Science.gov

Sample records for 25oh vitamin d3

  1. Antidepressants differentially related to 1,25-(OH)2 vitamin D3 and 25-(OH) vitamin D3 in late-life depression

    PubMed Central

    Oude Voshaar, R C; Derks, W J; Comijs, H C; Schoevers, R A; de Borst, M H; Marijnissen, R M

    2014-01-01

    A low plasma 25-OH vitamin D3 level is a universal risk factor for a wide range of diseases and has also been implicated in late-life depression. It is currently unknown whether the biologically active form of vitamin D, that is, 1,25-(OH)2 vitamin D3, is also decreased in late-life depression, or whether vitamin D levels correlate with specific depression characteristics. We determined plasma 25-OH vitamin D3, 1,25-(OH)2 vitamin D3 and parathormone levels in 355 depressed older persons and 124 non-depressed comparison subjects (age⩾60 years). Psychopathology was established with the Composite International Diagnostic Interview 2.1, together with potential confounders and depression characteristics (severity, symptom profile, age of onset, recurrence, chronicity and antidepressant drug use). Adjusted for confounders, depressed patients had significantly lower levels of 25-OH vitamin D33 (Cohen's d =0.28 (95% confidence interval: 0.07–0.49), P=0.033) as well as 1,25-(OH)2 vitamin D3 (Cohen's d =0.48 (95% confidence interval: 0.27–0.70), P<0.001) than comparison subjects. Of all depression characteristics tested, only the use of tricyclic antidepressants (TCAs) was significantly correlated with lower 1,25-(OH)2 vitamin D3 levels (Cohen's d =0.86 (95% confidence interval: 0.53–1.19), P<0.001), but not its often measured precursor 25-OH vitamin D3. As vitamin D levels were significantly lower after adjustment for confounders, vitamin D might have an aetiological role in late-life depression. Differences between depressed and non-depressed subjects were largest for the biologically active form of vitamin D. The differential impact of TCAs on 25-OH vitamin D3 and 1,25-(OH)2 vitamin D3 levels suggests modulation of 1-α-hydroxylase and/or 24-hydroxylase, which may in turn have clinical implications for biological ageing mechanisms in late-life depression. PMID:24736799

  2. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    SciTech Connect

    Yamato, H.; Matsumoto, T.; Fukumoto, S.; Ikeda, K.; Ishizuka, S.; Ogata, E.

    1989-01-01

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected (1 beta-3H)1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of (3H)24,25-(OH)2D3 to (3H)1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level.

  3. Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To test the effect of 25(OH)D3 (HyD) compared to vitamin D3 on serum 25-hydroxyvitamin D levels (25(OH)D), lower extremity function, blood pressure, and markers of innate immunity. Twenty healthy postmenopausal women with an average 25(OH)D level of 13.23.9 ng/mL (meanSD) and a mean age of 61.57.2 y...

  4. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study.

    PubMed

    Stumpf, W E; O'Brien, L P

    1987-01-01

    After injection of 3H 1,25 (OH)2 vitamin D3 to adult rats and mice, under normal or vitamin D deficient diet, the hormone was found to be accumulated in nuclei of neurons in certain brain regions. Nuclear concentration was prevented or diminished, when excess unlabeled 1,25 (OH)2 vitamin D3 was injected before 3H 1,25 (OH)2 vitamin D3, while excess 25 (OH) vitamin D3 did not prevent nuclear labeling. Highest nuclear concentration of 3H 1,25 (OH)2 vitamin D3 is observed in certain neurons in the nucleus interstitialis striae terminalis, involving its septo-preoptic pars dorsolateralis and its anterior hypothalamic-thalamic portion, and in the nucleus centralis of the amygdala, all constituting a system of target neurons linked by a component of the stria terminalis. Nuclear concentration of 3H 1,25 (OH)2 vitamin D3 is also found in neurons in the periventricular nucleus of the preoptic-hypothalamic region, including its extensions, the parvocellular paraventricular and arcuate nucleus, in the ventromedial nucleus, supramammillary nucleus, reticular nucleus of the thalamus, ventral hippocampus, caudate nucleus, pallium, in the midbrain-pontine central gray, dorsal raphe nucleus, parabrachial nuclei, cranial motor nuclei, substantia gelatinosa of the sensory nucleus of the trigeminus, Golgi type II cells of the cerebellum, and others. The extensive distribution of target neurons suggests that 1,25 (OH)2 vitamin D3 regulates the production of several aminergic and peptidergic messengers, and influences the activity of certain endocrine-autonomic, sensory and motor systems. PMID:2828283

  5. Evaluation of 25(OH) Vitamin D3 with Reference to Magnesium Status and Insulin Resistance in T2DM

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Jain, Keerthi; Gandhe, Swapnali Mahendra

    2013-01-01

    Introduction: Calcium is a recognized second messenger implicated in insulin secretion. Vitamin D (1,25-dihydroxycholecalciferol, Calcitriol) plays a role in calcium metabolism. This explains the indirect role of Vitamin D in insulin secretion and insulin sensitivity. Hence, low Vitamin D levels are implicated in decreased insulin secretion and increased insulin resistance. In this study, we tried to find out the probable association of Vitamin D3, calcium and magnesium with reference to insulin resistance in type 2 diabetes mellitus (T2DM) cases. It is well documented that measurement of circulating 25-Hydroxycholecalciferol {25 (OH)Vitamin D3} is a marker of total Vitamin D status. Methodology: We measured 25(OH) Vitamin D3 levels in thirty T2DM subjects with thirty age and sex matched healthy controls. We estimated Vitamin D status, calcium and magnesium levels in the light of insulin resistance. Insulin resistance was measured by homeostasis model assessment of insulin resistance (HOMA-IR). Results: Twenty five (OH) Vitamin-D3 level was significantly low among T2DM cases (12.29+2.32ng/ml) in comparison to healthy controls (19.55+0.50ng/ml) (p<0.01). The levels of calcium and magnesium were also significantly low in T2DM cases as compared to healthy controls (p<0.01). There was significant negative correlation between Vitamin D status and insulin levels, and insulin resistance (p<0.01). Implication: A significant negative correlation between Vitamin D status and insulin levels suggest that the supplementation of Vitamin D has the potential to increase insulin sensitivity and lower the risk of developing type 2 diabetes mellitus. PMID:24392366

  6. Low 25(OH) Vitamin D3 Levels Are Associated with Adverse Outcome in Newly-Diagnosed Intensively-Treated Adult Acute Myeloid Leukemia Patients

    PubMed Central

    Lee, Hun Ju; Muindi, Josephia R.; Tan, Wei; Hu, Qiang; Wang, Dan; Liu, Song; Wilding, Gregory E.; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Adjei, Araba A.; Barcos, Maurice; Griffiths, Elizabeth A; Thompson, James E.; Wang, Eunice S.; Johnson, Candace S; Trump, Donald L.; Wetzler, Meir

    2013-01-01

    Background Several studies suggest that low 25(OH) vitamin D3 levels may be prognostic in some malignancies, but no studies have evaluated their impact on treatment outcome in acute myeloid leukemia (AML). Methods VD levels were evaluated in 97 consecutive newly diagnosed, intensively-treated AML patients. MicroRNA-expression profiles and single nucleotide polymorphisms (SNPs) in the 25(OH) vitamin D3 pathway genes were evaluated and correlated with 25(OH) vitamin D3 levels and treatment outcome. Results Thirty-four (35%) patients had normal 25(OH) vitamin D3 levels (32–100 ng/ml), 34 (35%) insufficient (20–31.9 ng/ml) and 29 (30%) deficient levels (<20 ng/ml). Insufficient/deficient 25(OH) vitamin D3 levels were associated with worse relapse-free survival (RFS) compared to normal vitamin D3 levels. In multivariate analyses, deficient 25(OH) vitamin D3, smoking, European LeukemiaNet Genetic Groups and white blood cell count retained their statistical significance for RFS. A number of microRNAs and SNPs were found to be associated with 25(OH) vitamin D3 level, although none remained significant after multiple test corrections; one 25(OH) vitamin D3 receptor SNP, rs10783219, was associated with lower complete remission rate (p=0.0442), shorter RFS (p=0.0058) and overall survival (p=0.0011). Conclusions It remains to be determined what role microRNA and SNP profiles play in contributing to low 25(OH) vitamin D3 level and/or outcome and whether supplementation will improve AML outcome. PMID:24166051

  7. Distribution of hydroxylated vitamin D metabolites [25OHD3 and 1,25(OH)2D3] in domestic pigs: evidence that 1,25(OH)2D3 is stored outside the blood circulation?

    PubMed

    Rungby, J; Mortensen, L; Jakobsen, K; Brock, A; Mosekilde, L

    1993-03-01

    1. The distribution of 25-hydroxycholecalciferol (25OHD3) and 1,25-dihydroxycholecalciferol [1,25(OH)2D3] in various organs from domestic pigs was examined by HPLC. 2. Plasma levels of both metabolites corresponded to those found in healthy human subjects. 3. Tissue concentrations of 25OHD3 in fat, kidney, liver, and intestinal mucosa were low (< 1/3 of plasma levels), whereas tissue concentrations of 1,25(OH)2D3 exceeded plasma levels by factors 3-7, adipose tissue concentrations being the highest. 4. Substantial amounts of activated vitamin D are stored outside the blood-streams and may actively participate in vitamin D and calcium homeostasis. PMID:8097149

  8. Effect of 1,25(OH)2 vitamin D3 on cytokine production by endometrial cells of women with repeated implantation failure.

    PubMed

    Rajaei, Samira; Mirahmadian, Mahroo; Jeddi-Tehrani, Mahmood; Tavakoli, Maryam; Zonoobi, Mojdeh; Dabbagh, Ali; Zarnani, Amir Hassan

    2012-11-01

    Repeated implantation failure (RIF) is a worldwide health problem that imposes a great deal of cost on patients and health care system. Vitamin D(3) has been proposed to have positive impact on the process of implantation. The present study was performed to compare the effect of 1,25-dihydroxy vitamin D(3) (1,25(OH)(2)D(3)) on cytokine production by endometrial cells of women with RIF and healthy fertile controls. Whole endometrial cells (WECs) and endometrial stromal cells (ESCs) from RIF and normal fertile women were treated with 1,25(OH)(2)D(3). The levels of IL-10, TGF-β, IFNγ, Il-6, IL-8 and IL-17 in culture supernatants were assayed by ELISA. Also, ability of the cells from both groups to produce 1,25(OH)(2)D(3) was evaluated and compared. 1,25(OH)(2)D(3) down-regulated cytokine production in WECs from both groups except for IL-8 which was upraised. Similar trends were also observed in ESCs except up-regulation of TGF-β in RIF group. Endometrial cells of both groups had comparable capacity to produce 1,25(OH)(2)D(3). Based on the minimal differential immunoregulatory effect of vitamin D(3) on endometrial cells from RIF and control women, it may be suggested that circulating levels of maternal vitamin D(3) be the subject of further investigation. PMID:22616713

  9. Hypercalcemia, hypervitaminosis A and 3-epi-25-OH-D3 levels after consumption of an "over the counter" vitamin D remedy. a case report.

    PubMed

    Granado-Lorencio, F; Rubio, E; Blanco-Navarro, I; Pérez-Sacristán, B; Rodríguez-Pena, R; García López, F J

    2012-06-01

    Intoxication from vitamin D supplements has been rarely reported but, nowadays, it occurs more frequently. 3-epi-25-OH-D(3) is highly prevalent in adults and it is considered of biological relevance. We report a case of vitamin D toxicity with hypercalcemia, acute renal failure and hypervitaminosis A after consuming an over-the-counter vitamin D supplement. Our data suggest that the contribution of 3-epi-25-OH-D(3) is not altered during vitamin D toxicity, although the serum levels of 25-OH-D(3) and 3-epi-25-OH-D(3) may display a different rate of clearance. The patient also displayed hypervitaminosis A unrelated to diet, possibly caused by renal failure related to the hypercalcemia induced by vitamin D toxicity. Because of the increasing use of over-the-counter vitamin D supplements and the potential iatrogenic hypercalcemia related to hypervitaminosis A, the present case highlights the importance of evaluating both the use of (non-) prescribed medication and vitamin A status during vitamin D toxicity. PMID:22426357

  10. Evidence for Vitamin D Receptor Expression and Direct Effects of 1α,25(OH)2D3 in Human Skeletal Muscle Precursor Cells.

    PubMed

    Olsson, Karl; Saini, Amarjit; Strömberg, Anna; Alam, Seher; Lilja, Mats; Rullman, Eric; Gustafsson, Thomas

    2016-01-01

    Presence of the vitamin D receptor and direct effects of vitamin D on the proliferation and differentiation of muscle precursor cells have been demonstrated in animal models. However, the effects and mechanisms of vitamin D actions in human skeletal muscle, and the presence of the vitamin D receptor in human adult skeletal muscle, remain to be established. Here, we investigated the role of vitamin D in human muscle cells at various stages of differentiation. We demonstrate that the components of the vitamin D-endocrine system are readily detected in human muscle precursor cells but are low to nondetectable in adult skeletal muscle and that human muscle cells lack the ability to convert the inactive vitamin D-metabolite 25-hydroxy-vitamin D3 to the active 1α,25-dihydroxy-vitamin D3 (1α,25(OH)2D3). In addition, we show that 1α,25(OH)2D3 inhibits myoblast proliferation and differentiation by altering the expression of cell cycle regulators and myogenic regulatory factors, with associated changes in forkhead box O3 and Notch signaling pathways. The present data add novel information regarding the direct effects of vitamin D in human skeletal muscle and provide functional and mechanistic insight to the regulation of myoblast cell fate decisions by 1α,25(OH)2D3. PMID:26469137

  11. Active vitamin D3, 1,25-(OH)2D3, protects against macrovasculopathy in a rat model of type 2 diabetes mellitus.

    PubMed

    Ma, R; Deng, X L; Du, G L; Li, C; Xiao, S; Aibibai, Y; Zhu, J

    2016-01-01

    To investigate the protective effect of the active form of vitamin D3, 1,25-(OH)2D3, on macrovasculopathy in rats with type 2 diabetes mellitus (T2DM), 8-week-old male Sprague-Dawley rats were randomly divided into control group, T2DM group, and treatment group. The T2DM model was established after 6 weeks by administering an intraperitoneal injection of streptozotocin (30 mg/kg). 1,25-(OH)2D3 was administered by gavage to rats in the treatment group, and an equal volume of peanut oil was administered to rats in the T2DM group. Fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterols were measured in all rats. The morphology of the thoracic aorta was examined, and the expression of tumor necrosis factor alpha (TNF-α), endothelin (ET), endothelial nitric oxide synthase (eNOS), CD54, and CD106 in the thoracic aorta was determined by immunohistochemistry. The expression of FPG, TG, TC, and LDL-C in rats from the T2DM and treatment groups was significantly elevated compared with rats from the control group (P < 0.05). Compared with that in control group, the expression of TNF-α, ET, eNOS, and CD106 was significantly upregulated in the T2DM group and the treatment group, while the expression of CD54 was increased only in the T2DM group (P < 0.05). Moreover, the levels of TNF-α, CD54, and CD106 in rats from the treatment group were lower than those in the T2DM group (P < 0.05). These data suggest that 1,25-(OH)2D3 may protect the macrovessels from injury in T2DM rats by inhibiting the expression of TNF-α, CD54, and CD106. PMID:27323139

  12. Vitamin D [1,25(OH)2D3] Differentially Regulates Human Innate Cytokine Responses to Bacterial versus Viral Pattern Recognition Receptor Stimuli.

    PubMed

    Fitch, Natascha; Becker, Allan B; HayGlass, Kent T

    2016-04-01

    Vitamin D plays multiple roles in regulation of protective and maladaptive immunity. Although epidemiologic studies link poor in vivo 25(OH)D status to increased viral respiratory infections, we poorly understand how vitamin D affects viral pattern recognition receptor (PRR)-driven cytokine production. In this study, we hypothesized that the biologically active metabolite of vitamin D, 1,25(OH)2D3, inhibits human proinflammatory and anti-inflammatory innate cytokine responses stimulated by representative bacterial or viral PRR ligands. Fresh PBMCs or CD14(+) monocytes were stimulated with TLR4, TLR7/8-selective ligands, or respiratory syncytial virus (RSV) ± 1,25(OH)2D3. Proinflammatory and anti-inflammatory responses resulting from TLR4 stimulation were inhibited ∼50% in the presence of 1,25(OH)2D3. Conversely, its usage at physiologic through pharmacologic concentrations inhibited neither proinflammatory nor anti-inflammatory responses evoked by viral PRR ligands or infectious RSV. This differential responsiveness was attributed to the finding that TLR7/8, but not TLR4, stimulation markedly inhibited vitamin D receptor mRNA and protein expression, selectively reducing the sensitivity of viral PRR responses to modulation. 1,25(OH)2D3 also enhanced expression of IkBa, a potent negative regulator of NF-κB and cytokine production, in TLR4-stimulated monocytes while not doing so upon TLR7/8 stimulation. Thus, 1,25(OH)2D3 inhibits both proinflammatory and a broad panel of anti-inflammatory responses elicited by TLR4 stimulation, arguing that the common view of it as an anti-inflammatory immune response modifier is an oversimplification. In viral responses, it consistently fails to modify TLR7/8- or RSV-stimulated innate cytokine production, even at supraphysiologic concentrations. Collectively, the data call into question the rationale for increasingly widespread self-medication with vitamin D supplements. PMID:26895836

  13. Effects of Oxcarbazepine and Levetiracetam on Calcium, Ionized Calcium, and 25-OH Vitamin-D3 Levels in Patients with Epilepsy

    PubMed Central

    Aksoy, Duygu; Güveli, Betül Tekin; Ak, Pelin Doğan; Sarı, Hüseyin; Ataklı, Dilek; Arpacı, Baki

    2016-01-01

    Objective The primary objective of the present study was to further elucidate the effects of oxcarbazepine (OXC) and levetiracetam (LEV) monotherapies on the bone health status of patients with epilepsy. Methods This study included 48 patients who attended our epilepsy outpatient clinic, had a diagnosis of epilepsy, and were undergoing either OXC or LEV monotherapy and 42 healthy control subjects. The demographic and clinical features of the patients, including gender, age, onset of disease, daily drug dosage, and duration of disease, were noted. Additionally, the calcium, ionized calcium, and 25-OH vitamin-D3 levels of the participants were prospectively evaluated. Results The 25-OH vitamin-D3, calcium, and ionized calcium levels of the patients taking OXC were significantly lower than those of the control group. These levels did not significantly differ between the patients taking LEV and the control group, but there was a significant negative relationship between daily drug dose and ionized calcium levels in the LEV patients. Conclusion In the present study, anti-epileptic drugs altered the calcium, ionized calcium, and 25-OH vitamin-D3 levels of epilepsy patients and resulted in bone loss, abnormal mineralization, and fractures. These findings suggest that the calcium, ionized calcium, and 25-OH vitamin-D3 levels of patients with epilepsy should be regularly assessed. PMID:26792043

  14. 1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    PubMed Central

    Molnár, Ferdinand; Sigüeiro, Rita; Sato, Yoshiteru; Araujo, Clarisse; Schuster, Inge; Antony, Pierre; Peluso, Jean; Muller, Christian; Mouriño, Antonio; Moras, Dino; Rochel, Natacha

    2011-01-01

    Background The 1α,25-dihydroxy-3-epi-vitamin-D3 (1α,25(OH)2-3-epi-D3), a natural metabolite of the seco-steroid vitamin D3, exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1α,25(OH)2-3-epi-D3 is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1α,25(OH)2D3. To further unveil the structural mechanism and structure-activity relationships of 1α,25(OH)2-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1α,25(OH)2D3. We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1α,25(OH)2-3-epi-D3 in primary human keratinocytes and biochemical properties are comparable to 1α,25(OH)2D3. Conclusions/Significance The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1α,25(OH)2D3 lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1α,25(OH)2D3. PMID:21483824

  15. Selective upregulation of the expression of plasma membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon cancer cells.

    PubMed

    Ribiczey, Polett; Papp, Béla; Homolya, László; Enyedi, Ágnes; Kovács, Tünde

    2015-08-14

    We have previously presented co-expression of the plasma membrane calcium ATPase isoforms 4b (PMCA4b) and 1b (PMCA1b) in colon carcinoma cells, and selective upregulation of PMCA4b during differentiation initiated by short chain fatty acids or post-confluent growth. Here we show that the induction of PMCA4b expression is a characteristic feature of the post-confluency-induced differentiation of both enterocyte-type and goblet cell-type colon cancer cells. Vitamin D3 (1,25(OH)2D3) is a well-known regulator of intestinal Ca(2+) absorption and of basic cell functions such as growth and differentiation in various cell types. As PMCA proteins are involved both in intestinal Ca(2+) absorption and adenocarcinoma cell differentiation, we investigated the effect of 1,25(OH)2D3 on PMCA expression in enterocyte-like colon carcinoma cells, and monitored its effect on the expression of various differentiation markers. 1,25(OH)2D3 stimulated PMCA1b, but not PMCA4b expression without modulating the expression of the majority of the differentiation markers examined. Caco-2 cells differentiated in post-confluent cultures present normal enterocyte-like intestinal epithelial phenotype. To better understand the role of PMCA proteins in vectorial Ca(2+) transport by enterocytes, we also studied their subcellular localization in mature polarized Caco-2 cells. Both PMCA isoforms were located to the basolateral membrane, and the PMCA-specific immunofluorescent signal was significantly higher in vitamin D3-treated cells, underlining the 1,25(OH)2D3-induced upregulation of PMCA (presumably 1b isoform) expression in differentiated Caco-2 cells. We suggest that while PMCA1b has a housekeeping function in colon cancer cells, PMCA4b participates in the reorganization of the Ca(2+) signalling machinery during cell differentiation. The subcellular localization of PMCA1b and its selective 1,25(OH)2D3-dependent upregulation indicate that this isoform may have a specific role in 1,25(OH)2D3

  16. Nasal Levels of Antimicrobial Peptides in Allergic Asthma Patients and Healthy Controls: Differences and Effect of a Short 1,25(OH)2 Vitamin D3 Treatment

    PubMed Central

    Thijs, Willemien; Janssen, Kirsten; van Schadewijk, Annemarie M.; Papapoulos, Socrates E.; le Cessie, Saskia; Middeldorp, Saskia; Melissant, Christian F.; Rabe, Klaus F.; Hiemstra, Pieter S.

    2015-01-01

    Background Allergy is often accompanied by infections and lower levels of antimicrobial peptides (AMPs). Vitamin D has been shown to increase expression of selected AMPs. In this study we investigated whether antimicrobial peptide levels in nasal secretions of allergic asthma patients are lower than in healthy controls, and whether administration of the active form of vitamin D (1,25(OH)2D3) affects these antimicrobial peptide levels. Methods The levels of antimicrobial peptides in nasal secretions were compared between 19 allergic asthma patients and 23 healthy controls. The effect of seven days daily oral treatment with 2 μg 1,25(OH)2D3 on antimicrobial peptides in nasal secretions was assessed in a placebo-controlled cross-over clinical study. Results Levels of neutrophil α-defensins (human neutrophil peptides 1–3; HNP1-3) and lipocalin 2 (LCN2; also known as NGAL) were significantly lower in asthmatics, but no differences in LL-37 and SLPI were detected. Treatment with a short-term 1,25(OH)2D3 caused a small increase in HNP1-3, but not when the asthma and control groups were analyzed separately. LL-37, LCN2 and SLPI did not change after treatment with 1,25(OH)2D3. Conclusion Levels of the antimicrobial peptides HNP1-3 and LCN2 are lower in nasal secretions in asthmatics and are not substantially affected by a short-term treatment with active vitamin D. PMID:26545199

  17. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    PubMed

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27018098

  18. 1α,25(OH)2 Vitamin D3 Modulates Avian T Lymphocyte Functions without Inducing CTL Unresponsiveness

    PubMed Central

    Boodhoo, Nitish; Sharif, Shayan; Behboudi, Shahriar

    2016-01-01

    1,25-Dihydroxyvitamin D3 (Vitamin D) is a naturally synthesized fat soluble vitamin shown to have immunomodulatory, anti-inflammatory and cancer prevention properties in human and murine models. Here, we studied the effects of Vitamin D on the functional abilities of avian T lymphocytes using chicken Interferon (IFN)-γ ELISPOT assay, BrdU proliferation assay, Annexin V apoptosis assay and PhosFlow for detecting phosphorylated signalling molecules. The results demonstrate that Vitamin D significantly inhibited the abilities of T lymphocytes to produce IFN-γ and proliferate in vitro (P≤0.05), but retained their ability to undergo degranulation, which is a maker for cytotoxicity of these cells. Similarly, Vitamin D did not inhibit Extracellular signal-Regulated Kinase (ERK) 1/2 phosphorylation, a key mediator in T cell signalling, in the stimulated T lymphocytes population, while reduced ERK1/2 phosphorylation levels in the unstimulated cells. Our data provide evidence that Vitamin D has immuno-modulatory properties on chicken T lymphocytes without inducing unresponsiveness and by limiting immuno-pathology can promote protective immunity against infectious diseases of poultry. PMID:26910045

  19. 1α,25(OH)2 Vitamin D3 Modulates Avian T Lymphocyte Functions without Inducing CTL Unresponsiveness.

    PubMed

    Boodhoo, Nitish; Sharif, Shayan; Behboudi, Shahriar

    2016-01-01

    1,25-Dihydroxyvitamin D3 (Vitamin D) is a naturally synthesized fat soluble vitamin shown to have immunomodulatory, anti-inflammatory and cancer prevention properties in human and murine models. Here, we studied the effects of Vitamin D on the functional abilities of avian T lymphocytes using chicken Interferon (IFN)-γ ELISPOT assay, BrdU proliferation assay, Annexin V apoptosis assay and PhosFlow for detecting phosphorylated signalling molecules. The results demonstrate that Vitamin D significantly inhibited the abilities of T lymphocytes to produce IFN-γ and proliferate in vitro (P≤0.05), but retained their ability to undergo degranulation, which is a maker for cytotoxicity of these cells. Similarly, Vitamin D did not inhibit Extracellular signal-Regulated Kinase (ERK) 1/2 phosphorylation, a key mediator in T cell signalling, in the stimulated T lymphocytes population, while reduced ERK1/2 phosphorylation levels in the unstimulated cells. Our data provide evidence that Vitamin D has immuno-modulatory properties on chicken T lymphocytes without inducing unresponsiveness and by limiting immuno-pathology can promote protective immunity against infectious diseases of poultry. PMID:26910045

  20. Vitamin D delays breast cancer progression in the PyVMT transgenic mouse model: local conversion of the precursor 25(OH)D3 into 1,25(OH)2D3 is safer and more effective than systemic administration of 1,25(OH)2D3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic activation of 1,25(OH)2D3 occurs at extra renal sites in several organs, including the breast. The purpose of this study was to determine if this local tumoral 25OHD3-1alphahydroxylase expression modulates any or all of the stages of breast tumor progression. For this purpose we used the...

  1. 25(OH)D Is Effective to Repress Human Cholangiocarcinoma Cell Growth through the Conversion of 25(OH)D to 1α,25(OH)2D3

    PubMed Central

    Chiang, Kun-Chun; Yeh, Chun-Nan; Huang, Cheng-Cheng; Yeh, Ta-Sen; S. Pang, Jong-Hwei; Hsu, Jun-Te; Chen, Li-Wei; Kuo, Sheng-Fong; Kittaka, Atsushi; Chen, Tai C.; Juang, Horng-Heng

    2016-01-01

    Cholangiocarcinoma (CCA) is a devastating disease without effective treatments. 1α,25(OH)2D3, the active form of Vitamin D, has emerged as a new anti-cancer regimen. However, the side effect of hypercalcemia impedes its systemic administration. 25(OH)D is biologically inert and needs hydroxylation by CYP27B1 to form 1α,25(OH)2D3, which is originally believed to only take place in kidneys. Recently, the extra-renal expression of CYP27B1 has been identified and in vitro conversion of 25(OH)D to 1α,25(OH)2D3 has been found in some cancer cells with CYP27B1 expression. In this study, CYP27B1 expression was demonstrated in CCA cells and human CCA specimens. 25(OH)D effectively represses SNU308 cells growth, which was strengthened or attenuated as CYP27B1 overexpression or knockdown. Lipocalcin-2 (LCN2) was also found to be repressed by 25(OH)D. After treatment with 800 ng/mL 25(OH)D, the intracellular 1α,25(OH)2D3 concentration was higher in SNU308 cells with CYP27B1 overexpression than wild type SNU308 cells. In a xenograft animal experiment, 25(OH)D, at a dose of 6 μg/kg or 20 μg/kg, significantly inhibited SNU308 cells’ growth without inducing obvious side effects. Collectively, our results indicated that SNU308 cells were able to convert 25(OH)D to 1α,25(OH)2D3 and 25(OH)D CYP27B1 gene therapy could be deemed as a promising therapeutic direction for CCA. PMID:27529229

  2. Assessing novel prognostic serum biomarkers in advanced pancreatic cancer: the role of CYFRA 21-1, serum amyloid A, haptoglobin, and 25-OH vitamin D3.

    PubMed

    Haas, Michael; Kern, Christoph; Kruger, Stephan; Michl, Marlies; Modest, Dominik P; Giessen, Clemens; Schulz, Christoph; von Einem, Jobst C; Ormanns, Steffen; Laubender, Rüdiger P; Holdenrieder, Stefan; Heinemann, Volker; Boeck, Stefan

    2015-04-01

    The present prospective single-center study investigated the prognostic role of novel serum biomarkers in advanced pancreatic cancer (PC). Patients (pts) with locally advanced or metastatic PC treated with first-line palliative chemotherapy were included. Among others, the serum markers CYFRA 21-1, haptoglobin, serum-amyloid A (SAA), and 25-OH vitamin D3 were determined at baseline and categorized by pre-defined cut-offs [median values (MV), upper limits of normal (ULN), lower limits of normal (LLN), or the natural logarithm (ln)] and correlated with overall survival (OS). Among the 59 pts included, pre-treatment CYFRA 21-1 levels showed a strong correlation with OS independent of the applied cut-off (MV 4.9 ng/ml-14.2 vs. 4.2 months, HR 0.18, p = 0.001; ULN 3.3 ng/ml-14.2 vs. 4.4 months, HR 0.28, p = 0.003; [ln] CYFRA 21-1-HR 0.77, p = 0.013). Lower values of haptoglobin were additionally associated with an improvement in OS (categorized by LLN of 2.05 g/l-10.4 vs. 5.5 months, HR 0.46, p = 0.023; [ln] haptoglobin-HR 0.51, p = 0.036). Pts with baseline SAA values below the MV of 22 mg/l also had a prolonged OS (10.4 vs. 5.0 months, HR 0.47, p = 0.036). For 25-OH vitamin D3 levels, no significant correlation with OS was found. In multivariate analyses, pre-treatment CYFRA 21-1 levels (categorized by MV-HR 0.15, p = 0.032) as well as [ln] haptoglobin (HR 0.30, p = 0.006) retained their independent prognostic significance for OS. CYFRA 21-1, haptoglobin, and SAA might provide useful prognostic information in advanced PC. An external multicenter validation of these results is necessary. PMID:25472579

  3. Osteolytic activity and reversal of nephrectomy-induced hypocalcemia by a fraction other than 1,25(OH)2-vitamin D3 from Solanum malacoxylon incubated with ruminal fluid.

    PubMed

    Skliar, M I; Boland, R L

    1994-09-01

    Previous studies have shown that two lipid soluble fractions (2 and 3) isolated from Solanum malacoxylon leaf extracts incubated with ruminal fluid by Sephadex LH-20 chromatography increase intestinal P absorption and blood Ca. Fraction 2 contains 1,25(OH)2-vitamin D3, vitamin D3, 25(OH)-vitamin D3 and 1,24,25(OH)3-vitamin D3. The osteolytic activity and ability to revert nephrectomy-induced hypocalcemia of fractions 2 and 3 was compared. The tibias from 19-day-old chick embryos injected with both fractions on day 15 were shorter, lighter and had a lower ash content than those from controls. Fractions 2 and 3 also decreased dry weight and ash content in frontal bones, although only the effects of fraction 3 were statistically significant. In agreement with these observations, fraction 3 was more effective than fraction 2 to increase blood Ca levels in nephrectomized rats. Extracts from rumen samples were devoid of activity. The results support the presence of a polar derivative of 1,25(OH)2D3 in ruminal fluid-treated Solanum malacoxylon. PMID:7835826

  4. 1,25(OH)2D3 Induces Placental Vascular Smooth Muscle Cell Relaxation by Phosphorylation of Myosin Phosphatase Target Subunit 1Ser507: Potential Beneficial Effects of Vitamin D on Placental Vasculature in Humans.

    PubMed

    Jia, Xiuyue; Gu, Yang; Groome, Lynn J; Al-Kofahi, Mahmoud; Alexander, J Steven; Li, Weimin; Wang, Yuping

    2016-05-01

    Placental vascular dysfunction has been linked to insufficiency/deficiency of maternal vitamin D levels during pregnancy. In contrast, sufficient maternal vitamin D levels have shown beneficial effects on pregnancy outcomes. To study the role of vitamin D in pregnancy, we tested our hypothesis that vitamin D exerts beneficial effects on placental vasculature. We examined expression of CYP2R1, CYP27B1, vitamin D receptor (VDR), and CYP24A1 in placental vascular smooth muscle cells (VSMCs) in response to 1,25(OH)2D3 We found that VDR expression was inducible, CYP27B1 expression was dose-dependently down-regulated, and CYP24A1 expression was dose-dependently up-regulated in cells treated with 1,25(OH)2D3 These data suggest a feedback autoregulatory system of vitamin D existing in placental VSMCs. Using a VSMC/collagen-gel contraction assay, we evaluated the effect of 1,25(OH)2D3 on placental VSMC contractility. We found that, similar to losartan, 1,25(OH)2D3 could diminish angiotensin II-induced cell contractility. The mechanism of 1,25(OH)2D3-mediated VSMC relaxation was further explored by examination of Rho-associated protein kinase 1 (ROCK1)/phosphorylation of myosin phosphatase target subunit 1 (MYPT1) pathway molecules. Our results showed that p-MYPT1(Thr853) and p-MYPT1(Thr696) were undetectable. However, p-MYPT1(Ser507), but not p-MYPT1(Ser668), was significantly up-regulated in cells treated with losartan plus angiotensin II. Similar effects were also seen in cells treated with 1,25(OH)2D3 plus angiotensin II or 1,25(OH)2D3 plus losartan plus angiotensin II. Because MYPT1 serine phosphorylation could activate myosin light chain phosphatase (MLCP), and MLCP activation is an important regulatory machinery of smooth muscle cell relaxation, up-regulation of MYPT1(Ser507) phosphorylation could be a mechanism of vitamin D and/or losartan mediated placental VSMC relaxation. PMID:27075619

  5. 25OH-Vitamin D3 Levels in Obesity and Metabolic Syndrome-Unaltered in Young and not Correlated to Carotid IMT in All Ages.

    PubMed

    Mangge, Harald; Zelzer, Sieglinde; Meinitzer, Andreas; Stelzer, Ingeborg; Schnedl, Wolfgang J; Weghuber, Daniel; Fuchs, Dietmar; Postolache, Teodor T; Aigner, Elmar; Datz, Christian; Reininghaus, Eva Z

    2015-01-01

    Contradictory results exist for levels of vitamin D measured in patients with cardiovascular disease (CVD), obesity and metabolic syndrome (MetS). To clarify this, we investigated 527 participants of the STYJOBS/ EDECTA cohort (NCT00482924), with ages between 10 and 65 years. A cross-sectional analysis of anthropometry, carotid intima media thickness (IMT), and laboratory measurements for 25OH-Vitamin D3 (vitD), glucose metabolism, ultra-sensitive C-reactive protein (US-CRP), interleukin-6 (IL-6), lipids, liver-, renal-parameters, and kynurenine to tryptophan ratio were made for a selection of persons who were either obese or of normal weight. The homeostasis model assessment insulin resistance (HOMA) was also measured. As compared to the normal weight controls, significantly decreased blood levels of vitD were found in overweight/obese adults, which were not observed in the juveniles. Nevertheless, both overweight/obese juveniles and adults had significantly increased US-CRP, IL-6, HOMA, triglyceride, and LDL-cholesterol levels, and significantly decreased HDL-cholesterol levels. Juveniles with MetS displayed unchanged levels of vitD as compared to overweight/obese juveniles without MetS. Although IMT was significantly increased in both juvenile and adult overweight/obese subjects, vitD and IMT levels were not correlated. Assuming a minimum threshold of 20 ng/ml for the establishment of "low" or "normal" vitD levels, no significant alteration in IMT, metabolic, and inflammatory markers was observed in juveniles with a low vitD-status . In conclusion, although metabolic and inflammatory symptoms of obesity are displayed in juveniles, their vitD levels are unaffected. This, together with the complete lack of association with carotid IMT in both juveniles and adults, argues against a causative role of vitD in obesity-associated vascular pathology. PMID:25557634

  6. The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation.

    PubMed

    Turner, Andrew G; Hanrath, Maarten A; Morris, Howard A; Atkins, Gerald J; Anderson, Paul H

    2014-10-01

    Maintenance of an adequate vitamin D status, as indicated by the level of circulating 25-hydroxyvitamin D (25(OH)D), is associated with higher bone mass and decreased risk of fracture. However, the molecular actions of vitamin D hormone (1,25(OH)2D3) in bone are complex, and include stimulation of osteoclastogenesis via RANK-ligand up-regulation, as well as the inhibition of mineralisation. We hypothesise that these divergent data may be reconciled by autocrine actions of 1,25(OH)2D3 which effect skeletal maintenance, as opposed to endocrine 1,25(OH)2D3 which acts to maintain serum calcium homeostasis. We have previously described local metabolism of 1,25(OH)2D3 within osteoblasts, with effects on gene expression and cell function. The aim of the current study was to investigate potential autocrine actions of 1,25(OH)2D3 within cells that exhibit osteocyte-like properties. Late osteoblastic MLO-A5 cells were cultured in the presence of 25(OH)D for 9 days with gene expression analysed pre- and post-mineralisation. Gene expression analysis revealed maturation within this time frame to an osteocyte-like stage, evidenced by increased Dmp1 and Phex mRNA expression. Expression of Cyp27b1 in 25(OH)D treated MLO-A5 cells was associated with elevated media levels of 1,25(OH)2D3 (p<0.05), induction of Cyp24a1 (p<0.001) and elevated ratios of Opg:Rankl mRNA (p<0.01). Chronic 25(OH)D exposure also increased osteocalcin mRNA in MLO-A5 cells, which contrasted with the dose-dependent inhibition of osteocalcin mRNA observed with acute treatment in MLO-Y4 cells (p<0.01). Treatment of MLO-Y4 cells with 25(OH)D also inhibited Phex mRNA expression (p<0.05), whilst Enpp1 gene expression was induced (p<0.01). Overall, the current study demonstrates that osteocyte-like cells convert physiological levels of 25(OH)D to 1,25(OH)2D3, with changes in gene expression that are consistent with increased osteocyte maturation. Although the physiological role of local metabolism of 1,25(OH)2D3

  7. Modifying broiler diets with phytase and vitamin D metabolite (25-OH D(3)): impact on phosphorus in litter, amended soils, and runoff.

    PubMed

    McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, Roselina

    2010-01-01

    Adding phytase and 25- hydroxycholecalciferol (25-OH D(3)) to broiler diets has been shown effective at reducing total P concentrations in broiler litter. This study was conducted to determine the impact of field application of broiler litter from modified diets on P solubility in litter-amended soils and P losses in runoff. Five broiler diets and their resulting litters were evaluated: a high P diet, a low P diet, each of those basal diets with phytase added, and a low P diet with phytase and 25-OH D(3) added. A field study was initiated at two sites with each of the five broiler litters and a commercial P fertilizer (triple superphosphate [TSP]) applied at the same total P rate (150 kg P ha(-1)) and a control where no P was applied. Soil P was monitored over time at two depths (0-5 cm and 0-15 cm) soils were collected in the spring and fall to perform rainfall simulation studies. Broiler litter or TSP application increased soil water-soluble P and Mehlich 3-P concentrations relative to the control, however there were no consistent differences detected between litter treatments. Results from the rainfall simulation experiments indicate that diet modification with phytase or 25-OH D(3) does not increase the potential for P losses in runoff from amended soils relative to traditional diets. Moreover, broiler diet modification to reduce excreted P could be a potentially effective method for reducing watershed scale P surpluses in areas of intensive broiler production, without raising concerns over soluble P losses from litter-amended soils. PMID:20048320

  8. Vector-averaged gravity-induced changes in cell signaling and vitamin D receptor activity in MG-63 cells are reversed by a 1,25-(OH)2D3 analog, EB1089

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Smith, C. L.; Weigel, N. L.

    2002-01-01

    Skeletal unloading in an animal hindlimb suspension model and microgravity experienced by astronauts or as a result of prolonged bed rest causes site-specific losses in bone mineral density of 1%-2% per month. This is accompanied by reductions in circulating levels of 1,25-(OH)(2)D(3), the active metabolite of vitamin D. 1,25-(OH)(2)D(3), the ligand for the vitamin D receptor (VDR), is important for calcium absorption and plays a role in differentiation of osteoblasts and osteoclasts. To examine the responses of cells to activators of the VDR in a simulated microgravity environment, we used slow-turning lateral vessels (STLVs) in a rotating cell culture system. We found that, similar to cells grown in microgravity, MG-63 cells grown in the STLVs produce less osteocalcin, alkaline phosphatase, and collagen Ialpha1 mRNA and are less responsive to 1,25-(OH)(2)D(3). In addition, expression of VDR was reduced. Moreover, growth in the STLV caused activation of the stress-activated protein kinase pathway (SAPK), a kinase that inhibits VDR activity. In contrast, the 1,25-(OH)(2)D(3) analog, EB1089, was able to compensate for some of the STLV-associated responses by reducing SAPK activity, elevating VDR levels, and increasing expression of osteocalcin and alkaline phosphatase. These studies suggest that, not only does simulated microgravity reduce differentiation of MG-63 cells, but the activity of the VDR, an important regulator of bone metabolism, is reduced. Use of potent, less calcemic analogs of 1,25-(OH)(2)D(3) may aid in overcoming this defect. Copyright 2002 Elsevier Science Inc.

  9. Effects of vitamin D binding protein phenotypes and vitamin D supplementation on serum total 25(OH)D and directly measured free 25(OH)D

    PubMed Central

    Sollid, Stina T; Hutchinson, Moira Y S; Berg, Vivian; Fuskevåg, Ole M; Figenschau, Yngve; Thorsby, Per M; Jorde, Rolf

    2016-01-01

    Objective To determine the relationship between serum total 25-hydroxyvitamin D (25(OH)D), directly measured free 25(OH)D and calculated free 25(OH)D with regard to vitamin D-binding protein (DBP) phenotypes, sex, BMI, age and season, and their interrelationship to vitamin D supplementation. Design, patients and interventions A randomized controlled trial with 20 000 IU of vitamin D3 per week or placebo for 12 months was designed. A total of 472 subjects, 236 in each of the intervention groups, were included in the analyses. Main outcome measures Baseline serum concentrations and increases in serum total 25(OH)D, directly measured free 25(OH)D, calculated free 25(OH)D and DBP. Results Serum total 25(OH)D and DBP concentrations were significantly lower in subjects with the phenotype Gc2/Gc2 compared to phenotypes with the Gc1S allele, and lower in males compared to females. When using directly measured free 25(OH)D, the differences related to DBP phenotypes and sexes were clearly diminished. All calculated free 25(OH)D concentrations were overestimated compared to the directly measured free 25(OH)D. Serum parathyroid hormone showed an inverse correlation with all vitamin D parameters analyzed. The increases after 12 months of vitamin D supplementation were not significantly different for any of the vitamin D parameters regardless of DBP phenotype, sex or age. Supplementation with vitamin D did not affect serum DBP. Conclusion Direct measurements of free 25(OH)D reduce the differences seen in total 25(OH)D between DBP phenotype groups and sexes, probably caused by differences in DBP concentrations. With conditions affecting serum DBP concentrations, direct measurements of free 25(OH)D should be considered. PMID:26733479

  10. Comparative effect of 25(OH)D3 and 1,25(OH)2D3 on Th17 cell differentiation.

    PubMed

    Fawaz, Lama; Mrad, May F; Kazan, Jalal M; Sayegh, Souraya; Akika, Reem; Khoury, Samia J

    2016-05-01

    Vitamin D is a secosteroid hormone that plays an important regulatory role in calcium homeostasis and bone metabolism. Immune cells can both produce and respond to 1,25(OH)2D3. CD4+ T cells from vitamin D receptor (VDR) KO mice produce higher levels of IFN-γ and IL-17 than their wild type counterparts, and play a crucial role in the pathogenesis of autoimmune diseases (AID). We are particularly interested in studying the effect of vitamin D on pathogenic Th17 cells in humans. We investigated the in vitro effect of 1,25(OH)2D3 and 25(OH)D3 on the differentiation and cytokine production of primary CD4+ T cells from normal donors, and cultured in Th17 polarizing conditions. Both forms of vitamin D reduced the expression of pathogenic Th17 markers and their secretion of pro-inflammatory cytokines (IL-17A, IFN-γ). Furthermore, both vitamin D forms induced an expansion of CD25hi cells and upregulated their expression of CTLA-4 and Foxp3 regulatory markers. PMID:27041081

  11. 25(OH)D2 Half-Life Is Shorter Than 25(OH)D3 Half-Life and Is Influenced by DBP Concentration and Genotype

    PubMed Central

    Assar, S.; Harnpanich, D.; Bouillon, R.; Lambrechts, D.; Prentice, A.; Schoenmakers, I.

    2014-01-01

    Context: There is uncertainty over the equivalence of vitamins D2 and D3 to maintain plasma 25-hydroxyvitamin D (25(OH)D). Objective: The objective of the study was to compare the plasma half-lives of 25(OH)D2 and 25(OH)D3 in two distinct populations with different dietary calcium intake and 25(OH)D status. Participants: Healthy men (aged 24 and 39 y), resident in The Gambia (n = 18) or the United Kingdom (n = 18) participated in the study. Interventions: The intervention included an oral tracer dose of deuterated-25(OH)D2 and deuterated-25(OH)D3 (both 40 nmol). Blood samples were collected over 33 days. Main Outcome Measures: 25(OH)D2 and 25(OH)D3 plasma half-lives, concentrations of 25(OH)D, and vitamin D binding protein (DBP) and DBP genotypes were measured. Results: 25(OH)D2 half-life [mean (SD)] [13.9 (2.6) d] was shorter than 25(OH)D3 half-life [15.1 (3.1) d; P = .001] for countries combined, and in Gambians [12.8 (2.3) d vs 14.7 (3.5) d; P < .001], but not in the United Kingdom [15.1 (2.4) d vs 15.6 (2.5) d; P = .3]. 25(OH)D concentration was 69 (13) and 29 (11) nmol/L (P < .0001), and the DBP concentration was 259 (33) and 269 (23) mg/L (P = .4) in The Gambia and United Kingdom, respectively. Half-lives were positively associated with plasma DBP concentration for countries combined [25(OH)D2 half-life: regression coefficient (SE) 0.03 (0.01) d per 1 mg/L DBP, P = .03; 25(OH)D3 half-life: 0.04 (0.02) d, P = .02] and in Gambians [25(OH)D2 half-life: 0.04 (0.01) d; P = .02; 25(OH)D3 half-life: 0.06 (0.02) d, P = .01] but not in UK participants. The DBP concentration × country interactions were not significant. DBP Gc1f/1f homozygotes had shorter 25(OH)D2 half-lives compared with other combined genotypes (P = .007) after correction for country. Conclusions: 25(OH)D2 half-life was shorter than 25(OH)D3 half-life, and half-lives were affected by DBP concentration and genotype. The stable isotope 25(OH)D half-life measurements provide a novel tool to investigate

  12. Activation of vitamin D receptor (VDR)- and peroxisome proliferator-activated receptor (PPAR)-signaling pathways through 1,25(OH)2D3 in melanoma cell lines and other skin-derived cell lines

    PubMed Central

    Seifert, Markus; Tilgen, Wolfgang; Reichrath, Jörg

    2009-01-01

    We have investigated expression of vitamin D receptor (VDR) and peroxisome proliferator-activated receptors (PPAR)α, δ, γ in primary cultured normal melanocytes (NHM), melanoma cell lines (MeWo, SK-Mel-5, SK-Mel-25, SK-Mel-28), a cutaneous squamous cell carcinoma cell line (SCL-1) and an immortalized sebocyte cell line (SZ95). LNCaP prostate cancer cells, MCF-7 breast cancer cells and embryonic kidney cells (HEK-293) were used as controls. VDR and PPAR mRNA were detected, quantitated and compared in these cell lines using real-time quantitative polymerase chain reaction (RTqPCR). The expression patterns of these nuclear receptors (NRs) varied strongly between the different cell lines according to their origin. PPARδ and PPARγ were less strongly expressed in the melanoma cell lines and in the other skin-derived cell lines as compared to the control cell lines. PPARα and VDR were stronger expressed in the 1,25(OH)2D3-sensitive melanoma cells (MeWo and in SK-Mel-28) than in the 1,25(OH)2D3-resistent melanoma cell lines (SK-Mel-5 and SK-Mel-25) or in NHM. Interestingly, VDR expression was increased by the treatment with 1,25(OH)2D3 in 1,25(OH)2D3-sensitive melanoma cells but not in 1,25(OH)2D3-resistent melanoma cell lines. 1,25(OH)2D3 increased the expression of PPARα in almost all cell lines analyzed. Our results indicate a cross-talk between VDR- and PPAR-signaling pathways in various cell types including melanoma cells. Further investigations are required to investigate the physiological and pathophysiological relevance of this cross-talk. Because VDRand PPAR-signaling pathways regulate a multitude of genes that are of importance for a multitude of cellular functions including cell proliferation, cell differentiation, immune responses and apoptosis, the provided link between VDR and PPAR may open important new perspectives for treatment and prevention of melanoma and other diseases. PMID:20592797

  13. 1,25(OH)2D3 dependent overt hyperactivity phenotype in klotho-hypomorphic mice

    PubMed Central

    Leibrock, Christina B.; Voelkl, Jakob; Kuro-o, Makoto; Lang, Florian; Lang, Undine E

    2016-01-01

    Klotho, a protein mainly expressed in kidney and cerebral choroid plexus, is a powerful regulator of 1,25(OH)2D3 formation. Klotho-deficient mice (kl/kl) suffer from excessive plasma 1,25(OH)2D3-, Ca2+- and phosphate-concentrations, leading to severe soft tissue calcification and accelerated aging. NH4Cl treatment prevents tissue calcification and premature ageing without affecting 1,25(OH)2D3-formation. The present study explored the impact of excessive 1,25(OH)2D3 formation in NH4Cl-treated kl/kl-mice on behavior. To this end kl/kl-mice and wild-type mice were treated with NH4Cl and either control diet or vitamin D deficient diet (LVD). As a result, plasma 1,25(OH)2D3-, Ca2+- and phosphate-concentrations were significantly higher in untreated and in NH4Cl-treated kl/kl-mice than in wild-type mice, a difference abrogated by LVD. In each, open field, dark-light box, and O-maze NH4Cl-treated kl/kl-mice showed significantly higher exploratory behavior than untreated wild-type mice, a difference abrogated by LVD. The time of floating in the forced swimming test was significantly shorter in NH4Cl treated kl/kl-mice compared to untreated wild-type mice and to kl/kl-mice on LVD. In wild-type animals, NH4Cl treatment did not significantly alter 1,25(OH)2D3, calcium and phosphate concentrations or exploratory behavior. In conclusion, the excessive 1,25(OH)2D3 formation in klotho-hypomorphic mice has a profound effect on murine behavior. PMID:27109615

  14. The effect of donor age on the sensitivity of osteoblasts to the proliferative effects of TGF(beta) and 1,25(OH(2)) vitamin D(3).

    PubMed

    Shiels, Matthew J; Mastro, Andrea M; Gay, Carol V

    2002-05-10

    The loss of osteoblast function in aging bone is one of the major causes of osteopenia, or loss of bone mass. In this study, this loss of function was investigated by examining the proliferative response of rat long bone periosteal osteoblasts to TGF(beta1) and 1,25-dihydroxy vitamin D(3) (1,25-D(3)) as a function of donor age. Using a DNA binding fluorescent dye, DNA levels were measured in osteoblast cultures derived from either young adult (3-4 months) or old (14-15 months) rats following treatment with two concentrations (10(-9) M or 10(-12) M) of either 1,25-D(3) or TGF(beta1) or with vehicle. Cells from young rat bone, when treated with 1, 25-D(3), showed a dose-dependent increase in proliferation when treated with the higher dose and a decrease in proliferation when treated with the lower dose. Osteoblasts isolated from old rats did not respond to 1, 25-D(3) treatment. A similar pattern of response to TGF(beta1) was found. When treated with 10(-9) M TGF(beta1), the rate of proliferation increased for young rat osteoblasts, but the old rat derived cells were unresponsive. The 10(-12) M dose of TGF(beta1) was ineffective for both young and old cells. This study has shown that osteoblasts derived from old donors are impaired in their ability to respond to vitamin D and TGF(beta), two of the major controlling factors of skeletal development and maintenance. PMID:12138010

  15. In vitro effects of 1α,25(OH)2D3-glycosides from Solbone A (Solanum glaucophyllum leaves extract; Herbonis AG) compared to synthetic 1α,25(OH)2D3 on myogenesis.

    PubMed

    Gili, Valeria; Pardo, Verónica Gonzalez; Ronda, Ana C; De Genaro, Pablo; Bachmann, Heini; Boland, Ricardo; de Boland, Ana Russo

    2016-05-01

    The presence of glycoside derivatives of 1α,25(OH)2D3 endows plants to gradual release of the free bioactive form of 1α,25(OH)2D3 from its glycoconjugates by endogenous animal tissue glycosidases. This results in increased half-life of the hormone in blood when purified plant fractions are administered for therapeutic purposes. In this work, we evaluated the role 1α,25(OH)2D3-glycosides enriched natural product (Solbone A) from Solanum glaucophyllum leaf extract compared with synthetic 1α,25(OH)2D3 on myogenic differentiation in C2C12 myoblasts. For these, differentiation markers and myogenic parameters were studied in C2C12 myoblasts. Results showed that Solbone A, likewise the synthetic hormone, increased creatine kinase activity at day 2 after differentiation induction (60%, p<0.05). Solbone A and synthetic 1α,25(OH)2D3 increased vitamin D3 receptor protein expression at 10nM (50% and 30%, respectively) and the transcription factor myogenin (80%, p<0.05). However, tropomyosin expression was not affected by both compounds. In addition, myosin heavy chain (MHC) protein expression was increased 30% at day 2 of differentiation. Solbone A or synthetic 1α,25(OH)2D3 had no effects on myogenin nor MHC cell localization. Cellular mass increased with myogenesis progression, being Solbone A more effective than synthetic 1α,25(OH)2D3. Finally, Solbone A, as well as synthetic 1α,25(OH)2D3, augmented the index fusion of cultured muscle fibers. In conclusion, these results demonstrated that Solbone A exhibit at least equal or greater effects on early myoblast differentiation as synthetic hormone, suggesting that plant glycosides could be an effective, accessible and cheaper substitute for synthetic 1α,25(OH)2D3 to promote muscle growth. PMID:26968127

  16. Comparison of 1,25(OH)2D3 and 24,25(OH)2D3 in the long-term treatment of renal osteodystrophy.

    PubMed

    Muirhead, N; Catto, G R; Edward, N; Fraser, R A; O'Riordan, J L; Papapoulos, S E; Adami, S

    1980-01-01

    24,25(OH)2D3 has been compared with 1,25(OH)2D3 in the treatment of renal osteodystrophy. Treatment with 24, 25(OH)2D3 2 micrograms/day for 5-7 months was accompanied by deterioration in clinical, biochemical, radiological and histological features of osteodystrophy with no increase in Ca absorption. In contrast, treatment with 1,25(OH)2D3 0.25--1 microgram/day for 6-15 months resulted in rapid improvement in clinical, biochemical, radiological and histological features and a return of Ca absorption to normal. It is concluded that in the dose used 24,25(OH)2D3 alone is not an effective treatment for renal osteodystrophy. PMID:6972529

  17. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells

    PubMed Central

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.

    2014-01-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658

  18. 1, 25(OH)2D3 Inhibits Hepatocellular Carcinoma Development Through Reducing Secretion of Inflammatory Cytokines from Immunocytes

    PubMed Central

    Guo, Jian; Ma, Zhenhua; Ma, Qingyong; Wu, Zheng; Fan, Ping; Zhou, Xiaojie; Chen, Lulu; Zhou, Shuang; Goltzman, David; Miao, Dengshun; Wu, Erxi

    2014-01-01

    Epidemiological and clinical studies have indicated that low vitamin D activity is not only associated with an increased cancer risk and a more aggressive tumor growth, but also connected with an aggravated liver damage caused by chronic inflammation. Meanwhile, increasing evidence has demonstrated that 1,25(OH)2D3 (the most biologically active metabolite of vitamin D) can inhibit inflammatory response in some chronic inflammatory associated cancer, which is considered to have the anti-tumor potency. However, the interaction between 1,25(OH)2D3 and inflammation during hepatocellular carcinoma (HCC) initiation and progression is not yet clear. Here, we report an anti-tumorigenesis effect of 1,25(OH)2D3 via decreasing inflammatory cytokine secretion in HCC and hypothesize the possible underlying mechanism. Firstly, we show that the enhanced tumor growth is associated with elevated inflammatory cytokine IL-6 and TNF-α in 1α(OH)ase gene-knockout mice. Secondly, 1,25(OH)2D3 can inhibit vitamin D receptor (VDR) shRNA interfered tumor cell growth through decreasing inflammatory cytokine secretion in vitro and in vivo. Finally, using p27kip1 gene knock-out mouse model, we demonstrate that the effect of 1,25(OH)2D3 in inhibiting immune cell related inflammatory cytokine secretion, exerts in a p27kip1 gene dependent way. Collectively, 1,25(OH)2D3 inhibits HCC development through up-regulating the expression of p27kip1 in immune cell and reducing inflammatory cytokine production. PMID:23992309

  19. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    PubMed

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. PMID:25263658

  20. The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes.

    PubMed

    Cassity, Evan P; Redzic, Maja; Teager, Cassidy R; Thomas, D Travis

    2016-10-01

    Fat mass is inversely associated with vitamin D status, and athletes with the most adipose tissue may have the greatest risk for insufficient (25(OH)D 20-32 ng mL(-1)) or deficient (25(OH)D < 20 ng ml(-1)) status. The effects of fat and lean mass on 25(OH)D change in response to vitamin D supplementation have yet to be elucidated in athletes. In addition, vitamin D has a known role in bone health yet a link between short-term changes in 25(OH)D and bone turnover in indoor athletes have not yet been described. Thirty-two collegiate swimmers and divers (19 male, 13 female; 19 (1) years) participated in a 6-month randomized controlled trial and consumed either 4000 IU d(-1) of vitamin D3 (n = 19) or placebo (PLA; n = 13). Anthropometry and blood collection of 25(OH)D, bone-specific alkaline phosphatase (B-ALP) and N-terminal telopeptide (NTx) occurred at three time points. Dual-energy X-ray absorptiometry measured body composition analysis at baseline and endpoint. In the vitamin D group, BMI was negatively correlated with 6-month 25(OH)D change (R = -0.496; P = .03) and a stronger predictor of 25(OH)D change (P = .04) than ultraviolet B exposure and fat mass change. Athletes in the high bone turnover group showed significantly greater losses of 25(OH)D over 6-months compared to athletes in the low bone turnover group (P = .03). These results suggest athletes within the normal BMI category experience a diminished response to 4000 IU d(-1) of vitamin D3 supplementation, and periods of high bone turnover may be an additional risk factor for developing compromised vitamin D status in athletes. PMID:26698109

  1. Elevated serum 25(OH)-vitamin D levels are negatively correlated with molar-incisor hypomineralization.

    PubMed

    Kühnisch, J; Thiering, E; Kratzsch, J; Heinrich-Weltzien, R; Hickel, R; Heinrich, J

    2015-02-01

    To date, the precise etiology of molar-incisor hypomineralization (MIH) is uncertain. Vitamin D plays a key role in hard tissue formation. Therefore, this study aimed to analyze the relationship between serum 25-hydroxy-vitamin D (25(OH)D) status and dental health data obtained from 1,048 children in a 10-year follow-up of the Munich GINIplus and LISAplus birth cohorts. The dental examination included the diagnosis of MIH and recording of (non-)cavitated caries lesions in primary and permanent teeth. Serum 25(OH)D concentrations were taken from blood samples of the 10-year investigation and measured with a fully automated, modular system. Different logistic regression and Poisson hurdle models were calculated. MIH was diagnosed in 13.6% of the study population. Approximately 16.4% of the children demonstrated caries-related defects (D3-4MFS > 0). The mean season-adjusted concentration of 25(OH)D was 75.8 nmol/l (standard deviation 22.0 nmol/l). After adjusting for sex, age, body mass index, parental education, equivalent income, and television/personal computer (TV/PC) viewing hours, a 10 nmol/l increase in serum 25(OH)D concentrations was significantly associated with a lower odds ratio of having MIH (OR = 0.89; P = 0.006). Furthermore, higher 25(OH)D values were associated with a lower number of caries-affected permanent teeth. It is concluded that elevated serum 25(OH)D concentrations were associated with better dental health parameters. PMID:25503610

  2. 1,25(OH)2D3 Alters Growth Plate Maturation and Bone Architecture in Young Rats with Normal Renal Function

    PubMed Central

    Idelevich, Anna; Kerschnitzki, Michael; Shahar, Ron; Monsonego-Ornan, Efrat

    2011-01-01

    Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)2D3, the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)2D3 is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)2D3 treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 µg/kg 1,25(OH)2D3 for one week, or intermittent 3 µg/kg 1,25(OH)2D3 for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)2D3-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)2D3 increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)2D3 lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)2D3-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)2D3 on intracortical bone formation. This study shows negative effects of 1,25(OH)2D3 on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients. PMID:21695192

  3. Effects of 1,25(OH)2D3, 25OHD3, and EB1089 on cell growth and Vitamin D receptor mRNA and 1alpha-hydroxylase mRNA expression in primary cultures of the canine prostate.

    PubMed

    Kunakornsawat, S; Rosol, T J; Capen, C C; Omdahl, J L; Leroy, B E; Inpanbutr, N

    2004-05-01

    The aim of this study was to investigate effects of 1,25(OH)(2)D(3) (calcitriol), 25OHD(3), and EB1089 on cell growth and on Vitamin D receptor (VDR) mRNA and 1alpha-hydroxylase (1alpha-OHase) mRNA expression in normal canine prostatic primary cultures. Canine prostatic epithelial cells were isolated, cultured, and treated with vehicle (ethanol), calcitriol, 25OHD(3), and EB1089 at 10(-9) and 10(-7)M. The VDR was present in epithelial and stromal cells of the canine prostate gland. 1,25(OH)(2)D(3), 25OHD(3), and EB1089 inhibited epithelial cell growth at 10(-7)M compared to vehicle-treated controls [calcitriol (P < 0.01), EB1089 (P < 0.01), and 25OHD(3) (P < 0.05)]. Epithelial cells treated with calcitriol and EB1089 at 10(-7)M had slightly increased VDR mRNA expression (0.2-0.3-fold) at 6 and 12h compared to controls. There was no difference in 1alpha-OHase mRNA expression in epithelial cells treated with these three compounds. 1,25(OH)(2)D(3) and its analogs may be effective antiproliferative agents of epithelial cells in certain types of prostate cancer. PMID:15225811

  4. Excessive fructose intake causes 1,25-(OH)2D3-dependent inhibition of intestinal and renal calcium transport in growing rats

    PubMed Central

    Douard, Veronique; Sabbagh, Yves; Lee, Jacklyn; Patel, Chirag; Kemp, Francis W.; Bogden, John D.; Lin, Sheldon

    2013-01-01

    We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca2+ transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca2+ absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca2+ transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca2+ transport rate as well as in expression of intestinal and renal Ca2+ transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca2+ transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca2+ transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca2+ and vitamin D deficiency. PMID:23571713

  5. Clusterin over-expression modulates proapoptotic and antiproliferative effects of 1,25(OH)2D3 in prostate cancer cells in vitro.

    PubMed

    Shannan, B; Seifert, M; Boothman, D A; Tilgen, W; Reichrath, J

    2007-03-01

    Prostate cancer is the most commonly diagnosed cancer in the majority of western countries. Due to their antiproliferative and proapoptotic activity, vitamin D analogues have been introduced recently as an experimental therapy for prostate cancer. Clusterin (CLU) is a glycoprotein that has two known isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is pro-apoptotic, and a secretory form (sCLU) is pro-survival. In this study, we analyzed whether proapoptotic and antiproliferative effects of 1,25(OH)(2)D(3) on LNCaP prostate cancer cells are modulated by expression of sCLU. Using colony forming assay, we studied the effect of treatment with different doses of 1,25(OH)(2)D(3) (10(-6), 10(-7), 10(-10)M) on proliferation of LNCaP cells that were stable transfected and over-express sCLU (LNT-1) as compared to empty vector-transfected cells (LN/C). We also measured apoptosis using TUNEL assay. sCLU over-expression protected against both antiproliferative (30%) and proapoptotic (15%) effects of 1,25(OH)(2)D(3), although this effect was statistically not significant. In conclusion, our findings demonstrate that expression of sCLU modulates growth regulatory effects of 1,25(OH)(2)D(3) in prostate cancer indicating that CLU interferes with vitamin D signalling pathways. PMID:17224269

  6. Effects of intramuscular administration of 1α,25(OH)2D3 during skeletal muscle regeneration on regenerative capacity, muscular fibrosis, and angiogenesis.

    PubMed

    Srikuea, Ratchakrit; Hirunsai, Muthita

    2016-06-15

    The recent discovery of the vitamin D receptor (VDR) in regenerating muscle raises the question regarding the action of vitamin D3 on skeletal muscle regeneration. To investigate the action of vitamin D3 on this process, the tibialis anterior muscle of male C57BL/6 mice (10 wk of age) was injected with 1.2% BaCl2 to induce extensive muscle injury. The bioactive form of vitamin D3 [1α,25(OH)2D3] was administered daily via intramuscular injections during the regenerative phase (days 4-7 postinjury). Physiological and supraphysiological doses of 1α,25(OH)2D3 relative to 1 μg/kg muscle wet weight and mouse body weight were investigated. Muscle samples were collected on day 8 postinjury to examine proteins related to vitamin D3 metabolism (VDR, CYP24A1, and CYP27B1), satellite cell differentiation and regenerative muscle fiber formation [myogenin and embryonic myosin heavy chain (EbMHC)], protein synthesis signaling (Akt, p70 S6K1, 4E-BP1, and myostatin), fiber-type composition (fast and slow MHCs), fibrous formation (vimentin), and angiogenesis (CD31). Administration of 1α,25(OH)2D3 at physiological and supraphysiological doses enhanced VDR expression in regenerative muscle. Moreover, CYP24A1 and vimentin expression was increased, accompanying decreased myogenin and EbMHC expression at the supraphysiological dose. However, there was no change in CYP27B1, Akt, p70 S6K1, 4E-BP1, myostatin, fast and slow MHCs, or CD31 expression at any dose investigated. Taken together, administration of 1α,25(OH)2D3 at a supraphysiological dose decreased satellite cell differentiation, delayed regenerative muscle fiber formation, and increased muscular fibrosis. However, protein synthesis signaling, fiber-type composition, and angiogenesis were not affected by either 1α,25(OH)2D3 administration at a physiological or supraphysiological dose. PMID:27032903

  7. Low 25 (OH) vitamin D levels are associated with autoimmune thyroid disease in polycystic ovary syndrome.

    PubMed

    Muscogiuri, Giovanna; Palomba, Stefano; Caggiano, Mario; Tafuri, Domenico; Colao, Annamaria; Orio, Francesco

    2016-08-01

    Low 25(OH) vitamin D levels have been associated with several autoimmune diseases and recently with autoimmune thyroid disease (AITD). The aim of the study was to investigate the association of AITD with 25(OH) vitamin D levels in women with polycystic ovary syndrome (PCOS). Fifty women with PCOS were consecutively enrolled and underwent routine health checkups, which included measurements of 25(OH) vitamin D, anti-thyroid peroxidase (TPO-Ab), anti-thyreoglobulin (TG-Ab) antibodies, FT3, FT4, and TSH. Selecting 50 nmol/L as cut-off point, low 25(OH) vitamin D levels were detected in 23 of 50 patients (46 %). AITD was diagnosed when TPO-Ab levels exceeding 80 U/ml and/or TG-Ab levels exceeding 70 U/ml. AITD was detected in 12 of 50 patients (24 %). The levels of 25(OH) vitamin D were significantly lower in women with PCOS and AITD when compared with women with PCOS and without AITD (p = 0.02). In women with AITD no correlation was found between 25(OH) vitamin D and TG-Ab (r = 0.48; p = 0.16), TPO-Ab (r = 0.43; p = 0.21), TSH (r = 0.38; p = 0.27), FT3 (r = -0.40; p = 0.25) and FT4 levels (r = -0.54; p = 0.10). These findings suggest that low levels of 25(OH) vitamin D were significantly associated with AITD in women with PCOS. PMID:26433740

  8. Vitamin D and 1,25(OH)2D regulation of T cells.

    PubMed

    Cantorna, Margherita T; Snyder, Lindsay; Lin, Yang-Ding; Yang, Linlin

    2015-04-01

    Vitamin D is a direct and indirect regulator of T cells. The mechanisms by which vitamin D directly regulates T cells are reviewed and new primary data on the effects of 1,25 dihydroxyvitamin D (1,25(OH)2D) on human invariant natural killer (iNK)T cells is presented. The in vivo effects of vitamin D on murine T cells include inhibition of T cell proliferation, inhibition of IFN-γ, IL-17 and induction of IL-4. Experiments in mice demonstrate that the effectiveness of 1,25(OH)2D requires NKT cells, IL-10, the IL-10R and IL-4. Comparisons of mouse and human T cells show that 1,25(OH)2D inhibits IL-17 and IFN-γ, and induces T regulatory cells and IL-4. IL-4 was induced by 1,25(OH)2D in mouse and human iNKT cells. Activation for 72 h was required for optimal expression of the vitamin D receptor (VDR) in human and mouse T and iNKT cells. In addition, T cells are potential autocrine sources of 1,25(OH)2D but again only 48-72 h after activation. Together the data support the late effects of vitamin D on diseases like inflammatory bowel disease and multiple sclerosis where reducing IL-17 and IFN-γ, while inducing IL-4 and IL-10, would be beneficial. PMID:25912039

  9. The paracrine feedback loop between vitamin D₃ (1,25(OH)₂D₃) and PTHrP in prehypertrophic chondrocytes.

    PubMed

    Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

    2014-12-01

    The endocrine feedback loop between vitamin D3(1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10(-8) M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1α- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. PMID:24777663

  10. 1,25(OH)2D3 Deficiency Induces Colon Inflammation via Secretion of Senescence-Associated Inflammatory Cytokines.

    PubMed

    Liu, Yun; Chen, Lulu; Zhi, Chunchun; Shen, Ming; Sun, Weiwei; Miao, Dengshun; Yuan, Xiaoqin

    2016-01-01

    Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1(-/-)] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1(-/-)mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1(-/-)mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer. PMID:26790152

  11. Kinetic studies of 25-hydroxy-19-nor-vitamin D3 and 1 alpha,25-dihydroxy-19-nor-vitamin D3 hydroxylation by CYP27B1 and CYP24A1.

    PubMed

    Urushino, Naoko; Nakabayashi, Sachie; Arai, Midori A; Kittaka, Atsushi; Chen, Tai C; Yamamoto, Keiko; Hayashi, Keiko; Kato, Shigeaki; Ohta, Miho; Kamakura, Masaki; Ikushiro, Shinichi; Sakaki, Toshiyuki

    2007-09-01

    Our previous study demonstrated that 25-hydroxy-19-nor-vitamin D(3) [25(OH)-19-nor-D(3)] inhibited the proliferation of immortalized noncancerous PZ-HPV-7 prostate cells similar to 1 alpha,25-dihydroxyvitamin D(3) [1 alpha,25(OH)(2)D(3)], suggesting that 25(OH)-19-nor-D(3) might be converted to 1 alpha,25-dihydroxy-19-nor-vitamin D(3) [1 alpha,25(OH)(2)-19-nor-D(3)] by CYP27B1 before exerting its antiproliferative activity. Using an in vitro cell-free model to study the kinetics of CYP27B1-dependent 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) and 25-hydroxyvitamin D(3) [25(OH)D(3)] and CYP24A1-dependent hydroxylation of 1 alpha,25(OH)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3), we found that k(cat)/K(m) for 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) was less than 0.1% of that for 25(OH)D(3), and the k(cat)/K(m) value for 24-hydroxylation was not significantly different between 1 alpha,25(OH)(2)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3). The data suggest a much slower formation and a similar rate of degradation of 1 alpha,25(OH)(2)-19-nor-D(3) compared with 1 alpha,25(OH)(2)D(3). We then analyzed the metabolites of 25(OH)D(3) and 25(OH)-19-nor-D(3) in PZ-HPV-7 cells by high-performance liquid chromatography. We found that a peak that comigrated with 1 alpha,25(OH)(2)D(3) was detected in cells incubated with 25(OH)D(3), whereas no 1 alpha,25(OH)(2)-19-nor-D(3) was detected in cells incubated with 25(OH)-19-nor-D(3). Thus, the present results do not support our previous hypothesis that 25(OH)-19-nor-D(3) is converted to 1 alpha,25(OH)(2)-19-nor-D(3) by CYP27B1 in prostate cells to inhibit cell proliferation. We hypothesize that 25(OH)-19-nor-D(3) by itself may have a novel mechanism to activate vitamin D receptor or it is metabolized in prostate cells to an unknown metabolite with antiproliferative activity without 1 alpha-hydroxylation. Thus, the results suggest that 25(OH)-19-nor-D(3) has potential as an attractive agent for prostate cancer therapy. PMID:17553915

  12. Different strategies of 25OH vitamin D supplementation in HIV-positive subjects.

    PubMed

    Falasca, Katia; Ucciferri, Claudio; Di Nicola, Marta; Vignale, Francesca; Di Biase, Jessica; Vecchiet, Jacopo

    2014-10-01

    Summary A high incidence of 25OH vitamin D deficiency has been observed in HIV-infected subjects. The objective of this study was to evaluate the effect of cholecalciferol administration on serum 25OH vitamin D levels in HIV-infected patients. This prospective cohort study included 153 HIV-positive subjects; 47 were treated with 300,000 IU intramuscular cholecalciferol, 67 with 25,000 IU oral cholecalciferol monthly, while the remaining 39 did not receive any treatment. The group treated orally had an increase of serum 25OH vitamin D concentration, changing from 15.7 ± 12.2 ng/mL to 27.4 ± 11.6 ng/mL after 10 months (T10). The group treated with intramuscular supplementation had an improvement, changing from 18.5 ± 10.5 ng/mL to 32.9.0 ± 12.2 ng/mL at T10. One-way repeated measures analysis of variance indicated a significant difference for 25OH vitamin D variation (p = 0.002) among the three groups. A significant effect of time (p < 0.001) and group × time interaction (p < 0.001) was found: at T10, 25OH vitamin D values were significantly higher in the oral and intramuscular groups with respect to the control group. Our findings showed that the supplementation with cholecalciferol in patients with HIV-infection improved 25OH vitamin D serum levels, and suggest that the two types of administration are equivalent, but are insufficient for severe forms of hypovitaminosis. PMID:24469972

  13. Super pharmacological levels of calcitriol (1,25-(OH)2D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro

    PubMed Central

    Pande, Vivek V.; Chousalkar, Kapil C.; Bhanugopan, Marie S.; Quinn, Jane C.

    2015-01-01

    The biologically active form of vitamin D3, calcitriol (1,25-(OH)2D3), plays a key role in mineral homeostasis and bone formation and dietary vitamin D3 deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)2D3 during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)2D3 during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)2D3 with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)2D3 than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)2D3 is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry. PMID:26500277

  14. Effects of vitamin D3, 25-hydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 on parathyroid hormone secretion.

    PubMed

    Cantley, L K; Russell, J B; Lettieri, D S; Sherwood, L M

    1987-07-01

    The active vitamin D metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] causes marked suppression of both pre-proparathyroid hormone messenger RNA (pre-proPTH mRNA) and parathyroid hormone (PTH) secretion. These effects are dose dependent and reversible when tested in an in vitro primary tissue culture cell system using normal bovine parathyroid cells. In the current studies, the precursors of 1,25(OH)2D3 and the related metabolite 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], were used in the same culture system to test for possible regulatory effects. The results were compared with identically prepared cells exposed to 1,25(OH)2D3. In short-term studies (30-120 minutes), none of the vitamin D-related compounds produced any effect on PTH secretion. In long-term studies (24-48 hours, using primary tissue culture in the presence of test agents), neither vitamin D3 nor 25(OH)D3 affected PTH secretion or pre-proPTH mRNA over the concentration range 10(-11)-10(-7) M. On the other hand, 24,25(OH)2D3 produced significant suppression of both pre-proPTH mRNA (77% of control, P less than .01) and PTH secretion (75% of control, P less than .005) at 10(-7) M. By comparison, 10(-11) M 1,25(OH)2D3 produced levels of suppression (25-30%) of both pre-proPTH mRNA and PTH secretion comparable to 10(-7) M 24,25(OH)2D3, while even greater suppression (40-50%) occurred at 10(-9)-10(-7) M 1,25(OH)2D3. From these studies, we conclude that vitamin D3 and 25(OH)D3 do not have significant effects on PTH synthesis and secretion over the range of doses tested.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3040201

  15. The use of vitamin D3 and its metabolites to improve beef tenderness.

    PubMed

    Foote, M R; Horst, R L; Huff-Lonergan, E J; Trenkle, A H; Parrish, F C; Beitz, D C

    2004-01-01

    Three experiments were conducted to determine whether feeding 25-hydroxyvitamin D3 (25-OH D3) or 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3) improves the tenderness of longissimus dorsi (LD), semimembranosus (SM), and infraspinatus (IF) muscles similar to supplemental vitamin D3 without leaving residual vitamin D3 and its metabolites in muscle. In the first two experiments, 24 crossbred steers were used to determine the effects of different oral amounts of 1,25-(OH)2 D3 (Exp. 1; n = 12) and 25-OH D3 (Exp. 2; n = 12) on plasma Ca2+ concentrations. In the third experiment, crossbred steers were allotted randomly to one of four treatments: 1) control placebo (n = 7); 2) 5 x 10(6) IU of vitamin D3/d (n = 9) for 9 d and harvested 2 d after last treatment; 3) single, 125-mg dose of 25-OH D3 (n = 8) 4 d before harvest; or 4) single, 500-microg dose of 1,25-(OH)2 D3 (n = 9) 3 d before harvest. The LD and SM steaks from each animal were aged for 8, 14, or 21 d, whereas steaks from the IF were aged for 14 or 21 d. All steaks were analyzed for tenderness by Warner-Bratzler shear force and for troponin-T degradation by Western blot analysis. Supplementing steers with vitamin D3 increased (P < 0.01) the concentration of vitamin D3 and 25-OH D3 in all muscles sampled. Feeding steers 25-OH D3 increased (P < 0.05) the concentration of 25-OH D3 in meat, but to an amount less than half that of cattle treated with vitamin D3. Supplemental 1,25-(OH)2 D3 did not affect (P < 0.10) shear force values; however, there was a trend (P < 0.10) for supplemental vitamin D3 and 25-OH D3 to produce LD steaks with lower shear values after 8 and 14 d of aging, and lower (P < 0.10) shear force values for the SM aged for 21 d. Analysis of Western blots indicated that LD steaks from cattle supplemented with vitamin D3 and 25-OH D3 had greater (P < 0.05) troponin-T degradation. Antemortem supplementation of 25-OH D3 seems to increase postmortem proteolysis and tenderness in the LD and SM without

  16. Differential response to 1α, 25-dihydroxyvitamin D3 (1α,25(OH)2D3) in non-small cell lung cancer cells with distinct oncogene mutations1

    PubMed Central

    Zhang, Qiuhong; Kanterewicz, Beatriz; Shoemaker, Suzanne; Hu, Qiang; Liu, Song; Atwood, Kristopher; Hershberger, Pamela

    2012-01-01

    We previously demonstrated that non-small cell lung cancer (NSCLC) cells and primary human lung tumors aberrantly express the vitamin D3-catabolizing enzyme, CYP24, and that CYP24 restricts transcriptional regulation and growth control by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in NSCLC cells. To ascertain the basis for CYP24 dysregulation, we assembled a panel of cell lines that represent distinct molecular classes of lung cancer: Cell lines were selected which harbored mutually exclusive mutations in either the K-ras or the Epidermal Growth Factor Receptor (EGFR) genes. We observed that K-ras mutant lines displayed a basal vitamin D receptor (VDR)lowCYP24high phenotype, whereas EGFR mutant lines had a VDRhighCYP24low phenotype. A mutation-associated difference in CYP24 expression was also observed in clinical specimens. Specifically, K-ras mutation was associated with a median 4.2-fold increase in CYP24 mRNA expression (p = 4.8 × 10−7) compared to EGFR mutation in a series of 147 primary lung adenocarcinoma cases. Because of their differential basal expression of VDR and CYP24, we hypothesized that NSCLC cells with an EGFR mutation would be more responsive to 1,25(OH)2D3 treatment than those with a K-ras mutation. To test this, we measured the ability of 1,25(OH)2D3 to increase reporter gene activity, induce transcription of endogenous target genes, and suppress colony formation. In each assay, the extent of 1,25(OH)2D3 response was greater in EGFR mutation-positive HCC827 and H1975 cells than in K-ras mutation-positive A549 and 128.88T cells. We subsequently examined the effect of combining 1,25(OH)2D3 with erlotinib, which is used clinically in the treatment of EGFR mutation-positive NSCLC. 1,25(OH)2D3/erlotinib combination resulted in significantly greater growth inhibition than either single agent in both the erlotinib-sensitive HCC827 cell line and the erlotinib-resistant H1975 cell line. These data are the first to suggest that EGFR mutations may

  17. Interlaboratory Trial for Measurement of Vitamin D and 25-Hydroxyvitamin D [25(OH)D] in Foods and a Dietary Supplement Using Liquid Chromatography-Mass Spectrometry.

    PubMed

    Roseland, Janet Maxwell; Patterson, Kristine Y; Andrews, Karen W; Phillips, Katherine M; Phillips, Melissa M; Pehrsson, Pamela R; Dufresne, Guy L; Jakobsen, Jette; Gusev, Pavel A; Savarala, Sushma; Nguyen, Quynhanh V; Makowski, Andrew J; Scheuerell, Chad R; Larouche, Guillaume P; Wise, Stephen A; Harnly, James M; Williams, Juhi R; Betz, Joseph M; Taylor, Christine L

    2016-04-27

    Assessment of total vitamin D intake from foods and dietary supplements (DSs) may be incomplete if 25-hydroxyvitamin D [25(OH)D] intake is not included. However, 25(OH)D data for such intake assessments are lacking, no food or DS reference materials (RMs) are available, and comparison of laboratory performance has been needed. The primary goal of this study was to evaluate whether vitamin D3 and 25(OH)D3 concentrations in food and DS materials could be measured with acceptable reproducibility. Five experienced laboratories from the United States and other countries participated, all using liquid chromatography tandem-mass spectrometry but no common analytical protocol; however, various methods were used for determining vitamin D3 in the DS. Five animal-based materials (including three commercially available RMs) and one DS were analyzed. Reproducibility results for the materials were acceptable. Thus, it is possible to obtain consistent results among experienced laboratories for vitamin D3 and 25(OH)D3 in foods and a DS. PMID:27045951

  18. 1,25(OH)2D3 Deficiency Induces Colon Inflammation via Secretion of Senescence-Associated Inflammatory Cytokines

    PubMed Central

    Zhi, Chunchun; Shen, Ming; Sun, Weiwei; Miao, Dengshun; Yuan, Xiaoqin

    2016-01-01

    Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1−/−] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1−/−mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1−/−mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer. PMID:26790152

  19. Human keratinocyte line HaCaT metabolizes 1alpha-hydroxyvitamin D3 and vitamin D3 to 1alpha,25-dihydroxyvitamin D3 (calcitriol).

    PubMed

    Lehmann, B; Pietzsch, J; Kämpf, A; Meurer, M

    1998-11-01

    Cultured human keratinocytes have the property to hydroxylate exogenous 25-hydroxyvitamin D3 (25OHD3) at the C-1alpha position thus producing 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). In this study we investigated whether keratinocytes can also hydroxylate vitamin D3 and one of its metabolites at the C-25 position. We could demonstrate that HaCaT keratinocytes can metabolize 1alpha-hydroxyvitamin D3 (1alpha-OHD3) and vitamin D3 to 1alpha,25(OH)2D3. Identification of the generated product as 1alpha,25(OH)2D3 was based on its elution pattern in two different high performance liquid chromatography systems, on its specific binding in a calf thymus receptor assay and on its gas chromatography-mass spectrometry characteristics. The hydroxylation of vitamin D3 to 1alpha,25(OH)2D3 was dose- and time-dependent. Bovine serum albumin added up to 1.5% (w/v) to the culture medium greatly increased the hydroxylation rates. These results show that HaCaT cells have the capacity to hydroxylate vitamin D3 at the C-1/25 positions. The generation of endogenous 1alpha,25(OH)2D3 from vitamin D3 within the skin may indicate a novel pathway which is of importance for the regulation of epidermal cell growth and differentiation. PMID:9833978

  20. Reduced 25-OH vitamin D in patients with autoimmune cytopenias, clinical correlations and literature review.

    PubMed

    Fattizzo, Bruno; Zaninoni, Anna; Giannotta, Juri A; Binda, Francesca; Cortelezzi, Agostino; Barcellini, Wilma

    2016-07-01

    Vitamin D deficiency is widespread in Western Countries and has been found related to autoimmune and hematologic disease incidence and clinical course. We evaluated vitamin D levels, vitamin D receptor (VDR) and T helper (Th)1, Th2 and Th17 immunomodulatory cytokines in patients with immune thrombocytopenic purpura (ITP, N=44), primary autoimmune hemolytic anemia (AIHA, n=35), Evans' syndrome (n=5) and chronic idiopathic neutropenia (CIN, n=19) and also tested vitamin D effect on the in vitro production of anti-erythrocyte autoantibodies. 25-OH-vitamin D levels were significantly lower and vitamin D receptor higher in patients than in controls. Among ITP cases, those with very low vitamin D levels displayed reduced platelet counts, irrespective of the bleeding history. In AIHA patients, LDH values negatively correlated with vitamin D levels in mixed forms, and reticulocyte counts were positively related with vitamin D. Considering treatment, AIHA patients who had been treated with 2 therapy lines or more showed lower mean 25-OH-vitamin D levels than those untreated or treated with one line of therapy only. IL-6, IL-10, IL-17 and IFN-γ levels were higher in patients versus controls, whereas TNF-α was significantly reduced. Finally, vitamin D at concentrations of 10, 20, and 40ng/mL reduced the in vitro production of anti-erythrocyte autoantibodies both in pokeweed-stimulated and unstimulated cultures. In conclusion, vitamin D is reduced in autoimmune cytopenias and correlate with disease severity, supporting its possible protective role against the development of autoimmunity. Literature review showed vitamin D deficiency reports both in onco- and in non onco-hematologic diseases with a relationship with disease severity/activity in myeloid and lymphoid neoplasms, as well as in sickle cell disease. Supplementation has produced weak results in autoimmune and hematologic diseases, and further studies are needed. PMID:26988993

  1. Optimal Dose of Vitamin D3 400 I.U. for Average Adults has A Significant Anti-Cancer Effect, While Widely Used 2000 I.U. or Higher Promotes Cancer: Marked Reduction of Taurine & 1α, 25(OH)2D3 Was Found In Various Cancer Tissues and Oral Intake of Optimal Dose of Taurine 175mg for Average Adults, Rather Than 500mg, Was Found to Be A New Potentially Safe and More Effective Method of Cancer Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu

    2016-01-01

    During the past 10 years, the author had found that the optimal dose of Vitamin D3 400 I.U. has safe & effective anticancer effects, while commonly used 2000-5000 I.U. of Vit. D3 often creates a 2-3 time increase in cancer markers. We examined the concentration of Taurine in normal internal organs and in cancer using Bi-Digital O-Ring Test. We found that Taurine levels in normal tissue are 4-6ng. But, the amount of Taurine of average normal value of 5.0-5.25ng was strikingly reduced to 0.0025-0.0028ng in this study of several examples in adenocarcinomas of the esophagus, stomach, pancreas, colon, prostate, and lung, as well as breast cancer. The lowest Taurine levels of 0.0002-0.0005ng were found in so called Zika virus infected babies from Brazil with microcephaly. While Vitamin D3 receptor stimulant 1α, 25 (OH)2D3 in normal tissues was 0.45-0.53ng, they were reduced to 0.025-0.006ng in cancers (1/100th-1/200th of normal value), particularly in various adenocarcinomas. All of these adenocarcinomas had about 1500ng HPV-16 viral infection. In 500 breast cancers, about 97% had HPV-16. The optimal dose of Taurine for average adult has been found to be about 175mg, rather than the widely used 500mg. In addition, since Taurine is markedly reduced to close to 1/1000th-1/2000th of its normal value in these cancer tissues, we examined the effect of the optimal dose of Taurine on cancer patients. Optimal dose of Taurine produced a very significant decrease in cancer-associated parameters, such as Oncogene C-fosAb2 & Integrin α5β1 being reduced to less than 1/1,000th, and 8-OH-dG (which increases in the presence of DNA mutation) reduced to less than 1/10th. The optimal dose of Taurine 175mg for average adult various cancer patient 3 times a day alone provide beneficial effects with very significant anti-cancer effects with strikingly increased urinary excretion of bacteria, viruses, & funguses, asbestos, toxic metals & other toxic substances. However, optimal doses of

  2. Changes of 25-OH-Vitamin D during Overwintering at the German Antarctic Stations Neumayer II and III

    PubMed Central

    Steinach, Mathias; Kohlberg, Eberhard; Maggioni, Martina Anna; Mendt, Stefan; Opatz, Oliver; Stahn, Alexander; Tiedemann, Josefine; Gunga, Hanns-Christian

    2015-01-01

    Purpose Humans in Antarctica face different environmental challenges, such as low ultra-violet radiation, which is crucial for vitamin D production in humans. Therefore we assessed changes in 25-OH-vitamin D serum concentration during 13 months of overwintering at the German Stations Neumayer II and III (2007–2012). We hypothesized that (i) 25-OH-vitamin D serum concentration would significantly decrease, (ii) changes would be affected by age, gender, baseline (i.e. pre-overwintering) fat mass, baseline 25-OH-vitamin D serum concentration, and station residence, and (iii) our results would not differ from similar previous studies in comparable high latitudes. Materials & Methods 25-OH-vitamin D serum concentrations were determined before, after, and monthly during the campaigns from venous blood samples of n = 43 participants (28 men, 15 women). Baseline fat mass was determined via bio impedance analysis and body plethysmography. Data were analyzed for change over time, dependency on independent parameters, and after categorization for sufficiency (>50nmol/l), insufficiency (25-50nmol/l), and deficiency (<25nmol/l). Results were compared with data from similar previous studies. Results We found a significant decrease of 25-OH-vitamin D with dependency on month. Age, gender, fat mass, and station residence had no influence. Only baseline 25-OH-vitamin D serum concentrations significantly affected subsequent 25-OH-vitamin D values. Conclusions Overwinterings at the Antarctic German research stations Neumayer II and III are associated with a decrease in 25-OH-vitamin D serum concentrations, unaffected by age, gender, baseline fat mass, and station residence. Higher baseline vitamin D serum concentrations might protect from subsequent deficiencies. Residence at the Neumayer Stations may lead to lower vitamin D serum concentrations than found in other comparable high latitudes. PMID:26641669

  3. Enhancement of Vitamin D Metabolites in the Eye following Vitamin D3 Supplementation and UV-B Irradiation

    PubMed Central

    Lin, Yanping; Ubels, John L.; Schotanus, Mark P.; Yin, Zhaohong; Pintea, Victorina; Hammock, Bruce D.; Watsky, Mitchell A.

    2013-01-01

    Purpose This study was designed to measure vitamin D metabolites in the aqueous and vitreous humor and in tear fluid, and to determine if dietary vitamin D3 supplementation affects these levels. We also determined if the corneal epithelium can synthesize vitamin D following UV-B exposure. Methods Rabbits were fed a control or vitamin D3 supplemented diet. Pilocarpine-stimulated tear fluid was collected and aqueous and vitreous humor were drawn from enucleated eyes. Plasma vitamin D was also measured. To test for epithelial vitamin D synthesis, a human corneal limbal epithelial cell line was irradiated with two doses of UV-B (10 and 20 mJ/cm2/day for three days) and vitamin D was measured in control or 7-dehydrocholesterol treated culture medium. Measurements were made using mass spectroscopy. Results 25(OH)-vitamin D3 and 24,25(OH)2-vitamin D3 increased significantly following D3 supplementation in all samples except vitreous humor. Tear fluid and aqueous humor had small but detectable 1,25(OH)2-vitamin D3 levels. Vitamin D2 metabolites were observed in all samples. Vitamin D3 levels were below the detection limit for all samples. Minimal vitamin D3 metabolites were observed in control and UV-B-irradiated epithelial culture medium except following 7-dehydrocholesterol treatment, which resulted in a UV-B-dose dependent increase in vitamin D3, 25(OH)-vitamin D3 and 24,25(OH)2-vitamin D3. Conclusions There are measurable concentrations of vitamin D metabolites in tear fluid and aqueous and vitreous humor, and oral vitamin D supplementation affects vitamin D metabolite concentrations in the anterior segment of the eye. In addition, the UV exposure results lead us to conclude that corneal epithelial cells are likely capable of synthesizing vitamin D3 metabolites in the presence of 7-dehydrocholesterol following UV-B exposure. PMID:22632164

  4. Stimulation of zinc transport Caco2 cells by 1,25(OH) sub 2 vitamin D sub 3

    SciTech Connect

    Fleet, J.C.; Bourcier, M.; Turnbull, A.J.; Wood, R.J. )

    1991-03-15

    Evidence exists which suggests that 1,25(OH){sub 2} vitamin D{sub 3} (D3) may stimulate zinc (Zn) absorption in animals and man. The authors have studied this phenomenon by assessing Zn transport across monolayers of the human adenocarcinoma cell line, Caco2. This model has been used previously to examine Zn transport kinetics in vitro. Cells for 18 d and then treated with 10 nM D3 for 3 d transported more Zn than controls when each were incubated with 100 uM Zn for 60 min. Excess calcium, added during the transport study, inhibited both basal and D3-stimulated Zn transport equally, indicating the additional Zn was not transported through the D3-stimulated calcium pathway. Metallothionein mRNA levels increased slowly and progressively in response to 10 nM D3. Quinacrine, a lysosome disrupting agent, when added to the transport buffer 30 min prior to the transport study, completely inhibited D3-stimulated Zn transport. Basal Zn transport was reduced 60% by quinacrine suggesting a lysosomal component to both basal and D3-stimulated Zn transport. These data demonstrate that D3 stimulates a unique Zn transport system which may involve both lysosomes and metallothionein.

  5. TREM-2 Receptor Expression Increases with 25(OH)D Vitamin Serum Levels in Patients with Pulmonary Sarcoidosis

    PubMed Central

    Bucova, Maria; Suchankova, Magda; Tibenska, Elena; Tedlova, Eva; Demian, Juraj; Majer, Ivan; Novosadova, Helena; Tedla, Miroslav

    2015-01-01

    TREM-1 and TREM-2 molecules are members of the TREM transmembrane glycoproteins. In our previous study we identified increased expressions of TREM-1 and TREM-2 receptors in pulmonary sarcoidosis (PS). Only a few studies concerning the association between vitamin D and TREM receptor expression can be found. The aim of our current study was to determine the association between the levels of an inactive form of 25(OH)D vitamin and TREM-1 and TREM-2 receptor expressions. We have detected low levels of 25(OH)D vitamin in 79% of PS patients. Only 21% of patients had normal serum level of 25(OH)D vitamin with values clustered within the low-normal range. The most striking findings were the increased TREM-2 expressions on myeloid cells surfaces in BALF of PS patients with normal 25(OH)D vitamin serum levels compared with those with its decreased levels. The total number of TREM-2 positive cells was 5.7 times higher and the percentage of TREM-2 positive cells was also significantly increased in BALF of PS patients with normal compared to PS patients with low 25(OH)D vitamin serum levels. A significant correlation between total TREM-2 expression and vitamin D levels has been detected too. However, we have not detected similar differences in TREM-1expression and 25(OH)D vitamin serum levels. PMID:26166951

  6. TREM-2 Receptor Expression Increases with 25(OH)D Vitamin Serum Levels in Patients with Pulmonary Sarcoidosis.

    PubMed

    Bucova, Maria; Suchankova, Magda; Tibenska, Elena; Tedlova, Eva; Demian, Juraj; Majer, Ivan; Novosadova, Helena; Tedla, Miroslav

    2015-01-01

    TREM-1 and TREM-2 molecules are members of the TREM transmembrane glycoproteins. In our previous study we identified increased expressions of TREM-1 and TREM-2 receptors in pulmonary sarcoidosis (PS). Only a few studies concerning the association between vitamin D and TREM receptor expression can be found. The aim of our current study was to determine the association between the levels of an inactive form of 25(OH)D vitamin and TREM-1 and TREM-2 receptor expressions. We have detected low levels of 25(OH)D vitamin in 79% of PS patients. Only 21% of patients had normal serum level of 25(OH)D vitamin with values clustered within the low-normal range. The most striking findings were the increased TREM-2 expressions on myeloid cells surfaces in BALF of PS patients with normal 25(OH)D vitamin serum levels compared with those with its decreased levels. The total number of TREM-2 positive cells was 5.7 times higher and the percentage of TREM-2 positive cells was also significantly increased in BALF of PS patients with normal compared to PS patients with low 25(OH)D vitamin serum levels. A significant correlation between total TREM-2 expression and vitamin D levels has been detected too. However, we have not detected similar differences in TREM-1expression and 25(OH)D vitamin serum levels. PMID:26166951

  7. Relationship between 25-OH-D serum level and relapse rate in multiple sclerosis patients before and after vitamin D supplementation

    PubMed Central

    Rivaud-Péchoux, Sophie; Clerson, Pierre; de Paz, Raphaël; Souberbielle, Jean-Claude

    2012-01-01

    Background: Vitamin D could play a protective role in multiple sclerosis. Methods: In an observational, uncontrolled study, vitamin D3 supplementation (3010 IU/day on average) was given to 156 consecutive patients with relapsing–remitting multiple sclerosis, under first-line immunomodulatory therapy and with initial 25-OH-D serum level lower than 100 nmol/l (40 ng/ml). Relapses were determined for 29.1 ± 8.4 months during vitamin D and 29.8 ± 10.1 months before supplementation. The 25-OH-D level was measured before supplementation and several times during supplementation. The incidence rate of relapses before and during supplementation was estimated using negative binomial regression models with follow-up durations as offset terms. The incidence rate and incidence rate ratio of relapses at various 25-OH-D levels were also calculated using negative binomial regression models. Results: In 76 patients, immunomodulatory therapy preceded vitamin D supplementation (by 4.2 ± 2.7 years) and in 80 patients both treatments were started simultaneously. Under supplementation, the 25-OH-D level increased from 49 ± 22 nmol/l to 110 ± 26 nmol/l on average. Pooling data collected before and during supplementation, we found a significant strong inverse relationship between the relapse incidence rate and the 25-OH-D level (p < 0.0001), suggesting that vitamin D did indeed influence the relapse rate. Results of univariate, bivariate and multivariate analyses were analogous: in the multivariate model adjusted for age, disease duration and previous use of immunomodulatory therapy, every 10 nmol increase in 25-OH-D level was associated with a reduction in the relapse incidence rate of 13.7%. Dividing iteratively the population made up of pooled periods into two subgroups according to the 25-OH-D levels, the relapse incidence rate ratio decreased as the 25-OH-D level increased up to 110 nmol/l, but a plateau effect was observed beyond this limit. Conclusion: Further studies are

  8. [Active vitamin D3 analog].

    PubMed

    Takata, Shinjiro

    2015-10-01

    Vitamin D is a fat-soluble vitamin and exerts effects on skeletal and extraskeletal health in children and adults of all ages. Vitamin D insufficiency is related to low muscle strength, increasing body sway, falls in the elderly. Supplementation with vitamin D reduces risk of osteoporotic fracture, and improves muscle strength and postural balance to prevent the elderly from fall. The preferred vitamin D analog for daily supplementation is cholecalciferol (vitamin D3). The active form of vitamin D3 is 1,25-dihydroxy-vitamin D3. Alfacalcidol, calcitriol and eldecalcitol are used to treat osteoporosis in Japan. Randomized placebo-controlled, double-blinded clinical trial for osteoporotic subjects showed that eldecalcitol is more efficacious to increase bone mineral density and prevent vertebral and wrist fractures in osteoporotic patients with vitamin D sufficiency than alfacalcidol. PMID:26529933

  9. Histochemical examination of the effects of high-dose 1,25(OH)2D3 on bone remodeling in young growing rats.

    PubMed

    Sun, Jing; Sun, Bao; Wang, Wei; Han, Xiuchun; Liu, Hongrui; Du, Juan; Feng, Wei; Liu, Bo; Amizuka, Norio; Li, Minqi

    2016-08-01

    Vitamin D has an anabolic effect on bone developmental processes and is involved in maintaining skeletal integrity. In recent years, pediatric cases of vitamin D intoxication have attracted attention. Therefore, the aim of this study was to investigate the influence of long-term administration of physiologically-high-dose calcitriol (1,25(OH)2D3) on bone remodeling in young developing rats. Neonatal rats received once-daily subcutaneous injection of calcitriol (250 ng/kg body weight), or PBS only as a control, for 3 weeks. At 1, 2 and 4 weeks' post-administration, rats were sacrificed and fixed by transcardial perfusion with 4 % paraformaldehyde, following which tibiae were extracted for histochemical analysis. Compared with the control group, the number of tartrate-resistant acid phosphatase- and Cathepsin K-positive osteoclasts were significantly increased, and the expression of alkaline phosphatase in osteoblasts was decreased in trabecular bone of rats administered high-dose 1,25(OH)2D3, leading to decreased trabecular bone volume. In addition, the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) was increased, while that of osteoprotegerin was weaker in osteoblasts in the experimental group compared with the control group. Moreover, there was weaker immunoreactivity for EphrinB2 in osteoclasts and EphB4 in osteoblasts of trabecular bone in the experimental group compared with the control group. These findings suggest that long-term use of physiologically-high dose calcitriol may result in bone loss through RANKL/RANK/osteoprotegerin and EphrinB2-EphB4 signaling pathways, and that these negative effects could continue after drug withdrawal. Therefore, optimal limits for vitamin D administration need to be established for children and adolescents. PMID:27255234

  10. Effect of Different Doses of Oral Cholecalciferol on Serum 1,25(OH)2D in Vitamin D Deficient Schoolchildren.

    PubMed

    Ghazi, A A; Hosseinpanah, F; Abdi, H; Hedayati, M; Hasheminia, M; Ghazi, S; Azizi, F

    2016-06-01

    Data regarding 1,25-dihydroxycholecalciferol in adolescents are limited. We aimed to determine serum levels of this active metabolite of vitamin D and the effects of different doses of vitamin D on its concentration in schoolchildren with high prevalence of vitamin D deficiency. In a previously published randomized double-blind, placebo-controlled trial, 210 subjects, aged 14-20 years, were assigned to 3 regimens of vitamin D treatment: group A (n=70) received 50 000 U oral cholecalciferol monthly, group B (n=70), 50 000 U bimonthly, and group C (n=70), placebo. Serum 25(OH)D, calcium, parathyroid hormone, and bone markers were measured at baseline and after 2 and 5 months of treatment. In the present study, serum levels of 1,25(OH)2D were measured in 97 boys and 95 girls. At baseline, girls had significantly higher concentrations of 1,25(OH)2D than boys (36, IQR: 24, 63 vs. 30, IQR: 15, 57.5 pmol/l; p<0.01). There was no significant correlation between serum levels of 25(OH)D and 1,25(OH)2D in the total population (Spearman rho=- 0.111; p=0.126), boys (Spearman rho=0.008; p=0.941), and girls (Spearman rho=0.036; p=0.729). Also, 1,25(OH)2D values did not change over time in different study groups. Moreover, total and sex-stratified analysis did not show any significant difference between different groups at different times of the study period. In an adolescent population with high prevalence of hypovitaminosis D especially in girls, 1,25(OH)2D values were higher in girls than boys. There was no significant change in 1,25(OH)2D concentrations with different doses of vitamin D. PMID:26975346

  11. New perspectives on vitamin D food fortification based on a modeling of 25(OH)D concentrations

    PubMed Central

    2013-01-01

    Background In Germany, vitamin D intake from food and synthesis in the skin is low, which leads to low 25(OH)D serum concentrations. In contrast to many other countries, general vitamin D food fortification is still prohibited in Germany, although the European Commission published a regulatory framework to harmonize addition of vitamins to foods. Thus the purpose of our study was to develop a vitamin D fortification model, taking into account all vitamin D sources with the goal to fulfill requirements of intake recommendations or preferable 25(OH)D serum concentrations. Finally, the aim was to assess the suitability of different carriers and associated risks. Methods We developed a mathematical bottom-up model of 25(OH)D serum concentrations based on data about vitamin D sources of the German population such as sunlight, food and supplements for all federal states taking seasonal and geographical variations into account. We used this model to calculate the optimal fortification levels of different vitamin D carriers in two approaches. First we calculated required fortification levels based on fixed intake recommendations from e.g. the IOM or the DGE and second based on achieving certain 25(OH)D serum concentrations. Results To lift 25(OH)D serum concentration in Germany to 75 nmol/L, e.g. 100 g bread has to be fortified with 11.3 μg during winter, resulting in a daily vitamin D intake of 23.7 μg. Bread seems to be a suitable carrier for base supply. However, overdose risk with a single fortified product is higher than the risk with several fortified carriers. Conclusions With the model in hand, it is possible to conceive vitamin D fortification strategies for different foodstuffs and model its impact on 25(OH)D serum concentrations. PMID:24261676

  12. Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis-myalgia in statin-treated patients.

    PubMed

    Ahmed, Waqas; Khan, Naseer; Glueck, Charles J; Pandey, Suman; Wang, Ping; Goldenberg, Naila; Uppal, Muhammad; Khanal, Suraj

    2009-01-01

    Our specific aims were to determine whether low serum 25 (OH) vitamin D (D2 + D3) (<32 ng/mL) was associated with myalgia in statin-treated patients and whether the myalgia could be reversed by vitamin D supplementation while continuing statins. After excluding subjects who took corticosteroids or supplemental vitamin D, serum 25 (OH) D was measured in 621 statin-treated patients, which consisted of 128 patients with myalgia at entry and 493 asymptomatic patients. The 128 myalgic patients had lower mean +/- standard deviation (SD) serum vitamin D than the 493 asymptomatic patients (28.6 +/- 13.2 vs 34.2 +/- 13.8 ng/mL, P < 0.0001), but they did not differ (p > 0.05) by age, body mass index (BMI), type 2 diabetes, or creatine kinase levels. By analysis of variance, which was adjusted for race, sex, and age, the least square mean (+/- standard error [SE]) serum vitamin D was lower in the 128 patients with myalgia than in the 493 asymptomatic patients (28.7 +/- 1.2 vs 34.3 +/- 0.6 ng/mL, P < 0.0001). Serum 25 (OH) D was low in 82 of 128 (64%) patients with myalgia versus 214 of 493 (43%) asymptomatic patients (chi(2) = 17.4, P < 0.0001). Of the 82 vitamin-D-deficient, myalgic patients, while continuing statins, 38 were given vitamin D (50,000 units/week for 12 weeks), with a resultant increase in serum vitamin D from 20.4 +/- 7.3 to 48.2 +/- 17.9 ng/mL (P < 0.0001) and resolution of myalgia in 35 (92%). We speculate that symptomatic myalgia in statin-treated patients with concurrent vitamin D deficiency may reflect a reversible interaction between vitamin D deficiency and statins on skeletal muscle. PMID:19100953

  13. Novel Gemini vitamin D(3) analogs have potent antitumor activity.

    PubMed

    Saito, Tsuyako; Okamoto, Ryoko; Haritunians, Talin; O'Kelly, James; Uskokovic, Milan; Maehr, Hubert; Marczak, Stanislaw; Jankowski, Pawel; Badr, Riem; Koeffler, H Phillip

    2008-11-01

    The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells. PMID:18938245

  14. Association between promoter region genetic variants of PTH SNPs and serum 25(OH)-vitamin D level

    PubMed Central

    Al-Daghri, Nasser M; Al-Attas, Omar S; Krishnaswamy, Soundararajan; Yakout, Sobhy M; Mohammed, Abdul Khader; Alenad, Amal M; Chrousos, George P; Alokail, Majed S

    2015-01-01

    Parathyroid hormone (PTH) plays a crucial role in calcium metabolism and skeletal development via altering vitamin D level. Besides, hypersecretion of PTH is implicated in the etiology of osteoporosis. In this study, we analyzed association between promoter region sequence variants of PTH gene and circulating 25-hydroxy-vitamin D (25(OH)D) level. Genotypes of PTH SNPs rs1459015, rs10500783 and rs10500784 and circulating serum 25(OH)D level of healthy adults (N=386) of different nationalities living in Riyadh were determined and relation between the different PTH allelic variants and corresponding mean 25(OH)D values were obtained using Analysis of Variance (ANOVA) and Bonferroni post-hoc test for multiple comparisons. We observed a high prevalence of vitamin D deficiency (<50 nmol/l) among all nationals which ranged from 59% among Indians to 82% among Yemeni. Comparison of the means of 25(OH)D levels corresponding to different genotypes of PTH SNPs indicated that the T allele of SNP rs1459015 was associated with higher 25(OH)D level in the Sudanese (P=0.03), while the T allele of SNP rs10500783 was associated with higher 25(OH)D level in Saudis (P=0.03). Analysis of results also indicated that the Sudanese carriers of the CC genotype of SNP rs1459015 had a higher risk of suffering from vitamin D deficiency (P=0.02). In conclusion, our study indicated significant association between specific PTH gene promoter region variants and altered levels of 25(OH)D and vitamin D deficiency among specific nationals. PMID:26339419

  15. Effects of 1,25-dihydroxyvitamin D3 on colonic calcium transport in vitamin D-deficient and normal rats.

    PubMed

    Favus, M J; Langman, C B

    1984-03-01

    To determine whether prior vitamin D intake influences the intestinal calcium absorptive action of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], we measured in vitro the two unidirectional transepithelial fluxes of calcium across descending colon segments from rats fed either a vitamin D-deficient or normal diet and injected with either 10, 25, or 75 ng of 1,25(OH)2D3 or vehicle alone. Vitamin D deficiency abolished net calcium absorption [J net, -2 +/- 2 vs. 12 +/- 2 (SE) nmol X cm-2 X h-1, P less than 0.001], and 10 ng of 1,25(OH)2D3 raised J net to levels found in normal rats. Larger doses (25 and 75 ng) increased J net above levels in normal rats given the same dose. In normal rats only 75 ng of 1,25(OH)2D3 increased calcium J net above vehicle control values (12 +/- 2 vs. 38 +/- 4 nmol X cm-2 X h-1, P less than 0.001). Circulating 1,25(OH)2D3 measured by radioreceptor assay was well correlated with calcium transport. For each dose of 1,25(OH)2D3 higher serum 1,25(OH)2D3 levels were reached in vitamin D-deficient rats. Only the 75-ng dose increased circulating 1,25(OH)2D3 and colonic calcium transport in normal rats. Intravenous [3H]-1,25(OH)2D3 disappeared more rapidly from the circulation of normal rats, suggesting that accelerated metabolic degradative processes for 1,25(OH)2D3 may be present in normal but not in vitamin D-deficient rats and may account for the lack of a biological response to 1,25(OH)2D3 in normal animals. PMID:6546644

  16. 1,25(OH)2D3 and cAMP synergistically induce complement 5a receptor messenger RNA.

    PubMed

    Rubin, J; Biskobing, D; Titus, L; Thornton, D L; Catherwood, B D; Nanes, M S

    1996-02-01

    Complement 5a receptor (C5aR) mediates both acute and chronic participation of monocytes in the immune response. In the human U937 monoblast, C5aR is maximally expressed 4 days after treatment with 1,25(OH)2D3 (or cycloheximide) and prostaglandin E2 combined. The authors asked whether these agents altered expression of C5aR messenger RNA (mRNA). Unstimulated U937 cells expressed neither C5aR mRNA nor C5a binding. Complement 5aR mRNA rose 3 hours after prostaglandin E2 application and fell to basal levels by 12 hours. This early rise in C5aR mRNA did not cause an acute rise in C5a binding, which gradually increased between 1 and 4 days. Neither 1,25(OH)2D3 nor cycloheximide induced expression of C5aR mRNA in the absence of prostaglandin E2 but did enhance prostaglandin E2-stimulated C5aR mRNA expression and C5a binding. The authors observed a late increase in C5aR mRNA at day 3 in treated cells. Inhibition of this late rise in mRNA with 5,6-dichlorobenzimidazole riboside attenuated C5a binding by 65%, indicating its importance in the generation of C5a binding sites. The expression of functional C5aR is, therefore, a complex process involving regulation at transcriptional and posttranscriptional levels. PMID:8615377

  17. 1α,25(OH)2D3 Suppresses the Migration of Ovarian Cancer SKOV-3 Cells through the Inhibition of Epithelial–Mesenchymal Transition

    PubMed Central

    Hou, Yong-Feng; Gao, Si-Hai; Wang, Ping; Zhang, He-Mei; Liu, Li-Zhi; Ye, Meng-Xuan; Zhou, Guang-Ming; Zhang, Zeng-Li; Li, Bing-Yan

    2016-01-01

    Ovarian cancer is the most lethal gynecological malignancy due to its high metastatic ability. Epithelial-mesenchymal transition (EMT) is essential during both follicular rupture and epithelium regeneration. However, it may also accelerate the progression of ovarian carcinomas. Experimental studies have found that 1α,25-dihydroxyvitamin-D3 [1α,25(OH)2D3] can inhibit the proliferation of ovarian cancer cells. In this study, we investigated whether 1α,25(OH)2D3 could inhibit the migration of ovarian cancer cells via regulating EMT. We established a model of transient transforming growth factor-β1(TGF-β1)-induced EMT in human ovarian adenocarcinoma cell line SKOV-3 cells. Results showed that, compared with control, 1α,25(OH)2D3 not only inhibited the migration and the invasion of SKOV-3 cells, but also promoted the acquisition of an epithelial phenotype of SKOV-3 cells treated with TGF-β1. We discovered that 1α,25(OH)2D3 increased the expression of epithelial marker E-cadherin and decreased the level of mesenchymal marker, Vimentin, which was associated with the elevated expression of VDR. Moreover, 1α,25(OH)2D3 reduced the expression level of transcription factors of EMT, such as slug, snail, and β-catenin. These results indicate that 1α,25(OH)2D3 suppresses the migration and invasion of ovarian cancer cells by inhibiting EMT, implying that 1α,25(OH)2D3 might be a potential therapeutic agent for the treatment of ovarian cancer. PMID:27548154

  18. Effects of 25-(OH)D3 on fecal Ca and P excretion, bone mineralization, Ca and P transporter mRNA expression and performance in growing female pigs.

    PubMed

    Regassa, Alemu; Adhikari, Roshan; Nyachoti, Charles M; Kim, Woo Kyun

    2015-01-01

    A study was conducted to examine the effects of 25-hydroxyvitamin D3 (25-(OH)D3) on fecal Ca and P excretion, bone mineralization, performance and the mRNA expression of intestinal transporter genes in growing female pigs. Sixty-day old gilts (n = 24) with an average initial BW of 23.13 ± 1.49 kg were randomly allocated to a control diet (diet 1) containing wheat/corn/soybean meal and 150 IU kg(-1) of Vitamin D3, diet 1 + 50 μg of 25-(OH)D3 kg(-1) (diet 2) and diet 1 + 100 μg of 25-(OH)D3 kg(-1) (diet 3). The pigs were housed in an individual pen and had ad libitum access to feed and water for 42 days, and BWG and feed intake were measured weekly. Measures of bone mineralization and expression of Ca and P transporters mRNA were analyzed using Dual Energy X-Ray Absortiometry (DEXA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Fecal Ca and P concentration were significantly reduced (P ≤ 0.05) in pigs fed diets 2 and 3 compared with the control diet. Supplementation of 25-(OH)D3 did not significantly improve bone mineralization, animal performance and intestinal transporters mRNA expression except for SLC34A1, a sodium-dependent phosphate transporter 1. In conclusion, supplementation of 25-(OH)D3 in swine nutrition may not improve animal performance but has the potential to reduce environmental pollution by increasing dietary Ca and P retention while reducing their excretion. PMID:25714461

  19. 26,27-Hexafluoro-1,25-dihydroxyvitamin D3 (F6-1,25(OH)2D3) prevents osteoporosis induced by immobilization combined with ovariectomy in the rat.

    PubMed

    Okumura, H; Yamamuro, T; Higuchi, S; Harada, M; Takamura, T; Otomo, S; Aihara, H; Ikekawa, N; Kobayashi, T

    1990-05-01

    The effect of 26,27-hexafluoro-1,25-dihydroxyvitamin D3 (F6-1,25(OH)2D3) on experimental osteoporosis in the rat induced by a combination of immobilization and ovariectomy was evaluated. F6-1,25(OH)2D3 increased the femur score and the photo-density. The administration of F6-1,25(OH)2D3 also significantly increased the dry weight, the ash weight and the ash content of the bone. Both F6-1,25(OH)2D3 and 1 alpha(OH)D3 showed a nearly dose-dependent effect and significant inhibition of the decrease of bone mass. Histomorphometry revealed a significant decrease of resorption by the administration of F6-1,25(OH)2D3. Bone formation rate in the F6-1,25(OH)2D3 treated group significantly decreased compared with the vehicle group. In conclusion, the pharmacological effective dose of F6-1,25(OH)2D3 was considered to prevent the osteoporotic decrease of bone mass by suppressing the elevated bone turnover. PMID:2350614

  20. 1,25 (OH)2D3 enhances PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Li, W.; Duncan, R. L.; Karin, N. J.; Farach-Carson, M. C.

    1997-01-01

    We previously demonstrated electrophysiologically that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] shifts the activation threshold of L-type Ca2+ channels in osteoblasts toward the resting potential and prolongs mean open time. Presently, we used single-cell Ca2+ imaging to study the combined effects of 1,25(OH)2D3 and parathyroid hormone (PTH) during generation of Ca2+ transients in fura 2-loaded MC3T3-E1 cells. Pretreatment with 1,25(OH)2D3 concentrations, which alone did not produce Ca2+ transients, consistently enhanced Ca2+ responses to PTH. Enhancement was dose dependent over the range of 1 to 10 nM and was blocked by pretreatment with 5 microM nitrendipine during pretreatment. A 1,25(OH)2D3 analog that activates L-type channels and shifts their activation threshold also enhanced PTH responses. In contrast, an analog devoid of membrane Ca2+ effects did not enhance PTH-induced Ca2+ transients. The PTH-induced Ca2+ transient involved activation of a dihydropyridine-insensitive cation channel that was inhibited by Gd3+. Together, these data suggest that 1,25(OH)2D3 increases osteoblast responsiveness to PTH through rapid modification of L-type Ca2+ channel gating properties, whose activation enhances Ca2+ entry through other channels such as the PTH-responsive, Gd(3+)-sensitive cation channel.

  1. Use of 25-hydroxyvitamin D3 and vitamin E to improve tenderness of beef from the longissimus dorsi of heifers.

    PubMed

    Carnagey, K M; Huff-Lonergan, E J; Trenkle, A; Wertz-Lutz, A E; Horst, R L; Beitz, D C

    2008-07-01

    The objective of this trial was to determine whether a single bolus of 25-hydroxyvitamin D(3) (25-OH D(3)), vitamin E, or a combination of the 2 would improve the tenderness of steaks from the LM of beef heifers. Forty-eight Angus crossbred heifers were allotted randomly to 8 pens. Six heifers were in each pen, and there were 2 pens per treatment. The 4 treatments included control (no 25-OH D(3) or vitamin E); 25-OH D(3) (500 mg of 25-OH D(3) administered as a one-time oral bolus 7 d before slaughter); vitamin E (1,000 IU of vitamin E administered daily as a top-dress for 104 d before slaughter); or combination (500 mg of 25-OH D(3) administered as a one-time oral bolus 7 d before slaughter and 1,000 IU of vitamin E administered daily as a top-dress for 104 d before slaughter). Blood samples were obtained on the day that heifers were allotted to treatments, on the day 25-OH D(3) was administered, and on the day before slaughter. Plasma calcium concentration was increased when 25-OH D(3) was administered with or without vitamin E (P < 0.007). In LM, calcium concentration tended to increase (P = 0.10) when 25-OH D(3) was administered alone but not when 25-OH D(3) was administered with vitamin E. Concentrations of 25-OH D(3) and 1,25-dihydroxyvitamin D(3) in plasma were increased when 25-OH D(3) was administered with or without vitamin E (P < 0.001). Steaks from heifers treated with 25-OH D(3) or vitamin E, but not both, tended to have lower Warner-Bratzler shear force than steaks in the control group at 14 d postmortem (P = 0.08). Postmortem protein degradation as measured by Western blot of the 30-kDa degradation product of troponin-T was increased with all treatments after 3 d postmortem (P 25-OH D(3) fed as an oral bolus 7 d before slaughter or 1,000 IU of vitamin E administered daily for 104 d before slaughter alone, but not in combination, effectively decreased Warner-Bratzler shear

  2. Vitamin D, serum 25(OH)D, LL-37 and polymorphisms in a Canadian First Nation population with endemic tuberculosis

    PubMed Central

    Larcombe, Linda; Mookherjee, Neeloffer; Slater, Joyce; Slivinski, Caroline; Dantouze, Joe; Singer, Matthew; Whaley, Chris; Denechezhe, Lizette; Matyas, Sara; Decter, Kate; Turner-Brannen, Emily; Ramsey, Clare; Nickerson, Peter; Orr, Pamela

    2015-01-01

    Background Canadian First Nation populations have experienced endemic and epidemic tuberculosis (TB) for decades. Vitamin D–mediated induction of the host defence peptide LL-37 is known to enhance control of pathogens such as Mycobacterium tuberculosis. Objective Evaluate associations between serum levels of 25-hydroxy vitamin D (25(OH)D) and LL-37, in adult Dene First Nation participants (N = 34) and assess correlations with single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) and vitamin D binding protein (VDBP). Design Venous blood was collected from all participants at baseline (winter and summer) and in conjunction with taking vitamin D supplements (1,000 IU/day) (winter and summer). Samples were analysed using ELISA for concentrations of vitamin D and LL-37, and SNPs in the VDR and VDBP regions were genotyped. Results Circulating levels of 25(OH)D were not altered by vitamin D supplementation, but LL-37 levels were significantly decreased. VDBP and VDR SNPs did not correlate with serum concentrations of 25(OH)D, but LL-37 levels significantly decreased in individuals with VDBP D432E T/G and T/T, and with VDR SNP Bsm1 T/T genotypes. Conclusions Our findings suggest that vitamin D supplementation may not be beneficial as an intervention to boost innate immune resistance to M. tuberculosis in the Dene population. PMID:26294193

  3. 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway.

    PubMed

    Yang, Lina; Wu, Lan; Du, Shuyan; Hu, Ye; Fan, Yi; Ma, Jianfei

    2016-07-01

    The regulation of cell proliferation, differentiation and immunomodulation are affected by 1,25(OH)2D3. However, its function during apoptosis and oxidative stress in human peritoneal mesothelial cells (HPMCs) remains unknown. The aim of the present study was to investigate whether the regulation of apoptosis and oxidative stress have therapeutic relevance in peritoneal dialysis (PD) therapy. The present study investigated the effects of 1,25(OH)2D3 on high glucose (HG)-induced apoptosis and reactive oxygen species (ROS) production in HPMCs, and examined the underlying molecular mechanisms. Flow cytometry and western blotting were performed to detect cell apoptosis, 2,7-dichlorofluorescein diacetate was used to measure reactive oxygen species production and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to measure cell viability. The results of the present study demonstrated that exposure to HG increased apoptosis and ROS production in HPMCs, whereas pretreatment with 1,25(OH)2D3 significantly inhibited HG‑induced apoptosis and ROS production. Further analysis revealed that 1,25(OH)2D3 facilitated cell survival via the MAPK/P38 pathway. The results of the present study indicate that 1,25(OH)2D3 inhibits apoptosis and ROS production in HG‑induced HPMCs via inhibition of the MAPK/P38 pathway. PMID:27220355

  4. Barriers to optimizing vitamin D3 intake for the elderly.

    PubMed

    Heaney, Robert P

    2006-04-01

    Available data on metabolic utilization of vitamin D3 indicate a total daily requirement of approximately 4000 international units (iu) (100 microg) or twice the current tolerable upper intake level (UL). In young individuals, most of this comes from the skin. However, cutaneous vitamin D3 synthesis declines with age, creating a need for increasing oral intake to maintain optimal serum 25-hydroxyvitamin D [25(OH)D] concentrations. Estimates of the population distribution of serum 25(OH)D values, coupled with available dose-response data, indicate that it would require input of an additional 2600 iu/d (65 microg/d) of oral vitamin D3 to ensure that 97.5% of older women have 25(OH)D values at or above desirable levels. The age-related decline in cutaneous input, taken together with the UL, creates a substantial barrier to the deployment of public health strategies to optimize vitamin D status in the elderly. PMID:16549492

  5. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3.

    PubMed

    Kubota, M; Ohno, J; Shiina, Y; Suda, T

    1982-06-01

    Maternal and fetal metabolism of vitamin D was examined in term pregnant rabbits fed a normal diet and in those supplemented with a large amount of vitamin D3. Term pregnant rabbits (27--30 days of gestation) fed the normal diet showed lower levels of plasma calcium, 25-hydroxyvitamin D3 (250HD3), and 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] and higher plasma 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25-(OH)2D3] levels than age-matched nonpregnant female rabbits. Kidney homogenates from pregnant rabbits produced mainly 1 alpha 25-(OH)2D3, while those from nonpregnant animals produced 24,25-(OH)2D3 primarily. Plasma concentrations of calcium and phosphorus were significantly higher in fetuses than in mothers. Plasma levels of 250HD3 and 24,25-(OH)2D3 in fetuses were almost identical to those in mothers, whereas 1 alpha,25-(OH)2D3 levels in plasma were significantly higher in mothers than in their fetuses. A daily administration of 650 nmol vitamin D3 for 3 days to term pregnant rabbits caused a significant increase in calcium, phosphorus, 25OHD3, and 24,25-(OH)2D3 in maternal plasma, and in 25OHD3 and 24,25-(OH)2D3, but not calcium and phosphorus in fetal plasma. Treatment with large amounts of vitamin D3 also induced a marked suppression of 1 alpha-hydroxylase activity and a concomitant increase of 24-hydroxylase activity in the maternal but not in the fetal kidney. Plasma concentrations of 1 alpha,25-(OH)2D3 were not affected by treatment with large amounts of vitamin D3 in either the fetuses or the mothers. These results clearly indicate that the renal 25OHD3 metabolism in the fetus is regulated independently of that in the mother. PMID:6280980

  6. Vitamin D deficiency in community-acquired pneumonia: low levels of 1,25(OH)2 D are associated with disease severity

    PubMed Central

    2014-01-01

    Objectives We aimed to explore the association between vitamin D levels and the severity, mortality and microbiological etiology of community-acquired pneumonia. Methods Vitamin D levels (both, the reservoir form 25-OH and the activated form 1,25-OH2) of 300 randomly selected patients with community-acquired pneumonia due to pre-specified pathogens included in the German competence network (CAPNETZ) study were measured. Prior to statistical analysis, values of 25-OH and 1,25-OH2 were power-transformed to achieve parametric distribution. All further analyses were performed with seasonally and age adjusted values. Results There was only a modest (Spearman Coefficient 0.38) positive correlation between 25-OH and 1,25-OH2. For 1,25-OH2 but not 25-OH, the general linear model revealed a significant inverse correlation between serum concentration and CURB score (p = 0.011). Liver and respiratory co-morbidity were associated with significantly lower 25-OH values and renal co-morbidity with significantly lower 1,25-OH2 values. No significant differences of 1,25-OH2 or 25-OH between different pathogens (influenza virus, Legionella spp., Streptococcus pneumoniae) were detected. Conclusion For 1,25-OH2, we found a significant and independent (controlled for age, season and pathogen) negative correlation to pneumonia severity. Therefore, supplementation of non-activated vitamin D to protect from pneumonia may be non-sufficient in patients that have a decreased capacity to hydroxylate 25-OH to 1,25-OH2. PMID:24766747

  7. Performance Evaluation of Siemens ADVIA Centaur and Roche MODULAR Analytics E170 Total 25-OH Vitamin D Assays

    PubMed Central

    Chen, Yu; Kinney, Lois; Božović, Andrea; Smith, Hilary; Tarr, Heather; Diamandis, Eleftherios P.; LeBlanc, Adrien

    2014-01-01

    Objectives To evaluate the newly developed Roche MODULAR Analytics E170 Total Vitamin D and the Siemens ADVIA Centaur® Vitamin D Total assays. Materials and Methods Assays were evaluated using the Clinical and Laboratory Standards Institute protocols. Split patient samples were compared with LC-MS/MS and DiaSorin LIAISON assays (n=79 including 15 specimens with detectable endogenous 25-OH vitamin D2). Assay accuracy was also evaluated using the Vitamin D External Quality Assessment Scheme samples. Results The ADVIA Centaur and E170 assays demonstrated maximum total CVs of 14.1% and 5.9%, respectively. Both showed excellent linearity (R2 >0.99). The ADVIA Centaur assay demonstrated interference with bilirubin at 800 μmol/L, hemolysis at 1.25 g/L, and triglycerides at 2.8 mmol/L. Compared to LC-MS/MS, the ADVIA Centaur assay demonstrated a R2 value of 0.893, average bias of −8.8%; the E170 assay an R2 value of 0.872, average bias of 14.3% with underestimation of 25-OH vitamin D2. Compared to the LIAISON assay, the ADVIA Centaur assay demonstrated an R2 value of 0.781, average bias of −17.3%; the E170 assay an R2 value of 0.823, average bias of 11.4%. The ADVIA Centaur and E170 assays demonstrated a biases of <20% in 10/10 and 8/10 samples, respectively. Conclusions The ADVIA Centaur and E170 vitamin D assays demonstrated acceptable linearity, imprecision, and accuracy. The E170 assay demonstrated consistent underestimation of 25-OH vitamin D2 levels. Compared with LC-MS/MS, the ADVIA Centaur assay demonstrated a higher R2 value and a smaller average bias than the E170 assay. PMID:22705028

  8. Effect of vitamin D3 on chemokine levels and regulatory T-cells in pulmonary tuberculosis.

    PubMed

    Harishankar, M; Anbalagan, S; Selvaraj, P

    2016-05-01

    1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] the active form of vitamin D3 acts as an immunomodulator in various immune cells. The present study is aimed to study the effect of 1,25(OH)2D3 on chemokine levels and regulatory T-cells in 51 healthy controls (HCs) and 50 pulmonary tuberculosis (PTB) patients. Peripheral blood mononuclear cells were cultured with culture filtrate antigen (CFA) of Mycobacterium tuberculosis in the presence or absence of 1,25(OH)2D3 at 10(-7)M concentration for 72h and the percentage positive regulatory T-cell subsets were studied using flow cytometry. The chemokine levels were estimated in the culture supernatants by ELISA. 1,25(OH)2D3 significantly upregulated the frequency of regulatory T-cell subsets while suppressed the production of chemokine levels in CFA stimulated cultures of HCs and PTB patients (p<0.05). Correlation analysis revealed a significant negative correlation between CD4+Foxp3+ regulatory T-cells and MCP-1, MIP-1β and IP-10 in CFA stimulated with 1,25(OH)2D3 treated cells (p<0.05). The results suggested that 1,25(OH)2D3 upregulated regulatory T-cells and act as anti-inflammatory by downregulating chemokine levels which could be beneficial to protect the host from inflammation and tissue damage during infection. PMID:26927615

  9. 1,25(OH)2D3 Promotes the Efficacy of CD28 Costimulation Blockade by Abatacept

    PubMed Central

    Gardner, David H.; Jeffery, Louisa E.; Soskic, Blagoje; Briggs, Zoe; Hou, Tie Zheng; Raza, Karim

    2015-01-01

    Inhibition of the CD28:CD80/CD86 T cell costimulatory pathway has emerged as an effective strategy for the treatment of T cell–mediated inflammatory diseases. However, patient responses to CD28-ligand blockade by abatacept (CTLA-4-Ig) in conditions such as rheumatoid arthritis are variable and often suboptimal. In this study, we show that the extent to which abatacept suppresses T cell activation is influenced by the strength of TCR stimulation, with high-strength TCR stimulation being associated with relative abatacept insensitivity. Accordingly, cyclosporin A, an inhibitor of T cell stimulation via the TCR, synergized with abatacept to inhibit T cell activation. We also observed that 1,25-dihydroxyvitamin D3 enhanced the inhibition of T cell activation by abatacept, strongly inhibiting T cell activation driven by cross-linked anti-CD3, but with no effect upon anti-CD28 driven stimulation. Thus, like cyclosporin A, 1,25-dihydroxyvitamin D3 inhibits TCR-driven activation, thereby promoting abatacept sensitivity. Vitamin D3 supplementation may therefore be a useful adjunct for the treatment of conditions such as rheumatoid arthritis in combination with abatacept to promote the efficacy of treatment. PMID:26276872

  10. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms.

    PubMed

    Haussler, Mark R; Jurutka, Peter W; Mizwicki, Mathew; Norman, Anthony W

    2011-08-01

    The conformationally flexible secosteroid, 1α,25(OH)₂vitamin D₃ (1α,25(OH)₂D₃) initiates biological responses via binding to the vitamin D receptor (VDR). The VDR contains two overlapping ligand binding sites, a genomic pocket (VDR-GP) and an alternative pocket (VDR-AP), that respectively bind a bowl-like ligand configuration (gene transcription) or a planar-like ligand shape (rapid responses). When occupied by 1α,25(OH)₂D₃, the VDR-GP interacts with the retinoid X receptor to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1α,25(OH)₂D₃. By recruiting complexes of either coactivators or corepressors, activated VDR modulates the transcription of genes encoding proteins that promulgate the traditional genomic functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. 1α,25(OH)₂D₃/VDR control of gene expression and rapid responses also delays chronic diseases of aging such as osteoporosis, cancer, type-1 and -2 diabetes, arteriosclerosis, vascular disease, and infection. PMID:21872797

  11. Interlaboratory trial for measurement of vitamin D and 25(OH)D in foods and a dietary supplement using liquid chromatography-mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of total vitamin D intake from foods and dietary supplements (DSs) may be incomplete if 25-hydroxyvitamin D [25(OH)D] intake is not included. However, 25(OH)D data for such intake assessments are lacking, no food or DS reference materials (RMs) are available, and comparison of laboratory...

  12. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption.

    PubMed

    Kraidith, Kamonshanok; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Vadolas, Jim; Chaimana, Rattana; Lapmanee, Sarawut; Suntornsaratoon, Panan; Krishnamra, Nateetip; Fucharoen, Suthat; Charoenphandhu, Narattaphol

    2016-07-01

    Previously, β-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of β-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how β-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous β-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the β-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in β-thalassemia. PMID:27245334

  13. Shift work and serum 25-OH vitamin D status among factory workers in Northern Italy: Cross-sectional study.

    PubMed

    Romano, Alessandro; Vigna, Luisella; Belluigi, Valentina; Conti, Diana Misaela; Barberi, Claudia Eleonora; Tomaino, Laura; Consonni, Dario; Riboldi, Luciano; Tirelli, Amedea Silvia; Andersen, Lars Louis

    2015-01-01

    Low levels of vitamin D are related to muscle weakness, poor balance, and higher risk of falls, and can therefore have a major impact on performance and safety at work. Little knowledge exists on the association between work environment and vitamin D status. This study evaluates vitamin D status in shift workers. In this cross-sectional study, led during early springtime, 96 male shift workers at an engineering factory in Northern Italy, and 100 male daily workers operating nearby, participated. 25-OH vitamin D concentration, anthropometric indexes, fasting glycemia and triglycerides were detected. 51 shift workers underwent anamnesis collection on lifestyle and habits and determination of heel bone mineral density. Vitamin D levels were lower in shift workers than daily ones (13.4 ± 5.3 ng/mL versus 21.9 ± 10.7 ng/mL, p < 0.001). Linear regression analysis adjusted for age, body mass index and smoking habits confirms a statistically significant association between shift work and vitamin D levels (p < 0.0001). An association trend between cigarette smoking and low vitamin D values was found. No significant association was detected between the heel bone mineral density values and vitamin D levels or smoking habits. In conclusion, this cross-sectional study highlights the high prevalence of vitamin D deficit among shift workers compared with daily ones. PMID:26125129

  14. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: a meta-analysis

    PubMed Central

    Kim, Y; Je, Y

    2014-01-01

    Background: Experimental studies suggest potential anti-carcinogenic properties of vitamin D against breast cancer risk, but the epidemiological evidence to date is inconsistent. Methods: We searched MEDLINE and EMBASE databases along with a hand search for eligible studies to examine the association between vitamin D status (based on diet and blood 25-hydroxyvitamin D (25(OH)D)) and breast cancer risk or mortality in a meta-analysis. A random-effect model was used to calculate a pooled adjusted relative risk (RR). Results: A total of 30 prospective studies (nested case-control or cohort) were included for breast cancer incidence (n=24 studies; 31 867 cases) or mortality (n=6 studies; 870 deaths) among 6092 breast cancer patients. The pooled RRs of breast cancer incidence for the highest vs the lowest vitamin D intake and blood 25(OH)D levels were 0.95 (95% CI: 0.88–1.01) and 0.92 (95% CI: 0.83–1.02), respectively. Among breast cancer patients, high blood 25(OH)D levels were significantly associated with lower breast cancer mortality (pooled RR=0.58, 95% CI: 0.40–0.85) and overall mortality (pooled RR=0.61, 95% CI: 0.48–0.79). There was no evidence of heterogeneity and publication bias. Conclusions: Our findings suggest that high vitamin D status is weakly associated with low breast cancer risk but strongly associated with better breast cancer survival. PMID:24714744

  15. 1α,25(OH)2-Dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the β-catenin pathway

    PubMed Central

    Jiang, Yan J.; Teichert, Arnaud E.; Fong, Frankie; Oda, Yuko; Bikle, Daniel D.

    2014-01-01

    Ultra violet (UV) irradiation, in particular UVB, is the single most important carcinogen for skin tumor formation. UVB induces genetic mutations and immune suppression, which lead to abnormal cell proliferation and eventually tumor formation. Previously studies from our group and others demonstrated that both global and epidermal specific VDR knock out mice are predisposed to either chemical (DMBA)-or long-term UVB-induced skin tumor formation, paralleled by an increase in β-catenin signaling. Using primary cultured human keratinocytes, we further demonstrated that 1,25(OH)2-dihydroxyvitamin D3 (1,25(OH)2D3) suppresses cyclin D1 and Gli1 which are regulated by β-catenin/TCF signaling and have a critical role in epidermal carcinogenesis. Blockage of VDR by siRNA resulted in hyperproliferation of keratinocytes, and increased expression of cyclin D1 and Gli1. In addition, we also showed that 1,25(OH)2D3/VDR directly regulates transcriptional activity of β-catenin/TCF signaling using the –catenin reporter TopGlow. Using K14 driven tamoxifen-induced cre recombinase to delete both VDR and β-catenin in keratinocytes of mice following the first hair follicle cycle, we found that ablation of epidermal specific β-catenin cannot rescue VDR null mice from UVB-induced skin tumor formation. Further study using VDR or β-catenin single null mice is necessary to compare with the data from double null mice. PMID:23026511

  16. Short communication: serum and tissue concentrations of vitamin D metabolites in beef heifers after buccal dosing of 25-hydroxyvitamin D3.

    PubMed

    Rivera, J D; Bachman, S E; Hubbert, M E; Branine, M E; Horst, R L; Williams, S N; Galyean, M L

    2005-04-01

    Sixteen crossbred (British x Continental; average un-shrunk body weight = 507.9 kg; SD = 45.6 kg) beef heifers fed a steam-flaked corn-based finishing diet with melengestrol acetate (0.4 mg/heifer daily) included to suppress estrus were used in a completely random design to evaluate the efficacy of buccal administration of 0, 10, 100, or 1000 mg of 25-hydroxyvitamin D3, (25-OH D3). Serum Ca, P, Mg, 25-OH D3, 1,25-dihydroxyvitamin D [1,25-(OH)2 D3], albumin, and protein were measured 24 h before dosing (-24 h), at dosing (0 h), and 6 and 24 h after dosing, after which the cattle were slaughtered at a commercial facility. Samples of kidneys, liver, longissimus lumborum, and triceps brachii were collected and evaluated for concentrations of 1,25-(OH)2 D3. With -24 and 0 h as baseline covariates, a significant time x treatment interaction was observed for serum 25-OH D3 and Ca concentrations, but not for serum 1,25-(OH)2 D3. Supplemental 25-OH D3 doses of 100 and 1000 mg significantly increased serum 25-OH D3 at 24 h after dosing, 1,25-(OH)2 D3 at 6 and 24 h after dosing, and serum Ca at 24 h after dosing. Similarly, buccal dosing of 1000 mg of supplemental 25-OH D3 significantly increased (approximately 2- to 3-fold) concentrations of 1,25-(OH)2 D3 in the kidney, liver, and longissimus lumborum relative to the other 3 treatments but not in triceps brachii. Serum albumin, protein, P, and Mg were not affected by treatment. Based on these results, buccal administration of 100 and 1000 mg 25-OH D3 increased vitamin D3 metabolites in serum and tissues, and it should be an effective method of delivering the vitamin. PMID:15778304

  17. Vitamin D(3) synthesis in the entire skin surface of dairy cows despite hair coverage.

    PubMed

    Hymøller, L; Jensen, S K

    2010-05-01

    How hair-coated animals such as dairy cows synthesize endogenous vitamin D(3) during exposure to summer sunlight has been unclear since vitamin D(3) and its relation to sunlight was discovered. The fur of fur-bearing animals is thought to be comparable to clothing in humans, which prevents vitamin D(3) synthesis in the skin during exposure to sunlight. Different scenarios have been suggested but never tested in cows; for example, that vitamin D(3) is synthesized from sebum on the hair and ingested by cows during grooming or that body areas such as the udder and muzzle that have scant hair exclusively produce the vitamin. To test different scenarios, 16 Danish Holstein dairy cows were subjected to 4 degrees of coverage of their bodies with fabric that prevented vitamin D(3) synthesis in the covered skin areas. The treatments were horse blanket (cows fitted with horse blankets), udder cover (cows fitted with udder covers, horse blanket+udder cover (cows fitted with both horse blankets and udder covers), and natural (cows without any coverage fitted). The cows were let out to pasture daily between 1000 and 1500h for 4 wk in July and August 2009. Blood samples were collected 15 times during the study and analyzed for content of 25-hydroxyvitamin D(3) [25(OH)D(3)] indicative of the animals' vitamin D(3) status. Results showed that uncovered cows had a higher 25(OH)D(3) concentration in plasma after 28 d of access to sunlight compared with covered cows and that the plasma concentration of 25(OH)D(3) was strongly inversely correlated to the body surface area covered. These results are consistent with findings in humans, wherein the vitamin D(3) status of different individuals was inversely proportional to the amount of clothing worn during exposure to artificial sunlight. Hence, it appears that human clothing and cow hair are not comparable with respect to prevention of vitamin D(3) synthesis and that cows, like humans, synthesize vitamin D(3) evenly over their body

  18. 1,25(OH)2D3-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet

    PubMed Central

    Asplin, John R.; Krieger, Nancy S.; Culbertson, Christopher D.; Asplin, Daniel M.; Bushinsky, David A.

    2013-01-01

    The inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hypercalciuria and have elevated levels of vitamin D receptors (VDR) in calcium (Ca)-transporting organs. On a normal-Ca diet, 1,25(OH)2D3 (1,25D) increases urine (U) Ca to a greater extent in GHS than in controls [Sprague-Dawley (SD)]. The additional UCa may result from an increase in intestinal Ca absorption and/or bone resorption. To determine the source, we asked whether 1,25D would increase UCa in GHS fed a low-Ca (0.02%) diet (LCD). With 1,25D, UCa in SD increased from 1.2 ± 0.1 to 9.3 ± 0.9 mg/day and increased more in GHS from 4.7 ± 0.3 to 21.5 ± 0.9 mg/day (P < 0.001). In GHS rats on LCD with or without 1,25D, UCa far exceeded daily Ca intake (2.6 mg/day). While the greater excess in UCa in GHS rats must be derived from bone mineral, there may also be a 1,25D-mediated decrease in renal tubular Ca reabsorption. RNA expression of the components of renal Ca transport indicated that 1,25D administration results in a suppression of klotho, an activator of the renal Ca reabsorption channel TRPV5, in both SD and GHS rats. This fall in klotho would decrease tubular reabsorption of the 1,25D-induced bone Ca release. Thus, the greater increase in UCa with 1,25D in GHS fed LCD strongly suggests that the additional UCa results from an increase in bone resorption, likely due to the increased number of VDR in the GHS rat bone cells, with a possible component of decreased renal tubular calcium reabsorption. PMID:23926184

  19. Blood vitamin D(3) metabolite concentrations of adult female bearded dragons (Pogona vitticeps) remain stable after ceasing UVb exposure.

    PubMed

    Oonincx, D G A B; van de Wal, M D; Bosch, G; Stumpel, J B G; Heijboer, A C; van Leeuwen, J P T M; Hendriks, W H; Kik, M

    2013-07-01

    Vitamin D deficiency can lead to several health problems collectively called metabolic bone disease (MBD). One commonly kept reptile species prone to develop MBD if managed incorrectly is the bearded dragon (Pogona vitticeps). This study aimed to determine the extent to which adult female bearded dragons fed a diet low in vitamin D can use stored vitamin D and its metabolites to maintain plasma 25(OH)D(3) and 1,25(OH)(2)D(3) concentrations after discontinuing UVb exposure. Blood samples of healthy adult female bearded dragons, exposed to UVb radiation for over 6 months were collected (day 0) after which UVb exposure was discontinued for 83 days and blood was collected. Blood plasma was analysed for concentrations of total Ca, total P, ionized Ca, uric acid, 25(OH)D(3) and 1,25(OH)(2)D(3). There was no significant change in plasma 25(OH)D(3) and 1,25(OH)(2)D(3) concentrations during the study. While total Ca and P in whole blood was found to significantly decrease over time (P < 0.0088 and 0.0016, respectively), values were within the reference range. Plasma ionized Ca tended (P = 0.0525) to decrease during the study. Adult female bearded dragons, previously exposed to UVb, are able to maintain blood vitamin D metabolite concentrations when UVb exposure is discontinued for a period of up to 83 days. PMID:23648288

  20. Vitamin D3 toxicity in dairy cows.

    PubMed

    Littledike, E T; Horst, R L

    1982-05-01

    Large parenteral doses of vitamin D3 (15 to 17.5 x 10(6) IU vitamin D3) were associated with prolonged hypercalcemia, hyperphosphatemia, and large increases of vitamin D3 and its metabolites in the blood plasma of nonlactating nonpregnant and pregnant Jersey cows. Calcium concentrations 1 day postpartum were higher in cows treated with vitamin D3 about 32 days prepartum (8.8 mg/100 ml) than in control cows (5.5 mg/100 ml). None of the cows treated with vitamin D3 showed signs of milk fever during the peripartal period; however, 22% of the control cows developed clinical signs of milk fever during this period. Signs of vitamin D3 toxicity were not observed in nonlactating nonpregnant cows; however, pregnant cows commonly developed severe signs of vitamin D3 toxicity and 10 of 17 cows died. There was widespread metastatic calcification in the cows that died. Because of the extreme toxicity of vitamin D3 in pregnant Jersey cows and the low margin of safety between doses of vitamin D3 that prevent milk fever and doses that induce milk fever, we concluded that vitamin D3 cannot be used practically to prevent milk fever when injected several weeks prepartum. PMID:6286738

  1. Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3.

    PubMed

    Feng, Wei; Lv, Shengyu; Cui, Jian; Han, Xiuchun; Du, Juan; Sun, Jing; Wang, Kefeng; Wang, Zhenming; Lu, Xiong; Guo, Jie; Oda, Kimimitsu; Amizuka, Norio; Xu, Xin; Li, Minqi

    2015-09-01

    The purpose of this study was to evaluate the effects of osteogenic differentiated adipose-derived stem cell (ADSC) loaded beta-tricalcium phosphate (β-TCP) in the restoration of bone defects under intraperitoneal administration of 1α,25-dihydroxyvitamin D3(1α,25(OH)2D3). ADSCs were isolated from the fat tissue of 8 week old Wister rats and co-cultured with β-TCP for 21 days under osteogenic induction. Then the ADSC-β-TCP complexes were implanted into bone defects in the femora of rats. 1α,25(OH)2D3 (VD) or normal saline (NS) was administrated intraperitoneally every other day after the surgery. Femora were harvested at day 7, day 14 and day 28 post-surgery. There were 4 groups for all specimens: β-TCP-NS group; β-TCP-ADSC-NS group; β-TCP-VD group and β-TCP-ADSC-VD group. Alkaline phosphatase (ALP) was up-regulated obviously in ADSC groups compared with non-ADSC groups at day 7, day 14 and day 28, although high expression of runt-related transcription factor 2 (RUNX2) was only seen at day 7. Furthermore, the number of TRAP-positive osteoclasts and the expression of cathepsin K (CK) were significantly decreased in VD groups compared with non-VD groups at day 7 and day 14. As a most significant finding, the β-TCP-ADSC-VD group showed the highest BV/TV ratio compared with the other three groups at day 28. Taken together, ADSC-loaded β-TCP under the administration of 1α,25(OH)2D3 made a promising therapy for bone defects restoration. PMID:26046276

  2. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

    PubMed

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. PMID:26523511

  3. Tissue distribution of 7-dehydrocholesterol, vitamin D3 and 25-hydroxyvitamin D3 in several species of fishes.

    PubMed

    Takeuchi, A; Okano, T; Sayamoto, M; Sawamura, S; Kobayashi, T; Motosugi, M; Yamakawa, T

    1986-02-01

    A high-performance liquid chromatographic (HPLC) method for simultaneous determination of 7-dehydrocholesterol (7-DHC), vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in tissues of fishes was established, and using this method the tissue distribution of the sterols in lamprey (Entosphenus japonicus), great blue shark (Prionace glauca), skipjack (Katsuwonus pelamis) and albacore (Thunnus alalunga) was investigated. The results are summarized in the following: Although the alimentary canal, gall bladder and roe of lamprey and the alimentary canal of great blue shark contained comparatively high levels of 7-DHC (higher than 2,000 ng/wet tissue g), the other tissues of lamprey and great blue shark and all tissues of skipjack and albacore contained only low levels of 7-DHC (lower than 1,000 ng/g). There was no significant correlation between the levels of 7-DHC and vitamin D3. The contents of 7-DHC in the skin of skipjack and albacore were only 1/1,000 of those in the skin of rats. Although the contents of vitamin D3 in the liver of skipjack and albacore were extremely high (41,240 and 21,000 ng/g, respectively), those in the skin were very low (454 and 257 ng/g, respectively). 25-OH-D3 was detected in the viscera of skipjack, but the levels were not very high (lower than 150 ng/g). These levels were not significantly correlated with those of vitamin D3. The results suggest that large quantities of vitamin D3 in the liver of skipjack and albacore are supplied by other biosynthetic routes or by intake of vitamin D3 rather than by photochemical biosynthesis. PMID:3012050

  4. Vitamin D3 and D3 metabolites in young goats fed varying amounts of calcium and vitamin D3.

    PubMed

    Hines, T G; Horst, R L; Littledike, E T; Beitz, D C; Jacobson, N L

    1986-02-01

    Twenty-four male goats, 2 to 4 wk of age, were allotted to four dietary treatments in a 2 X 2 factorial design and, for 20 wk, were fed a milk diet at 12.5% body weight. Treatments varied in amounts of supplemental calcium and vitamin D3. Daily allowances per kilogram body weight were: 9.4 IU vitamin D3 (basal), 9.4 IU vitamin D3 plus 406 mg calcium carbonate (basal plus Ca), 940 IU vitamin D3 (basal plus D3), and 940 IU vitamin D3 plus 406 mg calcium carbonate (basal plus Ca plus D3). At the end of wk 7, a corn supplement was added to all diets at 1% body weight daily. Addition of vitamin D3 to the diet resulted in a dramatic increase in plasma concentrations of vitamin D3. Goats in the basal plus D3 and basal plus Ca plus D3 groups had nearly 100 X greater concentrations of vitamin D3 than goats in the basal and basal plus Ca groups. When greater amounts of vitamin D3 were fed, dietary calcium interacted to decrease plasma vitamin D3 concentrations. Plasma concentrations of 25-hydroxyvitamin D3 were unaffected by additional dietary calcium but were increased by dietary vitamin D3, increasing sixfold to seven-fold in the basal plus D3 and basal plus Ca plus D3 groups. Supplemental calcium resulted in decreased plasma 1,25-dihydroxyvitamin D3. No signs of vitamin D toxicity were noted. The physiological responses reported implicate the goat as a potential animal model for vitamin D research in dairy cattle. PMID:3009577

  5. Impact of Vitamin D3 Dietary Supplement Matrix on Clinical Response

    PubMed Central

    Finnell, John S.; Bhandiwad, Anup; Oberg, Erica; Suhaila, Lena; Bradley, Ryan

    2014-01-01

    Context: As a result of research suggesting increased health risk with low serum 25-hydroxycholecalciferol (25(OH)D), health care providers are measuring it frequently. Providers and patients are faced with treatment choices when low status is identified. Objective: To compare the safety and efficacy of three vitamin D3 dietary supplements with different delivery matrices. Setting and Design: A 12-week, parallel group, single-masked, clinical trial was conducted in Seattle, Washington and Kailua Kona, Hawaii. Sixty-six healthy adults with (25(OH)D) <33 ng/mL were randomly assigned to take one of three D3 supplements, ie, a chewable tablet (TAB), an oil-emulsified drop (DROP), or an encapsulated powder (CAP) at a label-claimed dose of 10,000 IU/day. Actual D3 content was assessed by a third party and the results adjusted based on the actual D3 content administered. Mean change in 25(OH)D/mcg D3 administered; difference in the proportion of D3 insufficient participants (ie, 25(OH)D ≤30 ng/mL) reaching sufficiency (ie, 25(OH)D ≥30 ng/mL); and mean change in serum 1, 25-dihydroxycholecalciferol were measured. Results: In two of the three products tested, the measured vitamin D3 content varied considerably from the label-claimed dose. Differences in 25(OH)D/mcg D3 administered were significantly different between groups (P = .04; n = 55). Pairwise comparisons demonstrated DROP resulted in a greater increase than TAB (P < .05) but not than CAP. TAB was not different from CAP. The proportions reaching sufficiency were: 100% (TAB and CAP) and 80% (DROP) (P = .03 between groups; n = 55). 1, 25-Dihydroxycholecalciferol did not change significantly in any group. Conclusions: Oil-emulsified vitamin D3 supplements resulted in a greater mean change in serum 25(OH)D concentration, but fewer patients reaching vitamin D sufficiency, than chewable or encapsulated supplements. PMID:24684456

  6. Direct effects of vitamin D3 analogues on G-protein mediated signalling systems in rat osteosarcoma cells and rat pituitary adenoma cells.

    PubMed

    Mortensen, B M; Lund, H W; Jablonski, G; Paulssen, R H; Gordeladze, J O

    1995-06-01

    In normal rats treated with 1,25(OH)2D3 or 24,25(OH)2D3, serum Ca2+, ALP, PRL and GH are significantly altered. In order to study the primary effect of vitamin D3 analogues on target organ function, rat UMR 106 osteosarcoma and GH3 pituitary adenoma cells in monolayer culture were exposed accordingly. Surprisingly, prolonged exposure of these cell lines to physiological levels of either 1,25(OH)2D3 or 24,25(OH)2D3 did not significantly affect the secretory parameters (ALP, PRL or GH) tested. However, 1,25(OH)2D3 exposure significantly reduced PTH- and Gpp(NH)p-elicited AC as well as Gpp(NH)p-stimulated PLC activities in the UMR 106 cells. These changes were accompanied by an increase and decrease in the membrane contents of the G-protein subunits G36 beta and Gq/11 alpha, respectively. In contrast, 24,25(OH)2D3 remained without significant biological effect on these signalling systems despite concomitantly augmented levels of G36 beta. TRH- and Gpp(NH)p-elicited PLC activities in the GH3 cells were significantly reduced by 1,25(OH)2D3 with a concurrent reduction in cellular amounts of Gq/11 alpha, however, 24,25(OH)2D3 did not significantly alter any signalling systems nor G-proteins analyzed. It is concluded that the osteoblastic and pituitary cell secretion of ALP, PRL and GH remain unaffected by the presence of 1,25(OH)2D3 and 24,25(OH)2D3, despite distinct alterations in components of G-protein mediated signalling pathways. Hence, other factors like ambient Ca2+ may be responsible for the perturbed secretory patterns of ALP and PRL seen in vitamin D3 treated rats. PMID:7579039

  7. Evidence for 1,25-dihydroxyvitamin D3-independent transactivation by the vitamin D receptor: uncoupling the receptor and ligand in keratinocytes.

    PubMed

    Ellison, Tara I; Eckert, Richard L; MacDonald, Paul N

    2007-04-13

    The vitamin D endocrine system plays critical although poorly understood roles in skin. Vitamin D receptor (VDR) knock-out (VDRKO) mice have defects in hair follicle cycling and keratinocyte proliferation leading to epidermal thickening, dermal cyst formation, and alopecia. Surprisingly, skin defects are not apparent in mice lacking 25-hydroxyvitamin D 1alpha-hydroxylase, the enzyme required for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) hormone biosynthesis. These disparate phenotypes indicate that VDR effects in skin are independent of the 1,25(OH)2D3 ligand. However, cellular or molecular data supporting this hypothesis are lacking. Here, we show transcriptional activation of the vitamin D-responsive 24-hydroxylase promoter by VDR in primary keratinocytes that is independent of the 1,25(OH)2D3 ligand. This activity required functional vitamin D-responsive promoter elements as well as an intact VDR DNA binding domain and thus could not be distinguished from 1,25(OH)2D3-dependent VDR transactivation. The 1,25(OH)2D3-independent activation of VDR was also observed in keratinocytes from 1alpha-hydroxylase knock-out mice, indicating that it is not due to endogenous 1,25(OH)2D3 production. Mammalian two-hybrid studies showed strong, 1,25(OH)2D3-independent interaction between VDR and retinoid X receptors in primary keratinocytes, indicating that enhanced heterodimerization of these receptors was involved. Indeed, this 1,25(OH)2D3-independent VDR-RXR heterodimerization was sufficient to drive transactivation by VDR(L233S), an inactive ligand binding mutant of VDR that was previously shown to rescue the skin phenotype of VDR null mice. Cumulatively, these studies support the concept that transactivation by VDR in keratinocytes may be uncoupled from the 1,25(OH)2D3 ligand. PMID:17310066

  8. Role of 1,25-Dihydroxy Vitamin D3 and Parathyroid Hormone in Urinary Calcium Excretion in Calcium Stone Formers

    PubMed Central

    Kim, Won Tae; Kim, Yong-June; Yun, Seok Joong; Shin, Kyung-Sub; Choi, Young Deuk; Kim, Wun-Jae

    2014-01-01

    Purpose To find out the possible role of 1,25(OH)2 vitamin D3 [1,25(OH)2D3] and parathyroid hormone (PTH) as intrinsic factors in urinary calcium stone formers (SFs), we investigated their relationship with serum and urinary biochemical parameters. Materials and Methods A total of 326 calcium SFs (male: 204, female: 122) were enrolled and underwent outpatient metabolic evaluations including 1,25(OH)2D3 and PTH as well as serum and 24-hour urinary biochemical parameters. As control, 163 age- and sex-matched (2:1) individuals (non-SFs) who have never urinary stone episode were included. Results 1,25(OH)2D3 level was positively correlated with urinary calcium excretion (r=0.347, p<0.001). The hypercalciuric group and recurrent SFs had higher serum 1,25(OH)2D3 levels than the normocalciuric group (p<0.001) and first SFs (p=0.050). In the adjusted multiple linear regression analysis, serum 1,25(OH)2D3 level (β=0.259, p<0.001) and serum PTH level (β=-0.160, p<0.001) were significantly correlated with urinary calcium excretion. The patients in highest tertile of 1,25(OH)2D3 had a more than 3.1 fold risk of hypercalciuria than those in the lowest tertile (odds ratio=3.14, 95% confidence interval: 1.431-6.888, p=0.004). No correlation was observed between PTH and 1,25(OH)2D3 (R=0.005, p=0.929) in calcium SFs, while a negative correlation was found in controls (R=-0.269, p=0.001). Conclusion 1,25(OH)2D3 was closely correlated with urinary calcium excretion, and high 1,25(OH)2D3 levels were detected in the hypercalciuric group and in recurrent SFs. However, 1,25(OH)2D3 was not correlated with PTH in calcium SFs. These findings suggest that 1,25(OH)2D3 might be important intrinsic factor for altered calcium regulation in SFs. PMID:25048492

  9. Determination of optimal vitamin D3 dosing regimens in HIV-infected paediatric patients using a population pharmacokinetic approach

    PubMed Central

    Foissac, Frantz; Meyzer, Candice; Frange, Pierre; Chappuy, Hélène; Benaboud, Sihem; Bouazza, Naïm; Friedlander, Gérard; Souberbielle, Jean-Claude; Urien, Saïk; Blanche, Stéphane; Tréluyer, Jean-Marc

    2014-01-01

    Aims To investigate 25-hydroxycholecalciferol [25(OH)D] population pharmacokinetics in children and adolescents, to establish factors that influence 25(OH)D pharmacokinetics and to assess different vitamin D3 dosing schemes to reach sufficient 25(OH)D concentrations (>30 ng ml−1). Methods This monocentric prospective study included 91 young HIV-infected patients aged 3 to 24 years. Patients received a 100 000 IU vitamin D3 supplementation. A total of 171 25(OH)D concentrations were used to perform a population pharmacokinetic analysis. Results At baseline 28% of patients had 25(OH)D concentrations below 10 ng ml−1, 69% between 10 and 30 ng ml−1 and 3% above 30 ng ml−1. 25(OH)D pharmacokinetics were best described by a one compartment model with an additional production parameter reflecting the input from diet and sun exposure. The effects of skin phototype and bodyweight were significant on 25(OH)D production before any supplementation. The basal level was 27% lower in non-white skin phototype patients and was slightly decreased with bodyweight. No significant differences in 25(OH)D concentrations were related to antiretroviral drugs. To obtain concentrations between 30 and 80 ng ml−1, patients with baseline concentrations between 10 and 30 ng ml−1 should receive 100 000 IU per 3 months. However, vitamin D deficient patients (<10 ng ml−1) would need an intensive phase of 100 000 IU per 2 weeks (two times) followed 2 weeks later by a maintenance phase of 100 000 IU per 3 months. Conclusions Skin phototype and bodyweight had an influence on the basal production of 25(OH)D. According to 25(OH)D baseline concentrations, dosing schemes to reach sufficient concentrations are proposed. PMID:24902982

  10. Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D3 on serum 25-hydroxyvitamin D metabolites: an 8-week randomised-controlled trial in young adult Finnish women.

    PubMed

    Itkonen, Suvi T; Skaffari, Essi; Saaristo, Pilvi; Saarnio, Elisa M; Erkkola, Maijaliisa; Jakobsen, Jette; Cashman, Kevin D; Lamberg-Allardt, Christel

    2016-04-14

    There is a need for food-based solutions for preventing vitamin D deficiency. Vitamin D3 (D3) is mainly used in fortified food products, although the production of vitamin D2 (D2) is more cost-effective, and thus may hold opportunities. We investigated the bioavailability of D2 from UV-irradiated yeast present in bread in an 8-week randomised-controlled trial in healthy 20-37-year-old women (n 33) in Helsinki (60°N) during winter (February-April) 2014. Four study groups were given different study products (placebo pill and regular bread=0 µg D2 or D3/d; D2 supplement and regular bread=25 µg D2/d; D3 supplement and regular bread=25 µg D3/d; and placebo pill and D2-biofortified bread=25 µg D2/d). Serum 25-hydroxyvitamin D2 (S-25(OH)D2) and serum 25-hydroxyvitamin D3 (S-25(OH)D3) concentrations were measured at baseline, midpoint and end point. The mean baseline total serum 25-hydroxyvitamin D (S-25(OH)D=S-25(OH)D2+S-25(OH)D3) concentration was 65·1 nmol/l. In repeated-measures ANCOVA (adjusted for baseline S-25(OH)D as total/D2/D3), D2-bread did not affect total S-25(OH)D (P=0·707) or S-25(OH)D3 (P=0·490), but increased S-25(OH)D2 compared with placebo (P<0·001). However, the D2 supplement was more effective than bread in increasing S-25(OH)D2 (P<0·001). Both D2 and D3 supplementation increased total S-25(OH)D compared with placebo (P=0·030 and P=0·001, respectively), but D2 supplementation resulted in lower S-25(OH)D3 (P<0·001). Thus, D2 from UV-irradiated yeast in bread was not bioavailable in humans. Our results support the evidence that D2 is less potent in increasing total S-25(OH)D concentrations than D3, also indicating a decrease in the percentage contribution of S-25(OH)D3 to the total vitamin D pool. PMID:26864127

  11. Benzothiadiazole (BTH) activates sterol pathway and affects vitamin D3 metabolism in Solanum malacoxylon cell cultures.

    PubMed

    Burlini, Nedda; Iriti, Marcello; Daghetti, Anna; Faoro, Franco; Ruggiero, Antonietta; Bernasconi, Silvana

    2011-11-01

    Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a particularly efficient inducer of systemic acquired resistance (SAR), was developed as an immunizing agent to sensitize various crop species against pathogen infections. Recent works highlighted its activating effect on different metabolic pathways, concerning both primary and secondary metabolites. In this study, we investigated the effect of BTH treatment on sterol levels and vitamin D(3) metabolism in Solanum malacoxylon cultures. Calli of S. malacoxylon were incubated in Gamborg B5 liquid medium alone or added with 50 μM BTH for different times (one, two or three cycles of light). Histocytochemical investigations performed on our experimental system using 3,3'-diaminobenzidine (DAB) for hydrogen peroxide (H(2)O(2)) detection and phloroglucinol for lignin staining showed that BTH causes H(2)O(2) accumulation and lignin deposition in treated calli. Gas chromatographic analysis of principal cell membrane sterols (β-sitosterol, campesterol, stigmasterol) showed that BTH transiently increases their cellular levels. Callus cultures were found to contain also cholesterol, 7-dehydrocholesterol, the putative precursor of vitamin D(3), and the hydroxylated metabolites 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3)]. BTH treatment enhanced 7-dehydrocholesterol while reduced cholesterol. HPLC analysis of sample extracts showed that BTH does not affect the cell content of vitamin D(3), though results of ELISA tests highlighted that this elicitor moderately enhances the levels of 25(OH)D(3) and 1α,25(OH)(2)D(3) metabolites. In conclusion, BTH treatment not only causes cell wall strengthening, a typical plant defence response, as just described in other experimental models, but in the same time increases the cellular level of the main sterols and 7-dehydrocholesterol. PMID:21779826

  12. Evaluation of responses to vitamin D3 (cholecalciferol) in patients on dialysis: a systematic review and meta-analysis.

    PubMed

    Xu, Chen; Li, Yan-Chun; Zhao, Su-Mei; Li, Zhong-Xin

    2016-06-01

    Vitamin D plays a key role in mineral metabolism and its deficiency is often noted in patients on dialysis for end-stage renal disease (ESRD). We evaluated the efficacy and responses to vitamin D3 (cholecalciferol) in patients undergoing dialysis for ESRD. Randomized controlled trials or prospective studies comparing vitamin D3 supplementation to placebo in patients with ESRD on dialysis were searched from medical databases using the terms, 'Calcitriol/Cholecalciferol, vitamin D, chronic kidney disease, hemodialysis, serum calcium, parathyroid hormones (PTH), phosphorus, 25(OH)D, and 1,25(OH)2D'. The outcomes analyzed were serum calcium, PTH, phosphorus, 25(OH)D, and 1,25(OH) 2D levels. Of the 259 records identified, 9 studies with a total of 368 patients were chosen for the current meta-analysis. The number of patients, age, and gender distribution among the groups were comparable. Results reveal a greater increase in both 25(OH)D (Pooled difference in means=0.434, 95% CI 0.174 to 0.694, p=0.001) and 1,25(OH) 2D (Pooled difference in means=0.978, 95% CI 0.615 to 1.34, p<0.001) in the treatment arm, as compared to the placebo. There was no difference in the serum calcium or PTH among the two groups. However, patients in the treatment arm had a significant increase in phosphorus levels (Pooled difference in means=0.434, 95% CI 0.174 to 0.694, p=0.001). Vitamin D supplementation facilitated the maintenance of increased levels of 25(OH) D and 1,25(OH) 2D in patients undergoing dialysis for ESRD. This increase in vitamin D was not associated with hypercalcemia or significant changes in PTH levels. PMID:27076675

  13. A Randomised, Cross-Over Study to Estimate the Influence of Food on the 25-Hydroxyvitamin D3 Serum Level after Vitamin D3 Supplementation

    PubMed Central

    Cavalier, Etienne; Jandrain, Bernard; Coffiner, Monte; Da Silva, Stéphanie; De Niet, Sophie; Vanderbist, Francis; Souberbielle, Jean-Claude

    2016-01-01

    Vitamin D3 is known to be liposoluble and its release could be a factor limiting the rate of absorption. It was presumed that the presence of fat could favor absorption of vitamin D3. However, as bioavailability is related not only to the active molecules but also to the formulations and excipients used, the optimization of the pharmaceutical form of vitamin D3 is also important. The objective of this study was to evaluate if there is a food effect on absorption when a high dose of vitamin D3 is completely solubilized in an oily solution. In the present cross-over study, 88 subjects were randomized and received a single dose of 50,000 IU of vitamin D3 in fasting state or with a standardized high-fat breakfast. Assessment of serum concentrations of 25 hydroxyvitamin D3 (25(OH)D3) was performed three, five, seven, 14, 30 and 60 days after supplementation. In fed and fast conditions, the 25(OH)D3 serum concentrations were significantly higher than the baseline value three days after administration and remained significantly higher during the first month. No significant difference between fasting vs. fed conditions was observed. It is therefore concluded that the vitamin D3 absorption from an oily solution was not influenced by the presence or absence of a meal. PMID:27213447

  14. Vitamin D3 and brain development.

    PubMed

    Eyles, D; Brown, J; Mackay-Sim, A; McGrath, J; Feron, F

    2003-01-01

    Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D(3) acts during brain development. We demonstrate that rats born to vitamin D(3)-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D(3) has important ramifications for the developing brain. PMID:12710973

  15. [Vitamin D3 poisoning--case report].

    PubMed

    Heinritzi, K; Hänichen, T; Rambeck, W; Hermanns, W

    2000-12-01

    Over 650 pigs died within a couple hours in a fattening unit with approximately 3,000 fattening spaces. The pigs showed vomiting, dyspnea, kyphosis, sunken flanks, diarrhea, and polyuria. Another striking symptom of the pigs, besides the apathy, was the aphonia, due to the calcification of the vocal cords. An acute vitamin D3-intoxication was found to be the cause. The pathologic findings, especially the histologic detection of calcification processes of the soft tissues, lead to the suspect of an intoxication with a vitamin D-like substance. Between 39,000 and 196,000 IU/kg of vitamin D3 have been detected in a ready-to-use food mix. 8.8 million IU/kg of crystaline vitamin D3 were found in an open whey bag. An explanation how vitamin D came into the bag could not be clarified to this point. PMID:11155516

  16. The Role of the Vitamin D Receptor and ERp57 in Photoprotection by 1α,25-Dihydroxyvitamin D3

    PubMed Central

    Sequeira, Vanessa B.; Rybchyn, Mark S.; Tongkao-on, Wannit; Gordon-Thomson, Clare; Malloy, Peter J.; Nemere, Ilka; Norman, Anthony W.; Reeve, Vivienne E.; Halliday, Gary M.; Feldman, David

    2012-01-01

    UV radiation (UVR) is essential for formation of vitamin D3, which can be hydroxylated locally in the skin to 1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Recent studies implicate 1,25-(OH)2D3 in reduction of UVR-induced DNA damage, particularly thymine dimers. There is evidence that photoprotection occurs through the steroid nongenomic pathway for 1,25-(OH)2D3 action. In the current study, we tested the involvement of the classical vitamin D receptor (VDR) and the endoplasmic reticulum stress protein 57 (ERp57), in the mechanisms of photoprotection. The protective effects of 1,25-(OH)2D3 against thymine dimers were abolished in fibroblasts from patients with hereditary vitamin D-resistant rickets that expressed no VDR protein, indicating that the VDR is essential for photoprotection. Photoprotection remained in hereditary vitamin D-resistant rickets fibroblasts expressing a VDR with a defective DNA-binding domain or a mutation in helix H1 of the classical ligand-binding domain, both defects resulting in a failure to mediate genomic responses, implicating nongenomic responses for photoprotection. Ab099, a neutralizing antibody to ERp57, and ERp57 small interfering RNA completely blocked protection against thymine dimers in normal fibroblasts. Co-IP studies showed that the VDR and ERp57 interact in nonnuclear extracts of fibroblasts. 1,25-(OH)2D3 up-regulated expression of the tumor suppressor p53 in normal fibroblasts. This up-regulation of p53, however, was observed in all mutant fibroblasts, including those with no VDR, and with Ab099; therefore, VDR and ERp57 are not essential for p53 regulation. The data implicate the VDR and ERp57 as critical components for actions of 1,25-(OH)2D3 against DNA damage, but the VDR does not require normal DNA binding or classical ligand binding to mediate photoprotection. PMID:22322599

  17. Primary Human Osteoblasts in Response to 25-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3 and 24R,25-Dihydroxyvitamin D3

    PubMed Central

    van der Meijden, Karen; Lips, Paul; van Driel, Marjolein; Heijboer, Annemieke C.; Schulten, Engelbert A. J. M.; den Heijer, Martin; Bravenboer, Nathalie

    2014-01-01

    The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further

  18. Vitamin D3 in Fat Tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The literature describing vitamin D content of fat tissue is extremely limited. We conducted a pilot study that measured the concentrations of vitamin D3 in the fat tissue and serum of obese adults. These measurements were performed using a new liquid chromatography mass spectrometry (LC/MS) metho...

  19. Super pharmacological levels of calcitriol (1,25-(OH)2D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro.

    PubMed

    Pande, Vivek V; Chousalkar, Kapil C; Bhanugopan, Marie S; Quinn, Jane C

    2015-11-01

    The biologically active form of vitamin D₃, calcitriol (1,25-(OH)₂D₃), plays a key role in mineral homeostasis and bone formation and dietary vitamin D₃deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)₂D₃during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)₂D₃during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)₂D₃with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)₂D₃than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)₂D₃is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry. PMID:26500277

  20. Photoaffinity labeling of the rat plasma vitamin D binding protein with (26,27-3H)-25-hydroxyvitamin D3 3 beta-(N-(4-azido-2-nitrophenyl)glycinate)

    SciTech Connect

    Ray, R.; Holick, S.A.; Hanafin, N.; Holick, M.F.

    1986-08-26

    It is well recognized that the vitamin D binding protein (DBP) is important for the transport of vitamin D, 25-hydroxyvitamin D (25-OH-D), and its metabolites. In an attempt to better understand the molecular-binding properties of this ubiquitous protein, we designed and synthesized a photoaffinity analogue of 25-OH-D3 and its radiolabeled counterpart. This analogue, 25-hydroxyvitamin D3 3 beta-(N-(4-azido-2-nitrophenyl)glycinate) (25-OH-D3-ANG), was recognized by the rat DBP and was about 10 times less active than 25-OH-D3 in terms of binding. Incubation of (/sup 3/H)25-OH-D3 or (/sup 3/H)25-OH-D3-ANG with rat DBP revealed that both compounds were specifically bound to a protein with a sedimentation coefficient of 4.1 S. Each was displaced with a 500-fold excess of 25-OH-D3. When (/sup 3/H)25-OH-D3-ANG was exposed to UV radiation in the presence of rat DBP followed by the addition of a 500-fold excess of 25-OH-D3, there was no displacement of tritium from the 4.1S peak. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiographic analysis of (/sup 3/H)25-OH-D3-ANG exposed to UV radiation in the presence of rat DBP followed by the addition of a 500-fold excess of 25-OH-D3 revealed one major band with a molecular weight of 52 000. These data provide strong evidence that (/sup 3/H)25-OH-D3-ANG was covalently linked to the rat DBP. This photoaffinity probe should provide a valuable tool for the analysis of the binding site on this transport protein.

  1. Human Pigmentation, Cutaneous Vitamin D Synthesis and Evolution: Variants of Genes (SNPs) Involved in Skin Pigmentation Are Associated with 25(OH)D Serum Concentration.

    PubMed

    Rossberg, Willi; Saternus, Roman; Wagenpfeil, Stefan; Kleber, Marcus; März, Winfried; Reichrath, Sandra; Vogt, Thomas; Reichrath, Jörg

    2016-03-01

    Vitamin D deficiency is common and associated with higher risk for and unfavourable outcome of many diseases. Limited data exist on genetic determinants of serum 25(OH)D concentration. In a cohort of the LURIC study (n=2974, median 25(OH)D concentration 15.5 ng/ml), we tested the hypothesis that variants (SNPs, n=244) of several genes (n=15) involved in different aspects of skin pigmentation, including melanosomal biogenesis (ATP7A, DTNBP1, BLOC1S5, PLDN, PMEL), melanosomal transport within melanocytes (RAB27A, MYO5A, MLPH); or various melanocyte signaling pathways (MC1R, MITF, PAX3, SOX10, DKK1, RACK1, CNR1) are predictive of serum 25(OH)D levels. Eleven SNPs located in 6 genes were associated (p<0.05) with low or high serum 25(OH)D levels, 3 out of these 11 SNPs reached the aimed significance level after correction for multiple comparisons (FDR). In the linear regression model adjusted for sex, body mass index (BMI), year of birth and month of blood sample rs7565264 (MLPH), rs10932949 (PAX3), and rs9328451 (BLOC1S5) showed a significant association with 25(OH)D. The combined impact on variation of 25(OH)D serum levels (coefficient of determination (R(2))) for the 11 SNPs was 1.6% and for the 3 SNPs after FDR 0.3%. In Cox Regression we identified rs2292881 (MLPH) as having a significant association (advantage) with overall survival. Kaplan-Meier analysis did not show any significant impact of individual SNPs on overall survival. In conclusion, these results shed new light on the role of sunlight, skin pigmentation and vitamin D for human evolution. PMID:26977047

  2. Gestational Vitamin 25(OH)D Status as a Risk Factor for Receptive Language Development: A 24-Month, Longitudinal, Observational Study.

    PubMed

    Tylavsky, Frances A; Kocak, Mehmet; Murphy, Laura E; Graff, J Carolyn; Palmer, Frederick B; Völgyi, Eszter; Diaz-Thomas, Alicia M; Ferry, Robert J

    2015-12-01

    Emerging data suggest that vitamin D status during childhood and adolescence can affect neurocognitive development. The purpose of this study was to investigate whether gestational 25(OH)D status is associated with early childhood cognitive and receptive language development. The Conditions Affecting Neurocognitive Development and Learning in Early Childhood Study (CANDLE) study enrolled 1503 mother-child dyads during the second trimester of healthy singleton pregnancies from Shelby County TN. Among 1020 participants of the total CANDLE cohort for whom 25(OH)D levels were available, mean gestational 25(OH)D level during the second trimester was 22.3 ng/mL (range 5.9-68.4), with 41.7% of values <20 ng/dL. Cognitive and language scaled scores increased in a stair-step manner as gestational 25(OH)D levels in the second trimester rose from <20 ng/dL, through 20-29.99 ng/dL, to ≥30 ng/dL. When controlling for socioeconomic status, race, use of tobacco products, gestational age of the child at birth, and age at the 2-year assessment, the gestational 25(OH)D was positively related to receptive language development (p < 0.017), but not cognitive or expressive language. PMID:26633480

  3. Gestational Vitamin 25(OH)D Status as a Risk Factor for Receptive Language Development: A 24-Month, Longitudinal, Observational Study

    PubMed Central

    Tylavsky, Frances A.; Kocak, Mehmet; Murphy, Laura E.; Graff, J. Carolyn; Palmer, Frederick B.; Völgyi, Eszter; Diaz-Thomas, Alicia M.; Ferry, Robert J.

    2015-01-01

    Emerging data suggest that vitamin D status during childhood and adolescence can affect neurocognitive development. The purpose of this study was to investigate whether gestational 25(OH)D status is associated with early childhood cognitive and receptive language development. The Conditions Affecting Neurocognitive Development and Learning in Early Childhood Study (CANDLE) study enrolled 1503 mother-child dyads during the second trimester of healthy singleton pregnancies from Shelby County TN. Among 1020 participants of the total CANDLE cohort for whom 25(OH)D levels were available, mean gestational 25(OH)D level during the second trimester was 22.3 ng/mL (range 5.9–68.4), with 41.7% of values <20 ng/dL. Cognitive and language scaled scores increased in a stair-step manner as gestational 25(OH)D levels in the second trimester rose from <20 ng/dL, through 20–29.99 ng/dL, to ≥30 ng/dL. When controlling for socioeconomic status, race, use of tobacco products, gestational age of the child at birth, and age at the 2-year assessment, the gestational 25(OH)D was positively related to receptive language development (p < 0.017), but not cognitive or expressive language. PMID:26633480

  4. The vitamin D3 metabolite-type activity of Solanum malacoxylon.

    PubMed

    Basudde, C D; Humphreys, D J

    1976-01-01

    1. Administration of an aqueous extract of the dried leaves of Solanum malacoxylon (DLSM) to rats causes a rapid hyperphosphataemia and a decrease in plasma alkaline phosphatase activity; the two effects are typical of 1,25(OH)2D3, the hormonally active metabolite of vitamin D3. 2. DLSM, like both vitamin D3 and parathyroid hormone, increases plasma calcium and citrate levels in rats. The effect of DLSM in influencing plasma citrate, and the role of this important metabolite in mineral metabolism is discussed. 3. A decrease of plasma magnesium levels occurs in rats following treatment with DLSM. This decrease, which is associated with a renal loss of this cation, is remarkably similar to that produced by hypervitaminosis D3. 4. Prolonged administration of DLSM to vitamin D deficient rats causes a polyuria, hypercalciuria, hyperphosphaturia, hypermagnesuria, an increase in urinary total hydroxyproline, an increase in plasma total hexosamines, and a corresponding decrease in the bone total hexosamines. These effects, some of which can also be produced by hyperparathyroidism, or following the administration of parathyroid extract (PTE), large doses of vitamin D3, or 1,25(OH)2D3, suggest that DLSM, like the latter compounds, is capable of causing bone mineral mobilization, and the dissolution of bone organic matrix. PMID:212224

  5. Assessment of 25(OH)D vitamin concentration in plasma of residents of Lodz with metabolic syndrome in pre- and postmenopausal period

    PubMed Central

    Materek-Kuśmierkiewicz, Izabela; Moczulski, Dariusz; Gaszyńska, Ewelina; Szatko, Franciszek; Tokarski, Sławomir; Kowalski, Jan

    2014-01-01

    Introduction Vitamin D deficiency is a risk factor for metabolic syndrome disorders and the occurrence of these disorders greatly contributes to the deficiency of vitamin D. Postmenopausal women are particularly prone to that deficiency. Aim The aim of the study was to assess vitamin D concentration in the plasma of pre- and postmenopausal women, with or without metabolic syndrome. Material and methods The study included 141 women aged 26-77 (the mean age 58.74 years old), divided into 4 groups depending on the pre- or postmenopausal period and diagnosed or not with metabolic syndrome according to the International Diabetes Federation criteria (2005). Vitamin D concentration was assessed by LIAISON® test using chemiluminescent immunoassay (CLIA) technology. Results The mean vitamin D concentration was the highest among premenopausal women without metabolic syndrome (24.32 ng/ml), it was insignificantly higher than in postmenopausal women without metabolic syndrome (23.52 ng/ml) and significantly higher than in both groups with metabolic syndrome – premenopausal (19.86 ng/ml) and postmenopausal women (9.32 ng/ml). The recommended plasma 25(OH)D concentration was not found in any of postmenopausal women with diagnosed metabolic syndrome. Conclusions Postmenopausal women with metabolic syndrome had a significantly lower 25(OH)D vitamin concentration in plasma than postmenopausal women without metabolic syndrome. The frequency of vitamin D deficiency in women with metabolic syndrome was very high, significantly higher than in women without metabolic syndrome. PMID:26327869

  6. 1,25(OH) sub 2 D sub 3 and Ca-binding protein in fetal rats: Relationship to the maternal vitamin D status

    SciTech Connect

    Verhaeghe, J.; Thomasset, M.; Brehier, A.; Van Assche, F.A.; Bouillon, R. Institut National de la Sante et de la Recherche Medical )

    1988-04-01

    The autonomy and functional role of fetal 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) were investigated in nondiabetic and diabetic BB rats fed diets containing 0.85% calcium-0.7% phosphorus or 0.2% calcium and phosphorus and in semistarved rats on the low calcium-phosphorus diet. The changes in maternal and fetal plasma 1,25(OH){sub 2}D{sub 3} were similar: the levels were increased by calcium-phosphorus restriction and decreased by diabetes and semistarvation. Maternal and fetal 1,25(OH){sub 2}D{sub 3} levels were correlated. The vitamin D-dependent calcium-binding proteins (CaBP{sub 9K} and CaBP{sub 28K}) were measured in multiple maternal and fetal tissues and in the placenta of nondiabetic, diabetic, and calcium-phosphorus-restricted rats. The distributions of CaBP{sub 9K} and CaBP{sub 28K} in the pregnant rat were similar to that of the growing rat. The increased maternal plasma 1,25(OH){sub 2}D{sub 3} levels in calcium-phosphorus-restricted rats were associated with higher duodenal CaBP{sub 9K} and renal CaBPs, but placental CaBP{sub 9K} was not different. In diabetic pregnant rats, duodenal CaBP{sub 9K} was not different. In diabetic pregnant rats, duodenal CaBP{sub 9K} tended to be lower, while renal CaBPs were normal; placental CaBP{sub 9K} was decreased. The results indicate that in the rat fetal 1,25(OH){sub 2}D{sub 3} depends on maternal 1,25(OH){sub 2}D{sub 3} or on factors regulating maternal 1,25(OH){sub 2}D{sub 3}. The lack of changes in fetal CaBP in the presence of altered fetal plasma 1,25(OH){sub 2}D{sub 3} levels confirms earlier data showing that 1,25(H){sub 2}D{sub 3} has a limited hormonal function during perinatal development in the rat.

  7. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease

    PubMed Central

    Lajdova, Ingrid; Spustova, Viera; Oksa, Adrian; Kaderjakova, Zuzana; Chorvat, Dusan; Morvova, Marcela; Sikurova, Libusa; Marcek Chorvatova, Alzbeta

    2015-01-01

    Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000–14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca2+]i decreased (P < 0.001). The differences in [Ca2+]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca2+-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca2+]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression. PMID:26064953

  8. In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice.

    PubMed

    Poon, Christina C W; Li, Rachel W S; Seto, Sai Wang; Kong, Siu Kai; Ho, Ho Pui; Hoi, Maggie P M; Lee, Simon M Y; Ngai, Sai Ming; Chan, Shun Wan; Leung, George P H; Kwan, Yiu Wa

    2015-11-15

    In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis. PMID:26452518

  9. Vitamin D3 supplementation scheme in HIV-infected patients based upon pharmacokinetic modelling of 25-hydroxycholecalciferol

    PubMed Central

    Foissac, Frantz; Tréluyer, Jean-Marc; Souberbielle, Jean-Claude; Rostane, Hafeda; Urien, Saïk; Viard, Jean-Paul

    2013-01-01

    Aims Vitamin D deficiency is prevalent in HIV-infected patients and has been associated with osteopenia and HIV disease progression. Our aims were to investigate the pharmacokinetics of 25-hydroxycholecalciferol [25(OH)D], the effect of antiretroviral treatment (ARV) and others factors that may influence the pharmacokinetics, and to determine a vitamin D3 dosing scheme to reach the 30 ng ml−1 threshold (defined as 25(OH)D sufficiency). Methods This monocentric retrospective study included 422 HIV-infected patients aged 16 to 85 years. A total of 723 25(OH)D concentrations were available for pharmacokinetic evaluation and a population pharmacokinetic model was developed with MONOLIX 3.2. Results Median 25(OH)D at baseline was 16 ng ml−1 (interquartile range 11–23 ng ml−1) for the total population, 17% of patient had concentrations below 10 ng ml−1, 68% between 10 and 30 ng ml−1 and 15% above 30 ng ml−1. 25(OH)D pharmacokinetics were best described by a one compartment model with an additional endogenous production. The effects of season and skin phototype were significant on production rate. The endogenous production was 20% lower in non-white skin phototype patients and was decreased by 16% during autumn, winter and spring. No significant differences in 25(OH)D concentrations were related to antiretroviral drugs (ARV). To obtain concentrations between 30 and 80 ng ml−1, the dosing recommendation was 100 000 IU every month. Conclusions Season and skin phototype had an influence on the endogenous production of 25(OH)D. However no effect of ARV was found. A dosing scheme to reach sufficient 25(OH)D concentrations is proposed. PMID:23072545

  10. A novel compound heterozygous ROMK mutation presenting as late onset Bartter syndrome associated with nephrocalcinosis and elevated 1,25(OH)(2) vitamin D levels.

    PubMed

    Sharma, Amita; Linshaw, Micheal A

    2011-08-01

    Bartter syndrome (BS) is a rare renal tubular disorder presenting with hypokalemic metabolic alkalosis, which is classified into five types. KCNJ1 mutations usually cause the neonatal form of BS, type II BS (OMIM 241200). However, this report concerns a female patient with a novel, compound heterozygous KCNJ1 mutation that causes late-onset BS. The unique clinical findings of this case include persistently elevated 1,25(OH)(2) vitamin D levels, possibly due to increase prostaglandin E(2) levels, and medullary nephrocalcinosis. Treatment with COX-2 inhibitors resolved her hypercalciuria and improved her height and weight; renal function remains stable and there is no progression of nephrocalcinosis. PMID:21431899

  11. Regulation of Osteoblast Differentiation by Acid-Etched and/or Grit-Blasted Titanium Substrate Topography Is Enhanced by 1,25(OH)2D3 in a Sex-Dependent Manner.

    PubMed

    Olivares-Navarrete, Rene; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2015-01-01

    This study assessed contributions of micron-scale topography on clinically relevant titanium (Ti) to differentiation of osteoprogenitor cells and osteoblasts; the interaction of this effect with 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3); and if the effects are sex-dependent. Male and female rat bone marrow cells (BMCs) were cultured on acid-etched (A, R a = 0.87 μm), grit-blasted (GB, R a = 3.90 μm), or grit-blasted/acid-etched (SLA, R a = 3.22 μm) Ti. BMCs were sensitive to surface topography and underwent osteoblast differentiation. This was greatest on SLA; acid etching and grit blasting contributed additively. Primary osteoblasts were also sensitive to SLA, with less effect from individual structural components, demonstrated by enhanced local factor production. Sex-dependent responses of BMCs to topography varied with parameter whereas male and female osteoblasts responded similarly to surface treatment. 1α,25(OH)2D3 enhanced cell responses on all surfaces similarly. Effects were sex-dependent and male cells grown on a complex microstructured surface were much more sensitive than female cells. These results indicate that effects of the complex SLA topography are greater than acid etching or grit blasting alone on multipotent BMCs and committed osteoblasts and that individual parameters are sex-specific. The effect of 1α,25(OH)2D3 was sex dependent. The results also suggest that levels of 1α,25(OH)2D3 in the patient may be important in osseointegration. PMID:25945332

  12. 21 CFR 582.5953 - Vitamin D3.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin D3. 582.5953 Section 582.5953 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5953 Vitamin D3. (a) Product. Vitamin D3. (b) Conditions of use. This substance is...

  13. 21 CFR 582.5953 - Vitamin D 3.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Vitamin D 3. 582.5953 Section 582.5953 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5953 Vitamin D 3. (a) Product. Vitamin D3. (b) Conditions of use. This substance...

  14. 21 CFR 582.5953 - Vitamin D 3.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Vitamin D 3. 582.5953 Section 582.5953 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5953 Vitamin D 3. (a) Product. Vitamin D3. (b) Conditions of use. This substance...

  15. 21 CFR 582.5953 - Vitamin D3.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Vitamin D3. 582.5953 Section 582.5953 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5953 Vitamin D3. (a) Product. Vitamin D3. (b) Conditions of use. This substance is...

  16. 21 CFR 582.5953 - Vitamin D3.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Vitamin D3. 582.5953 Section 582.5953 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5953 Vitamin D3. (a) Product. Vitamin D3. (b) Conditions of use. This substance is...

  17. Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in NOD mice when given early and long term.

    PubMed

    Takiishi, Tatiana; Ding, Lei; Baeke, Femke; Spagnuolo, Isabella; Sebastiani, Guido; Laureys, Jos; Verstuyf, Annemieke; Carmeliet, Geert; Dotta, Francesco; Van Belle, Tom L; Gysemans, Conny A; Mathieu, Chantal

    2014-06-01

    High doses of the active form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], prevent diabetes in the NOD mouse but also elicit unwanted calcemic side effects. Because immune cells themselves can convert vitamin D3 into 1,25(OH)2D3 locally, we hypothesized that dietary vitamin D3 can also prevent disease. Thus, we evaluated whether dietary administration of high doses of regular vitamin D3 (800 IU/day) during different periods of life (pregnancy and lactation, early life [3-14 weeks of age], or lifelong [3-35 weeks of age]) safely prevents diabetes in NOD mice. We found that only lifelong treatment raised serum 25-hydroxyvitamin D3 from 173 nmol/L in controls to 290 nmol/L, without inducing signs of calcemic or bone toxicity, and significantly reduced diabetes development in both male and female NOD mice. This diabetes protection by vitamin D3 correlated with preserved pancreatic insulin content and improved insulitis scores. Moreover, vitamin D3 treatment decreased interferon-γ-positive CD8(+) T cells and increased CD4(+)(CD25(+))FoxP3(+) T cells in pancreatic draining lymph nodes. In conclusion, this study shows for the first time that high doses of regular dietary vitamin D3 can safely prevent diabetes in NOD mice when administered lifelong, although caution is warranted with regards to administering equivalently high doses in humans. PMID:24550187

  18. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis.

    PubMed

    Ryz, Natasha R; Lochner, Arion; Bhullar, Kirandeep; Ma, Caixia; Huang, Tina; Bhinder, Ganive; Bosman, Else; Wu, Xiujuan; Innis, Sheila M; Jacobson, Kevan; Vallance, Bruce A

    2015-11-01

    Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense. PMID:26336925

  19. Conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in renal slices from the rat

    SciTech Connect

    Armbrecht, H.J.; Zenser, T.V.; Davis, B.B.

    1981-07-01

    Isolated renal cortical slices were used to study the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25)(OH2)D3) by the rat kidney. Production of 1,25-(OH)2D3 and 24,25-(OH)2D3 was linear with time (30-90 min) and tissue weight (40-250 mg). Production of 1,25-(OH)2D3 was greatest (134 +/- 17 pg/mg tissue.h) in animals fed a low calcium, vitamin D-deficient diet. The greatest 24,25-(OH)2D3 production (106 +/- 17 pg/mg tissue.h) was seen in animals fed a high calcium, vitamin D-replete diet, 1,25-(OH)2D3 production was reduced to 23% of maximum by the addition of 1.2% calcium or 0.8% strontium to the vitamin D-deficient, low calcium diet. Production of 1,25-(OH)2D3 and 24,25-(OH)2D3 was greatly reduced in renal cortical slices that had been heated before incubation. Slices of renal medulla produced only small amounts of 1,25-(OH)2D3 compared to slices of renal cortex. These studies provide direct evidence for the production of 1,25-(OH)2D3 and 24,25-(OH)2D3 by the mammalian renal cortex. They also demonstrate that this production may be modulated by dietary calcium, strontium, and vitamin D.

  20. Serum 25(OH) Vitamin D levels is not associated with disability in multiple sclerosis patients: A case-control study

    PubMed Central

    Nikanfar, Masoud; Taheri-Aghdam, Ali Akbar; Yazdani, Maria; Shaafi, Sheida; Masoudian, Nooshin; Akbari, Hossein; Youhanaee, Parisa; Abbaszadeh, Hamzeh

    2015-01-01

    Background: It seems that serum vitamin D levels are one of the potential environmental factors affecting the severity of multiple sclerosis (MS). In this study, we aim to evaluate vitamin D levels in MS patients and healthy subjects and assess the relationship between vitamin D level and disability. Methods: In this case-control study, 168 rapid relapsing MS patients and 168 matched healthy controls were randomly included in this study. Demographic characteristics and serum vitamin D levels for patients and controls, as well as expanded disability status scale (EDSS), duration of disease and diagnostic lag for patients were evaluated. We followed up patients for 6 months and relapses were recorded. Results: The mean serum vitamin D levels were 19.16 ± 17.37 inpatients and 25.39 ± 19.67 in controls (P = 0.560). The mean serum vitamin D levels were 12.65 ± 13.3 in patients with relapses and 22.08 ± 18.22 in patients without any relapses (P < 0.001). There was no significant correlation between EDSS score and serum vitamin D levels (r = −0.08, P = 0.280). There was a significant positive correlation between EDSS score and disease duration (r = 0.52, P < 0.001). Conclusion: In conclusion, vitamin D level in patients with MS was significantly lower than the healthy subjects, but no significant relationship was found between vitamin D levels and disability. Our findings did not suggest a protective role for serum vitamin D levels against disability. PMID:25874052

  1. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060.

    PubMed Central

    van den Bemd, G C; Pols, H A; Birkenhäger, J C; van Leeuwen, J P

    1996-01-01

    The 1,25-dihydroxyvitamin D3 [1,25-(OH)2vitamin D3] analog KH1060 exerts very potent effects on cell proliferation and cell differentiation via the vitamin D receptor (VDR). However, the activities of KH1060 are not associated with an increased affinity for the VDR. We now show that increased stabilization of the VDR-KH1060 complex could be an explanation for its high potencies. VDR half-life studies performed with cycloheximide-translational blocked rat osteoblast-like ROS 17/2.8 cells demonstrated that, in the absence of ligand, VDR levels rapidly decreased. After 2 hr, less than 10% of the initial VDR level could be measured. In the presence of 1,25-(OH)2vitamin D3, the VDR half-life was 15 hr. After 24 hr. less than 20% of the initial VDR content was detectable, whereas, at this time-point, when the cells were incubated with KH1060 80% of the VDR was still present. Differences in 1,25-(OH)2vitamin D3- and KH1060-induced conformational changes of the VDR could underlie the increased VDR stability. As assessed by limited proteolytic digestion analysis, both 1,25-(OH)2vitamin D3 and KH1060 caused a specific conformational change of the VDR. Compared with 1,25-(OH)2vitamin D3, KH1060 induced a conformational change that led to a far more dramatic protection of the VDR against proteolytic degradation. In conclusion, the altered VDR stability and the possibly underlying change in VDR conformation caused by KH1060 could be an explanation for its enhanced bioactivity. Images Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:8855240

  2. Thrombomodulin is synthesized by osteoblasts, stimulated by 1,25-(OH)2D3 and activates protein C at their cell membrane.

    PubMed

    Maillard, C; Berruyer, M; Serre, C M; Amiral, J; Dechavanne, M; Delmas, P D

    1993-08-01

    We have previously shown that protein S, a vitamin K-dependent protein, is a bone matrix component synthesized and secreted by osteoblasts. Because protein S is a cofactor of protein C in inhibiting factor Va and VIIIa, we have looked for the presence of the proteins related to the anticoagulant protein C system in human MG 63 osteosarcoma cells and in human adult osteoblast-like cells. Using immunoblotting, we have shown that protein C, factor V, and C4b binding protein are not secreted by these cells. We have shown by enzyme-linked immunoassay, immunocytochemistry, and immunoprecipitation of labeled proteins that thrombomodulin, a transmembrane glycoprotein involved with thrombin in the activation of protein C, is present at the cell surface of osteoblasts. Moreover, using a protein C activation system where thrombin and protein C are added to the cells, we have shown that protein C could be activated at the osteoblast cell surface. This activation of exogenous protein C, reflecting the activity of thrombomodulin, as well as the expression of the thrombomodulin antigen, is regulated by some bone resorption-enhancing factors. 1,25-dihydroxyvitamin D3 and retinoic acid increase thrombomodulin expression and activity in a dose-dependent manner whereas tumor necrosis factor alpha and interleukin 1 decrease these parameters. Because thrombomodulin is known to inhibit single-chain urokinase-type plasminogen activator, a molecule present in the osteoblast microenvironment, these findings suggest that thrombomodulin could play a role in the regulation of bone resorption by modulating the plasmin system. PMID:8393772

  3. Vitamin D3 supplementation increases fibroblast growth factor-23 in HIV-infected youth treated with tenofovir disoproxil fumarate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tenofovir (TDF) is associated with phosphaturia and elevated 1,25 dihydroxy vitamin D (1,25-OH(2)D). Fibroblast growth factor-23 causes phosphaturia and increases in response to elevated 1,25-OH(2)D. Vitamin D binding proetin (VDBP) binds to 1,25-OH(2)D, decreasing biologic activity, and is elevated...

  4. Inhibition of insulin- and insulin-like growth factor-I-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D3 and the vitamin D3 analogue EB1089.

    PubMed

    Vink-van Wijngaarden, T; Pols, H A; Buurman, C J; Birkenhäger, J C; van Leeuwen, J P

    1996-05-01

    1,25 Dihydroxyvitamin D3 (1,25-(OH)2D3) and a number of synthetic vitamin D3 analogues with low calcaemic activity, have been shown to inhibit breast cancer cell growth in vitro as well as in vivo. The purpose of the present study was to investigate a possible interaction of 1,25-(OH)2D3 and the vitamin D3 analogue EB1089 with the insulin-IGF-I regulatory system. The oestrogen receptor-positive MCF-7 human breast cancer cells used in this study are able to grow autonomously and their growth is stimulated by insulin. In order to avoid interference of IGF-binding proteins (IGF-BPs), we used an analogue of IGF-I, long R3 IGF-I, which stimulated MCF-7 cell growth similar to insulin. The growth stimulation by insulin and by long R3 IGF-I was completely inhibited by 1,25-(OH)2D3 and EB1089. Autonomous growth was also inhibited by 1,25-(OH)2D3 and EB1089. The analogue EB1089 was active at 50 times lower concentrations than 1,25-(OH)2D3. It was shown that growth inhibition was not achieved through downregulation of insulin and IGF-I binding after 48 h. Paradoxically, after prolonged treatment (8 days), an upregulation of insulin and IGF-I binding was observed. Two possible intracellular mediators of the insulin-IGF mitogenic signal are C-FOS and mitogen-activated protein (MAP) kinase. Insulin-induced C-FOS mRNA was inhibited by 1,25-(OH)2D3, suggesting that it could be involved in the growth inhibition by 1,25-(OH)2D3. MAP kinase activation appeared not to be involved in growth stimulation by both insulin and IGF-I. Together, the present study demonstrates that vitamin D3 compounds can block the mitogenic activity of insulin and IGF-I, which may contribute to their tumour suppressive activity observed in vivo. PMID:9081364

  5. Low 25OH vitamin D2 levels found in untreated Alzheimer's patients, compared to acetylcholinesterase-inhibitor treated and controls.

    PubMed

    Shah, Iltaf; Petroczi, Andrea; Tabet, Naji; Klugman, Anthony; Isaac, Mokhtar; Naughton, Declan P

    2012-11-01

    Following contradictory reports, the aim of this study was to apply our highly specific novel assay to delineate the relationship between vitamin D forms and Alzheimer's disease. The study incorporated patients, both untreated and treated with acetylcholinesterase inhibitors, along with controls. Patients were grouped as A: untreated (n=26) and B: treated with donepezil, rivastigmine or galantamine (n=44). The study included a control Group (C, n=35) with no cognitive impairment. Cognitive function was assessed using the MMSE. Levels of vitamin D forms were measured using liquid chromatography-mass spectrometry (LC-MS/MS) and calcium measurements were conducted using inductively coupled plasma-mass spectrometry (ICP-MS). In the cohort studied, no relationship was observed between MMSE score, calcium and any form of vitamin D. The indisputable finding is that the level of 25hydroxyvitamin D2 (25OHD2) (3.165 ± 6.352 nmol/L, p < 0.001) was significantly lower in the untreated Group (A) compared to the control and treated groups (7.932 ± 9.196 and 12.138 ± 15.682 nmol/L, respectively). In contrast, the levels of the primary forms, vitamin D2 and total vitamin D were the highest for the untreated group. Vitamin D levels, assessed as 25OHD are significantly lower in patients suffering from Alzheimer's disease arising from extremely low levels of 25OHD2 along with low levels of 25OHD3. Treatment with acetylcholinesterase inhibitors reverses this deficit. Further research is warranted to delineate the mode of action of acetylcholinesterase inhibitors with respect to normalising 25OHD2 levels. These observations resulted in the hypothesis that along with the common functions of vitamin D, different forms have distinct roles in health and disease. PMID:22876849

  6. 21 CFR 172.380 - Vitamin D3.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vitamin D3. 172.380 Section 172.380 Food and Drugs... Dietary and Nutritional Additives § 172.380 Vitamin D3. Vitamin D3 may be used safely in foods as...

  7. 21 CFR 172.380 - Vitamin D 3;.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vitamin D 3;. 172.380 Section 172.380 Food and... Dietary and Nutritional Additives § 172.380 Vitamin D 3;. Vitamin D3 may be used safely in foods as...

  8. 21 CFR 172.380 - Vitamin D3.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vitamin D3. 172.380 Section 172.380 Food and Drugs... Dietary and Nutritional Additives § 172.380 Vitamin D3. Vitamin D3 may be used safely in foods as...

  9. 21 CFR 172.380 - Vitamin D3.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vitamin D3. 172.380 Section 172.380 Food and Drugs... Dietary and Nutritional Additives § 172.380 Vitamin D3. Vitamin D3 may be used safely in foods as...

  10. Vitamin D3 represses IgE-dependent mast cell activation via mast cell-CYP27B1 and -vitamin D receptor activity

    PubMed Central

    Yip, Kwok-Ho; Kolesnikoff, Natasha; Yu, Chunping; Hauschild, Nicholas; Taing, Houng; Biggs, Lisa; Goltzman, David; Gregory, Philip A.; Anderson, Paul H.; Samuel, Michael S.; Galli, Stephen J.; Lopez, Angel F.; Grimbaldeston, Michele A.

    2014-01-01

    Background Mast cells have gained notoriety based on their detrimental contributions to IgE-mediated allergic disorders. Although mast cells express the vitamin D receptor (VDR), it is not clear to what extent 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), or its predominant inactive precursor metabolite in circulation, 25-hydroxyvitamin D3 (25OHD3), can influence IgE-mediated mast cell activation and passive cutaneous anaphylaxis (PCA) in vivo. Objective We sought to assess whether the vitamin D3 metabolites, 25OHD3 and 1α,25(OH)2D3, can repress IgE-dependent mast cell activation via mast cell-CYP27B1 and -vitamin D receptor activity. Methods We measured the extent of vitamin D3 suppression of IgE-mediated mast cell degranulation and mediator production in vitro, as well as the vitamin D3-induced curtailment of PCA responses in WBB6F1-KitW/W-v or C57BL/6J-KitW-sh/W-sh mice engrafted with mast cells that did or did not express VDR or CYP27B1. Results Here we show that mouse and human mast cells can convert 25OHD3 to 1α,25(OH)2D3 via 25-hydroxyvitamin D-1α–hydroxylase (CYP27B1) activity, and that both of these vitamin D3 metabolites suppressed IgE-induced mast cell-derived pro-inflammatory and vasodilatory mediator production in a VDR-dependent manner in vitro. Furthermore, epicutaneously applied vitamin D3 metabolites significantly reduced the magnitude of skin swelling associated IgE-mediated PCA reactions in vivo; a response that required functional mast cell-VDRs and mast cell-CYP27B1. Conclusion Taken together, our findings provide a mechanistic explanation for the anti-inflammatory effects of vitamin D3 on mast cell function by demonstrating that mast cells can actively metabolize 25OHD3 to dampen IgE-mediated mast cell activation in vitro and in vivo. PMID:24461581

  11. Use of Vitamin D3 and Its Metabolites in Broiler Chicken Feed on Performance, Bone Parameters and Meat Quality

    PubMed Central

    Garcia, Ana Flávia Quiles Marques; Murakami, Alice Eiko; Duarte, Cristiane Regina do Amaral; Rojas, Iván Camilo Ospina; Picoli, Karla Paola; Puzotti, Maíra Mangili

    2013-01-01

    The objective of this experiment was to assess the use of different vitamin D metabolites in the feed of broiler chickens and the effects of the metabolites on performance, bone parameters and meat quality. A total of 952 one-day-old male broiler chicks were distributed in a completely randomised design, with four treatments, seven replicates and 34 birds per experimental unit. The treatments consisted of four different sources of vitamin D included in the diet, D3, 25(OH)D3, 1,25(OH)2D3, and 1α(OH)D3, providing 2000 and 1600 IU of vitamin D in the starter (1 to 21 d) and growth phases (22 to 42 d), respectively. Mean weight, feed:gain and weight gain throughout the rearing period were less in animals fed 1α(OH)D3 when compared with the other treatments (p<0.05). No significant differences were noted among the treatments (p>0.05) for various bone parameters. Meat colour differed among the treatments (p>0.05). All of the metabolites used in the diets, with the exception of 1α(OH)D3, can be used for broiler chickens without problems for performance and bone quality, however, some aspects of meat quality were affected. PMID:25049804

  12. Vitamin D-Binding Protein Influences Total Circulating Levels of 1,25-Dihydroxyvitamin D3 but Does Not Directly Modulate the Bioactive Levels of the Hormone in Vivo

    PubMed Central

    Zella, Lee A.; Shevde, Nirupama K.; Hollis, Bruce W.; Cooke, Nancy E.; Pike, J. Wesley

    2008-01-01

    Mice deficient in the expression of vitamin D-binding protein (DBP) are normocalcemic despite undetectable levels of circulating 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We used this in vivo mouse model together with cells in culture to explore the impact of DBP on the biological activity of 1,25(OH)2D3. Modest changes in the basal expression of genes involved in 1,25(OH)2D3 metabolism and calcium homeostasis were observed in vivo; however, these changes seemed unlikely to explain the normal calcium balance seen in DBP-null mice. Further investigation revealed that despite the reduced blood levels of 1,25(OH)2D3 in these mice, tissue concentrations were equivalent to those measured in wild-type counterparts. Thus, the presence of DBP has limited impact on the extracellular pool of 1,25(OH)2D3 that is biologically active and that accumulates within target tissues. In cell culture, in contrast, the biological activity of 1,25(OH)2D3 is significantly impacted by DBP. Here, although DBP deficiency had no effect on the activation profile itself, the absence of DBP strongly reduced the concentration of exogenous 1,25(OH)2D3 necessary for transactivation. Surprisingly, analogous studies in wild-type and DBP-null mice, wherein we explored the activity of exogenous 1,25(OH)2D3, produced strikingly different results as compared with those in vitro. Here, the carrier protein had virtually no impact on the distribution, uptake, activation profile, or biological potency of the hormone. Collectively, these experiments suggest that whereas DBP is important to total circulating 1,25(OH)2D3 and sequesters extracellular levels of this hormone both in vivo and in vitro, the binding protein does not influence the hormone’s biologically active pool. PMID:18372326

  13. In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Semak, Igor; Tang, Edith K. Y.; Nguyen, Minh N.; Benson, Heather A. E.; Korik, Elena; Janjetovic, Zorica; Chen, Jianjun; Yates, Charles R.; Postlethwaite, Arnold; Li, Wei; Tuckey, Robert C.

    2012-01-01

    We define previously unrecognized in vivo pathways of vitamin D3 (D3) metabolism generating novel D3-hydroxyderivatives different from 25-hydroxyvitamin D3 [25(OH)D3] and 1,25(OH)2D3. Their novel products include 20-hydroxyvitamin D3 [20(OH)D3], 22(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3, and 17,20,23(OH)3D3 and were produced by placenta, adrenal glands, and epidermal keratinocytes. We detected the predominant metabolite [20(OH)D3] in human serum with a relative concentration ∼20 times lower than 25(OH)D3. Use of inhibitors and studies performed with isolated mitochondria and purified enzymes demonstrated involvement of the steroidogenic enzyme cytochrome P450scc (CYP11A1) as well as CYP27B1 (1α-hydroxylase). In placenta and adrenal glands with high CYP11A1 expression, the predominant pathway was D3 → 20(OH)D3 → 20,23(OH)2D3 → 17,20,23(OH)3D3 with further 1α-hydroxylation, and minor pathways were D325(OH)D3 → 1,25(OH)2D3 and D3 → 22(OH)D3 → 20,22(OH)2D3. In epidermal keratinocytes, we observed higher proportions of 22(OH)D3 and 20,22(OH)2D3. We also detected endogenous production of 20(OH)D3, 22(OH) D3, 20,23(OH)2D3, 20,22(OH)2D3, and 17,20,23(OH)3D3 by immortalized human keratinocytes. Thus, we provide in vivo evidence for novel pathways of D3 metabolism initiated by CYP11A1, with the product profile showing organ/cell type specificity and being modified by CYP27B1 activity. These findings define the pathway intermediates as natural products/endogenous bioregulators and break the current dogma that vitamin D is solely activated through the sequence D325(OH)D3 → 1,25(OH)2D3.—Slominski, A. T., Kim, T.-K., Shehabi, H. Z., Semak, I., Tang, E. K. Y., Nguyen, M. N., Benson, H. A. E., Korik, E., Janjetovic, Z., Chen, J., Yates, C. R., Postlethwaite, A., Li, W., Tuckey, R. C. In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1. PMID:22683847

  14. Effect of 25(OH) vitamin D reference method procedure (RMP) alignment on clinical measurements obtained with the IDS-iSYS chemiluminescent-based automated analyzer.

    PubMed

    Simpson, Christine A; Cusano, Anna Maria; Bihuniak, Jessica; Walker, Joanne; Insogna, Karl L

    2015-04-01

    The Vitamin D Standardization Program (VDSP) has identified ID-LC/MS/MS as the reference method procedure (RMP) for 25(OH) vitamin D and NIST Standard SRM2972 as the standard reference material (SRM). As manufacturers align their products to the RMP and NIST standard, a concern is that results obtained in aligned assays will be divergent from those obtained with pre-alignment assays. The Immunodiagnostic Systems Ltd., chemiluminescent, 25(OH) vitamin D iSYS platform assay, was recently harmonized to the RMP. To determine the impact of standardization on results obtained with iSYS reagents, 119 single donor serum samples from eight different disease categories were analyzed in four non-standardized and two standardized iSYS assays. There were strong correlations between the four non-standardized and two standardized assays with Spearman's rank r values between 0.975 and 0.961 and four of the eight r values were >0.97. R(2) values for the eight best-fit linear regression equations ranging between 0.947 and 0.916. None of the slopes were found to be significantly different from one another. Bland-Altman plots showed that the bias was comparable when each of the four non-standardized assays was compared to either of the standardized assays. When the data were segregated in values between 6 and 49ng/mL (15-122nmol/L) or between 50 and 100ng/mL (125-250nmol/L) significant associations remained between results obtained with non-standardized and standardized calibrators regardless of the absolute value. When five recent DEQAS unknowns were analyzed in one non-standardized and one standardized assay the mean percent difference from the NIST target in values obtained using standardized vs. non-standardized calibrators were not significantly different. Finally, strong and statistically significant associations between the results were obtained using non-standardized and standardized assays for six of eight clinical conditions. The only exceptions were hypocalcemia and breast

  15. Serum Vitamin D3 Level in Patients with Female Pattern Hair Loss

    PubMed Central

    Banihashemi, Mahnaz; Nahidi, Yalda; Meibodi, Naser Tayyebi; Jarahi, Lida; Dolatkhah, Mojgan

    2016-01-01

    Background: Female pattern hair loss (FPHL) is the most common cause of alopecia in women, characterized by diffuse nonscarring hair loss in frontal, central, and parietal areas of the scalp. Pathophysiology of FPHL is still not well known, and it is probably a multifactorial genetic trait. FPHL is also observed in women without increased androgen levels, which raises the likelihood of androgen-independent mechanisms and explains the lack of response to antiandrogen treatments in some patients. Vitamin D is a factor that has recently been considered in dealing with these patients. The purpose of this study was to evaluate the serum levels of Vitamin D in patients with FPHL and compare it with healthy controls. Methods: In this case-control study, 45 women with FPHL were evaluated as well as the same number of healthy women matched for age, hours spent under sunlight per day, and body mass index. Serum 25(OH) D3 level was measured using ELISA. Results: 60% of FPHL patients were in 15–30 years old age group with the mean standard deviation (SD) age of 29.11 (7.30) years. In the majority of patients (66.7%), severity of hair loss was Ludwig I. Mean (SD) serum Vitamin D3 level in patient and control group was 13.45 (8.40) and 17.16 (8.96), respectively. T-test showed a significant difference between the two groups in terms of Vitamin D3 serum levels (P = 0.04). Conclusions: This study indicated the correlation between the incidence of FPHL and decreased serum levels of Vitamin D3. It is recommended to evaluate serum Vitamin D3 levels as well as other hormone assays in these patients. PMID:27625563

  16. Regulation of Mycobacterium-specific mononuclear cell responses by 25-hydroxyvitamin D3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25[OH]2D3), has been shown to be an important regulator of innate and adaptive immune function. In addition, synthesis of 1,25(OH)2D3 from 25-hydroxyvitamin D3 (25[OH]D3) by the enzyme 1alpha-hydroxylase in monocytes upon activation by TLR...

  17. Production of 22-hydroxy metabolites of vitamin d3 by cytochrome p450scc (CYP11A1) and analysis of their biological activities on skin cells.

    PubMed

    Tuckey, Robert C; Li, Wei; Shehabi, Haleem Z; Janjetovic, Zorica; Nguyen, Minh N; Kim, Tae-Kang; Chen, Jianjun; Howell, Danielle E; Benson, Heather A E; Sweatman, Trevor; Baldisseri, Donna M; Slominski, Andrzej

    2011-09-01

    Cytochrome P450scc (CYP11A1) can hydroxylate vitamin D(3), producing 20S-hydroxyvitamin D(3) [20(OH)D(3)] and 20S,23-dihydroxyvitamin D(3) [20,23(OH)(2)D(3)] as the major metabolites. These are biologically active, acting as partial vitamin D receptor (VDR) agonists. Minor products include 17-hydroxyvitamin D(3), 17,20-dihydroxyvitamin D(3), and 17,20,23-trihydroxyvitamin D(3). In the current study, we have further analyzed the reaction products from cytochrome P450scc (P450scc) action on vitamin D(3) and have identified two 22-hydroxy derivatives as products, 22-hydroxyvitamin D(3) [22(OH)D(3)] and 20S,22-dihydroxyvitamin D(3) [20,22(OH)(2)D(3)]. The structures of both of these derivatives were determined by NMR. P450scc could convert purified 22(OH)D(3) to 20,22(OH)(2)D(3). The 20,22(OH)(2)D(3) could also be produced from 20(OH)D(3) and was metabolized to a trihydroxyvitamin D(3) product. We compared the biological activities of these new derivatives with those of 20(OH)D(3), 20,23(OH)(2)D(3), and 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. 1,25(OH)(2)D(3), 20(OH)D(3), 22(OH)D(3), 20,23(OH)(2)D(3), and 20,22(OH)(2)D(3) significantly inhibited keratinocyte proliferation in a dose-dependent manner. The strongest inducers of involucrin expression (a marker of keratinocyte differentiation) were 20,23(OH)(2)D(3), 20,22(OH)(2)D(3), 20(OH)D(3), and 1,25(OH)(2)D(3), with 22(OH)D(3) having a heterogeneous effect. Little or no stimulation of CYP24 mRNA expression was observed for all the analogs tested except for 1,25(OH)(2)D(3). All the compounds stimulated VDR translocation from the cytoplasm to the nucleus with 22(OH)D(3) and 20,22(OH)(2)D(3) having less effect than 1,25(OH)(2)D(3) and 20(OH)D(3). Thus, we have identified 22(OH)D(3) and 20,22(OH)(2)D(3) as products of CYP11A1 action on vitamin D(3) and shown that, like 20(OH)D(3) and 20,23(OH)(2)D(3), they are active on keratinocytes via the VDR, however, showing a degree of phenotypic heterogeneity in comparison

  18. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury

    PubMed Central

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-01-01

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury. PMID:26691774

  19. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-01-01

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury. PMID:26691774

  20. Determinants of Vitamin D Levels in Italian Children and Adolescents: A Longitudinal Evaluation of Cholecalciferol Supplementation versus the Improvement of Factors Influencing 25(OH)D Status

    PubMed Central

    Stagi, Stefano; Pelosi, Paola; Strano, Massimo; Poggi, Giovanni; Manoni, Cristina; de Martino, Maurizio; Seminara, Salvatore

    2014-01-01

    Objective. This paper aims to assess 25(OH)D levels in Italian children and adolescents identifying risk factors for 25(OH)D deficiency and to evaluate whether a normal 25(OH)D value can be restored in 25(OH)D-deficient patients. Methods. We evaluated 25(OH)D levels in 679 Italian children and adolescents (≤10, 11–20, 21–30, and >30 ng/mL were defined as severe deficiency, deficiency, insufficiency, and sufficiency, resp.). Of these, 365 25(OH)D-deficient were followed up for 1 year; 205 were treated with cholecalciferol (Arm A: 400 I.U.) and 160 by improving the environmental variables influencing 25(OH)D levels (Arm B). Results. At cross-sectional evaluation, 11.3% showed sufficiency, 30.0% insufficiency, and 58.7% 25(OH)D deficiency. Mean 25(OH)D was 19.08 ± 8.44 ng/mL. At the enrollment time (T0), no difference was found between Arms A and B with respect to distribution and 25(OH)D levels. At end time (T1) 26.0% (29.7% in Arm A versus 20.6% in Arm B) showed sufficiency, 38.4% (42.0% versus 34.4%) insufficiency, and 35.6% (28.3% versus 45.0%) 25(OH)D deficiency. Mean 25(OH)D level was 23.71 ± 6.83 ng/mL. Conclusions. Neither changes of lifestyle nor 400 I.U. cholecalciferol supplementation alone appears to be sufficient to restore adequate 25(OH)D levels. PMID:25435877

  1. Anti-proliferative activity of 25-hydroxyvitamin D3 in human prostate cells.

    PubMed

    Munetsuna, Eiji; Kawanami, Rie; Nishikawa, Miyu; Ikeda, Shinnosuke; Nakabayashi, Sachie; Yasuda, Kaori; Ohta, Miho; Kamakura, Masaki; Ikushiro, Shinichi; Sakaki, Toshiyuki

    2014-02-15

    1α-Hydroxylation of 25-hydroxyvitamin D3 is believed to be essential for its biological effects. In this study, we evaluated the biological activity of 25(OH)D3 itself comparing with the effect of cell-derived 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). First, we measured the cell-derived 1α,25(OH)2D3 level in immortalized human prostate cell (PZ-HPV-7) using [(3)H]-25(OH)D3. The effects of the cell-derived 1α,25(OH)2D3 on vitamin D3 24-hydroxylase (CYP24A1) mRNA level and the cell growth inhibition were significantly lower than the effects of 25(OH)D3 itself added to cell culture. 25-Hydroxyvitamin D3 1α-hydroxylase (CYP27B1) gene knockdown had no significant effects on the 25(OH)D3-dependent effects, whereas vitamin D receptor (VDR) gene knockdown resulted in a significant decrease in the 25(OH)D3-dependent effects. These results strongly suggest that 25(OH)D3 can directly bind to VDR and exerts its biological functions. DNA microarray and real-time RT-PCR analyses suggest that semaphorin 3B, cystatin E/M, and cystatin D may be involved in the antiproliferative effect of 25(OH)D3. PMID:24291609

  2. Treatment of hypophosphataemic vitamin D-resistant rickets with massive doses of 1 alpha-hydroxy-vitamin D3 during childhood.

    PubMed Central

    Seino, Y; Shimotsuji, T; Ishii, T; Ishida, M; Ikehara, C; Yamaoka, K; Yabuuchi, H; Dokoh, S

    1980-01-01

    Plasma levels of 1,25 dihydroxy-vitamin D (1,25-(OH)2-D) were low in 3 children with hypophosphataemic vitamin D-resistant rickets (HVDRR) during childhood, but increased after very large doses (0.5 to 2 micrograms/kg per day) of 1 alpha-hydroxy-vitamin D (1 alpha-OH-D3). This treatment has two advantages. Firstly, hypercalcaemia is easily controlled by reducing the dose of 1 alpha-OH-D3 because of its short half-life. Secondly, the administration of 1 alpha-OH-D3 to patients with HVDRR can enhance the tubular reabsorption of phosphate, and this seems desirable in treating HVDRR. PMID:6246841

  3. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis.

    PubMed

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  4. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis

    PubMed Central

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  5. Serum level of vitamin D3 in cutaneous melanoma

    PubMed Central

    de Oliveira, Renato Santos; de Oliveira, Daniel Arcuschin; Martinho, Vitor Augusto Melão; Antoneli, Célia Beatriz Gianotti; Marcussi, Ludmilla Altino de Lima; Ferreira, Carlos Eduardo dos Santos

    2014-01-01

    Objective To compare the level of vitamin D3 in cutaneous melanoma patients, with or without disease activity, with reference values and with patients from a general hospital. Methods The serum levels of vitamin D3 were measured in cutaneous melanoma patients, aged 20 to 88 years, both genders, from January 2010 to December 2013. The samples from the general group were processed at Hospital Israelita Albert Einstein (control group). Data analysis was performed using the Statistics software. Results A total of 100 patients were studied, 54 of them men, with mean age of 54.67 years, and 95 Caucasian. Out of these 100 patients, 17 had active disease. The average levels of vitamin D3 in the melanoma patients were lower than the level considered sufficient, but above the average of the control group. Both groups (with or without active disease) of patients showed a similar distribution of vitamin D3 deficiency. Conclusion Vitamin D3 levels in melanoma patients were higher than those of general patients and lower than the reference level. If the reference values are appropriate, a large part of the population had insufficient levels of vitamin D, including those with melanoma, or else, this standard needs to be reevaluated. No difference in vitamin D3 levels was found among melanoma patients with or without active disease. More comprehensive research is needed to assess the relation between vitamin D and melanoma. PMID:25628199

  6. Effects of 25-hydroxyvitamin D3 and manipulated dietary cation-anion difference on the tenderness of beef from cull native Korean cows.

    PubMed

    Cho, Y M; Choi, H; Hwang, I H; Kim, Y K; Myung, K H

    2006-06-01

    In this study, we characterized the effects of 25-hydroxyvitamin D3 (25-OH D3) and manipulated dietary cation-anion difference (DCAD) on the performance, urine pH, serum constituents, carcass traits, tissue residual vitamin D and its metabolites, beef tenderness, and mRNA and protein concentrations of Ca-dependent proteinases in LM using 24 cull native Korean cows. The cows were divided into 3 groups of 8: control, 25-OH D3 supplemented (25-OH D3), and manipulated DCAD plus 25-OH D3 supplemented (DCAD+25-OH D3). Cows receiving 25-OH D3 or DCAD+25-OH D3 were dosed with 125 mg of 25-OH D3 6 d before slaughter. The manipulated DCAD (-10 mEq/100 g of DM) diet was fed from 20 to 6 d (14 d) before slaughter. The DCAD+25-OH D3 treatment decreased urine pH and increased serum Ca concentrations. Although the vitamin D concentrations in LM, liver, and kidney were not affected by 25-OH D3 or DCAD+25-OH D3, muscle tissue 25-OH D3 concentrations were increased by both regimens. Serum 25-OH D3 concentrations were increased by 25-OH D3 supplementation, and the increase was even greater for DCAD+25-OH D3. The same pattern was observed for serum 1,25- (OH)2 D3. However, the LM concentration of 1,25-(OH)2 D3 was less for DCAD+25-OH D3 than for control. Although Ca concentrations of LM increased numerically in response to 25-OH D3 supplementation, no statistical differences in Warner-Bratzler shear force or sensory traits of LM were detected. The LM of cows receiving 25-OH D3 with or without manipulated DCAD had greater concentrations of mu-calpain and m-calpain mRNA, whereas the reverse was observed for calpastatin mRNA. Expression of mu-calpain protein was increased relative to control by DCAD+25-OH D3. The amount of 25-OH D3 and manipulated DCAD administered to cull native Korean cows was insufficient to improve tenderness of beef by increasing muscle Ca concentration. However, DCAD+25-OH D3 induced greater expressions of mu-calpain protein as well as mRNA. PMID:16699104

  7. Simultaneous Quantification of 25-Hydroxyvitamin D3 and 24,25-Dihydroxyvitamin D3 in Rats Shows Strong Correlations between Serum and Brain Tissue Levels.

    PubMed

    Xue, Ying; He, Xin; Li, Huan-De; Deng, Yang; Yan, Miao; Cai, Hua-Lin; Tang, Mi-Mi; Dang, Rui-Li; Jiang, Pei

    2015-01-01

    While vitamin D3 is recognized as a neuroactive steroid affecting both brain development and function, efficient analytical method in determining vitamin D3 metabolites in the brain tissue is still lacking, and the relationship of vitamin D3 status between serum and brain remains elusive. Therefore, we developed a novel analysis method by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to simultaneously quantify the concentrations of 25-hydroxyvitamin D3 (25(OH)D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in the serum and brain of rats fed with different dose of vitamin D3. We further investigated whether variations of serum vitamin D3 metabolites could affect vitamin D3 metabolite levels in the brain. Serum and brain tissue were analyzed by HPLC-MS/MS with electrospray ionization following derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). The method is highly sensitive, specific, and accurate to quantify 25(OH)D3 and 24,25(OH)2D3 in animal brain tissue. Vitamin D3 metabolites in brain tissue were significantly lower in rats fed with a vitamin D deficiency diet than in rats fed with high vitamin D3 diet. There was also a strong correlation of vitamin D3 metabolites in serum and brain. These results indicate that vitamin D3 status in serum affects bioavailability of vitamin D3 metabolites in the brain. PMID:26713090

  8. Simultaneous Quantification of 25-Hydroxyvitamin D3 and 24,25-Dihydroxyvitamin D3 in Rats Shows Strong Correlations between Serum and Brain Tissue Levels

    PubMed Central

    Xue, Ying; He, Xin; Li, Huan-De; Deng, Yang; Yan, Miao; Cai, Hua-Lin; Tang, Mi-Mi; Dang, Rui-Li; Jiang, Pei

    2015-01-01

    While vitamin D3 is recognized as a neuroactive steroid affecting both brain development and function, efficient analytical method in determining vitamin D3 metabolites in the brain tissue is still lacking, and the relationship of vitamin D3 status between serum and brain remains elusive. Therefore, we developed a novel analysis method by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to simultaneously quantify the concentrations of 25-hydroxyvitamin D3 (25(OH)D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in the serum and brain of rats fed with different dose of vitamin D3. We further investigated whether variations of serum vitamin D3 metabolites could affect vitamin D3 metabolite levels in the brain. Serum and brain tissue were analyzed by HPLC-MS/MS with electrospray ionization following derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). The method is highly sensitive, specific, and accurate to quantify 25(OH)D3 and 24,25(OH)2D3 in animal brain tissue. Vitamin D3 metabolites in brain tissue were significantly lower in rats fed with a vitamin D deficiency diet than in rats fed with high vitamin D3 diet. There was also a strong correlation of vitamin D3 metabolites in serum and brain. These results indicate that vitamin D3 status in serum affects bioavailability of vitamin D3 metabolites in the brain. PMID:26713090

  9. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  10. Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3.

    PubMed Central

    Nunn, J D; Katz, D R; Barker, S; Fraher, L J; Hewison, M; Hendy, G N; O'Riordan, J L

    1986-01-01

    We have examined the effects of 1,25(OH)2D3 on T-cell populations isolated by buoyant density and E rosetting from human tonsils. Cell proliferation was assessed by measuring the incorporation of 125iododeoxyuridine; interleukin-2 (IL-2) production was measured using an IL-2-dependent cell line, and the number of 1,25(OH)2D3 receptors was measured by whole-cell nuclear association assay. At a concentration of 10(-7) M, 1,25(OH)2D3 inhibited mitogen-induced T-cell proliferation in all E+ T-cell populations. This effect was more pronounced in the cells from the intermediate and high density layers and was reflected both in cell proliferative responses and in relative IL-2 synthesis. By adding the 1,25(OH)2D3 during the course of the mitogen assay, we demonstrated that activation of the T cell precedes the 1,25(OH)2D3-mediated inhibition. Cells that had been preincubated with mitogen in the presence of the 1,25(OH)2D3 were refractory to further stimulation by mitogens. Receptors for 1,25(OH)2D3 could not be detected in unstimulated T cells. However, activation led to the expression of high-affinity receptors for 1,25(OH)2D3. Co-incubation of the cells with mitogen and 1,25(OH)2D3 increased the number of receptors compared with mitogen alone. The effects provide further evidence for the hypothesis that 1,25(OH)2D3 is an important potential modulator of the immune system through its action on T cells. Taking our observations in conjunction with the known capacity of monocytes to hydroxylate the precursor metabolite (and thus synthesize the active form of cholecalciferol), the results support the suggestion that 1,25(OH)2D3 plays a role as a local mediator of mononuclear phagocyte-T cell interaction in human lymphomedullary tissues. PMID:3026959

  11. Sequestration and microsomal C-25 hydroxylation of (/sup 3/H)-vitamin D3 by the rat liver

    SciTech Connect

    Gascon-Barre, M.; Elbaz, H.; Therrien-Ferland, D.

    1985-03-01

    A study of the vitamin D3 (D3) 25-hydroxylase was undertaken in an in vivo-in vitro model. (/sup 3/H)-D3 (0.7, 1.0, 10, or 100 nmol/100 g of body weight) was injected into the portal vein and the liver was excised 18 seconds later. The liver homogenate was then submitted to differential centrifugation and the amount of (/sup 3/H)-D3 incorporated in the subcellular fractions was evaluated. The microsomal fraction was also incubated in vitro and the appearance of (/sup 3/H)-25-hydroxyvitamin D3 (25(OH)D3) was determined by high performance liquid chromatography (HPLC). Results showed that the fractional liver (/sup 3/H)-D3 uptake varied between 37 percent and 48 percent of the dose injected. The intracellular distribution of (/sup 3/H)-D3 showed that most of the vitamin was incorporated into the microsomal fraction (45% to 50% of the intracellular (/sup 3/H)-D3) except at the highest dose of (/sup 3/H)-D3 where the cytosolic fraction contained the highest amount (56.4%) of the incorporated vitamin. Mathematical analysis of the intracellular (/sup 3/H)-D3 distribution showed that the microsomal fraction was the only subcellular fraction that was found to incorporate (/sup 3/H)-D3 in relation to the total liver uptake of the vitamin. The apparent Michaelis-Menten kinetics of the (/sup 3/H)-D3-25-hydroxylase showed that with substrate concentration of up to 88.5 nM, the apparent Km and Vmax were 28.2 nM and 25.8 fentomoles (fmol) X min-1 X mg microsomal pro-1, respectively, but the reaction lost considerable efficiency with higher substrate concentrations.

  12. Solar ultraviolet B radiation and photoproduction of vitamin D3 in central and southern areas of Argentina.

    PubMed

    Ladizesky, M; Lu, Z; Oliveri, B; San Roman, N; Diaz, S; Holick, M F; Mautalen, C

    1995-04-01

    The incidence of nutritional rickets in the southern part of Argentina is 8-12 times higher than in the rest of the country. Winter 25(OH)D serum levels in normal population of southern areas are lower than in central and northern areas. To elucidate these differences, we compared the photoconversion of provitamin D3 (7-DHC) to previtamin D3 in two cities: Ushuaia (latitude 55 degrees S) and Buenos Aires (34 degrees S). Ampules containing 7-DHC were exposed to sunlight one day in the middle of each month either from 10:30 a.m. to 2:30 p.m. or from 8:00 a.m. to 5:00 p.m. The percentages of photoproducts formed were determined by high performance liquid chromatography (HPLC). Previous studies have proved that this is a valid model to assess "in vitro" the photoproduction of vitamin D3 in human skin. Previtamin D3 + vitamin D3 formed in Ushuaia were less (p < 0.02) than those found in Buenos Aires during all seasons: summer, (X +/- SEM) 6.4 +/- 0.8% vs. 13.2 +/- 1.8%; autumn, 1.2 +/- 0.7% vs. 6.3 +/- 1.3%; winter, 0.8 +/- 0.7% vs. 3.6 +/- 0.7%; spring, 3.4 +/- 0.5% vs. 9.1 +/- 1.1%. The photoproducts produced from 10:30 a.m. to 2:30 p.m. were similar for each month and latitude to those formed when the ampules were exposed from 8:00 a.m. to 5:00 p.m. We conclude that in Ushuaia there is a prolonged "vitamin D winter" during which cutaneous synthesis of vitamin D is absent, leading to lower serum values of 25(OH)D and contributing to the higher incidence of rickets. PMID:7610924

  13. Regulatory role of 1, 25-dihydroxyvitamin D3 and vitamin D receptor gene variants on intracellular granzyme A expression in pulmonary tuberculosis.

    PubMed

    Vidyarani, M; Selvaraj, P; Raghavan, S; Narayanan, P R

    2009-02-01

    Vitamin D receptor (VDR) genotypes have been shown to be associated with differential susceptibility or resistance to tuberculosis. The influence of FokI, BsmI, ApaI and TaqI variants of VDR gene on 1, 25(OH)(2) D(3) modulated granzyme A expression of cytotoxic lymphocytes induced by culture filtrate antigen (CFA) of Mycobacterium tuberculosis was studied in 40 pulmonary tuberculosis (PTB) patients and 49 normal healthy subjects (NHS) by flow cytometry. In both the study groups, addition of 1, 25(OH)(2) D(3) (10(-7)M) significantly reduced the percentage of granzyme A positive cells in both unstimulated (NHS, p<0.0001; PTB, p=0.02) and stimulated culture conditions (CFA, NHS, p<0.0001; PTB, p=0.0001) which correlated positively with the IFN-gamma levels (unstimulated, p=0.01; CFA stimulated, p=0.004) in NHS. The ApaI aa genotype and bbaaTT extended genotype were associated with a significantly decreased percentage of granzyme A positive cells in NHS (p<0.05). Our results suggest that 1, 25(OH)(2) D(3) suppresses granzyme A probably by down-regulating Th1 cytokine response. Moreover, the VDR gene variants might regulate cytotoxic T-cell response via 1, 25(OH)(2) D(3) mediated suppression of granzyme A expression in tuberculosis. PMID:19014932

  14. 25-Hydroxyvitamin D(3) suppresses PTH synthesis and secretion by bovine parathyroid cells.

    PubMed

    Ritter, C S; Armbrecht, H J; Slatopolsky, E; Brown, A J

    2006-08-01

    Active vitamin D compounds repress parathyroid hormone (PTH) gene transcription and block chief cell hyperplasia, making them integral tools in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Recently, human parathyroid glands have been shown to express 25-hydroxyvitamin D 1alpha-hydroxylase (1alphaOHase), but documentation of the 1alphaOHase activity in parathyroid cells and its potential role in activating 25-hydroxyvitamin D(3) (25(OH)D(3)) to 1,25-dihydroxyvitamin D(3) (1,25(OH)2D3) have not been reported. The relative potencies of 25(OH)D(3) and 1,25(OH)(2)D(3) in reducing PTH secretion and mRNA were determined in primary cultures of bovine parathyroid cells (bPTC). The effects of blocking 1alphaOHase activity on suppression of PTH mRNA and induction of 24-hydroxylase mRNA were examined. Vitamin D receptor (VDR) affinities were estimated by intact cell competitive binding assay. Metabolism of 25(OH)D(3) by bPTC was assessed using a radioimmunoassay that measures all 1-hydroxylated metabolites of vitamin D. 25(OH)D(3) suppressed PTH secretion and mRNA (ED(50)=2 nM), but was several hundred times less potent than 1,25(OH)(2)D(3). The lower potency of 25(OH)D(3) correlated with its lower VDR affinity. bPTCs converted 25(OH)D(3) to 1-hydroxylated metabolites, but the rate of conversion was low. Inhibition of 1alphaOHase with the cytochrome P450 inhibitor clotrimazole did not block 25(OH)D(3)-mediated suppression of PTH. Clotrimazole enhanced 24-hydroxylase mRNA induction, presumably by inhibiting catabolism of 25(OH)D(3). In conclusion, 25(OH)D(3) suppresses PTH synthesis by parathyroid cells, possibly by direct activation of the VDR. PMID:16807549

  15. Vitamin D3 in cancer prevention and therapy: the nutritional issue.

    PubMed

    Chirumbolo, Salvatore

    2015-09-01

    The action of vitamin D3, in its biological form 1α,25(OH)2vitD3 or calcitriol, may be summarized as a steroid-like hormone able to modulate basic functions of cell encompassing energy balance, stress response, mitochondria biogenesis, intracellular calcium oscillations, and replication/apoptosis mechanisms leading to cell survival. Moreover, calcitriol exerts a potent role as an innate and adaptive immune cytokine as immunity is closely related to self-maintenance through its energetic/metabolic balance and homeostasis of cell turnover. Therefore, vitamin D might be the ancestral form of survival hormones developed with calcified vertebrate bearing skeleton in order to survive far from water. This characteristic may suggest that the role of dietary vitamin D in preventing cancer is simply ancillary to the many factors playing a major role in contrasting impairment in energy balance and cell survival. Most probably, the immune role of calcitriol might be included in the maintenance, mostly by adipose tissue, of an anti-inflammatory, tolerant immune status, depending on the immune tolerance and modulation from the gut. A balance closely modulated by the leptin axis, which when impairments in metabolism occur, such as in insulin resistance or obesity, calcitriol is unable to face at this imbalance, while leptin plays a major role and cancer progression may be promoted. Furthermore, this mechanism promotes epithelial/mesenchymal transition-mediated fibrosis, leading to cancer resistance to immune control and drug action. Interestingly, this pathologic picture is triggered by deficiency in vitamin D from the diet. Therefore, a dietary habit including vitamin D sources, besides flavonoids, may ameliorate lifestyle and health span in most individuals, depending on their genetic background. PMID:26057218

  16. Vitamin D3 and cardiovascular function in rats.

    PubMed Central

    Weishaar, R E; Simpson, R U

    1987-01-01

    We have previously identified a receptor for 1,25-dihydroxyvitamin D3 in myocardial cells (Simpson, R.U. 1983. Circulation. 68:239.). To establish the relevance of this observation, we evaluated the role of the prohormone vitamin D3 in regulating cardiovascular function. In rats maintained on a vitamin D3-deficient diet for nine weeks, increases in systolic blood pressure (BP) and serum creatine phosphokinase (CPK) were observed. These increases coincided with a reduction of serum calcium from 10.3 to 5.6 mg/dl. However, while serum calcium remained depressed throughout the study, increases in BP and serum CPK were transient. After nine weeks of vitamin D3-depletion, but not after six weeks, ventricular and vascular muscle contractile function were also markedly enhanced. The increase in ventricular contractile function could not be prevented by maintaining serum calcium at 9.0 mg/dl during the period of D3-depletion. These observations suggest a primary role for the vitamin D3-endocrine system in regulating cardiovascular function. PMID:3034981

  17. Synthesis and composition of vitamin D-3 metabolites in Solanum malacoxylon.

    PubMed

    Esparza, M S; Vega, M; Boland, R L

    1982-12-17

    The synthesis of vitamin D-3 hydroxylated metabolites in Solanum malacoxylon was investigated. When crude leaf homogenates and subcellular fractions were incubated with [3H]vitamin D-3 and [3H]25-hydroxy-vitamin D-3 under conditions described for animal vitamin D-3-25-hydroxylase and 25-hydroxy-vitamin D-3-1 alpha-hydroxylase, respectively, labelled metabolites identified on the basis of their chromatographic properties as 25-hydroxy-vitamin D-3 and 1,25-dihydroxy-vitamin D-3 were formed. Other unidentified product metabolites were also detected. Vitamin D-3-25-hydroxylase activity was localized in microsomes and 25-hydroxy-vitamin D-3-1 alpha-hydroxylase in mitochondria and microsomes. Chromatography of sterols isolated from leaf extracts preincubated with beta-glucosidase on Sephadex LH-20 columns permitted the isolation of three biologically active fractions with elution properties similar to vitamin D-3, 25-hydroxy-vitamin D-3 and 1,25-dihydroxy-vitamin D-3, respectively. Ultraviolet spectra characteristic of vitamin D-3 and its metabolites were obtained after purification of the fractions by TLC. Co-chromatography of individual fractions with authentic metabolites on TLC provided further evidence that the plant contains vitamin D-3, 25-hydroxy-vitamin D-3 and 1,25-dihydroxy-vitamin D-3 as glucoside derivatives. These results suggest that a similar pathway of vitamin D-3 hydroxylation as in animals may be operative in S. malacoxylon. PMID:6295509

  18. 1,25-Dihydroxyvitamin D3 Enhances Innate Immune Responses of Bovine Mammary Epithelial Cells that are Triggered by Toll-like Receptor Signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) has been found to play an important role in the bovine innate immune response. 1,25(OH)2D3 is the active vitamin D metabolite and is produced from the major circulating metabolite, 25-hydroxyvitamin D3, by the enzyme 1alpha-hydroxylase (1alpha-OHase)...

  19. 25(OH)D Is Effective to Repress Human Cholangiocarcinoma Cell Growth through the Conversion of 25(OH)D to 1α,25(OH)₂D₃.

    PubMed

    Chiang, Kun-Chun; Yeh, Chun-Nan; Huang, Cheng-Cheng; Yeh, Ta-Sen; S Pang, Jong-Hwei; Hsu, Jun-Te; Chen, Li-Wei; Kuo, Sheng-Fong; Kittaka, Atsushi; Chen, Tai C; Juang, Horng-Heng

    2016-01-01

    Cholangiocarcinoma (CCA) is a devastating disease without effective treatments. 1α,25(OH)₂D₃, the active form of Vitamin D, has emerged as a new anti-cancer regimen. However, the side effect of hypercalcemia impedes its systemic administration. 25(OH)D is biologically inert and needs hydroxylation by CYP27B1 to form 1α,25(OH)₂D₃, which is originally believed to only take place in kidneys. Recently, the extra-renal expression of CYP27B1 has been identified and in vitro conversion of 25(OH)D to 1α,25(OH)₂D₃ has been found in some cancer cells with CYP27B1 expression. In this study, CYP27B1 expression was demonstrated in CCA cells and human CCA specimens. 25(OH)D effectively represses SNU308 cells growth, which was strengthened or attenuated as CYP27B1 overexpression or knockdown. Lipocalcin-2 (LCN2) was also found to be repressed by 25(OH)D. After treatment with 800 ng/mL 25(OH)D, the intracellular 1α,25(OH)₂D₃ concentration was higher in SNU308 cells with CYP27B1 overexpression than wild type SNU308 cells. In a xenograft animal experiment, 25(OH)D, at a dose of 6 μg/kg or 20 μg/kg, significantly inhibited SNU308 cells' growth without inducing obvious side effects. Collectively, our results indicated that SNU308 cells were able to convert 25(OH)D to 1α,25(OH)₂D₃ and 25(OH)D CYP27B1 gene therapy could be deemed as a promising therapeutic direction for CCA. PMID:27529229

  20. Effect of feeding 25-hydroxyvitamin D3 with a negative cation-anion difference diet on calcium and vitamin D status of periparturient cows and their calves.

    PubMed

    Weiss, W P; Azem, E; Steinberg, W; Reinhardt, T A

    2015-08-01

    Holstein cows (>1 gestation) were fed 1 of 3 diets during the last 13 d of gestation (ranged from 22 to 7 d). The control diet (16 cows) was formulated to provide 18,000 IU/d of vitamin D3 and had a dietary cation-anion difference (DCAD) of 165mEq/kg (DCAD=Na + K - Cl - S). The second diet (DCAD + D) provided the same amount of vitamin D3 but had a DCAD of -139mEq/kg (17 cows). The third diet (DCAD + 25D) had no supplemental vitamin D3 but provided 6mg/d of 25-(OH) vitamin D3 [25-(OH)D3] with a DCAD of -138mEq/kg (20 cows). Diets were fed until parturition and then all cows were fed a common lactation diet that contained vitamin D3. Negative DCAD diets reduced urine pH, with the greatest decrease occurring with the DCAD + D treatment. Urinary Ca excretion was greatest for cows fed DCAD + 25D followed by cows fed DCAD + D. Urinary pH was negatively correlated with urinary excretion of Ca for cows fed DCAD + D. No such correlation was observed with the DCAD + 25D treatment because substantial excretion of urinary Ca occurred at moderate urinary pH values for that treatment. Cows fed DCAD + 25D had greater serum concentrations of 25-(OH)D3 than other treatments from 5 d after supplementation started through 7 d in milk. Concentrations of 1,25-(OH)2D3 in serum were greatest in DCAD + 25D cows starting at 2 d before calving and continued through 7 d in milk. Serum Ca concentrations 5 d before calving were greatest for cows fed DCAD + 25D, but at other time points before and after parturition treatment did not affect serum Ca. Incidence of clinical hypocalcemia was not statistically different between treatments, but cows fed DCAD + 25 had the highest incidence rate (12.5, 0, and 20% for control, DCAD + D, and DCAD + 25D). Calves born from cows fed DCAD + 25D had greater concentrations of 25-(OH)D3 in serum at birth than calves from other treatments (before colostrum consumption), but concentrations were similar by 3 d of age. Concentrations of 25-(OH)D3 in colostrum and

  1. Expression of Inducible Nitric Oxide Synthase is Up-Regulated by Production of 1,25-Dihydroxyvitamin D3 in Bovine Monocytes in Response to Toll-Like Receptor Signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the endocrine pathway of vitamin D signaling 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is produced from 25-hydroxyvitamin D3 [25(OH)D3] by the enzyme CYP27B1 in the kidney. Production of 1,25(OH)2D3 in the kidney functions to regulate gene expression systemically. However, recent studies have show...

  2. Vitamin D3 inhibits TNFα-induced latent HIV reactivation in J-LAT cells.

    PubMed

    Nunnari, G; Fagone, P; Lazzara, F; Longo, A; Cambria, D; Di Stefano, G; Palumbo, M; Malaguarnera, L; Di Rosa, Michelino

    2016-07-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is known to suppress NF-kB activity by interfering with its pathways. The aim of this study was to investigate the ability of 1,25(OH)2D3 in reducing the reactivation of the HIV virus J-LAT cells, an established model of latently infected cells, which were treated with TNFalpha (100 ng/ml) for 2 h with or without 24 h 1,25(OH)2D3 (100 nM) pretreatment. Reactivation of HIV RNA in J-LAT was evaluated in terms of green fluorescent protein (GFP) expression. The same experimental setting was repeated on T cells from HIV-infected patients. Treatment with TNFalpha was associated with a 16 % increase in GFP+ cells and a five-fold increase in unspliced HIV RNA expression (p < 0.04). Pretreatment of J-LAT cells with 1,25(OH)2D3 for 24 h followed by TNFalpha (100 ng/ml) for 2 h reduced the percentage of GFP+ cells by 8 %; moreover, a 2.4-fold decrease in unspliced HIV RNA expression was observed (p < 0.002). In T cells from patients, treatment with TNFalpha significantly increased unspliced HIV RNA expression (sixfold increase, p < 0.02), whereas prestimulation with 1,25(OH)2D3 reduced its expression (2.5-fold decrease, p < 0.02) compared to controls.1,25(OH)2D3 is able to reduce the ability of TNFalpha to upregulate the transcription of HIV RNA from latently infected cells. These data provide further understanding of the pathogenic mechanisms regulating viral reactivation from latent reservoirs, along with new insight in viral internalization. PMID:27295094

  3. Effect of High-Dose Vitamin D3 Intake on Ambulation, Muscular Pain and Bone Mineral Density in a Woman with Multiple Sclerosis: A 10-Year Longitudinal Case Report

    PubMed Central

    van Amerongen, Barbara M.; Feron, François

    2012-01-01

    Mounting evidence correlate vitamin D3 (cholecalciferol) supplementation or higher serum levels of vitamin D (25(OH)D) with a lower risk of developing multiple sclerosis (MS), reduced relapse rate, slower progression or fewer new brain lesions. We present here the case of a woman who was diagnosed with MS in 1990. From 1980 to 2000, her ability to walk decreased from ~20 to 1 km per day. Since January 2001, a vitamin D3 supplement was ingested daily. The starting dose was 20 mcg (800 IU)/day and escalated to 100 mcg (4000 IU)/day in September 2004 and then to 150 mcg (6000 IU)/day in December 2005. Vitamin D3 intake reduced muscular pain and improved ambulation from 1 (February 2000) to 14 km/day (February 2008). Vitamin D intake over 10 years caused no adverse effects: no hypercalcaemia, nephrolithiasis or hypercalciuria were observed. Bowel problems in MS may need to be addressed as they can cause malabsorption including calcium, which may increase serum PTH and 1,25(OH)2D levels, as well as bone loss. We suggest that periodic assessment of vitamin D3, calcium and magnesium intake, bowel problems and the measurement of serum 25(OH)D, PTH, Ca levels, UCa/Cr and bone health become part of the integral management of persons with MS. PMID:23202962

  4. Production of 22-Hydroxy Metabolites of Vitamin D3 by Cytochrome P450scc (CYP11A1) and Analysis of Their Biological Activities on Skin CellsS⃞

    PubMed Central

    Li, Wei; Shehabi, Haleem Z.; Janjetovic, Zorica; Nguyen, Minh N.; Kim, Tae-Kang; Chen, Jianjun; Howell, Danielle E.; Benson, Heather A. E.; Sweatman, Trevor; Baldisseri, Donna M.; Slominski, Andrzej

    2011-01-01

    Cytochrome P450scc (CYP11A1) can hydroxylate vitamin D3, producing 20S-hydroxyvitamin D3 [20(OH)D3] and 20S,23-dihydroxyvitamin D3 [20,23(OH)2D3] as the major metabolites. These are biologically active, acting as partial vitamin D receptor (VDR) agonists. Minor products include 17-hydroxyvitamin D3, 17,20-dihydroxyvitamin D3, and 17,20,23-trihydroxyvitamin D3. In the current study, we have further analyzed the reaction products from cytochrome P450scc (P450scc) action on vitamin D3 and have identified two 22-hydroxy derivatives as products, 22-hydroxyvitamin D3 [22(OH)D3] and 20S,22-dihydroxyvitamin D3 [20,22(OH)2D3]. The structures of both of these derivatives were determined by NMR. P450scc could convert purified 22(OH)D3 to 20,22(OH)2D3. The 20,22(OH)2D3 could also be produced from 20(OH)D3 and was metabolized to a trihydroxyvitamin D3 product. We compared the biological activities of these new derivatives with those of 20(OH)D3, 20,23(OH)2D3, and 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3, 20(OH)D3, 22(OH)D3, 20,23(OH)2D3, and 20,22(OH)2D3 significantly inhibited keratinocyte proliferation in a dose-dependent manner. The strongest inducers of involucrin expression (a marker of keratinocyte differentiation) were 20,23(OH)2D3, 20,22(OH)2D3, 20(OH)D3, and 1,25(OH)2D3, with 22(OH)D3 having a heterogeneous effect. Little or no stimulation of CYP24 mRNA expression was observed for all the analogs tested except for 1,25(OH)2D3. All the compounds stimulated VDR translocation from the cytoplasm to the nucleus with 22(OH)D3 and 20,22(OH)2D3 having less effect than 1,25(OH)2D3 and 20(OH)D3. Thus, we have identified 22(OH)D3 and 20,22(OH)2D3 as products of CYP11A1 action on vitamin D3 and shown that, like 20(OH)D3 and 20,23(OH)2D3, they are active on keratinocytes via the VDR, however, showing a degree of phenotypic heterogeneity in comparison with other P450scc-derived hydroxy metabolites of vitamin D3. PMID:21677063

  5. Preventive effect of vitamin D3 supplementation on conversion of optic neuritis to clinically definite multiple sclerosis: a double blind, randomized, placebo-controlled pilot clinical trial.

    PubMed

    Derakhshandi, Hajar; Etemadifar, Masoud; Feizi, Awat; Abtahi, Seyed-Hossein; Minagar, Alireza; Abtahi, Mohammad-Ali; Abtahi, Zahra-Alsadat; Dehghani, Alireza; Sajjadi, Sepideh; Tabrizi, Nasim

    2013-09-01

    Multiple sclerosis (MS) presents with optic neuritis (ON) in 20 % of cases and 50 % of ON patients develop MS within 15 years. In this study, we evaluated the preventive effects of vitamin D3 administration on the conversion of ON to MS (primary outcome) and on the MRI lesions (secondary outcome) of ON patients with low serum 25 (OH) D levels. Thirty ON patients (15 in each of 2 groups, aged 20-40 years) with serum 25 (OH) D levels of less than 30 ng/ml were enrolled in a double blind, randomized, parallel-group trial. The treatment group (cases) received 50,000 IU of vitamin D3 weekly for 12 months and the control group (controls) received a placebo weekly for 12 months. Finally, the subsequent relapse rate and changes in MRI plaques were compared between the two groups. Risk reduction was 68.4 % for the primary outcome in the treatment group (relative risk = 0.316, p = 0.007). After 12 months, patients in the treatment group had a significantly lower incidence rate of cortical, juxtacortical, corpus callosal, new T2, new gadolinium-enhancing lesions and black holes. The mean number of total plaques showed a marginally significant decrease in the group receiving vitamin D3 supplementation as compared with the placebo group (p = 0.092). Administration of vitamin D3 supplements to ON patients with low serum vitamin 25 (OH) D levels may delay the onset of a second clinical attack and the subsequent conversion to MS. PMID:23250818

  6. Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation.

    PubMed

    Zhen, Chao; Feng, Xuedan; Li, Zhe; Wang, Yabo; Li, Bin; Li, Lin; Quan, Moyuan; Wang, Gaoning; Guo, Li

    2015-03-15

    Multiple sclerosis (MS) has been associated with a history of sub-optimal exposure to ultraviolet light, implicating vitamin D3 as a possible protective agent. We evaluated whether 1,25(OH)2D3 attenuates the progression of experimental autoimmune encephalomyelitis (EAE), and explored its potential mechanisms. EAE was induced in C57BL/6 mice via immunization with MOG35-55, and some mice received 1,25(OH)2D3. 1,25(OH)2D3 inhibited EAE progression. Additionally, 1,25(OH)2D3 reduced inflammation, demyelination, and neuron loss in the spinal cord. The protective effect of 1,25(OH)2D3 was associated with significantly elevated expression of Beclin1, increased Bcl-2/Bax ratio, and decreased LC3-II accumulation. Thus, 1,25(OH)2D3 may represent a promising new MS treatment. PMID:25773147

  7. Vitamin D expenditure is not altered in pregnancy and lactation despite changes in vitamin D metabolite concentrations

    PubMed Central

    Jones, Kerry S; Assar, Shima; Prentice, Ann; Schoenmakers, Inez

    2016-01-01

    Pregnancy and lactation are associated with changes in vitamin D and calcium metabolism but the impact of these changes on vitamin D expenditure is unknown. We measured plasma 25(OH)D3 half-life with a stable-isotope tracer and investigated relationships with vitamin D metabolites in pregnant, lactating and ‘non-pregnant, non-lactating’ (NPNL) women. Vitamin D metabolites, vitamin D binding protein (DBP), PTH and 25(OH)D3 half-life were measured in third-trimester pregnant women (n22) and repeated during lactation 12 weeks post-partum (n14) and twice in NPNL women (n23 and n10, respectively) in rural Gambia where calcium intakes are low with little seasonality in UVB-exposure. 25(OH)D3 half-life was not significantly different between groups (mean(SD): 20.6(6.8), 22.6(7.7), 18.0(4.7) and 17.7(9.5) days in pregnant, lactating and NPNL women, respectively). Plasma 25(OH)D3, 1,25(OH)2D, and DBP were higher in pregnancy, and calculated free-25(OH)D3 and PTH were lower (P < 0.05). In lactation, 25(OH)D3 and 24,25(OH)2D3 were lower compared to pregnant (P < 0.001, P = 0.02) and NPNL women (P = 0.04, P = 0.07). Significant associations were observed between half-life and 25(OH)D3 (+ve) in pregnancy, and in all groups between 25(OH)D3 and free-25(OH)D3 (+ve) and PTH and 25(OH)D3 (−ve) (P < 0.0001). These data suggest that adaptive changes in pregnancy and lactation occur that prevent pronounced changes in vitamin D expenditure. PMID:27222109

  8. Vitamin D expenditure is not altered in pregnancy and lactation despite changes in vitamin D metabolite concentrations.

    PubMed

    Jones, Kerry S; Assar, Shima; Prentice, Ann; Schoenmakers, Inez

    2016-01-01

    Pregnancy and lactation are associated with changes in vitamin D and calcium metabolism but the impact of these changes on vitamin D expenditure is unknown. We measured plasma 25(OH)D3 half-life with a stable-isotope tracer and investigated relationships with vitamin D metabolites in pregnant, lactating and 'non-pregnant, non-lactating' (NPNL) women. Vitamin D metabolites, vitamin D binding protein (DBP), PTH and 25(OH)D3 half-life were measured in third-trimester pregnant women (n22) and repeated during lactation 12 weeks post-partum (n14) and twice in NPNL women (n23 and n10, respectively) in rural Gambia where calcium intakes are low with little seasonality in UVB-exposure. 25(OH)D3 half-life was not significantly different between groups (mean(SD): 20.6(6.8), 22.6(7.7), 18.0(4.7) and 17.7(9.5) days in pregnant, lactating and NPNL women, respectively). Plasma 25(OH)D3, 1,25(OH)2D, and DBP were higher in pregnancy, and calculated free-25(OH)D3 and PTH were lower (P < 0.05). In lactation, 25(OH)D3 and 24,25(OH)2D3 were lower compared to pregnant (P < 0.001, P = 0.02) and NPNL women (P = 0.04, P = 0.07). Significant associations were observed between half-life and 25(OH)D3 (+ve) in pregnancy, and in all groups between 25(OH)D3 and free-25(OH)D3 (+ve) and PTH and 25(OH)D3 (-ve) (P < 0.0001). These data suggest that adaptive changes in pregnancy and lactation occur that prevent pronounced changes in vitamin D expenditure. PMID:27222109

  9. 21 CFR 172.380 - Vitamin D 3.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial.../federal-register/cfr/ibr-locations.html. (c) The additive may be used as follows: (1) At levels not to... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vitamin D 3. 172.380 Section 172.380 Food...

  10. 24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats.

    PubMed

    Boyan, Barbara D; Hyzy, Sharon L; Pan, Qingfen; Scott, Kayla M; Coutts, Richard D; Healey, Robert; Schwartz, Zvi

    2016-01-01

    Osteoarthritis (OA) in humans is associated with low circulating 25-hydroxyvitamin D3 [25(OH)D3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] accumulates in articular cartilage following injection of [3H]-25(OH)D3. Previously, we showed that 24R,25(OH)2D3 blocks chondrocyte apoptosis via phospholipase D and p53, suggesting a role for 24R,25(OH)2D3 in maintaining cartilage health. We examined the ability of 24R,25(OH)2D3 to prevent degenerative changes in articular cartilage in an OA-like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes were treated with IL-1β with and without 24R,25(OH)2D3 or 1α,25(OH)2D3. 24R,25(OH)2D3 but not 1α,25(OH)2D3 blocked the effects of IL-1β in a dose-dependent manner, and its effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral anterior cruciate ligament transections were performed in immunocompetent rats followed by intra-articular injections of 24R,25(OH)2D3 or vehicle (t = 0, 7, 14, 21 days). Tissues were harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints treated with 24R,25(OH)2D3 had less articular cartilage damage and levels of inflammatory mediators. These results indicate that 24R,25(OH)2D3 protects against OA, and suggest that it may be a therapeutic approach for preventing trauma-induced osteoarthritis. PMID:27575371

  11. Significant Effects of Oral Phenylbutyrate and Vitamin D3 Adjunctive Therapy in Pulmonary Tuberculosis: A Randomized Controlled Trial

    PubMed Central

    Kamal, S. M. Mostafa; Arifuzzaman, Abu Saleh Mohammad; Rahim, Zeaur; Khan, Lamia; Haq, Md. Ahsanul; Zaman, Khaliqu; Bergman, Peter; Brighenti, Susanna; Gudmundsson, Gudmundur H.; Agerberth, Birgitta; Raqib, Rubhana

    2015-01-01

    Background Development of new tuberculosis (TB) drugs and alternative treatment strategies are urgently required to control the global spread of TB. Previous results have shown that vitamin D3 (vitD3) and 4-phenyl butyrate (PBA) are potent inducers of the host defense peptide LL-37 that possess anti-mycobacterial effects. Objective To examine if oral adjunctive therapy with 5,000IU vitD3 or 2x500 mg PBA or PBA+vitD3 to standard chemotherapy would lead to enhanced recovery in sputum smear-positive pulmonary TB patients. Methods Adult TB patients (n = 288) were enrolled in a randomized, double-blind, placebo-controlled trial conducted in Bangladesh. Primary endpoints included proportions of patients with a negative sputum culture at week 4 and reduction in clinical symptoms at week 8. Clinical assessments and sputum smear microscopy were performed weekly up to week 4, fortnightly up to week 12 and at week 24; TB culture was performed at week 0, 4 and 8; concentrations of LL-37 in cells, 25-hydroxyvitamin D3 (25(OH)D3) in plasma and ex vivo bactericidal function of monocyte-derived macrophages (MDM) were determined at week 0, 4, 8, 12 and additionally at week 24 for plasma 25(OH)D3. Results At week 4, 71% (46/65) of the patients in the PBA+vitD3-group (p = 0.001) and 61.3% (38/62) in the vitD3-group (p = 0.032) were culture negative compared to 42.2% (27/64) in the placebo-group. The odds of sputum culture being negative at week 4 was 3.42 times higher in the PBA+vitD3-group (p = 0.001) and 2.2 times higher in vitD3-group (p = 0.032) compared to placebo. The concentration of LL-37 in MDM was significantly higher in the PBA-group compared to placebo at week 12 (p = 0.034). Decline in intracellular Mtb growth in MDM was earlier in the PBA-group compared to placebo (log rank 11.38, p = 0.01). Conclusion Adjunct therapy with PBA+vitD3 or vitD3 or PBA to standard short-course therapy demonstrated beneficial effects towards clinical recovery and holds potential for host

  12. Modulation of the bovine innate immune response by production of 1alpha,25-dihydroxyvitamin D(3) in bovine monocytes.

    PubMed

    Nelson, C D; Reinhardt, T A; Thacker, T C; Beitz, D C; Lippolis, J D

    2010-03-01

    In cattle, the kidney has been the only known site for production of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] from 25-hydroxyvitamin D(3) [25(OH)D(3)] by 1alpha-hydroxylase (1alpha-OHase). Based on human studies, it was hypothesized that bovine monocytes could produce 1,25(OH)(2)D(3) upon activation and 1,25(OH)(2)D(3) would regulate expression of vitamin D-responsive genes in monocytes. First, the effects of 1,25(OH)(2)D(3) on bovine monocytes isolated from peripheral blood were tested. Treatment of nonstimulated monocytes with 1,25(OH)(2)D(3) increased expression of the gene for the vitamin D 24-hydroxylase (24-OHase) enzyme by 51+/-13 fold, but 1,25(OH)(2)D(3) induction of 24-OHase expression was blocked by lipopolysaccharide (LPS) stimulation. In addition, 1,25(OH)(2)D(3) increased the gene expression of inducible nitric oxide synthase and the chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted) in LPS-stimulated monocytes 69+/-13 and 40+/-12 fold, respectively. Next, the ability of bovine monocytes to express 1alpha-OHase and produce 1,25(OH)(2)D(3) was tested. Activation of monocytes with LPS, tripalmitoylated lipopeptide (Pam3CSK4), or peptidoglycan caused 43+/-9, 17+/-3, and 19+/-3 fold increases in 1alpha-OHase gene expression, respectively. Addition of 25(OH)D(3) to LPS-stimulated monocytes enhanced expression of inducible nitric oxide synthase and RANTES and nitric oxide production in a dose-dependent manner, giving evidence that activated monocytes convert 25(OH)D(3) to 1,25(OH)(2)D(3). In conclusion, bovine monocytes produce 1,25(OH)(2)D(3) in response to toll-like receptor signaling, and 1,25(OH)(2)D(3) production in monocytes increased the expression of genes involved in the innate immune system. Vitamin D status of cattle might be important for optimal innate immune function because 1,25(OH)(2)D(3) production in activated monocytes and subsequent upregulation of inducible nitric oxide synthase and RANTES expression

  13. Randomized, blinded trial of vitamin D3 for treating aromatase inhibitor-associated musculoskeletal symptoms (AIMSS).

    PubMed

    Shapiro, Alice C; Adlis, Susan A; Robien, Kim; Kirstein, Mark N; Liang, Shuang; Richter, Sara A; Lerner, Rachel E

    2016-02-01

    The purpose of the study was to evaluate the efficacy and safety of vitamin D3 at 4000 IU/day as a treatment option for aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) when compared with the usual care dose of 600 IU D3. We conducted a single site randomized, double-blind, phase 3 clinical trial in women with AIMSS comparing change in symptoms, reproductive hormones and AI pharmacokinetics. Postmenopausal women ≥18 years with stages I-IIIA breast cancer, taking AI and experiencing AIMSS [breast cancer prevention trial symptom scale-musculoskeletal (BCPT-MS) subscale ≥1.5] were admitted. Following randomization, 116 patients had a run-in period of 1 month on 600 IU D3, then began the randomized assignment to either 600 IU D3 (n = 56) or 4000 IU D3 (n = 57) daily for 6 months. The primary endpoint was a change in AIMSS from baseline (after 1 month run-in) on the BCPT-MS (general MS pain, joint pain, muscle stiffness, range for each question: 0 = not at all to 4 = extremely). Groups had no statistically significant differences demographically or clinically. There were no discernable differences between the randomly allocated treatment groups at 6 months in measures of AIMSS, pharmacokinetics of anastrozole and letrozole, serum levels of reproductive hormones, or adverse events. We found no significant changes in AIMSS measures between women who took 4000 IU D3 daily compared with 600 IU D3. The 4000 IU D3 did not adversely affect reproductive hormone levels or the steady state pharmacokinetics of anastrozole or letrozole. In both groups, serum 25(OH)D remained in the recommended range for bone health (≥30 ng/mL) and safety (<50 ng/mL). PMID:26868123

  14. Exposure to Cigarette Smoke Reduces Vitamin D3 in the Blood Stream and Respiratory Tract

    MedlinePlus

    ... respiratory tract Share | Exposure to cigarette smoke reduces vitamin D3 in the blood stream and respiratory tract ... be understood as to how smoke causes inflammation. Vitamin D3 has anti-inflammatory and anti-bacterial effects. ...

  15. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    PubMed

    Coussens, Anna K; Wilkinson, Robert J; Martineau, Adrian R

    2015-07-01

    Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  16. Long-term effects of 1,25-dihydroxy vitamin D3 and 24,25-dihydroxy vitamin D3 in renal osteodystrophy.

    PubMed

    Muirhead, N; Adami, S; Sandler, L M; Fraser, R A; Catto, G R; Edward, N; O'Riordan, J L

    1982-01-01

    Twenty-three patients with end-stage renal failure on maintenance haemodialysis were treated with 1,25-dihydroxy vitamin D3 or 24-25-dihydroxy vitamin D3 for 3-32 months (total 232 patient months). Treatment with 1,25-dihydroxy vitamin D3 was marked by symptomatic, biochemical and histological improvements in the majority of patients. In contrast, treatment with 24,25-dihydroxy vitamin D3 produced no biochemical or histological improvements and such patients developed severe symptomatic bone disease. Successful renal transplantation resulted in rapid improvement in symptoms, biochemistry and bone histology in nine of 10 patients irrespective of whether prior treatment was with 1,25-dihydroxy vitamin D3, 24,25-dihydroxy vitamin D3 or both. During treatment with 1,25-dihydroxy vitamin D3 progressive reduction in dosage was required in the majority of patients because of hypercalcaemia, which was rapidly corrected by stopping treatment for a few days. Hypercalcaemia did not occur until serum alkaline phosphatase (AP) and amino terminal parathyroid hormone (N-PTH) had fallen towards normal. Treatment failure was uncommon in 1,25-dihydroxy vitamin D3-treated patients and was characterized by the early development of hypercalcaemia. Addition of 24,25-dihydroxy vitamin D3 in such patients rendered the hypercalcaemia more manageable but did not lead to any further improvement in biochemistry or bone histology. Treatment with 24,25-dihydroxy vitamin D3 was accompanied by the development of severe symptomatic bone disease in the majority of patients and a characteristic pattern of biochemical abnormalities with hypocalcaemia and rises in AP and N-PTH. Substitution of 1,25-dihydroxy vitamin D3 treatment for 24,25-dihydroxy vitamin D3 in these patients resulted in prompt improvement in clinical, biochemical and histological abnormalities. Successful renal transplantation was accompanied by rapid resolution of clinical, biochemical and histological features of renal

  17. Role of 25-hydroxyvitamin D3 dose in determining rat 1,25-dihydroxyvitamin D3 production

    SciTech Connect

    Vieth, R.; McCarten, K.; Norwich, K.H. )

    1990-05-01

    To understand the relationships among (1) the dose of 25-hydroxyvitamin D (25(OH)D) in vivo, (2) the activity of 1-hydroxylase in renal mitochondria, and (3) the production of 1,25-dihydroxyvitamin D (1,25(OH)2D) in vivo, we gave rats different chronic or acute doses of 25-hydroxyvitamin D3 (25(OH)D3). We followed the metabolism of intracardially administered (25-hydroxy-26,27-methyl-3H)cholecalciferol (25(OH)(3H)D3) for 24 h before killing by measuring extracts of serum by chromatography. Specific activity of 1-hydroxylase in kidney was measured at death. In rats given 0-2,000 pmol 25(OH)D3 chronically by mouth, there was a dose-dependent decline in the percent of serum radioactivity made up of 1,25-dihydroxy-(26,27-methyl-3H)cholecalciferol (1,25(OH)2(3H)D3) as well as a decline in mitochondrial 1-hydroxylase, and these correlated significantly (r = 0.83, P less than 0.001). Serum %1,25(OH)2(3H)D3 in this experiment ranged from 0.8 to 42%. A small part of this range could be accounted for by a faster metabolic clearance rate (MCR) of 1,25(OH)2D3 from rats supplemented with 25(OH)D3 (MCR, 2.12 +/- 0.10 ml/min) compared with rats restricted in vitamin D (MCR, 0.94 +/- 0.06 ml/min, P less than 0.001). The activity of 1-hydroxylase was by far the major factor determining serum %1,25(OH)2(3H)D3. When different acute doses of 25(OH)D3 were given to rats with identical specific activities of 1-hydroxylase, the resulting 1,25(OH)2D3 concentrations in serum correlated with the 25(OH)D3 dose (r = 0.99, P less than 0.001). We conclude that the behavior of 1-hydroxylase in vivo is analogous to the classic behavior in vitro of an enzyme functioning below its Michaelis constant (Km). The amount of 1-hydroxylase present in renal mitochondria determines the fraction (not simply the quantity) of 25(OH)D metabolized to 1,25(OH)2D3 in vivo.

  18. Supplemental vitamin D3 and zilpaterol hydrochloride. I. Effect on performance, carcass traits, tenderness, and vitamin D metabolites of feedlot steers.

    PubMed

    Korn, K T; Lemenager, R P; Claeys, M C; Engstrom, M; Schoonmaker, J P

    2013-07-01

    Angus × Simmental steers (n = 210; initial BW 314 ± 11 kg) were separated into heavy and light BW blocks and allotted evenly by BW to 6 treatments (3 heavy and 2 light pens per treatment) to determine the effect of supplemental vitamin D3: 0 IU (no D), 250,000 IU for 165 d (long-term D), or 5 × 10(6) IU for 10 d (short-term D) on performance, carcass traits, vitamin D metabolites, and meat tenderness in steers fed either 0 (NZ) or 8.38 mg/kg zilpaterol hydrochloride (ZH) daily for 21 d. Placebo or ZH was added to the diet 24 d, and short-term D was added 13 d before slaughter. Vitamin D3, ZH, and placebo were all removed from the diet 3 d before slaughter. Steers fed ZH tended to have improved overall G:F compared with steers not fed ZH (P < 0.09). Overall performance was not affected by long-term D, with or without ZH (P = 0.11) compared with no D, with or without ZH. Short-term D decreased final BW, ADG, and G:F (P = 0.04) compared with no D, when ZH was not fed. Zilpaterol hydrochloride increased HCW, dressing percentage, and LM area (P < 0.01); and decreased fat thickness, yield grade, and marbling (P < 0.03). Carcass traits were not impacted by long-term D without ZH (P > 0.13), but long-term D with ZH decreased percentage KPH (P < 0.02). Compared with no D, short-term D tended to decrease HCW (P < 0.07), decreased fat thickness (P < 0.01), and tended to increase dressing percentage (P < 0.10) when ZH was not fed, yet did not impact carcass traits when ZH was fed (P < 0.13). Feeding ZH tended to decrease (P < 0.09) LM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The long-term D treatment increased LM vitamin D3 and 25-hydroxyvitamin D3 (25OHD3) 18- and 5-fold, respectively, when ZH was not fed (P < 0.04) and increased LM 25OHD3 by 4-fold when ZH was fed (P < 0.01). Short-term D increased LM vitamin D3 and 25OHD3 by 52- and 9-fold, respectively, when ZH was not fed (P < 0.01), and by 24- and 9-fold, respectively, when ZH was fed (P < 0.01). Also, short-term D

  19. Conformational analysis of vitamin D 3 derivatives by molecular mechanics . Part II. 1α,25-dihydroxyvitamin D 3 and analogues

    NASA Astrophysics Data System (ADS)

    Mosquera, Ricardo A.; Rios, Miguel A.; Tovar, Clara A.; Maestro, Miguel

    1989-10-01

    The conformational analysis of vitamin D 3 derivatives, including the biologically active form 1α,25-dihydroxyvitamin D 3 (III) and several synthetic analogues: b-deoxy-1α,25-dihydroxyvitamin D 3 (IV), 3-deoxy-3α-methyl-1α,25-dihydroxyvitamin D 3 (V), 3-deoxy-3β-methyl-1α,25-dihydroxyvitamin D 3 (VI), and 3-deoxy-3,3-dimethyl-1α,25-dihydroxyvitamin D 3 (VII), has been carried out employing Allinger's molecular mechanics method. The results obtained for conformational equilibrium populations are found to be in good agreement with those provided by NMR studies. Comparison of the active form of vitamin D 3 (1α,25-dihydroxyvitamin D 3) with the other species reveals no important geometrical differences.

  20. Providing vitamin D to confined sheep by oral supplementation vs ultraviolet irradiation

    SciTech Connect

    Hidiroglou, M.; Karpinski, K.

    1989-03-01

    Serial vitamin D3 (D3) and 25-hydroxyvitamin D3 (25 OH D3) concentrations of plasma were measured in confined, shorn sheep that had either been supplemented with vitamin D3 (50 micrograms/d) or exposed daily to ultraviolet irradiation (UVI). In the sheep administered D3 orally, plasma D3 increased continuously until d 35. This was followed by small fluctuations of the plasma D3 concentrations until a plateau was reached after 56 d of supplementation (.94 ng/ml plasma). Plasma 25 OH D3 concentrations increased continuously and plateaued between d 65 to 75 at about 21 ng/ml plasma. In the UVI sheep, plasma D3 and 25 OH D3 concentrations increased continuously for the first 49 d, then plateaued at 2.03 ng D3 and 29.6 ng 25 OH D3/ml. When a plateau was reached in plasma 25 OH D3 concentrations in both treatment groups, a /sup 3/H-labeled tracer dose of 25 OH D3 was given i.v., and disappearance of the /sup 3/H-labeled 25 OH D3 was followed. The UVI group had a faster decline in specific activities during the first exponential phase but a slower decline during the prolonged terminal elimination phase. These differences are reflected in the intercompartmental transfer rates. Our data indicate that UVI is as effective as oral vitamin D3 supplementation for improving vitamin D status of confined sheep.

  1. Vitamin D Signaling in the Bovine Mammary Gland is Part of the Innate Immune Response to Bacterial Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin D has been primarily known for the role it has in regulating calcium homeostasis, but we have recently found evidence that it is also involved in the immune response also. The active vitamin D metabolite is 1,25-dihydroxyvitamin (1,25[OH]2D3). Systemically, 1,25(OH)2D3 functions to regulat...

  2. Interactions of vitamins A, D3, E, and K in the diet of broiler chicks.

    PubMed

    Abawi, F G; Sullivan, T W

    1989-11-01

    A total of 3,888 broiler chicks (Vantress x Arbor Acre) were used in a study involving 81 dietary treatments to determine the interactions among vitamins A, D3, E, and K in broiler chicks. Three levels of each fat-soluble vitamin representing deficient, optimum, and excessive amounts were included. Significant observations were: effect of vitamin A levels on feed efficiency (P less than .01), plasma vitamin A (P less than .01), and plasma vitamin E (P less than .01); effect of vitamin D levels on body weight gain (P less than .01) and mortality (P less than .05); effect of vitamin E levels on plasma vitamin A (P less than .01); effect of vitamin A x vitamin D interaction on body weight gain (P less than .02) and plasma vitamin E (P less than .05); effect of vitamin A x vitamin E interaction on mortality (P less than .01), plasma vitamin A (P less than .03), and plasma vitamin E (P less than .01); effect of vitamin D x vitamin K interaction on feed efficiency (P less than .05); effect of vitamin A x vitamin D x vitamin E interaction on plasma vitamin E concentration (P less than .01); effect of vitamin A x vitamin E x vitamin K interaction on mortality (P less than .05). The results of this study suggest that higher supplemental levels of vitamins D and K would improve performance of poultry occasionally being fed high supplemental levels of vitamins A and E. PMID:2558372

  3. Effects of Solanum malacoxylon extract on rachitic chicks. Comparative study with vitamin D3.

    PubMed

    Cañas, F M; Ortiz, O E; Asteggiano, C A; Pereira, R D

    1977-10-20

    A comparative study of the effects of vitamin D3 and of a partially purified extract of Solanum malacoxylon has been carried out in rachitic chicks. Vitamin D3 and Solanum malacoxylon increased intestinal calcium absorption and serum calcium levels. They normalized the bone water and ash content. Vitamin D3 produced an increase of serum phosphate while Solanum malacoxylon further decreased the already low phosphate values. Vitamin D3 significantly increased the body weight increment of rachitic chicks, but Solanum malacoxylon did not. It appears that Solanum malacoxylon duplicates certain actions of vitamin D but lacks its phosphate-regulating and growth-promoting actions. PMID:198068

  4. 24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics

    PubMed Central

    Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474

  5. Serum 25-Hydroxyvitamin D3 and Mammography Density among Mexican Women.

    PubMed

    Amadou, Amina; Biessy, Carine; Rinaldi, Sabina; Fedirko, Veronika; Assi, Nada; Lajous, Martin; Ortiz-Panozo, Eduardo; Yunes, Elsa; Lopez-Ridaura, Ruy; Torres-Mejia, Gabriela; Romieu, Isabelle

    2016-01-01

    Low circulating levels of vitamin D and high mammographic density (MD) have been associated with higher risk of breast cancer. Although some evidence suggested an inverse association between circulating vitamin D and MD, no studies have investigated this association among Mexican women. We examined whether serum 25-hydroxyvitamin D3 [25(OH)D3] levels were associated with MD in a cross-sectional study nested within the large Mexican Teacher's Cohort. This study included 491 premenopausal women with a mean age of 42.9 years. Serum 25(OH)D3 levels were measured by liquid chromatography/tandem mass spectrometry. Linear regression and non-linear adjusted models were used to estimate the association of MD with serum 25(OH)D3. Median serum 25(OH)D3 level was 27.3 (23.3-32.8) (ng/ml). Forty one (8%) women had 25(OH)D3 levels in the deficient range (< 20 ng/ml). Body mass index (BMI) and total physical activity were significantly correlated with 25(OH)D3 (r = -0.109, P = 0.019 and r = 0.095, P = 0.003, respectively). In the multivariable linear regression, no significant association was observed between 25(OH)D3 levels and MD overall. However, in stratified analyses, higher serum 25(OH)D3 levels (≥27.3 ng/ml) were significantly inversely associated with percent MD among women with BMI below the median (β = -0.52, P = 0.047). Although no significant association was observed between serum 25(OH)D3 and percent MD in the overall population, specific subgroups of women may benefit from higher serum 25(OH)D3 levels. PMID:27564705

  6. Serum 25–Hydroxyvitamin D3 and Mammography Density among Mexican Women

    PubMed Central

    Amadou, Amina; Biessy, Carine; Rinaldi, Sabina; Fedirko, Veronika; Assi, Nada; Lajous, Martin; Ortiz-Panozo, Eduardo; Yunes, Elsa; Lopez-Ridaura, Ruy; Torres-Mejia, Gabriela; Romieu, Isabelle

    2016-01-01

    Low circulating levels of vitamin D and high mammographic density (MD) have been associated with higher risk of breast cancer. Although some evidence suggested an inverse association between circulating vitamin D and MD, no studies have investigated this association among Mexican women. We examined whether serum 25−hydroxyvitamin D3 [25(OH)D3] levels were associated with MD in a cross-sectional study nested within the large Mexican Teacher's Cohort. This study included 491 premenopausal women with a mean age of 42.9 years. Serum 25(OH)D3 levels were measured by liquid chromatography/tandem mass spectrometry. Linear regression and non-linear adjusted models were used to estimate the association of MD with serum 25(OH)D3. Median serum 25(OH)D3 level was 27.3 (23.3–32.8) (ng/ml). Forty one (8%) women had 25(OH)D3 levels in the deficient range (< 20 ng/ml). Body mass index (BMI) and total physical activity were significantly correlated with 25(OH)D3 (r = −0.109, P = 0.019 and r = 0.095, P = 0.003, respectively). In the multivariable linear regression, no significant association was observed between 25(OH)D3 levels and MD overall. However, in stratified analyses, higher serum 25(OH)D3 levels (≥27.3 ng/ml) were significantly inversely associated with percent MD among women with BMI below the median (β = −0.52, P = 0.047). Although no significant association was observed between serum 25(OH)D3 and percent MD in the overall population, specific subgroups of women may benefit from higher serum 25(OH)D3 levels. PMID:27564705

  7. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  8. Extraction of Vitamin D Metabolites by Bones of Normal Adult Dogs

    PubMed Central

    Olgaard, K.; Schwartz, J.; Finco, D.; Arbelaez, M.; Haddad, J.; Avioli, L.; Klahr, S.; Slatopolsky, E.

    1982-01-01

    Using the isolated perfused canine tibia we examined the extraction of [3H]25(OH)D3, [3H]1,25(OH)2D3 and [3H]24,25(OH)2D3 by bone of normal adult dogs. The studies were performed with and without vitamin D binding protein (DBP) in the perfusate to examine the effect of protein binding on the extraction of the vitamin D metabolites. An average of 48±2% of [3H]25(OH)D3 was extracted by bone, when no DBP was present. However, addition of only a small amount of DBP (∼720 ng/ml of perfusate) nearly completely abolished the extraction of [3H]25(OH)D3 by bone. No degradation and/or transformation of the labeled 25(OH)D3 could be demonstrated during passage through the isolated perfused bone. The extraction of [3H]24,25(OH)2D3 in a DBP-free medium averaged 33±5%. Addition of 720 ng of DBP/ml of perfusate completely inhibited the extraction of this metabolite. The extraction of [3H]1,25(OH)2D3 averaged 30±3% in a DBP free medium and no inhibition of the extraction was demonstrated after addition of DBP (720 ng/ml of perfusate). However, addition of DBP in a concentration of 14.4 μg/ml of perfusate reduced the extraction of 1,25(OH)2D3 to 8±2%, a value still significantly higher than that seen after addition of 20 times less DBP to perfusions with 25(OH)D3 and 24,25(OH)2D3. It is concluded that the isolated perfused bone of normal dogs can extract significant amounts of 25(OH)D3, 1,25(OH)2D3, and 24,25(OH)2D3. Small concentrations of DBP (720 ng/ml) in the perfusate significantly inhibited the extraction of 25(OH)D3 and 24,25(OH)2D3. A carrier role for DBP is suggested and it is proposed that the levels of free vitamin D are important for extraction of the metabolites by bone. Therefore, due to the different affinities of DBP for the various metabolites of vitamin D, only 1,25(OH)2D3 is extracted in vitro in significant amounts by bone of normal adult dogs, in the presence of DBP. PMID:7061707

  9. 79 FR 46993 - Food Additives Permitted for Direct Addition to Food for Human Consumption; Vitamin D3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-08-12

    ... to Food for Human Consumption; Vitamin D 3 AGENCY: Food and Drug Administration, HHS. ACTION: Final... to provide for the safe use of vitamin D 3 as a nutrient supplement in meal replacement beverages.... 172.380 (21 CFR 172.380), Vitamin D 3 , to provide for the safe use of vitamin D 3 as a...

  10. Summer/winter differences in the serum 25-hydroxyvitamin D3 and parathyroid hormone levels of Japanese women

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nashimoto, Mitsue; Yamamoto, Masaharu

    Serum 25-hydroxyvitamin D3 [25(OH)D3] is produced in the skin in response to exposure to ultraviolet radiation, and is a good indicator of vitamin D nutritional status. The aim of this study was to determine summer/winter differences in serum 25(OH)D3 and parathyroid hormone (PTH) in Japanese women and how the summer and winter values are related. The subjects were 122 healthy Japanese women aged 45-81 years (average age: 65.7 years). They were medically examined twice, in September 1997 and February 1999. Serum 25(OH)D3 and intact PTH were determined by high-performance liquid chromatography and a two-site immunoradiometric assay respectively. Lifestyle information was obtained through an interview. The seasonal differences (winter minus summer) in 25(OH)D325(OH)D3] and intact PTH concentrations were -18.8 nmol/l (SD 19.2, P<0.0001) and 0.98pmol/l (SD 1.02, P<0.0001) respectively. The correlation coefficient between summer (x) and winter (y) 25(OH)D3 levels was 0.462 (P<0.0001), with a linearly fitted line of y=0.42x+26.4. This relationship was interpreted as subjects with higher summer 25(OH)D3 values having greater reductions in winter 25(OH)D3 concentrations. There were inter-individual differences in Δ25(OH)D3, although the summer and winter 25(OH)D3 concentrations were well-correlated. Since Δ25(OH)D3 was not associated with any of the lifestyle factors, seasonal differences in the 25(OH)D3 concentrations of an individual appeared to reflect her ability to produce 25(OH)D3 photochemically in the skin. Sun bathing would be a less effective means of attaining adequate vitamin D nutritional status in a person with a small seasonal difference in 25(OH)D3, i.e., one with a low 25(OH)D3 level.

  11. Isolation and identification of vitamin D3, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3 in Solanum malacoxylon incubated with ruminal fluid.

    PubMed

    Skliar, M I; Boland, R L; Mourino, A; Tojo, G

    1992-12-01

    It has been shown that Solanum malacoxylon contains 1 alpha,25-dihydroxyvitamin D3-glycoside. The presence of vitamin D3 and 25-hydroxyvitamin D3 has also been suggested. In the present study vitamin D3 and three of its metabolites, including 1 alpha,25-dihydroxyvitamin D3, were detected in plant leaf extracts preincubated with ruminal fluid (SMRF). Extraction of SMRF with non-polar organic solvents and purification of the lipid extract by TLC followed by HPLC yielded nine ultraviolet-absorbing (264 nm) peaks. Four of them comigrated on a Zorbax-Sil HPLC column with synthetic standards of vitamin D3, 25-hydroxyvitamin D3, 1 alpha,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3, respectively. These compounds were unequivocally identified by means of mass spectrometry. The results confirm that Solanum malacoxylon contains, in addition to 1 alpha,25-dihydroxyvitamin D3, vitamin D3, 25-hydroxyvitamin D3 and possibly other as yet unidentified derivatives. As 1,24,25-trihydroxyvitamin D3 is absent in plant extracts not incubated with ruminal fluid, the data also indicate that rumen microbes may convert 1 alpha,25-dihydroxyvitamin D3 into 1,24,25-trihydroxyvitamin D3. PMID:1335278

  12. The Second International Standard for Vitamin D: crystalline vitamin D3*

    PubMed Central

    Coward, K. H.; Irwin, J. O.

    1954-01-01

    This report was presented to the Subcommittee on Fat-Soluble Vitamins of the WHO Expert Committee on Biological Standardization in 1949 by the Vitamin D Sub-Committee of the Accessory Food Factors Committee of the Medical Research Council of Great Britain and formed the evidence on which the first-mentioned subcommittee based its recommendation of the adoption of crystalline vitamin D3 as the International Standard for Vitamin D, replacing the solution of irradiated ergosterol which had been adopted as Standard in 1931. The Vitamin D Sub-Committee organized a collaborative assay in which 32 laboratories in seven countries participated. In addition to 29g of crystalline vitamin D3 generously contributed by five firms, the following preparations were compared for vitamin D activity by biological tests on rats or chicks or both: the then current International Standard, a preparation of the purest calciferol obtainable, the British Standards Institution (BSI) Standard, the United States Pharmacopeia (USP) Reference Cod Liver Oil, and the Swedish provisional standard. Altogether 29 rat assays and 25 chick assays were carried out, and the results were subjected to standard methods of analysis. The BSI Standard and the pure calciferol were found less potent than the Old Standard (potency ratios: 0.916 and 0.933, respectively); and the New Standard may be slightly less potent (0.981), but it is more potent than the BSI Standard (1.071). The USP Reference Oil is less potent than the BSI Standard (0.949), the Old Standard (0.896), and the New Standard (0.886). The fiducial range is generally less than 10%, but even where it is greater, it is still satisfactory for a biological test. PMID:13199651

  13. Vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma.

    PubMed

    Baek, Sungmin; Lee, Young-Suk; Shim, Hye-Eun; Yoon, Sik; Baek, Sun-Yong; Kim, Bong-Seon; Oh, Sae-Ock

    2011-09-01

    A low serum level of vitamin D has been associated with an increased incidence of gastrointestinal tract cancers. However, the effects of vitamin D3 have not been investigated in gastric cancer and cholangiocarcinoma. In the present study, we found that vitamin D3 treatment significantly suppressed the viability of gastric cancer and cholangiocarcinoma cells. Moreover, vitamin D3 had a synergistic effect with other anti-cancer drugs, such as paclitaxel, adriamycin, and vinblastine, for suppressing cell viability. To determine the underlying mechanism involved in the regulation of viability by vitamin D3, we examined the effects of vitamin D3 on expression of hedgehog signaling target genes, which has been associated with gastric cancer and cholangiocarcinoma. Vitamin D3 treatment decreased the level of mRNA expression of patched1, Gli1, cyclin D1, and Bcl2, suggesting the possibility that vitamin D3 may act through regulation of hedgehog signaling. From the above results, we conclude that vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma. PMID:22025972

  14. Use of 1 alpha-hydroxyvitamin D3 to prevent bovine parturient paresis. VI. Concentrations of vitamin D metabolites and vitamin D3 equivalence in milk.

    PubMed

    Bar, A; Sachs, M; Perlman, R

    1986-11-01

    Concentration of vitamin D metabolites was determined in the milk of control and 1 alpha-hydroxyvitamin D3-injected (700 micrograms) cows that calved 36 to 43 h after treatment. Milk samples were taken 60 h after calving. Concentrations of vitamin D, 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D in milk of the control cows were 372 +/- 24, 264 +/- 68, 68 +/- 26, and 21 +/- 3 ng/L, respectively. Concentrations of vitamin D metabolites in the milk of the treated cows did not differ significantly from those of controls. Concentration of 1 alpha-hydroxyvitamin D3 in milk of treated cows was less than 20 ng/L. In a second experiment, cows were injected twice, at 72-h intervals, with 350 micrograms 1 alpha-hydroxyvitamin D3. Milk was taken 60 h after parturition from cows that calved 37 to 60 h after the second injection. The vitamin D3 equivalence of the milk was 40 +/- 3 IU/L. Results indicate that injection of 700 micrograms 1 alpha-hydroxyvitamin D3 did not affect the concentration of vitamin D metabolites or the vitamin D3 equivalence of milk taken 60 h after calving. PMID:3027149

  15. Vitamin D from different sources is inversely associated with Parkinson disease

    PubMed Central

    Wang, Liyong; Evatt, Marian L.; Maldonado, Lizmarie G.; Perry, William R.; Ritchie, James C.; Beecham, Gary W.; Martin, Eden R.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Scott, William K.

    2014-01-01

    Background An inverse association between Parkinson disease (PD) and total vitamin D levels has been reported but it is unknown whether vitamin D from different sources, i.e. 25(OH)D2 (from diet and supplements) and 25(OH)D3 (mainly from sunlight exposure), all contribute to the association. Methods Plasma total 25(OH)D, 25(OH)D2, and 25(OH)D3 levels were measured by liquid chromatography-tandem mass spectrometry in PD patients (N=478) and controls (N=431). Total 25(OH)D was categorized by clinical insufficiency or deficiency, 25(OH)D2 and 25(OH)D3 were analyzed in quartiles. Results Vitamin D deficiency (total 25(OH)D < 20 ng/mL) and vitamin D insufficiency (total 25(OH)D < 30 ng/mL) are associated with PD risk [Odds Ratio (OR)=2.6 (deficiency) and 2.1 (insufficiency), P<0.0001], adjusting for age, sex and sampling season. Both 25(OH)D2 and 25(OH)D3 levels are inversely associated with PD (Ptrend<0.0001). The association between 25(OH)D2 and PD risk is largely confined to individuals with low 25(OH)D3 levels (Ptrend=0.0008 and 0.12 in individuals with 25(OH)D3 < 20 ng/mL and 25(OH)D3 >= 20 ng/mL, respectively) Conclusions Our data confirm the association between vitamin D deficiency and PD, and for the first time demonstrate an inverse association of 25(OH)D2 with PD. Given that 25(OH)D2 concentration is independent of sunlight exposure, this new finding suggests that the inverse association between vitamin D levels and PD is not simply due to lack of sunlight exposure PD patients with impaired mobility. The current study, however, cannot exclude the possibility that gastrointestinal dysfunction, a non-motor PD symptom, contributes to the lower vitamin D2 levels in PD patients. PMID:25545356

  16. Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study

    PubMed Central

    2011-01-01

    Introduction Vitamin D deficiency is encountered frequently in critically ill patients and might be harmful. Current nutrition guidelines recommend very low vitamin D doses. The objective of this trial was to evaluate the safety and efficacy of a single oral high-dose vitamin D3 supplementation in an intensive care setting over a one-week observation period. Methods This was a randomized, double-blind, placebo-controlled pilot study in a medical ICU at a tertiary care university center in Graz, Austria. Twenty-five patients (mean age 62 ± 16yrs) with vitamin D deficiency [25-hydroxyvitamin D (25(OH)D) ≤20 ng/ml] and an expected stay in the ICU >48 hours were included and randomly received either 540,000 IU (corresponding to 13.5 mg) of cholecalciferol (VITD) dissolved in 45 ml herbal oil or matched placebo (PBO) orally or via feeding tube. Results The mean serum 25(OH)D increase in the intervention group was 25 ng/ml (range 1-47 ng/ml). The highest 25(OH)D level reached was 64 ng/ml, while two patients showed a small (7 ng/ml) or no response (1 ng/ml). Hypercalcemia or hypercalciuria did not occur in any patient. From day 0 to day 7, total serum calcium levels increased by 0.10 (PBO) and 0.15 mmol/L (VITD; P < 0.05 for both), while ionized calcium levels increased by 0.11 (PBO) and 0.05 mmol/L (VITD; P < 0.05 for both). Parathyroid hormone levels decreased by 19 and 28 pg/ml (PBO and VITD, ns) over the seven days, while 1,25(OH)D showed a transient significant increase in the VITD group only. Conclusions This pilot study shows that a single oral ultra-high dose of cholecalciferol corrects vitamin D deficiency within 2 days in most patients without causing adverse effects like hypercalcemia or hypercalciuria. Further research is needed to confirm our results and establish whether vitamin D supplementation can affect the clinical outcome of vitamin D deficient critically ill patients. EudraCT Number 2009-012080-34 German Clinical Trials Register (DRKS) DRKS

  17. Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems.

    PubMed

    Tippetts, M; Martini, S; Brothersen, C; McMahon, D J

    2012-09-01

    Vitamin D is an essential vitamin that is synthesized when the body is exposed to sunlight or after the consumption of fortified foods and supplements. The purpose of this research was to increase the retention of vitamin D(3) in Cheddar cheese by incorporating it as part of an oil-in-water emulsion using a milk protein emulsifier to obtain a fortification level of 280 IU/serving. Four oil-in-water vitamin D emulsions were made using sodium caseinate, calcium caseinate, nonfat dry milk (NDM), or whey protein. These emulsions were used to fortify milk, and the retention of vitamin D(3) in cheese curd in a model cheesemaking system was calculated. A nonemulsified vitamin D(3) oil was used as a control to fortify milk. Significantly more vitamin D(3) was retained in the curd when using the emulsified vitamin D(3) than the nonemulsified vitamin D(3) oil (control). No significant differences were observed in the retention of vitamin D(3) when emulsions were formulated with different emulsifiers. Mean vitamin D(3) retention in the model system cheese curd was 96% when the emulsions were added to either whole or skim milk compared with using the nonemulsified oil, which gave mean retentions of only 71% and 64% when added to whole and skim milk, respectively. A similar improvement in retention was achieved when cheese was made from whole and reduced-fat milk using standard manufacturing procedures on a small scale. When sufficient vitamin D(3) was added to produce cheese containing a target level of approximately 280 IU per 28-g serving, retention was greater when the vitamin D(3) was emulsified with NDM than when using nonemulsified vitamin D(3) oil. Only 58±3% of the nonemulsified vitamin D(3) oil was retained in full-fat Cheddar cheese, whereas 78±8% and 74±1% were retained when using the vitamin D(3) emulsion in full-fat and reduced-fat Cheddar cheese, respectively. PMID:22916880

  18. The effects of intermittent vitamin D3 supplementation on muscle strength and metabolic parameters in postmenopausal women with type 2 diabetes: a randomized controlled study

    PubMed Central

    Cavalcante, Roseane; Maia, Juliana; Henrique, Rafael; Griz, Luiz; Bandeira, Maria P.; Bandeira, Francisco

    2015-01-01

    Background: The aim of this study was to evaluate the effect of weekly vitamin D3 supplementation on metabolic parameters and muscle strength of postmenopausal women with type 2 diabetes. Methods: A total of 38 patients with serum 25-hydroxy vitamin D [25(OH)D] below 30 ng/ml and hand strength below 20 kg were randomly assigned to oral vitamin D3 (6600 IU/week in 2 cc oil preparation) or 2 cc olive oil weekly for 3 months. Results: There were nonsignificant increases in serum 25(OH)D in the intervention group to 22.98 ± 4.23 ng/ml and nonsignificant decreases in the control group to 22.84 ± 3.88 (26% of the intervention and 48% of the control groups had 25(OH)D < 20 ng/ml). Handgrip strength improved significantly in the intervention group (right arm 17.4 ± 2.68 to 19.9 ± 3.53 kg, p = 0.002; left arm 16.31 ± 2.6 to 18.46 ± 3.2 kg, p < 0.001) but not in the control group (right arm 16.87 ± 3.99 to 17.93 ± 4.91 kg, p = 0.1; left arm 16.13 ± 4.29 to 16.86 ± 4.79 kg, p < 0.2). More patients in the control group became obese at the end of the study period (p = 0.014). There were no significant changes in mean fasting glucose, glycated haemoglobin (HbA1c), serum triglycerides and blood pressure with vitamin D supplementation. Systolic blood pressure increased significantly in the control group from 136.6 ± 18.6 to 141.4 ± 17.6 mmHg, p = 0.04). Conclusions: Vitamin D3 supplementation in doses equivalent to 942 IU/day improved isometric handgrip strength, but had no effect on glycaemic control in postmenopausal women with longstanding type 2 diabetes. PMID:26301064

  19. The Association of 25-Hydroxyvitamin D3 and D2 with Behavioural Problems in Childhood

    PubMed Central

    Tolppanen, Anna-Maija; Sayers, Adrian; Fraser, William D.; Lewis, Glyn; Zammit, Stanley; Lawlor, Debbie A.

    2012-01-01

    Background Higher serum concentrations of 25-hydroxyvitamin D (25(OH)D), an indicator of vitamin D synthesis and intake, have been associated with better mental health and cognitive function. Concentrations of 1,25-dihydroxyvitamin D3 (the active vitamin D3 metabolite) have been associated with openness and extrovert behaviour, but 25(OH)D concentrations have not been associated with behavioural problems in humans. Methods We investigated the prospective association between the different forms of 25(OH)D - 25(OH)D3 and 25(OH)D2– and childhood behavioural problems in Avon Longitudinal Study of Parents and Children (ALSPAC). Serum 25(OH)D3 and 25(OH)D2 concentrations were assessed at mean age 9.9 years. Incident behavioural problems were assessed with Strengths and Difficulties Questionnaire (SDQ; emotional symptoms, conduct problems, hyperactivity-inattention problems, peer relationship problems and pro-social behaviour subscales and total difficulties score) at mean age 11.7. Sample sizes varied between 2413-2666 depending on the outcome. Results Higher 25(OH)D3 concentrations were weakly associated with lower risk of prosocial problems (fully adjusted odds ratio: OR (95% confidence interval: CI) 0.85 (0.74, 0.98)). Serum 25(OH)D3 or 25(OH)D2 concentrations were not associated with other subscales of SDQ or total difficulties score after adjusting for concfounders and other measured analytes related to vitamin D. Conclusions Our findings do not support the hypothesis that 25-hydroxyvitamin D status in childhood has important influences on behavioural traits in humans. PMID:22808099

  20. Vitamin D and inflammation

    PubMed Central

    Cannell, John J; Grant, William B; Holick, Michael F

    2014-01-01

    Several studies found an inverse relationship between 25-hydroxyvitamin D [25(OH)D] and markers of inflammation. A controversy exists as to whether vitamin D lowers inflammation or whether inflammation lowers 25(OH)D concentrations. Certainly 25(OH)D concentrations fall after major surgery. However, is this due to inflammation lowering 25(OH)D or is 25(OH)D being metabolically cleared by the body to quell inflammation. We searched the literature and found 39 randomized controlled trials (RCT) of vitamin D and markers of inflammation. Seventeen found significantly reduced inflammatory markers, 19 did not, one was mixed and one showed adverse results. With few exceptions, studies in normal subjects, obesity, type 2 diabetics, and stable cardiovascular disease did not find significant beneficial effects. However, we found that 6 out of 7 RCTS of vitamin D3 in highly inflammatory conditions (acute infantile congestive heart failure, multiple sclerosis, inflammatory bowel disease, cystic fibrosis, SLE, active TB and evolving myocardial infarction) found significant reductions. We found baseline and final 25(OH)D predicted RCTs with significant reduction in inflammatory markers. Vitamin D tends to modestly lower markers of inflammation in highly inflammatory conditions, when baseline 25(OH)D levels were low and when achieved 25(OH)D levels were higher. Future inquiries should: recruit subjects with low baseline 25(OH)D levels, subjects with elevated markers of inflammation, subjects with inflammatory conditions, achieve adequate final 25(OH)D levels, and use physiological doses of vitamin D. We attempted to identify all extant randomized controlled trials (RCTs) of vitamin D that used inflammatory markers as primary or secondary endpoints. PMID:26413186

  1. Comparison of analysis of vitamin D3 in foods using ultraviolet and mass spectrometric detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for analysis of vitamin D3 in commonly fortified foods and in fish, which contains endogenous vitamin D3, was developed by combining the best aspects of two official methods. The ethyl ether/petroleum ether extraction procedure from AOAC 992.26 was combined with the chromatographic separat...

  2. Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

    PubMed Central

    Woo, Su-Mi; Lim, Hae-Soon; Jeong, Kyung-Yi; Kim, Seon-Mi; Kim, Won-Jae; Jung, Ji-Yeon

    2015-01-01

    The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation. PMID:26062551

  3. Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation.

    PubMed

    Woo, Su-Mi; Lim, Hae-Soon; Jeong, Kyung-Yi; Kim, Seon-Mi; Kim, Won-Jae; Jung, Ji-Yeon

    2015-07-01

    The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation. PMID:26062551

  4. A liposomal model that mimics the cutaneous production of vitamin D3. Studies of the mechanism of the membrane-enhanced thermal isomerization of previtamin D3 to vitamin D3

    NASA Technical Reports Server (NTRS)

    Tian, X. Q.; Holick, M. F.

    1999-01-01

    We reported previously that the rate of previtamin D3 (preD3) <==> vitamin D3 isomerization was enhanced by about 10 times in the skin compared with that in organic solvents. To elucidate the mechanism by which the rate of this reaction is enhanced in the skin, we developed a liposomal model that mimicked the enhanced isomerization of preD3 to vitamin D3 that was described in human skin. Using this model we studied the effect of changing the polarity of preD3 as well as changing the chain length and the degree of saturation of liposomal phospholipids on the kinetics of preD3 <==> vitamin D3 isomerization. We found that a decrease in the hydrophilic interaction of the preD3 with liposomal phospholipids by an esterification of the 3beta-hydroxy of preD3 (previtamin D3-3beta-acetate) reduced the rate of the isomerization by 67%. The addition of a hydroxyl on C-25 of the hydrophobic side chain (25-hydroxyprevitamin D3), which decreased the hydrophobic interaction of preD3 with the phospholipids, reduced the rate by 87%. In contrast, in an isotropic n-hexane solution, there was little difference among the rates of the conversion of preD3, its 3beta-acetate, and 25-hydroxy derivatives to their corresponding vitamin D3 compounds. We also determined rate constants (k) of preD3 <==> vitamin D3 isomerization in liposomes containing phosphatidylcholines with different carbon chain lengths. The rates of the reaction were found to be enhanced as the number of carbons (Cn) in the hydrocarbon chain of the phospholipids increased from 10 to 18. In conclusion, these results support our hypothesis that amphipathic interactions between preD3 and membrane phospholipids stabilize preD3 in its "cholesterol like" cZc-conformer, the only conformer of preD3 that can convert to vitamin D3. The stronger these interactions were, the more preD3 was likely in its cZc conformation at any moment and the faster was the rate of its conversion to vitamin D3.

  5. A Randomized Controlled Trial on the Effect of Vitamin D3 on Inflammation and Cathelicidin Gene Expression in Ulcerative Colitis Patients

    PubMed Central

    Sharifi, Amrollah; Hosseinzadeh-Attar, Mohammad Javad; Vahedi, Homayoon; Nedjat, Saharnaz

    2016-01-01

    Background: Inflammatory bowel disease (IBD) is an intestinal chronic inflammatory condition and includes Crohn's disease (CD) and ulcerative colitis (UC). It has been proposed that Vitamin D supplementation may have a beneficial role in IBD. Aim: To characterize the effects of Vitamin D on cathelicidin (hCAP/LL37) gene expression, ESR, and serum hs-CRP levels. Materials and Methods: Ninety UC patients on remission were randomized to receive 300,000 IU intramuscular Vitamin D or 1 mL normal saline as placebo, respectively. Before and 90 days after intervention, serum levels of 25 (OH)-Vitamin D3, PTH, Calcium, ESR, and hs-CRP were measured. Cathelicidin gene expression was also quantified using qRT-PCR. Results: Baseline serum 25-OH-Vitamin D3 levels were not different between the two groups and after intervention, increased only in Vitamin D group (P < 0.001). Hs-CRP levels were lower in Vitamin D group after intervention (Before: 3.43 ± 3.47 vs 3.86 ± 3.55 mg/L, P = 0.56; after: 2.31 ± 2.25 vs 3.90 ± 3.97 mg/L, P = 0.023). ESR decreased significantly in Vitamin D group (Before: 12.4 ± 6.1 vs 12.1 ± 5.3 mm/h, P = 0.77; after: 6.7 ± 4.5 vs 11.4 ± 5.5 mm/h, P < 0.001). The mean fold change in hCAP18 gene expression in Vitamin D group was significantly higher than placebo group. (Mean ± SD: 3.13 ± 2.56 vs 1.09 ± 0.56; median ± interquartile range: 2.17 ± 3.81 vs 0.87 ± 0.53, P < 0.001). Conclusion: Decreases in ESR and hs-CRP levels and increase in LL37 gene expression support the hypothesis that Vitamin D supplementation may have a beneficial role in UC patients. PMID:27488327

  6. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism.

    PubMed

    Boontanrart, Mandy; Hall, Samuel D; Spanier, Justin A; Hayes, Colleen E; Olson, Julie K

    2016-03-15

    Microglia become activated immune cells during infection or disease in the central nervous system (CNS). However, the mechanisms that downregulate activated microglia to prevent immune-mediated damage are not completely understood. Vitamin D3 has been suggested to have immunomodulatory affects, and high levels of vitamin D3 have been correlated with a decreased risk for developing some neurological diseases. Recent studies have demonstrated the synthesis of active vitamin D3, 1,25-dihydroxyvitamin D3, within the CNS, but its cellular source and neuroprotective actions remain unknown. Therefore, we wanted to determine whether microglia can respond to vitamin D3 and whether vitamin D3 alters immune activation of microglia. We have previously shown that microglia become activated by IFNγ or LPS or by infection with virus to express pro-inflammatory cytokines, chemokines, and effector molecules. In this study, activated microglia increased the expression of the vitamin D receptor and Cyp27b1, which encodes the enzyme for converting vitamin D3 into its active form, thereby enhancing their responsiveness to vitamin D3. Most importantly, the activated microglia exposed to vitamin D3 had reduced expression of pro-inflammatory cytokines, IL-6, IL-12, and TNFα, and increased expression of IL-10. The reduction in pro-inflammatory cytokines was dependent on IL-10 induction of suppressor of cytokine signaling-3 (SOCS3). Therefore, vitamin D3 increases the expression of IL-10 creating a feedback loop via SOCS3 that downregulates the pro-inflammatory immune response by activated microglia which would likewise prevent immune mediated damage in the CNS. PMID:26943970

  7. Noncalcemic actions of 1,25-dihydroxyvitamin D3 and clinical applications.

    PubMed

    Holick, M F

    1995-08-01

    Vitamin D is absolutely essential for the maintenance of a healthy skeleton. Without vitamin D, children develop rickets and adults exacerbate their osteoporosis and develop osteomalacia. Casual exposure to sunlight is the major source of vitamin D for most people. During exposure to sunlight, ultraviolet B photons photolyze cutaneous stores of 7-dehydrocholesterol to previtamin D3. Previtamin D3 undergoes a thermal isomerization to form vitamin D3. Increased skin pigmentation, changes in latitude, time of day, sunscreen use, and aging can have a marked influence on the cutaneous production of vitamin D3. Once vitamin D3 is formed in the skin or ingested in the diet, it must be hydroxylated in the liver and kidney to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. It is now recognized that a wide variety of tissues and cells, both related to calcium metabolism and unrelated to calcium metabolism, are target sites for 1,25(OH)2D3. 1,25(OH)2D3 stimulates intestinal calcium absorption and mobilizes stem cells to mobilize calcium stores from bone. Noncalcemic tissues that possess receptors for 1,25(OH)2D3 respond to the hormone in a variety of ways. Of great interest is that 1,25(OH)2D3 is a potent antiproliferative and prodifferentiation mediator. As a result, 1,25(OH)2D3 and its analogs have wide clinical application in such diverse clinical disorders as rheumatoid and psoriatic arthritis; diabetes mellitus type I; hypertension; cardiac arrhythmias; seizure disorders; cancers of the breast, prostate, and colon; some leukemias and myeloproliferative disorders; chemotherapy-induced hair loss; and skin rejuvenation as well as skin diseases like psoriasis and ichthyosis. PMID:8579891

  8. Characterization of the translocation process of vitamin D3 from the skin into the circulation.

    PubMed

    Tian, X Q; Chen, T C; Lu, Z; Shao, Q; Holick, M F

    1994-08-01

    The cutaneous synthesis of vitamin D3 and the subsequent translocation of vitamin D3 into the circulation are two key steps in the vitamin D endocrine system. To study the kinetic aspects of cutaneous synthesis and translocation of vitamin D3, both in vitro and in vivo chicken models have been developed. To assess the capacity of chicken skin to generate vitamin D3, the concentrations of 7-dehydrocholesterol (7-DHC) in different skin areas were determined. It was found that the highest concentration of 7-DHC was in the leg skin (3524 +/- 937 ng cm-2), which was about 30 times greater than that in the back (120 +/- 62 ng cm-2). Whole body exposure of chickens to UV-B radiation (0.5 J cm-2) resulted in the production of previtamin D3 (preD3) in the skin of the legs and feet (43 +/- 7 and 54 +/- 17 ng cm-2, respectively), whereas no preD3 was detected in the back skin. In vitro, at 40 C, the forward (k1) and reverse (k2) rate constants of the preD3<-->vitamin D3 reaction in the leg skin were greatly increased compared to those in n-hexane (k1, 0.367 vs. 0.0369 h-1; k2, 0.042 vs. 0.0059 h-1). In vivo, the determined rate constants k1, k2, and k3 for the consecutive reactions preD3<-->vitamin D3-->vitamin D3 were 0.257, 0.034, and 0.114 h-1, respectively. To evaluate the circulating concentration of vitamin D3 in response to UV-B radiation, chicken legs were irradiated. The time course revealed a 4-fold increase in the circulating concentration of vitamin D3, with a peak about 30 h postradiation. No appreciable amount of preD3 could be detected in the circulation in the early hours after UV-B radiation, suggesting the existence of a process responsible for the specific translocation of vitamin D3 from the skin into the circulation. PMID:8033813

  9. 25-Hydroxyvitamin D Can Interfere With a Common Assay for 1,25-Dihydroxyvitamin D in Vitamin D Intoxication

    PubMed Central

    Hawkes, Colin P.; Schnellbacher, Sarah; Singh, Ravinder J.

    2015-01-01

    Context: Vitamin D intoxication is characterized by elevated serum 25-hydroxyvitamin D (25(OH)D) and suppressed serum 1,25-dihydroxvitamin D (1,25(OH)2D). We evaluated two adolescents with hypercalcemia due to vitamin D intoxication; both had elevated serum 1,25(OH)2D by Diasorin RIA, but normal serum 1,25(OH)2D concentrations by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Objective: This study aimed to determine the effect of 25(OH)D2 and 25(OH)D3 on 1,25(OH)2D concentration determined using RIA and LC-MS/MS. Methods: Pools of normal serum and an artificial serum matrix were prepared and aliquots were spiked with >99% pure 25(OH)D2 or 25(OH)D3 (50–700 ng/mL). Samples were maintained at 4°C or heated to 56°C, and the concentrations of vitamin D metabolites were measured by LC-MS/MS and Diasorin RIA. Results: Median 1,25(OH)2D increased by 114% with RIA and 21% with LC-MS/MS with addition of 100 ng/mL 25(OH)D3, and 349% (RIA) and 117% (LC-MS/MS) with 700 ng/mL of 25(OH)D3. Each 1-ng/mL increase in 25(OH)D3 increased 1,25(OH)2D by 0.231 pg/mL (RIA) and 0.121 pg/mL (LC-MS/MS). Spiking with 25(OH)D2 led to similar changes. Heat inactivation of serum, and using an artificial serum matrix, were associated with similar effects of 25(OH)D on 1,25(OH)2D assays. Conclusions: Vitamin D intoxication with high serum levels of 25(OH)D2 or 25(OH)D3 can be associated with elevated levels of 1,25(OH)2D due to interference in a commonly used RIA. A similar but attenuated effect also occurs when 1,25(OH)2D is measured using LC-MS/MS but does not seem to be clinically significant. The basis for this effect on the LC-MS/MS assay is presently uncertain. PMID:26120794

  10. Biological activity profiles of 1alpha,25-dihydroxyvitamin D2, D3, D4, D7, and 24-epi-1alpha,25-dihydroxyvitamin D2.

    PubMed

    Tsugawa, N; Nakagawa, K; Kawamoto, Y; Tachibana, Y; Hayashi, T; Ozono, K; Okano, T

    1999-04-01

    We have synthesized several 1alpha,25-dihydroxyvitamin D [1alpha,25(OH)2D] derivatives and evaluated their biological activity in terms of their binding affinity for the vitamin D receptor (VDR) and vitamin D-binding protein (DBP), antiproliferative or differentiation-inducing effects on human promyelocytic leukemic HL-60 cells, and transcriptional activity on a rat 25-hydroxyvitamin D3-24-hydroxylase gene promoter, including two vitamin D-responsive elements (VDREs), and human osteocalcin gene promoter, including a VDRE in transfected human osteosarcoma MG-63 cells. Furthermore, human VDR- or retinoic acid X receptor alpha (RXR alpha)-mediated luciferase activities of the derivatives were also measured by a one-hybrid system in human epitheloid carcinoma, cervix HeLa cells and African green monkey kidney CV-1 cells. Binding affinity for VDR, bone-resorbing activity, antiproliferative and cell-differentiating effects, transactivation potencies on target genes and VDR- or RXR alpha-mediated gene regulations of 1alpha,25(OH)2D2 and 1alpha,25(OH)2D4 were almost comparable to the effects of 1alpha,25(OH)2D3 while 24-epi-1alpha,25(OH)2D2 and 1alpha,25(OH)2D7 were much less active than 1alpha,25(OH)2D3 in these respects. This is the first report concerning biological assessment of 1alpha,25(OH)2D2, 1alpha,25(OH)2D3, 1alpha,25(OH)2D4, 24-epi-1alpha,25(OH)2D2 and 1alpha,25(OH)2D7 at the molecular level, especially with regards to the structural differences at the 24R- or 24S-methyl group and a double bond between carbons 22 and 23 in the side chain of 1alpha,25(OH)2D derivatives. PMID:10328556

  11. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P.; Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena; Makeschin, Marie-Christine; Mayr, Doris; Rust, Christian; Trauner, Michael; Denk, Gerald U.

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  12. Inhibition of α-glucosidase by vitamin D3 and the effect of vitamins B1 and B2.

    PubMed

    Peng, Xi; Zhang, Guowen; Zeng, Li

    2016-02-17

    α-Glucosidase is a vital enzyme in carbohydrate metabolism. Over-expression of this enzyme is correlated with hyperglycemia. The inhibitory effect of vitamin D3 on α-glucosidase as well as its mechanism of action was investigated in this work. The results showed that vitamin D3 exhibited stronger inhibition on α-glucosidase than acarbose with the IC50 value of 1.28 × 10(-4) mol L(-1), and the inhibition was a mixed-type mechanism through a multiphase kinetic process. The inhibition constant was determined to be (5.66 ± 0.03) × 10(-5) mol L(-1). Vitamin D3 interacted with α-glucosidase by hydrophobic interactions, and molecular docking further verified that the inhibitor inserted into the active site pocket of α-glucosidase and interacted with the amino residues, which induced the rearrangement and conformational changes of α-glucosidase, and might move to cover the active pocket, hindering the binding of the substrate leading to the inhibition of the enzyme activity. Moreover, it was found that vitamin D3 combined with vitamin B1 or vitamin B2 exhibited significant synergistic effects on inhibition of α-glucosidase. This study has provided new insights into the role of vitamin D3 in inhibiting α-glucosidase catalysis and offered useful information on the dietary recommendation of vitamin D3 for the treatment of type 2 diabetes. PMID:26744303

  13. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism

    PubMed Central

    Slominski, Andrzej; Semak, Igor; Zjawiony, Jordan; Wortsman, Jacobo; Li, Wei; Szczesniewski, Andre; Tuckey, Robert C.

    2008-01-01

    We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized. PMID:16098191

  14. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism.

    PubMed

    Slominski, Andrzej; Semak, Igor; Zjawiony, Jordan; Wortsman, Jacobo; Li, Wei; Szczesniewski, Andre; Tuckey, Robert C

    2005-08-01

    We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized. PMID:16098191

  15. Investigating causality in the association between 25(OH)D and schizophrenia

    PubMed Central

    Taylor, Amy E.; Burgess, Stephen; Ware, Jennifer J.; Gage, Suzanne H.; Richards, J. Brent; Davey Smith, George; Munafò, Marcus R.

    2016-01-01

    Vitamin D deficiency is associated with increased risk of schizophrenia. However, it is not known whether this association is causal or what the direction of causality is. We performed two sample bidirectional Mendelian randomization analysis using single nucleotide polymorphisms (SNPs) robustly associated with serum 25(OH)D to investigate the causal effect of 25(OH)D on risk of schizophrenia, and SNPs robustly associated with schizophrenia to investigate the causal effect of schizophrenia on 25(OH)D. We used summary data from genome-wide association studies and meta-analyses of schizophrenia and 25(OH)D to obtain betas and standard errors for the SNP-exposure and SNP-outcome associations. These were combined using inverse variance weighted fixed effects meta-analyses. In 34,241 schizophrenia cases and 45,604 controls, there was no clear evidence for a causal effect of 25(OH)D on schizophrenia risk. The odds ratio for schizophrenia per 10% increase in 25(OH)D conferred by the four 25(OH)D increasing SNPs was 0.992 (95% CI: 0.969 to 1.015). In up to 16,125 individuals with measured serum 25(OH)D, there was no clear evidence that genetic risk for schizophrenia causally lowers serum 25(OH)D. These findings suggest that associations between schizophrenia and serum 25(OH)D may not be causal. Therefore, vitamin D supplementation may not prevent schizophrenia. PMID:27215954

  16. Investigating causality in the association between 25(OH)D and schizophrenia.

    PubMed

    Taylor, Amy E; Burgess, Stephen; Ware, Jennifer J; Gage, Suzanne H; Richards, J Brent; Davey Smith, George; Munafò, Marcus R

    2016-01-01

    Vitamin D deficiency is associated with increased risk of schizophrenia. However, it is not known whether this association is causal or what the direction of causality is. We performed two sample bidirectional Mendelian randomization analysis using single nucleotide polymorphisms (SNPs) robustly associated with serum 25(OH)D to investigate the causal effect of 25(OH)D on risk of schizophrenia, and SNPs robustly associated with schizophrenia to investigate the causal effect of schizophrenia on 25(OH)D. We used summary data from genome-wide association studies and meta-analyses of schizophrenia and 25(OH)D to obtain betas and standard errors for the SNP-exposure and SNP-outcome associations. These were combined using inverse variance weighted fixed effects meta-analyses. In 34,241 schizophrenia cases and 45,604 controls, there was no clear evidence for a causal effect of 25(OH)D on schizophrenia risk. The odds ratio for schizophrenia per 10% increase in 25(OH)D conferred by the four 25(OH)D increasing SNPs was 0.992 (95% CI: 0.969 to 1.015). In up to 16,125 individuals with measured serum 25(OH)D, there was no clear evidence that genetic risk for schizophrenia causally lowers serum 25(OH)D. These findings suggest that associations between schizophrenia and serum 25(OH)D may not be causal. Therefore, vitamin D supplementation may not prevent schizophrenia. PMID:27215954

  17. The Effects of Fat-soluble Vitamin Administration on Plasma Vitamin Status of Nursing Pigs Differ When Provided by Oral Administration or Injection.

    PubMed

    Jang, Y D; Lindemann, M D; Monegue, H J; Stuart, R L

    2014-05-01

    Four experiments were conducted to investigate the effect of fat-soluble vitamin administration to sows or newborn pigs on plasma vitamin status. In Exp. 1 and 2, a total of 24 and 43 newborn pigs were allotted to control and vitamin treatments (vitamin D3 with variable addition of vitamins A and E) orally or by i.m. injection. In Exp. 3, pigs from Exp. 2 were allotted to 2 treatments (±vitamins D3 and E in drinking water) for 14 d postweaning. In Exp. 4, twenty-four gestating sows were used for 2 treatments (±injection of a vitamin D3/A/E product 2 wk prepartum). In Exp. 1 and 2, when vitamin D3 was administrated orally or by i.m. injection on d 1 of age, pigs had increased plasma 25-hydroxycholecalciferol (25-OH D3) concentration 10 d after administration compared with control pigs (p<0.05). The injectable administration with vitamin D3 and E was able to achieve higher plasma 25-OH D3 (p<0.05) and α-tocopherol (p<0.05) concentrations than oral administration. At weaning, the pigs in the injection group had higher plasma 25-OH D3 concentration than those in the other groups in both studies (p<0.05). In Exp. 3, water supplementation of vitamin D3 and E postweaning increased plasma 25-OH D3 and α-tocopherol concentrations at d 14 postweaning (p<0.01). In Exp. 4, when sows were injected with the vitamin D3 product prepartum, serum 25-OH D3 concentrations of sows at farrowing (p<0.01), and in their progeny at birth (p<0.01) and weaning (p<0.05) were increased. These results demonstrated that fat-soluble vitamin administration to newborn pigs increased plasma 25-OH D3 concentration regardless of administration routes and α-tocopherol concentration by the injectable route, and that water supplementation of vitamin D3 and E to nursery pigs increased plasma 25-OH D3 and α-tocopherol concentrations. Additionally, injecting sows with vitamin D3 prepartum increased 25-OH D3 in sows and their offspring. If continued research demonstrates that the serum levels of 25-OH D

  18. Adequate Vitamin D3 Supplementation During Pregnancy: Decreasing the Prevalence of Asthma and Food Allergies

    PubMed Central

    Finkel, Jonathan; Cira, Courtney; Mazzella, Leanne; Bartyzel, Jim; Ramanna, Annisce; Strimel, Kayla; Waturuocha, Amara; Musser, Nathan; Burress, James; Brammer, Sarah; Wetzel, Robert; Horzempa, Joseph

    2016-01-01

    Vitamin D is a secosterol that is naturally synthesized in the skin upon contact with ultraviolet rays. This vitamin can also be acquired from dietary and nutritional supplements. The active form, vitamin D3, is primarily responsible for calcium homeostasis and bone health. However, many recent studies have associated low levels of vitamin D3 with asthma and food allergies. In this review, we discuss literature to explore the potential that vitamin D3 deficiency may be contributing toward the development of asthma and food allergies. These studies indicate that mothers who supplement with doses of vitamin D3 recommended for daily consumption (400 IU) by the United States Food and Drug Administration is not enough to deliver adequate levels to breastfed infants. Because sufficient vitamin D3 serum levels correlate with a low incidence of asthma and food allergies, high dose vitamin D3 supplementation (4000 IU) by pregnant and breastfeeding women may limit the development of asthma and food allergies in newborns. PMID:27213185

  19. MECHANISMS OF ETHANOL-MEDIATED INDUCTION OF THE RENAL 1, 25-DIHYDROXYVITAMIN D3-24-HYDROXYLASE (CYP24A1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption via total enteral nutrition leads to the disruption of vitamin D3 (VD) homeostasis. Serum levels of 1,25-(OH)2VD are in part regulated by the 1,25-(OH)2-VD-24-hydroxylase (CYP24A1) which mediates its conversion into inactive calcitriol. EtOH consumption induced the...

  20. Stability of Vitamin D3 in fortified yoghurt and yoghurt drink (Doogh)

    PubMed Central

    Jafari, Tina; Askari, Gholamreza; Mirlohi, Maryam; Javanmard, Shaghayegh Haghjooy; Faghihimani, Elham; Fallah, Aziz A

    2016-01-01

    Background: Vitamin D deficiency and insufficiency are recognized as a worldwide problem with serious consequences. Fortification of foods with Vitamin D is a certain approach to improve serum Vitamin D status if the stability of vitamin in the foodstuffs was controlled. The purpose of this study was to examine the stability of Vitamin D3 added to low-fat yogurt and yogurt drink “Doogh” during the products shelf-life. Materials and Methods: Two kinds of Vitamin D3, water- and oil-dispersible forms, suitable for food fortification, were compared to find out whether they show different stability in the products. The products were packed in opaque or translucent containers. The content of Vitamin D3 was determined by high performance liquid chromatography method. Results: Vitamin D was not affected by the heat treatment (pasteurization) and other processes (homogenization and fermentation). Both water- and oil-dispersible forms were stable during the shelf-life of yogurt samples packed in opaque containers. The Vitamin D3 content of yogurt fortified with water-dispersible form and packed in translucent containers was not stable during the shelf-life and significantly reduced after 1, 2, and 3 weeks of storage compared to the day 0. The Vitamin D3 content of samples fortified with the oil-dispersible form packed in the same container was only stable after 1-week and significantly reduced after 2 and 3 weeks of storage. The Vitamin D3 content of Doogh packed in the opaque containers remained stable during the shelf-life while it was not stable in the samples packed in translucent containers. Conclusion: The results suggested that both forms of Vitamin D are suitable for fortification, and opaque container is a better choice for packaging of the product. PMID:27110549

  1. Blood mineral, hormone, and osteocalcin responses of multiparous Jersey cows to an oral dose of 25-hydroxyvitamin D3 or vitamin D3 before parturition.

    PubMed

    Taylor, M S; Knowlton, K F; McGilliard, M L; Seymour, W M; Herbein, J H

    2008-06-01

    Twenty-seven multiparous Jersey cows were randomly assigned to receive an oral bolus containing corn starch (control, CON), corn starch plus 15 mg of 25-hydroxyvitamin D(3) (25-OH), or 15 mg of cholecalciferol (D(3)) at 6 d before expected parturition. Cows were maintained in individual box stalls from 20 d before expected parturition and fed a common diet. Jugular blood samples were collected at -14, -13, -5, -4, -3, -2, -1 d before expected calving, at calving, and at 1, 3, 5, 7, 9, 11, 13, 28, 56, and 84 d postcalving. After calving, cows were housed in 1 pen in a free-stall barn and consumed a common diet. Colorimetric assays were used to analyze Ca, P, and Mg concentrations in serum. Serum concentrations of osteocalcin (OC), an indicator of bone formation, serum 25-hydroxyvitamin D(3), and parathyroid hormone (PTH) were determined in samples obtained from d -5 through d 13. The 9 control multiparous cows and 5 untreated primiparous cows were used to evaluate the effect of parity on the variables that were measured. There was no effect of parity on Ca, PTH, or 25-OH concentration. Compared with second-lactation cows and older cows (>2 lactations), first-lactation cows had greater serum OC (22.3, 32.0, and 48.3 ng/mL, respectively), indicating that younger animals were forming more bone. Blood Ca, P, and Mg decreased near the time of calving and then increased over time. Serum 25-hydroxyvitamin D(3) was greater for cows dosed with 25-OH (119.0 ng/mL) compared with those dosed with D(3) (77.5 ng/mL) or CON (69.3 ng/mL). Cows dosed with 25-OH tended to have lower serum PTH concentration, but treatments did not affect serum Ca, P, or Mg. Serum OC was greater in second-lactation cows compared with cows entering their third or fourth lactation but OC was unaffected by treatment. Although results indicated a 60% increase in serum 25-hydroxyvitamin D(3) due to a single oral dose of 25-OH before calving, the amount administered in this study apparently was not

  2. Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells.

    PubMed

    Wehmeier, Kent; Onstead-Haas, Luisa M; Wong, Norman C W; Mooradian, Arshag D; Haas, Michael J

    2016-08-01

    The vitamin D metabolite 24,25-dihydroxyvitamin D3 (24, 25[OH]2D3) was shown to induce nongenomic signaling pathways in resting zone chondrocytes and other cells involved in bone remodeling. Recently, our laboratory demonstrated that 24,25-[OH]2D3 but not 25-hydroxyvitamin D3, suppresses apolipoprotein A-I (apo A-I) gene expression and high-density lipoprotein (HDL) secretion in hepatocytes. Since 24,25-[OH]2D3 has low affinity for the vitamin D receptor (VDR) and little is known with regard to how 24,25-[OH]2D3 modulates nongenomic signaling in hepatocytes, we investigated the capacity of 24,25-[OH]2D3 to activate various signaling pathways relevant to apo A-I synthesis in HepG2 cells. Treatment with 24,25-[OH]2D3 resulted in decreased peroxisome proliferator-activated receptor alpha (PPARα) expression and retinoid-X-receptor alpha (RXRα) expression. Similarly, treatment of hepatocytes with 50 nM 24,25-[OH]2D3 for 1-3 h induced PKCα activation as well as c-jun-N-terminal kinase 1 (JNK1) activity and extracellular-regulated kinase 1/2 (ERK1/2) activity. These changes in kinase activity correlated with changes in c-jun phosphorylation, an increase in AP-1-dependent transcriptional activity, as well as repression of apo A-I promoter activity. Furthermore, treatment with 24,25-[OH]2D3 increased IL-1β, IL-6, and IL-8 expression by HepG2 cells. These observations suggest that 24,25-[OH]2D3 elicits several novel rapid nongenomic-mediated pro-inflammatory protein kinases targeting AP1 activity, increasing pro-inflammatory cytokine expression, potentially impacting lipid metabolism and hepatic function. PMID:27234962

  3. Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells

    PubMed Central

    Kongsbak, Martin; von Essen, Marina R.; Boding, Lasse; Levring, Trine B.; Schjerling, Peter; Lauritsen, Jens P. H.; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte M.; Geisler, Carsten

    2014-01-01

    The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation. PMID:24792400

  4. Vitamin D3 attenuates oxidative stress and cognitive deficits in a model of toxic demyelination

    PubMed Central

    Tarbali, Sepideh; Khezri, Shiva

    2016-01-01

    Objective(s): Multiple sclerosis (MS) is a demyelinating disease. The prevalence of MS is highest where environmental supplies of vitamin D are low. Cognitive deficits have been observed in patients with MS. Oxidative damage may contribute to the formation of MS lesions. Considering the involvement of hippocampus in MS, an attempt is made in this study to investigate the effects of vitamin D3 on behavioral process and the oxidative status in the dorsal hippocampus (CA1 area) following the induction of experimental demyelination in rats. Materials and Methods: Animals were divided into six groups. Control group: animals received no surgery and treatment; saline group: animals received normal saline; sham group: animals received 150 μl sesame oil IP; vitamin D3 group: animals received 5 μg/kg vitamin D3 IP; lysophosphatidyl choline (LPC) group (toxic demyelination’s model): animals received LPC by stereotaxic intra-hippocampal injection of 2 μl LPC in CA1 area; Vitamin D3- treated group: animals were treated with vitamin D3 at doses of 5 μg/kg IP for 7 and 21 days post lesion. The spatial memory, biochemical parameters including catalase (CAT) activities and lipid peroxidation levels were investigated. Results: Animals in LPC group had more deficits in spatial memory than the control group in radial arm maze. Vitamin D3 significantly improved spatial memory compared to LPC group. Also, results indicated that vitamin D3 caused a decrease in lipid peroxidation levels and an increase in CAT activities. Conclusion: Current findings suggest that vitamin D3 may have a protective effect on cognitive deficits and oxidative stress in toxic demyelination’s model. PMID:27096068

  5. Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol.

    PubMed

    Ehrhardt, Maximilian; Gerber, Adrian; Hannemann, Frank; Bernhardt, Rita

    2016-01-20

    In the current work the ability of Bacillus megaterium to take up hydrophobic substrates and efficiently express eukaryotic membrane proteins was utilized for establishing a CYP27A1-based biocatalyst. The human mitochondrial cytochrome P450CYP27A1 was co-expressed with its redox partners adrenodoxin reductase (Adr) and adrenodoxin (Adx). CYP27A1 could be localized at the cell's polyhydroxybutyrate (PHB) granules, carbon storage serving organelle-like vesicles that can take up cholesterol, resulting in bioreactor-like structures in B. megaterium . The resulting whole cell system allowed the efficient biotechnological conversion of the CYP27A1 substrates cholesterol, 7-dehydrocholesterol (7-DHC) and vitamin D3. After 48 h, nearly 100% of cholesterol was metabolized producing a final concentration of 113.14 mg/l 27-hydroxycholesterol (27-HC). Moreover, 70% of vitamin D3 was converted into 25-hydroxyvitamin D3 (25-OH-D3) with a final concentration of 80.81 mg/l. Also more than 97% of 7-DHC were found to be metabolized into two products, corresponding to 26/27-hydroxy-7-dehydrocholesterol (P1) and 25-hydroxy-7-dehydrocholesterol (P2). To our knowledge this is the first CYP27A1-based whole-cell system, allowing the efficient and low-cost production of pharmaceutically interesting metabolites of this enzyme from relatively cheap substrates. PMID:26638999

  6. Vitamin D, steroid hormones, and autoimmunity.

    PubMed

    Cutolo, Maurizio; Paolino, Sabrina; Sulli, Alberto; Smith, Vanessa; Pizzorni, Carmen; Seriolo, Bruno

    2014-05-01

    The endogenous serum metabolite of vitamin D (calcitriol, 1,25(OH)2 D3 ) is considered a true steroid hormone (D hormone), and like glucocorticoids (GCs) and gonadal hormones, may exert several immunomodulatory activities. Serum vitamin D deficiency (25(OH) D), and therefore reduced 1,25(OH)2 D3 availability, is considered a risk factor for several chronic/inflammatory or autoimmune conditions, including infectious diseases, type 1 diabetes, multiple sclerosis, and especially autoimmune rheumatic diseases (ARD). In ARD in particular, 1,25(OH)2 D3 regulates both innate and adaptive immunity, potentiating the innate response (antimicrobial activity) but reducing adaptive immunity (antigen presentation, T and B cell activities). Regarding a possible synergism between vitamin D and GCs, several studies show that 1,25(OH)2 D3 has significant additive effects on dexamethasone-mediated inhibition of human lymphocyte and monocyte proliferation. Conversely, vitamin D deficiency seems to play a role in increasing autoantibody production by B cells, and seasonal vitamin D declines may trigger flares in ARD, as recently shown. Finally, 1,25(OH)2 D3 seems to reduce aromatase activity and limit the negative effects related to increased peripheral estrogen metabolism (cell proliferation, B cell overactivity). PMID:24739090

  7. 1,25 Dihydroxyvitamin D3 Inhibits TGFβ1-Mediated Primary Human Cardiac Myofibroblast Activation

    PubMed Central

    Meredith, Anna; Boroomand, Seti; Carthy, Jon; Luo, Zongshu; McManus, Bruce

    2015-01-01

    Aims Epidemiological and interventional studies have suggested a protective role for vitamin D in cardiovascular disease, and basic research has implicated vitamin D as a potential inhibitor of fibrosis in a number of organ systems; yet little is known regarding direct effects of vitamin D on human cardiac cells. Given the critical role of fibrotic responses in end stage cardiac disease, we examined the effect of active vitamin D treatment on fibrotic responses in primary human adult ventricular cardiac fibroblasts (HCF-av), and investigated the relationship between circulating vitamin D (25(OH)D3) and cardiac fibrosis in human myocardial samples. Methods and Results Interstitial cardiac fibrosis in end stage HF was evaluated by image analysis of picrosirius red stained myocardial sections. Serum 25(OH)D3 levels were assayed using mass spectrometry. Commercially available HCF-av were treated with transforming growth factor (TGF)β1 to induce activation, in the presence or absence of active vitamin D (1,25(OH)2D3). Functional responses of fibroblasts were analyzed by in vitro collagen gel contraction assay. 1,25(OH)2D3 treatment significantly inhibited TGFβ1-mediated cell contraction, and confocal imaging demonstrated reduced stress fiber formation in the presence of 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced alpha-smooth muscle actin expression to control levels and inhibited SMAD2 phosphorylation. Conclusions Our results demonstrate that active vitamin D can prevent TGFβ1-mediated biochemical and functional pro-fibrotic changes in human primary cardiac fibroblasts. An inverse relationship between vitamin D status and cardiac fibrosis in end stage heart failure was observed. Collectively, our data support an inhibitory role for vitamin D in cardiac fibrosis. PMID:26061181

  8. Temporal Relationship between Vitamin D Status and Parathyroid Hormone in the United States

    PubMed Central

    Kroll, Martin H.; Bi, Caixia; Garber, Carl C.; Kaufman, Harvey W.; Liu, Dungang; Caston-Balderrama, Anne; Zhang, Ke; Clarke, Nigel; Xie, Minge; Reitz, Richard E.; Suffin, Stephen C.; Holick, Michael F.

    2015-01-01

    Background Interpretation of parathyroid hormone (iPTH) requires knowledge of vitamin D status that is influenced by season. Objective Characterize the temporal relationship between 25-hydroxyvitamin D3 levels [25(OH)D3] and intact iPTH for several seasons, by gender and latitude in the U.S. and relate 25-hydrovitamin D2 [25(OH)D2] levels with PTH levels and total 25(OH)D levels. Method We retrospectively determined population weekly-mean concentrations of unpaired [25(OH)D2 and 25(OH)D3] and iPTH using 3.8 million laboratory results of adults. The 25(OH)D3 and iPTH distributions were normalized and the means fit with a sinusoidal function for both gender and latitudes: North >40, Central 32–40 and South <32 degrees. We analyzed PTH and total 25(OH)D separately in samples with detectable 25(OH)D2 (≥4 ng/mL). Findings Seasonal variation was observed for all genders and latitudes. 25(OH)D3 peaks occurred in September and troughs in March. iPTH levels showed an inverted pattern of peaks and troughs relative to 25(OH)D3, with a delay of 4 weeks. Vitamin D deficiency and insufficiency was common (33% <20 ng/mL; 60% <30 ng/mL) as was elevated iPTH levels (33%>65 pg/mL). The percentage of patients deficient in 25(OH)D3 seasonally varied from 21% to 48% and the percentage with elevated iPTH reciprocally varied from 28% to 38%. Patients with detectable 25(OH)D2 had higher PTH levels and 57% of the samples with a total 25(OH)D > 50 ng/mL had detectable 25(OH)D2. Interpretation 25(OH)D3 and iPTH levels vary in a sinusoidal pattern throughout the year, even in vitamin D2 treated patients; 25(OH)D3, being higher in the summer and lower in the winter months, with iPTH showing the reverse pattern. A large percentage of the tested population showed vitamin D deficiency and secondary hyperparathyroidism. These observations held across three latitudinal regions, both genders, multiple-years, and in the presence or absence of detectable 25(OH)D2, and thus are applicable for

  9. 70 FR 36021 - Food Additives Permitted for Direct Addition to Food for Human Consumption; Vitamin D3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2005-06-22

    ... (68 FR 9000), FDA issued a final rule permitting the safe use of vitamin D 3 as a nutrient supplement... to Food for Human Consumption; Vitamin D 3 AGENCY: Food and Drug Administration, HHS. ACTION: Final... additive regulations authorizing the use of vitamin D 3 as a nutrient supplement in calcium-fortified...

  10. 68 FR 9000 - Food Additives Permitted for Direct Addition to Food for Human Consumption; Vitamin D3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2003-02-27

    ... to Food for Human Consumption; Vitamin D 3 AGENCY: Food and Drug Administration, HHS. ACTION: Final... provide for the safe use of vitamin D 3 as a nutrient supplement in calcium-fortified fruit juices and... for Vitamin D for Adults, Children, and Infants B. Estimated Daily Intake for Vitamin D C....