Science.gov

Sample records for 24um debris population

  1. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  2. Benefits of Active Debris Removal on the LEO Debris Population

    NASA Astrophysics Data System (ADS)

    Maniwa, Kazuaki; Hanada, Toshiya; Kawamoto, Satomi

    Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and accidental collisions. In the future, a great deal of fragments can be expected to be created by explosions and collisions. In spite of prevention of satellite and rocket upper stage explosions and other mitigation measures, debris population in low Earth orbit may not be stabilized. To better limit the growth of the future debris population, it is necessary to remove the existing debris actively. This paper studies about the effectiveness of active debris removal in low Earth orbit where the collision rate with and between space debris is high. This study does not consider economic problems, but investigates removing debris which may stabilize well the current debris population based on the concept of Japan Aerospace Exploration Agency.

  3. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  4. Chaos detection in the space debris population.

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Hautesserres, Denis; Daquin, Jérôme; Morand, Vincent; Pretot, Nastassia; Fouchard, Marc

    Semi-analytical propagations, on the basis of long term analysis of artificial satellite trajectories, are a very efficient tool to define storage orbits, and to characterize the main properties within a given region. In particular the altitude of the perigee or the lifetime can be estimated. Dedicated s/w such as STELA (Semi-analytical Tool for End of Life Analysis), developed in the frame of the French Space Operations Act, offer these kinds of capabilities. With a very large integration step size, it is then possible to get time series of the equinoctial elements over long period of time (typically, from 20 to 200yr), after only a few seconds of CPU. In case of resonant trajectories, due to the third body potential or to the Earth gravity field, getting an accurate lifetime estimation is not that obvious: it is likely to be much more time consuming since a Monte Carlo analysis may be required. The last version of the STELA s/w offers as well the capability to derive some quantities linked to the chaoticity of a trajectory, or a family of trajectories, linked to the resonances. In particular the FLI (Fast Lyapunov Indicator) and the maximum exponent of Lyapunov are now implemented into the s/w. We show in this presentation some examples that are obtained from the propagation of the transition matrix, simultaneously with the equations of motion. We derive some general properties about the detection of chaos in the space debris population by propagating the whole TLE catalogue.

  5. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  6. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  7. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    NASA Astrophysics Data System (ADS)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  8. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  9. Local debris congestion in the geosynchronous environment with population augmentation

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.; Schaub, Hanspeter

    2014-02-01

    Forecasting of localized debris congestion in the geostationary (GEO) regime is performed to investigate how frequently near-miss events occur for each of the longitude slots in the GEO ring. The present-day resident space object (RSO) population at GEO is propagated forward in time to determine current debris congestion conditions, and new probability density functions that describe where GEO satellites are inserted into operational orbits are harnessed to assess longitude-dependent congestion in "business-as-usual" launch traffic, with and without re-orbiting at end-of-life. Congestion forecasting for a 50-year period is presented to illustrate the need for appropriately executed mitigation measures in the GEO ring. Results indicate that localized debris congestion will double within 50 years under current 80% re-orbiting success rates.

  10. Local Debris Congestion in the Geosynchronous Environment with Population Augmentation

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Schaub, H.

    2013-08-01

    Forecasting of localized debris congestion in the geostationary (GEO) ring is performed to investigate how frequently near-miss events occur for every longitude slot at GEO. A parallelized propagation routine is used to propagate the current resident space object (RSO) population at GEO forward in time, and representative augmentation of this population is implemented to simulate congestion in "business-as-usual" launch traffic, with and without mitigation at end-of-life. Congestion forecasting for a 50- year time frame is presented to illustrate the need for both appropriately-executed mitigation and active remediation measures at GEO.

  11. Parallel Computation of Orbit Determination for Space Debris Population

    NASA Astrophysics Data System (ADS)

    Olmedo, Estrella; Sanchez-Ortiz, Noelia; Ramos-Lerate, Mercedes

    2009-03-01

    In this work we present an algorithm for computing Orbit Determination for Space Debris population. The method presents a high degree of parallelism. That means that the number of available computers divides the computational effort. The context of this work and the later scope is to have the capability of cataloguing and correlating the Space Debris population. In this sense, as better the accuracy provided by the orbit determination is, more accurate will be the estimation of the state vectors corresponding to the debris objects and better will be the accuracy of the future catalogue of Space Debris. As more objects we can determinate the corresponding orbit, more complete will be the future catalogue. Therefore numerical tools for orbit determination are a key point in the development of a future ESSAS. The first time that a new object is observed, six measurements (these measurements may come from RADAR, Ground Based Telescope or Space Based Telescope) are required for computing an Initial Orbit Determination (IOD). After that, the Initial Estimated State Vector (IESV) is improved within the next-coming measurement. The idea of this method is the following. From six initial measurements, we compute the IOD following the same ideas of [1]. We compute also the initial knowledge covariance matrix (IKCM) corresponding to the IESV. In general, the numerical error of the IOD is too big for processing the following measurements with a conventional numerical filter (like the Square Root Information Filter (SRIF)). The problem is that the improvement of the accuracy in the IOD is not an easy task in those cases with large initial error. However the computed IKCM give a realistic approximation of the committed error in the IOD. The proposed algorithm uses the IKCM for generating a cloud of IESVs. All the IESV inside the cloud are processed with a new and much smaller IKCM by using SRIF. In such a way that the ones that are close enough to the real state vector (and thus

  12. Instability of the Current Space Debris Population in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Maniwa, Kazuaki; Hanada, Toshiya; Kawamoto, Satomi

    Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and accidental collisions. In the future, it is expected that a great deal of fragments will be created by explosions and collisions. Thus, the number of space debris may increase exponentially (Kessler Syndrome). This paper analyzes the Kessler Syndrome using the Low Earth Orbital Debris Environmental Evolutionary Model (LEODEEM) developed at Kyushu University with collaboration from JAXA. The purpose of the study aims at understanding the issues related to space environment conservation. The results provide effective conditions of Active Debris Removal which is one of the space debris mitigation procedures.

  13. Prediction of HAMR Debris Population Distribution Released from GEO Space

    NASA Astrophysics Data System (ADS)

    Rosengren, A.; Scheeres, D.

    2012-09-01

    The high area-to-mass ratio (HAMR) debris population is thought to have origins in the GEO region. Many of these objects are uncharacterized with apparent area-to-mass ratios of up to 30 meters squared per kilogram. The orbits of HAMR objects are highly perturbed due to the combined effect of solar radiation pressure (SRP), anomalies of the Earth gravitational field, and third-body gravitational interactions induced by the Sun and the Moon. A sound understanding of their nature, orbital evolution, and possible origin is critical for space situational awareness. The study of the orbital evolution of HAMR objects, taking into account both short-period and long-period terms, requires numerical integration of the precise set of differential equations, and the investigation of a broad range of possible parameter values. However, such computations become very costly when continuously applied over a period of several decades, as is necessary in the case of HAMR debris. It therefore seems reasonable to investigate the equations that govern the long-term behavior of orbits; such equations can be derived by the method of averaging. We have validated a semi-analytical averaged theory of HAMR object orbit evolution against high precision numerical integrations, and are able to capture the extreme dynamical behaviors reported for these objects. This new averaged model, explicitly given in terms of the eccentricity and angular momentum vectors, is several hundred times faster to numerically integrate than the non-averaged Newtonian counterpart, and provides a very accurate description of the long-term behavior. Using this model, it is possible to make predictions of how a population of HAMR objects, released into GEO orbit, will evolve over time. Our earlier analyses revealed that the population would have a range of orbits much different than circular GEO. Their orbits will suffer a sub-yearly oscillation in the eccentricity and inclination evolutions, and a longer-term drift

  14. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm

  15. Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size

    NASA Technical Reports Server (NTRS)

    Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.

    2008-01-01

    Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.

  16. NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisco, Paula H.; Vavrin, A. B.; Anz-Meador, P. D.

    2013-01-01

    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements.

  17. Modeling of the Orbital Debris Population of RORSAT Sodium-Potassium Droplets

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Krisko, P. H.; Matney, Mark; Stansbery, E. G.

    2010-01-01

    A large population resident in the orbital debris environment is composed of eutectic sodium-potassium (NaK) droplets, released during the reactor core ejection of 16 nuclear-powered Radar Ocean Reconnaissance Satellites (RORSATs) launched in the 1980s by the former Soviet Union. These electrically conducting RORSAT debris objects are spherical in shape, generating highly polarized radar returns. Their diameters are mostly in the centimeter and millimeter size regimes. Since the Space Surveillance Network catalog is limited to objects greater than 5 cm in low Earth orbit, our current knowledge about this special class of orbital debris relies largely on the analysis of Haystack radar data. This paper elaborates the simulation of the RORSAT debris populations in the new NASA Orbital Debris Engineering Model ORDEM2010, which replaces ORDEM2000. The estimation of the NaK populations uses the NASA NaK-module as a benchmark. It follows the general statistical approach to developing all other ORDEM2010-required LEO populations (for various types of debris and across a wide range of object sizes). This paper describes, in detail, each major step in the NaK-population derivation, including a specific discussion on the conversion between Haystack-measured radar-cross-sections and object-size distribution for the NaK droplets. Modeling results show that the RORSAT debris population is stable for the time period under study and that Haystack data sets are fairly consistent over the observations of multiple years.

  18. Implications of Prolonged Solar Minimum Conditions for the Space Debris Population

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Horbury, Timothy

    2013-08-01

    Observations of the current solar cycle show the likely continuation of a long-term decline in solar activity that began during the 1980s. This decline could lead to conditions similar to the Maunder minimum within 40 years [1], which would have consequences for the space debris environment. Solar activity is a key driver of atmospheric mass density and, subsequently, drag on orbiting spacecraft and debris. Whilst several studies have investigated potential effects on the global climate, no assessment has been made of the impact of a Maunder-like minimum on the space debris population in Low Earth Orbit (LEO). Consequently, we present a new study of the future debris environment under Maunder minimum conditions and provide an assessment of the possible consequences to the LEO space debris population and space operations. The University of Southampton's Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) has been used to analyse the consequences of a Maunder minimum of approximately 50 years duration and to quantify the impact on the effectiveness of debris mitigation measures. Results from these studies suggest an increase in collision activity and a corresponding, rapid growth of the debris population during a Maunder minimum period, in spite of on-going mitigation efforts. In the best case, the DAMAGE results suggest that the population of debris > 10 cm could double in number by the end of Maunder minimum conditions. However, the rapid growth in the population is followed by a strong recovery period on exit from a Maunder minimum. The recovery is characterised by a decrease in the debris population, which can be to a level similar to that seen before the onset of the Maunder minimum, if mitigation efforts are sustained. As such, prolonged solar minimum conditions may have relatively benign implications for the long-term evolution of the debris environment. However, the risks to spacecraft from collisions with debris during a

  19. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Lin; Matney, Mark; Liou, J.-C.; Hyde, James; Prior, Thomas G.

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version -ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 µm and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris popu-lations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input popu-lations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact con-ditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satis-factorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 µm.

  20. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.

  1. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  2. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  3. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2012-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publicly released within the last year. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper describes the population generation and categorization of both ORDEM 3.0 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population verification. Fluxes on spacecraft for chosen orbits are presented and discussed. Future collaborative analysis is noted.

  4. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1993-01-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  5. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Astrophysics Data System (ADS)

    McDonnell, J. A. M.

    1993-03-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10-18 kg (for rhop = 2g/cu cm) to 10-10 kg (for rhop = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  6. The historical contribution of solid rocket motors to the one centimeter debris population

    NASA Technical Reports Server (NTRS)

    Jackson, Albert; Eichler, Peter; Reynolds, Robert; Potter, Andrew; Johnson, Nicholas

    1997-01-01

    The measured small particle population in earth orbit contains cm-sized objects that are not accounted for by breakup fragments. It was proposed that slag ejection during solid rocket motor burn is a contributor to this population. The direct evidence for such slag ejection follows from: observations of the exhausts of vehicles in flight, and engineering data from static firings. A source model is presented to account for the contribution of slag expulsion from solid rocket motors to the debris population. The mass and velocity distribution of the slag effluents are taken into account and used as a source term in the debris environment model. The model is based on the available observation data and on models for slag development and ejection.

  7. Debris flow occurrence future changes in high populated mountains (French Alps).

    NASA Astrophysics Data System (ADS)

    Pavlova, I.; Jomelli, V.; Brunstein, D.; Grancher, D.

    2010-03-01

    The growth of tourism in recent decades, the dense population and more than 100 large ski areas create a high potential for damage to people, settlements and associated infrastructures in the French Alps. Increasing demographic pressures in mountainous regions and recent catastrophic events have renewed interest in various gravitational hazards predetermination in European countries. Results of the models considering the A2 hypothesis (IPCC 2007) showed that the most significant climatic trends for the end of the century will be a decrease in intense rainy events and an increase in temperature. As it is known that debris flows are often triggered by intense rainy events, a change in global climate in the future could have an impact on the frequency of this process. Our approach is to link the current (1960ies-2000ies) or future climate and the occurrence of debris flows based on statistical modeling. Regional climatic scenarios were computed from the ARPEGE model developed by the Centre National de Recherches Météorologiques of Météo-France. We developed new models using the simulated current climatic data with debris flows. Then we compared the probabilities of the occurrence of debris flows in the current period and in the coming century. Probabilistic models for the end of the twenty-first century were computed by interchanging meteorological parameters used in the statistical models established for the current period by meteorological data simulated for the future period. The future changes should have impacts on the occurrence of debris flows. We expect a decrease in about 10-30% of debris flows occurrence probabilities. From a spatial point of view, the increase in temperature should result in a shift of the 0°C isotherm to a higher elevation which, in turn, should result in a 20% reduction of the number of slopes affected by the process compared to the current period.

  8. EFFECT OF SITE ON BACTERIAL POPULATIONS IN THE SAPWOOD OF COARSE WOODY DEBRIS.

    SciTech Connect

    Porter, Emma, G.,; Waldrop, Thomas, A.; McElreath, Susan, D.; Tainter, Frank, H.

    1998-01-01

    Porter, Emma G., T.A. Waldrop, Susan D. McElreath, and Frank H. Tainter. 1998. Effect of site on bacterial populations in the sapwood of coarse woody debris. Pp. 480-484. In: Proc. 9th Bienn. South. Silv. Res. Conf. T.A. Waldrop (ed). USDA Forest Service, Southern Research Station. Gen. Tech. Rep. SRS-20. Abstract: Coarse woody debris (CWD) is an important structural component of southeastern forest ecosystems, yet little is known about its dynamics in these systems. This project identified bacterial populations associated with CWD and their dynamics across landscape ecosystem classification (LEC) units. Bolts of red oak and loblolly pine were placed on plots at each of three hydric, mesic, and xeric sites at the Savannah River Station. After the controls were processed, samples were taken at four intervals over a 16-week period. Samples were ground within an anaerobe chamber using nonselective media. Aerobic and facultative anaerobic bacteria were identified using the Biolog system and the anaerobes were identified using the API 20A system. Major genera isolated were: Bacillus, Buttiauxella, Cedecea, Enterobacter, Erwinia, Escherichia, Klebsiella, Pantoea, Pseudomonas, Serratia, and Xanthomonas. The mean total isolates were determined by LEC units and sample intervals. Differences occurred between the sample intervals with total isolates of 6.67, 13.33, 10.17, and 9.50 at 3, 6, 10, and 16 weeks, respectively. No significant differences in the numbers of bacteria isolated were found between LEC units.

  9. The Erebus Montes Debris-Apron Population: Investigation of Amazonian Landscape Evolution

    NASA Astrophysics Data System (ADS)

    van Gasselt, S.; Orgel, C.; Schulz, J.

    2014-04-01

    Lobate debris aprons are considered to be indicators for the presence of ice and water reservoirs on Mars and are therefore sensitive to climate variability. The northern hemisphere of Mars is characterized by three major populations of debris aprons (see, e.g. [12]): (1) the Tempe Terra/Mareotis Fossae region [2, 5], (2) the Deuteronilus/Protonilus Mensae [1, 4, 8], and (3) the Phlegra Montes (PM) [3]. The broader PM area can subdivided inro a number of smaller populations dispersed across parts of Arcadia Planitia (see figure 1) of which the Erebus Montes located at 180-195oE, 25-41oN form a well-confined set of features. We here focus on age and erosional characteristics of the northern Erebus Montes (see inset in figure 1). Our study makes use of panchromatic image data obtained by the High Resolution Stereo Camera (HRSC) [9, 6] onboard Mars Express and the Context Camera (CTX) [7] onboard Mars Reconnaissance Orbiter. Image data analyses are supported by digital terrain-model data derived from HRSC based stereo imaging [10] and from Mars Orbiter Laser Altimeter (MOLA) [11]. We performed detailed geologic mapping at a scale of 1:10,000 and analysed age relationships and erosion rates based on a similar approach as outlined in [5] for the northern part of the Erebus Montes. The aim of this study is to compare feature characteristics to other populations in order to assess timing and the overarching control of landforms evolution in the Martian northern hemisphere. The EM compare geologically relatively well with the Phlegra Montes in terms of individual feature morphologies. The concentration based on cluster analysis (figure 1) shows an up to 10 times higher concentration of remnants per 25 km2 area peaking at 3.4×10-3 features for Erebus Montes. Debris aprons show well-defined age signals ranging from 15 Myr up to 145 Myr. Some units even show continuous degradation implying active denudation of the Noachian to Hesperian-aged remnant massifs. Based on the

  10. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  11. Response of three murine macrophage populations to particulate debris: bone resorption in organ cultures.

    PubMed

    Glant, T T; Jacobs, J J

    1994-09-01

    Particulate wear debris from bone cement or prosthetic components can stimulate macrophages to cause bone resorption. We compared the effect of particle composition (titanium and polymethylmethacrylate as inherent components of prosthetic materials or bone cement and polystyrene as a reference material) on the secretion of interleukin-1 and prostaglandin E2 by peritoneal macrophages and monocyte/macrophage cell lines (P388D1 and IC-21) and on the bone-resorbing activity of conditioned medium harvested from these particle-challenged macrophages. Titanium particles (1-3 microns) in peritoneal macrophage cultures exhibited significantly enhanced bone-resorbing activity measured as 45Ca release, whereas polymethylmethacrylate and polystyrene exhibited this effect to a greater extent in the P388D1 and IC-21 monocyte/macrophage cultures. Although exogenous prostaglandin E2 and recombinant human interleukin-1 could significantly increase the 45Ca release and indomethacin significantly reduced both the spontaneous calcium efflux and active 45Ca release from calvarial bones labeled in vivo, the levels of interleukin-1 and prostaglandin E2, alone or together, did not always correlate with the bone-resorbing activity of conditioned media. Thus, the actual levels of potent bone-resorbing agents (prostaglandin E2 and interleukin-1) measured in conditioned tissue culture media did not necessarily reflect the bone-resorbing capability. An important result of this study is that different macrophage populations may respond differently to the same microenvironmental signal, which in our investigation was particulate wear debris of differing composition and size. PMID:7931789

  12. Transfer of 137Cs from Chernobyl debris and nuclear weapons fallout to different Swedish population groups.

    PubMed

    Rääf, C L; Hubbard, L; Falk, R; Agren, G; Vesanen, R

    2006-08-15

    Data from measurements on the body burden of (134)Cs, (137)Cs and (40)K in various Swedish populations between 1959 and 2001 has been compiled into a national database. The compilation is a co-operation between the Departments of Radiation Physics in Malmö and Göteborg, the National Radiation Protection Authority (SSI) and the Swedish Defense Research Agency (FOI). In a previous study the effective ecological half time and the associated effective dose to various Swedish populations due to internal contamination of (134)Cs and (137)Cs have been assessed using the database. In this study values of human body burden have been combined with data on the local and regional ground deposition of fallout from nuclear weapons tests (only (137)Cs) and Chernobyl debris (both (134)Cs and (137)Cs), which have enabled estimates of the radioecological transfer in the studied populations. The assessment of the database shows that the transfer of radiocesium from Chernobyl fallout to humans varies considerably between various populations in Sweden. In terms of committed effective dose over a 70 y period from internal contamination per unit activity deposition, the general (predominantly urban) Swedish population obtains 20-30 microSv/kBq m(-2). Four categories of populations exhibit higher radioecological transfer than the general population; i.) reindeer herders ( approximately 700 microSv/kBq m(-2)), ii.) hunters in the counties dominated by forest vegetation ( approximately 100 microSv/kBq m(-2)), iii.) rural non-farming populations living in sub-arctic areas (40-150 microSv/kBq m(-2)), and iv.) farmers ( approximately 50 microSv/kBq m(-2)). Two important factors determine the aggregate transfer from ground deposition to man; i.) dietary habits (intakes of foodstuff originating from natural and semi-natural ecosystems), and ii.) inclination to follow the recommended food restriction by the authorities. The transfer to the general population is considerably lower

  13. Debris from Borealis Basin Formation as the Primary Impactor Population of Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Minton, D. A.; Jackson, A. P.; Asphaug, E.; Fassett, C. I.; Richardson, J. E.

    2015-02-01

    Here we investigate a novel Giant Impact Debris (GID) hypothesis to explain a number of observations regarding the LHB. In the GID hypothesis, the formation of the crustal dichotomy on Mars (Borealis Basin) generates LHB impactors.

  14. Orbital debris and meteoroid population as estimated from LDEF impact data

    NASA Technical Reports Server (NTRS)

    Zhang, Jingchang; Kessler, Donald J.

    1995-01-01

    Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.

  15. Orbital debris-debris collision avoidance

    NASA Astrophysics Data System (ADS)

    Mason, James; Stupl, Jan; Marshall, William; Levit, Creon

    2011-11-01

    We focus on preventing collisions between debris and debris, for which there is no current, effective mitigation strategy. We investigate the feasibility of using a medium-powered (5 kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO). The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of nearly half of all catastrophic collisions involving debris using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term operation could entirely mitigate the Kessler syndrome in LEO, without need for relatively expensive active debris removal.

  16. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  17. MEO Debris Environment Projection Study

    NASA Astrophysics Data System (ADS)

    Jenkin, Alan B.; Sorge, Marlon E.; McVey, John P.; Peterson, Glenn E.; Yoo, Bernard Y.

    2013-08-01

    The recently developed Aerospace Debris Environment Projection Tool was used to project the future debris environment in medium Earth orbit (MEO) over the next 200 years. The entire Earth orbital population was modeled to account for the possibility of cross-coupling between the MEO population and the low Earth orbit (LEO) and geosynchronous populations via objects on highly eccentric orbits that transit through MEO. It was found that a large fraction of the MEO debris originated from collisions in LEO involving satellites and rocket bodies that transit through LEO and MEO. Results showed that world-wide compliance with orbit lifetime reduction will significantly reduce the amount of debris in MEO.

  18. Space Debris Modeling at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the

  19. Orbital Debris and Future Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path

  20. Orbital Debris Research at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2009-01-01

    The United States has one of the most active programs of research of the orbital debris environment in the world. Much of the research is conducted by NASA s Orbital Debris Program Office at the Johnson Space Center. Past work by NASA has led to the development of national space policy which seeks to limit the growth of the debris population and limit the risk to spacecraft and humans in space and on the Earth from debris. NASA has also been instrumental in developing consistent international policies and standards. Much of NASA's efforts have been to measure and characterize the orbital debris population. The U.S. Department of Defense tracks and catalogs spacecraft and large debris with it's Space Surveillance Network while NASA concentrates on research on smaller debris. In low Earth orbit, NASA has utilized short wavelength radars such as Haystack, HAX, and Goldstone to statistically characterize the population in number, size, altitude, and inclination. For higher orbits, optical telescopes have been used. Much effort has gone into the understanding and removal of observational biases from both types of measurements. NASA is also striving to understand the material composition and shape characteristics of debris to assess these effects on the risk to operational spacecraft. All of these measurements along with data from ground tests provide the basis for near- and long-term modeling of the environment. NASA also develops tools used by spacecraft builders and operators to evaluate spacecraft and mission designs to assess compliance with debris standards and policies which limit the growth of the debris environment.

  1. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  2. Uncertainties in debris growth predictions

    SciTech Connect

    McKnight, D.S. )

    1991-01-10

    The growth of artificial space debris in Earth orbit may pose a significant hazard to satellites in the future though the collision hazard to operational spacecraft is presently manageable. The stability of the environment is dependent on the growth of debris from satellite deployment, mission operations and fragmentation events. Growth trends of the trackable on-orbit population are investigated highlighting the complexities and limitations of using the data that supports this modeling. The debris produced by breakup events may be a critical aspect of the present and future environment. As a result, growth predictions produced using existing empirically-based models may have large, possibly even unacceptable, uncertainties.

  3. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  4. An Introduction to Space Debris

    NASA Astrophysics Data System (ADS)

    Wright, David

    2008-04-01

    Space debris is any human-made object in orbit that no longer serves a useful purpose, including defunct satellites, discarded equipment and rocket stages, and fragments from the breakup of satellites and rocket stages. It is a concern because--due to its very high speed in orbit--even relatively small pieces can damage or destroy satellites in a collision. Since debris at high altitudes can stay in orbit for decades or longer, it accumulates as more is produced and the risk of collisions with satellites grows. Since there is currently no effective way to remove large amounts of debris from orbit, controlling the production of debris is essential for preserving the long-term use of space. Today there are 860 active satellites in orbit, supporting a wide range of civil and military uses. The 50 years of space activity since the launch of Sputnik 1 has also resulted in well over half a million pieces of orbiting debris larger than 1 cm in size. There are two main sources of space debris: (1) routine space activity and the accidental breakup of satellites and stages placed in orbit by such activity, and (2) the testing or use of destructive anti-satellite (ASAT) weapons that physically collide with satellites at high speed. The international community is attempting to reduce the first category by developing strict guidelines to limit the debris created as a result of routine space activities. However, the destruction of a single large spy satellite by an ASAT weapon could double the total amount of large debris in low earth orbit, and there are currently no international restrictions on these systems. This talk will give an introduction to what's in space, the origins of space debris, efforts to stem its growth, the threat it poses to satellites in orbit, and the long-term evolution of the debris population.

  5. Space debris modeling at NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOVLE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard (NSS) 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been completed with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NSS 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the application of

  6. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  7. Debris Removal: An Opportunity for Cooperative Research?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.

  8. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2013-01-01

    Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.

  9. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.

  10. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  11. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  12. Behavior of tethered debris with flexible appendages

    NASA Astrophysics Data System (ADS)

    Aslanov, Vladimir S.; Yudintsev, Vadim V.

    2014-11-01

    Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.

  13. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. PMID:25680883

  14. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  15. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  16. NASA's New Orbital Debris Engineering Model, ORDEM2010

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  17. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  18. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  19. Space Debris Environent Remediation Concepts

    NASA Astrophysics Data System (ADS)

    Klinkrad, H.; Johnson, N. L.

    2009-03-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also at sizes which may cause further catastrophic collisions. A collisional cascading may ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention.The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities, and then investigating means of mitigating the creation of space debris. In an on-going activity, an IAA study group looks into methods of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial castastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electro-dynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be discussed.

  20. NASA's Long-term Debris Environment and Active Debris Removal Modeling Activities

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2009-01-01

    This slide presentation reviews the modeling activities for modeling of the long-term debris environment, the updated assessments of the environment, and the necessity to model the effectiveness of the technologies aimed at the removal of orbital debris. The model being used is named a LEO to GEO environment debris (LEGEND). It is a high fidelity three dimensional numerical simulation model with the capability to treat objects individually. It uses a Monte Carlo approach and a collision probability evaluation algorithm to simulate future satellite breakups and the growth of the debris populations.

  1. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  2. Orbital Debris and NASA's Measurement Program

    NASA Astrophysics Data System (ADS)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  3. Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Reavis, K. J.; Wasklewicz, T. A.

    2014-12-01

    Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.

  4. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  5. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  6. Evaluating the impacts of marine debris on cetaceans.

    PubMed

    Baulch, Sarah; Perry, Clare

    2014-03-15

    Global in its distribution and pervading all levels of the water column, marine debris poses a serious threat to marine habitats and wildlife. For cetaceans, ingestion or entanglement in debris can cause chronic and acute injuries and increase pollutant loads, resulting in morbidity and mortality. However, knowledge of the severity of effects lags behind that for other species groups. This literature review examines the impacts of marine debris on cetaceans reported to date. It finds that ingestion of debris has been documented in 48 (56% of) cetacean species, with rates of ingestion as high as 31% in some populations. Debris-induced mortality rates of 0-22% of stranded animals were documented, suggesting that debris could be a significant conservation threat to some populations. We identify key data that need to be collected and published to improve understanding of the threat that marine debris poses to cetaceans. PMID:24525134

  7. Debris disc formation induced by planetary growth

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Löhne, T.

    2014-08-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that can explain the trend of observed infrared excesses of debris discsvvv around G-type stars, for which planet formation occurs only before 100 million years. Early debris disc formation is induced by planet formation, while the later evolution is explained by the collisional decay of leftover planetesimals around planets that have already formed. Planetesimal discs with underlying planetesimals of radii ˜100 km at ≈30 au most readily explain the Spitzer Space Telescope 24 and 70 μm fluxes from debris discs around G-type stars.

  8. An adaptive strategy for active debris removal

    NASA Astrophysics Data System (ADS)

    White, Adam E.; Lewis, Hugh G.

    2014-04-01

    Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net

  9. Small Orbital Debris Mitigation Mission Architecture

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2011-01-01

    Small orbital debris in LEO (1-10 cm in size) presents a clear and present danger to operational LEO spacecraft. This debris field has dramatically increased (nearly doubled) in recent years following the Chinese ASAT Test in 2007 and the Iridium/Cosmos collision in 2009. Estimates of the number of small debris have grown to 500,000 objects after these two events; previously the population was 300,000 objects. These small, untracked debris objects (appproximately 500,000) outnumber the larger and tracked objects (appproximately 20,000) by a factor 25 to 1. Therefore, the risk of the small untracked debris objects to operational spacecraft is much greater than the risk posed by the larger and tracked LEO debris objects. A recent study by The Aerospace Corporation found that the debris environment will increase the costs of maintaining a constellation of government satellites by 5%, a constellation of large commercial satellites by 11%, and a constellation of factory built satellites by 26% from $7.6 billion to $9.57 billion. Based upon these facts, the NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office (ACO) performed an architecture study on Small Orbital Debris Active Removal (SODAR) using a space-based nonweapons- class laser satellite for LEO debris removal. The goal of the SODAR study was to determine the ability of a space-based laser system to remove the most pieces of debris (1 cm to 10 cm, locations unknown), in the shortest amount of time, with the fewest number of spacecraft. The ESA developed MASTER2005 orbital debris model was used to probabilistically classify the future debris environment including impact velocity, magnitude, and directionality. The study ground rules and assumptions placed the spacecraft into a high inclination Low Earth Orbit at 800 km as an initial reference point. The architecture study results found that a spacecraft with an integrated forward-firing laser is capable of reducing the small orbital debris flux within

  10. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  11. LEGEND, a LEO-to-GEO Environment Debris Model

    NASA Technical Reports Server (NTRS)

    Liou, Jer Chyi; Hall, Doyle T.

    2013-01-01

    LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.

  12. Analysis of the Eglin Radar Debris Fence

    NASA Astrophysics Data System (ADS)

    Settecerri, Thomas J.; Skillicorn, Alan D.; Spikes, Paul C.

    2004-02-01

    The Eglin FPS-85 space surveillance radar is a bi-static phased array radar system located in Northern Florida. The FPS-85 recently re-established the capability to create a radar search fence to collect orbital debris data. The new debris fence extends from 155° to 205° in azimuth and is scanned at 35° elevation. In this configuration, it has a 0.99 probability of detection for all objects at 3000 km range or less that have a radar cross section greater than -35 dBsm. This paper will concentrate on the objects detected by the new debris fence. Debris populations that are shown will be characterized in terms of altitude, inclination, and estimated size. The results will be compared with data extracted from the United States Air Force Space Command (AFSPC) Space Surveillance Network (SSN) catalog. The initial assessment will consider the ability of the debris fence to retrack debris objects on subsequent orbits based on the size and orbital parameters of the debris.

  13. Space debris detection and mitigation

    SciTech Connect

    Allahdadi, F.

    1993-01-01

    Space debris is defined as all useless man-made objects in space. This conference covers the following areas: debris detection, tracking, and surveillance; orbital debris analytical modeling; debris environment and safety issues; and orbital debris mitigation. Separate abstracts were prepared for 26 papers in this conference.

  14. Orbital debris research at NASA Johnson Space Center, 1986-1988

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Potter, Andrew E., Jr.

    1989-01-01

    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.

  15. Engineering Challenges for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 10 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in engineering, technology development, and operations. This paper outlines a conceptual end-to-end debris removal operation, including launch, precision tracking, rendezvous, stabilization (of the tumbling targets), capture, and deorbit of the targets; and highlights major challenges associated with the operations. Pros and cons of several proposed removal techniques are also evaluated.

  16. Orbital Debris Shape Characterization Project Abstract

    NASA Technical Reports Server (NTRS)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  17. Canadian Activities in Space Debris Mitigation Technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  18. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  19. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  20. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  1. Modeling debris-covered glaciers: response to steady debris deposition

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  2. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A

  3. Orbiting meteoroid and debris counting experiment

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Armstrong, Dwayne; Crockett, Sharon K.; Jones, James L., Jr.; Kassel, Philip C., Jr.; Wortman, J. J.

    1995-01-01

    The Orbiting Meteoroid and Debris Counting Experiment (OMDC) flew for approximately 90 days in a highly elliptical earth orbit onboard the Clementine Interstage Adapter (ISA) Spacecraft. This experiment obtained data on the impact flux of natural micrometeoroids and it provided limited information on the population of small mass man-made debris as a function of altitude in near earth space. The flight of the OMDC experiment on the ISA spacecraft also demonstrated that the ultra-lightweight, low-power, particle impact detector system that was used is a viable system for flights on future spacecraft to monitor the population of small mass man-made debris particles and to map the cosmic dust environment encountered on interplanetary missions. An overview of the ISA spacecraft mission, the approach to the OMDC experiment, and the data obtained by the experiment are presented.

  4. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  5. Orbital Debris: the Growing Threat to Space Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures.

  6. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  7. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  8. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  9. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  10. Linking effects of anthropogenic debris to ecological impacts.

    PubMed

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  11. Linking effects of anthropogenic debris to ecological impacts

    PubMed Central

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  12. The New NASA Orbital Debris Engineering Model ORDEM2000

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.

    2002-01-01

    The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.

  13. Estimated probabilities and volumes of postwildfire debris flows, a prewildfire evaluation for the upper Blue River watershed, Summit County, Colorado

    USGS Publications Warehouse

    Elliott, John G.; Flynn, Jennifer L.; Bossong, Clifford R.; Char, Stephen J.

    2011-01-01

    The subwatersheds with the greatest potential postwildfire and postprecipitation hazards are those with both high probabilities of debris-flow occurrence and large estimated volumes of debris-flow material. The high probabilities of postwildfire debris flows, the associated large estimated debris-flow volumes, and the densely populated areas along the creeks and near the outlets of the primary watersheds indicate that Indiana, Pennsylvania, and Spruce Creeks are associated with a relatively high combined debris-flow hazard.

  14. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  15. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  16. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  17. Active Debris Removal and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  18. Ecological half-time and effective dose from chernobyl debris and from nuclear weapons fallout of 137Cs as measured in different Swedish populations.

    PubMed

    Rääf, C L; Hubbard, L; Falk, R; Agren, G; Vesanen, R

    2006-05-01

    The fallout in Sweden of radiocesium from nuclear weapons tests during the 1960's (137Cs) and from the Chernobyl accident in 1986 (134Cs and 137Cs) has transferred to humans through different ecological pathways. Data from whole-body burden measurements of 134Cs, 137Cs, and 40K in various Swedish populations between 1964 and 2002 have been compiled. This database enables an evaluation of the temporal and geographical dependence of the transfer of radiocesium from ground deposition to humans and the associated absorbed dose. The body burdens of 137Cs gradually decrease after the peak values reached in 1965 from nuclear weapons fallout and in 1987 from the Chernobyl fallout, but at a varying rate depending on the population. Assuming a dual exponential decrease, a short-term component of typically 1-2 y and a long-term component of 5-10 y are found in urban populations in Sweden. Among reindeer herders and hunters the effective ecological half-time is mono-exponential with a half-time of 5-7 y. The estimated time-integrated effective dose to an individual during a period of 50 y from the Chernobyl fallout is, on average, approximately 10 mSv for reindeer herders, which is 10-100 times higher than the estimated dose received by urban populations in the three major Swedish urban areas (Malmö, Göteborg, and Stockholm). PMID:16607176

  19. Space debris detection

    NASA Astrophysics Data System (ADS)

    Eather, Robert H.

    1992-12-01

    A feasibility study on the possibility of detecting less than or = 10 cm space debris using a large-aperture ground-based telescope (with an intensified CCD detector) was completed, showing that detection should be possible. A detector system was designed and built, and installed on the 2.54 m WRDC telescope at Wright Patterson AFB. Bad seeing conditions in the Dayton area prevented the expected debris detection. Subsequently, a small 40 cm telescope was built and operated from the Haystack Observatory (Groton, MA). Known objects were used to test pointing and acquisition procedures, and the system was then shipped to Rattlesnake Observatory (Richland, WA) for participation in the ODERAC's debris calibration experiment from the Space Shuttle. This experiment failed, and our instrument has been stored at Rattlesnake in anticipation of a new ODERAC's flight in late 1993.

  20. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  1. VizieR Online Data Catalog: Spitzer/IRS debris disk catalog. I. (Chen+, 2014)

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Mittal, T.; Kuchner, M.; Forrest, W. J.; Lisse, C. M.; Manoj, P.; Sargent, B. A.; Watson, D. M.

    2014-05-01

    In Chen et al. (2006ApJS..166..351C), we obtained IRS spectra of 59 main-sequence stars with previously reported IRAS 60um excesses. We augment those data with newly obtained IRS spectra of 64 main-sequence stars with MIPS 24um and/or IRAS 25um excesses using the SL (5.2-14.0um) and LL (14.0-38.0um; λ/Δλ~60) modules as part of the program "Characterizing Warm Debris around Main Sequence Stars" (PID 40651 led by PI: J. Houck). For targets not observed as part of our programs, we downloaded Cornell Atlas of Spitzer/Infrared Spectrograph Sources (CASSIS; Lebouteiller et al. 2011ApJS..196....8L) spectra wherever possible. We assembled MIPS 24 and/or 70um photometry for 473 IRS sources to calibrate the IRS spectra and better constrain our targets' global SEDs (see Table 2). (4 data files).

  2. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  3. Applied Astronomy: An Optical Survey for Space Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Edwin S.; Abercromby, K.; Rodriquez, H.

    2007-01-01

    A viewgraph is presented to discuss space debris at Geosynchronous Earth Orbit (GEO). The topics include: 1) Syncom1 launched February 14, 1963 Failed on orbit insertion 1st piece of GEO debris!; 2) Example of recent GEO payload: XM-2 Rock satellite for direct broadcast radio; 3) MODEST Michigan Orbital DEbrisSurvey Telescope the telescope formerly known as the Curtis-Schmidt; 4) GEO Debris Survey; 5) Examples of Detections; 6) Brightness Variations Common; 7) Observed Angular Rates; 8) Two Populations at GEO; 9) High Area-to-Mass Ratio Material (A/M); 10) Examples of MLI; 11) Examples of MLI Release in LEO; 12) Liou & Weaver (2005) models; 13) ESA 1-m Telescope Survey; 14) Two Telescopes March 2007 Survey and Follow-up; 15) Final Eccentricity; and 16) How control Space Debris?

  4. Value analysis for orbital debris removal

    NASA Astrophysics Data System (ADS)

    Vance, Leonard; Mense, Allan

    2013-08-01

    This paper presents methods for deriving first order monetary benefits from removing individual debris objects in high value sun-synchronous orbits. These analyses are intended to serve as an economic metric by which competing debris removal methods can be evaluated. Orbital debris flux level estimates from NASA’s updated ORDEM2000 model are used to establish small debris population estimates. When combined with the replacement cost of satellites in sun-synchronous orbit, the present value of removing individual small (0.5 cm-2.0 cm) objects from orbit is derived. Large object removal value is more complicated due to the necessity of incorporating effects of impact fragmentation observed with any object about 10 cm or larger. Breakup models published by NASA (Johnson, N.L., Krisko, P.H., Liou, J.C., Anz-Meador, P.D. NASA’s new breakup model of evolve 4.0. Adv. Space Res. 28 (9), 1377-1384, 2001.) provide a basis for establishing fragmentation statistics. Assuming the current population of operational sun-synchronous satellites, removal value is then derived via present value analysis.

  5. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  6. Space Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  7. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  8. Activities on space debris in U.S.

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  9. Improvements to NASA's Debris Assessment Software

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Johnson, Nicholas L.

    2007-01-01

    NASA's Debris Assessment Software (DAS) has been substantially revised and expanded. DAS is designed to assist NASA programs in performing orbital debris assessments, as described in NASA s Guidelines and Assessment Procedures for Limiting Orbital Debris. The extensive upgrade of DAS was undertaken to reflect changes in the debris mitigation guidelines, to incorporate recommendations from DAS users, and to take advantage of recent software capabilities for greater user utility. DAS 2.0 includes an updated environment model and enhanced orbital propagators and reentry-survivability models. The ORDEM96 debris environment model has been replaced by ORDEM2000 in DAS 2.0, which is also designed to accept anticipated revisions to the environment definition. Numerous upgrades have also been applied to the assessment of human casualty potential due to reentering debris. Routines derived from the Object Reentry Survival Analysis Tool, Version 6 (ORSAT 6), determine which objects are assessed to survive reentry, and the resulting risk of human casualty is calculated directly based upon the orbital inclination and a future world population database. When evaluating reentry risks, the user may enter up to 200 unique hardware components for each launched object, in up to four nested levels. This last feature allows the software to more accurately model components that are exposed below the initial breakup altitude. The new DAS 2.0 provides an updated set of tools for users to assess their mission s compliance with the NASA Safety Standard and does so with a clear and easy-to-understand interface. The new native Microsoft Windows graphical user interface (GUI) is a vast improvement over the previous DOS-based interface. In the new version, functions are more-clearly laid out, and the GUI includes the standard Windows-style Help functions. The underlying routines within the DAS code are also improved.

  10. GEO Debris Observation of PMO

    NASA Astrophysics Data System (ADS)

    Ping, Yiding; Zhao, Changyin; Zhao, Haibin

    2009-03-01

    This paper summarizes observations and results obtained by Purple Mountain Observatory in March 2007 of space debris at geosynchronous orbit (GEO) in support of WG1 Action Item 23.4, International 2007 Optical Debris Campaign in Higher Earth Orbit, organized by the Inter-Agency Space Debris Coordination Committee (IADC). The main goal of Pmo's work is to develop the observational techniques of Higher Earth Orbit Space debris for the future work. A new telescope designed for debris observation is also described here.

  11. Effect of thermospheric contraction on remediation of the near-Earth space debris environment

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Saunders, Arrun; Swinerd, Graham; Newland, Rebecca J.

    2011-08-01

    Historically, computer simulations of the near-Earth space debris environment have provided a basis for international debris mitigation guidelines and, today, continue to influence international debate on debris environment remediation and active debris removal. Approximately 22,500 objects larger than 10 cm are known to exist in Earth orbit, and less than 5% of these are operational payloads, with the remaining population classed as space debris. These objects represent a significant risk to satellite operations because of the possibility of damaging or catastrophic collisions, as demonstrated by the collision between Iridium 33 and Cosmos 2251 in February 2009. Indeed, recent computer simulations have suggested that the current population in low Earth orbit (LEO) has reached a sufficient density at some altitudes for collision activity there to continue even in the absence of new launches. Even with the widespread adoption of debris mitigation guidelines, the growth of the LEO population, in particular, is expected to result in eight or nine collisions among cataloged objects in the next 40 years. With a new study using the University of Southampton's space debris model, entitled DAMAGE, we show that the effectiveness of debris mitigation and removal strategies to constrain the growth of the LEO debris population could be more than halved because of a long-term future decline in global thermospheric density. However, increasing debris remediation efforts can reverse the impact of this negative density trend.

  12. Final Report of the Haystack Orbital Debris Data Review Panel

    NASA Technical Reports Server (NTRS)

    Barton, David K.; Brillinger, David; McDaniel, Patrick; Pollock, Kenneth H.; El-Shaarawi, A. H.; Tuley, Michael T.

    1998-01-01

    The Haystack Orbital Debris Data Review Panel was established in December 1996 to consider the adequacy of the data on orbital debris gathered over the past several years with the Haystack radar, and the accuracy of the methods used to estimate the flux vs. size relationship for this debris. The four specific issues addressed for the Panel were: 1. The number of observations relative to the estimated population of interest 2. The inherent ambiguity between the measured radar cross section (RCS) and the inferred physical size of the object 3. The inherent aspect angle limitation in viewing each object and its relationship to object geometry 4. The adequacy of the sample data set to characterize the debris population's potential geometry. Further discussion and interpretation of these issues, and identification of the detailed questions contributing to them, are discussed in this report.

  13. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.

    2003-01-01

    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  14. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.

  15. The motion of tethered tug-debris system with fuel residuals

    NASA Astrophysics Data System (ADS)

    Aslanov, Vladimir S.; Yudintsev, Vadim V.

    2015-10-01

    Active debris removal using a space tug with a tether is one of the promising techniques to decrease the population of large non-functional satellites and orbital stages in near Earth orbits. Properties of debris should be taken into account in the development of the space tugs. In this paper we consider the motion of a debris objects with fuel residuals that can affect the safety of the debris transportation process. The equations of the attitude motion of the tug-debris system in a central gravitational field are derived. Stationary solutions of the equations are found. The system of linearized equations are introduced that can be used for short term analysis. The numerical simulation results are provided that show good accuracy of the linearized equations. Proposed equations can be used to analyze the attitude motion of the tug-debris system and to determine the conventional parameters for safe tethered transportation of space debris.

  16. Comprehensive Census and Analysis of Nearby Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Cotten, Tara H.

    2016-01-01

    Debris disks are intimately linked to planetary system evolution since the rocky material surrounding the star is believed to originate in collisions between planetesimals, asteroids and comets. With the conclusion of all major space infrared missions and lack of future large-scale infrared excess survey missions, it is time to make a complete list of all debris disk systems and search for trends in the population. A thorough search of the literature for infrared excess stars has been combined with a large-scale survey for excess stars in the Tycho-2 catalog that makes use of all available infrared photometry. The result is a list of ~580 unique high fidelity debris disk stars. This project seeks a comprehensive analysis of debris disk stars not yet completed on this large scale. A summary of the creation of the high fidelity debris disk census and the multi-facility endeavor to obtain various stellar and disk parameters for each debris disk will be presented. I will offer an exploration into the relationships between host stars and their debris disks through properties such as metallicity, age, and rotation.

  17. Acoustic module of the Acquabona (Italy) debris flow monitoring system

    NASA Astrophysics Data System (ADS)

    Galgaro, A.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2005-02-01

    Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys).

  18. Recent Developments in Space Debris Mitigation Policy and Practices

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    In recent years, emphasis has shifted from national efforts to control the space debris population to international ones. Here, too, great progress has been made, most notably by the Inter-Agency Space Debris Coordination Committee (IADC) and the Committee on the Peaceful Uses of Outer Space (COPUOS) of the United Nations. Today, a firm international consensus is rapidly building on the principal space debris mitigation measures. The IADC is an association of the space agencies of ten countries (China, France, Germany, India, Italy, Japan, Russia, Ukraine, the United Kingdom, and the United States) and the European Space Agency, representing 17 countries of which four (France, Germany, Italy, and the United Kingdom) are also full IADC members. At the 17th meeting of the IADC in October 1999, a new Action Item (AI 17.2) was adopted to develop a set of consensus space debris mitigation guidelines. The purpose of the activity was to identify the most valuable space debris mitigation measures and to reach an international agreement on common directives. The IADC Space Debris Mitigation Guidelines (www.iadc-online.org/index.cgi?item=docs_pub) were formally adopted in October 2002 during the Second World Space Congress in Houston, Texas. Two years later a companion document, entitled Support to the IADC Space Debris Mitigation Guidelines, was completed to provide background and clarification for the guidelines.

  19. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  20. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  1. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  2. Microplastic debris in sandhoppers

    NASA Astrophysics Data System (ADS)

    Ugolini, A.; Ungherese, G.; Ciofini, M.; Lapucci, A.; Camaiti, M.

    2013-09-01

    Adults of the sandhopper Talitrus saltator were fed with dry fish food mixed with polyethylene microspheres (diameter 10-45 μm). Observations of homogenized guts revealed the presence of microspheres independently of their dimensions. The gut resident time (GRT) was recorded and most of the microspheres are expelled in 24 h. Microspheres are totally expelled in one week. Preliminary investigations did not show any consequence of microsphere ingestion on the survival capacity in the laboratory. FT-IR analyses carried out on faeces of freshly collected individuals revealed the presence of polyethylene and polypropylene. This confirms that microplastic debris could be swallowed by T. saltator in natural conditions.

  3. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  4. CLEANSPACE 'Small Debris Removal By Laser Illumination And Complementary Technologies'

    SciTech Connect

    Esmiller, Bruno; Jacquelard, Christophe

    2011-11-10

    Studies show that the number of debris in Low Earth Orbit is exponentially growing despite future debris release mitigation measures considered. Especially, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground based laser solution which can remove at low expense and in a non-destructive way hazardous debris of decimetric size around selected space assets appears as one highly promising answer. This solution will be studied in the frame of CLEANSPACE project which is a part of the FP7 space theme. The overall CLEANSPACE objective is threefold: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks and to establish roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the CLEANSPACE project.

  5. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  6. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  7. Space debris executive summary

    SciTech Connect

    Canavan, G.H.; Judd, O.; Naka, R.F.

    1996-09-01

    Spacecraft, boosters, and fragments are potential hazards to space vehicles, and it is argued that collisions between them could produce a cascade that could preclude activity in LEO in 25 to 50 years. That has generated pressure for constraints on military space operations, so the AF SAB performed a study of technical aspects of the debris problem. The Study was independent of the efforts of the Air Force Space Command (AFSPC) as well as those of and NASA Johnson Space Center (JSC), which is the principal advocate for cascades and constraints. Most work on space debris has been performed by AFSPC and JSC, so the Study was in part an assessment of their efforts, in which both have been cooperative. The Study identified the main disagreements and quantified their impacts. It resolved some issues and provided bounds for the rest. It treated radar and optical observations; launch, explosion, and decay rates; and the number and distribution of fragments from explosions and collisions. That made it possible to address hazard to manned spacecraft at low altitudes and the possibility of cascading at higher altitudes, both of which now appear less likely.

  8. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  9. The Challenge of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2012-01-01

    Since the dawn of the Space Age more than 50 years ago, humans have been launching objects into the space environment faster than they have been removed by active means or natural decay. This has led to a proliferation of debris -- derelict satellites, discarded rocket upper stages, and pieces from satellite breakups -- in Earth orbit, especially in well-used orbital regimes. This talk will summarize the current knowledge of the debris environment and describe plans to address the challenges orbital debris raises for the future usability of near-Earth space. The talk will be structured around 4 categories: Measurements, Modeling, Shielding, and Mitigation. This will include discussions of the long-term prognosis of debris growth (i.e., the "Kessler Syndrome") as well as plans for active debris removal.

  10. Trends in marine debris along the U.S. Pacific Coast and Hawai'i 1998-2007.

    PubMed

    Ribic, Christine A; Sheavly, Seba B; Rugg, David J; Erdmann, Eric S

    2012-05-01

    We assessed amounts, composition, and trends of marine debris for the U.S. Pacific Coast and Hawai'i using National Marine Debris Monitoring Program data. Hawai'i had the highest debris loads; the North Pacific Coast region had the lowest debris loads. The Southern California Bight region had the highest land-based debris loads. Debris loads decreased over time for all source categories in all regions except for land-based and general-source loads in the North Pacific Coast region, which were unchanged. General-source debris comprised 30-40% of the items in all regions. Larger local populations were associated with higher land-based debris loads across regions; the effect declined at higher population levels. Upwelling affected deposition of ocean-based and general-source debris loads but not land-based loads along the Pacific Coast. LNSO decreased debris loads for both land-based and ocean-based debris but not general-source debris in Hawai'i, a more complex climate-ocean effect than had previously been found. PMID:22385753

  11. Tethers and debris mitigation

    NASA Astrophysics Data System (ADS)

    van der Heide, Erik Jan; Kruijff, Michiel

    2001-03-01

    In recent years, the use of tethers has been proposed for reduction of space debris either through momentum transfer or use of electrodynamic effects. Tethers have been shown to at least theoretically allow for quick, elegant and cost-effective deorbit of defunct satellites or spent stages. On the other hand, the large risk that tethers themselves may pose to other satellites in orbit has been recognized as well. The large collision area of tethers, combined with operational hazards and meteoroid risk may result in a large orbital exposure. For example, in 1997, the ESA/Dutch 35-km tether deployment of YES from TEAMSAT was inhibited after an analysis of the collision risk for the case the tether operation would fail. The question rises how these two points of view compare to eachother. This paper intends to highlight a representative selection of the proposed tether applications while taking into account the added risks caused by the tethers themselves. Typical applications from recent literature will be briefly described, such as an Ariane 502 spent stage re-entry from GTO and the concept of deboost of defunct satellites by interaction of a conductive tether with the Earth magnetic field. Mass savings of the tethered sytems versus conventional equivalents will be evaluated. Based on a crude risk analysis, involving elements such as mission complexity, dynamic stability, meteoroid risk and orbital life time, a general outline of limiting factors can be given for the various applications. Special attention is reserved for implementation of mechanisms that help reduce this tether risk, such as the DUtether (Tether Degradable by Ultraviolet), utilization of airdrag and solar pressure, the effect of residual current in bare tethers, tether retrieval etc. It is proposed how a net tether-induced mitigation can be compared to that of conventional alternatives, i.e. deboost by rocket engine or a completely passive approach. This comparison is put in the perspective of an

  12. Population.

    ERIC Educational Resources Information Center

    King, Pat; Landahl, John

    This pamphlet has been prepared in response to a new problem, a rapidly increasing population, and a new need, population education. It is designed to help teachers provide their students with some basic population concepts with stress placed on the elements of decision making. In the first section of the pamphlet, some of the basic concepts of…

  13. Evolution of gas in debris discs

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Wyatt, Mark; Pringle, Jim

    2015-12-01

    A non negligible quantity of gas has been discovered in an increasing number of debris disc systems. ALMA high sensitivity and high resolution is changing our perception of the gaseous component of debris discs as CO is discovered in systems where it should be rapidly photodissociated. It implies that there is a replenishment mechanism and that the observed gas is secondary. Past missions such as Herschel probed the atomic part of the gas through O I and C II emission lines. Gas science in debris discs is still in its infancy, and these new observations raise a handful of questions concerning the mechanisms to create the gas and about its evolution in the planetary system when it is released. The latter question will be addressed in this talk as a self-consistent gas evolution scenario is proposed and is compared to observations for the peculiar case of β Pictoris.Our model proposes that carbon and oxygen within debris discs are created due to photodissociation of CO which is itself created from the debris disc dust (due to grain-grain collisions or photodesorption). The evolution of the carbon atoms is modelled as viscous spreading, with viscosity parameterised using an α model. The temperature, ionisation fraction and population levels of carbon are followed with a PDR model called Cloudy, which is coupled to the dynamical viscous α model. Only carbon gets ionised due to its lower ionisation potential than oxygen. The carbon gas disc can end up with a high ionisation fraction due to strong FUV radiation field. A high ionisation fraction means that the magnetorotational instability (MRI) is very active, so that α is very high. Gas density profiles can be worked out for different input parameters such as the α value, the CO input rate, the location of the input and the incoming radiation field. Observability predictions can be made for future observations, and our model is tested on β Pictoris observations. This new gas evolution model fits the carbon and CO

  14. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.C.

    2010-01-01

    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  15. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  16. Environment Characterisation by Using Innovative Debris Detector

    NASA Astrophysics Data System (ADS)

    Bauer, W.; Barschke, M.; Romberg, O.

    The knowledge about small (> 100 µm) but abundant objects in space is low. To analyze the quantity of space debris and micrometeoroids in space, an innovative in-situ impact detection method has been developed at the German Aerospace Center (DLR) in Bremen, Germany. The Solar generator based Impact Detector, SOLID, uses solar panels for impact detection. Since solar panels provide large detection areas, this method allows the collection of large amounts of data. Such data enhances space debris and micrometeoroid population datasets and permits for related model validation. A ground verification of the detection method has been performed by Hypervelocity Impact (HVI) tests at Fraunhofeŕs Ernst-Mach-Institut (EMI), Freiburg, Germany. The objective of this investigation was to test the applicability of the developed method concerning in-situ detection of space debris and micrometeoroids. The achieved test results are in agreement with ESA developed damage equations and the functionality of the detector has clearly been demonstrated. This paper presents the already manufactured hardware planned for on orbit test on the Technische Universität Berlin's TechnoSat mission in early 2016. The expected impact frequencies at corresponding probabilities and uncertainties regarding object size estimation are also outlined.

  17. Implementation of the hazardous debris rule

    SciTech Connect

    Sailer, J.E.

    1993-01-05

    Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

  18. Spatial patterns of plastic debris along Estuarine shorelines.

    PubMed

    Browne, Mark A; Galloway, Tamara S; Thompson, Richard C

    2010-05-01

    The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas where the movements of water are slower. There was, however, no relationship between the abundance of microplastic and the proportion of clay in sediments from the strandline. These results illustrate how FT-IR spectroscopy can be used to identify the different types of plastic and in this case was used to indicate spatial patterns, demonstrating habitats that are downwind acting as potential sinks for the accumulation of debris. PMID:20377170

  19. GEO-to-GEO Optical Sensors: Estimating the Detection Rate of Uncataloged Debris Objects

    NASA Astrophysics Data System (ADS)

    Shell, J.

    2013-09-01

    The GEO debris environment remains ill-characterized, in particular the population of small (< 1m) debris objects. While the space object catalog only contains debris attributed to two GEO fragmentation events, many estimate that ten or more GEO fragmentation events have occurred. Further complicating the small debris estimates are wide-ranging assumptions on fragmentation event kinematics, and the extent to which the NASA breakup model applies. However, candidate efforts may enable GEO-hosted optical sensors, thus providing an opportunity for empirical examination of the small debris population. These potential missions beg the question of exactly what will be seen from such payloads. Will the exponentially increasing small debris population flood such sensors with many detection events from small objects at relatively short ranges? Or, will the angular rates of such objects at required ranges for adequate signal result in minimal small objects detected? A physics-based model is employed to estimate detection events given an optical payload with a parameterized estimate of the GEO small debris environment. It is found that only for the most aggressive small debris population estimates that small objects dominate detections. Object sizes on the order of 10 cm and larger are found to comprise the majority of detection events.

  20. Recognizing Patterns in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. I will describe the latest 3-D models of debris dish dynamics / models that include planets, grain-grain collisions and even ISM-disk interactions. I will show why all these ingredients are needed to explain disk images--and what the images are telling us about planet formation.

  1. Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages

    NASA Astrophysics Data System (ADS)

    Aslanov, Vladimir S.; Yudintsev, Vadim V.

    2015-01-01

    Active debris removal is one of the promising techniques that will decrease the population of large, non-functional spacecraft (space debris) on orbit. Properties of space debris should be taken into account during planning an active debris removal mission. In this paper the thrusting phase of tethered deorbit of large space debris with flexible appendages is considered. The goal of the work is to investigate the mutual influence of the tether vibrations and the vibrations of flexible appendages during thrusting phase. A mathematical model of the space tug and the towed space debris with flexible appendages is developed. Parameters of the system are determined with assumptions that the system is moving in straight line, avoiding high amplitude vibrations of flexible appendages. The expression of the discriminant indicates that the vibrations of the tether and flexible appendages influence each other. A critical tether stiffness exists for the given space tug mass that should be avoided.

  2. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  3. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  4. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from...

  5. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  6. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  7. On the Nature of Debris and Collision Growth Estimates

    NASA Astrophysics Data System (ADS)

    Combs, R.; Koch, J.; Vandrey, N.

    2013-09-01

    Orbital debris growth estimates are used for a variety of purposes, including resource allocation for debris field tracking, allocation of research and development funds, as well as considerations on collision risk and debris elimination. More accurate projections would enable better resource allocation. Contemporary estimates and models of debris growth take a linear form where growth is a constant number of objects per year, or they take a geometric growth rate of about 1-2%. Examination of empirical data reveals that growth is not linear, but geometric, and that historical projections have underestimated growth and debris by wide margins. Measurements reveal that debris field growth rates appear to be closer to 5% than 2%. Measurements of debris size and population reveal an inverse log-log relationship, so it is possible to estimate the debris population of any size by measuring the population at a given size. The U.S. Space Catalog is the most reliable measure of the objects with a minimum diameter on the order of 50 cm. The space catalog has grown at an average rate of 3.5% per annum in the last decade, and 3.8% per annum since 1980. Space Catalog growth rate is only loosely correlated (0.55) with the global launch rate. New detection methods are being fielded like Space Based Space Surveillance and the Space Fence, objects as small as 5 cm will be reliably tracked in the near future. In 2010, the space catalog was estimated to grow from a current 20,000 object catalog to a 100,000 object catalog by 2023, yielding an 8.5% per year. Given that debris growth rates exceed contemporary estimates, it is not surprising collision rates exceed estimates as well. The number of known or suspected collisions exceeds the numbers projected by Kessler in 1978. Modern and brute-force collision projection methods reveal the use of a flat or linear rate of >100cm object conjunctions. The actual conjunction rate appears to grow geometrically as well.

  8. SPACeMAN -a Satellite to Actively Reduce Sub-Centimeter Debris

    NASA Astrophysics Data System (ADS)

    Knirsch, Uli

    In-orbit fragmentation events, whether accidental or intentional, are bound to increase the population of space debris. "Critical debris" ranging between 1 and 10mm are numerous and can be lethal to both satellites and inhabited structures. This in turn creates further debris, potentially leading to a chain reaction ("Kessler syndrome"). In first approximation, collecting sub-centimeter debris appears impractical since rendezvous maneuvers are prohibitively expensive in terms of delta v and hardware complexity. One possible solution is to fly a spacecraft with a small constant vertical thrust. As a result, it will move somewhat faster than other, passive objects in its orbit -such as space debris. This "non-Keplerian orbit" thus creates a small chance of accidental collision. The sPACeMAN is designed to withstand impacts, capturing the debris. Since the probability of capture is low, some active control, particularly of the vertical thrust, can be instituted. The sPACeMAN concept was developed to reduce the population of NaK droplets in critical orbits. However, it can be extended to other debris as well. Since its effectiveness is greatest in areas of relatively high population densities of space debris, it would be best suited for quick responses, such as after a fragmentation event.

  9. Debris flows: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Turnbull, Barbara; Bowman, Elisabeth T.; McElwaine, Jim N.

    2015-01-01

    Debris flows and debris avalanches are complex, gravity-driven currents of rock, water and sediments that can be highly mobile. This combination of component materials leads to a rich morphology and unusual dynamics, exhibiting features of both granular materials and viscous gravity currents. Although extreme events such as those at Kolka Karmadon in North Ossetia (2002) [1] and Huascarán (1970) [2] strongly motivate us to understand how such high levels of mobility can occur, smaller events are ubiquitous and capable of endangering infrastructure and life, requiring mitigation. Recent progress in modelling debris flows has seen the development of multiphase models that can start to provide clues of the origins of the unique phenomenology of debris flows. However, the spatial and temporal variations that debris flows exhibit make this task challenging and laboratory experiments, where boundary and initial conditions can be controlled and reproduced, are crucial both to validate models and to inspire new modelling approaches. This paper discusses recent laboratory experiments on debris flows and the state of the art in numerical models.

  10. Debris flow hazard mapping, Hobart, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Mazengarb, Colin; Rigby, Ted; Stevenson, Michael

    2015-04-01

    Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are

  11. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  12. An efficient algorithm for orbital evolution of space debris

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Y.; Abd El-Salam, F.

    More than four decades of space exploration have led to accumulation of significant quantities of debris around the Earth. These objects range in size from a tiny piece of junk to a large inoperable satellite, although these objects that have small size they have high are-to-mass ratios, and consequently their orbits are strongly influenced by solar radiation pressure and atmospheric drag. So the increasing population of space debris object in the LEO, MEO and GEO present growing with time, serious hazard for the survival of operating spacecrafts, particularly satellites and astronomical observatories. Since the average collision velocity between any spacecraft orbiting in the LOE and debris objects is about 10 km/s and about 3 km/s in the GEO. Space debris may significantly disturb any satellite operations or cause catastrophic damage to a spacecraft itself. Applying different shielding techniques spacecraft my be protected against impacts of space debris with diameters smaller than 1 cm. For larger debris objects, only one effective method to avoid catastrophic consequence of collision is a manoeuvre that will change the spacecraft orbit. The necessary conditions in this case is to evaluate and predict future positions of the spacecraft and space debris with sufficient accuray. Numerical integration of equations of motion are used until now. Existing analytical methods can solve this problem only with low accuracy. Difficulties are caused mainly by the lack of satisfying analytical solution of the resonance problem for geosynchronous orbit as well as from the lack of efficient analytical theory combining luni-solar perturbation and solar radiation pressure with geopotential attraction. Numerical integration is time consuming in some cases, and then for qualitative analysis of the satellite's and debris's motion it is necessary to apply analytical solution. This is the reason for searching for an accurate model to evaluate the orbital position of the operating

  13. Current and Near-Term Future Measurements of the Orbital Debris Environment at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Liou, J.-C.; Mulrooney, M.; Horstman, M

    2010-01-01

    The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2- 4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2 which was exposed to space for 16 years and was recently returned to Earth during the STS- 125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future.

  14. Optical polarization of solar type stars with debris disks

    NASA Astrophysics Data System (ADS)

    García, L.; Gómez, M.

    2015-04-01

    We report optical aperture polarimetry for 34 southern hemisphere main-sequence stars with debris disks, in addition to 54 stars without evidence of disk. These sets of stars are combined with another set of 109 stars from the northern hemisphere, obtained from the literature, to build two samples of 51 and 97 solar-type stars with and without debris disks. The distributions of polarization values for the samples with and without disks show no significant statistical difference, within the precision of our observations. However, we identify a sub-sample of 9 stars (d≲ 50 pc) with disks that have polarization levels above the median for the sample with disk, and that are not appropriately reproduced by Serkowski's interstellar law. These stars are candidates to have intrinsic polarization. In this case the debris disks in these stars may be populated by small dust with sizes of ≍0.1μm.

  15. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  16. Biological response to prosthetic debris.

    PubMed

    Bitar, Diana; Parvizi, Javad

    2015-03-18

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  17. Analysis of the fragmentation debris environment between 2005 and 2008

    NASA Astrophysics Data System (ADS)

    Flegel, Sven Kevin; Stabroth, Sebastian; Wiedemann, Carsten; Klinkrad, Heiner; Krag, Holger; Vörsmann, Peter

    Several fragmentation events have occurred in the years since the release of the ESA space debris model MASTER-2005 (Meteoroid and Space Debris Terrestrial Environment Reference). During this period some notable events took place which resulted in an unusually large increase in the spatial debris density. A compilation of the fragmentation events between 2005 and 2008 is presented based on data gathered from the literature. Event parameters such as object type and location are discussed. The spatial object density is then simulated using the MASTER- 2005 population generation tool POEM (Program for Orbital Debris Environment Modelling). The NASA Breakup Model implemented in POEM is used to determine the properties of the initial cloud of fragments for each event. Propagating the orbital elements of all fragments yields the time dependent evolution of the object clouds. Spatial densities are then calculated from the distribution of the fragments. The results are discussed for all events in the detailed time frame. The changes in the orbital fragment environment since 2005 as a consequence of the presented events are of further interest. To this end, the overall density which is obtained from the simulations with POEM is compared to the predicted growth of the total spatial density. The prediction for the fragmentation debris is generated with MASTER-2005 on the basis of a business-as-usual scenario for the year 2005. Deviations between the resulting spatial density distributions are discussed in terms of fragmentation rates, breakup locations and breakup cause.

  18. Marine debris accumulation in the nearshore marine habitat of the endangered Hawaiian monk seal, Monachus schauinslandi 1999-2001.

    PubMed

    Boland, Raymond C; Donohue, Mary J

    2003-11-01

    Large amounts of marine debris are present in shallow reefs adjacent to beach haulouts of the critically endangered Hawaiian monk seal, Monachus schauinslandi. These areas serve as seal pup nurseries, and injury and death caused by entanglement in marine debris are undermining population recovery efforts. We investigated the extent of this threat by measuring the accumulation of potentially entangling derelict fishing gear in nursery zones, 1999-2001. Plots of reef 1.0-1.3 km2 at three Northwestern Hawaiian Islands were initially cleaned of derelict fishing gear in 1999 then resurveyed in 2000 and 2001. Submerged debris densities across sites ranged from 16 to 165 debris items/km2. Resurveyed sites yielded annual marine debris accumulation rates from 0 to 141 debris items/km2. This large range was attributed to the physiography of reef areas surveyed. Trawl net webbing was significantly more common than other types of debris recovered and represented 84% of all debris encountered, suggesting that much of the debris originated from distant North Pacific Ocean fisheries. The likely source of most debris is the multinational trawl fisheries of the North Pacific Ocean. An international solution to this problem is needed. Targeted marine debris removal is a short-term, successful, entanglement mitigation strategy. PMID:14607537

  19. Debris Flows and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  20. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activation; (2) Launch vehicle explosion; (3) Aerodynamic loads; (4) Inertial loads; (5) Atmospheric reentry heating; and (6) Impact of intact vehicle. (c) Debris fragment lists. A debris analysis must produce...

  1. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activation; (2) Launch vehicle explosion; (3) Aerodynamic loads; (4) Inertial loads; (5) Atmospheric reentry heating; and (6) Impact of intact vehicle. (c) Debris fragment lists. A debris analysis must produce...

  2. DebriSat Project Update and Planning

    NASA Technical Reports Server (NTRS)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  3. NASA Orbital Debris Requirements and Best Practices

    NASA Technical Reports Server (NTRS)

    Hull, Scott

    2014-01-01

    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  4. Review of uncertainty sources affecting the long-term predictions of space debris evolutionary models

    NASA Astrophysics Data System (ADS)

    Dolado-Perez, J. C.; Pardini, Carmen; Anselmo, Luciano

    2015-08-01

    Since the launch of Sputnik-I in 1957, the amount of space debris in Earth's orbit has increased continuously. Historically, besides abandoned intact objects (spacecraft and orbital stages), the primary sources of space debris in Earth's orbit were (i) accidental and intentional break-ups which produced long-lasting debris and (ii) debris released intentionally during the operation of launch vehicle orbital stages and spacecraft. In the future, fragments generated by collisions are expected to become a significant source as well. In this context, and from a purely mathematical point of view, the orbital debris population in Low Earth Orbit (LEO) should be intrinsically unstable, due to the physics of mutual collisions and the relative ineffectiveness of natural sink mechanisms above~700 km. Therefore, the real question should not be "if", but "when" the exponential growth of the space debris population is supposed to start. From a practical point of view, and in order to answer the previous question, since the end of the 1980's several sophisticated long-term debris evolutionary models have been developed. Unfortunately, the predictions performed with such models, in particular beyond a few decades, are affected by considerable uncertainty. Such uncertainty comes from a relative important number of variables that being either under the partial control or completely out of the control of modellers, introduce a variability on the long-term simulation of the space debris population which cannot be captured with standard Monte Carlo statistics. The objective of this paper is to present and discuss many of the uncertainty sources affecting the long-term predictions done with evolutionary models, in order to serve as a roadmap for the uncertainty and the statistical robustness analysis of the long-term evolution of the space debris population.

  5. Contribution of explosion and future collision fragments to the orbital debris environment

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Kessler, D. J.

    1985-01-01

    The time evolution of the near-earth man-made orbital debris environment modeled by numerical simulation is presented in this paper. The model starts with a data base of orbital debris objects which are tracked by the NORAD ground radar system. The current untrackable small objects are assumed to result from explosions and are predicted from data collected from a ground explosion experiment. Future collisions between earth orbiting objects are handled by the Monte Carlo method to simulate the range of collision possibilities that may occur in the real world. The collision fragmentation process between debris objects is calculated using an empirical formula derived from a laboratory spacecraft impact experiment to obtain the number versus size distribution of the newly generated debris population. The evolution of the future space debris environment is compared with the natural meteoroid background for the relative spacecraft penetration hazard.

  6. Assessment of the NASA EVOLVE long-term orbital debris evolution model

    NASA Astrophysics Data System (ADS)

    Yates, K. W.; Jonas, F. M.

    1995-02-01

    The EVOLVE long-term orbital debris evolution model developed for the NASA Johnson Space Center by Lockheed Engineering and Sciences Company and Systems Planning Corporation is described and evaluated in detail. This computer model calculates the low earth orbit (LEO) debris spatial number density or flux environment as a function of fragment size, altitude, and time. Launched intact objects, introduced from detailed manifest databases, are time-evolved with an analytical orbit propagator. Debris clouds, formed from the application of a cloud formation algorithm and breakup model, are time-evolved using a derived phenomenological function. This report describes the overall computer model (e.g., its deterministic and stochastic modes of calculation) and examines the individual submodels used to quantify the debris population in LEO. Model results are compared to observed debris data. Specific recommendations and possible model improvements are cited. Also presented is a sample satellite constellation hazard assessment using EVOLVE.

  7. ORDEM 3.0 and the Risk of High-Density Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Anz-Meador, Philip

    2014-01-01

    NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.

  8. Stellar Multiplicity in the DEBRIS disk sample

    NASA Astrophysics Data System (ADS)

    Rodriguez, David R.; Duchene, Gaspard; Tom, Henry; Kennedy, Grant; Matthews, Brenda C.; Butner, Harold M.

    2015-01-01

    Circumstellar disks around young stars serve as the sites of planet formation. A common outcome of the star formation process is that of stellar binary systems. How does the presence of multiple stars affect the properties of disks, and thus of planet formation? To examine the frequency of disks around stellar binaries we carried out a multiplicity survey on stars in the DEBRIS sample. This sample consists of 451 stars of spectral types A-M observed with the Herschel Space Telescope. We have examined the stellar multiplicity of this sample by gathering information from the literature and performing an adaptive optics imaging survey at Lick Observatory. We identify 189 (42%) binary or multiple star systems.In our sample, we find that debris disks are less common around binaries than single stars, though the disk detection frequency is comparable among A stars regardless of multiplicity. Nevertheless, the period distribution of disk-bearing binaries is consistent with that of non-disk binaries and with comparison field samples. Although the frequency of disk-bearing binaries may be lower than in single star systems, the processes behind disk formation are comparable among both single and multiple-star populations.This work is supported in part by a Chile Fondecy grant #3130520.

  9. Engineering and Technology Challenges for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  10. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  11. Brute Force Modeling of the Orbital Debris Evolution

    NASA Astrophysics Data System (ADS)

    Nikolaev, S.; Phillion, D.; Horsley, M.; Johnson, N.

    2012-09-01

    The Kessler Syndrome (runaway increase in the number of orbiting debris fragments through cascading collisions) presents a serious danger to future space missions. To understand its implications and study the effectiveness of various proposed debris mitigation strategies, long-term evolutionary models for near-Earth space environment (e.g. NASA's LEGEND, ESA's MASTER-2009) are used. Because of the long timescales involved, existing models represent the orbiting population by some average spatial density functions, resulting in a limited spatial and temporal resolution of such models. Here, we present the brute force approach to evolutionary debris modeling, by propagating and monitoring every object in orbit for the length of the simulation (100+ years). The approach involved designing a custom, efficient orbital propagator, coupled with a fast conjunction analysis module. The resulting highly parallel simulation code was run on LLNL's supercomputers, due to the extremely demanding computing power requirements. Here we present some of the results of these high-fidelity simulations. This approach allows unprecedented, high-resolution view of the evolution of orbiting populations, and establishes new state of the art in evolutionary debris modeling.

  12. Debris shield survivability and lifetimes for NIF

    SciTech Connect

    Davis, S; Duewer, T; Eder, D; Ertel, J; Horton, R; Latkowski, Brereton, S; MacGowan, B; Thomas, I; Tobin, M; Zaka, F

    1999-09-01

    The survivability and performance of the NIF debris shields on the National Ignition Facility are a key factor for the successful conduct and affordable operation of the facility. Estimates of debris shield lifetime in the presence of target emissions indicate severely shortened lifetimes. We have tested a new coating design that improves debris shield cleaning. A combination of modeling and continuous data collection on NIF is described/recommended to allow cost effective debris shield operation.

  13. Space Debris: Its Causes and Management

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2002-01-01

    Orbital debris is internationally recognized as an environmental issue which needs to be addressed today to preserve near-Earth space for future generations. All major space agencies are committed to mitigating the growth of the debris environment. Many commercial space system operators have responded positively to orbital debris mitigation principles and recommendations. Orbital debris mitigation measures are most cost-effective if included in the design development phase.

  14. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  15. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  16. Orbital debris sweeper and method

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1991-01-01

    An orbital debris sweeper is provided for removing particles from orbit which otherwise may impact and damage an orbiting spacecraft. The debris sweeper includes a central sweeper core which carries a debris monitoring unit, and a plurality of large area impact panels rotatable about a central sweeper rotational axis. In response to information from the debris monitoring unit, a computer determines whether individual monitored particles preferably impact one of the rotating panels or pass between the rotating panels. A control unit extends or retracts one or more booms which interconnect the sweeper core and the panels to change the moment of inertia of the sweeper and thereby the rotational velocity of the rotating panels. According to the method of the present invention, the change in panel rotational velocity increases the frequency of particles which desirably impact one of the panels and are thereby removed from orbit, while large particles which may damage the impact panels pass between the trailing edge of one panel and the leading edge of the rotationally succeeding panel.

  17. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  18. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  19. Debris Flux Comparisons From The Goldstone Radar, Haystack Radar, and Hax Radar Prior, During, and After the Last Solar Maximum

    NASA Technical Reports Server (NTRS)

    Stokely, C. L.; Stansbery, E. G.; Goldstein, R. M.

    2006-01-01

    The continual monitoring of low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 through 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors, and are detailed in this paper.

  20. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  1. Debris flow grain size scales with sea surface temperature over glacial-interglacial timescales

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.; Araújo, João Paulo C.

    2015-04-01

    Debris flows are common erosional processes responsible for a large volume of sediment transfer across a range of landscapes from arid settings to the tropics. They are also significant natural hazards in populated areas. However, we lack a clear set of debris flow transport laws, meaning that: (i) debris flows remain largely neglected by landscape evolution models; (ii) we do not understand the sensitivity of debris flow systems to past or future climate changes; and (iii) it remains unclear how to interpret debris flow stratigraphy and sedimentology, for example whether their deposits record information about past tectonics or palaeoclimate. Here, we take a grain size approach to characterising debris flow deposits from 35 well-dated alluvial fan surfaces in Owens Valley, California. We show that the average grain sizes of these granitic debris flow sediments precisely scales with sea surface temperature throughout the entire last glacial-interglacial cycle, increasing by ~ 7 % per 1 ° C of climate warming. We compare these data with similar debris flow systems in the Mediterranean (southern Italy) and the tropics (Rio de Janeiro, Brazil), and find equivalent signals over a total temperature range of ~ 14 ° C. In each area, debris flows are largely governed by rainfall intensity during triggering storms, which is known to increase exponentially with temperature. Therefore, we suggest that these debris flow systems are transporting predictably coarser-grained sediment in warmer, stormier conditions. This implies that debris flow sedimentology is governed by discharge thresholds and may be a sensitive proxy for past changes in rainfall intensity. Our findings show that debris flows are sensitive to climate changes over short timescales (≤ 104 years) and therefore highlight the importance of integrating hillslope processes into landscape evolution models, as well as providing new observational constraints to guide this. Finally, we comment on what grain size

  2. Control of Culex pipiens fatigans(W) by the larvivorous fish Poecillia reticulata and by removal of debris from the breeding habitat.

    PubMed

    Phan-Urai, P; Nelson, M J; Phanthumachinda, B

    1976-03-01

    Twice weekly removal of floating debris from two polluted ponds in Bangkok resulted in 75% reduction of immature populations of C.p. fatigans for seven weeks. Subsequent introduction of the guppy Poecilia reticulata at 10 fish per m2 further reduced the aquatic population to 2% of the pretreatment level during 12 weeks. When debris removal was discontinued, partial recovery of the larval density was observed. When fish were introduced in a plot without prior debris removal, there was no reduction of the mosquito population, and when only part of the debris was removed from one plot, the reduction was immediate. PMID:1027109

  3. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  4. Detecting debris flows using ground vibrations

    USGS Publications Warehouse

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  5. An optimal trajectory design for debris deorbiting

    NASA Astrophysics Data System (ADS)

    Ouyang, Gaoxiang; Dong, Xin; Li, Xin; Zhang, Yang

    2016-01-01

    The problem of deorbiting debris is studied in this paper. As a feasible measure, a disposable satellite would be launched, attach to debris, and deorbit the space debris using a technology named electrodynamic tether (EDT). In order to deorbit multiple debris as many as possible, a suboptimal but feasible and efficient trajectory set has been designed to allow a deorbiter satellite tour the LEO small bodies per one mission. Finally a simulation given by this paper showed that a 600 kg satellite is capable of deorbiting 6 debris objects in about 230 days.

  6. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  7. New Debris Disks in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Balog, Z.; Csengeri, T.; Henning, Th.; Juhász, A.; Kiss, Cs.

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μm observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μm Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  8. New Debris Disks in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Balog, Z.; Csengeri, T.; Henning, Th.; Juhász, A.; Kiss, Cs.

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μm observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μm Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ˜90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  9. Active space debris removal by a hybrid propulsion module

    NASA Astrophysics Data System (ADS)

    DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.

    2013-10-01

    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of

  10. Warm Debris Disks from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  11. Comparison of space debris estimates

    SciTech Connect

    Canavan, G.H.; Judd, O.P.; Naka, R.F.

    1996-10-01

    Debris is thought to be a hazard to space systems through impact and cascading. The current environment is assessed as not threatening to defense systems. Projected reductions in launch rates to LEO should delay concerns for centuries. There is agreement between AFSPC and NASA analyses on catalogs and collision rates, but not on fragmentation rates. Experiments in the laboratory, field, and space are consistent with AFSPC estimates of the number of fragments per collision. A more careful treatment of growth rates greatly reduces long-term stability issues. Space debris has not been shown to be an issue in coming centuries; thus, it does not appear necessary for the Air Force to take additional steps to mitigate it.

  12. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  13. Debris Disks and Hidden Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  14. Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.; Marchant, David R.

    2014-01-01

    Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating

  15. The New NASA Orbital Debris Engineering Model ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.

    2014-01-01

    The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 microns through 1 m in non-GEO and 10 cm through 1 m in GEO are modeled. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours from existing data sources and from new sources that weren't available to past versions. Returned surfaces, ground tests, and remote sensors all contribute data. The returned surface and ground test data reveal material characteristics of small particles. Densities of fragmentation debris particles smaller than 10 cm are grouped in ORDEM 3.0 in terms of high-, medium-, and lowdensities, along with RORSAT sodium-potassium droplets. Supporting models have advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intacts, mission related debris (MRD), and explosion and collision fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific, well defined populations are added like the Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium (NaK) droplets, recent major accidental and deliberate collision fragments, and known anomalous debris event fragments. For microdebris of sizes 10 microns to 1 mm the ODPO uses an in-house Degradation/Ejecta model in which a MLE technique is used with returned surface data to estimate populations. This paper elaborates on the upgrades of this model over previous versions highlighting the material density splits and consequences of

  16. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2014-01-01

    LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.

  17. Detection Of Exocomets Within Edge-on Debris Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon Lynn; Welsh, B.

    2011-01-01

    The youngest circumstellar debris disks in orbit around main sequence stars are thought to represent the last stage in the formation of a planetary system. Dust and gas continues to be replenished in these systems when planetesimals reach sizes of around 2000 km. Dynamical instabilities can "stir" the population of smaller planetesimals such that they undergo violent dust-generating collisions with each other. The same instabilities may send comets on highly eccentric orbits toward the star in these debris disk systems. Four stars, including the protypical debris disk star Beta Pic, have already been shown to exhibit short-term (i.e., night-to-night) variability in Ca II, which is widely believed to be due to infalling evaporating bodies (FEBs or exocomets). We have collected moderately high-resolution spectra of ten young, A-type, rapidly-rotating stars with excess infrared continuum emission using the Cassegrain-Echelle spectrograph of the 2.1m Otto Struve Telescope. Here, we report the detection of two new gas disk systems with short-term variability in CaII: 5 Vul and 49 Cet. While the circumstellar disks of both stars have been previously described in the literature, this is the first report of night-to-night variability within the debris disk gas. Velocity arguments have allowed us to place some constraints on the dynamics of the absorbing gas.

  18. Man-Made Debris In and From Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  19. Modeling debris-covered glaciers: extension due to steady debris input

    NASA Astrophysics Data System (ADS)

    Anderson, L. S.; Anderson, R. S.

    2015-11-01

    Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, mass balance gradients can be reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial advection. We ran 120 simulations in which a steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier. Our model and parameter selections produce two-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris related variables are held constant. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities from glaciers in High Asia. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  20. Workers Search for Columbia's Debris

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Members of a US Forest Service search team walk a grid during a Columbia recovery search near the Hemphill, Texas site. The group is accompanied by a space program worker able to identify potential hazards of Shuttle parts. Workers from every NASA Center and numerous federal, state, and local agencies searched for Columbia's debris in the recovery effort. For more information on STS-107, please see GRIN Columbia General Explanation

  1. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  2. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  3. BINARIES AMONG DEBRIS DISK STARS

    SciTech Connect

    Rodriguez, David R.; Zuckerman, B.

    2012-02-01

    We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.

  4. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. PMID:26365568

  5. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  6. Debris about asteroids: Where and how much?

    NASA Technical Reports Server (NTRS)

    Burns, Joseph A.; Hamilton, Douglas P.

    1992-01-01

    We summarize several recent findings on the size and shape of the region within which material can stably orbit an asteroid. If the asteroid (with assumed density 2.38 g/cu cm) circles the Sun at 2.55 AU, co-planar prograde material will remain trapped whenever started on unperturbed circular orbits at less than about 220 R(sub A) (asteroid radii); co-planar retrograde particles are stable out twice as far. Our 3-D stability surface, which encloses several hundred numerically calculated orbits that start with various inclinations, is shaped like a sphere with its top and bottom sliced off; its dimensions scale like the Hill radius =(mu/3)(exp 1/3)R, where mu is the asteroid-to-solar mass ratio and R is the asteroid's orbital radius. If the asteroid moves along an elliptical orbit, a fairly reliable indicator of the dimensions of the hazard zone is the size of its Hill sphere at the orbit's pericenter. Grains with radii less than a few mm will be lost through the action of radiation forces which can induce escape or cause collisions with the asteroid on times scales of a few years; interplanetary micrometeoroids produce collisional break-up of these particles in approximately 10(exp 4) yrs. The effects of Jupiter and of asteroids that pass close to the target asteroid allow particles to diffuse from the system, again shrinking the hazard zone. None of the considered sources-primordial formation, debris spalled off the asteroid during micrometeoroid impact, captured interplanetary particles, feeder satellites, etc., seem capable of densely populating distant orbits from the asteroid. No certain detections of debris clouds or of binary asteroids have been made. Thus, it seems highly unlikely that a spacecraft fly-by targeted at 100 R(sub A) from the asteroid over its orbital pole would encounter any material.

  7. Evaluating tsunami hazards from debris flows

    USGS Publications Warehouse

    Watts, P.; Walder, J.S.

    2003-01-01

    Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.

  8. LAD-C: A large area debris collector on the ISS

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.

    2006-01-01

    The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.

  9. Optical Observations of the Orbital Debris Environment at NASA

    NASA Technical Reports Server (NTRS)

    Africano, John L.; Stansbery, Eugene G.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    To gain a better understanding of the LEO and MEO (low and middle earth orbit) optical orbital debris environments, especially in the important, but difficult to track one to ten centimeter size range, NASA Johnson Space Center (JSC) has built a zenith-staring Liquid Mirror Telescope (LMT) near Cloudcroft, NM. The mirror of the LMT consists of a three-meter diameter parabolic dish containing several gallons of mercury that is spun at a rate of ten revolutions per minute. A disadvantage of the LMT is its inability to point in any direction other than the zenith. However, this is not a major limitation for statistical sampling of the LEO and MEO orbital debris population. While the LMT is used for the characterization of the LEO and MEO orbital debris environments, its inability to point off zenith limits its utility for the GEO environment where objects are concentrated over the equator. To gain a better understanding of the GEO debris environment, NASA JSC has built a CCD Debris Telescope (CDT). The CDT is a 12.5-inch aperture Schmidt portable telescope with automated pointing capability. The CDT is presently co-located with the LMT. The CDT can see down to 17.1 magnitude in a 30 second exposure with a 1.5 degree field of view. This corresponds to a ten percent reflective, 0.8-meter diameter object at geosynchronous altitude. Both telescopes are used every clear night. We present results from 3 years of observations from the LMT and preliminary results from the CDT.

  10. Debris and meteoroid proportions deduced from impact crater residue analysis

    NASA Technical Reports Server (NTRS)

    Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet

    1995-01-01

    This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood

  11. A Sensitivity Study on the Effectiveness of Active Debris Removal in LEO

    NASA Technical Reports Server (NTRS)

    Liou, J. C.; Johnson, Nicholas L.

    2007-01-01

    The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but may be insufficient to stabilize the environment. The nature of the growth, in the low Earth orbit (LEO) region, is further demonstrated by a recent study where no future space launches were conducted in the environment projection simulations. The results indicate that, even with no new launches, the LEO debris population would remain relatively constant for only the next 50 years. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Therefore, to better limit the growth of future debris population to protect the environment, remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to quantify the effectiveness of various remediation options. A removal criterion based upon mass and collision probability is developed to rank objects at the beginning of each projection year. This study includes simulations with removal rates ranging from 2 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed, and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.

  12. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  13. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  14. THE COLLISIONAL EVOLUTION OF DEBRIS DISKS

    SciTech Connect

    Gaspar, Andras; Rieke, George H.; Balog, Zoltan E-mail: grieke@as.arizona.edu

    2013-05-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration

  15. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  16. Orbital debris from upper-stage breakup

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr. (Editor)

    1989-01-01

    The present conference on the effects of launch vehicle upper-stage breakup on the orbital debris scenario discusses an analysis of the SPOT 1 Ariane third stage, the explosive fragmentation of orbiting propellant tanks, albedo estimates for debris, Ariane-related debris in deep-space orbit, and the relationship of hypervelocity impacts to upper-stage breakups. Also discussed are the prospects for and the economics of the future removal of orbital debris, collision probabilities in GEO, current operational practices for Delta second stage breakup prevention, breakup-precluding modifications to the Ariane third stage, and the safing of the H-1 second stage after spacecraft separation.

  17. Space debris mitigation measures in India

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Ganeshan, A. S.

    2006-02-01

    The Indian Space Research Organization (ISRO) recognizes the importance of the current space debris scenario, and the impact it has on the effective utilization of space technology for the improvement in the quality of life on the Earth. ISRO is committed to effective management of the threats due to space debris. Towards this commitment ISRO works on different aspects of space debris, including the debris mitigation measures. This paper highlights the activities and achievements in the implementation of the mitigation measures. ISRO successfully designed and developed a propellant venting system for implementation in the existing upper stage of India's Polar Satellite Launch Vehicle (PSLV), which uses Earth-storable liquid propellants. GSLV also employs passivation of the Cryogenic Upper Stage at the end of its useful mission. ISRO's communication satellites in GSO are designed with adequate propellant margins for re-orbiting at the end of their useful life to a higher graveyard orbit. A typical successful operation in connection with INSAT-2C is described. ISRO developed its debris environmental models and software to predict the close approach of any of the debris to the functional satellites. The software are regularly used for the debris risk management of the orbiting spacecraft and launch vehicles. ISRO recognizes the role of international cooperation in the debris mitigation measures and actively contributes to the efforts of the Inter-Agency Space Debris Coordination Committee (IADC) and United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).

  18. Primary dispersal of supraglacial debris and debris cover formation on alpine glaciers

    NASA Astrophysics Data System (ADS)

    Kirkbride, M. P.; Deline, P.

    2009-04-01

    Debris-covered glaciers are receiving increased attention due to the modulation of runoff by supraglacial covers, and to the lake outburst flood hazard at many covered glacier termini. Observed increases in debris cover extents cannot presently be explained in terms of glaciological influences. The supply of englacial debris to the supraglacial zone has previously been understood only in terms of local dispersal due to differential ablation between covered and uncovered ice, for example on medial moraines. Here, we introduce the term primary dispersal to describe the process of migration of the outcrops of angled debris septa across melting, thinning ablation zones. Understanding primary debris dispersal is an essential step to understanding how supraglacial debris cover is controlled by glaciological variables, and hence is sensitive to climatically-induced fluctuation. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focussing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a septum outcrop and the ice surface. (1) and (2) are inversely related, while (3) increases downglacier to explain why slow-moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) illustrate primary dispersal processes at a site where debris cover is increasing in common with many other shrinking alpine glaciers. We develop a model of the potential for debris cover formation and growth in different glaciological environments. This explains why glaciers whose termini are obstructed often have steep debris septa feeding debris covers which vary slowly in response to mass balance change. In contrast, at glaciers with gently-dipping debris-bearing foliation, the debris cover extent is sensitive to glaciological change. These findings

  19. Debris Selection and Optimal Path Planning for Debris Removal on the SSO: Impulsive-Thrust Option

    NASA Astrophysics Data System (ADS)

    Olympio, J. T.; Frouvelle, N.

    2013-08-01

    The current paper deals with the mission design of a generic active space debris removal spacecraft. Considered debris are all on a sun-synchronous orbit. A perturbed Lambert's problem, modelling the transfer between two debris, is devised to take into account J2 perturbation, and to quickly evaluate mission scenarios. A robust approach, using techniques of global optimisation, is followed to find optimal debris sequence and mission strategy. Manoeuvres optimization is then performed to refine the selected trajectory scenarii.

  20. Pathways and Distribution of Marine Debris Around a Remote Caribbean Island, Little Cayman

    NASA Astrophysics Data System (ADS)

    Camp, L.; Marsh, L.; O'Keefe, A.; Duran, J.; Wilcox, S. M.; James, R.; Cowan, E.

    2011-12-01

    Marine Debris is a major environmental concern that affects all levels of marine life. On remote beaches in the Caribbean, where human populations are minimal, marine debris is largely deposited by ocean currents. The ocean is estimated to be littered with over 6 million metric tons of trash per year with 90% coming from land sources, but little is known about the exact sources and pathways for the debris. In 2006, on Little Cayman Island, coastal debris was collected at two coastal areas where removal of debris had not occurred in at least 9 years and along 2000 meters squared. One site was located on the north side, while the other site was located on the south side of the island. Both sites were located in reef-protected coastal zones. These two sites were revisited in 2007, 2010, and 2011 to determine the volume, weight, and type of debris arriving annually and to assess the importance of different coastal processes in deposition. In 2011, eight turtle nesting beaches were added to the study and a total of 11,186 liters of debris was collected from 1600 meters of coastline. The island lies in a northeast southwest orientation. The south-side of the island is influenced largely by prevailing trade winds, currents and tropical storms, traveling across the Caribbean from the east. Currents, eddies, and Norwesters would presumably deposit debris on the north side of the island. Approximately five times the amount of debris is deposited on the south side of the island than on the north side of the island. From the total debris collected, 72.45% was plastic, 8.23% shoes, 6.37% ropes & nets , 5.13% glass, 4.37% styrofoam, and 3.44% contained other debris. The marine debris originated in 8 different countries, and it is estimated that there is collectively 223,721 liters (11,635 kg) covering the shores of the entire island. Remarkably, debris found on Little Cayman in 2011 was traced to the 2010 Haitian earthquake relief effort.

  1. Experimental Modelling of Debris Flows

    NASA Astrophysics Data System (ADS)

    Paleo Cageao, P.; Turnbull, B.; Bartelt, P.

    2012-04-01

    Debris flows are gravity-driven mass movements typically containing water, sediments, soil and rocks. These elements combine to give a flow complex phenomenology that exhibits characteristics common to diverse geophysical flows from dry granular media (e.g. levee formation) to viscous gravity currents (viscous fingering and surge instabilities). The exceptional speeds and range debris flows can achieve motivate the need for a co-ordinated modelling approach that can provide insight into the key physical processes that dictate the hazard associated with the flows. There has been recent progress in theoretical modelling approaches that capture the details of the multi-component nature of debris flows. The promise of such models is underlined by their qualitatively successful comparison with field-scale experimental data. The aim of the present work is to address the technical difficulties in achieving a controlled and repeatable laboratory-scale experiment for robust testing of these multi-component models. A laboratory experiment has been designed and tested that can provide detailed information of the internal structure of debris flows. This constitutes a narrow Perspex chute that can be tilted to any angle between 0° and ≈ 60°. A mixture of glycerine and glass balls was initially held behind a lock-gate, before being released down the chute. The evolving flow was captured through high speed video, analysed with a Particle Image Velocimetry algorithm to provide the changing velocity field. A wide parameter space has been tested, allowing variations in particle size, dispersity, surface roughness, fluid viscosity, slope angle and solid volume fraction. While matching key similarity criteria, such as Froude number, with a typical field event, these experiments allow close examination of a wide range of physical scenarios for the robust testing of new multi-component flow models. Further diagnostics include force plate and pore pressure measurements, with a view

  2. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly

  3. 33 CFR 151.3000 - Definition of marine debris for the purposes of the Marine Debris Research, Prevention, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the purposes of the Marine Debris Research, Prevention, and Reduction Act. 151.3000 Section 151.3000... Definition of Marine Debris for the Purposes of the Marine Debris Research, Prevention, and Reduction Act § 151.3000 Definition of marine debris for the purposes of the Marine Debris Research, Prevention,...

  4. Optical Observations of GEO Debris with Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercromby, K.; Rodriguez, H.; Barker, E.

    2007-01-01

    For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full

  5. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project. PMID:25402937

  6. Application of multi-agent coordination methods to the design of space debris mitigation tours

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  7. Conjunction challenges of low-thrust geosynchronous debris removal maneuvers

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.; Schaub, Hanspeter

    2016-06-01

    The conjunction challenges of low-thrust engines for continuous thrust re-orbiting of geosynchronous (GEO) objects to super-synchronous disposal orbits are investigated, with applications to end-of-life mitigation and active debris removal (ADR) technologies. In particular, the low maneuverability of low-thrust systems renders collision avoidance a challenging task. This study investigates the number of conjunction events a low-thrust system could encounter with the current GEO debris population during a typical re-orbit to 300 km above the GEO ring. Sensitivities to thrust level and initial longitude and inclination are evaluated, and the impact of delaying the start time for a re-orbiting maneuver is assessed. Results demonstrate that the mean number of conjunctions increases hyperbolically as thrust level decreases, but timing the start of the maneuver appropriately can reduce the average conjunction rate when lower thrust levels are applied.

  8. Origin of orbital debris impacts on LDEF's trailing surfaces

    NASA Astrophysics Data System (ADS)

    Kessler, Donald J.

    1993-04-01

    A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

  9. High Energy Laser for Space Debris Removal

    SciTech Connect

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored

  10. Orbital Debris Observations with WFCAM

    NASA Technical Reports Server (NTRS)

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard

    2014-01-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  11. Riding a Trail of Debris

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    This image taken by NASA's Spitzer Space Telescope shows the comet Encke riding along its pebbly trail of debris (long diagonal line) between the orbits of Mars and Jupiter. This material actually encircles the solar system, following the path of Encke's orbit. Twin jets of material can also be seen shooting away from the comet in the short, fan-shaped emission, spreading horizontally from the comet.

    Encke, which orbits the Sun every 3.3 years, is well traveled. Having exhausted its supply of fine particles, it now leaves a long trail of larger more gravel-like debris, about one millimeter in size or greater. Every October, Earth passes through Encke's wake, resulting in the well-known Taurid meteor shower.

    This image was captured by Spitzer's multiband imaging photometer when Encke was 2.6 times farther away than Earth is from the Sun. It is the best yet mid-infrared view of the comet at this great distance. The data are helping astronomers understand how rotating comets eject particles as they circle the Sun.

  12. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  13. Estimates of current debris from flux models

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Flux models that balance accuracy and simplicity are used to predict the growth of space debris to the present. Known and projected launch rates, decay models, and numerical integrations are used to predict distributions that closely resemble the current catalog-particularly in the regions containing most of the debris.

  14. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a...

  15. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Public Assistance Eligibility § 206.224 Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest... and privately owned lands and waters. Such removal is in the public interest when it is necessary...

  16. The dust debris around HR 4796

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1991-01-01

    The IRAS data strongly suggest that there is dust debris around the main-sequence A star HR 4796. The optical depth of the dust cloud around HR 4796 is probably twice that around Beta Pic, the main-sequence star in the Bright Star Catalog which was previously thought to have the most opaque dust debris cloud.

  17. Interagency Report on Orbital Debris, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1995 report updates the findings and recommendations of the 1989 report and reflects the authors' progress in understanding and managing the orbital debris environment. It provides an up-to-date portrait of their measurement, modeling, and mitigation efforts; and a set of recommendations outlining specific steps they should pursue, both domestically and internationally, to minimize the potential hazard posed by orbital debris.

  18. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  19. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  20. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  1. Geosynchronous Large Debris Reorbiter: Challenges and Prospects

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Moorer, Daniel F.

    2012-06-01

    An elegant solution is proposed to an old problem of how to remove expired or malfunctioning satellites from the geosynchronous belt. Previous "space-tug" concepts describe a scenario where one craft (the tug) docks with another (debris) and then boosts that object to a super-synchronous orbit. The most challenging aspect of these concepts is the very complex proximity operations to an aging, possibly rotating and, probably, non-cooperative satellite. Instead, the proposed method uses an elegant blend of electrostatic charge control and low-thrust propulsion to avoid any contact requirement. The Geosynchronous Large Debris Reorbiter (GLiDeR) uses active charge emission to raise its own absolute potential to 10's of kilovolts and, in addition, directs a stream of charged particles at the debris to increase its absolute potential. In a puller configuration the opposite polarity of the debris creates an attractive force between the GLiDeR and the debris. Pusher configurations are feasible as well. Next, fuel-efficient micro-thrusters are employed to gently move the reorbiter relative to the debris, and then accelerate the debris out of its geosynchronous slot and deposit it in a disposal orbit. Preliminary analysis shows that a 1000 kg debris object can be re-orbited over two-four months. During the reorbit phase the separation distance is held nominally fixed without physical contact, even if the debris is tumbling, by actively controlling the charge transfer between the reorbiter and the debris. Numerical simulations are presented illustrating the expected performance, taking into account also the solar radiation pressure.

  2. The New NASA Orbital Debris Engineering Model ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.

    2014-01-01

    The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2000, now referred to as ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 micron through larger than 1 m in non-GEO and 10 cm through larger than 1 m in GEO are available. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours of data from existing sources and from new sources than past ORDEM versions. The object data range in size from 10 µm to larger than 1 m, and include in situ and remote measurements. The in situ data reveals material characteristics of small particles. Mass densities are grouped in ORDEM 3.0 in terms of 'high-density', represented by 7.9 g/cc, 'medium-density' represented by 2.8 g/cc and 'low-density' represented by 1.4 g/cc. Supporting models have also advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intact spacecraft and rocket bodies, mission related debris, and explosion and collision event fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific populations are added from sodium potassium droplet releases, recent major accidental and deliberate collisions, and known anomalous debris events. This paper elaborates on the upgrades of this model over previous versions. Sample validation results with remote and in situ measurements are shown, and the consequences of including material density are discussed as it relates to heightened risks to crewed and robotic spacecraft

  3. A model for the evolution of on-orbit manmade debris environment

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Fischer, N. H.; Edgecombe, D. S.

    1985-01-01

    Man-made debris in low-Earth orbit (LEO) and the conduct of operations/procedures which leave debris in orbit are discussed. With continued deposition and larger vehicles and longer times on orbit for LEO operations, the probability of collisions between such vehicles and some member of the debris population becomes large. Because the collisions will occur at very large relative speeds, a small object which would not normally be considered a hazard might pose a lethal threat to an operating spacecraft. Future debris states must be deduced from an evaluation of many models using a Monte Carlo method for future deposition events. A model for the population evolution is presented and results of model calculations are discussed. Contributions to the population which may be expected to arise from on-orbit collisions and explosions are examined. Results are presented as models for future space usage as an extrapolation of usage in the past, for an era of enhanced space usage, and for an era in which antisatellite tests provide a debris contribution.

  4. In-situ Observations of Space Debris at ESA

    NASA Astrophysics Data System (ADS)

    Drolshagen, G.

    Information on the small size (millimetre or smaller) space debris and meteoroid population in space can only be obtained by in-situ detectors or the analysis of retrieved hardware. Past, ongoing and planned ESA activities in this field are presented. In 1996 the GORID impact detector was launched into a geostationary orbit on-board the Russian Express-2 telecommunication satellite. This impact ionisation detector had a sensor surface of 0.1 m2. Until July 2002 when the spacecraft was shut down it recorded more than 3000 impacts in the micrometre size range. Inter alia, GORID measured numerous clusters of events, believed to result from debris clouds, and indicated that debris fluxes in GEO are larger than predicted by present models. Another in-situ detector, DEBIE-1, was launched in October 2001 and is operating on-board the small technology satellite PROBA in a low polar orbit. It has two sensors, each of 0.01m2 size, pointing in different directions. A second detector of this type, DEBIE-2 with 3 sensors, is ready for flight on the EuTEF carrier (external payload to ISS). The data from GORID and DEBIE-1 are stored on-line in EDID (European Detector Impact Database). Post-flight impact analyses of retrieved hardware provide detailed information on the encountered meteoroid and debris fluxes over a large range of sizes. ESA initiated several analyses in the past ((EURECA, Hubble Space Telescope (HST) solar arrays). The most recent impact analysis was performed for the HST solar arrays retrieved in March 2002. Measured crater sizes in solar cells ranged from about 1 micron to 7 mm. A total of 175 complete penetrations of the 0.7 mm thick arrays were observed. A chemical analysis of impact residues allowed the distinction between space debris and natural meteoroids. Space debris was found to dominate for sizes smaller than 10 microns and larger than about 1 mm. For intermediate sizes impacts are mainly from meteoroids. Results of the analysis and comparisons with

  5. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  6. Tidal Debris Around Merger Remnants.

    NASA Astrophysics Data System (ADS)

    McQullan, Maria

    2015-01-01

    We present images of the interacting pair NGC 3310. These images were taken using the HDI camera on the 0.9m at Kitt Peak in Arizona. NGC 3310 is a starburst galaxy which recently underwent a collision with a much smaller mass galaxy. It has been postulated that this galaxy was then scattered in the orbit of NGC 3310 creating multiple tidal loops around the galaxy. In order to observe and study these loops, the data must be clear of noise within 1% error. We present our method of correcting to this precision level and an analysis of the tidal loop system. We will also discuss the implications of this stellar debris on the evolutionary history of this galaxy.

  7. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  8. Characterizing Secondary Debris Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Schonberg, W. P.

    1999-08-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  9. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  10. Emergency assessment of post-fire debris-flow hazards for the 2013 Powerhouse fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.

  11. Emergency assessment of post-fire debris-flow hazards for the 2013 Springs Fire, Ventura County, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2014-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Springs fire in Ventura County, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 9 of the 99 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 28 of the 99 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings, and that residents adhere to any evacuation orders.

  12. A study of methods to estimate debris flow velocity

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  13. Development of Harpoon System for Capturing Space Debris

    NASA Astrophysics Data System (ADS)

    Reed, Jame; Barraclough, Simon

    2013-08-01

    Active removal of large space debris has been identified as a key activity to control the growth in the debris population and to limit the risk to active satellites. Astrium is developing technologies to enable such a mission, including a harpoon capture system. The harpoon is simple, compact and lightweight. Since the capture is fast (typically <0.5s) it is relatively insensitive to the dynamic state of the target and orbital dynamics, simplifying the mission design. The harpoon system is designed to attach to the target whilst also minimising damage. The harpoon consists of a set of barbs to robustly hold the target, a crushable section to absorb excess impact energy, and a tether to connect to the chaser vehicle. The baseline firing system uses compressed gas, although a simpler one-shot system has also been designed. To understand how a harpoon could be applicable to active debris removal an on-ground prototype and test-rig has been developed for trials with real structural elements of satellites and rocket bodies. Testing has demonstrated the feasibility of the concept and this paper describes the results as well as the next steps. A number of design variants are also proposed which could simplify the system design of an ADR mission.

  14. The effect of simulated hypervelocity space debris on polymers

    SciTech Connect

    Verker, R. . E-mail: rverker@soreq.gov.il; Eliaz, N.; Gouzman, I.; Eliezer, S.; Fraenkel, M.; Maman, S.; Beckmann, F.; Pranzas, K.; Grossman, E.

    2004-11-08

    Space debris population in low Earth orbit has been increasing constantly with the increase in spacecraft missions. Hypervelocity space debris impacts limit the functionality of polymeric outer surfaces and, in extreme cases, might cause a total loss of a spacecraft. In this work, the fracture of Kapton films by ultrahigh velocity impacts was studied. A laser-driven flyer ground simulation system was used to accelerate aluminum flyers to impact velocities as high as 2.9 km/s against polymer films with different thicknesses. Scanning electron microscopy was used to characterize the fracture morphology. Impact effects on the internal structure of the polymer were studied by means of X-ray microtomography. It was found that with an increase in debris velocity, a ductile-to-brittle transition occurred. However, fractures created by impacts at velocities above 1.7 km/s showed central impacts regions, which experienced the highest strain rate and were of ductile-type fracture, while the outer regions, which experienced a lower strain rate, failed through brittle cracking. A model explaining this phenomenon, based on the temperature gradient developed within the impacted region during collision, is presented.

  15. The Technology of Modeling Debris Cloud Produced by Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Ma, Zhaoxia; Huang, Jie; Liang, Shichang; Zhou, Zhixuan; Ren, Leisheng; Liu, Sen

    2013-08-01

    Because of the large amount of debris in a debris cloud, it is hard to achieve a complete description of all the debris by a simple function. One workable approach is to use a group of complete distribution functions and MonteCarlo method to simplify the debris cloud simulation. Enough debris samples are produced by SPH simulation and debris identification program firstly. According to the distribution functions of debris mass, velocity and space angles determined by statistical analysis, the engineering model of debris cloud is set up. Combining the engineering model and MonteCarlo method, the fast simulation of debris cloud produced by an aluminum projectile impacting an aluminum plate is realized. An application example of the debris cloud engineering model to predict satellite damage caused by space debris impact is given at the end.

  16. Final Design for a Comprehensive Orbital Debris Management Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.

  17. Current and Future Impact Risks from Small Debris to Operational Satellites

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Kessler, Don

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.

  18. Nuclear-powered space debris sweeper

    NASA Technical Reports Server (NTRS)

    Metzger, John D.; Leclaire, Rene J., Jr.; Howe, Steven D.; Burgin, Karen C.

    1989-01-01

    Future spacecraft design will be affected by collisions with man-made debris orbiting the earth. Most of this orbital space debris comes from spent rocket stages. It is projected that the source of future debris will be the result of fragmentation of large objects through hypervelocity collisions. Orbiting spacecraft will have to be protected from hypervelocity debris in orbit. The options are to armor the spacecraft, resulting in increased mass, or actively removing the debris from orbit. An active space debris sweeper is described which will utilize momentum transfer to the debris through laser-induced ablation to alter its orbital parameters to reduce orbital lifetime with eventual entry into the earth's atmosphere where it will burn. The paper describes the concept, estimates the amount of velocity change (Delta V) that can be imparted to an object through laser-induced ablation, and investigates the use of a neutral particle beam for the momentum transfer. The space sweeper concept could also be extended to provide a collision avoidance system for the space station and satellites, or could be used for collision protection during interplanetary travel.

  19. Orbital debris removal and meteoroid deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1998-11-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1 - 10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts of asteroids with the Earth, it shown that it is possible to scale up the systems to prevent these catastrophic collisions providing sufficient early warning is available from new generation space telescopes plus deep space radar tracking.

  20. Active Debris Removal of Multiple Priority Targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Flegel, Sven Kevin; Vörsmann, Peter; Wiedemann, Carsten; Gelhaus, Johannes; Moeckel, Marek; Kebschull, Christopher

    2012-07-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 kilometers with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any future launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target. In this paper several systems, e.g. chemical and electrical engines are analysed with the main focus on removing multiple targets within one single mission. The service satellite has to undock from the previously de-orbited target in order to start the rendezvous and docking phase for a subsequent target. The targets are chosen from a previously defined priority list in order to enhance the mission

  1. Active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.

    2013-05-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  2. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  3. The long-term implications of operating satellite constellations in the low earth orbit debris environment

    NASA Astrophysics Data System (ADS)

    Walker, R.; Crowther, R.; Swinerd, G. G.

    1997-05-01

    DRA's Integrated Debris Evolution Suite (IDES) model is used in this study to predict the future evolution of the orbital debris environment for two distinct scenarios. For the first case, a pre-generated background debris population for 1995 and `business as usual' future launch/explosion rates are used as input to the model. IDES then employs its collision event prediction algorithm to simulate evolution from 1996 to 2020 as a baseline. The second scenario uses the same initial conditions and future trends, but in addition, a large constellation is introduced into the simulation process from year 1998 onwards. The additional contribution of the constellation to the temporal variation of key environment/population parameters is presented; including enhancement from any long-term collision coupling effects.

  4. Trends and drivers of marine debris on the Atlantic coast of the United States 1997-2007

    USGS Publications Warehouse

    Ribic, C.A.; Sheavly, S.B.; Rugg, D.J.; Erdmann, Eric S.

    2010-01-01

    For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue. ?? 2010.

  5. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  6. Collector/Compactor for Waste or Debris

    NASA Technical Reports Server (NTRS)

    Mangialiardi, John K.

    1987-01-01

    Device collects and compacts debris by sweeping through volume with net. Consists of movable vane, fixed vane, and elastic net connected to both vanes. Movable vane is metal strip curved to follow general contour of container with clearance to prevent interference with other parts on inside wall of container. One end of movable vane mounted in bearing and other end connected to driveshaft equipped with handle. User rotates movable vane, net stretched and swept through container. Captures most of debris coarser than mesh as it moves, compressing debris as it arrives at fixed vane. Applications include cleaning swimming pools and tanks.

  7. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.

  8. A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation

    NASA Astrophysics Data System (ADS)

    Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Güleç, Nilgün

    2015-04-01

    Volcanic debris avalanches result from catastrophic collapse of flanks of volcanic edifices. They are common events in the history of a volcano. In a few minutes, they can fill and change the surrounding landscape and cover extensive areas. The most tremendous Quaternary volcanoes of Turkey are situated at Eastern Anatolia. These dormant/active volcanoes represent significant threat to the surrounding populations. The reactivation and/or partly collapse of such a volcano in Eastern Anatolia can result catastrophic consequences due to the dearth of previous studies, hazard maps, emergency information programs. Süphan stratovolcano is one of the most important members of the Quaternary aged volcanic center in the region with its steep slopes and higher elevation reaches up to 4050m above sea level. It includes lava flows, lava domes, pyroclastic rocks, debris avalanche, maar related pyroclastic fall and flows. This study concerned with a debris avalanche which identified at the northern parts of the volcano. Süphan debris avalanche displays hummocky topography and appears to have traveled approximately 25-30 km away from the source at the northern parts of the volcano. The products of Süphan debris avalanche are characterized by two different facies, block and matrix and are overlain by younger deposits of the volcanism. There is no hazard assessment have been done so far about this volcano. There are lots of towns with a remarkable population present around the Süphan volcano. In this study we performed a series of debris avalanche flow simulations with a numerical code called VolcFlow to evaluate the possible future collapses and impact areas. Keywords: Süphan Stratovolcano, Eastern Anatolia, Debris avalanche, VolcFlow

  9. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  10. Debris-covered glaciers extend the lifespan of water supplies in the European Alps

    NASA Astrophysics Data System (ADS)

    Lardeux, Pierre; Glasser, Neil; Holt, Tom; Hubbard, Bryn

    2016-04-01

    Debris-covered glaciers have a slower melting rate than clean-ice glaciers due to the insulating effect of their debris layer. In the European Alps, debris-covered glaciers have received little attention due to their small contribution to sea-level rise. However, glaciers provide water supplies for the five main watersheds draining the European Alps (Danube, Rhine, Rhone, Po and Adige, in order of size), an area inhabited by more than 145 million people (20% of Europe's population). It is unclear what volume of ice (and so quantity of potential meltwater) is affected by a debris layer, and what the effect of this layer is for water resources in the Alps. Combining the Randolph Glacier Inventory (RGI) and online imagery services, we calculated that more than 40% of ice volume in the Alps is influenced by debris cover. In this presentation, we will show the different elements leading to this number, including our evaluation of the RGI, the volume calculation method and what percentage of ice is actually covered (0.6 to 99% of glacier surface area). Our analysis has allowed a comprehensive understanding of the debris-covered glaciers in each watershed by revealing their distribution (i.e. where they will extend water supply lifespan), and hypsometry and equilibrium line altitude (how sensitive they are to climate change). The prolonged lifespan of water supply is visible at the scale of an individual debris-covered glacier: comparing the evolution of Glacier Noir and Glacier Blanc (France) over the last 150 years indicates that Glacier Noir (debris covered) has retained 2.5 times more ice than Glacier Blanc (clean-ice) under the same climatic conditions. The number of debris-covered glaciers will increase as the >1°C rise in temperature in the European Alps since the start of the 20th Century increases the instability of rock faces and scree slopes. The evolution of these glaciers is therefore likely to have a major impact on human populations. This work shows that

  11. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 underlined the potential of an ongoing collision cascade effect (the Kessler Syndrome ) in the near-Earth orbital debris environment. A 2006 NASA analysis of the instability of the debris population in the low Earth orbit (LEO, the region below 2000 km altitude) shows that the environment has reached a point where the debris population will continue to increase in the next 200 years, even without any future launches. The increase is driven by fragments generated via collisions among existing objects in LEO. In reality, the situation will be worse than this prediction because satellite launches will continue and unexpected major breakups may continue to occur. Mitigation measures commonly adopted by the international space community (such as the 25-year rule) will help, but will be insufficient to stop the population growth. To better preserve the near-Earth space environment for future generations, active debris removal (ADR) should be considered. The idea of active debris removal is not new. However, due to the monumental technical, resource, operational, legal, and political challenges associated with removing objects from orbit, it has not yet been widely considered feasible. The recent major breakup events and the environment modeling efforts have certainly reignited the interest in using active debris removal to remediate the environment. This trend is further highlighted by the National Space Policy of the United States of America, released by the White House in June 2010, where the President explicitly directs NASA and the Department of Defense to pursue research and development of technology and techniques, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment. A 2009 modeling study by the NASA Orbital Debris Program Office has shown that, in order to maintain the LEO debris population at a constant level for the next 200 years

  12. Debris in the deep: Using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA

    NASA Astrophysics Data System (ADS)

    Schlining, Kyra; von Thun, Susan; Kuhnz, Linda; Schlining, Brian; Lundsten, Lonny; Jacobsen Stout, Nancy; Chaney, Lori; Connor, Judith

    2013-09-01

    Anthropogenic marine debris is an increasing concern because of its potential negative impacts on marine ecosystems. This is a global problem that will have lasting effects for many reasons, including: (1) the input of debris into marine environments is likely to continue (commensurate with population increase and globalization), (2) accumulation, and possibly retention, of debris will occur in specific areas due to hydrography and geomorphology, and (3) the most common types of debris observed to date will likely persist for centuries. Due to the technical challenges and prohibitive costs of conducting research in the deep sea, little is known about the abundance, types, sources, and impacts of human refuse on this vast habitat, and the extreme depths to which this debris is penetrating has only recently been exposed. We reviewed 1149 video records of marine debris from 22 years of remotely operated vehicle deployments in Monterey Bay, covering depths from 25 m to 3971 m. We characterize debris by type, examine patterns of distribution, and discuss potential sources and dispersal mechanisms. Debris was most abundant within Monterey Canyon where aggregation and downslope transport of debris from the continental shelf are enhanced by natural canyon dynamics. The majority of debris was plastic (33%) and metal (23%). The highest relative frequencies of plastic and metal observations occurred below 2000 m, indicating that previous studies may greatly underestimate the extent of anthropogenic marine debris on the seafloor due to limitations in observing deeper regions. Our findings provide evidence that submarine canyons function to collect debris and act as conduits for debris transport from coastal to deep-sea habitats.

  13. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  14. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; Stuble, Martin

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  15. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the

  16. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-08-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  17. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  18. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  19. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  20. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  1. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    USGS Publications Warehouse

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  2. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. PMID:25749316

  3. Dimensional analysis of natural debris flows

    NASA Astrophysics Data System (ADS)

    Zhou, Gordon; Ouyang, Chaojun

    2015-04-01

    Debris flows occur when masses of poorly sorted sediment, agitated and saturated with water, surge down slopes in response to gravitational attraction. They are of great concern because they often cause catastrophic disasters due to the long run-out distance and large impact forc-es. Different from rock avalanches and sediment-laden water floods, both solid and fluid phases affected by multiple parameters can influence the motion of debris flows and govern their rheological properties. A dimensional analysis for a systematic study of the governing parameters is presented in this manuscript. Multiple dimensionless numbers with clear physical meanings are critically reviewed. Field data on natural debris flows are available here based on the fifty years' observation and measurement in the Jiangjia Gully, which is located in the Dongchuan City, Yunnan Province of China. The applications of field data with the dimensional analysis for studying natural debris flows are demonstrated. Specific values of dimensionless numbers (e.g., modified Savage Number, Reynolds number, Friction number) for classifying flowing regimes of natural debris flows on the large scales are obtained. Compared to previous physical model tests conducted mostly on small scales, this study shows that the contact friction between particles dominates in natural debris flows. In addition, the solid inertial stress due to particle collisions and the pore fluid viscous shear stress play key roles in governing the dynamic properties of debris flows and the total normal stress acting on the slope surfaces. The channel width as a confinement to the flows can affect the solids discharge per unit width significantly. Furthermore, a dimensionless number related to pore fluid pressure dissipation is found for distinguishing surge flows and continuous flows in field satisfactorily. It indicates that for surge debris flows, the high pore fluid pressures generated in granular body dissipate quite slowly and may

  4. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  5. Expanding capabilities of the debris analysis workstation

    NASA Astrophysics Data System (ADS)

    Spencer, David B.; Sorge, Marlon E.; Mains, Deanna L.; Shubert, Ann J.; Gerhart, Charlotte M.; Yates, Ken W.; Leake, Michael

    1996-10-01

    Determining the hazards from debris-generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the United States Air Force (USAF) Phillips Laboratory (PL) Space Debris Research Program has developed a simulation software package called the Debris Analysis Workstation (DAW). This software provides an analysis capability for assessing a wide variety of debris hazards. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for Department of Defense space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts who are not debris experts. The current version of DAW includes models for spacecraft breakup, debris orbital lifetime, collision hazard risk assessment, and collision dispersion, as well as a satellite catalog database manager, a drag inclusive propagator, a graphical user interface, and data visualization routines. Together they provide capabilities to conduct several types of analyses, ranging from range safety assessments to satellite constellation risk assessment. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated system is an object oriented language layer scheduled to be added soon. Other candidate component models under consideration for incorporation include additional orbital propagators, error estimation routines, other dispersion models, and other breakup models. At present, DAW resides on a SUNR workstation, although future versions could be tailored for other platforms, depending on the need.

  6. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  7. Postdetonation nuclear debris for attribution

    PubMed Central

    Fahey, A. J.; Zeissler, C. J.; Newbury, D. E.; Davis, J.; Lindstrom, R. M.

    2010-01-01

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the “Nuclear Forensics and Attribution Act,” scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  8. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1993-01-01

    Two experiments within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust were flown on the Long Duration Exposure Facility (LDEF). A variety of sensors and collecting devices have made possible the study of impact processes on dedicated sensors and on materials of technological interest. Examination of hypervelocity impact features on these experiments gives valuable information on the size distribution and nature of interplanetary dust particles in low-Earth orbit (LEO), within the 0.5-300 micrometer size range. However no crater smaller than 1.5 microns has been observed, thus suggesting a cut-off in the near Earth particle distribution. Chemical investigation of craters by EDX clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. However, remnants of orbital debris have been found in a few craters; this can be the result of particles in eccentric orbits about the Earth and of the 8 deg offset in the orientation of LDEF. Crater size distribution is compared with results from other dust experiments flown on LDEF and with current models. Possible origin and orbital evolution of micrometeoroids is discussed. Use of thin foil detectors for the chemical study of particle remnants looks promising for future experiments.

  9. Characterizing Secondary Debris Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Schonberg, W. P.

    1999-08-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystems and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impact on a typical aerospace structural surface.

  10. LDEF meteoroid and debris database

    NASA Astrophysics Data System (ADS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photo-documented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  11. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  12. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  13. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  14. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  15. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. PMID:23914794

  16. Electrostatic Tractor Analysis for GEO Debris Remediation

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.

    The high value of operating in the geostationary ring, coupled with increasing numbers of orbital debris, highlights the need for GEO debris remediation techniques. One recent proposed technique for GEO debris mitigation is the electrostatic tractor. Here, a tug vehicle approaches a target debris object and emits a focused electron beam onto it. This results in a negative charge on the debris, and a positive charge on the tug vehicle. Due to the near proximity of the highly charged objects (20 meters or less) an attractive electrostatic force on the order of milliNewtons results. This electrostatic force is used in conjunction with low thrusting by the tug vehicle to tow the debris object into a disposal orbit 200-300 kilometers above the GEO belt. During the tugging period, the charged relative motion between tug and deputy is stabilized through a feedback control law. This is accomplished using a novel relative motion description that isolates separation distance from the relative orientation. The equations of motion for the relative motion description are derived from the Clohessy-Wiltshire equations, assuming the debris object is in a nearly circular orbit. Lyapunov stability theory is used to derive an asymptotically stable control law for the tug thrusters during the towing period. The control law requires an estimate of the electrostatic force magnitude, and the impacts of improperly modeled charging on control response are determined. If the electrostatic force is under-predicted too severely, a collision may result. A bound on the control gains is determined to prevent such a collision. Expected reorbiting performance levels achievable with the electrostatic tractor are computed. An open-loop analytical performance study is performed where variational equations are used to predict how much general orbital elements may be changed using the electrostatic tractor over one orbital period for a towed object at geosynchronous altitude. In contrast to earlier

  17. Debris-flow hazards on tributary junction fans, Chitral, Hindu Kush Range, northern Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, M. Asif; Haneef, M.; Khan, Anwar S.; Tahirkheli, Tazeem

    2013-01-01

    The Chitral district of northern Pakistan lies in the eastern Hindu Kush Range. The population in this high-relief mountainous terrain is restricted to tributary-junction fans in the Chitral valley. Proximity to steep valley slopes renders these fans prone to hydrogeomorphic hazards, including landslides, floods and debris flows. This paper focuses on debris-flow hazards on tributary-junction fans in Chitral. Using field observations, satellite-image analyses and a preliminary morphometry, the tributary-junction fans in the Chitral valley are classified into (1) discrete and (2) composite. The discrete fans are modern-day active landforms and include debris cones associated with ephemeral gullies, debris fans associated with ephemeral channels and alluvial fans formed by perennial streams. The composite fans are a collage of sediment deposits of widely different ages and formed by diverse alluvial-fan forming processes. These include fans formed predominantly during MIS-2/Holocene interglacial stages superimposed by modern-day alluvial and debris fans. Composite fans are turned into relict fans when entrenched by modern-day perennial streams. These deeply incised channels discharge their sediment load directly into the trunk river without significant spread on fan surface. In comparison, when associated with ephemeral streams, active debris fans develop directly at composite-fan surfaces. Major settlements in Chitral are located on composite fans, as they provide large tracts of leveled land with easy accesses to water from the tributary streams. These fan surfaces are relatively more stable, especially when they are entrenched by perennial streams (e.g., Chitral, Ayun, and Reshun). When associated with ephemeral streams (e.g., Snowghar) or a combination of ephemeral and perennial streams (e.g., Drosh), these fans are subject to frequent debris-flow hazards. Fans associated with ephemeral streams are prone to high-frequency (˜10 years return period) debris

  18. Emergency assessment of post-fire debris-flow hazards for the 2013 Mountain fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  19. Debris analysis workstation: from concept to reality

    NASA Astrophysics Data System (ADS)

    Spencer, David B.; Maethner, Scott R.; Shubert, Ann J.; Yates, Ken W.

    1995-06-01

    Determining the hazards from debris generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the US Air Force Phillips Laboratory Space Debris Research Program is developing a simulation platform called the Debris Analysis Workstation (DAW) which provides an analysis capability for assessing a wide variety of debris studies. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for DoD space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts that are not debris experts. DAW has gone from concept to reality with the recent deliveries of Versions 0.1 to 0.4 to a number of customers. The current version of DAW incorporates a spacecraft break-up model, drag inclusive propagator, a collision dispersion model, a graphical user interface, and data visualization routines, which together provide capabilities to conduct missile intercept range safety analyses. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated, user-friendly system, is an object oriented language layer that is scheduled to be added in 1995. Other candidate component models that are under consideration for incorporation include additional orbital propagators, error estimation routines, dispersion models, and other breakup models. At present, DAW resides on a SUN workstation, although future versions could be tailored for other platforms, depending on the need.

  20. Orbital Debris Engineering Model (ORDEM) v.3

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Krisko, Paula; Xu, Yu-Lin; Horstman, Matthew

    2013-01-01

    A model of the manmade orbital debris environment is required by spacecraft designers, mission planners, and others in order to understand and mitigate the effects of the environment on their spacecraft or systems. A manmade environment is dynamic, and can be altered significantly by intent (e.g., the Chinese anti-satellite weapon test of January 2007) or accident (e.g., the collision of Iridium 33 and Cosmos 2251 spacecraft in February 2009). Engineering models are used to portray the manmade debris environment in Earth orbit. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical and statistical techniques has enabled the construction of this more comprehensive and sophisticated model. The primary output of this model is the flux [#debris/area/time] as a function of debris size and year. ORDEM may be operated in spacecraft mode or telescope mode. In the former case, an analyst defines an orbit for a spacecraft and "flies" the spacecraft through the orbital debris environment. In the latter case, an analyst defines a ground-based sensor (telescope or radar) in terms of latitude, azimuth, and elevation, and the model provides the number of orbital debris traversing the sensor's field of view. An upgraded graphical user interface (GUI) is integrated with the software. This upgraded GUI uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional flux as a function of debris size for chosen analysis orbits (or views), for example, to the more complex color-contoured two-dimensional (2D) directional flux diagrams in local spacecraft elevation and azimuth.

  1. Linking social drivers of marine debris with actual marine debris on beaches.

    PubMed

    Slavin, Chris; Grage, Anna; Campbell, Marnie L

    2012-08-01

    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved. PMID:22704152

  2. A coolability model for postaccident nuclear reactor debris

    SciTech Connect

    Lipinski, R.J.

    1984-04-01

    A one-dimensional model is developed for boiling heat removal and dryout in particulate debris. The model can be used for predicting the coolability of postaccident debris from a nuclear reactor (either light water or liquid-metal fast breeder). The model includes the effects of both laminar and turbulent flow, twophase friction, gravity, capillary force, and channels at the top of the debris. The model is applicable to debris on permeable supports with liquid entering the debris bottom or to debris on impermeable plates. In the latter case, the plate can be either adiabatic or cooled on the bottom. The model predicts channel length, the liquid fraction within the debris as a function of elevation, the incipient dryout power, the dry zone thickness as a function of power, and the existence of downward heat removal by boiling (in bottom-cooled debris), all for both uniform and stratified debris.

  3. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    SciTech Connect

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-10-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications.

  4. Characteristics of marine debris that entangle Australian fur seals (Arctocephalus pusillus doriferus) in southern Australia.

    PubMed

    Lawson, T J; Wilcox, Chris; Johns, Karen; Dann, P; Hardesty, Britta Denise

    2015-09-15

    Marine debris is a global issue that can have devastating impacts on marine mammals. To understand the types of materials that result in entanglement and thus the potential impact of entangling items on marine wildlife, we analysed data collected from items in which Australian fur seals had been entangled in southern Victoria, Australia over a 15year period. From 1997 to 2012, 138 entangling items were removed from seals. The majority of these entanglements were plastic twine or rope, and seals were entangled in green items more than in any other colour. In general, younger seals were more likely to be entangled than adults. Understanding the effects of marine debris entanglement on the Australian fur seal population can lead to more effective management of the sources of debris and the wildlife that interact with it. PMID:26165938

  5. Imaging the inner regions of debris disks with near-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Augereau, J. C.; di Folco, E.; Coudé du Foresto, V.; Le Bouquin, J. B.; Mérand, A.; Mollier, B.

    2011-10-01

    Most debris disks resolved so far show extended structures located at tens to hundreds AU from the host star, and are more analogous to our solar system's dusty Kuiper belt than to the ˜AU-scale zodiacal disk inside our solar system's asteroid belt. Over the last few years however, a few hot debris disks have been detected around a handful of main sequence stars thanks to the advance of infrared interferometry. The grain populations derived from these observations are quite intriguing, as they point towards very high dust replenishment rates, high cometary activity or major collisional events. In this talk, we review the ongoing efforts to detect bright exozodiacal disks with precision near-infrared interferometry in both hemispheres with CHARA/FLUOR and VLTI/PIONIER. We discuss preliminary statistical trends on the occurrence of bright exozodi around nearby main sequence stars and show how this information could be used to constrain the global architecture and evolution of debris disks.

  6. A Search For Optically Faint GEO Debris

    NASA Astrophysics Data System (ADS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2011-09-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan telescope ‘Walter Baade’ at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe preliminary results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r’ filter. The limiting magnitude for 5 second exposures is measured to be fainter tan R = 21. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  7. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  8. The Spitzer IRS Debris Disk Catalog

    NASA Astrophysics Data System (ADS)

    Chen, C.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and MIPS debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. We carried out two separate SED analyses. (1) For all targets, we modeled the IRS and MIPS 70 micron data (where available) assuming that the SEDs were well-described using, zero, one or two temperature black bodies. We calculated the probability for each model and computed the average probability to select among models. (2) For a subset of 120 targets with 10 and/or 20 micron silicate features, we modeled the data using spherical silicate (olivine, pyroxene, forsterite, and enstatite) grains located either in a continuous disk with power-law size and surface density distributions or two thin rings that are well-characterized using two separate dust grain temperatures. We present a demographic analysis of the disk properties. For example, we find that the majority of debris disks are better fit using two dust components, suggesting that planetary systems are common in debris disks and that the size distribution of dust grains is consistent with a collisional cascade.

  9. Debris-flow mobilization from landslides

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.

    1997-01-01

    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  10. Comparison of national space debris mitigation standards

    NASA Astrophysics Data System (ADS)

    Kato, A.

    2001-01-01

    Several national organizations of the space faring nations have established Space Debris Mitigation Standards or Handbooks to promote efforts to deal with the space debris issue. This paper introduces the characteristics of each document and compares the structure, items and level of requirements. The contents of these standards may be slightly different from each other but the fundamental principles are almost the same; they are (1) prevention of on-orbit breakups, (2) removal of mission terminated spacecraft from the useful orbit regions, and (3) limiting the objects released during normal operations. The Inter-Agency Space Debris Coordination Committee has contributed considerably to this trend. The Committee also found out by its recent survey that some commercial companies have begun to adopt the debris mitigation measures for their projects. However, the number of organizations that have initiated this kind of self-control is still limited, so the next challenge of the Committee is to promote the Space Debris Mitigation Guidelines world-wide. IADC initiated this project in October 1999 and a draft is being circulated among the member agencies.

  11. Planets, debris and their host metallicity correlations

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Nayakshin, Sergei

    2016-06-01

    Recent observations of debris discs, believed to be made up of remnant planetesimals, brought a number of surprises. Debris disc presence does not correlate with the host star's metallicity, and may anti-correlate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here we explore predictions of the alternative Tidal Downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high metallicity stars but release more debris per disruption than their low [M/H] analogs. This predicts no simple relation between debris disc presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (Mp ˜ 50 M⊕) should correlate with DD presence stronger than sub-Neptunes (Mp ≲ 15 M⊕). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long term evolution and multi-fragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.

  12. Structure in the eps Eridani Debris Disk

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith; Maddison, Sarah; Wilner, David; Lestrade, Jean-Francois; Thilliez, Elodie; Andrews, Sean

    2014-04-01

    The nearby (3.22 pc) star epsilon Eridani hosts the closest debris disk to the Sun and is a key template for understanding debris disk phenomena. The dusty debris originates from the collisional erosion of planetesimals, analogous to comets and asteroids, and can persist only in dynamically stable regions like belts and resonances. The distribution of the dust producing planetesimals is best traced by millimetre emission, since the large grains that dominate at these wavelengths are minimally affected by stellar radiation and winds. Previous single dish observations show that the basic millimetre morphology of the epsilon Eridani debris disk is a ring of radius 60 AU. We propose to use the ATCA H75 and H168 configurations at 43 GHz to obtain higher resolution information that will allow us to discriminate amongst differing models for the debris disk structure and origin. In particular, we will derive new quantitative estimates of the ring width, any offset of the disk centroid from the stellar position, and the location and size of any resonant clumps (as well as background sources).

  13. Laser Systems for Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-01

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called "LIFE" laser system. Because a single "LIFE" beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  14. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  15. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  16. Debris generation from Mechanical degradation of MLI and thermo-control coating

    NASA Astrophysics Data System (ADS)

    Duzellier, Sophie; Drolshagen, Gerhard; Pons, Claude; Rey, Romain; Gordo, Paulo; Horstmann, Andre

    2016-07-01

    Space environment is a harsh environment for exposed materials. Amongst all environmental constraints, ionizing radiation in GEO (particles, UV), atomic oxygen in LEO and temperature variation through synergy mechanisms may lead to serious damage and loss of performance of surface materials (thermo-optical or mechanical properties). Optical and radar observations from the ground as well as analysis of retrieved hardware have shown an abundance of space debris objects that seem to result from the degradation of outer spacecraft surfaces. Recent surveys of the GEO and GTO region have found many objects with high area-to-mass ratio (HAMR debris, see T. Childknecht et al. 2003, 2004, 2005) indicating that they must consist of relatively thin material, like foils. This paper explores the cause, amount and characteristics of space debris objects resulting from spacecraft surface degradation in order to improve space debris population models and support the selection of materials in the context of debris mitigation measures. 20-year GEO dose profile along with thermal cycling has been applied to a set of MLI assemblies and painting samples. The material degradation was monitored through in and ex situ characterizations (visual observation, mechanical and thermo-optical). No self-flaking was observed for paintings nor for MLIs. However, paint surfaces became very brittle, whereas reclosable fasteners of MLIs and Mylar inner foils were strongly damaged as well. Potential scenarios for delamination of MLI foils could be defined.

  17. What Children Tell Us about Their Parents: From Visible Dust to Invisible Planetesimals in Debris Disks

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian; Krivov, A. V.; Loehne, T.; Mutschke, H.

    2008-09-01

    Various small body families in the solar system, together with dust they produce through mutual collisions and cometary activity, exemplify a non-planetary component of a planetary system, usually referred to as a "debris disk". Debris disks have been found to be a common phenomenon for main-sequence stars and, similar to the solar system, are believed to comprise planetesimal populations that have accreted at early epochs and survived possible planet formation. However, in contrast to the solar system, observations of extrasolar debris disks only show their dusty portion, whereas the dust-producing planetesimals remain invisible. We show how collisional models of debris disks can be used to "climb up" the ladder of the collisional cascade, from dust towards parent bodies, representing the main mass reservoir of the disks. Applying our approach to five sun-like stars known to harbor dust, we find that the observed excess emission in far-IR to sub-mm is compatible with debris disks collisionally sustained by "large Kuiper belts" of 0.2-50 earth masses (in the bodies up to 100 km in size) with radii of 100-200 AU, larger than thought before. This research has been funded by the Deutsche Forschungsgemeinschaft (DFG), projects Kr 2164/5-1 and Mu 1164/6-1, by the Deutscher Akademischer Austauschdienst (DAAD), project D/0707543, and by the International Space Science Institute (Bern).

  18. Research on the Statistical Property of the Ejecta Population Derivation

    NASA Astrophysics Data System (ADS)

    Ju, Fangfei; Xiao, Weike; Pang, Baojun

    2013-08-01

    During the debris population derivation in current versions of the orbital debris engineering model, NASA's ORDEM2010 and ESA's MASTER-2009, the ejecta model is simplified in some degree so as to link the populations with data. As a requirement for more accurate space debris environment model, researches on the statistical inference of population derivation of the ejecta model are essential. We simulate single particle impacts in various relative velocity directions in space with current ejecta model, in order to figure out features in ejecta orbital evolution such as orbital lifetime. In view of the nearly continuous generation of this secondary source, information of the on-orbit spacecraft area especially the debris flux is also taken into account. The simulation results show that by assuming the ejecta model is precise, these features which make the ejecta model distinct could increase the debris population accuracy before being linked to the observed data.

  19. Improving the Near-Earth Micrometeoroid and Orbital Debris Environment Definition with LADC

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Giovane, F.; Corsaro, R.; Stansbery, E.

    2006-01-01

    The Large Area Debris Collector (LADC) is a 10 m(sup 2) aerogel and acoustic sensor system designed to characterize and collect submillimeter micrometeoroids and orbital debris on the International Space Station (ISS). The project is led by the U.S. Naval Research Laboratory (NRL) with major collaboration by the NASA Orbital Debris Program Office at Johnson Space Center. The U.S. Department of Defense Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. The deployment is scheduled for August 2007 with an orbital collection period of one to two years. The combined area time product of LADC will provide a much needed orbital debris population update in the size regime that is important to the safety community - 100 mm and larger. Another key element for LADC is the source identification of the collected samples. Impact features such as track length and track volume can be used to estimate the impact speed and direction of any selected residual embedded in aerogel. Acoustic sensors can provide impact timing and impact location information. The combined dynamical signatures make it possible to reconstruct the orbits of some of the collected samples and lead to their source identification. Compositional analysis on the residuals can also separate debris from meteoroids and provide additional population breakdown for orbital debris (e.g., Al, paint, steel, Al2O3). To maximize the science return and minimize potential contamination from other ISS modules, a careful selection of the location and orientation of LADC on the ISS is needed. Key issues and engineering constraints encountered during mission preparation, and the expected science return based on the mission configuration, are summarized in this paper.

  20. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  1. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    NASA Technical Reports Server (NTRS)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from

  2. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  3. Development of in-situ Space Debris Detector

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Romberg, O.; Wiedemann, C.; Drolshagen, G.; Vörsmann, P.

    2014-11-01

    Due to high relative velocities, collisions of spacecraft in orbit with Space Debris (SD) or Micrometeoroids (MM) can lead to payload degradation, anomalies as well as failures in spacecraft operation, or even loss of mission. Flux models and impact risk assessment tools, such as MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) or ORDEM (Orbital Debris Engineering Model), and ESABASE2 or BUMPER II are used to analyse mission risk associated with these hazards. Validation of flux models is based on measured data. Currently, as most of the SD and MM objects are too small (millimeter down to micron sized) for ground-based observations (e.g. radar, optical), the only available data for model validation is based upon retrieved hardware investigations e.g. Long Duration Exposure Facility (LDEF), Hubble Space Telescope (HST), European Retrievable Carrier (EURECA). Since existing data sets are insufficient, further in-situ experimental investigation of the SD and MM populations are required. This paper provides an overview and assessment of existing and planned SD and MM impact detectors. The detection area of the described detectors is too small to adequately provide the missing data sets. Therefore an innovative detection concept is proposed that utilises existing spacecraft components for detection purposes. In general, solar panels of a spacecraft provide a large area that can be utilised for in-situ impact detection. By using this method on several spacecraft in different orbits the detection area can be increased significantly and allow the detection of SD and MM objects with diameters as low as 100 μm. The design of the detector is based on damage equations from HST and EURECA solar panels. An extensive investigation of those panels was performed by ESA and is summarized within this paper. Furthermore, an estimate of the expected sensitivity of the patented detector concept as well as examples for its implementation into large and small

  4. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.

  5. Warm Debris Disks with WISE and HST

    NASA Astrophysics Data System (ADS)

    Padgett, Deborah; Stapelfeldt, Karl

    2016-01-01

    Using 22 μm data from the Wide Field Infrared Survey Explorer (WISE), we have completed a sensitive all-sky survey for debris disks in Hipparcos and Tycho catalog stars within 120 pc. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets. Several hundred previously unknown debris disk candidates were identified. We are currently performing follow-up observations to characterize the stars, companions, and circumstellar material in these systems with a variety of facilities including Keck, Herschel, and HST. Thirteen WISE debris disks have been observed to date using HST/STIS coronagraphy. Five of these disks have been detected in scattered light. One is a large and highly asymmetric edge-on disk which appears to be both warped and bifurcated.

  6. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  7. Parametric analysis: SOC meteoroid and debris protection

    NASA Technical Reports Server (NTRS)

    Kowalski, R.

    1985-01-01

    The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.

  8. THE DEBRIS DISK AROUND HR 8799

    SciTech Connect

    Su, K. Y. L.; Rieke, G. H.; Smith, P. S.; Misselt, K. A.; Stapelfeldt, K. R.; Bryden, G.; Moro-Martin, A.; Williams, J. P.

    2009-11-01

    We have obtained a full suite of Spitzer observations to characterize the debris disk around HR 8799 and to explore how its properties are related to the recently discovered set of three massive planets orbiting the star. We distinguish three components to the debris system: (1) warm dust (T approx 150 K) orbiting within the innermost planet; (2) a broad zone of cold dust (T approx 45 K) with a sharp inner edge orbiting just outside the outermost planet and presumably sculpted by it; and (3) a dramatic halo of small grains originating in the cold dust component. The high level of dynamical activity implied by this halo may arise due to enhanced gravitational stirring by the massive planets. The relatively young age of HR 8799 places it in an important early stage of development and may provide some help in understanding the interaction of planets and planetary debris, an important process in the evolution of our own solar system.

  9. Target response to debris cloud incidence

    SciTech Connect

    Kipp, M.E.

    1993-07-01

    The extent of penetration and/or perforation of a target layer by a debris cloud, whose particle mass distribution and velocities were calculated from a previous impact, was determined with two computational approaches. First, the size of single or paired particles required for target perforation was calculated and compared with the largest particle expected based on the fragment size distribution in the debris cloud. A second approach used a three-dimensional shock-wave code to calculate the explicit interaction of individual particles in the debris cloud with the target. The cloud was represented by randomly locating the particles within an envelope, maintaining the mass and size distribution of the particles. This interaction of the cloud of particles produced target surface craters and penetration comparable to recovered witness plates from impact experiments.

  10. Novel modelling solutions for debris risk reduction

    NASA Astrophysics Data System (ADS)

    Stokes, P. H.; Walker, R.; Wilkinson, J. E.; Swinerd, G. G.

    1999-01-01

    The Defence Evaluation & Research Agency (DERA) has a long association with the field of space debris research. Effort has focused on the development of software tools (IDES and SDS) to model the debris environment and its long and short term evolution. These models are now well established and recognised for their distinct capabilities. More recently, DERA has begun developing a new software tool called SHIELD. This is an innovative concurrent engineering model designed to assist engineers in identifying the most cost-effective debris protection strategy for a satellite. The model uses a novel survivability metric technique in conjunction with a genetic algorithm to search for the optimum choice and location of bumper shields, and the optimum arrangement of critical satellite components. This paper briefly summarises the unique aspects of the environment models and recent results, before describing the new SHIELD model in some detail.

  11. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave

    1990-01-01

    Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.

  12. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  13. The Debris Disk Explorer: A Balloon-Borne Coronagraph for Observing Debris Disks

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C. Jr; Bryden, Geoffrey; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known debris disks accessible only to DDX. It will achieve a raw contrast of 10(exp -7), with a processed contrast of 10(exp -8). A technology benefit of DDX is that operation in the near-space environment will raise the Technology Readiness Level of internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  14. Woody debris flow behavior from experimental analysis

    NASA Astrophysics Data System (ADS)

    Bateman, Allen; Medina, Vicente; Morloti, Emanuele; Renaud, Alexis

    2010-05-01

    A consequence of debris flow in streams are well known, the collapse of the stream flooding all over the land. The high momentum flux of those flows can devastate houses, drag and crushes cars, etc. The presence of woody debris into the flow rise the flow depth and increment the collapse of the streams, bridges and structures. The present preliminary study offer a qualitative comparison between a debris flow and a woody debris flow with similar flow characteristics. To obtain this a series of experiments were performed in the Morph-dynamic Laboratory of the Hydraulic, Marine and Environmental Department. A high slope flume of 9 meters length, 40 cm width and 60 cm high was used. Up to 5 experiments were running in the flume. Initially the material was placed dry in the bed conforming a 20 cm depth of granular material changing the way of water wave entrance. Always water wave was introduced as a step function with different step size and different flow duration in order to introduce the same volume of water, just enough to saturate all the material in the channel. The flow was filmed with a handycam in order to see the general flow characteristics and with a high speed camera, just in a section, to visualize the flow velocities. Several woody pieces were placed along the channel to simulate the presence of wood and tress in the stream. Each tree was constructed in such a way that each one have a root made by rocks simulating a real root and different mass distribution. The comparison with experiments without wood was clever to understand the influence of woods in the debris flow. The woody debris flow alone creates natural dams along the stream without presence of inciters obstacles along the reach.

  15. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  16. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  18. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  19. Electrometallurgical treatment of TMI-2 fuel debris

    SciTech Connect

    Karell, E.J.; Gourishankar, K.V.; Johnson, G.K.

    1997-08-01

    Argonne National Laboratory (ANL) has developed an electrometallurgical treatment process suitable for conditioning DOE oxide spent fuel for long-term storage or disposal. The process consists of an initial oxide reduction step that converts the actinide oxides to a metallic form, followed by an electrochemical separation of uranium from the other fuel constituents. The final product of the process is a uniform set of stable waste forms suitable for long-term storage or disposal. The suitability of the process for treating core debris from the Three Mile Island-2 (TMI-2) reactor is being evaluated. This paper reviews the results of preliminary experimental work performed using simulated TMI-2 fuel debris.

  20. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  1. Discrete Element Modelling of Floating Debris

    NASA Astrophysics Data System (ADS)

    Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed

    2016-04-01

    Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical

  2. Patterns In Debris Disks: No Planets Required?

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  3. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  4. Studying the MEO&GEO space debris environments with the Integrated Debris Evolution Suite (IDES) model

    NASA Astrophysics Data System (ADS)

    Martin, Clare; Lewis, Hugh; Walker, Roger

    2001-10-01

    The Integrated Debris Evolution Suite (IDES) has been upgraded to facilitate the modelling of the current and future space debris environments throughout Earth orbit. This paper will highlight the principal features of the model that were upgraded to allow the simulation of the environment from low Earth orbit altitudes up to the geosynchronous region. It will then give a summary of the full capabilities of IDES 3.0. Having described the upgrade, some initial results for an historical evolution of the space debris environment in Earth orbit will be presented.

  5. Orbital Debris Quarterly News, Vol. 13, No. 2

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.

  6. Mass transfer between debris discs during close stellar encounters

    NASA Astrophysics Data System (ADS)

    Jílková, Lucie; Hamers, Adrian S.; Hammer, Michael; Portegies Zwart, Simon

    2016-04-01

    We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distribution in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new host star. The population of the transferred particles can be used to constrain the encounter through which it was delivered. We expect that many stars experienced transfer among their debris discs and planetary systems in their birth environment. This mechanism presents a formation channel for objects on wide orbits of arbitrary inclinations, typically having high eccentricity but possibly also close to circular (eccentricities of about 0.1). Depending on the geometry, such orbital elements can be distinct from those of the objects formed around the star.

  7. Documenting the density of subtidal marine debris across multiple marine and coastal habitats.

    PubMed

    Smith, Stephen D A; Edgar, Robert J

    2014-01-01

    Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in their application, we worked with >300 volunteer divers from 11 underwater research groups to document the scale of the subtidal marine debris problem at 120 sites across >1000 km of the coast of NSW, Australia. Sampling consisted of replicated 25×5 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were important contributors at sites adjacent to population centres. The results identified damaging interactions between marine debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise, management approaches at both statewide and local scales. These initial data also provide an important baseline for longer-term, volunteer-based monitoring programs. PMID:24743690

  8. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, E.; Lear, D.; Ryan, S.

    2009-01-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional 30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  9. Documenting the Density of Subtidal Marine Debris across Multiple Marine and Coastal Habitats

    PubMed Central

    Smith, Stephen D. A.; Edgar, Robert J.

    2014-01-01

    Marine debris is recognised globally as a key threatening process to marine life, but efforts to address the issue are hampered by the lack of data for many marine habitats. By developing standardised protocols and providing training in their application, we worked with >300 volunteer divers from 11 underwater research groups to document the scale of the subtidal marine debris problem at 120 sites across >1000 km of the coast of NSW, Australia. Sampling consisted of replicated 25×5 m transects in which all debris was identified, counted, and, where appropriate, removed. Sites ranged from estuarine settings adjacent to major population centres, to offshore islands within marine parks. Estuaries and embayments were consistently found to be the most contaminated habitats. Fishing-related items (and especially monofilament and braided fishing line) were most prevalent at the majority of sites, although food and drink items were important contributors at sites adjacent to population centres. The results identified damaging interactions between marine debris and marine biota at some key locations, highlighting the need for management intervention to ensure habitat sustainability. This study reinforces the important contribution that volunteers can make to assessing conservation issues requiring broad-scale data collection. In this case, citizen scientists delivered data that will inform, and help to prioritise, management approaches at both statewide and local scales. These initial data also provide an important baseline for longer-term, volunteer-based monitoring programs. PMID:24743690

  10. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric

    2009-06-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ˜30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  11. An Overview of NASA's Oribital Debris Environment Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    Using updated measurement data, analysis tools, and modeling techniques; the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis.

  12. Orbiting Debris: a Space Environmental Problem. Background Paper

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.

  13. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  14. Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.

  15. Debris growth sensitivity to launch and cascade rates

    SciTech Connect

    Canavan, G.H.

    1996-10-24

    Two-component models provide a good description of debris growth from the outset of launch to the present, predictions of future trends, and assessments of their sensitivity. Launch rate reductions produce less than proportional reductions in debris, for reasons that are discussed. The shift of debris to higher altitudes is assessed quantitatively, although the details of the growth are discussed elsewhere.

  16. An Overview of NASA's Orbital Debris Engineering Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    This slide presentation reviews the importance of Orbital debris engineering models. They are mathematical tools to assess orbital debris flux. It briefly reviews the history of the orbital debris engineering models, and reviews the new features in the current model (i.e., ORDEM2010).

  17. MECHANICS OF STREAM-BORNE WOODY DEBRIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large woody debris is increasingly regarded as an integral component of stream stabilization and restoration programs. Unravelling the dynamics of complex interaction of multiple logs among themselves and with the stream environs must start with a correct specification of all the forces acting on i...

  18. Searching For Planets in "Holey Debris Disks"

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip; Smith, Paul S.

    2015-01-01

    Directly imaging planets provides a unique opportunity to study young planets in the context of their formation and evolution. It examines the underlying semi-major axis exoplanet distribution and enables the characterization of the planet itself with spectroscopic examination of its emergent flux. However, only a handful of planets have been directly imaged, and thus the stars best suited for planet imaging are still a subject of debate. The "Holey Debris Disk" project was created in order to help determine if debris disks with gaps are signposts for planets. These gaps may be dynamically caused by planets accreting the debris material as they form. We present the results from our survey with VLT/NACO and the apodized phase plate coronagraph. We demonstrate that these disks with holes are good targets for directly detecting planets with the discovery of a planet around two of our targets, HD 95086 and HD 106906, at L'-band. Our non-detection of HD 95086 b in H-band demonstrates the importance of thermal infrared observations. The detected planets shepherd the outer cool debris belt. The relatively dust-free gap in these disks implies the presence of one or more closer-in planets. We discuss our new constraints on planets around other targets in our survey as well as disk properties of these targets and describe how future instruments will find the inner planets.

  19. Discovery of the Fomalhaut C debris disc

    NASA Astrophysics Data System (ADS)

    Kennedy, G. M.; Wyatt, M. C.; Kalas, P.; Duchêne, G.; Sibthorpe, B.; Lestrade, J.-F.; Matthews, B. C.; Greaves, J.

    2014-02-01

    Fomalhaut is one of the most interesting and well-studied nearby stars, hosting at least one planet, a spectacular debris ring and two distant low-mass stellar companions (TW PsA and LP 876-10, a.k.a. Fomalhaut B and C). We observed both companions with Herschel, and while no disc was detected around the secondary, TW PsA, we have discovered the second debris disc in the Fomalhaut system, around LP 876-10. This detection is only the second case of two debris discs seen in a multiple system, both of which are relatively wide (≳3000 au for HD 223352/40 and 158 kau [0.77 pc] for Fomalhaut/LP 876-10). The disc is cool (24 K) and relatively bright, with a fractional luminosity Ldisc/L⋆ = 1.2 × 10-4, and represents the rare observation of a debris disc around an M dwarf. Further work should attempt to find if the presence of two discs in the Fomalhaut system is coincidental, perhaps simply due to the relatively young system age of 440 Myr, or if the stellar components have dynamically interacted and the system is even more complex than it currently appears.

  20. Evaluating intensity parameters for debris flow vulnerability

    NASA Astrophysics Data System (ADS)

    Keiler, Margreth

    2014-05-01

    In mountain regions natural hazard processes such as debris flows or hyper-concentrated flows repeatedly lead to high damages. After an event, detailed documentation of the meteorological, hydrological and geomorphological indicators are standardized, and additional data on debris covering run out areas, indicators for processes velocity and transported volumes are gathered. Information on deposition height of debris is an important parameter to estimate the intensity of the process impacting the buildings and infrastructure and hence to establish vulnerability curves. However, the deposition height of mobilized material in settlements and on infrastructure is mostly not directly evaluated because recovery work starts immediately or even during the event leading to a removal of accumulated material. Different approaches exist to reconstruct deposition heights after torrent events, such as mind mapping, comparison of LIDAR-based DEM before and after the event as well as the reconstruction by using photo documentation and the estimation of deposition heights according to standardised elements at buildings and infrastructure. In our study, these different approaches to estimate deposition height and the spatial distribution of the accumulated material are applied and compared against each other by using the case study of the debris flow event in Brienz (Switzerland) which occurred during the serve flood events of August 2005 in the Alps. Within the analysis, different factors including overall costs and time consumption (manpower, equipment), accuracy and preciseness are compared and evaluated to establish optimal maps of the extent and deposition depth after torrent events and to integrate this information in the vulnerability analysis.

  1. Rates inferred from the space debris catalog

    SciTech Connect

    Canavan, G.H.

    1996-08-01

    Collision and fragmentation rates are inferred from the AFSPC space debris catalog and compare with estimates from other treatments. The collision rate is evaluated without approximation. The fragmentation rate requires additional empirical assessments. The number of fragments per collision is low compared to analytic and numerical treatments, is peaked low, and falls rapidly with altitude.

  2. A new debris sensor based on dual excitation sources for online debris monitoring

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian

    2015-09-01

    Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.

  3. Laser space debris removal: now, not later

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  4. Photometric Studies of GEO Orbital Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  5. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  6. The Collisional Evolution of Debris Disks

    NASA Astrophysics Data System (ADS)

    Gáspár, A.; Rieke, G. H.; Psaltis, D.; Özel, F.; Balog, Z.

    2014-03-01

    With their discovery, debris disks gave the first proof of existence of extrasolar planetary systems (Aumann et al. 1984, Smith & Terrile 1984). Although extrasolar planets are now readily detected, the importance of debris disks in characterizing their host systems is not diminished. Debris disks are relatively easy to detect at infrared wavelengths, independent of their viewing angle; they enable the study of the dynamical evolution of their host systems; they are able to reveal the outer regions of the systems where planets are difficult to detect; and coronagraphic scattered light images show the active sites of major dust production within the systems. During their operational lifetime, the Spitzer Space Telescope and the Herschel Space Observatory have observed many hundreds of resolved and unresolved debris disks. These detections have helped us characterize the thermal emission and also location of the disks. The observations have also shown a general decay in the observed infrared luminosity of the debris disks as a function of system age and disk location. This evolution must be understood thoroughly before probing other parameters, such as their dependence on stellar metallicity or binarity. A second critical parameter is the shape of the particle size distribution, which can strongly influence conclusions from spectral energy distribution models. I will describe results obtained with our collisional cascade code, which has been optimized to study the time evolution of debris disk dust. I will show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a value of Lir(t)~-0.6. This is slower than the ~-1 decay given by traditional analytic models. I will show how our numerical code can reproduce the fraction of detected debris disk sources within an extensive catalog of Spitzer and Herschel 24, 70, and 100 µm observations (Gaspar et al. 2013). I will also

  7. Adaptive optics for space debris tracking

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  8. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    SciTech Connect

    Chen, Christine H.; Mittal, Tushar; Kuchner, Marc; Forrest, William J.; Watson, Dan M.; Lisse, Carey M.; Manoj, P.; Sargent, Benjamin A.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  9. Emergency assessment of post-fire debris-flow hazards for the 2013 Rim Fire, Stanislaus National Forest and Yosemite National Park, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2013-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Rim fire in Yosemite National Park and the Stanislaus National Forest, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 28 of the 1,238 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 901 of the 1,238 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  10. Evaluating tsunami hazards from debris flows

    NASA Astrophysics Data System (ADS)

    Walder, J.; Watts, P.

    2003-04-01

    Water-wave hazards associated with debris flows entering water depend on the location of the affected area relative to the debris-flow entry point. Three distinct regions (splash zone, near field, and far field) may be identified may be identified on hydrodynamic grounds. The splash zone is nearly always small compared to the overall domain of interest. In the case of debris-flow generated tsunamis in lakes and reservoirs, commonly the entire water body lies within the near field, that is, beyond the zone of complex splashing but close enough to the source that wave-propagation effects do not predominate, in contrast to the case of tsunamis in the ocean. Scaling analysis of the equations governing water-wave propagation shows that near-field wave amplitude and wavelength should depend on specific measures of debris-flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two sets of flume experiments with solid-block "wavemakers." To first order, measured near-field wave amplitude/water depth depends simply on a dimensionless measure of the quantity (submerged travel time/wavemaker volume per unit width). This functional relationship also does a good job of describing wave-amplitude data from previous laboratory investigations with both rigid and deformable wavemakers. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wavemaker travel time, which is itself given approximately by a simple function of wavemaker length/water depth. Wavemaker shape and rigidity do not otherwise influence wave features. These scaling relations for near-field amplitude, wavelength, and submerged travel time, when combined with a correction for near-field wavefront speading in actual water bodies (which are rarely flume-like), allow us to construct a proxy source for computational tsunami propagation. We apply our results to assess hazards associated with potential debris

  11. Instability of the Present LEO Satellite Populations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Johnson, Nicholas L.

    2006-01-01

    Several studies conducted during 1991-2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay. A new study has been conducted in the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, using higher fidelity models to evaluate the current debris environment. The study assumed no satellites were launched after December 2005. A total of 150 Monte Carlo runs were carried out and analyzed. Each Monte Carlo run simulated the current debris environment and projected it 200 years into the future. The results indicate that the LEO debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Detailed analysis shows that this growth is primarily driven by high collision activities around 900 to 1000 km altitude - the region which has a very high concentration of debris at present. In reality, the satellite population growth in LEO will undoubtedly be worse than this study indicates, since spacecraft and their orbital stages will continue to be launched into space. Postmission disposal of vehicles (e.g., limiting postmission orbital lifetimes to less than 25 years) will help, but will be insufficient to constrain the Earth satellite population. To preserve better the near-Earth environment for future space activities, it might be necessary to remove existing large and massive objects from regions where high collision activities are

  12. 33 CFR 151.3000 - Definition of marine debris for the purposes of the Marine Debris Research, Prevention, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... jointly promulgated the definition of marine debris in this part. NOAA's regulation may be found in 15 CFR... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Definition of marine debris for the purposes of the Marine Debris Research, Prevention, and Reduction Act. 151.3000 Section...

  13. Effects of Recent Debris Flows on Channel Conditions in Small Watersheds in the Central Klamath Mountains, NW California

    NASA Astrophysics Data System (ADS)

    de La Fuente, J.; Elder, D.; Bell, A.; Staisch, L.

    2008-12-01

    Debris flow histories were developed for ten small watersheds, tributary to the Klamath and Scott Rivers, averaging about 3,800 acres in size. This was accomplished by examining air photos dating from 1944 to 1997 and conducting field inventories. The primary objective of the work was to investigate the influence which debris flows of varying age have on macroinvertebrate populations and their habitat. Major flood and debris flow events in this area occurred in 1955, 1964, 1974, and 1997. The largest of the four was in 1964. At the Klamath River gauging station in Seiad Valley, estimated recurrence intervals were 23.7 years in 1955, 71.0 years in 1964, 35.5 years in 1974 and 17.8 years in 1997. Field investigations were conducted in 2006 & 2007, where longitudinal profiles and transverse cross sections were obtained on all channels. Dating trees by coring constrained the ages of individual debris flow terrace surfaces. These terraces were then correlated with findings from the air photo analysis. Disturbance histories varied considerably across the watersheds. Some were relatively undisturbed, lying primarily in wilderness, while others had complex histories of wildfire, road construction, mining and logging. Some of the drainages experienced multiple events that affected the entire valley floor (up to 100-feet wide), while others had no evidence of recent debris flows. Debris flows were entirely natural in some drainages, but closely linked to roads, harvest, and fire in others.

  14. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986

  15. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    PubMed

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A

    2016-01-01

    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna. PMID:27574986

  16. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  17. Orbital Debris: Quarterly News, Volume 14, Issue 2

    NASA Technical Reports Server (NTRS)

    Liou, J. C. (Editor); Shoots, Debi (Editor)

    2010-01-01

    This bulletin contains articles from the Orbital Debris Program office. This issue's articles are: "Orbital Debris Success Story --A Decade in the Making", "Old and New Satellite Breakups Identified," "Update on Three Major Debris Clouds," and "MMOD Inspection of the HST Bay 5 Multi-Layer Insulation Panel" about micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope (HST) insulation panel. A project review is also included (i.e., "Small Debris Observations from the Iridium 33/Cosmos 2251 Collision.") There are also abstra cts of conference papers from the staff of the program office.

  18. Internet Based Simulations of Debris Dispersion of Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.

  19. Resolved imaging of the HR 8799 Debris disk with Herschel

    SciTech Connect

    Matthews, Brenda; Booth, Mark; Broekhoven-Fiene, Hannah; Marois, Christian; Kennedy, Grant; Wyatt, Mark; Sibthorpe, Bruce; Macintosh, Bruce

    2014-01-01

    We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160, and 250 μm and detect the disk at 350 and 500 μm. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al., we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 to 310 AU, with some flexibility (±10 AU) on the inner edge, and the external halo that extends to ∼2000 AU. We measure the disk inclination to be 26° ± 3° from face-on at a position angle of 64° E of N, establishing that the disk is coplanar with the star and planets. The spectral energy distribution of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 ± 30 μm, however, is short compared with other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 μm), implying two distinct halo dust-grain populations.

  20. [Research progress in post-fire debris flow].

    PubMed

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow. PMID:24380363

  1. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  2. Orbital Debris Quarterly News, Volume 13, Issue 4

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)

    2009-01-01

    Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).

  3. Conceptual design of an Orbital Debris Defense System

    NASA Astrophysics Data System (ADS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-08-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  4. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  5. Assessing marine debris in deep seafloor habitats off California.

    PubMed

    Watters, Diana L; Yoklavich, Mary M; Love, Milton S; Schroeder, Donna M

    2010-01-01

    Marine debris is a global concern that pollutes the world's oceans, including deep benthic habitats where little is known about the extent of the problem. We provide the first quantitative assessment of debris on the seafloor (20-365 m depth) in submarine canyons and the continental shelf off California, using the Delta submersible. Fishing activities were the most common contributors of debris. Highest densities occurred close to ports off central California and increased significantly over the 15-year study period. Recreational monofilament fishing line dominated this debris. Debris was less dense and more diverse off southern than central California. Plastic was the most abundant material and will likely persist for centuries. Disturbance to habitat and organisms was low, and debris was used as habitat by some fishes and macroinvertebrates. Future trends in human activities on land and at sea will determine the type and magnitude of debris that accumulates in deep water. PMID:19751942

  6. Impact Forces from Tsunami-Driven Debris

    NASA Astrophysics Data System (ADS)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  7. Data Acquisition, Management, and Analysis in Support of the Audiology and Hearing Conservation and the Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Dicken, Todd

    2012-01-01

    My internship at Johnson Space Center, Houston TX comprised of working simultaneously in the Space Life Science Directorate (Clinical Services Branch, SD3) in Audiology and Hearing Conservation and in the Astromaterials Research and Exploration Sciences Directorate in the Orbital Debris Program Office (KX). The purpose of the project done to support the Audiology and Hearing Conservation Clinic (AuHCon) is to organize and analyze auditory test data that has been obtained from tests conducted onboard the International Space Station (ISS) and in Johnson Space Center's clinic. Astronauts undergo a special type of auditory test called an On-Orbit Hearing Assessment (OOHA), which monitors hearing function while crewmembers are exposed to noise and microgravity during long-duration spaceflight. Data needed to be formatted to assist the Audiologist in studying, analyzing and reporting OOHA results from all ISS missions, with comparison to conventional preflight and post-flight audiometric test results of crewmembers. Orbital debris is the #1 threat to manned spacecraft; therefore NASA is investing in different measurement techniques to acquire information on orbital debris. These measurements are taken with telescopes in different parts of the world to acquire brightness variations over time, from which size, rotation rates and material information can be determined for orbital debris. Currently many assumptions are taken to resolve size and material from observed brightness, therefore a laboratory (Optical Measurement Center) is used to simulate the space environment and acquire information of known targets suited to best model the orbital debris population. In the Orbital Debris Program Office (ODPO) telescopic data were acquired and analyzed to better assess the orbital debris population.

  8. A New Look at the GEO and Near-GEO Regimes: Operations, Disposals, and Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas

    2011-01-01

    Since 1963 more than 900 spacecraft and more than 200 launch vehicle upper stages have been inserted into the vicinity of the geosynchronous regime. Equally important, more than 300 spacecraft have been maneuvered into disposal orbits at mission termination to alleviate unnecessary congestion in the finite GEO region. However, the number of GEO satellites continues to grow, and evidence exists of a substantial small debris population. In addition, the operational modes of an increasing number of GEO spacecraft differ from those of their predecessors of several decades ago, including more frequent utilization of inclined and eccentric geosynchronous orbits. Consequently, the nature of the GEO regime and its immediate surroundings is evolving from well-known classical characteristics. This paper takes a fresh look at the GEO satellite population and the near- and far-term environmental implications of the region, including the effects of national and international debris mitigation measures.

  9. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul

    2014-12-01

    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  10. Flux of Millimetric Space Debris

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Goldstein, S. J., Jr.

    1995-01-01

    In 21.4 hr of zenith radar observations on 4 days at 8510 MHz, we found 831 particles with altitudes between 177 and 1662 km. From the duration of the echoes and the angular size (0.030 deg) of the antenna beam 157 particles were identified as passing through the side lobes and not through the main beam. Our analysis is based on the 674 particles that did not broaden the beam. On the assumptions that these particles went through the main beam, their radar cross sections vary between 0.02 and 260 sq mm , and their radial velocities vary between +/- 700 m/s. If they are conducting spheres, their diameters lie between 2 and 18 mm. If not, they must be larger. The flux of these particles, that is the number per sq km day, was determined in 100 km intervals. The maximum flux, 3.3 particles per sq km day, occurs at 950 km altitude. The small and large particles are not well mixed. The largest particles occur beyond 1000 km and middle-sized particles are missing below 300 km. If the earth's atmosphere caused the smallest particles to lose energy from initial orbits identical to those of the large particles, the orbits would have lower eccentricity at low altitudes. We find a larger eccentricity for the inner particles, and conclude that two or more populations are present.

  11. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption

    PubMed Central

    Rochman, Chelsea M.; Tahir, Akbar; Williams, Susan L.; Baxa, Dolores V.; Lam, Rosalyn; Miller, Jeffrey T.; Teh, Foo-Ching; Werorilangi, Shinta; Teh, Swee J.

    2015-01-01

    The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health. PMID:26399762

  12. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption.

    PubMed

    Rochman, Chelsea M; Tahir, Akbar; Williams, Susan L; Baxa, Dolores V; Lam, Rosalyn; Miller, Jeffrey T; Teh, Foo-Ching; Werorilangi, Shinta; Teh, Swee J

    2015-01-01

    The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health. PMID:26399762

  13. Geological history and within-island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti.

    PubMed

    Brown, Richard P; Hoskisson, Paul A; Welton, John-Henry; Báez, Marcos

    2006-10-01

    Several processes have been described that could explain geographical variation and speciation within small islands, including fragmentation of populations through volcanic eruptions. Massive landslides, or debris avalanches, could cause similar effects. Here we analyse the potential impact of the 0.8 million-year-ago (Ma) Güimar valley debris avalanche on the phylogeography of the lizard Gallotia galloti on the Canary Island of Tenerife. Distributions of mitochondrial DNA lineages (based on cytochrome b sequences) were analysed on a 60-km southeastern coast transect centred on this area. Three main clades were detected, which can be divided into northern (one clade) and southern (two clades) groups that introgress across the valley. Maximum-likelihood estimates of migration rates (scaled for mutation rate) revealed highly asymmetric patterns, indicating that long-term gene flow into this region from both the northern and the southern populations greatly exceeded that in the opposite directions, consistent with recolonization of the area. The ancestral Tenerife node on the G. galloti tree is estimated at 0.80 Ma, matching closely with the geological estimate for the debris avalanche. Morphological variation (body dimensions and scalation) was also analysed and indicated a stepped cline in female scalation across the valley, although the patterns for male scalation and male and female body dimensions were not as clear. Together these findings provide support for the hypothesis that the debris avalanche has shaped the phylogeography of G. galloti and may even have been a primary cause of the within-island cladogenesis through population fragmentation and isolation. Current estimates of timing of island unification mean that the original hypothesis that within-island diversity is explained by the secondary contact of populations from the two ancient precursor islands of Teno and Anaga is less plausible for this and some other Tenerife species. Large-scale landslides

  14. Modeling the space debris environment with MASTER-2009 and ORDEM2010

    NASA Astrophysics Data System (ADS)

    Flegel, Sven Kevin; Krisko, Paula; Gelhaus, Johannes; Wiedemann, Carsten; Moeckel, Marek; Krag, Holger; Klinkrad, Heiner; Xu, Yu-Lin; Horstman, Matthew; Matney, Mark; Vörsmann, Peter

    The two software tools MASTER-2009 and ORDEM2010 are the ESA and NASA reference software tools respectively which describe the earth's debris environment. The primary goal of both programs is to allow users to estimate the object flux onto a target object for mission planning. The current paper describes the basic distinctions in the model philosophies. At the core of each model lies the method by which the object environment is established. Cen-tral to this process is the role played by the results from radar/telescope observations or impact fluxes on surfaces returned from earth orbit. The ESA Meteoroid and Space Debris Terrestrial Environment Reference Model (MASTER) is engineered to give a realistic description of the natural and the man-made particulate environment of the earth. Debris sources are simulated based on detailed lists of known historical events such as fragmentations or solid rocket motor firings or through simulation of secondary debris such as impact ejecta or the release of paint flakes from degrading spacecraft surfaces. The resulting population is then validated against historical telescope/radar campaigns using the ESA Program for Radar and Optical Observa-tion Forecasting (PROOF) and against object impact fluxes on surfaces returned from space. The NASA Orbital Debris Engineering Model (ORDEM) series is designed to provide reliable estimates of orbital debris flux on spacecraft and through telescope or radar fields-of-view. Central to the model series is the empirical nature of the input populations. These are derived from NASA orbital debris modeling but verified, where possible, with measurement data from various sources. The latest version of the series, ORDEM2010, compiles over two decades of data from NASA radar systems, telescopes, in-situ sources, and ground tests that are analyzed by statistical methods. For increased understanding of the application ranges of the two programs, the current paper provides an overview of the two

  15. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Programs

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Over the past 50 years, various NASA communities have contributed significantly to maturing NASA s meteoroid and orbital debris (MMOD)1 programs to their current state. As a result of these community efforts, and to NASA s credit, NASA s MMOD programs and models are now widely used and respected by the providers and users of both government and commercial satellites, nationally as well as internationally. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite s structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. The space shuttle, as it orbited Earth, and whether docked to the ISS or not, was optimally oriented to protect its fragile thermal protection and thermal radiation systems from MMOD damage. In addition, astronauts inspected its thermal protection system for MMOD damage before the shuttle reentered Earth s atmosphere; Orion, NASA s capsule to carry astronauts to low Earth orbit, includes designs to mitigate the threat of MMOD damage and provide increased safety to the crew. When a handful of reasonable assumptions are used in NASA s MMOD models, scenarios are uncovered that conclude that the current orbital debris environment has already reached a "tipping point." That is, the amount of debris - in terms of the population of large debris objects, as well as overall mass of debris in orbit - currently in orbit has reached a threshold where it will continually collide with itself, further increasing the population of orbital debris. This increase will lead to corresponding increases in spacecraft failures, which will only create more feedback into the system, increasing the debris population

  16. A CCD search for geosynchronous debris

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom; Vilas, Faith

    1986-01-01

    Using the Spacewatch Camera, a search was conducted for objects in geosynchronous earth orbit. The system is equipped with a CCD camera cooled with dry ice; the image scale is 1.344 arcsec/pixel. The telescope drive was off so that during integrations the stars were trailed while geostationary objects appeared as round images. The technique should detect geostationary objects to a limiting apparent visual magnitude of 19. A sky area of 8.8 square degrees was searched for geostationary objects while geosynchronous debris passing through was 16.4 square degrees. Ten objects were found of which seven are probably geostationary satellites having apparent visual magnitudes brighter than 13.1. Three objects having magnitudes equal to or fainter than 13.7 showed motion in the north-south direction. The absence of fainter stationary objects suggests that a gap in debris size exists between satellites and particles having diameters in the millimeter range.

  17. Space debris hazard to defense systems

    SciTech Connect

    Canavan, G.H.

    1996-05-01

    Natural and man-made debris are argued to present hazards to space systems, but recent data indicate that at low altitudes, the impact rates from small particles may have been overestimated by an order of magnitude. At high altitudes, small particles only present an impact hazard to large satellites; they would not support a cascade. Large particles would apparently produce a cascade only on time scales of centuries or millennia. Radar and optical data should be capable of resolving these uncertainties, but their observations are, as yet, inconsistent. While independent analytic and numerical estimates of collision and cascade rates agree, given consistent inputs, different groups produced significantly different estimates of debris growth rates. This note examines the basis for these discrepancies.

  18. Zodiac II: Debris Disk Imaging Potential

    NASA Technical Reports Server (NTRS)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  19. Warm Debris Disk Candidates from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  20. Debris trap in a turbine cooling system

    DOEpatents

    Wilson, Ian David

    2002-01-01

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  1. GENERALIZED VISCOPLASTIC MODELING OF DEBRIS FLOW.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    The earliest model developed by R. A. Bagnold was based on the concept of the 'dispersive' pressure generated by grain collisions. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold's concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical for general use in debris-flow modeling. In fact, Bagnold's model is found to be only a particular case of the GVF model. analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold's simplified assumption of constant grain concentration.

  2. GENERAL SOLUTIONS FOR VISCOPLASTIC DEBRIS FLOW.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    Theoretical velocity profile and theoretical pressure and concentration distributions for (steady) uniform debris flow in wide channels are derived from a generalized viscoplastic fluid (GVF) model without imposing R. A. Bagnold's assumption of constant grain concentration. Good agreement between the theoretical velocity profile and the experimental data of Japanese scientists strongly supports the validity of both the GVF model and the proposed method of solution from the model. It is shown that both E. C. Bingham and Bagnold versions (or submodels) of the GVF model can be used to simulate debris flow at the dynamic state. Although Bagnold's dilatant submodel appears to fit the Japanese data better than the Bingham submodel for flow of noncohesive grains, the choice between them is by no means clear-cut.

  3. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  4. Herschel Observations of Debris Disks from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, D. L.; Stapelfeldt, K. R.; Liu, W.; Leisawitz, D. T.; Fajardo-Acosta, S.

    2012-01-01

    The \\Vide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6,12 and 22 microns. We report on a study of main sequence Hipparcos and Tycho catalog stars within 120 pc with WISE 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred of the WISE new warm debris disk candidates detected among FGK stars are being observed by Herschel/PACS to characterize circumstellar dust. Preliminary results indicate 70 micron detection rates in excess of 80% for these targets, suggesting that most of these systems have both warm and cool dust in analogy to our asteroid and Kuiper belts. In this contribution, we will discuss the WISE debris disk survey and latest results from Herschel observations of these sources.

  5. STS-51-L Recovered Debris (Orbiter)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    On January 28, 1986, the Space Shuttle Challenger and her seven-member crew were lost when a ruptured O-ring in the right Solid Rocket Booster caused an explosion soon after launch. After the accident, search and recovery teams worked for months to bring debris from Shuttle to impoundment areas at the Kennedy Space Center and the Cape Canaveral Air Force Station, where reconstruction teams separated the pieces of the orbiter from those of the External Tank and the Solid Rocket Boosters. Taped squares on the floor turned the impoundment areas into a grid in which the reconstruction teams could piece together the Shuttle debris like a puzzle with many missing segments. Shown here is the reassembled Orbiter.

  6. Leo micrometeorite/debris impact damage

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.

    1991-01-01

    The school bus sized Long Duration Exposure Facility (LDEF) was retrieved in 1990, after nearly six years of 250 nautical mile altitude low earth orbit environmental exposure. The recovery of LDEF experiments has provided extensive information on space interactions, including micrometeorite, debris, atomic oxygen, ultraviolet, and particulate radiation. The Jet Propulsion Laboratory provided a test plate as part of Solar-Array-Materials Passive LDEF (SAMPLE) Experiment. The test plate contained thirty thin silicon solar cell/cover assemblies. The cover samples included a variety of materials such as Teflon and RTV silicones, in addition to conventional microsheet. The nature of the approximately 150 micrometeorite/debris impacts on the cell/cover samples, cell interconnects, and aluminum test plate is discussed.

  7. Micrometeoroid/space debris effects on materials

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Finckenor, Miria M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) micrometeoroid/space debris impact data has been reduced in terms that are convenient for evaluating the overall quantitative effect on material properties. Impact crater flux has been evaluated as a function of angle from velocity vector and as a function of crater size. This data is combined with spall data from flight and ground testing to calculate effective solar absorption and emittance values versus time. Results indicate that the surface damage from micrometeoroid/space debris does not significantly affect the overall surface optical thermal physical properties. Of course the local damage around impact craters radically alter optical properties. Damage to composites and solar cells on an overall basis was minimal.

  8. Relative motion in a debris cloud

    NASA Astrophysics Data System (ADS)

    Kebe, Fatoumata

    2016-07-01

    After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.

  9. Debris Disk Science Enabled by a Probe-scale Space Coronagraph Mission

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl R.; Trauger, J. T.; Krist, J. E.

    2010-01-01

    Debris disks are the signposts of planetary systems: collisions between rocky/icy parent bodies maintain debris dust around main sequence stars against losses to radiation pressure and P-R drag. Debris disk structures show the location of asteroid/Kuiper belts around nearby stars, and reflect dynamical interactions with local extrasolar planets. Only 17 debris disks with high optical depth have been spatially resolved to date in scattered light images made with the Hubble Space Telescope and ground-based adaptive optics. Hundreds more with lower optical depth have been identified among nearby stars through far-IR photometry with the Spitzer Space Telescope, and more should follow in the next few years from Herschel. The most capable means for imaging this larger disk population is a next-generation coronagraphic instrument on a 1.5m class optical space telescope. Utilizing high-contrasat imaging simulations validated by laboratory demonstrations on the JPL High Contrast Imaging Testbed, we show that such a mission will be capable of imaging Kuiper disk structures down to the 10 zodi level, and exozodiacal dust down to the 1 zodi level, around a major sample of nearby stars. This performance goes well beyond what is about to be achieved with upcoming extreme adaptive optics systems or the ALMA array, and thus provides the best path for imaging exploration of planetary systems in the solar neighborhood.

  10. A Parametric Study on Using Active Debris Removal for LEO Environment Remediation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to guide its implementation to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the currently existing satellites and the benefits of collision avoidance maneuvers are also included.

  11. Evolution of the Debris Cloud Generated by the Fengyun-1C Fragmentation Event

    NASA Technical Reports Server (NTRS)

    Pardini, Carmen; Anselmo, Luciano

    2007-01-01

    The cloud of cataloged debris produced in low earth orbit by the fragmentation of the Fengyun-1C spacecraft was propagated for 15 years, taking into account all relevant perturbations. Unfortunately, the cloud resulted to be very stable, not suffering substantial debris decay during the time span considered. The only significant short term evolution was the differential spreading of the orbital planes of the fragments, leading to the formation of a debris shell around the earth approximately 7-8 months after the breakup, and the perigee precession of the elliptical orbits. Both effects will render the shell more "isotropic" in the coming years. The immediate consequence of the Chinese anti-satellite test, carried out in an orbital regime populated by many important operational satellites, was to increase significantly the probability of collision with man-made debris. For the two Italian spacecraft launched in the first half of 2007, the collision probability with cataloged objects increased by 12% for AGILE, in equatorial orbit, and by 38% for COSMO-SkyMed 1, in sun-synchronous orbit.

  12. Advanced design for orbital debris removal in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.

  13. Marine debris ingestion by Magellanic penguins, Spheniscus magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone.

    PubMed

    Brandão, Martha L; Braga, Karina M; Luque, José L

    2011-10-01

    Magellanic penguins (Spheniscus magellanicus) are non-breeding winter visitors to the Brazilian coast. In 2008 and 2010, plastic items and other marine debris were found in the stomachs and intestines of 15% of 175 dead penguins collected in the Lagos Region of the state of Rio de Janeiro. One bird had its stomach perforated by a plastic straw, which may have caused its death. There are few records of penguins ingesting plastic litter, but previous studies have found similar levels of debris ingestion among Magellanic penguins stranded on the Brazilian coast (35.8% of 397 birds). The high incidence of marine debris in this species in Brazil may result at least in part from the predominance of juveniles reaching these waters, as juvenile penguins may have a broader diet than adults. It is unclear to what extent plastic ingestion affects the mortality rate in this species and whether the incidence in stranded birds reflects that in the entire population. The present study addresses the increasing impact of plastic debris on marine life. PMID:21864861

  14. Space Debris Laser Ranging at Graz

    NASA Astrophysics Data System (ADS)

    Kirchner, Georg; Koidl, Franz; Kucharski, Daniel; Ploner, Martin; Riede, Wolfgang; Voelker, Uwe; Buske, Ivo; Friedrich, Fabian; Baur, Oliver; Krauss, Sandro; Wirnsberger, Harald

    2013-08-01

    The Graz Satellite Laser Ranging (SLR) station usually measures distances to retro-reflector equipped satellites with an accuracy of few millimetres, using short laser pulses with 10 ps pulse width, a low energy of 400 μJ, and a repetition rate of 2 kHz. To test laser ranging possibilities to space debris, we installed two stronger lasers (a diode-pumped 25 mJ / 1 kHz / 10 ns / 532 nm laser, exchanged later to a flash lamp pumped 150 mJ / 100 Hz / 3 ns / 532 nm laser) - both on loan from DLR / German Aerospace Centre Stuttgart -, and built lownoise single-photon detection units. With this configuration, we successfully tracked ≈ 100 passes of almost 50 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from > 15 m2 down to < 0.3 m2 , and measured their distances with an average accuracy of 0.7 m (10 ns laser) resp. ≈ 0.5 m (3 ns laser) RMS. The resulting data will be used to calculate improved orbits of the tracked debris objects, and to compare them with radar-based TLE (two-line element) orbits. As demonstration experiment, here we provide findings for ENVISAT normal point analysis. As a next step, we plan to additionally taking pointing information into account. Potentially, the joint analysis of both ranges and orientation angles further improves space debris orbit accuracy. Orbit determination and prediction was done with the GEODYN software package. In addition, we successfully tested a 'bi-static' mode: Graz fired laser pulses to ENVISAT; while Graz detected photons reflected from the retro-reflector, the Swiss SLR station Zimmerwald detected the photons diffusely reflected from the satellite body.

  15. Visible Light Spectroscopy of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  16. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D.; Bradley, J.; Hoerz, Friedrich

    1993-01-01

    We have examined craters in Al and Au LDEF surfaces to determine the nature of meteoroid residue in the rare cases where projectile material is abundantly preserved in the crater floor. Typical craters contain only small amounts of residue and we find that less than 10 percent of the craters in Al have retained abundant residue consistent with survival of a significant fraction (greater than 20 percent) of the projectile mass. The residue-rich craters can usually be distinguished optically because their interiors are darker than ones with little or no apparent projectile debris. The character of the meteoroid debris in these craters ranges from thin glass liners, to thick vesicular glass containing unmelted mineral fragments, to debris dominated by unmelted mineral fragments. In the best cases of meteoroid survival, unmelted mineral fragments preserve both information on projectile mineralogy as well as other properties such as nuclear tracks caused by solar flare irradiation. The wide range of the observed abundance and alteration state of projectile residue is most probably due to differences in impact velocity. The crater liners are being studied to determine the composition of meteoroids reaching the Earth. The compositional types most commonly seen in the craters are: (1) chondritic (Mg, Si, S, Fe in approximately solar proportions), (2) Mg silicate. amd (3) iron sulfide. These are also the most common compositional types of extraterrestrial particle types collected in the stratosphere. The correlation between these compositions indicates that vapor fractionation was not a major process influencing residue composition in these craters. Although the biases involved with finding analyzable meteoroid debris in metal craters differ from those for extraterrestrial particles collected in and below the atmosphere, there is a common bias favoring particles with low entry velocity. For craters this is very strong and probably all of the metal craters with abundant

  17. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-10-10

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old ({approx}>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  18. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  19. Orbital Debris: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  20. Detailed scour measurements around a debris accumulation

    USGS Publications Warehouse

    Mueller, David S.; Parola, Arthur C.

    1998-01-01

    Detailed scour measurements were made at Farm-Market 2004 over the Brazos River near Lake Jackson, Tex. during flooding in October 1994. Woody debris accumulations on bents 6, 7, and 8 obstructed flow through the bridge, causing scour of the streambed. Measurements at the site included three-dimensional velocities, channel bathymetry, water-surface elevations, water-surface slope, and discharge. Channel geometry upstream from the bridge caused approach conditions to be nonuniform.

  1. Mapping marine debris across coastal communities in Belize: developing a baseline for understanding the distribution of litter on beaches using geographic information systems.

    PubMed

    Bennett-Martin, Paulita; Visaggi, Christy C; Hawthorne, Timothy L

    2015-10-01

    Monitoring of marine debris (also known as marine litter) is an essential step in the process to eradicate ecological dangers in marine ecosystems caused by humans. This study examines marine debris in the Caribbean country of Belize using geographic information systems (GIS) to develop (1) a detailed data library for use on handheld Global Positioning System (GPS) units and tablets with mobile mapping applications for deployment in the field and (2) a freely available, online mapping portal to share data with Belizeans to encourage future citizen science efforts. Four diverse communities were targeted ranging from larger more populated towns, to smaller villages across central and southern Belize: San Pedro, Caye Caulker, Punta Gorda, and Monkey River. Fieldwork was conducted over 1 month, during which data points were collected in 50-m surveys followed by debris cleanup and removal. Features in our database included material, quantity, item, brand, and condition. Over 6000 pieces of debris were recorded in GIS for further analysis, and 299 gal of debris were removed from the shores of Belize. The most abundant form of debris observed was plastic (commonly bottles) across all locations; plastic comprised 77.6 % of all debris items observed. Through GIS, a detailed snapshot understanding of debris patterns across multiple settings in Belize was documented. Ongoing collaborations with local organizations in Belize have demonstrated significant interest and utility for such GIS approaches in analyzing and managing marine debris. The data, methodology, visual representations, and online mapping platform resulting from this research are a first step in directly supporting local Belizean community advocacy and policy, while contributing to larger institutional strategies for addressing marine debris issues in the Caribbean. PMID:27614957

  2. Plastic debris in the open ocean

    PubMed Central

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  3. Bremsstrahlung converter debris shields: test and analysis

    SciTech Connect

    Reedy, E.D. Jr.; Perry, F.C.

    1983-10-01

    Electron beam accelerators are commonly used to create bremsstrahlung x-rays for effects testing. Typically, the incident electron beam strikes a sandwich of three materials: (1) a conversion foil, (2) an electron scavenger, and (3) a debris shield. Several laboratories, including Sandia National Laboratories, are developing bremsstrahlung x-ray sources with much larger test areas (approx. 200 to 500 cm/sup 2/) than ever used before. Accordingly, the debris shield will be much larger than before and subject to loads which could cause shield failure. To prepare for this eventuality, a series of tests were run on the Naval Surface Weapons Center's Casino electron beam accelerator (approx. 1 MeV electrons, 100 ns FWHM pulse, 45 kJ beam energy). The primary goal of these tests was to measure the stress pulse which loads a debris shield. These measurements were made with carbon gages mounted on the back of the converter sandwich. At an electron beam fluence of about 1 kJ/cm/sup 2/, the measured peak compressive stress was typically in the 1 to 2 kbar range. Measured peak compressive stress scaled in a roughly linear manner with fluence level as the fluence level was increased to 10 kJ/cm/sup 2/. The duration of the compressive pulse was on the order of microseconds. In addition to the stress wave measurements, a limited number of tests were made to investigate the type of damage generated in several potential shield materials.

  4. The Debris Streams from Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric

    2016-01-01

    When a star comes within a critical distance of a supermassive black hole, the tidal force exerted by the hole overcomes the stellar self-gravity. The star is subsequently torn apart, creating a stream of tidally-shredded debris that initially recedes from the hole, eventually returns to pericenter, forms an accretion disk and generates a highly luminous event that can sometimes be accompanied by the production of relativistic jets. This entire process is known as a tidal disruption event (TDE), and dozens of these events have already been observed. I will discuss my most recent work that has analyzed the tidal disruption process, and in particular I will focus on the results of numerical and analytical investigations that show that the streams of debris produced during TDEs can be gravitationally unstable. Specifically, I will describe how compressive motions augment the importance of self-gravity not long after the star is disrupted, resulting in the fragmentation of the debris stream into small-scale clumps. These findings will be discussed in the context of the observational signatures of tidal disruption events, and I will also relate these results to my past investigations concerning accretion disk formation and jet launching during TDEs.

  5. Plastic debris in the open ocean.

    PubMed

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  6. Experimental verification of an innovative debris detector

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Romberg, Oliver; Putzar, Robin

    2015-12-01

    To analyse the quantity of space debris and micrometeoroids in space, an innovative in-situ impact detection method has been developed at DLR (German Aerospace Center) in Bremen, Germany. The method Solar generator based Impact Detector "SOLID" uses solar panels for impact detection. Since solar panels provide large detection areas, this method allows for the collection of large amounts of data, to be used also for model validation. Furthermore, impact damage can be verified once more to confirm or to refute an impact. Both aspects can significantly improve the quality of model validation by using large amounts of highly reliable data. A verification of the detection method was performed by Hypervelocity Impact (HVI) tests at Fraunhofer EMI, Freiburg, Germany. The HVI tests were conducted using projectiles with a diameter between 500 μm and 2 mm. The impact velocity of those objects ranged from 3.9 km/s to 6.2 km/s. The objective of this investigation was to test the applicability of the developed method concerning in-situ detection of space debris and micrometeoroids. The achieved test results are in agreement with ESA developed damage equations. The ability of the detection method SOLID for impact detection of space debris and micrometeoroids was clearly demonstrated.

  7. Orbital debris removal and salvage system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four Texas A&M University projects are discussed. The first project is a design to eliminate a majority of orbital debris. The Orbital Debris and Salvage System will push the smaller particles into lower orbits where their orbits will decay at a higher rate. This will be done by momentum transfer via laser. The salvageable satellites will be delivered to the Space Station by an Orbital Transfer Vehicle. The rest of the debris will be collected by Salvage I. The second project is the design of a space based satellite system to prevent the depletion of atmospheric ozone. The focus is on ozone depletion in the Antarctic. The plan is to use an orbiting solar array system designed to transmit microwaves at a frequency of 22 GHz over the region in order to dissipate polar stratospheric clouds that form during the months beginning in August and ending in October. The third project, Project Poseidon, involves a conceptual design of a space based hurricane control system consisting of a network of 21 low-orbiting laser platforms arranged in three rings designed to heat the upper atmosphere of a developing tropical depression. Fusion power plants are proposed to provide power for the lasers. The fourth project, Project Donatello, involves a proposed Mars exploration initiative for the year 2050. The project is a conceptual design for a futuristic superfreighter that will transport large numbers of people and supplies to Mars for the construction of a full scale scientific and manufacturing complex.

  8. Planets, debris and their host metallicity correlations

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Nayakshin, Sergei

    2016-09-01

    Recent observations of debris discs (DDs), believed to be made up of remnant planetesimals, brought a number of surprises. DD presence does not correlate with the host star's metallicity, and may anticorrelate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here, we explore predictions of the alternative tidal downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high-metallicity stars but release more debris per disruption than their low [M/H] analogues. This predicts no simple relation between DD presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (Mp ˜ 50 M⊕) should correlate with DD presence stronger than sub-Neptunes (Mp ≲ 15 M⊕). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long-term evolution and multifragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.

  9. Dependence of debris cloud formation on projectile shape

    NASA Astrophysics Data System (ADS)

    Konrad, C. H.; Chhabildas, L. C.; Boslough, M. B.; Piekutowski, A. J.; Poormon, K. L.; Mullin, S. A.; Littlefield, D. L.

    1994-07-01

    A two-stage lights-gas gun has been used to impact thin zinc bumpers by zinc projectiles over the velocity range of 2.4 km/s to 6.7 km/s to determine the propagation characteristics of the impact generated debris. Constant-mass projectiles in the form of spheres, discs, cylinders, and rods were used in these studies. Radiographic techniques were employed to record the debris cloud generated upon impact and the dynamic formation of the resulting rupture in an aluminum backing plate resulting from the loading of the debris cloud. The characteristics of the debris cloud generated upon impact is found to depend on the projectile shape. The data indicate that the debris front velocity is independent of the shape of the projectile, whereas the debris lateral/radial velocity is strongly dependent on projectile geometry. Spherical impactors generate the most radially dispersed debris cloud while the normal plate impactors result in column-like debris. It has been observed that the debris generated by the impact of thin plates on a thin bumper shield is considerably more damaging to a backwall than the debris generated by an equivalent-mass sphere.

  10. Dependence of debris cloud formation on projectile shape

    SciTech Connect

    Konrad, C.H.; Chhabildas, L.C.; Boslough, M.B.; Piekutowski, A.J.; Poormon, K.L.; Mullin, S.A.; Littlefield, D.L.

    1993-07-01

    A two-stage light-gas gun has been used to impact thin zinc bumpers by zinc projectiles over the velocity range of 2.4 km/s to 6.7 km/s to determine the propagation characteristics of the impact generated debris. Constant-mass projectiles in the form of spheres, discs, cylinders and rods were used in these studies. Radiographic techniques were employed to record the debris cloud generated upon impact and the dynamic formation of the resulting rupture in an aluminum backing plate resulting from the loading of the debris cloud. The characteristics of the debris cloud generated upon impact is found to depend on the projectile shape. The data indicate that the debris front velocity is independent of the shape of the projectile, whereas the debris lateral/radial velocity is strongly dependent on projectile geometry. Spherical impactors generate the most radially dispersed debris cloud while the normal plate impactors result in column-like debris. It has been observed that the debris generated by the impact of thin plates on a thin bumper shield is considerably more damaging to a backwall than the debris generated by an equivalent-mass sphere.

  11. Treatment technology analysis for mixed waste containers and debris

    SciTech Connect

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  12. Debris-flow generation from recently burned watersheds

    USGS Publications Warehouse

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  13. The Effect of Debris-Flow Composition on Runout Distance

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2014-12-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, debris-flow composition had a larger effect on runout distance than topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  14. The effect of debris-flow composition on runout distance

    NASA Astrophysics Data System (ADS)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  15. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    SciTech Connect

    Shaughnessy, D A; Moody, K J; Grant, P M; Lewis, L A; Hutcheon, I D; Lindvall, R; Gostic, J M

    2011-11-20

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  16. Characterizing Debris in the Infrared with UKIRT

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jah, M.; Kendrick, R.; Buckalew, B.; Frith, J. M.; Cowardin, H. M.; Bold, M.

    2015-01-01

    The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5µm) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt

  17. Comprehensive Shuttle Foam Debris Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The Columbia Accident Investigation Board (CAIB) was clear in its assessment of the loss of the Space Shuttle Columbia on February 3, 2003. Foam liberated from the External Tank (ET) impacting the brittle wing leading edge (WLE) of the orbiter causing the vehicle to disintegrate upon re-entry. Naturally, the CAB pointed out numerous issues affecting this exact outcome in hopes of correcting systems of systems failures any one of which might have altered the outcome. However, Discovery s recent return to flight (RTF) illustrates the primacy of erosion of foam and the risk of future undesirable outcomes. It is obvious that the original RTF focused approach to this problem was not equal to a comprehensive foam debris reduction activity consistent with the high national value of the Space Shuttle assets. The root cause is really very simple when looking at the spray-on foam insulation for the entire ET as part of the structure (e.g., actual stresses > materials allowable) rather than as some sort of sizehime limited ablator. This step is paramount to accepting the CAB recommendation of eliminating debris or in meeting any level of requirements due to the fundamental processes ensuring structural materials maintain their integrity. Significant effort has been expended to identify root cause of the foam debris In-Flight Anomaly (FA) of STS-114. Absent verifiable location specific data pre-launch (T-0) and in-flight, only a most probable cause can be identified. Indeed, the literature researched corroborates NASNTM-2004-2 13238 disturbing description of ill defined materials characterization, variable supplier constituents and foam processing irregularities. Also, foam is sensitive to age and the exposed environment making baseline comparisons difficult without event driven data. Conventional engineering processes account for such naturally occurring variability by always maintaining positive margins. Success in a negative margin range is not consistently achieved

  18. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  19. Photometric Monitoring of Non-resolved Space Debris and Databases of Optical Light Curves

    NASA Astrophysics Data System (ADS)

    Schildknecht, Thomas; Koshkin, Nikolay; Korobeinikova, Elen; Melikiants, Seda; Shakun, Leonid; Strakhova, Svetlana; Linder, Esther; Silha, Jiri; Hager, Monika

    The population of space debris increased drastically during the last years. Collisions involving massive objects may produce large number of fragments leading to significantly growth of the space debris population. An effective remediation measure in order to stabilize the population in LEO, is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period and spin axis orientation. If we observe a rotating object, the observer sees different surface areas of the object which leads to changes in the measured intensity. Rotating objects will produce periodic brightness variations with frequencies which are related to the spin periods. Photometric monitoring is the real tool for remote diagnostics of the satellite rotation around its center of mass. This information is also useful, for example, in case of contingency. Moreover, it is also important to take into account the orientation of non-spherical body (e.g. space debris) in the numerical integration of its motion when a close approach with the another spacecraft is predicted. We introduce the two databases of light curves: the AIUB data base, which contains about a thousand light curves of LEO, MEO and high-altitude debris objects (including a few functional objects) obtained over more than seven years, and the data base of the Astronomical Observatory of Odessa University (Ukraine), which contains the results of more than 10 years of photometric monitoring of functioning satellites and large space debris objects in low Earth orbit. AIUB used its 1m ZIMLAT telescope for all light curves. For tracking low-orbit satellites, the Astronomical Observatory of Odessa used the KT-50 telescope, which has an alt-azimuth mount and allows tracking objects moving at a high angular velocity. The diameter of the KT-50 main mirror is

  20. Observations of GEO Debris with the Magellan 6.5-m Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Burkhardt, Andrew; Cardonna, Tommaso; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Optical observations of geosynchronous orbit (GEO) debris are important to address two questions: 1. What is the distribution function of objects at GEO as a function of brightness? With some assumptions, this can be used to infer a size distribution. 2. Can we determine what the likely composition of individual GEO debris pieces is from studies of the spectral reflectance of these objects? In this paper we report on optical observations with the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile that attempt to answer both questions. Imaging observations over a 0.5 degree diameter field-of-view have detected a significant population of optically faint debris candidates with R > 19th magnitude, corresponding to a size smaller than 20 cm assuming an albedo of 0.175. Many of these objects show brightness variations larger than a factor of 2, suggesting either irregular shapes or albedo variations or both. The object detection rate (per square degree per hour) shows an increase over the rate measured in the 0.6-m MODEST observations, implying an increase in the population at optically fainter levels. Assuming that the albedo distribution is the same for both samples, this corresponds to an increase in the population of smaller size debris. To study the second issue, calibrated reflectance spectroscopy has been obtained of a sample of GEO and near GEO objects with orbits in the public U.S. Space Surveillance Network catalog. With a 6.5-m telescope, the exposures times are short (30 seconds or less), and provide simultaneous wavelength coverage from 4500 to 8000 Angstroms. If the observed objects are tumbling, then simultaneous coverage and short exposure times are essential for a realistic assessment of the object fs spectral signature. We will compare the calibrated spectra with lab-based measurements of simple spacecraft surfaces composed of a single material.

  1. Observations vs theory: from metallicity correlations of exoplanets and debris discs to HL Tau

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei V.

    2015-12-01

    Boley et al (2010) and Nayakshin (2010) proposed Tidal Downsizing (TD), a new hypothesis for forming all types of planets. Gas fragments born by gravitational disc instability at ~ 100 AU migrate inwards rapidly, with some becoming hot Jupiters. Grain sedimentation inside the fragments makes rocky cores. These cores are future Earths and Super Earths, leaved behind when most of the migrating fragments are tidally disrupted.TD can now be tested against data in detail thanks to a numerical population synthesis model (Nayakshin and Fletcher 2015). TD scenario is fundamentally different from Core Accretion (CA), with sub-Saturn planets and debris discs born in gas fragment disruptions, and not vice versa. I therefore find robust observational differences between CA and TD despite uncertainties inherent in any population synthesis. Here I use metallicity correlations of all sorts to test the model. In TD, the only population that correlates with metallicity (Z) of the host strongly is that of moderately massive gas giants interior to a few AU from the host. Super-Earths and debris discs correlate in mass but not in numbers with Z; very massive gas giants, brown dwarfs and directly imaged gas giants are neutral to Z. Fragment self-destruction by core feedback explains simultaneously the core mass function roll-over at ~20 Earth masses, the rapid formation of suspected planets in HL Tau, and the paucity of directly imaged gas giants. Debris discs and gas giants do not correlate in TD, as observed.I argue that TD does a better job in accounting for many of the observed properties of exoplanets and planetary debris than CA. I finish with observational predictions that can distinguish TD from Core Accretion in the near future.

  2. Augmentation of orbital debris shielding for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Crews, Jeanne Lee; Horn, Jennifer R.

    1990-01-01

    Augmentation concepts for the Space Station Freedom (SSF) are described in detail and advantages and disadvantages of various proposals are evaluated. It is pointed out that early augmentation of SSF debris shielding, which would take place 6-9 years after the First Element Launch, could provide the greatest advantages to the program in terms of weight, cost, and safety benefits. Potential augmentation concepts include an attached, rigid aluminum second bumper; the multi-shock shield concept; a mesh double bumper concept; a debris shield augmentation element; a multi-shock airbag protection concept for 2-10 cm debris; and a debris sweeper. Requirements for and operation and deployment of these concepts are described in detail and an example of the augmentation effect on cumulative SSF probability of no-failure from debris and meteoroid impacts is given. An estimate of predicted encounter rates between debris and a 100 m radius sphere around SSF is presented.

  3. Geotechnical properties of debris-flow sediments and slurries

    USGS Publications Warehouse

    Major, J.J.; Iverson, R.M.; McTigue, D.F.; Macias, S.; Fiedorowicz, B.K.

    1997-01-01

    Measurements of geotechnical properties of various poorly sorted debris-flow sediments and slurries (??? 32 mm diameter) emphasize their granular nature, and reveal that properties of slurries can differ significantly from those of compacted sediments. Measurements show that: (1) cohesion probably offers little resistance to shear in most debris flows under low confining stresses normally found in nature; (2) intrinsic hydraulic permeabilities of compacted debris-flow sediments vary from about 10-14-10-9 m2; permeabilities of 'typical' debris-flow slurries fall toward the low end of the range; (3) debris-flow slurries are characterized by very large values of 'elastic' compressibility (C approx. 10-2 kPa-1); and (4) hydraulic diffusivities of quasistatically consolidating slurries are approx. 10-4-10-7 m2/s. Low hydraulic diffusivity of debris slurries permits excess fluid pressure and low effective strength to persist during sediment transport and deposition.

  4. Debris-flow susceptibility of watersheds recently burned by wildfire

    USGS Publications Warehouse

    Cannon, S.H.

    2004-01-01

    Evaluation of the erosional response of 95 recently burned watersheds in Colorado, New Mexico, and southern California to storm rainfall established the factors that best differentiate between debris-flow producing basins and those that produced other flow responses. These factors are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated debris flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occurred. Debris flows containing large material were more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand and gravel-dominated debris flows depended on the presence of water repellent soils. Copyright 2004 ASCE.

  5. Experiments for the Validation of Debris and Shrapnel Calculations

    SciTech Connect

    Koniges, A E; Andrew, J; Eder, D; Kalantar, D; Masters, N; Fisher, A; Anderson, R; Gunney, B; Brown, B; Sain, K; Tobin, A M; Debonnel, C; Gielle, A; Combis, P; Jadaud, J P; Meyers, M; Jarmakani, H

    2007-08-29

    The debris and shrapnel generated by laser targets are important factors in the operation of a large laser facility such as NIF, LMJ, and Orion. Past experience has shown that it is possible for such target debris to render diagnostics inoperable and also to penetrate or damage optical protection (debris) shields. We are developing the tools to allow evaluation of target configurations in order to better mitigate the generation and impact of debris, including development of dedicated modeling codes. In order to validate these predictive simulations, we briefly describe a series of experiments aimed at determining the amount of debris and/or shrapnel produced in controlled situations. We use glass and aerogel to capture generated debris/shrapnel. The experimental targets include hohlraums (halfraums) and thin foils in a variety of geometries. Post-shot analysis includes scanning electron microscopy and x-ray tomography. We show the results of some of these experiments and discuss modeling efforts.

  6. Reducing the Vulnerability of Space Systems to Small Debris

    NASA Astrophysics Data System (ADS)

    Cougnet, C.; Oswald, M.

    2012-01-01

    The number of debris in space is continuously increasing. While debris larger than 10 cm can be tracked and debris smaller than 1mm are usually taken into account, small debris with size in between remains a significant threat for the space assets. A European FP7 project, entitled ReVuS, commenced in 2011 with the objective to define design solutions to reduce the vulnerability of future low Earth orbit (LEO) satellites to small sized debris. At first, the vulnerability of a current LEO satellite to these types of debris is assessed. Then, systems and satellite architecture solutions to minimise the vulnerability of the satellites will be analysed and assessed. The use of shielding protection appears as one of the main satellite architecture solutions, and shielding materials will be developed and tested during the project. The paper describes the activities that will be carried out during the project

  7. Detection and location of debris cloud impact damage

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Pang, Baojun; Liu, Zhidong; Chi, Runqiang

    2009-12-01

    A variety of anomalies and system failure can be caused by micrometeoroid and space debris impact on spacecraft. A system based on acoustic emission technique is considered for monitoring the impact events. Most of recent works focused on point-like source localization. However, the spacecraft may use a single thin plate named "bumper" placed at a short distance ahead of a primary structural system. The impact source would be in the form of debris cloud. In this study, normal hypervelocity impact experiments were used to study the characteristics of signals caused by debris cloud impact. Four ultrasonic transducers were mounted on the target plate for collecting the debris cloud impact signals. In the Fourier transform of the signals, the distinctions caused by different form of debris cloud impact could be seen. The mathematical model to determine the impact location was provided. It was found that the position predicted was near the center of the damaged region caused by debris cloud impact.

  8. Detection and location of debris cloud impact damage

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Pang, Baojun; Liu, ZhiDong; Chi, Runqiang

    2010-03-01

    A variety of anomalies and system failure can be caused by micrometeoroid and space debris impact on spacecraft. A system based on acoustic emission technique is considered for monitoring the impact events. Most of recent works focused on point-like source localization. However, the spacecraft may use a single thin plate named "bumper" placed at a short distance ahead of a primary structural system. The impact source would be in the form of debris cloud. In this study, normal hypervelocity impact experiments were used to study the characteristics of signals caused by debris cloud impact. Four ultrasonic transducers were mounted on the target plate for collecting the debris cloud impact signals. In the Fourier transform of the signals, the distinctions caused by different form of debris cloud impact could be seen. The mathematical model to determine the impact location was provided. It was found that the position predicted was near the center of the damaged region caused by debris cloud impact.

  9. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.

  10. An orbit determination from debris impacts on measurement satellites

    NASA Astrophysics Data System (ADS)

    Fujita, Koki; Tasaki, Mitsuhiko; Furumoto, Masahiro; Hanada, Toshiya

    2016-01-01

    This work proposes a method to determine orbital plane of a micron-sized space debris cloud utilizing their impacts on measurement satellites. Given that debris impacts occur on a line of intersection between debris and satellites orbital planes, a couple of debris orbital parameters, right ascension of the ascending node, inclination, and nodal regression rate can be determined by impact times and locations measured from more than two satellites in different earth orbits. This paper proves that unique solution for the debris orbital parameters is obtained from the measurement data, and derives a computational scheme to estimate them. The effectiveness of the proposed scheme is finally demonstrated by a simulation test, in which measurement data are obtained from a numerical simulation considering realistic debris' and satellites' orbits.

  11. Evasive Maneuvers in Route Collision With Space Debris Cloud

    NASA Astrophysics Data System (ADS)

    Jesus, A. D. C.; Sousa, R. R.; Neto, E. V.

    2015-10-01

    Collisions between operational vehicles and space debris can completely derail the continuity of space missions, especially if there is chain collisions between debris, which generate even smaller fragments. In this paper, we investigate the dynamics on between an operational vehicle and space debris that form a cloud, considering the possibility of collisions between debris during an evasive maneuver the vehicle. For a radius of 3 km celestial sphere, we find possibilities of collision between debris up to 10 m, while the vehicle performs an evasive maneuver in time 3,000 s range. These results depend on the time collision, the angular positions of the collisional objects and the amount of debris that form the cloud.

  12. Impacts of weathered tire debris on the development of Rana sylvatica larvae.

    PubMed

    Camponelli, Kimberly M; Casey, Ryan E; Snodgrass, Joel W; Lev, Steven M; Landa, Edward R

    2009-02-01

    Highway runoff has the potential to negatively impact receiving systems including stormwater retention ponds where highway particulate matter can accumulate following runoff events. Tire wear particles, which contain about 1% Zn by mass, make up approximately one-third of the vehicle derived particulates in highway runoff and therefore may serve as a stressor to organisms utilizing retention ponds as habitat. In this study, we focused on the potential contribution of tire debris to Zn accumulation by Rana sylvatica larvae and possible lethal or sublethal impacts resulting from exposure to weathered tire debris during development. Eggs and larvae were exposed to aged sediments (containing either ZnCl2 or tire particulate matter, both providing nominal concentrations of 1000 mg Zn kg(-1)) through metamorphosis. Water column Zn was elevated in both the ZnCl2 and tire treatments relative to the control treatment, indicating that aging allowed Zn leaching from tire debris to occur. Tissue Zn was also elevated for the ZnCl2 and tire treatments indicating that Zn in the treatments was available for uptake by the amphibians. Exposure to both ZnCl2 and tire treatments increased the time for larvae to complete metamorphosis in comparison with controls. We also observed that the longer the organisms took to complete metamorphosis, the smaller their mass at metamorphosis. Our results indicate that Zn leached from aged tire debris is bioavailable to developing R. sylvatica larvae and that exposure to tire debris amended sediments can result in measurable physiological outcomes to wood frogs that may influence population dynamics. PMID:18995883

  13. Impacts of weathered tire debris on the development of Rana sylvatica larvae

    USGS Publications Warehouse

    Camponelli, K.M.; Casey, R.E.; Snodgrass, J.W.; Lev, S.M.; Landa, E.R.

    2009-01-01

    Highway runoff has the potential to negatively impact receiving systems including stormwater retention ponds where highway particulate matter can accumulate following runoff events. Tire wear particles, which contain about 1% Zn by mass, make up approximately one-third of the vehicle derived particulates in highway runoff and therefore may serve as a stressor to organisms utilizing retention ponds as habitat. In this study, we focused on the potential contribution of tire debris to Zn accumulation by Rana sylvatica larvae and possible lethal or sublethal impacts resulting from exposure to weathered tire debris during development. Eggs and larvae were exposed to aged sediments (containing either ZnCl2 or tire particulate matter, both providing nominal concentrations of 1000 mg Zn kg-1) through metamorphosis. Water column Zn was elevated in both the ZnCl2 and tire treatments relative to the control treatment, indicating that aging allowed Zn leaching from tire debris to occur. Tissue Zn was also elevated for the ZnCl2 and tire treatments indicating that Zn in the treatments was available for uptake by the amphibians. Exposure to both ZnCl2 and tire treatments increased the time for larvae to complete metamorphosis in comparison with controls. We also observed that the longer the organisms took to complete metamorphosis, the smaller their mass at metamorphosis. Our results indicate that Zn leached from aged tire debris is bioavailable to developing R. sylvatica larvae and that exposure to tire debris amended sediments can result in measurable physiological outcomes to wood frogs that may influence population dynamics. ?? 2008 Elsevier Ltd.

  14. Recycling of construction debris as aggregate in the Mid-Atlantic Region, USA

    USGS Publications Warehouse

    Robinson, G.R., Jr.; Menzie, W.D.; Hyun, H.

    2004-01-01

    Reclaimed asphalt pavement (RAP) and portland cement concrete (RPCC) are abundant and available substitutes for natural aggregate in many areas. This paper presents an overview of factors that affect recycled aggregate cost, availability, and engineering performance, and the results of a survey of business practices in the Mid-Atlantic region. For RAP, processing costs are less than those for virgin natural aggregate. Use of efficient asphalt pavement stripping technology, on-site reclamation, and linked two-way transport of asphalt debris and processed asphalt paving mix between asphalt mix plants and paving sites has led to extensive recycling of asphalt pavement in the Mid-Atlantic region of the US. Most of the sites that recycle asphalt pavement (RAP) are located in or near urban areas close to important transportation corridors. RPCC is a viable aggregate source in urban settings where unit costs for processed aggregate from RPCC and natural aggregate are comparable. Disposal fees charged at RPCC recycling sites help defray processing costs and the significantly lower tipping fees at recycling sites versus landfill disposal sites encourage recycling of construction debris as aggregate. Construction contractors and construction debris recycling centers, many of which have the ability to crush and process concrete debris at the job site, produce most RPCC. Production of RPCC aggregate from construction debris that is processed on site using portable equipment moved to the construction site eliminates transportation costs for aggregate and provides an economic incentive for RPCC use. Processing costs, quality and performance issues, and lack of large quantities where needed limit RPCC use. Most RPCC suppliers in the Mid-Atlantic area are located in counties with population densities greater than 400 people/km2 (1036 people/mile2) and that have high unit-value costs and limited local availability of natural aggregate. ?? 2004 Published by Elsevier B.V.

  15. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah

    2015-01-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.

  16. OT2_amoor_4: A census of debris disks in nearby young moving groups with Herschel.

    NASA Astrophysics Data System (ADS)

    Moór, A.

    2011-09-01

    Nearly all young stars harbour circumstellar disks, that serve as the reservoir for mass accretion onto the star, and later become the birthplace of planetary systems. After the disappearance of the gas component from the disk a dusty debris disk is formed that is believed to mark the location of the planetesimal belt as well. For outlining the evolution of such debris disks traditionally open clusters and field stars were studied, however we argue that the recently discovered young moving groups are more suitable objects for such analyses, due to their proximity and good coverage of the first 50 Myr period of the planetary system evolution. In this proposal we request 70/160 um Herschel/PACS photometric observations for so-far unobserved moving group members. These observations will provide a complete coverage of all known members within 80 pc of five nearby young moving groups (beta Pic Moving Group, Tucana-Horologium, Carina, Columba, and Argus), in the A to K spectral range. Based on the new observations we will identify new debris disks, characterize the disk population within individual moving groups, and study disk evolution by comparing the groups of different ages. The results will be used to verify predictions of the self-stirring model of the evolution of planetesimal disks. We will also compare the properties of debris disks in groups of the same age, looking for additional 'environmental' parameters that affect disk structure over a whole moving group. Our study will be a significant contribution to the census of debris disks in young moving groups, increasing the number of observed sources by a factor of 1.5. Since Spitzer could perform only a limited census and the so-far approved Herschel programs added very few additional moving group obervations, our programme is expected to have a high legacy value.

  17. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  18. Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.

  19. Cometary grains in the HD 32297 debris disk

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Li, Aigen

    2016-07-01

    HD 32297 is a young A-type star with a bright edge-on debris disk. The dust thermal emission spectral energy distribution and scattered starlight spectrum are simultaneously modeled in terms of porous cometary grains. Our modeling suggests that, similar to the solar system, the debris disk around HD 32297 may have an inner warm ring and an outer cold disk which are seen in other young debris disks as well.

  20. Mapping debris-flow hazard in Honolulu using a DEM

    USGS Publications Warehouse

    Ellen, Stephen D.; Mark, Robert K.

    1993-01-01

    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  1. Debris masses and areas inferred from the launch catalog

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Debris density and area can be determined as functions of altitude from the debris launch catalog. Those quantities can be used in an algebraic model to predict fragments and intact object density at each altitude. The measured spectrum of debris objects can be used to partition objects into fragments and intact object fractions that are consistent with the catalog and not overly sensitive to the choice of the defining boundary.

  2. Hypervelocity impact simulation for micrometeorite and debris shield design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1992-01-01

    A new capability has been developed for direct computer simulation of hypervelocity impacts on multi-plate orbital debris shields, for combinations of low shield thickness and wide shield spacing which place extreme demands on conventional Eulerian analysis techniques. The modeling methodology represents a novel approach to debris cloud dynamics simulation, a problem of long term interest in the design of space structures. Software implementation of the modeling methodology provides a new design tool for engineering analysis of proposed orbital debris protection systems.

  3. Orbital Debris Quarterly News, Volume 13, No. 3

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    This issue of the Orbital Debris Quarterly contains articles on the congressional hearing that was held on orbital debris and space traffic; the update received by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) on the collision of the Iridium 33 and Cosmos 2251 satellites; the micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope Wide Field Planetary Camera; an analysis of the reentry survivability of the Global Precipitation Measurement (GPM) spacecraft; an update on recent major breakup fragments; and a graph showing the current debris environment in low Earth orbit.

  4. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  5. Morphology, size distribution and elemental composition of several dental debris

    NASA Astrophysics Data System (ADS)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Aoyama, Ken-Ichi; Akasaka, Tsukasa; Uo, Motohiro; Morita, Manabu; Yawaka, Yasutaka; Watari, Fumio

    2012-12-01

    We investigated morphologies, size distributions and elemental compositions of dental debris formed by cutting/grinding teeth or dental alloys. The average size of debris formed by cutting/grinding dental alloy was around 100 μm and that of teeth was 20 μm. The debris formed by grinding with diamond or carborundum point had isotropic irregular shape, while the debris formed by cutting with carbide bar had characteristic lathe-cut shape. The elemental analysis indicated that the debris formed by grinding dental alloy with carborundum point consisted of not only the particles of the alloy but also the particles of Si compounds with the size of around 10 μm. The particles of Si compounds would be formed by abrasion of the grinding instrument (carborundum, SiC). Similarly, the debris formed by grinding with diamond point also contained submicro-sized particles consisting of C compounds. The results indicate that the morphology and composition of dental debris are varied depending on the combination between the workpiece and the cutting/grinding materials and that the dental debris consist of both the workpiece and the cutting/grinding materials in some combination. In addition, some of the debris of tooth had the size less than 2 μm, which has a potential to induce inflammation. Though the inflammation can be expected at low level, it is required to investigate the details in future.

  6. Procedures for analysis of debris relative to Space Shuttle systems

    NASA Technical Reports Server (NTRS)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  7. Understanding sources, sinks, and transport of marine debris

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  8. Methodology of design and analysis of external walls of space station for hypervelocity impacts by meteoroids and space debris

    NASA Technical Reports Server (NTRS)

    Batla, F. A.

    1986-01-01

    The development of criteria and methodology for the design and analysis of Space Station wall elements for collisions with meteoroids and space debris at hypervelocities is discussed. These collisions will occur at velocities of 10 km/s or more and can be damaging to the external wall elements of the Space Station. The wall elements need to be designed to protect the pressurized modules of the Space Station from functional or structural failure due to these collisions at hypervelocities for a given environment and population of meteoroids and space debris. The design and analysis approach and the associated computer program presented is to achieve this objective, including the optimization of the design for a required overall probability of no penetration. The approach is based on the presently available experimental and actual data on meteoroids and space debris flux and damage assessments and the empirical relationships resulting from the hypervelocity impact studies in laboratories.

  9. Low altitude, one centimeter, space debris search at Lincoln Laboratory's (M.I.T.) experimental test system

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Beatty, D. E.; Yakutis, A. J.; Randall, P. M. S.

    1985-01-01

    The majority of work performed by the Lincoln Laboratory's Space Surveillance Group, at the request of NASA, to define the near-earth population of man-made debris is summarized. Electrooptical devices, each with a 1.2 deg FOV, were employed at the GEODSS facility in New Mexico. Details of the equipment calibration and alignment procedures are discussed, together with implementation of a synchronized time code for computer controlled videotaping of the imagery. Parallax and angular speed data served as bases for distinguishing between man-made debris and meteoroids. The best visibility was obtained in dawn and dusk twilight conditions at elevation ranges of 300-2000 km. Tables are provided of altitudinal density distribution of debris. It is noted that the program also yielded an extensive data base on meteoroid rates.

  10. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    NASA Technical Reports Server (NTRS)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  11. Research on Optical Observation for Space Debris

    NASA Astrophysics Data System (ADS)

    Sun, R. Y.

    2015-01-01

    Space debris has been recognized as a serious danger for operational spacecraft and manned spaceflights. Discussions are made in the methods of high order position precision and high detecting efficiency for space debris, including the design of surveying strategy, the extraction of object centroid, the precise measurement of object positions, the correlation and catalogue technique. To meet the needs of detecting space objects in the GEO (Geosynchronous Orbit), and prevent the saturation of CCD pixels with a long exposure time, a method of stacking a series of short exposure time images is presented. The results demonstrate that the saturation of pixels is eliminated effectively, and the SNR (Signal Noise Ratio) is increased by about 3.2 times, the detection ability is improved by about 2.5 magnitude when 10 seriate images are stacked, and the accuracy is reliable to satisfy the requirement by using the mean plate parameters for the astronomical orientation. A method combined with the geometrical morphology identification and linear correlation is adopted for the data calibration of IADC (Inter-Agency Space Debris Coordination Committee) AI23.4. After calibration, 139 tracklets are acquired, in which 116 tracklets are correlated with the catalogue. The distributions of magnitude, semi-major axis, inclination, and longitude of ascending node are obtained as well. A new method for detecting space debris in images is presented. The algorithm sets the gate around the image of objects, then several criterions are introduced for the object detection, at last the object position in the frame is obtained by the barycenter method and a simple linear transformation. The tests demonstrate that this technique is convenient for application, and the objects in image can be detected with a high centroid precision. In the observations of space objects, the shutter of camera is often removed, and the smear noise is ineluctable. Based on the differences of the geometry between the

  12. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    PubMed

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. PMID:23891032

  13. Instability and surge development in debris flows

    NASA Astrophysics Data System (ADS)

    Zanuttigh, Barbara; Lamberti, Alberto

    2007-09-01

    Debris flows are often described as a succession of surges, which are characterized by enhanced peak depth and velocity and therefore by a tremendous increase of their destructive power. For given characteristics of the base flow, if the channel is sufficiently long to allow an appreciable wave development, the linear stability analysis in shallow streams is shown to provide a reasonable prediction of the critical flow condition and of the instability growth rate. The one-dimensional (1-D) theory, however, does not allow the determination of the wave period of the fastest growing perturbations. Debris waves most frequently develop following a mechanism similar to water roll waves: Instabilities grow up becoming clearly distinguishable waves, and then waves overtake one another with increasing wave period and amplitude. The typical hydrograph of a multiple-peak event is shown to be composed of a first surge, which is usually characterized by the highest depth, the longest duration, the greatest erosive power, and the most symmetrical shape, and of secondary waves that burst on the flow tail in the recession phase. The characteristics of the first surge can be explained by two different mechanisms. All waves that rise up near the flood crest run faster than this first surge and coalesce into it, causing its high depth and great volume. Moreover, segregation during the flow induces the concentration of boulders at the fronts, contributing to its depth enhancement, erosive power, and symmetrical shape. When a debris surge impacts a structure, the force pattern can be interpreted as the superposition of the reflection of the bouldery front and the formation of a vertical muddy jet due to the impact of the front wedge. Wave reflection can be described by a 1-D mass and momentum balance across the front, whereas the pressure impulse, due to the incompressibility of the interstitial fluid, can be analyzed through inviscid formulations validated for the representation of

  14. Observations of Titan IIIC Transtage Fragmentation Debris

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Buckalew, B.; Barker, E.; Abercromby, K.; Seitzer, P.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-09-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6 m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  15. Quantifying surface roughness over debris covered ice

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan; Rounce, David; Ross, Andrew

    2016-04-01

    Aerodynamic roughness length (z0) remains a major uncertainty when determining turbulent heat fluxes over glacier surfaces, and can vary by an order of magnitude even within a small area and through the melt season. Defining z0 over debris-covered ice is particularly complex, because the surface may comprise clasts of greatly varying size, and the broader-scale surface relief can be similarly heterogeneous. Several recent studies have used Structure from Motion to data model debris-covered surfaces at the centimetric scale and calculate z0 based on measurements of surface microtopography. However, few have validated these measurements with independent vertical wind profile measurements, or considered how the measurements vary over a range of different surface types or scales of analysis. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post-monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed measured over both sites enable us to derive measurements of aerodynamic roughness that are similar in magnitude, with z0 at the second site exceeding that at the first by < 1 cm. During our observation period, snow covered the second site for three days, but the impact on z0 is small, implying that roughness is predominantly determined by major rock size obstacles rather than the general form of the surface. To complement these aerodynamic measurements we also conducted a Structure from Motion survey across each patch and calculated z0 using microtopographic methods published in a range of recent studies. We compare the outputs of each of these algorithms with each other and with the aerodynamic measurements, assess how they perform over a range of scales, and evaluate the validity of using microtopographic methods where aerodynamic measurements

  16. Observations of Titan IIIC Transtage Fragmentation Debris

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Buckalew, B.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-01-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  17. MODELING THE HD 32297 DEBRIS DISK WITH FAR-INFRARED HERSCHEL DATA

    SciTech Connect

    Donaldson, J. K.; Lebreton, J.; Augereau, J.-C.; Krivov, A. V.

    2013-07-20

    HD 32297 is a young A-star ({approx}30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 {mu}m. We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains >2 {mu}m consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7{sigma} detection of [C II] emission at 158 {mu}m with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected.

  18. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  19. Geomorphic effects of large debris flows and flash floods, northern Venezuela, 1999

    USGS Publications Warehouse

    Larsen, M.C.; Wieczorek, G.F.

    2006-01-01

    A rare, high-magnitude storm in northern Venezuela in December 1999 triggered debris flows and flash floods, and caused one of the worst natural disasters in the recorded history of the Americas. Some 15,000 people were killed. The debris flows and floods inundated coastal communities on alluvial fans at the mouths of a coastal mountain drainage network and destroyed property estimated at more than $2 billion. Landslides were abundant and widespread on steep slopes within areas underlain by schist and gneiss from near the coast to slightly over the crest of the mountain range. Some hillsides were entirely denuded by single or coalescing failures, which formed massive debris flows in river channels flowing out onto densely populated alluvial fans at the coast. The massive amount of sediment derived from 24 watersheds along 50 km of the coast during the storm and deposited on alluvial fans and beaches has been estimated at 15 to 20 million m3. Sediment yield for the 1999 storm from the approximately 200 km2 drainage area of watersheds upstream of the alluvial fans was as much as 100,000 m3/km2. Rapid economic development in this dynamic geomorphic environment close to the capital city of Caracas, in combination with a severe rain storm, resulted in the death of approximately 5% of the population (300,000 total prior to the storm) in the northern Venezuelan state of Vargas. ?? 2006 Gebru??der Borntraeger.

  20. Invited Paper: The MASTER-2009 Space Debris Environment Model

    NASA Astrophysics Data System (ADS)

    Flegel, S.; Gelhaus, J.; Wiedemann, C.; Vorsmann, P.; Oswald, M.; Stabroth, S.; Klinkrad, H.; Krag, H.

    2009-03-01

    This paper provides an overview of the improvements which are currently being made to ESA's MASTER model in preparation for the release of the new version, MASTER- 2009, in spring 2010. Within the current maintenance contract, improvements are being made to the population source models to account for new findings. Multi-Layered Insulation will be added as a new source for space debris based on a previously published model. The current paper highlights the background for the implementation of the model and changes which are being made to original model. On the user side of the tool, improvements will be made to allow a detailed investigation of individual fragmentation events. In the event of major fragmentation events which may pose a threat to operational satellites population files will be made available for download over the MASTER website. In addition, the current graphical user interface architecture will be revised. This will allow the current JAVA based user interface to be used for the online version of MASTER, replacing the current MARWIN interface.

  1. The impact of the atmospheric model and of the space weather data on the dynamics of clouds of space debris

    NASA Astrophysics Data System (ADS)

    Petit, Alexis; Lemaitre, Anne

    2016-06-01

    New tools are necessary to deal with more than hundred thousands of space debris, thus our aim is to develop software able to propagate numerous trajectories and manage collisions or fragmentations. Specifically in low orbits Earth, gravity and atmospheric drag are the two main forces that affect the dynamics of the artificial satellites or space debris. NIMASTEP, the local orbit propagator, initially designed for high altitudes, has been adapted to low altitude orbits. To study the future debris environment, we propose a suitable model of space weather and we compare three different atmospheric density models (Jacchia-Bowman 2008, DTM-2013, and TD-88) able to propagate with accuracy and efficiency a large population of space debris on long time scales. We compare the results in different altitudes and during the reentry regime; we show, with a ballistic coefficient constant, a trend to underestimate or overestimate the decrease of the semi-major axis, specifically during the periods of high solar activity. We parallelize our software and use the calculation power of a computing cluster, we propagate a huge cloud of debris and we show that its global evolution is in agreement with the observations on several years.

  2. Missing Mass in Collisional Debris from Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric; Duc, Pierre-Alain; Brinks, Elias; Boquien, Médéric; Amram, Philippe; Lisenfeld, Ute; Koribalski, Bärbel S.; Walter, Fabian; Charmandaris, Vassilis

    2007-05-01

    Recycled dwarf galaxies can form in the collisional debris of massive galaxies. Theoretical models predict that, contrary to classical galaxies, these recycled galaxies should be free of nonbaryonic dark matter. By analyzing the observed gas kinematics of such recycled galaxies with the help of a numerical model, we demonstrate that they do contain a massive dark component amounting to about twice the visible matter. Staying within the standard cosmological framework, this result most likely indicates the presence of large amounts of unseen, presumably cold, molecular gas. This additional mass should be present in the disks of their progenitor spiral galaxies, accounting for a substantial part of the so-called missing baryons.

  3. Development of orbital debris spacecraft breakup models

    NASA Astrophysics Data System (ADS)

    Tedeschi, William J.; Connell, John C.; McKnight, Darren S.

    1991-08-01

    The Defense Nuclear Agency has initiated an Orbital Debris Spacecraft Breakup Modeling Program to improve the accuracy and usefulness of satellite breakup models with an emphasis on collision-induced events. Empirical, semianalytic, and complex approaches are used in the modeling. Current results from the modeling effort are presented and discussed along with data from associated hypervelocity impact test programs. It is shown that major improvements in modeling have been made but that milestones must be achieved before the models will routinely provide accurate predictions for a wide range of collision scenarios.

  4. Small satellite debris catalog maintenance issues

    NASA Technical Reports Server (NTRS)

    Jackson, Phoebe A.

    1991-01-01

    The United States Space Command (USSPACECOM) is a unified command of the Department of Defense, and one of its tasks is to detect, track, identify, and maintain a catalog of all man-made objects in Earth orbit. This task is called space surveillance, and the most important tool for space surveillance is the satellite catalog. The command's reasons for performing satellite catalog maintenance is presented. A satellite catalog is described, and small satellite-debris catalog-maintenance issues are identified. The underlying rationale is to describe the catalog maintenance services so that the members of the community can use them with assurance.

  5. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  6. From IRAS Excesses to Debris Disks

    NASA Astrophysics Data System (ADS)

    Backman, D.; Lagrange, A.-M.

    2014-09-01

    Noted only as a shell star prior to 1984, beta Pictoris was originally observed in the first months of the IRAS mission as a comparison object for Vega. When Fred Gillett presented spectral energy distributions of Vega, Fomalhaut, beta Pictoris, and epsilon Eridani at the Protostars and Planets II conference, the news was relayed quickly to Brad Smith and Rich Terrile who were observing at Las Campanas with a coronagraph. Our understanding that beta Pictoris and other debris disks are clear evidence of maturing planetary systems solidified over the following 15 years with analyses of IRAS & ISO data coupled with spectroscopic observations of Falling Evaporating Bodies.

  7. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  8. Live Worms Found Amid STS-107 Debris

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Project Manager Fred Ahmay holds a Biological Research in Canisters (BRIC) container in which C. elegans nemotodes (round worms) were found. The container was part of a middeck experiment that was among Columbia's debris recovered in East Texas. The worms were found alive after flying on Columbia's last mission, STS-107. The experiment was designed to verify a new synthetic nutrient solution for an International Space Station 'model' specimen planned to be used extensively for ISS gene expression studies and was sponsored by the NASA Ames Research Center. For more information on STS-107, please see GRIN Columbia General Explanation

  9. Field observations of particle impacts by debris flows and debris floods on instrumented rock samples

    NASA Astrophysics Data System (ADS)

    McArdell, B. W.; Hsu, L.; Fritschi, B.; Dietrich, W. E.

    2011-12-01

    Bedrock incision and sediment entrainment by debris flows are important processes in torrent channels. As part of our effort to gain a better understanding of these processes, we installed instrumented rock samples in the bed of the Illgraben channel. Three rock samples, 0.4 m long (in the flow direction), 0.3 m wide, and 0.2 m thick, were installed in steel frames which were mounted on the upslope side of a concrete check dam, with the surface of the stones flush with the channel bed. Accelerometer sensors were installed on the bottom of one rock sample, with a range of up to 500 g (vertical) and 200 g (horizontal, parallel to the channel axis), where g is the acceleration due to gravity. Elastomer elements, typically used in the field as overload protection for load sensors, were placed between the rock samples and the steel frames. Data were sampled at 2 kHz and stored on a computer outside of the channel. The sensors provided data for 4 debris floods and part of one debris flow. For all of the events, the vertical acceleration data indicate a large background noise in the range of ±10 g, punctuated by very short duration impulses of up to several hundred g. The large accelerations are interpreted to represent hard impacts of cobbles or boulders in the flow with the rock tablet. Using a value of >20 g to define the occurrence of a large particle impact, it is possible to differentiate between debris floods (which have on the order of 0.1 impact per second) and the debris flow (on the order of 1 impact per second). The frequency of the sampling is too small to resolve details about the impacts, so it is not possible to precisely determine the maximum accelerations. However the peak recorded values are larger for debris flows, with values up to the measurement limit of the sensors, whereas for floods the maximum accelerations are typically less than 100 g. The results for the accelerometer which measures accelerations in the downstream direction generally mirror

  10. Preface: Advances in Asteroid and Space Debris Science and Technology - Part 1

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano

    2015-08-01

    Asteroids and space debris represent a significant hazard for space and terrestrial assets; at the same time asteroids represent also an opportunity. In recent years it has become clear that the increasing population of space debris could lead to catastrophic consequences in the near term. The Kessler syndrome (where the density of objects in orbit is high enough that collisions could set off a cascade) is more realistic than when it was first proposed in 1978. Although statistically less likely to occur, an asteroid impact would have devastating consequences for our planet. While an impact with a large (∼10 km) to medium (∼300 m) sized, or diameter, asteroid is unlikely, still it is not negligible as the recent case of the asteroid Apophis has demonstrated. Furthermore impacts with smaller size objects, between 10 m to 100 m diameter, are expected to occur more frequently and hence are, proportionally, equally dangerous for humans and assets on Earth and in space.

  11. Preface: Advances in asteroid and space debris science and technology - Part 2

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano

    2016-04-01

    Asteroids and space debris represent a significant hazard for space and terrestrial assets; at the same time asteroids represent also an opportunity. In recent years it has become clear that the increasing population of space debris could lead to catastrophic consequences in the near term. The Kessler syndrome (where the density of objects in orbit is high enough that collisions could set off a cascade) is more realistic than when it was first proposed in 1978. Although statistically less likely to occur, an asteroid impact would have devastating consequences for our planet. Although an impact with a large (∼10 km) to medium (∼300 m) sized, or diameter, asteroid is unlikely, still it is not negligible as the recent case of the asteroid Apophis has demonstrated. Furthermore impacts with smaller size objects, between 10 m and 100 m diameter, are expected to occur more frequently and hence are, proportionally, equally dangerous for humans and assets on Earth and in space.

  12. MDD3-EMI's Upcoming Meteoroid and Space Debris Detector Experiment Onboard Russian Spektr-R Satellite

    NASA Astrophysics Data System (ADS)

    Schimmerohn, Martin; Schafer, Frank; Lomakin, Ilya; Willemsen, Philip

    2009-03-01

    The Ernst-Mach-Institut (EMI) is currently developing its next meteoroid and space debris detector experiment, referred to as MDD3, which will be integrated onboard the Russian Spektr-R satellite. Taking this flight opportunity supported by the German Aerospace Center, MDD3 will be operated in a highly elliptical orbit, allowing for in-situ measurements of impact events in various Earth orbit particle environments. The detector system is equipped with several sensors, thus contributing to both the on-orbit verification of a robust impact detection system and the enhancement of knowledge about micrometeoroid and space debris populations. This paper addresses scientific and technical aspects of the MDD3 mission in a general overview. The status of MDD3 implementation, as well as facts on the Spektr-R mission and orbit environment are outlined for background information.

  13. Meteoroid/orbital debris impact damage predictions for the Russian space station MIR

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Hyde, J. L.; Lear, D.

    1997-01-01

    Components of the Mir space station have been exposed to the meteoroid/orbital debris (M/OD) environment for up to 11 years. During this period, no M/OD impact perforation of the pressure shell of the manned modules were reported. The NASA standard M/OD analysis code BUMPER was used to predict the probability of M/OD impact damage to various components of Mir. The analysis indicates a 1 in 2.2 chance that a M/OD impact would have caused a penetration resulting in a pressure leak of the Mir modules since its launch up to the February 1997. For the next five years, the estimated odds become 1 in 3. On an annual basis, penetration risks are 60 percent higher, on the average, in the next five years due to the larger size of Mir and the growth in the orbital debris population.

  14. An optical survey for space debris on highly eccentric and inclined MEO orbits

    NASA Astrophysics Data System (ADS)

    Schildknecht, Thomas; Flohrer, Tim; Hinze, Andreas; Vananti, Alessandro; Silha, Jiri

    Optical surveys for space debris in high-altitude orbits have been conducted since more than fifteen years. Originally these efforts concentrated mainly on the geostationary ring (GEO) and its close region. Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed and, eventually, optical observations were conducted in the framework of an ESA study using ESA' Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits was performed between January and August 2013. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly

  15. Development of in-situ micro-debris measurement system

    NASA Astrophysics Data System (ADS)

    Nakamura, Maki; Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Hanada, Toshiya; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Tetsuo; Hasegawa, Sunao; Kobayashi, Masanori

    2015-08-01

    The in-situ debris environment awareness system has been developed. The objective of the system is to measure small debris (between 100 μm and several cm) in orbit. The orbital distribution and the size distribution of the debris are not well understood. The size distribution is difficult to measure from the ground, although the size distribution is very important for the risk evaluation of the impact of debris on spacecraft. The in-situ measurement of the size distribution is useful for: (1) verification of meteoroid and debris environment models, (2) verification of meteoroid and debris environment evolution models, (3) real time detection of unexpected events, such as explosions and/or collisions on an orbit. This paper reports the development study of the in-situ debris measurement system and shows demonstration experiments and their results to describe the performance of the micro-debris sensor system. The sensor system for monitoring micro-debris with sizes ranging from 100 μm to a few mm must have a large detection area, while the constraints of space deployment require that these systems be low in mass, low in power, robust and have low telemetry requirements. For this reason, we have been developing a simple trans-film sensor. Thin and conductive stripes (copper) are formed with fine pitch (100 μm) on a thin film of nonconductive material (12.5-μm thick polyimide). A hypervelocity micro-particle impact is detected when one or more stripes are severed by perforation of the film. We designed a debris detector specialized for measuring the micro-debris size and collision rate. We then manufactured and calibrated the detector.

  16. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  17. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  18. Research On Rainfall and The Prediction of Debris Flow

    NASA Astrophysics Data System (ADS)

    Yu, B.

    Accurate prediction of debris flow so that economic losses and human ca- sualties can be reduced or prevented is currently the most focused and difficult point of studying debris flows. Most predictive methods have relied on rainfall as the basic parameter to make predictions, with the result that there is only the prediction of the actual occurrence without that of its arrival time and scale. This article takes Jiangjia Gully in Dongchuan of Yunnan Province as an example, and considers, on the basis of the already possessed essential condition U solid material, the abundant conditions for ° the formation of debris flow. Based on the mechanism of the occurrence of debris flow and the volume of rainfall in the basin, this paper also gives a systematic analysis on the arrival time and scale of debris flow, and suggests that the hydrological condition for forming debris flow is the unit discharge of the flood 8805; 0.35m2/s.m. It uses the ten-minute rainfall intensity to calculate both the runoffs of the rainfall and the unit discharge from the runoff, thus predicting the occurrence of debris flow. The velocity and the arrival time of a debris flow can be figured out by using the unit discharge of the runoffs. The total amount of debris flow can be calculated out and the scale of a debris flow can be predicted by using the ten-minute intensity of rainfall and the total volume of the runoffs, together with the volume concentration of sediment in a debris flow and the basin block up coefficient.