Science.gov

Sample records for 245cm nejtronnye secheniya

  1. Yield of delayed neutrons in the thermal-neutron-induced reaction 245Cm( n, f)

    NASA Astrophysics Data System (ADS)

    Andrianov, V. R.; Vyachin, V. N.; Gundorin, N. A.; Druzhinin, A. A.; Zhdanova, K. V.; Lihachev, A. N.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Furman, V. I.

    2008-10-01

    The yield of delayed neutrons, v d , from thermal-neutron-induced fission of 245Cm is measured. Experiments aimed at studying the properties of delayed neutrons from the fission of some reactor isotopes and initiated in 1997 were continued at the upgraded Isomer-M facility by a method according to which a periodic irradiation of a sample with a pulsed neutron beam from the IBR-2 reactor was accompanied by recording emitted neutrons in the intervals between the pulses. The accuracy of the resulting total delayed-neutron yield v d = (0.64 ± 0.02)% is two times higher than that in previous measurements. This work was performed at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (JINR, Dubna).

  2. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions

    SciTech Connect

    Oganessian, Y T; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Sagaidak, R N; Shirokovsky, I V; Tsyganov, Y S; Voinov, A A; Gulbekian, G G; Bogomolov, S L; Gikal, B N; Mezentsev, A N; Iliev, S; Subbotin, V G; Sukhov, A M; Subotic, K; Zagrebaev, V I; Vostokin, G K; Itkis, M G; Moody, K J; . Patin, J B; Shaughnessy, D A; Stoyer, M A; Stoyer, N J; Wilk, P A; Kenneally, J M; Landrum, J H; Wild, J F; Lougheed, R W

    2006-01-31

    The decay properties of {sup 290}116 and {sup 291}116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, {sup 293}116, have been measured in the {sup 245}Cm({sup 48}Ca,xn){sup 293-x}116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the {sup 249}Cf+{sup 48}Ca reaction. They performed the element 118 experiment at two projectile energies, corresponding to {sup 297}118 compound nucleus excitation energies of E* = 29.2 {+-} 2.5 and 34.4 {+-} 2.3 MeV. During an irradiation with a total beam dose of 4.1 x 10{sup 19} {sup 48}Ca projectiles, three similar decay chains consisting of two or three consecutive {alpha} decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope {sup 294}118 (E{sub {alpha}} = 11.65 {+-} 0.06 MeV, T{sub {alpha}} = 0.89{sub -0.31}{sup +1.07} ms) produced in the 3n-evaporation channel of the {sup 249}Cf+{sup 48}Ca reaction with a maximum cross section of 0.5{sub -0.3}{sup +1.6} pb.

  3. Recoil-range studies of heavy products of multinucleon transfer from /sup 18/O to /sup 245/Cm and /sup 249/Cf

    SciTech Connect

    McFarland, R.M.

    1982-09-01

    Recoil range distributions were measured for alpha and spontaneous fission activities made in the bombardment of /sup 245/Cm and /sup 249/Cf with /sup 18/O from 6.20 MeV/nucleon down to the interaction barrier. The shape of the distributions indicates tht transfers of up to four protons take place via a combination of quasi-elastic (QET) and deep inelastic (DIT) mechanisms, rather than complete fusion-de-excitation (CF) or massive transfer (MT). Angular distributions constructed from recoil range distributions, assuming QET/DIT, indicate that the QET component contributes more significantly to the heavy product residue cross section than the DIT, even though primary cross sections are expected to be higher for DIT than for QET. This may be explained qualitatively as a result of the high excitation energies associated with DIT; the very negative Q/sub gg/ of projectile stripping for these systems combined with the lower expected optimal Q/sub rxn/ of QET compared to DIT can give QET products comparatively low excitation.

  4. Measurement of the Neutron Induced Fission Cross Section on Transuranic (TRU) Elements at the n_TOF Facility at CERN

    SciTech Connect

    Mastinu, P. F.; Koehler, Paul Edward; Collaboration, n_TOF

    2007-01-01

    During the 2004 campaign, the n{_}TOF collaboration measured neutron fission cross sections for 233U, 241,243Am, 245Cm, as well as the fission standards 235,238U, using a sealed Fission Ionization Chamber (FIC). The setup included a total of 16 targets and 18 electrodes mounted together in a 50-cm length chamber, allowing the measurements of all isotopes at the same time, thus in the same experimental conditions. A brief description of the facility and of the detector setup will be presented followed by the preliminary results of the analysis of 235U, 233U, and 245Cm from thermal energies up to some tenths of MeV

  5. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n{sub T}OF

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Belloni, F.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.

    2010-08-04

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n{sub T}OF spallation neutron facility. Between them some measurements involve isotopes ({sup 233}U, {sup 241}Am, {sup 243}Am, {sup 245}Cm) relevant for applications to nuclear technologies. The n{sub T}OF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and {alpha} particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of {sup 235}U.

  6. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  7. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  8. Fission cross-section measurements on 233U and minor actinides at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Calviani, M.; Colonna, N.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Sesura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Kerveno, M.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2009-10-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n_TOF at CERN, Geneva. The studied isotopes include 233U, interesting for Th/U based nuclear fuel cycles, 241,243Am and 245Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n_TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ~30 meV to around 1 MeV neutron enegy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235U fission reaction, measured simultaneously with the same detector. Results are here reported.

  9. Application of wearable inertial sensors in stroke rehabilitation.

    PubMed

    Zhou, Huiyu; Hu, Huosheng; Harris, Nigel

    2005-01-01

    We introduce a human arm movement tracking system that has been developed to aid the rehabilitation of stroke patients. A wearable 3-axis inertial sensor is used to capture arm movements in 3-D space and in real time. The tracking algorithm is based on a kinematical model that considers the upper and lower forearm. To improve accuracy and consistency, a weighted least square filtering strategy is adopted. The calculated motion trajectory was compared with that measured using a commerically available Qualysis tracking system. For 3D cyclical rotation, the mean wrist position error was 2.45 cm without filtering and 1.79 cm after the filtering alogorithm was applied. The experimental results demonstrate the favorable performance of the proposed framework in estimation of upper limb motion in stroke rehabilitation. PMID:17281841

  10. Actinide targets for the synthesis of super-heavy elements

    NASA Astrophysics Data System (ADS)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  11. Prompt neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    The direct determination of the average prompt neutron emission values is reviewed, and a method of comparing different sites of neutron emission multiplicity distribution values is described. Measured and recommended values are tabulated for these nuclides: /sup 241/Am, /sup 242/Am, /sup 242/Cm, /sup 243/Cm, /sup 244/Cm, /sup 246/Cm, /sup 247/Cm, /sup 248/Cm, /sup 250/Cm, /sup 245/Cm, /sup 249/Bk, /sup 246/Cf, /sup 249/Cf, /sup 250/Cf, /sup 252/Cf, /sup 254/Cf, /sup 251/Cf, /sup 253/Es, /sup 254/Es, /sup 244/Fm, /sup 246/Fm, /sup 255/Fm, /sup 252/No, /sup 254/Fm, /sup 256/Fm, /sup 257/Fm. 59 refs., 24 tabs. (LEW)

  12. Capillary electrophoresis to quantitate gossypol enantiomers in cotton flower petals and seed.

    PubMed

    Vshivkov, Sergey; Pshenichnov, Egor; Golubenko, Zamira; Akhunov, Alik; Namazov, Shadman; Stipanovic, Robert D

    2012-11-01

    Gossypol is a toxic compound that occurs as a mixture of enantiomers in cotton plant tissues including seed and flower petals. The (-)-enantiomer is more toxic to non-ruminant animals. Efforts to breed cottonseed with a low percentage of (-)-gossypol requires determination of the (+)- to (-)-gossypol ratio in seed and flower petals. We report a method to quantitatively determine the total gossypol and percent of its enantiomers in cotton tissues using high performance capillary electrophoresis (HPCE). The method utilizes a borate buffer at pH 9.3 using a capillary with internal diameter of 50μm, effective length of 24.5cm, 15kV and cassette temperature of 15°C. This method provides high accuracy and reproducible results with a limit of detection of the individual enantiomers of less than 36ng/mL providing base line separation in less than 6min. PMID:23122406

  13. Study of 242‑248Cm isotopes in the projected shell model framework

    NASA Astrophysics Data System (ADS)

    Sadiq, Saiqa; Devi, Rani; Khosa, S. K.

    2016-04-01

    The projected shell model framework is employed to study the band spectra in 242‑248Cm isotopes. The present calculations reproduce the available experimental data on the yrast bands. Besides this, B(E2) transition probabilities of even-even Cm isotopes have also been calculated. The low spin states of yrast band are seen to arise purely from zero-quasi-particle (o-qp) intrinsic states whereas the high spin states have multi-quasi-particle structure. For the odd-neutron (odd-N) isotopes, the calculated results qualitatively reproduce the available data on ground and lowest excited state bands for 243,245Cm. However, for 247Cm the negative-parity ground state band is in reasonable agreement with the experimental data.

  14. Conservation of Isospin in Neutron-rich Fission Fragments

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  15. Actinide targets for the synthesis of super-heavy elements

    DOE PAGESBeta

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  16. High-pressure flame visualization of autoignition and flashback phenomena with liquid-fuel spray

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Baker, C. E.

    1983-01-01

    A study was undertaken to determine the effect of boundary layers on autoignition and flashback for premixed Jet-A fuel in a unique high-pressure windowed test facility. A plate was placed in the center of the fuel-air stream to establish a boundary layer. Four experimental configurations were tested: a 24.5-cm-long plate with either a pointed leading edge, a rounded edge or an edge with a 0.317-cm step, or the duct without the plate. Experiments at an equivalence ratio ranging from 0.4 to 0.9 were performed at pressures to 2500 kPa (25 atm.) at temperatures of 600, 645, and 700 K and velocities to 115 meters per second. Flame shapes were observed during flashback and autoignition using high speed cinematography. Flashback and autoignition limits were determined.

  17. Biological parameters of a silurid catfish Ompok bimaculatus (Bloch, 1794) from River Ghaghara, India.

    PubMed

    Mishra, S K; Sarkar, U K; Trivedi, S P; Mir, J I; Pal, A

    2013-11-01

    The present study examined a total of 446 samples of Ompok bimaculatus and describes the condition factor, gonadosomatic index, length-length relationships, sex ratio, size at first maturity. The regression parameter 'b' ranged from 3.06 to 3.76 (r2 > 0.90). During the pre-monsoon, the allometric coefficient 'b' of the LWR was close to isometric value (b = 3.06) while that of overall was positive allometric (b = 3.31) although it suggested positive allometric growth in monsoon (b = 3.21), and post-monsoon (b = 3.76), periods. The values of condition factor ranged from 0.524 to 0.573. In the study, sex ratio ranged from 1:1.03 to 1:1.3. Males ranged from 14.0-26.6 cm while females varied from 11.2-29.0 cm in length. A significant difference in length at 50% maturity (p < 0.05) was found between both the sexes. First maturity stages in males and females were 22.3 cm and 23.2 cm, respectively. The smallest mature female was 22.0 cm L; the largest immature female was 26.8 cm L. The smallest mature male was 20.0 cm L; the largest immature male was 24.5 cm L. The results of the study could be useful to help in sustainable fisheries management in the Ghaghara River. PMID:24555330

  18. The hydrogen tunneling splitting in malonaldehyde: A full-dimensional time-independent quantum mechanical method.

    PubMed

    Wu, Feng; Ren, Yinghui; Bian, Wensheng

    2016-08-21

    The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm(-1) is in excellent agreement with the benchmark value of 23.8 cm(-1) computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm(-1). Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed. PMID:27544107

  19. Successful surgical resection of advanced gastrointestinal stromal tumor post neoadjuvent therapy.

    PubMed

    Kamil, Sm; Biswas, M; Imran, Ak; Islam, R; Mukhtar, Aa; Joshi, Sc

    2009-01-01

    We report a case of a 48-year-old Indian male who presented with swelling and firmness in his left upper part of the abdomen of one month duration with anorexia and weight loss. Initial examination revealed an intra abdominal mass of around 16.8x11.0x24.5cm with minimal left sided pleural effusion. A biopsy from the mass confirmed the diagnosis of gastrointestinal stromal tumour (GISTs) as supported by immmunohistochemistry results which showed strong positivity for c-kit while stains for smooth muscle actin, desmin, myoglobin, S100 Protein and cytokerstin remained negative. The patient was not suitable for surgical intervention in view of advanced tumor, and Imatinib Mesylate 400mg daily was started with the aim of making the tumor operable. Such therapy lasted for twenty months and was tolerated well by the patient. It then resulted in gradual tumor regression, following which the patient underwent successful tumor resection. Post surgical resection patient had no radiological evidence of intra abdominal tumor but mild left sided pleural effusion with left lower lobe atelectasis. The patient had uneventful post operative recovery and he is currently on Imatinib mesylate and tolerating treatment well with mild skin rash. The experience with preoperative imatinib on surgical resection rates and post operative outcomes is limited especially with primary locally advanced GISTs. In our case successful surgical resection was possible for a huge locally advanced GIST with unusually prolonged treatment of twenty months with imatinib preoperatively. PMID:21483516

  20. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  1. Relationships between multipolarized radar backscatter and slash pine stand parameters

    NASA Technical Reports Server (NTRS)

    Hussin, Yousif Ali; Hoffer, Roger M.

    1989-01-01

    Multipolarized L-band (24.5 cm) aircraft radar data was obtained for a primarily forested area in northern Florida. Based on the results of previous studies by Hoffer and Hussin (1989), a swath of medium incidence angle (35-25 deg) data was defined. Three groups of slash pine stands were located in the data: 4- to 17-year-old plantations, 18- to 48-year-old plantations, and 16- to 53-year-old natural stands. Stand data obtained from the forest-products companies operating in the area include age, tree height, diameter-at-breast height, basal area, volume (cords/acre), and density (trees/acre). Each of these stand parameters were compared to each of the four polarizations (HH, VV, VH, and HV) of the radar data for each group of stands. Statistically significant relationships were found between the radar backscatter and the forest stand parameters only for the 4- to 17-year-old slash pine plantation stands. In general, the cross-polarized radar backscatter was more highly correlated with the various stand parameters than the like-polarized backscatter, and the VV-polarized data were more highly correlated than the HH-polarized data.

  2. Estimating slash pine biomass using radar backscatter

    NASA Technical Reports Server (NTRS)

    Hussin, Yousif Ali; Reich, Robin M.; Hoffer, Roger M.

    1991-01-01

    L-band HV multiple-incidence-angle aircraft synthetic aperture radar (SAR) data were analyzed in relation to average stand biomass, basal area, and tree height for 55 slash pine plantations located in northern Florida. This information was used to develop a system of equations to predict average stand biomass as a function of L-band (24.5-cm) radar backscatter. The system of equations developed in this study using three-stage least-squares and combinatorial screening accounted for 97 percent of the variability observed in average stand biomass per hectare. When applied to an independent data set, the biomass equations had an average bias of less than 1 percent with a standard error of approximately 3 percent. These results indicate that future Shuttle Imaging Radar Systems (e.g., SIR-C, which will have cross-polarized radar sensors) should be able to obtain better estimates of forest biomass than were obtained with previous satellite radar missions, which utilized only HH-polarized SAR data.

  3. The influence of body size on the intermittent locomotion of a pelagic schooling fish.

    PubMed

    Noda, Takuji; Fujioka, Ko; Fukuda, Hiromu; Mitamura, Hiromichi; Ichikawa, Kotaro; Arai, Nobuaki

    2016-06-15

    There is a potential trade-off between grouping and the optimizing of the energetic efficiency of individual locomotion. Although intermittent locomotion, e.g. glide and upward swimming (GAU), can reduce the cost of locomotion at the individual level, the link between the optimization of individual intermittent locomotion and the behavioural synchronization in a group, especially among members with different sizes, is unknown. Here, we continuously monitored the schooling behaviour of a negatively buoyant fish, Pacific bluefin tuna (N = 10; 21.0 ∼ 24.5 cm), for 24 h in an open-sea net cage using accelerometry. All the fish repeated GAU during the recording periods. Although the GAU synchrony was maintained at high levels (overall mean = 0.62 for the cross-correlation coefficient of the GAU timings), larger fish glided for a longer duration per glide and more frequently than smaller fish. Similar-sized pairs showed significantly higher GAU synchrony than differently sized pairs. Our accelerometry results and the simulation based on hydrodynamic theory indicated that the advantage of intermittent locomotion in energy savings may not be fully optimized for smaller animals in a group when faced with the maintenance of group cohesion, suggesting that size assortative shoaling would be advantageous. PMID:27252017

  4. Morphological leaf variability in natural populations of Pistacia atlantica Desf. subsp. atlantica along climatic gradient: new features to update Pistacia atlantica subsp. atlantica key

    NASA Astrophysics Data System (ADS)

    El Zerey-Belaskri, Asma; Benhassaini, Hachemi

    2016-04-01

    The effect of bioclimate range on the variation in Pistacia atlantica Desf. subsp. atlantica leaf morphology was studied on 16 sites in Northwest Algeria. The study examined biometrically mature leaves totaling 3520 compound leaves. Fifteen characters (10 quantitative and 5 qualitative) were assessed on each leaf. For each quantitative character, the nested analysis of variance (ANOVA) was used to examine relative magnitude of variation at each level of the nested hierarchy. The correlation between the climatic parameters and the leaf morphology was examined. The statistical analysis applied on the quantitative leaf characters showed highly significant variation at the within-site level and between-site variation. The correlation coefficient ( r) showed also an important correlation between climatic parameters and leaf morphology. The results of this study exhibited several values reported for the first time on the species, such as the length and the width of the leaf (reaching up to 24.5 cm/21.9 cm), the number of leaflets (up to 18 leaflets/leaf), and the petiole length of the terminal leaflet (reaching up to 3.4 cm). The original findings of this study are used to update the P. atlantica subsp. atlantica identification key.

  5. Electronic structure of neutral and singly ionized curium

    SciTech Connect

    Worden, E.F.; Conway, J.G.; Blaise, J.

    1985-02-01

    Extensive observations and analyses of the emission spectra of neutral and singly ionized curium, Cm I and Cm II, have resulted in the determination of 785 Cm I and 598 Cm II energy levels. These levels then combine to classify 9145 of the more than 14,250 lines of /sup 244/Cm observed between 240 and 2650 nm. Most of the levels have Lande g-values from Zeeman effect data and isotope shifts trom measurements of spectra from sources with various enrichments of /sup 244/Cm, /sup 245/Cm, /sup 246/Cm, and /sup 248/Cm. These data allowed many levels to be assigned to specific electronic configurations. The ground configurations of Cm I and Cm II are (Rn) 5f/sup 7/6d7s/sup 2/ and (Rn) 5f/sup 7/7s/sup 2/, respectively. The realtive energies of other electronic configurations of Cm are given and compared with analogous configurations in other actinides and in Gd its lanthanide analogue. 2 refs., 5 figs., 7 tabs.

  6. Morphological leaf variability in natural populations of Pistacia atlantica Desf. subsp. atlantica along climatic gradient: new features to update Pistacia atlantica subsp. atlantica key.

    PubMed

    El Zerey-Belaskri, Asma; Benhassaini, Hachemi

    2016-04-01

    The effect of bioclimate range on the variation in Pistacia atlantica Desf. subsp. atlantica leaf morphology was studied on 16 sites in Northwest Algeria. The study examined biometrically mature leaves totaling 3520 compound leaves. Fifteen characters (10 quantitative and 5 qualitative) were assessed on each leaf. For each quantitative character, the nested analysis of variance (ANOVA) was used to examine relative magnitude of variation at each level of the nested hierarchy. The correlation between the climatic parameters and the leaf morphology was examined. The statistical analysis applied on the quantitative leaf characters showed highly significant variation at the within-site level and between-site variation. The correlation coefficient (r) showed also an important correlation between climatic parameters and leaf morphology. The results of this study exhibited several values reported for the first time on the species, such as the length and the width of the leaf (reaching up to 24.5 cm/21.9 cm), the number of leaflets (up to 18 leaflets/leaf), and the petiole length of the terminal leaflet (reaching up to 3.4 cm). The original findings of this study are used to update the P. atlantica subsp. atlantica identification key. PMID:26522787

  7. Sidetracking experiences in hot granitic wellbores

    SciTech Connect

    Pettitt, R.A.; Carden, R.

    1981-01-01

    In the development of the first Hot Dry Rock (HDR) geothermal energy extraction system at Fenton Hill, west of Los Alamos, New Mexico, man-made reservoirs were created by connecting two holes in hot, impermeable crystalline rock with hydraulically-produced fractures. This system consists of two near-vertical, 24.5-cm (9-5/8-in.) diameter holes approximately 3 km (10,000 ft) deep in Precambrian basement rock, at a bottom-hole temperature of 200/sup 0/C (400/sup 0/F). In order to improve the connection between the wellbores, the production hole was sidetracked to intercept the fracture zone at a more favorable depth. Two successful sidetrack operations were accomplished in 1977, utilizing cement plugs, underreaming, Dyna-Drills, and both button and diamond bits. Drilling of the second larger, commercial-sized reservoir system began in 1979 and consists of two boreholes drilled to a depth of 4 km (15,000 ft) at an angle of 35/sup 0/ from the vertical, which will be connected by a series of hydraulic fractures extending across the 400-m-(1200-ft) vertical separation of the two holes. Sidetracking to bypass a stuck bottom-hole assembly was accomplished through the use of a whipstock device, Dyna-Drills, and button bits. This paper is presented as a case history of the efforts involved to achieve successful sidetracking in hot granitic wellbores.

  8. Smart imaging using laser targeting: a multiple barcodes application

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2014-05-01

    To the best of our knowledge, proposed is a novel variable depth of field smart imager design using intelligent laser targeting for high productivity multiple barcodes reading applications. System smartness comes via the use of an Electronically Controlled Variable Focal-Length Lens (ECVFL) to provide an agile pixel (and/or pixel set) within the laser transmitter and optical imaging receiver. The ECVFL in the receiver gives a flexible depth of field that allows clear image capture over a range of barcode locations. Imaging of a 660 nm wavelength laser line illuminated 95-bit one dimensional barcode is experimentally demonstrated via the smart imager for barcode target distances ranging from 10 cm to 54 cm. The smart system captured barcode images are evaluated using a proposed barcode reading algorithm. Experimental results after computer-based post-processing show a nine-fold increase in barcode target distance variation range (i.e., range variation increased from 2.5 cm to 24.5 cm) when compared to a conventional fixed lens imager. Applications for the smart imager include industrial multiple product tracking, marking, and inspection systems.

  9. ANDES Measurements for Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Plompen, A. J. M.; Hambsch, F.-J.; Kopecky, S.; Nyman, M.; Rouki, C.; Salvador Castiñeira, P.; Schillebeeckx, P.; Belloni, F.; Berthoumieux, E.; Gunsing, F.; Lampoudis, C.; Calviani, M.; Guerrero, C.; Cano-Ott, D.; Gonzalez Romero, E.; Aïche, M.; Jurado, B.; Mathieu, L.; Derckx, X.; Farget, F.; Rodrigues Tajes, C.; Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Borcea, C.; Negret, A.; Colonna, N.; Goncalves, I.; Penttilä, H.; Rinta-Antila, S.; Kolhinen, V. S.; Jokinen, A.

    2014-05-01

    A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23Na, Mo, Zr, and 238U, neutron capture cross sections of 238U, 241Am, neutron induced fission cross sections of 240Pu, 242Pu, 241Am, 243Am and 245Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am, Cm and Cf. Finally, four isotopes are studied which are important to improve predictions for delayed neutron precursors and decay heat by total absorption gamma-ray spectrometry (88Br, 94Rb, 95Rb, 137I). The measurements which are performed at state-of-the-art European facilities have the ambition to achieve the lowest possible uncertainty, and to come as close as is reasonably achievable to the target uncertainties established by sensitivity studies. An overview is presented of the activities and achievements, leaving detailed expositions to the various parties contributing to the conference.

  10. Neutronics analysis of deuterium-tritium-driven experimental hybrid blankets

    SciTech Connect

    Sahin, S.; Kumar, A.

    1984-07-01

    At the Swiss Federal Institute of Technology, an experimental fusion and fusion-fission (hybrid) reactor facility is near completion. Experiments are scheduled to begin in February 1984. The experimental cavity leads one to plan experiments mostly with blankets in plane geometry. Five different hybrid blanket modules in plane geometry are analyzed with two different left boundary conditions representing varying experimental situations. Numbers I and II represent energy and fissile fuel producing blankets, whereas number III is mainly a fissile fuel producing blanket. Numbers IV and V are actinide burning blankets. It is shown that the overall neutronic performance, such as k /sub eff/ , energy multiplication factor M, fusile and fissile breeding, of a hybrid blanket with transplutonium actinide fuel is already better than that of a UO/sub 2/ or ThO/sub 2/ hybrid blanket. Furthermore, the transplutonium actinide waste is partly converted into precious nuclear fuel of a new type, such as /sup 242m/ Am and /sup 245/Cm. An experimental blanket with a vacuum left boundary has a harder neutron spectrum, and also excessive neutron leakage from the front surface and the lateral surfaces, as compared to that in the blanket in confinement geometry. It leads to the poorer neutronic performance of the former.

  11. Synthesis, Z-Scan and Degenerate Four Wave Mixing characterization of certain novel thiocoumarin derivatives for third order nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, K.; Joseph, Antony; Mathew, K. Paulson; Siji, T. B.; Chandrasekharan, K.; Narendran, N. K. Siji; Jaseela, M. A.; Muraleedharan, K.

    2016-08-01

    The third order nonlinear optical features of certain novel thiocoumarin derivatives have been studied. Single beam Z-scan study on these compounds reveals that the compounds exhibit self defocusing effect upon irradiation with 532 nm, 7 ns pulses of Nd:YAG laser. Nonlinear absorption coefficient, nonlinear refractive index and second-order molecular hyperpolarizability values were estimated. The optical power limiting properties of the compounds are found to be attributable to both two-photon and excited state absorption. Some of the samples show nonlinear absorption coefficient (βeff) as high as 24.5 cm/GW. UV-Visible and photoluminescence outputs of these compounds reveal remarkable absorptive and emissive properties. This article also reports extraordinary growth of third order optical nonlinearity in pure coumarin upon certain donor substitutions in lieu of hydrogen. Degenerate Four Wave Mixing (DFWM) signals of the compounds were analyzed to verify the Z-scan results. Electrostatic Surface Potential (ESP) mapping and structure optimization techniques have been employed to interpret the structure-property relationship of each molecule.

  12. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).

  13. On-board hydrogen generation for transport applications: the HotSpot™ methanol processor

    NASA Astrophysics Data System (ADS)

    Edwards, Neil; Ellis, Suzanne R.; Frost, Jonathan C.; Golunski, Stanislaw E.; van Keulen, Arjan N. J.; Lindewald, Nicklas G.; Reinkingh, Jessica G.

    In the absence of a hydrogen infrastructure, development of effective on-board fuel processors is likely to be critical to the commercialisation of fuel-cell cars. The HotSpot™ reactor converts methanol, water and air in a single compact catalyst bed into a reformate containing mainly CO2 and hydrogen (and unreacted nitrogen). The process occurs by a combination of exothermic partial oxidation and endothermic steam reforming of methanol, to produce 750 l of hydrogen per hour from a 245-cm3 reactor. The relative contribution of each reaction can be tuned to match the system requirements at a given time. Scale-up is achieved by the parallel combination of the required number of individual HotSpot reactors, which are fed from a central manifold. Using this modular design, the start-up and transient characteristics of a large fuel-processor are identical to that of a single reactor. When vaporised liquid feed and air are introduced into cold reactors, 100% output is achieved in 50 s; subsequent changes in throughput result in instantaneous changes in output. Surplus energy within the fuel-cell powertrain can be directed to the manifold, where it can be used to vaporise the liquid feeds and so promote steam reforming, resulting in high system efficiency. The small amount of CO that is produced by the HotSpot reactions is attenuated to <10 ppm by a catalytic clean-up unit. The HotSpot concept and CO clean-up strategy are not limited to the processing of methanol, but are being applied to other organic fuels.

  14. TH-C-12A-08: New Compact 10 MV S-Band Linear Accelerator: 3D Finite-Element Design and Monte Carlo Dose Simulations

    SciTech Connect

    Baillie, D; St Aubin, J; Fallone, B; Steciw, S

    2014-06-15

    Purpose: To design a new compact S-band linac waveguide capable of producing a 10 MV x-ray beam, while maintaining the length (27.5 cm) of current 6 MV waveguides. This will allow higher x-ray energies to be used in our linac-MRI systems with the same footprint. Methods: Finite element software COMSOL Multiphysics was used to design an accelerator cavity matching one published in an experiment breakdown study, to ensure that our modeled cavities do not exceed the threshold electric fields published. This cavity was used as the basis for designing an accelerator waveguide, where each cavity of the full waveguide was tuned to resonate at 2.997 GHz by adjusting the cavity diameter. The RF field solution within the waveguide was calculated, and together with an electron-gun phase space generated using Opera3D/SCALA, were input into electron tracking software PARMELA to compute the electron phase space striking the x-ray target. This target phase space was then used in BEAM Monte Carlo simulations to generate percent depth doses curves for this new linac, which were then used to re-optimize the waveguide geometry. Results: The shunt impedance, Q-factor, and peak-to-mean electric field ratio were matched to those published for the breakdown study to within 0.1% error. After tuning the full waveguide, the peak surface fields are calculated to be 207 MV/m, 13% below the breakdown threshold, and a d-max depth of 2.42 cm, a D10/20 value of 1.59, compared to 2.45 cm and 1.59, respectively, for the simulated Varian 10 MV linac and brehmsstrahlung production efficiency 20% lower than a simulated Varian 10 MV linac. Conclusion: This work demonstrates the design of a functional 27.5 cm waveguide producing 10 MV photons with characteristics similar to a Varian 10 MV linac.

  15. Assessment of acute right ventricular dysfunction induced by right coronary artery occlusion using echocardiographic atrioventricular plane displacement.

    PubMed

    Shah, A R; Grodman, R; Salazar, M F; Rehman, N U; Coppola, J; Braff, R

    2000-08-01

    Right ventricular (RV) systolic function analysis by echocardiography has traditionally required RV endocardial border definition with subsequent tracing and is often inaccurate or impossible in technically poor studies. The atrioventricular plane displacement (AVPD) method attempts to use the descent of the tricuspid annular ring, a reflection of the longitudinal shortening of the right ventricle, as a surrogate marker for RV systolic function. We hypothesized that RV ischemia induced during right coronary artery occlusion proximal to the major right ventricular branches would result in severe right ventricular systolic dysfunction detectable by the AVPD method. During this pilot study, seven patients undergoing elective proximal RCA angioplasty had echocardiographic measurement of RV AVPD performed at baseline (i.e., immediately prior to RCA balloon inflation), during the last 30 seconds of first RCA balloon inflation, and at 1 minute after balloon deflation (recovery). Lateral and medial RV AVPD were significantly reduced from baseline values during intracoronary balloon inflation. (Lateral: 2.45 cm +/- 0.22 vs 1.77 cm +/- 0.13, P < 0.001; medial: 1.46 cm +/- 0.37 vs 1.28 cm +/- 0.32, P < 0.05). Additionally, lateral and medial RV AVPD significantly returned towards baseline values during recovery. (Lateral: 2.39 cm +/- 0.20, P < 0.001; medial: 1.58 cm +/- 0.27, P = 0.01). At baseline, all lateral RV AVPD values were > 2.0 cm, whereas during balloon inflation all were < 2.0 cm. No such clear distinction was found in medial RV AVPD values. Proximal RCA angioplasty is associated with a significant reduction in lateral and medial RV AVPD. Thus RV AVPD may serve as a marker for RV systolic dysfunction. PMID:11000585

  16. Understanding the Long-Term Deformation in the Mississippi Embayment: the Mississippi River Seismic Survey

    NASA Astrophysics Data System (ADS)

    Magnani, M.; McIntosh, K.; Waldron, B.; Mitchell, L.; Saustrup, S.; Towle, M.

    2008-12-01

    The Central US hosts one of the most active intraplate seismic areas in the world, the New Madrid seismic zone (NMSZ). Here the high level of historic and instrumental seismicity clashes with the subdued topography of the Mississippi embayment, minimal geodetic vectors and a puzzling lack of substantial deformation in the post Late-Cretaceous sediments. To explain this apparent paradox it has been proposed that the seismicity in the NMSZ is either 1) very young (at least in its present form), 2) episodic, or 3) migrates throughout a broad region. In order to test these hypotheses and to understand how the deformation is partitioned within the Mississippi embayment, we collected a 300 km-long high-resolution seismic reflection profile along the Mississippi river, from Helena, Arkansas to Caruthersville, Missouri. The profile images a portion of the embayment outside the area of influence of the NMSZ in a region where evidence has been mounting of a seismic source, predating the NMSZ, for which no corresponding structure has yet been identified. The seismic survey exploited the advantages of marine acqui9sition (time effective, low cost) using a 245/245 cm3 (15/15 in3) mini-GI airgun fired at 13.790MPa (2000 psi), a 24-channel 75 m-long active streamer, with 3.125 m group and 12 m nominal shot interval. The high quality data image the Cretaceous and younger sedimentary section, from the top of the Paleozoic unconformity to the Quaternary deposits. Preliminary interpretation of the dataset confirms the general deepening of the Paleozoic basement from ~800 ms at Caruthersville, to ~1 s at the southern end of Crowley's Ridge. In addition, the data reveal prominent recent deformation coincident with the Blytheville arch, the Eastern Reelfoot Rift margin and the White river Fault zone, accommodated by folding and faulting that extend from the top of the Paleozoic through the sedimentary section, and that involves the Quaternary deposits.

  17. Science in Motion: Isolated Araneiform Topography

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Have you ever found that to describe something you had to go to the dictionary and search for just the right word?

    The south polar terrain is so full of unearthly features that we had to visit Mr. Webster to find a suitable term. 'Araneiform' means 'spider-like'. These are channels that are carved in the surface by carbon dioxide gas. We do not have this process on Earth.

    The channels are somewhat radially organized (figure 1) and widen and deepen as they converge. In the past we've just refered to them as 'spiders.' 'Isolated araneiform topography' means that our features look like spiders that are not in contact with each other.

    Observation Geometry Image PSP_003087_0930 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 24-Mar-2007. The complete image is centered at -87.1 degrees latitude, 126.3 degrees East longitude. The range to the target site was 244.4 km (152.8 miles). At this distance the image scale is 24.5 cm/pixel (with 1 x 1 binning) so objects 73 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 08:22 PM and the scene is illuminated from the west with a solar incidence angle of 81 degrees, thus the sun was about 9 degrees above the horizon. At a solar longitude of 206.4 degrees, the season on Mars is Northern Autumn.

  18. Effect of ZnCl{sub 2} activation on CO{sub 2} adsorption of N-doped nanoporous carbons from polypyrrole

    SciTech Connect

    Meng, Long-Yue; Park, Soo-Jin

    2014-10-15

    In this study, N-doping nanoporous carbons (NNCs) were prepared from polypyrrole (PPY) by ZnCl{sub 2} activation. The activation process was carried out under set conditions (PPY/ZnCl{sub 2}=1/4) at 300–800 °C for 2 h. With increasing activation temperature, the specific surface area and total pore volume of the NNCs increased significantly from 539 m{sup 2}/g (300 °C) to 1268 m{sup 2}/g (700 °C) and from 0.245 cm{sup 3}/g (300 °C) to 0.561 cm{sup 3}/g (700 °C), respectively. In addition, the use of PPY carbon precursors allowed the integration of high N content (9.28 wt%) and resulted in a large narrow micropore distribution (<1 nm) in the prepared NNCs. The CO{sub 2} adsorption isotherms showed that PZ-600 exhibited the best CO{sub 2} adsorption capacity of 167 mg/g at 1 bar and 25 °C when the activation temperature was 600 °C. - Graphical abstract: CO{sub 2}/298 K adsorption/desorption isotherms of the N-enriched porous carbons. - Highlights: • N-doping nanoporous carbons were prepared from polypyrrole by ZnCl{sub 2} activation. • Through ZnCl{sub 2} activation, the specific surface area and total pore volume increased. • PZ-600 exhibited the best CO{sub 2} adsorption capacity of 167 mg/g at 1 bar and 25 °C.

  19. First Direct Evidence of Chalcolithic Footwear from the Near Eastern Highlands

    PubMed Central

    Pinhasi, Ron; Gasparian, Boris; Areshian, Gregory; Zardaryan, Diana; Smith, Alexia; Bar-Oz, Guy; Higham, Thomas

    2010-01-01

    In 2008, a well preserved and complete shoe was recovered at the base of a Chalcolithic pit in the cave of Areni-1, Armenia. Here, we discuss the chronology of this find, its archaeological context and its relevance to the study of the evolution of footwear. Two leather samples and one grass sample from the shoe were dated at the Oxford Radiocarbon Accelerator Unit (ORAU). A third leather sample was dated at the University of California-Irvine Accelerator Mass Spectrometry Facility (UCIAMS). The R_Combine function for the three leather samples provides a date range of 3627–3377 Cal BC (95.4% confidence interval) and the calibrated range for the straw is contemporaneous (3627–3377 Cal BC). The shoe was stuffed with loose, unfastened grass (Poaceae) without clear orientation which was more than likely used to maintain the shape of the shoe and/or prepare it for storage. The shoe is 24.5 cm long (European size 37), 7.6 to 10 cm wide, and was made from a single piece of leather that wrapped around the foot. It was worn and shaped to the wearer's right foot, particularly around the heel and hallux where the highest pressure is exerted in normal gait. The Chalcolithic shoe provides solid evidence for the use of footwear among Old World populations at least since the Chalcolithic. Other 4th millennium discoveries of shoes (Italian and Swiss Alps), and sandals (Southern Israel) indicate that more than one type of footwear existed during the 4th millennium BC, and that we should expect to discover more regional variations in the manufacturing and style of shoes where preservation conditions permit. PMID:20543959

  20. High-resolution α and electron spectroscopy of Cf24998

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Greene, J. P.; Kondev, F. G.; Zhu, S.

    2015-04-01

    α -particle spectra of 249Cf have been measured with a double-focusing magnetic spectrometer and with passivated implanted planar silicon (PIPS) detectors. The conversion-electron spectra of 249Cf have been measured with a cooled Si(Li) detector and with a room-temperature PIPS detector. Precise energies of α groups in the decay of 249Cf have been measured with respect to the known energy of 250Cf. In addition, α -electron, α -γ , and γ -γ coincidence measurements were also performed to determine the spin-parity of the previously known 643.64-keV level. From electron intensities, conversion coefficients of transitions in the daughter 245Cm have been determined. The measured L3 conversion coefficients of the 333.4- and 388.2-keV transitions are found to be in agreement with the theoretical conversion coefficients for pure E 1 multipolarity. On the other hand, the K ,L1+L2 ,M , and N conversion coefficients are approximately twice the theoretical values for pure E 1 transitions. These measurements indicate anomalous E 1 conversion coefficients for the 333.4- and 388.2-keV transitions, as has been pointed out in earlier measurements. The measured conversion coefficient of the 255.5-keV transition gives an M 1 multipolarity for this transition which establishes a spin-parity of 7/2- and the 7/2-[743 ] single-particle assignment to the 643.64-keV level.

  1. PRELIMINARY CROSS SECTION AND NU-BAR COVARIANCES FOR WPEC SUBGROUP 26

    SciTech Connect

    ROCHMAN,D.

    2007-01-31

    We report preliminary cross section covariances developed for the WPEC Subgroup 26 for 45 out of 52 requested materials. The covariances were produced in 15- and 187-group representations as follows: (1) 36 isotopes ({sup 16}O, {sup 19}F, {sup 23}Na, {sup 27}Al, {sup 28}Si, {sup 52}Cr, {sup 56,56}Fe, {sup 58}Ni, {sup 90,91,92,94}Zr, {sup 166,167,168,170}Er, {sup 206,207,208}Pb, {sup 209}Bi, {sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am, {sup 242,243,244,245}Cm) were evaluated using the BNL-LANL methodology. For the thermal region and the resolved and unresolved resonance regions, the methodology has been based on the Atlas-Kalman approach, in the fast neutron region the Empire-Kalman method has been used; (2) 6 isotopes ({sup 155,156,157,158,160}Gd and {sup 232}Th) were taken from ENDF/B-VII.0; and (3) 3 isotopes ({sup 1}H, {sup 238}U and {sup 239}Pu) were taken from JENDL-3.3. For 6 light nuclei ({sup 4}He, {sup 6,7}Li, {sup 9}Be, {sup 10}B, {sup 12}C), only partial cross section covariance results were obtained, additional work is needed and they do not report the results here. Likewise, the cross section covariances for {sup 235}U, which they recommend to take from JENDL-3.3, will be included once the multigroup processing is successfully completed. Covariances for the average number of neutrons per fission, total {nu}-bar, are provided for 10 actinides identified as priority by SG26. Further work is needed to resolve some of the issues and to produce covariances for the full set of 52 materials.

  2. Assessment of bulk modulus, thermal expansion and heat capacity of minerals

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.

    1989-04-01

    Since the heat capacity of a solid at constant pressure ( CP) is related to the isothermal bulk modulus ( KT) and isobaric thermal expansion ( αP), an assessment of the experimental data on these properties is necessary to establish the internal consistency of a thermodynamic data set. Through suitable formulations of the temperature dependence of bulk modulus, thermal expansion and heat capacity at constant volume ( CV) and the application of non-linear programming techniques, it is possible to assess the internal consistency of these data and the measured heat capacity at constant pressure. Such optimization of the data on periclase has been performed with the following results: αP = 0.3754 × 10 -4 + 0.791 × 10 -8T - 0.784 T-2 + 0.9148 T-3 (11) KT = 1.684 × 10 6-241 T - 0.056 T2 + 0.167 × 10 -4T3( bar) (12) CV = 48.02 - 0.572 × 10 6T(13) -2 - 0.4876 × 10 11T-4 - 0.1502 × 10 12T-6 + 0.9836 × 10 20T-8V (1, 298) = 11.245 (cm 3/mol). (14) If appropriate CP data are available, it is possible to estimate the temperature dependence of αP and KT for any solid. In suitable cases, the method may be used through a combination of the data on CP and phase equilibrium to calculate Kt, its pressure derivative and thermal expansion. Such optimized data for brucite are: H0f(1, 298.15) = -924620, S0(1, 298.15) = 64.08 αP = 0.1002 E - 4 + 0.1468 E - 7 T + 1.8606 T-2 (18) kt = 0.5712 Mb, ( ∂K T/∂P) = 4.712Cv= 118.58 - 0.639 E + 7 T-2 + 0.34574 E + 12 T-4 - 0.10538 E + 17 T-6. (19)

  3. Study of thermal and fire behavior of wood fiber/thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Oladipo, Adedejo Bukola

    The fire safety characteristics of wood fiber/thermoplastic composite materials were investigated in this study. Composites comprising wood fiber fillers and polymeric binders are known to offer many advantages such as good strength to weight ratio, ease of manufacture, low cost, and the possibility for recycling. In spite of these advantages however, the fire safety question of plastic-based materials is an important one since they can, under certain conditions, drip or run, under fire, thereby potentially spreading fire from one location to the other. It is important therefore to understand the fire behavior of such a composite if the advantages it offers are to be fully utilized. To this end, numerical and experimental studies of opposed flow flame spread over the composite were conducted with emphasis on the influences of gravity, material thermal property variations, and finite-rate chemistry on the rate of spread. The thermal properties of the composite material, needed for opposed flame spread computations, were first determined using a combination of inverse heat conduction and non-linear parameter estimation procedures. The influences of wood fiber mass fraction and temperature on the effective thermal properties of the composite were established. The means for predicting the effective properties from those of the individual constituents were also examined and the results showed that the composite is close to being isotropic. The experimental and numerical methods used to determine the thermal properties of the composite were also adapted for the investigation of various proprietary automobile sound blanket materials to assess their effectiveness as thermal barriers separating the engine compartment from the passenger cabin. The results of opposed flame spread study over the composite suggests that, for opposed flow velocities lower than about 245 cm/s, finite rate chemistry will dominate the spread process when the oxygen mass fraction is 70% or less

  4. River Volga Flood Propagation on the Caspian Sea area based on Satellite Altimetry Data

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey

    In this research a simple model of the Volga River flood propagation on the Caspian Sea area was proposed. For solution of this task the Caspian Sea was approximated as a channel with a rectangular cross-section. Channel axis almost coincided with the sea longitudinal axis or a location of the descending pass 092 of satellites TOPEX/Poseidon and Jason-1/2. Studies have shown that the rate of advance of the River Volga flood changes not only along 092 track, but also depends on the drop or rise of the Caspian Sea level. So the maximum average speed 8.52±3.51 km/day was observed in 1993 when sea level rise at rate +19.93±2.14 cm/year (1993-1995). In this year maximum velocity 13.85 and minimum 2.35 km/day was observed in the Middle Caspian. In period of slow Caspian Sea level rise (2001-2005), when rate was +9.92±1.78 cm/ year, the maximum velocity of the River Volga flood propagation rate 9.45 km/day was observed in the Middle Caspian and minimum 2.44 km / day - in the South Caspian. In the period 1995-1997, when there a sea level strong drop was with rate -22.17±2.45 cm/year in 1996 the maximum velocity of the River Volga flood propagation 11.54 km/day was observed in the Middle Caspian, and the minimum of 3.54 km/day - in the South Caspian. In other periods of slow sea level drop for 1999, 2008 and 2010 change the flood speed along the track are clearly visible two minimum and two maximum. Thus in 1999 the two maxima 8.61 and 7.43 km/ ay was observed in the Middle Caspian, and in 2011 the first maximum of 10.46 km/day was observed in the Middle Caspian and the second maximum 9.03 km/day - in the South Caspian.

  5. Recent Deformation in the Mississippi Embayment from High-Resolution Reflection Data

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Magnani, M.; McIntosh, K.; Waldron, B.; Saustrup, S.; Towle, M.

    2008-12-01

    The New Madrid seismic zone (NMSZ), located in the Mississippi embayment (Central United States), is known for the highest rate of seismic activity east of the Rocky Mountains as well as the destructive sequence of earthquakes (> 7.5M) that occurred in New Madrid, Missouri during a three-month period in 1811-1812. Here we present preliminary results of a 300 km-long high-resolution marine seismic reflection survey conducted in June 2008 along the Mississippi river from Caruthersville, Missouri, to Helena, Arkansas. Paleoseismological observations in this area, just south of the NMSZ, indicate that seismic activity has occurred here that is not correlated with the present NMSZ active fault system. Our acquisition program was designed to image the sedimentary sequences from the southern part of the NMSZ through this area with the goal to identify and characterize concealed faults inferred from the paleoseismic evidence. The reflection data were acquired using a dual chamber 245/245 cm3 (15/15 in3) mini-GI airgun firing at 13.8 MPa (2000 psi) every 10-12 seconds and a 24 channel 75 m-long active streamer. The 4 m minimum offset, 3.125 m group interval and 1.6 m CMP spacing enabled us to successfully image and identify recent deformation in the sedimentary layers (< 1 km depth) with unprecedented resolution. An ecosounder (or CHIRP) was used in conjunction with the aforementioned seismic array to map near surface structure (< 15 m). Observed structures from the CHIRP data suggest small-scale faulting and geomorphologic forms. Reflections up to an approximate depth of 1 km allow us to map the Paleozoic, Cretaceous, Tertiary and Quaternary sequences throughout much of the profile, revealing that the deformation is accommodated within discrete zones where the unconsolidated sediments are folded and faulted. In particular, the data show pronounced folding of the sedimentary layers from the Paleozoic to the Eocene/Quaternary unconformity. Some of the most significant

  6. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    PubMed

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have

  7. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Dewberry, R; Donald Pak, D

    2007-05-04

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon

  8. Variability of matric potential measurements in evaporation experiments and its influence on the derived hydraulic properties

    NASA Astrophysics Data System (ADS)

    Spieckermann, Mathias; Scharnagl, Benedikt; Pertassek, Thomas; von Unold, Georg; Durner, Wolfgang

    2014-05-01

    The simplified evaporation method according to Schindler (1980) is an attractive method for determining hydraulic properties (retention curve and the unsaturated hydraulic conductivity) of a soil sample. In this method, a saturated sample is subject to evaporation, and the temporal course of matric potentials in the core is related to its water content loss by evaporation. Measurement and analysis are automated in the form of the commercially available product HYPROP© (UMS GmbH, Munich). The method and its implementation in the HYPROP system have shown to give accurate and reliable results with a minimum of effort and time required. In the HYPROP system, matric potentials are recorded in two planes of a soil sample by vertically installed tensiometers. The aim of this study was to experimentally investigate how representative and robust the matric potential readings at individual horizontal locations within a depth layer are, and how possible differences in matric potentials at different positions within a depth layer affect the calculated hydraulic soil properties. An additional aim was to verify whether vertically installed tensiometers give identical results to the traditionally horizontally installed tensiometers. The investigations took place in a system called BIG-HYPROP. In principle, it follows the same setup as the standard HYPROP system, but differs with respect to the soil sample size and the number of tensiometers. Whereas standard HYPROP cores are 5 cm high and 8 cm wide (250 cm³), BIG-HYPROP cores have a diameter of 24.5 cm and a height of 10 cm (4714 cm³). Five pairs of tensiometers were positioned in depths of 2.5 cm and 7.5 cm, three of them aligned vertically, and two horizontally. Additionally, temperature was measured at the bottom and in the depths 2 cm, 4 cm, 6 cm, 8 cm as well as directly at the surface. The scatter of the measured matric potentials during stage-1 evaporation was found to be very small (cv <3%). For sand, the scattering significantly increased during the transition from stage-1 to stage-2 evaporation (t = 30 h), reaching its maximum at the end of the measurement (cv = 6% to 8%). Despite differences in the tensiometer readings, the calculated hydraulic functions are very similar and associated only with very small uncertainties. The horizontally and vertically aligned tensiometers showed no systematic differences. We conclude that matric potentials measured with individual tensiometers can be reliably regarded as representative for the measurement plane. The increasing scattering of the upper tensiometers during stage-2 evaporation had a negligible effect on the identified hydraulic functions. The orientation of the tensiometers had no influence on the measured values.

  9. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    PubMed

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    organ-at-risk sparing, and comparable mean integral dose to the normal tissue a reduction in treatment time by more than 50% to only a few minutes in comparison to high-quality 3-D conformal and IMRT treatments. As a result, it will be possible to incorporate features for better patient positioning and image guidance, while sustaining reasonable overall treatment times at the same time. The virtual multibeam tomotherapy design study TOM'5-CT contains a dedicated electron beam CT (TOM'AGE) and an objective optical topometric patient positioning system (TOPOS). Thanks to the wide gantry bore of 120 cm and slim gantry depths of 70 cm, patients can be treated very comfortably, in all cases tumor-isocentrically, as well as with noncoplanar beam arrangements as in stereotactic radiosurgery with a couch rotation of up to +/- 54 degrees. The TOM'5 treatment unit on which this theoretical concept is based has a stand-alone depth of 40 cm and an outer diameter of 245 cm; the focus-isocenter distance of the heads is 100 cm with a field size of 40 cm x 7 cm and 0.5 cm leaves, which operate perpendicular to the axis of table motion. PMID:17985638

  10. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    SciTech Connect

    Achterberg, Nils; Mueller, Reinhold G.

    2007-10-15

    organ-at-risk sparing, and comparable mean integral dose to the normal tissue a reduction in treatment time by more than 50% to only a few minutes in comparison to high-quality 3-D conformal and IMRT treatments. As a result, it will be possible to incorporate features for better patient positioning and image guidance, while sustaining reasonable overall treatment times at the same time. The virtual multibeam tomotherapy design study TOM'5-CT contains a dedicated electron beam CT (TOM'AGE) and an objective optical topometric patient positioning system (TOPOS registered ). Thanks to the wide gantry bore of 120 cm and slim gantry depths of 70 cm, patients can be treated very comfortably, in all cases tumor-isocentrically, as well as with noncoplanar beam arrangements as in stereotactic radiosurgery with a couch rotation of up to {+-}54 deg. . The TOM'5 treatment unit on which this theoretical concept is based has a stand-alone depth of 40 cm and an outer diameter of 245 cm; the focus-isocenter distance of the heads is 100 cm with a field size of 40 cmx7 cm and 0.5 cm leaves, which operate perpendicular to the axis of table motion.

  11. ALICE electromagnetic calorimeter prototype test

    SciTech Connect

    Awes, Terry; /Oak Ridge

    2005-09-01

    This Memorandum of Understanding between the Test Beam collaborators and Fermilab is for the use of beam time at Fermilab during the Fall, 2005 Meson Test Beam Run. The experimenters plan to measure the energy, position, and time resolution of prototype modules of a large electromagnetic calorimeter proposed to be installed in the ALICE experiment at the LHC. The ALICE experiment is one of the three large approved LHC experiments, with ALICE placing special emphasis on the LHC heavy-ion program. The large electromagnetic calorimeter (EMCal) is a US initiative that is endorsed by the ALICE collaboration and is currently in the early stages of review by the Nuclear Physics Division of the DOE. The installation in the test beam at FNAL and test beam measurements will be carried out by the US members of the ALICE collaboration (ALICE-USA). The overall design of the ALICE EMCal is heavily influenced by its location within the ALICE L3 magnet. The EMCal is to be located inside the large room temperature magnet within a cylindrical integration volume approximately l12cm deep, by 5.6m in length, sandwiched between the ALICE TPC space frame and the L3 magnet coils. The chosen technology is a layered Pb-scintillator sampling calorimeter with a longitudinal pitch of 1.6mm Pb and 1.6mm scintillator. The full detector spans {eta} = -0.7 to {eta} = 0.7 with an azimuthal acceptance of {Delta}{phi} = 120{sup o}. The EMCal readout is of a ''Shish-Kabob'' type similar to the PHENIX Pb-scintillator sampling calorimeter in which the scintillation light is collected via wavelength shifting fibers running through the Pb-scintillator tiles perpendicular to the front surface. The detector is segmented into {approx}14000 towers. The basic structural units of the calorimeter are supermodules, each subtending approximately {approx}20{sup o} in {Delta}{phi} and 0.7 units in {Delta}{eta}. Supermodules are assembled from individual modules. The modules are further segmented into 2 x 2 individually read out towers. The fibers from an individual tower are grouped together to form readout tower bundles. These are each optically coupled to an avalanche photodiode (APO) via a short light guide to provide some spatial optical mixing and to match the fiber bundle to the APO. The module assembly is indicated in Figure l. The supermodules weigh about 9.6 tons and are the basic units handled during installation. Each supermodule is roughly I45cm wide at the front surface by 350cm long with an active depth of 24.5cm (at {eta} = 0) plus an additional 6.6 cm of depth in structural plates. The physical characteristics of the ALICE EMCal are summarized in Table 1. The EMCal test beam measurements at FNAL will utilize a stacked 4 x 4 array of prototype EMCal modules (8 x 8 towers). All towers will be instrumented with the same model APO and preamplifier as will be used in the ALICE experiment and all channels will be readout with existing prototype front end electronics intended for use in ALICE. The goals of the test beam measurements are: To investigate the energy resolution, linearity, uniformity, and position resolution, using electron beams; To study the energy dependence of the response to electrons and hadrons to determine the particle identification capabilities of the EMCal by shower shape; And to investigate the timing characteristics of the energy signal for crude time-of-flight measurement ({approx} 1ns) for use for anti-neutron rejection. Measurements will be made for comparison with different signal shaping times in the front end electronics.

  12. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    NASA Astrophysics Data System (ADS)

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.

    2009-04-01

    argillites close to the cement-concrete contact. These data are detailed in another session of this meeting (Techer et al., ERE6 session). In order to precise the spatial extent of the disturbances and to discuss the nature of the responsible fluids, a systematic chemical and isotopic study was performed focusing on the Sr, C and O isotopes known to be very good markers of alkaline fluids percolation (Fourcade et al. 2006). Four studied levels were selected according to their location on the DM overcore and the nature of the cementitious material in contact to the argillites: -155 cm level (DM155) and -180 cm level (DM180) where argillites were in contact with a 1.5 to 3 cm thick concrete; -245 cm level (DM245) and -300 cm level (DM300) where the cementitious material was represented by a fine grained Portland cement 2 to 5 cm thick. Samples of the cementitious materials were collected at each level. Argillites were sampled perpendicularly to the cement-concrete contact with a continuous sampling every 2 to 5 mm millimeters (P1). Micro-fissures developed perpendicularly to the cement-concrete contact were opened and infilling secondary minerals were collected by scrap as a function of the distance to the cement-concrete (P3). Along P1 and P3, no significant variation of the carbonates d18O isotopic values was observed in the argillites. On the opposite d13C and 87Sr/86Sr values of these minerals changed significantly in the direct contact with the cement-concrete over a distance of 15 to 25 mm. Beyond this distance, argillites were again well bedded and showed values similar to those measured in a reference sample. Negative d13C values measured in the disturbed zone and close to those encountered in the cement and the concrete argued for a perturbation induced by an alkaline solution. 87Sr/86Sr isotopic ratios showed a progressive evolution in the disturbed zone, with increasing trends towards the cementitious material. Thanks to complementary Sr elementary contents

  13. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5

    SciTech Connect

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-05-30

    the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Task Technical Request HLW/DWPF/TTR-2005-0034; Rev. 0 entitled Sludge Batch 4 SRNL Shielded Cells Testing4. Specifically, this report details results from performing, in part, Subtask 3 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Technical Task and Quality Assurance Plan (TTQAP), WSRC-RP-2006-00310, Rev. 15 and Analytical Study Plan (ASP), WSRC-RP-2006-00458, Rev. 16. In order to determine the reportable radionuclides for Sludge Batch 4 (SB4) (Macro Batch 5 (MB5)), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-nine radionuclides have been identified as reportable for DWPF SB4 (MB5) as specified by WAPS 1.2. The 29 reportable nuclides are: Ni-59; Ni-63; Se-79; Sr-90; Zr-93; Nb-93m; Tc-99; Sn-126; Cs-137; Sm-151; U-233; U-234; Np-237; U-238; Pu-238; Pu-239; Pu-240; Am-241; Pu-241; Pu-242; Am-242m; Am-243; Cm-244; Cm-245; Cm-246; Cm-247; Bk-247; Cm-248; and Cf-251. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB4 (MB5), all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time through the calendar year 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list

  14. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 5 (MACROBATCH 6)

    SciTech Connect

    Bannochie, C.; Bibler, N.; Diprete, D.

    2010-02-04

    this list and the activities as one of the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2008-0010; Rev. 2 entitled Sludge Batch 5 SRNL Shielded Cells Testing. Specifically, this report details results from performing Subtask II, 5 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), WSRC-RP-2008-00137, Rev. 2 and Analytical Study Plan (ASP), WSRC-RP-2008-00138, Rev. 2. In order to determine the reportable radionuclides for SB5 (MB6), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-six radionuclides have been identified as reportable for DWPF SB5 as specified by WAPS 1.2. The 26 reportable radionuclides are: Cl-36, Ni-59, Ni-63, Sr-90, Zr-93, Nb-93m, Tc-99, Sn-126, Cs-137, Sm-151, U-233, U-234, Np-237, U-238, Pu-238, Pu-239, Pu-240, Am-241, Pu-241, Pu-242, Am-242m, Am-243, Cm-244, Cm-245, Cm-246, Cf-251. Chlorine-36 is reported for the first time based on the upper bounding activity determined from the aqua regia digested sludge slurry. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB5 (MB6), all of the radionuclides in the Design Basis glass are reportable except for four radionuclides: Se-79, Pd-107, Cs-135, and Th-230. At no time through the year 3115 did any of these three radionuclides contribute to more than 0.01% of the

  15. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    NASA Astrophysics Data System (ADS)

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.

    2009-04-01

    argillites close to the cement-concrete contact. These data are detailed in another session of this meeting (Techer et al., ERE6 session). In order to precise the spatial extent of the disturbances and to discuss the nature of the responsible fluids, a systematic chemical and isotopic study was performed focusing on the Sr, C and O isotopes known to be very good markers of alkaline fluids percolation (Fourcade et al. 2006). Four studied levels were selected according to their location on the DM overcore and the nature of the cementitious material in contact to the argillites: -155 cm level (DM155) and -180 cm level (DM180) where argillites were in contact with a 1.5 to 3 cm thick concrete; -245 cm level (DM245) and -300 cm level (DM300) where the cementitious material was represented by a fine grained Portland cement 2 to 5 cm thick. Samples of the cementitious materials were collected at each level. Argillites were sampled perpendicularly to the cement-concrete contact with a continuous sampling every 2 to 5 mm millimeters (P1). Micro-fissures developed perpendicularly to the cement-concrete contact were opened and infilling secondary minerals were collected by scrap as a function of the distance to the cement-concrete (P3). Along P1 and P3, no significant variation of the carbonates d18O isotopic values was observed in the argillites. On the opposite d13C and 87Sr/86Sr values of these minerals changed significantly in the direct contact with the cement-concrete over a distance of 15 to 25 mm. Beyond this distance, argillites were again well bedded and showed values similar to those measured in a reference sample. Negative d13C values measured in the disturbed zone and close to those encountered in the cement and the concrete argued for a perturbation induced by an alkaline solution. 87Sr/86Sr isotopic ratios showed a progressive evolution in the disturbed zone, with increasing trends towards the cementitious material. Thanks to complementary Sr elementary contents