development of a nuclear waste retrieval system. This system, as it is presently conceptualized, is intended to be used for the removal of storage canisters (each canister containing a spent fuel rod assembly) located in an underground salt bed depository. This document, and the others in this series, have been developed for the purpose of implementing human factors engineering principles during the design and construction of the retrieval system facilities and equipment. The methodology presented has been structured around a basic systems development effort involving preliminary development, equipment development, personnel subsystem development, and operational test and evaluation. Within each of these phases, the recommended activities of the human engineering team have been stated, along with descriptions of the human factors engineering design techniques applicable to the specific design issues. Explicit examples of how the techniques might be used in the analysis of human tasks and equipment required in the removal of spent fuel canisters have been provided. Only those techniques having possible relevance to the design of the waste retrieval system have been reviewed. This document is intended to provide the framework for integrating human engineering with the rest of the system development effort. The activities and methodologies reviewed in this document have been discussed in the general order in which they will occur, although the time frame (the total duration of the development program in years and months) in which they should be performed has not been discussed.

  2. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    SciTech Connect

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L.

    1997-03-01

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

  3. Content-based image retrieval system for solid waste bin level detection and performance evaluation.

    PubMed

    Hannan, M A; Arebey, M; Begum, R A; Basri, Hassan; Al Mamun, Md Abdulla

    2016-04-01

    This paper presents a CBIR system to investigate the use of image retrieval with an extracted texture from the image of a bin to detect the bin level. Various similarity distances like Euclidean, Bhattacharyya, Chi-squared, Cosine, and EMD are used with the CBIR system for calculating and comparing the distance between a query image and the images in a database to obtain the highest performance. In this study, the performance metrics is based on two quantitative evaluation criteria. The first one is the average retrieval rate based on the precision-recall graph and the second is the use of F1 measure which is the weighted harmonic mean of precision and recall. In case of feature extraction, texture is used as an image feature for bin level detection system. Various experiments are conducted with different features extraction techniques like Gabor wavelet filter, gray level co-occurrence matrix (GLCM), and gray level aura matrix (GLAM) to identify the level of the bin and its surrounding area. Intensive tests are conducted among 250 bin images to assess the accuracy of the proposed feature extraction techniques. The average retrieval rate is used to evaluate the performance of the retrieval system. The result shows that, the EMD distance achieved high accuracy and provides better performance than the other distances. PMID:26868844

  4. Tank waste remediation system retrieval and disposal mission readiness-to-proceed memorandum

    SciTech Connect

    Boston, H.L.

    1998-01-07

    This memorandum provides a summary of PHMC [Project Hanford Management Contract] team work scope for the Phase 1 TWRS Retrieval and Disposal Mission, a declaration of readiness-to-proceed, a summary of the PHMC team readiness evaluation process, summary results of a structured independent appraisal and financial analysis including information associated with assumptions, risks, and recommendations and, a summary of program plans for the PHMC team`s component of the Phase 1 Mission.

  5. Tank waste remediation system retrieval and disposal mission readiness-to-proceed memorandum

    SciTech Connect

    Jordan, K.N.

    1998-01-09

    This memorandum provides a summary of PHMC (Project Hanford Management Contract) team work scope for the Phase 1 TWRS Retrieval and Disposal Mission, a declaration of readiness-to proceed, a summary of the PHMC readiness evaluation process, summary results of a structured independent appraisal and financial analysis including information associated with assumptions, risks, and recommendations and, a summary of program plans for the PHMC team`s component of the Phase 1 Mission.

  6. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    SciTech Connect

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

  7. Feasibility Study on Using a Single Mixer Pump for Tank 241-AN-101 Waste Retrieval

    SciTech Connect

    Onishi, Yasuo; Wells, Beric E.; Yokuda, Satoru T.; Terrones, Guillermo

    2003-02-11

    The objective of this evaluation was to determine whether a single rotating pump located 20 ft off-center would adequately mix expected AN-101 waste. Three-dimensional, AN-101 pump jet mixing simulation results indicate that a single, 20-ft off-centered mixer pump would mobilize almost all solids even at the furthest tank wall for sludge yield strength up to 150 Pa or less. Because the yield strength of the AN-101 waste was estimated to be less than 150 Pa, the AN-101 pump mixing model results indicate that a single mixer pump would be suffice to mobilize bulk of the disturbed and diluted AN-101 solids.

  8. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    SciTech Connect

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. The Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team

  9. TWRS retrieval and disposal mission, immobilized high-level waste storage plan

    SciTech Connect

    Calmus, R.B.

    1998-01-07

    This project plan has a two fold purpose. First, it provides a plan specific to the Hanford Tank Waste Remediation System (TWRS) Immobilized High-Level Waste (EMW) Storage Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-90-01 (Ecology et al. 1996) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan. Second, it provides an upper tier document that can be used as the basis for future subproject line item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 (DOE 1992a) and 430.1 (DOE 1995)). The format and content of this project plan are designed to accommodate the plan`s dual purpose. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

  10. Commissioning and Operation of a Robotic Arm for Waste Retrieval at Trawsfynydd NPP, North Wales - 12091

    SciTech Connect

    Smith, Alan L.; Cabrera, David L.

    2012-07-01

    Trawsfynydd is one of the UK's first generation Magnox nuclear power plants. It started operation in 1965 and ceased generation in 1991. Before the site can enter the 'care and maintenance' phase a number of wet and dry waste stores around the site must be emptied and their contents made safe. Wet wastes include sludges and resins produced during the operating life of the NPP. The sludges and resins are stored in a number of different tanks that vary significantly in terms of size, shape, internal features and access. A dexterous long reach manipulator arm has been designed and built to facilitate tank clearance. Commissioning of the arm was carried out in parallel with Factory Acceptance Testing (FAT) at the manufacturer's site in Colorado, USA. In addition to basic functional testing this work included a full range of task based testing to ensure that the arm, tools, control system and support equipment were thoroughly exercised in representative conditions. Trawsfynydd is one of the lead sites in the UK's program for nuclear plant decommissioning. As such the lessons learned, both in terms of technology and process, will be applicable across the remainder of the fleet. (authors)

  11. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  12. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    DOEpatents

    Goldsberry, Fred L.; Cawley, William E.

    1981-01-01

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  13. High-heat tank safety issue resolution program plan. Revision 1

    SciTech Connect

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank`s concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan.

  14. Retrieval options study

    SciTech Connect

    Not Available

    1980-03-01

    This Retrieval Options Study is part of the systems analysis activities of the Office of Nuclear Waste Isolation to develop the scientific and technological bases for radioactive waste repositories in various geologic media. The study considers two waste forms, high level waste and spent fuel, and defines various classes of waste retrieval and recovery. A methodology and data base are developed which allow the relative evaluation of retrieval and recovery costs and the following technical criteria: safety; technical feasibility; ease of retrieval; probable intact retrieval time; safeguards; monitoring; criticality; and licensability. A total of 505 repository options are defined and the cost and technical criteria evaluated utilizing a combination of facts and engineering judgments. The repositories evaluated are selected combinations of the following parameters: Geologic Media (salt, granite, basalt, shale); Retrieval Time after Emplacement (5 and 25 years); Emplacement Design (nominal hole, large hole, carbon steel canister, corrosion resistant canister, backfill in hole, nominal sleeves, thick wall sleeves); Emplacement Configuration (single vertical, multiple vertical, single horizontal, multiple horizontal, vaults; Thermal Considerations; (normal design, reduced density, once-through ventilation, recirculated ventilation); Room Backfill; (none, run-of-mine, early, 5 year delay, 25 year delay, decommissioned); and Rate of Retrieval; (same as emplacement, variably slower depending on repository/canister condition).

  15. Radioactive Air Emissions Notice of Construction Application for Installation and Operation of a Waste Retrieval System in Tanks 241-AN-101

    SciTech Connect

    HILL, J.S.

    2000-05-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the installation and operation of one waste retrieval system in each of the following tanks; 241-AN-101, -AN-102, -AN-103, -AN-104, -AN-105 and -AN-107. Pursuant to 40 CFR 61.09 (aXI), this application is also intended to provide anticipated initial start-up notification. It is requested that EPA approval of this application will also constitute EPA acceptance of the initial start-up notification. This NOC covers the installation and operation o f a waste retrieval system in tanks 241-AN-101, -AN-102, -AN-103, -AN-104, -AN-105 and -AN-107, and the 241-AN-A/-B Valve Pits. Generally, this includes removal of existing equipment, installation of new equipment, and construction of new ancillary equipment and buildings between now and the year2011. Tanks 241-AN-101, -AN-102, -AN-103, -AN-104, -AN-105 and -AN-107 will provide waste feed for immobilization into a low activity waste (LAW) product.

  16. THE USE OF VAPOR EXTRACTION SYSTEM AND ITS SUBSEQUENT REDUCTION OF WORKER EXPOSURE TO CARBON TETRACHLORIDE DURING RETRIEVAL OF HANFORDS LEGACY WASTE

    SciTech Connect

    PITTS DA

    2008-03-18

    The Hanford Site is a decommissioned nuclear productions complex located in south eastern Washington and is operated by the Department of Energy (DOE). From 1955 to 1973, carbon tetrachloride (CCl{sub 4}), used in mixtures with other organic compounds, was used to recover plutonium from aqueous streams at Z Plant located on the Hanford Site. The aqueous and organic liquid waste that remained at the end of this process was discharged to soil columns in waste cribs located near Z Plant. Included in this waste slurry along with CCl{sub 4} were tributyl phosphate, dibutyl butyl phosphate, and lard oil. (Truex et al., 2001). In the mid 1980's, CCl{sub 4} was found in the unconfined aquifer below the 200 West Area and subsequent ground water monitoring indicated that the plume was widespread and that the concentrations were increasing. It has been estimated that approximately 750,000 kg (826.7 tons) of CCl{sub 4} was discharged to the soil from 1955 to 1973. (Truex et al., 2001). With initial concentration readings of approximately 30,000 parts per million by volume (ppmv) in one well field alone, soil vapor extraction began in 1992 in an effort to remove the CCl{sub 4} from the soil. (Rohay, 1999). Since 1992, approximately 78,607.6 kg (86.65 tons) of CCl{sub 4} have been extracted from the soil through the process of soil vapor extraction and 9,409.8 kg (10.37 tons) have been removed from the groundwater. (EPA, 2006). The success of this environmental cleanup process benefited not only the environment but also workers who were later involved in the retrieval of solid waste from trenches that were in or near the CCl{sub 4} plume. Solid waste was buried in trenches near Z Plant from 1967 to 1990. The solid waste, some of which was chemically and/or radioactively contaminated, was buried in trenches in steel or fiber drums, fiberboard boxes, fiberglass-reinforced plywood boxes, and steel, concrete, or wooden boxes. Much of this waste was buried with the intention of

  17. Retrievability Strategy Report

    SciTech Connect

    Gehner, P; Gilstrap, O J; Memory, R D; Wagner, R C

    1997-04-30

    Section 122 of the ''Nuclear Waste Policy Act'' requires that a repository be designed and constructed to permit retrieval of any spent fuel placed in such repository, during an appropriate period of operation of the facility, for one of these reasons: (1) to protect public health and safety, or the environment; and (2) to permit the recovery of the economically valuable contents of such spent fuel. The Act also requires the Secretary to specify an appropriate period of retrievability at the time of the design of a repository. The Secretary has not yet defined any such period. However, the Nuclear Regulatory Commission, in the Code of Federal Regulations Title 10 Part 60.111, requires the design of a geologic repository operations area to allow the retrieval of any or all waste on a reasonable schedule starting at any time up to 50 years after waste operations are initiated. NRC describes a reasonable schedule as one that would permit retrieval in about the same time as it took to construct the repository and emplace the waste. Based on the existing conceptual repository and waste package design and analysis, the Yucca Mountain Project described retrieval operations under normal and abnormal conditions in the 1988 ''Site Characterization Plan (SCP)'' document. In 1991, under the same design assumptions, the Project issued a ''Retrieval Strategy Report for a Potential High-Level Nuclear Waste Repository''. Both the conceptual design of the waste package and the emplacement methods have since changed significantly. This report presents the results of a study to determine whether and to what degree these design and other changes require a revision of the retrieval strategy and, if they do, to recommend a revised strategy. The aim of such a revised strategy was to inform decision makers on how to proceed with design to allow retrievability.

  18. Hanford tank initiative test facility site selection study

    SciTech Connect

    Staehr, T.W.

    1997-04-03

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank.

  19. Feasibility study of high-performance pulsed power technology for supporting Hanford Site single-shell tank waste retrieval, March 29, 1996

    SciTech Connect

    1996-10-01

    Westinghouse Hanford Company (WHC) has developed databases on retrieval methods that include more than 155 companies that have technologies potentially applicable to DSST waste retrieval, including the High Performance Pulsed Power Technology (HPT). This report summarizes the feasibility of the technology for supporting retrieval of SST waste. Other potential applications such as unblocking plugs in waste transfer pipelines are described in Appendix C. The feasibility study addresses issues of implementation, operation, and safety with a focus on strengths, weaknesses, and potential pitfalls of the technology. The feasibility study was based on information acquired from TZN GmbH, a German company that developed and manufactures HPT systems for a wide-range of applications. Marketing partners of TZN for this technology are the German company Telerob and R.J. International, the U.S. representative of both companies. An HPT system is capable of fracturing brittle materials into 100-microm particles using electrothermally-generated shock waves. Until now, the technology has been used only to separate glass, metal, ceramic, and plastic components. One primary application of the technology has been in foundries for removing ceramic molds from metal castings. Metals, except for those that are very brittle, are not impacted by the shock wave. The HPT system is highly effective in fracturing and mobilizing ceramic mold materials contained in the crevices of castings that are normally difficult to remove. The HPT system has also been shown to be effective in separating glass in windshields from their protective layers of plastic; concrete from reinforcing rods; ceramic, plastic, and metal materials in computer chips; and ceramic insulation from spark plugs and high-voltage insulators. The HP`T system has been used successfully to bore a 7-in. diameter hole into hard rock at a rate of 33 ft/hr. The HPT system has also been demonstrated successfully in mining applications.

  20. PICTURES OF A SUSPECT-TRU RETRIEVAL

    SciTech Connect

    GADD, R.R.

    2007-05-24

    Retrieving ''suspect'' transuranic (TRU) waste from the Hanford Site's low-level waste burial grounds is a tall order, due to conditions that have changed as the work progresses. Project personnel developed several new methods for handling the waste that other retrieval operations may find useful. The Waste Retrieval Project is operated by Fluor Hanford, a prime contractor for the U.S. Department of Energy's Richland Operations Office since 1996.

  1. Human factors analysis and design methods for nuclear waste retrieval systems. Volume III. User's guide for the computerized event-tree analysis technique. [CETAT computer program

    SciTech Connect

    Casey, S.M.; Deretsky, Z.

    1980-08-01

    This document provides detailed instructions for using the Computerized Event-Tree Analysis Technique (CETAT), a program designed to assist a human factors analyst in predicting event probabilities in complex man-machine configurations found in waste retrieval systems. The instructions contained herein describe how to (a) identify the scope of a CETAT analysis, (b) develop operator performance data, (c) enter an event-tree structure, (d) modify a data base, and (e) analyze event paths and man-machine system configurations. Designed to serve as a tool for developing, organizing, and analyzing operator-initiated event probabilities, CETAT simplifies the tasks of the experienced systems analyst by organizing large amounts of data and performing cumbersome and time consuming arithmetic calculations. The principal uses of CETAT in the waste retrieval development project will be to develop models of system reliability and evaluate alternative equipment designs and operator tasks. As with any automated technique, however, the value of the output will be a function of the knowledge and skill of the analyst using the program.

  2. RETRIEVAL EQUIPMENT DESCRIPTIONS

    SciTech Connect

    J. Steinhoff

    1997-08-25

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler.

  3. MRS (monitored retrievable storage) systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system

    SciTech Connect

    Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity (in metric tons of uranium (MTU)) required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs.

  4. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    SciTech Connect

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  5. Nonradioactive Environmental Emissions Chemical Source Term for the Double Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    SciTech Connect

    MAY, T.H.

    2000-04-21

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated.

  6. Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste

    SciTech Connect

    Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.

    2011-03-03

    Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

  7. Initial retrieval sequence and blending strategy

    SciTech Connect

    Pemwell, D.L.; Grenard, C.E.

    1996-09-01

    This report documents the initial retrieval sequence and the methodology used to select it. Waste retrieval, storage, pretreatment and vitrification were modeled for candidate single-shell tank retrieval sequences. Performance of the sequences was measured by a set of metrics (for example,high-level waste glass volume, relative risk and schedule).Computer models were used to evaluate estimated glass volumes,process rates, retrieval dates, and blending strategy effects.The models were based on estimates of component inventories and concentrations, sludge wash factors and timing, retrieval annex limitations, etc.

  8. Contingency plan for deployment of the void fraction instrument in Tank 241-AY-102

    SciTech Connect

    CONNER, J.M.

    1999-02-24

    High-heat producing sludge from tank 241-C-106 will be sluiced and transferred to tank 241-AY-102 beginning in October 1998. Safety analyses have postulated that after retrieval, the waste in 241-AY-102 may generate and retain unsafe levels of flammable gases (Noorani 1998, Pasamebmetoglu etal. 1997). Unsafe levels of retained gas are not expected, but cannot be ruled out because of the large uncertainty in the gas generation and retention rates. The Tank Waste Remediation System Basis for Interim Operation (Noorani 1998) identifies the need for a contingency plan to add void fraction monitoring to tank 241-AY-102 within 2 weeks of the identification of flammable gas buildup that would warrant monitoring. The Tank 241-C-106 Waste Retrieval Sluicing System Process Control Plan (Carothers et al. 1998) committed to providing a contingency plan for deployment of the void fraction instrument (VFI) in tank 241-AY-102. The VFI determines the local void fraction of the waste by compressing a waste sample captured in a gas-tight test chamber. The sample chamber is mounted on the end of a 76-cm (2.5-ft) arm that can be rotated from vertical to horizontal when the instrument is deployed. Once in the waste, the arm can be positioned horizontally and rotated to sample in different areas below the riser. The VFI is deployed using a crane. The VFI has been deployed previously in 241-AW, 241-AN, and 241-SY tank farms, most recently in tank 241-SY-101 in June and July 1998. An additional test in tank 241-SY-101 is planned in September 1998. Operating instructions for the VFI are included in the Void Fraction Instrument Operation and Maintenance Manual (Pearce 1994).

  9. Innovative grout/retrieval demonstration final report

    SciTech Connect

    Loomis, G.G.; Thompson, D.N.

    1995-01-01

    This report presents the results of an evaluation of an innovative retrieval technique for buried transuranic waste. Application of this retrieval technique was originally designed for full pit retrieval; however, it applies equally to a hot spot retrieval technology. The technique involves grouting the buried soil waste matrix with a jet grouting procedure, applying an expansive demolition grout to the matrix, and retrieving the debris. The grouted matrix provides an agglomeration of fine soil particles and contaminants resulting in an inherent contamination control during the dusty retrieval process. A full-scale field demonstration of this retrieval technique was performed on a simulated waste pit at the Idaho National Engineering Laboratory. Details are reported on all phases of this proof-of-concept demonstration including pit construction, jet grouting activities, application of the demolition grout, and actual retrieval of the grouted pit. A quantitative evaluation of aerosolized soils and rare earth tracer spread is given for all phases of the demonstration, and these results are compared to a baseline retrieval activity using conventional retrieval means. 8 refs., 47 figs., 10 tabs.

  10. Golden Retrievers.

    ERIC Educational Resources Information Center

    Christensen, Deborah

    1999-01-01

    Provides a basic definition of metadata, including the usefulness of metatags for online information retrieval and documentation. Defines the elements of the Dublin Core, the next level of metadata. Discusses how librarians can take advantage of metadata. Describes the Gateway to Educational Materials (GEM) Project whose goal is to use metadata to…

  11. Environmental impacts of proposed Monitored Retrievable Storage

    SciTech Connect

    Scharber, Wayne K.; Macintire, H. A.; Davis, Paul E.; Cothron, Terry K.; Stephens, Barry K.; Travis, Norman; Walter, George; Mobley, Mike

    1985-12-17

    This report describes environmental impacts from a proposed monitored retrievable storage facility for spent fuels to be located in Tennessee. Areas investigated include: water supply, ground water, air quality, solid waste management, and health hazards. (CBS)

  12. System design description for portable 1,000 CFM exhauster Skids POR-007/Skid E and POR-008/Skid F

    SciTech Connect

    Nelson, O.D.

    1998-07-25

    The primary purpose of the two 1,000 CFM Exhauster Skids, POR-007-SKID E and POR-008-SKID F, is to provide backup to the waste tank primary ventilation systems for tanks 241-C-106 and 241-AY-102, and the AY-102 annulus in the event of a failure during the sluicing of tank 241-C-106 and subsequent transfer of sluiced waste to 241-AY-102. This redundancy is required since both of the tank ventilation systems have been declared as Safety Class systems.

  13. Single-shell tank retrieval program mission analysis report

    SciTech Connect

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  14. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    SciTech Connect

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  15. Engineer/constructor description of work for Tank 241-SY-102 retrieval system, project W-211, initial tank retrieval systems

    SciTech Connect

    Rieck, C.A.

    1996-02-01

    This document provides a description of work for the design and construction of a waste retrieval system for Tank 241-SY-102. The description of work includes a working estimate and schedule, as well as a narrative description and sketches of the waste retrieval system. The working estimate and schedule are within the established baselines for the Tank 241-SY-102 retrieval system. The technical baseline is provided in Functional Design Criteria, WHC-SD-W211-FDC-001, Revision 2.

  16. Skill in Retrievals

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Manning, Evan

    2008-01-01

    Retrieval Skill quantifies the ability of one retrieval from a sounder to be more accurate than the best forecast relative to another with the same of another sounder. This is summarized using a Retrieval Anomaly Skill Score (RASS) which is the cor (retrieved-background, truth-background) * sqrt(f), Where f is defined as the ratio of accepted to the possible retrievals. Charts show various features and comparisons of RASS to other methods of retrieval.

  17. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  18. Final report for the cryogenic retrieval demonstration

    SciTech Connect

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft{sup 3} of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ``cold test pit`` that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 {times} 9 {times} 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub`s proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  19. Final report for the cryogenic retrieval demonstration

    SciTech Connect

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft[sup 3] of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 [times] 9 [times] 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  20. The MRS (Monitored Retrievable Storage) task force: Economic and non-economic incentives for local public acceptance of a proposed nuclear waste packaging and storage facility

    SciTech Connect

    Peelle, E.

    1987-03-01

    A joint Oak Ridge - Roane County citizen task force (TF) evaluated the Department of Energy's (DOE) proposal to site a Monitored Retrievable Storage facility in Tennessee in terms of environmental, transportation, and socioeconomic impacts. The case study examines how the TF used mitigation, compensation and incentives (economic and non-economic) to address the problem of distrust of DOE and to change the net local impact balance from negative to positive. Intensive group interaction during their investigations and development of trust within the TF led to consensus decisions on safety and conditional acceptance. DOE accepted most of the TF conditions after informal negotiations. The siting process was stopped by extensive state-wide opposition resulting in legal challenge by the state and vetoes by the governor and state legislature.

  1. Actual-Waste Tests of Enhanced Chemical Cleaning for Retrieval of SRS HLW Sludge Tank Heels and Decomposition of Oxalic Acid - 12256

    SciTech Connect

    Martino, Christopher J.; King, William D.; Ketusky, Edward T.

    2012-07-01

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge. During ECC actual waste testing, the introduction of ozone was successful in decomposing oxalate to below the target levels. This testing did not identify physical or chemical changes in the ECC product sludge that would impact downstream processing. The results from these tests confirm observations made by AREVA NP during larger scale testing with waste simulants. This testing, however, had a decreased utilization of ozone, requiring approximately 5 moles of ozone per mole of oxalate decomposed. Decomposition of oxalates in sludge dissolved in 2 wt% OA to levels near 100 ppm oxalate using ECC process conditions required 8 to 12.5 hours without the aid of UV light and 4.5 to 8 hours with the aid of UV light. The pH and ORP were tracked during decomposition testing. Sludge components were tracked during OA decomposition, showing that most components have the highest soluble levels in the initial dissolved sludge and early decomposition samples and exhibit lower soluble levels as OA decomposition progresses. The Deposition Tank storage conditions that included pH adjustment to approximately 1 M free hydroxide tended to bring the soluble concentrations in the ECC product to nearly the same level for each test regardless of storage time, storage temperature, and contact with other tank sludge material. (authors)

  2. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  3. Test plan for the retrieval demonstration

    SciTech Connect

    Valentich, D.J.

    1993-05-01

    This test plan describes a simulated buried waste retrieval demonstration that will be performed at the Caterpillar, Inc., Edwards Training Center located near Peoria, Illinois. The purpose of the demonstration is to determine the effectiveness of using readily available excavation equipment to retrieve, size, and handle various simulated waste forms that are similar in size, structure, and composition to those expected to be found in US Department of Energy contaminated waste pits and trenches. The objectives of this demonstration are to: meet and maintain daily production goals of 80 yd{sup 3}/day; minimize spillage and dust generation through careful and deliberate operations; document and evaluate methods for manipulating, sizing, and/or working around large objects; and document and evaluate requirements for operator augmentation and remote operation for hot test pit excavation operations. Four conditions comprising the range of environments to be evaluated include excavation of random material from below grade; stacked boxes and barrels from below grade; random materials from at grade; and stacked boxes and barrels from at grade. Results of the retrieval demonstration will reduce unknowns in the body of knowledge about retrieval equipment and procedural options for removal of buried transuranic (TRU) waste at the Idaho National Engineering Laboratory. It is anticipated that DOE will factor this information into a remedial investigation/feasibility plan leading to a final record of decision for disposition of buried TRU waste.

  4. Test Objectives for the Saltcake Dissolution Retrieval Demonstration

    SciTech Connect

    DEFIGH PRICE, C.

    2000-09-22

    This document describes the objectives the Saltcake Dissolution Retrieval Demonstration. The near term strategy for single-shell tank waste retrieval activities has shifted from focusing on maximizing the number of tanks entered for retrieval (regardless of waste volume or content) to a focus on scheduling the retrieval of wastes from those single-shell tanks with a high volume of contaminants of concern. These contaminants are defined as mobile, long-lived radionuclides that have a potential of reaching the groundwater and the Columbia River. This strategy also focuses on the performance of key retrieval technology demonstrations, including the Saltcake Dissolution Retrieval Demonstration, in a variety of waste forms and tank farm locations to establish a technical basis for future work. The work scope will also focus on the performance of risk assessment, retrieval performance evaluations (RPE) and incorporating vadose zone characterization data on a tank-by-tank basis, and on updating tank farm closure/post closure work plans. The deployment of a retrieval technology other than Past-Practice Sluicing (PPS) allows determination of limits of technical capabilities, as well as, providing a solid planning basis for future SST retrievals. This saltcake dissolution technology deployment test will determine if saltcake dissolution is a viable retrieval option for SST retrieval. CH2M Hill Hanford Group (CHG) recognizes the SST retrieval mission is key to the success of the River Protection Project (RPP) and the overall completion of the Hanford Site cleanup. The objectives outlined in this document will be incorporated into and used to develop the test and evaluation plan for saltcake dissolution retrievals. The test and evaluation plan will be developed in fiscal year 2001.

  5. Functional design criteria, Project W-211, Initial Tank Retrieval Systems. Revision 1

    SciTech Connect

    Rieck, C.A.

    1995-02-07

    This document provides the technical baseline for retrieval of waste from ten double-shell tanks in the SY, AN, AP, AW, AY, and AZ tank farms. In order to retrieve waste from these tanks, systems are needed to mix the sludge with the supernate and pump the waste mixture from the tank. For 101-SY, the existing mitigation pump will be used to mix the waste and Project W-211 will provide for waste removal. The retrieval scope for the other nine tanks includes both the waste mixing and removal functions.

  6. Analyzing Document Retrievability in Patent Retrieval Settings

    NASA Astrophysics Data System (ADS)

    Bashir, Shariq; Rauber, Andreas

    Most information retrieval settings, such as web search, are typically precision-oriented, i.e. they focus on retrieving a small number of highly relevant documents. However, in specific domains, such as patent retrieval or law, recall becomes more relevant than precision: in these cases the goal is to find all relevant documents, requiring algorithms to be tuned more towards recall at the cost of precision. This raises important questions with respect to retrievability and search engine bias: depending on how the similarity between a query and documents is measured, certain documents may be more or less retrievable in certain systems, up to some documents not being retrievable at all within common threshold settings. Biases may be oriented towards popularity of documents (increasing weight of references), towards length of documents, favour the use of rare or common words; rely on structural information such as metadata or headings, etc. Existing accessibility measurement techniques are limited as they measure retrievability with respect to all possible queries. In this paper, we improve accessibility measurement by considering sets of relevant and irrelevant queries for each document. This simulates how recall oriented users create their queries when searching for relevant information. We evaluate retrievability scores using a corpus of patents from US Patent and Trademark Office.

  7. Hanford contact-handled transuranic drum retrieval project planning document

    SciTech Connect

    DEMITER, J.A.

    1998-11-17

    The Hanford Site is one of several US Department of Energy (DOE) sites throughout the US that has generated and stored transuranic (TRU) wastes. The wastes were primarily placed in 55-gallon drums, stacked in trenches, and covered with soil. In 1970, the Nuclear Regulatory Commission ordered that TRU wastes be segregated from other radioactive wastes and placed in retrievable storage until such time that the waste could be sent to a geologic repository and permanently disposed. Retrievable storage also defined container storage life by specifying that a container must be retrievable as a contamination-free container for 20 years. Hanford stored approximately 37,400 TRU containers in 20-year retrievable storage from 1970 to 1988. The Hanford TRU wastes placed in 20-year retrievable storage are considered disposed under existing Resource Conservation and Recovery Act (RCRA) regulations since they were placed in storage prior to September 1988. The majority of containers were 55-gallon drums, but 20-year retrievable storage includes several TRU wastes covered with soil in different storage methods.

  8. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  9. Environmental impacts of proposed Monitored Retrievable Storage. Final report

    SciTech Connect

    Not Available

    1985-12-17

    This report describes environmental impacts from a proposed monitored retrievable storage facility for spent fuels to be located in Tennessee. Areas investigated include: water supply, ground water, air quality, solid waste management, and health hazards. (CBS)

  10. Retrieval/ex situ thermal treatment scoring interaction report

    SciTech Connect

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.