Science.gov

Sample records for 2a3 cloning functional

  1. The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding.

    PubMed

    Parker, D'Andra N; Tasneem, Subia; Farndale, Richard W; Bihan, Dominique; Sadler, J Evan; Sebastian, Silvie; de Groot, Philip G; Hayward, Catherine P M

    2016-07-01

    Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates. PMID:27052467

  2. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  3. Cloning

    MedlinePlus

    ... DNA Reproductive cloning, which creates copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  4. Molecular cloning and functional characterization of avian interleukin-19

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  5. The plant glycosyltransferase clone collection for functional genomics.

    PubMed

    Lao, Jeemeng; Oikawa, Ai; Bromley, Jennifer R; McInerney, Peter; Suttangkakul, Anongpat; Smith-Moritz, Andreia M; Plahar, Hector; Chiu, Tsan-Yu; González Fernández-Niño, Susana M; Ebert, Berit; Yang, Fan; Christiansen, Katy M; Hansen, Sara F; Stonebloom, Solomon; Adams, Paul D; Ronald, Pamela C; Hillson, Nathan J; Hadi, Masood Z; Vega-Sánchez, Miguel E; Loqué, Dominique; Scheller, Henrik V; Heazlewood, Joshua L

    2014-08-01

    The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate-Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell-wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full-length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/. PMID:24905498

  6. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology

    PubMed Central

    Jentsch, Thomas J

    2015-01-01

    Abstract After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl− channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl− channels and vesicular Cl−/H+-exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel. PMID:25590607

  7. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology.

    PubMed

    Jentsch, Thomas J

    2015-09-15

    After providing a personal description of the convoluted path leading 25 years ago to the molecular identification of the Torpedo Cl(-) channel ClC-0 and the discovery of the CLC gene family, I succinctly describe the general structural and functional features of these ion transporters before giving a short overview of mammalian CLCs. These can be categorized into plasma membrane Cl(-) channels and vesicular Cl(-) /H(+) -exchangers. They are involved in the regulation of membrane excitability, transepithelial transport, extracellular ion homeostasis, endocytosis and lysosomal function. Diseases caused by CLC dysfunction include myotonia, neurodegeneration, deafness, blindness, leukodystrophy, male infertility, renal salt loss, kidney stones and osteopetrosis, revealing a surprisingly broad spectrum of biological roles for chloride transport that was unsuspected when I set out to clone the first voltage-gated chloride channel. PMID:25590607

  8. [Cloning and functional characterization of phytoene desaturase in Andrographis paniculata].

    PubMed

    Shen, Qin-qin; Li, Li-xia; Zhan, Peng-lin; Wang, Qiang

    2015-10-01

    A full-length cDNA of phytoene desaturase (PDS) gene from Andrographis paniculata was obtained through RACE-PCR. The cDNA sequence consists of 2 224 bp with an intact ORF of 1 752 bp (GeneBank: KP982892), encoding a ploypeptide of 584 amino acids. Homology analysis showed that the deduced protein has extensive sequence similarities to PDS from other plants, and contains a conserved NAD ( H) -binding domain of plant dehydrase cofactor binding-domain in N-terminal. Phylogenetic analysis demonstrated that ApPDS was more related to PDS of Sesamum indicum and Pogostemon cablin. The semi-quantitative RT-PCR analysis revealed that ApPDS expressed in whole aboveground tissues with the highest expression in leaves. Virus induced gene silencing (VIGS) was performed to characterize the functional of ApPDS in planta. Significant photobleaching was not observed in infiltrated leaves, while the PDS gene has been down-regulated significantly at the yellowish area. To the best of our knowledge, this represents the first report of PDS gene cloning and functional characterization from A. paniculata, which lays the foundation for further investigation of new genes, especially that correlative to andrographolide biosynthetic pathway. PMID:26975098

  9. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes.

    PubMed

    Huang, Fong-Chin; Molnár, Péter; Schwab, Wilfried

    2009-01-01

    Although a number of plant carotenoid cleavage dioxygenase (CCD) genes have been functionally characterized in different plant species, little is known about the biochemical role and enzymatic activities of members of the subclass 4 (CCD4). To gain insight into their biological function, CCD4 genes were isolated from apple (Malus x domestica, MdCCD4), chrysanthemum (Chrysanthemum x morifolium, CmCCD4a), rose (Rosa x damascena, RdCCD4), and osmanthus (Osmanthus fragrans, OfCCD4), and were expressed, together with AtCCD4, in Escherichia coli. In vivo assays showed that CmCCD4a and MdCCD4 cleaved beta-carotene well to yield beta-ionone, while OfCCD4, RdCCD4, and AtCCD4 were almost inactive towards this substrate. No cleavage products were found for any of the five CCD4 genes when they were co-expressed in E. coli strains that accumulated cis-zeta-carotene and lycopene. In vitro assays, however, demonstrated the breakdown of 8'-apo-beta-caroten-8'-al by AtCCD4 and RdCCD4 to beta-ionone, while this apocarotenal was almost not degraded by OfCCD4, CmCCD4a, and MdCCD4. Sequence analysis of genomic clones of CCD4 genes revealed that RdCCD4, like AtCCD4, contains no intron, while MdCCD, OfCCD4, and CmCCD4a contain introns. These results indicate that plants produce at least two different forms of CCD4 proteins. Although CCD4 enzymes cleave their substrates at the same position (9,10 and 9',10'), they might have different biochemical functions as they accept different (apo)-carotenoid substrates, show various expression patterns, and are genomically differently organized. PMID:19436048

  10. Cloning, Characteristics, and Functional Analysis of Rabbit NADPH Oxidase 5

    PubMed Central

    Chen, Feng; Yin, Caiyong; Dimitropoulou, Christiana; Fulton, David J. R.

    2016-01-01

    Background: Nox5 was the last member of the Nox enzyme family to be identified. Functionally distinct from the other Nox isoforms, our understanding of its physiological significance has been hampered by the absence of Nox5 in mouse and rat genomes. Nox5 is present in the genomes of other species such as the rabbit that have broad utility as models of cardiovascular disease. However, the mRNA sequence, characteristics, and functional analysis of rabbit Nox5 has not been fully defined and were the goals of the current study. Methods: Rabbit Nox5 was amplified from rabbit tissue, cloned, and sequenced. COS-7 cells were employed for expression and functional analysis via Western blotting and measurements of superoxide. We designed and synthesized miRNAs selectively targeting rabbit Nox5. The nucleotide and amino acid sequences of rabbit Nox5 were aligned with those of putative rabbit isoforms (X1, X2, X3, and X4). A phylogenetic tree was generated based on the mRNA sequence for Nox5 from rabbit and other species. Results: Sequence alignment revealed that the identified rabbit Nox5 was highly conserved with the predicted sequence of rabbit Nox5. Cell based experiments reveal that rabbit Nox5 was robustly expressed and produced superoxide at rest and in a calcium and PMA-dependent manner that was susceptible to superoxide dismutase and the flavoprotein inhibitor, DPI. miRNA-1 was shown to be most effective in down-regulating the expression of rabbit Nox5. Phylogenetic analysis revealed a close relationship between rabbit and armadillo Nox5. Rabbit Nox5 was relatively closely related to human Nox5, but lies in a distinct cluster. Conclusion: Our study establishes the suitability of the rabbit as a model organism to further our understanding of the role of Nox5 in cardiovascular and other diseases and provides new information on the genetic relationship of Nox5 genes in different species. PMID:27486403

  11. Stimulus-dependent modulation of human B cell function by T cell clones.

    PubMed

    Patel, S S; Thiele, D L; Lipsky, P E

    1993-02-01

    T cells exert both positive and negative regulatory effects on B cell function. To determine whether the nature of the stimulus could alter the immunoregulatory effects of T cells, the capacity of a battery of human T cell clones to modulate B cell function after stimulation with either pokeweed mitogen or a mAb to the CD3 molecular complex was examined. It was observed that most clones induced B cell differentiation when stimulated with immobilized mAb to CD3 (64.1) regardless of their phenotype. Moreover, the majority of clones (42 of 51) augmented the generation of immunoglobulin-secreting cells (ISC) supported by anti-CD3-stimulated blood CD4+ T cells. By contrast, none of the clones induced B cell differentiation when stimulated with PWM and 48 of 51 clones suppressed the generation of ISC induced by blood CD4+ T cells. This suppression could not be accounted for by the depletion of essential molecules or factors or by secretion of suppressive factors. Suppressive activity of clones did not correlate with the CD4 or CD8 phenotype and was not overcome by the addition of supernatants generated from mitogen-stimulated T cells or recombinant IL-2. Suppression by most clones, however, was abrogated when the clones were treated with mitomycin C or irradiated. A number of suppressive mechanisms by individual PWM-stimulated clones was identified, including direct inhibition of B cell function by cytotoxic and non-lytic means and suppression of helper T cell function. The failure of anti-CD3-stimulated clones to suppress the differentiation of B cells appeared to reflect the capacity of this stimulus to induce apoptosis by the clones after initial activation. These results indicate that T cell clones can provide help for B cell differentiation or can suppress B cell function by a variety of mechanisms depending upon the mode of stimulation. PMID:8174175

  12. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  13. CLONING AND FUNCTIONAL CHARACTERIZATION OF CHICKEN INTERLEUKIN-17D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proinflammatory cytokine IL-17D was cloned from a testis cDNA library prepared from the Korean native chicken. The full-length chicken IL-17D (chIL-17D) cDNA consisted of a 348 nucleotide sequence encoding an open reading frame of 116 amino acids with a predicted molecular mass of 17.0 kDa. Co...

  14. Cloning and functional characterization of SAD genes in potato.

    PubMed

    Li, Fei; Bian, Chun Song; Xu, Jian Fei; Pang, Wan Fu; Liu, Jie; Duan, Shao Guang; Lei, Zun-Guo; Jiwan, Palta; Jin, Li-Ping

    2015-01-01

    Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato. PMID:25825911

  15. Cloning and Functional Characterization of SAD Genes in Potato

    PubMed Central

    Li, Fei; Bian, Chun Song; Xu, Jian Fei; Pang, Wan fu; Liu, Jie; Duan, Shao Guang; Lei, Zun-Guo; Jiwan, Palta; Jin, Li-Ping

    2015-01-01

    Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato. PMID:25825911

  16. High-Throughput Generation of P. falciparum Functional Molecules by Recombinational Cloning

    PubMed Central

    Aguiar, João Carlos; LaBaer, Joshua; Blair, Peter L.; Shamailova, Victoria Y.; Koundinya, Malvika; Russell, Joshua A.; Huang, Fengying; Mar, Wenhong; Anthony, Robert M.; Witney, Adam; Caruana, Sonia R.; Brizuela, Leonardo; Sacci, John B.; Hoffman, Stephen L.; Carucci, Daniel J.

    2004-01-01

    Large-scale functional genomics studies for malaria vaccine and drug development will depend on the generation of molecular tools to study protein expression. We examined the feasibility of a high-throughput cloning approach using the Gateway system to create a large set of expression clones encoding Plasmodium falciparum single-exon genes. Master clones and their ORFs were transferred en masse to multiple expression vectors. Target genes (n = 303) were selected using specific sets of criteria, including stage expression and secondary structure. Upon screening four colonies per capture reaction, we achieved 84% cloning efficiency. The genes were subcloned in parallel into three expression vectors: a DNA vaccine vector and two protein expression vectors. These transfers yielded a 100% success rate without any observed recombination based on single colony screening. The functional expression of 95 genes was evaluated in mice with DNA vaccine constructs to generate antibody against various stages of the parasite. From these, 19 induced antibody titers against the erythrocytic stages and three against sporozoite stages. We have overcome the potential limitation of producing large P. falciparum clone sets in multiple expression vectors. This approach represents a powerful technique for the production of molecular reagents for genome-wide functional analysis of the P. falciparum genome and will provide for a resource for the malaria resource community distributed through public repositories. PMID:15489329

  17. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome.

    PubMed

    Montaña, José Salvador; Jiménez, Diego Javier; Hernández, Mónica; Angel, Tatiana; Baena, Sandra

    2012-02-01

    Total metagenomic DNA was isolated from high Andean forest soil and subjected to taxonomical and functional composition analyses by means of clone library generation and sequencing. The obtained yield of 1.7 μg of DNA/g of soil was used to construct a metagenomic library of approximately 20,000 clones (in the plasmid p-Bluescript II SK+) with an average insert size of 4 Kb, covering 80 Mb of the total metagenomic DNA. Metagenomic sequences near the plasmid cloning site were sequenced and them trimmed and assembled, obtaining 299 reads and 31 contigs (0.3 Mb). Taxonomic assignment of total sequences was performed by BLASTX, resulting in 68.8, 44.8 and 24.5% classification into taxonomic groups using the metagenomic RAST server v2.0, WebCARMA v1.0 online system and MetaGenome Analyzer v3.8 software, respectively. Most clone sequences were classified as Bacteria belonging to phlya Actinobacteria, Proteobacteria and Acidobacteria. Among the most represented orders were Actinomycetales (34% average), Rhizobiales, Burkholderiales and Myxococcales and with a greater number of sequences in the genus Mycobacterium (7% average), Frankia, Streptomyces and Bradyrhizobium. The vast majority of sequences were associated with the metabolism of carbohydrates, proteins, lipids and catalytic functions, such as phosphatases, glycosyltransferases, dehydrogenases, methyltransferases, dehydratases and epoxide hydrolases. In this study we compared different methods of taxonomic and functional assignment of metagenomic clone sequences to evaluate microbial diversity in an unexplored soil ecosystem, searching for putative enzymes of biotechnological interest and generating important information for further functional screening of clone libraries. PMID:21792685

  18. Cloning and Functional Characterization of Chicken Stem Cell Antigen 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem cell antigen 2 (SCA2) is a Ly-6 family member whose function is largely unknown. To characterize biological properties and tissue distribution of chicken SCA2, SCA2 protein was expressed and purified in E. coli, and a polyclonal antibody developed. Utilizing the polyclonal antibody SCA2 is a 13...

  19. Literature and patent analysis of the cloning and identification of human functional genes in China.

    PubMed

    Xia, Yan; Tang, LiSha; Yao, Lei; Wan, Bo; Yang, XianMei; Yu, Long

    2012-03-01

    The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative

  20. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    SciTech Connect

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M. )

    1989-11-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K{sub m}, low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus.

  1. 42 CFR 2a.3 - Application; coordination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Application; coordination. 2a.3 Section 2a.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF... Institute on Drug Abuse, the Office of the Director, National Institute of Mental Health, or the Office...

  2. 42 CFR 2a.3 - Application; coordination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Application; coordination. 2a.3 Section 2a.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF... Institute on Drug Abuse, the Office of the Director, National Institute of Mental Health, or the Office...

  3. 42 CFR 2a.3 - Application; coordination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Application; coordination. 2a.3 Section 2a.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF... Institute on Drug Abuse, the Office of the Director, National Institute of Mental Health, or the Office...

  4. 42 CFR 2a.3 - Application; coordination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Application; coordination. 2a.3 Section 2a.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF... Institute on Drug Abuse, the Office of the Director, National Institute of Mental Health, or the Office...

  5. 42 CFR 2a.3 - Application; coordination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Application; coordination. 2a.3 Section 2a.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF... Institute on Drug Abuse, the Office of the Director, National Institute of Mental Health, or the Office...

  6. Functional Cloning and Characterization of Antibiotic Resistance Genes from the Chicken Gut Microbiome

    PubMed Central

    Zhou, Wei; Wang, Ying

    2012-01-01

    Culture-independent sampling in conjunction with a functional cloning approach identified diverse antibiotic resistance genes for different classes of antibiotics in gut microbiomes from both conventionally raised and free-range chickens. Many of the genes are phylogenetically distant from known resistance genes. Two unique genes that conferred ampicillin and spectinomycin resistance were also functional in Campylobacter, a distant relative of the Escherichia coli host used to generate the genomic libraries. PMID:22286984

  7. An improved method for oriT-directed cloning and functionalization of large bacterial genomic regions.

    PubMed

    Kvitko, Brian H; McMillan, Ian A; Schweizer, Herbert P

    2013-08-01

    We have made significant improvements to a broad-host-range system for the cloning and manipulation of large bacterial genomic regions based on site-specific recombination between directly repeated oriT sites during conjugation. Using two suicide capture vectors carrying flanking homology regions, oriT sites are recombined on either side of the target region. Using a broad-host-range conjugation helper plasmid, the region between the oriT sites is conjugated into an Escherichia coli recipient strain, where it is circularized and maintained as a chimeric mini-F vector. The cloned target region is functionalized in multiple ways to accommodate downstream manipulation. The target region is flanked with Gateway attB sites for recombination into other vectors and by rare 18-bp I-SceI restriction sites for subcloning. The Tn7-functionalized target can also be inserted at a naturally occurring chromosomal attTn7 site(s) or maintained as a broad-host-range plasmid for complementation or heterologous expression studies. We have used the oriTn7 capture technique to clone and complement Burkholderia pseudomallei genomic regions up to 140 kb in size and have created isogenic Burkholderia strains with various combinations of genomic islands. We believe this system will greatly aid the cloning and genetic analysis of genomic islands, biosynthetic gene clusters, and large open reading frames. PMID:23747708

  8. An Improved Method for oriT-Directed Cloning and Functionalization of Large Bacterial Genomic Regions

    PubMed Central

    Kvitko, Brian H.; McMillan, Ian A.

    2013-01-01

    We have made significant improvements to a broad-host-range system for the cloning and manipulation of large bacterial genomic regions based on site-specific recombination between directly repeated oriT sites during conjugation. Using two suicide capture vectors carrying flanking homology regions, oriT sites are recombined on either side of the target region. Using a broad-host-range conjugation helper plasmid, the region between the oriT sites is conjugated into an Escherichia coli recipient strain, where it is circularized and maintained as a chimeric mini-F vector. The cloned target region is functionalized in multiple ways to accommodate downstream manipulation. The target region is flanked with Gateway attB sites for recombination into other vectors and by rare 18-bp I-SceI restriction sites for subcloning. The Tn7-functionalized target can also be inserted at a naturally occurring chromosomal attTn7 site(s) or maintained as a broad-host-range plasmid for complementation or heterologous expression studies. We have used the oriTn7 capture technique to clone and complement Burkholderia pseudomallei genomic regions up to 140 kb in size and have created isogenic Burkholderia strains with various combinations of genomic islands. We believe this system will greatly aid the cloning and genetic analysis of genomic islands, biosynthetic gene clusters, and large open reading frames. PMID:23747708

  9. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  10. The ABCG2 efflux transporter from rabbit placenta: Cloning and functional characterization.

    PubMed

    Halwachs, Sandra; Kneuer, Carsten; Gohlsch, Katrin; Müller, Marian; Ritz, Vera; Honscha, Walther

    2016-02-01

    In human placenta, the ATP-binding cassette efflux transporter ABCG2 is highly expressed in syncytiotrophoblast cells and mediates cellular excretion of various drugs and toxins. Hence, physiological ABCG2 activity substantially contributes to the fetoprotective placenta barrier function during gestation. Developmental toxicity studies are often performed in rabbit. However, despite its toxicological relevance, there is no data so far on functional ABCG2 expression in this species. Therefore, we cloned ABCG2 from placenta tissues of chinchilla rabbit. Sequencing showed 84-86% amino acid sequence identity to the orthologues from man, rat and mouse. We transduced the rabbit ABCG2 clone (rbABCG2) in MDCKII cells and stable rbABCG2 gene and protein expression was shown by RT-PCR and Western blot analysis. The rbABCG2 efflux activity was demonstrated with the Hoechst H33342 assay using the specific ABCG2 inhibitor Ko143. We further tested the effect of established human ABCG2 (hABCG2) drug substrates including the antibiotic danofloxacin or the histamine H2-receptor antagonist cimetidine on H33342 accumulation in MDCKII-rbABCG2 or -hABCG2 cells. Human therapeutic plasma concentrations of all tested drugs caused a comparable competitive inhibition of H33342 excretion in both ABCG2 clones. Altogether, we first showed functional expression of the ABCG2 efflux transporter in rabbit placenta. Moreover, our data suggest a similar drug substrate spectrum of the rabbit and the human ABCG2 efflux transporter. PMID:26907376

  11. High throughput functional analysis of HIV-1 env genes without cloning

    PubMed Central

    Kirchherr, Jennifer L; Lu, Xiaozhi; Kasongo, Webster; Chalwe, Victor; Mwananyanda, Lawrence; Musonda, Rosemary M; Xia, Shi-Mao; Scearce, Richard M; Liao, Hua-Xin; Montefiori, David C; Haynes, Barton F; Gao, Feng

    2007-01-01

    Functional human immunodeficiency virus type -1 env clones have been widely used for vaccine design, neutralization assays, and pathogenesis studies. However, obtaining bona fide functional env clones is a time consuming and labor intensive process. A new high throughput method has been developed to characterize HIV-1 env genes. Multiple rev/env gene cassettes were obtained from each of seven HIV-1 strains using single genome amplification (SGA) PCR. The CMV promoter was amplified separately by PCR. A promoter PCR (pPCR) method was developed to link both PCR products using an overlapping PCR method. Pseudovirions were generated by cotransfection of pPCR products and pSG3Δenv backbone into 293T cells. After infecting TZM-bl cells, 75 out of 87 (86%) of the rev/env gene cassettes were functional. Pseudoviruses generated with pPCR products or corresponding plasmid DNA showed similar sensitivity to six HIV-1 positive sera and three monoclonal antibodies, suggesting neutralization properties are not altered in pPCR pseudovirions. Furthermore, sufficient amounts of pseudovirions can be obtained for a large number of neutralization assays. The new pPCR method eliminates cloning, transformation, and plasmid DNA preparation steps in the generation of HIV-1 pseudovirions, this allows for quick analysis of multiple env genes from HIV-1 infected individuals. PMID:17416428

  12. Exploration of Panviral Proteome: High-Throughput Cloning and Functional Implications in Virus-host Interactions

    PubMed Central

    Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M.; LaBaer, Joshua

    2014-01-01

    Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies. PMID:24955142

  13. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics

    PubMed Central

    Yuan, Hui; Peng, Li; Han, Zhong; Xie, Juan-Juan; Liu, Xi-Peng

    2015-01-01

    Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms. PMID:26441878

  14. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations.

    PubMed Central

    Schild, D; Brake, A J; Kiefer, M C; Young, D; Barr, P J

    1990-01-01

    Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme. Images PMID:2183217

  15. Building a human kinase gene repository: Bioinformatics, molecular cloning, and functional validation

    PubMed Central

    Park, Jaehong; Hu, Yanhui; Murthy, T. V. S.; Vannberg, Fredrik; Shen, Binghua; Rolfs, Andreas; Hutti, Jessica E.; Cantley, Lewis C.; LaBaer, Joshua; Harlow, Ed; Brizuela, Leonardo

    2005-01-01

    Kinases catalyze the phosphorylation of proteins, lipids, sugars, nucleosides, and other important cellular metabolites and play key regulatory roles in all aspects of eukaryotic cell physiology. Here, we describe the mining of public databases to collect the sequence information of all identified human kinase genes and the cloning of the corresponding ORFs. We identified 663 genes, 511 encoding protein kinases, and 152 encoding nonprotein kinases. We describe the successful cloning and sequence verification of 270 of these genes. Subcloning of this gene set in mammalian expression vectors and their use in high-throughput cell-based screens allowed the validation of the clones at the level of expression and the identification of previously uncharacterized modulators of the survivin promoter. Moreover, expressions of the kinase genes in bacteria, followed by autophosphorylation assays, identified 21 protein kinases that showed autocatalytic activity. The work described here will facilitate the functional assaying of this important gene family in phenotypic screens and their use in biochemical and structural studies. PMID:15928075

  16. Functional and phenotypic analysis of human T-cell clones which stimulate IgE production in vitro.

    PubMed Central

    Quint, D J; Bolton, E J; McNamee, L A; Solari, R; Hissey, P H; Champion, B R; MacKenzie, A R; Zanders, E D

    1989-01-01

    Peripheral blood mononuclear cells (PBMC) from a patient suffering from the hyper IgE syndrome were used to generate phytohaemagglutinin (PHA)-expanded T-cell clones (all CD4+, CD8-, CD23-). A selection of the clones was tested for their ability to help IgE secretion by culturing with normal B cells in the presence of solid-phase antibody to CD3. Supernatants were harvested on Day 7 and assayed by ELISA for IgE, IgG and IgM. Lymphokine secretion by the clones was assessed by culturing clones for 24 hr with solid-phase antibody to CD3 followed by assay of the supernatants for IL-2, IL-4 and interferon-gamma (IFN-gamma) production. In addition, clones were analysed by flow cytometry for CDw29 and CD45R expression. Initial experiments with seven clones indicated that those clones that could help IgE secretion also stimulated optimal IgG and IgM responses. All clones appeared to secrete IL-2, IL-4 and IFN-gamma, although the amounts of each varied. These results confirm recent findings that human T-cell clones do not fall into Tinf (Th1) and Th (Th2) type subsets as described in the mouse. There was no clear correlation between the lymphokines secreted by the clones and their capacity to help IgE production. However, the helper function of the clones for all isotypes, including IgE, appeared to be related to the level of expression of the surface antigen CDw29. PMID:2525520

  17. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis.

    PubMed

    Gou, Jun-Bo; Li, Zhen-Qiu; Li, Chang-Fu; Chen, Fang-Fang; Lv, Shi-You; Zhang, Yan-Sheng

    2016-09-01

    Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo. PMID:27231873

  18. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    PubMed Central

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 106 clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  19. Cloning, expression, and functional characterization of the rat Pax6 5a orthologous splicing variant.

    PubMed

    Wei, Fei; Li, Min; Cheng, Sai-Yu; Wen, Liang; Liu, Ming-Hua; Shuai, Jie

    2014-08-15

    Pax6 functions as a pleiotropic regulator in eye development and neurogenesis. Its splice variant Pax6 5a has been cloned in many vertebrate species including human and mouse, but never in rat. This study focused on the cloning and characterization of the Pax6 5a orthologous splicing variant in rat. It was cloned from Sprague-Dawley rats 10 days post coitum (E10) by RT-PCR and was sequenced for comparison with Pax6 sequences in the GenBank by BLAST. The rat Pax6 5a was revealed to contain an additional 42 bp insertion at the paired domain. At the nucleotide level, the rat Pax6 5a coding sequence (1,311 bp) had a higher degree of homology to the mouse (96% identical) than to the human (93% identical) sequence. At the amino acid (aa) level, rat PAX6 5a shares 99.8% identity with the mouse sequence and 99.5% with the human sequence. The splice variant is preferentially expressed in the rat E10 embryonic headfolds and not in the trunk of neurula. Its effects on the proliferation of rat mesenchymal stem cells (rMSCs) were preliminarily evaluated by the MTT assay. Both pLEGFP-Pax6 5a-transfected cells and pLEGFP-Pax6-transfected cells exhibited a similar growth curve (P>0.05), suggesting that the Pax6 5a has a similar effect on the proliferation of rMSCs as Pax6. PMID:24952136

  20. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.

    PubMed

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  1. GABAA receptor beta subunit heterogeneity: functional expression of cloned cDNAs.

    PubMed Central

    Ymer, S; Schofield, P R; Draguhn, A; Werner, P; Köhler, M; Seeburg, P H

    1989-01-01

    Cloned cDNAs encoding two new beta subunits of the rat and bovine GABAA receptor have been isolated using a degenerate oligonucleotide probe based on a highly conserved peptide sequence in the second transmembrane domain of GABAA receptor subunits. The beta 2 and beta 3 subunits share approximately 72% sequence identity with the previously characterized beta 1 polypeptide. Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA. All three beta subunit encoding cDNAs were also identified in a library constructed from adrenal medulla RNA. Each beta subunit, when co-expressed in Xenopus oocytes with an alpha subunit, forms functional GABAA receptors. These results, together with the known alpha subunit heterogeneity, suggest that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations. Images PMID:2548852

  2. Positive-selection and ligation-independent cloning vectors for large scale in planta expression for plant functional genomics.

    PubMed

    Oh, Sang-Keun; Kim, Saet-Byul; Yeom, Seon-In; Lee, Hyun-Ah; Choi, Doil

    2010-12-01

    Transient expression is an easy, rapid and powerful technique for producing proteins of interest in plants. Recombinational cloning is highly efficient but has disadvantages, including complicated, time consuming cloning procedures and expensive enzymes for large-scale gene cloning. To overcome these limitations, we developed new ligation-independent cloning (LIC) vectors derived from binary vectors including tobacco mosaic virus (pJL-TRBO), potato virus X (pGR106) and the pBI121 vector-based pMBP1. LIC vectors were modified to enable directional cloning of PCR products without restriction enzyme digestion or ligation reactions. In addition, the ccdB gene, which encodes a potent cell-killing protein, was introduced between the two LIC adapter sites in the pJL-LIC, pGR-LIC, and pMBP-LIC vectors for the efficient selection of recombinant clones. This new vector does not require restriction enzymes, alkaline phosphatase, or DNA ligase for cloning. To clone, the three LIC vectors are digested with SnaBI and treated with T4 DNA polymerase, which includes 3' to 5' exonuclease activity in the presence of only one dNTP (dGTP for the inserts and dCTP for the vector). To make recombinants, the vector plasmid and the insert PCR fragment were annealed at room temperature for 20 min prior to transformation into the host. Bacterial transformation was accomplished with 100% efficiency. To validate the new LIC vector systems, we were used to coexpressed the Phytophthora AVR and potato resistance (R) genes in N. benthamiana by infiltration of Agrobacterium. Coexpressed AVR and R genes in N. benthamiana induced the typical hypersensitive cell death resulting from in vivo interaction of the two proteins. These LIC vectors could be efficiently used for high-throughput cloning and laboratory-scale in planta expression. These vectors could provide a powerful tool for high-throughput transient expression assays for functional genomic studies in plants. PMID:21340673

  3. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. PMID:23058847

  4. Cloning and Functional Analysis of Three Chalcone Synthases from the Flowers of Safflowers Carthamus tinctorius.

    PubMed

    Shinozaki, Junichi; Kenmoku, Hiromichi; Nihei, Kenichi; Masuda, Kazuo; Noji, Masaaki; Konno, Katsuhiro; Asakawa, Yoshinori; Kazuma, Kohei

    2016-06-01

    The flowers of safflowers (Carthamus tinctorius L.) are very important as they are the sole source of their distinct pigments, i.e. carthamus-red and -yellows, and have historically had strong connections to the cultural side of human activities such as natural dyes, rouge, and traditional medicines. The distinct pigments are quinochalcone C-glucosides, which are found specifically in the flowers of C. tinctorius. To investigate the biosynthetic pathways of quinochalcone C-glucosides, de novo assembly of the transcriptome was performed on the flowers using an Illumina sequencing platform to obtain 69,312 annotated coding DNA sequences. Three chalcone synthase like genes, CtCHS1, 2 and 3 were focused on and cloned, which might be involved in quinochalcone C-glucosides biosynthesis by establishing the C6-C3-C6 chalcone skeleton. It was demonstrated that all the recombinant CtCHSs could recognize p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA as starter substrates. This is the first report on the cloning and functional analysis of the three chalcone synthase genes from the flowers of C. tinctorius. PMID:27534116

  5. Human DNA ligase I cDNA: Cloning and functional expression in Saccharomyces cerevisiae

    SciTech Connect

    Barnes, D.E.; Kodama, Kenichi; Tomkinson, A.E.; Lindahl, T.; Lasko, D.D. ); Johnston, L.H. )

    1990-09-01

    Human cDNA clones encoding the major DNA ligase activity in proliferating cells, DNA ligase I, were isolated by two independent methods. In one approach, a human cDNA library was screened by hybridization with oligonucleotides deduced from partial amino acid sequence of purified bovine DNA ligase I. In an alternative approach, a human cDNA library was screened for functional expression of a polypeptide able to complement a cdc9 temperature-sensitive DNA ligase mutant of Saccharomuces cerevisiae. The sequence of an apparently full-length cDNA encodes a 102-kDa protein, indistinguishable in size from authentic human DNA ligase I. The deduced amino acid sequence of the human DNA ligase I cDNA is 40% homologous to the smaller DNA ligases of S. cerevisiae and Schizosaccharomyces pombe, homology being confined to the carboxyl-terminal regions of the respective proteins. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is transcribed from a single-copy gene on chromosome 19.

  6. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    SciTech Connect

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  7. New Actinoporins from sea anemone Heteractis crispa: cloning and functional expression.

    PubMed

    Tkacheva, E S; Leychenko, E V; Monastyrnaya, M M; Issaeva, M P; Zelepuga, E A; Anastuk, S D; Dmitrenok, P S; Kozlovskaya, E P

    2011-10-01

    A new actinoporin Hct-S4 (molecular mass 19,414 ± 10 Da) belonging to the sphingomyelin-inhibited α-pore forming toxin (α-PFT) family was isolated from the tropical sea anemone Heteractis crispa (also called Radianthus macrodactylus) and purified by methods of protein chemistry. The N-terminal nucleotide sequence (encoding 20 amino acid residues) of actinoporin Hct-S4 was determined. Genes encoding 18 new isoforms of H. crispa actinoporins were cloned and sequenced. These genes form a multigene Hct-S family characterized by presence of N-terminal serine in the mature proteins. Highly conserved residues comprising the aromatic phosphorylcholine-binding site and significant structure-function changes in the N-terminal segment (10-27 amino acid residues) of actinoporins were established. Two expressed recombinant actinoporins (rHct-S5 and rHct-S6) were one order less hemolytically active than native actinoporins. PMID:22098238

  8. [Cloning and functional studies of the chromosomal replication origin of Actinomadura yumaensis].

    PubMed

    Xia, Hai-yang; Lin, Kai-chun; Yang, Chang-juz; Qin, Zhong-jun

    2007-06-01

    The chromosomal replication origins (oriC) have been investigated in Gram-positive eubacteria actinomycetes, including Streptomyces, Mycobacterium and Amycolatopsis, and reveal various DnaA-boxes and AT-rich sequences between the conserved dnaA and dnaN genes. Actinomadura yumaensis NRRL12515 is a producer of anthelmintic polyether maduramicin. In this paper,cloning, sequencing and functional studies of its oriC have been carried out. A pair of oligonucleotide primers, based on the conserved sequences of dnaA and dnaN, was used to PCR amplification. A-1.3kb DNA band was detected on agarose gel. Subsequently cloning in an E. coli plasmid pBluescript II SK ( + ) and sequencing showed 1265bp,which contained 919bp between dnaA and dnaN genes. 14 DnaA-boxes with conserved 9bp sequence (T/C) (T/C) GTCC (A/C) CA and two 13bp AT-rich regions (GAAAAATCCCAAG, AAGAAAAAACTCA), were found on the sequence,indicating the oriC of A. yumaensis NRRL12515. Phylogenetic trees based on the sequences of oriC and of 16S rRNA genes of the four actinomycetes species show a similar pattern, suggesting that oriC sequences also reflected well the relationship between actinomycetes species. An E. coli plasmid pOR1, containing the oriC, actinomycetes selection markers tsr and melC, was introduced into Streptomyces coelicolor M145 by conjugal transfer. Transformants were obtained,and plasmids DNA were isolated and detected as low copy number, suggesting a functional mini-chromosome in Streptomyces. PMID:17672320

  9. Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus Population by the Use of Ancestral Reconstruction.

    PubMed

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Dräger, Carolin; Orton, Richard J; Blome, Sandra; Höper, Dirk; Beer, Martin; Rasmussen, Thomas Bruun

    2015-01-01

    RNA viruses have the highest known mutation rates. Consequently it is likely that a high proportion of individual RNA virus genomes, isolated from an infected host, will contain lethal mutations and be non-functional. This is problematic if the aim is to clone and investigate high-fitness, functional cDNAs and may also pose problems for sequence-based analysis of viral evolution. To address these challenges we have performed a study of the evolution of classical swine fever virus (CSFV) using deep sequencing and analysis of 84 full-length cDNA clones, each representing individual genomes from a moderately virulent isolate. In addition to here being used as a model for RNA viruses generally, CSFV has high socioeconomic importance and remains a threat to animal welfare and pig production. We find that the majority of the investigated genomes are non-functional and only 12% produced infectious RNA transcripts. Full length sequencing of cDNA clones and deep sequencing of the parental population identified substitutions important for the observed phenotypes. The investigated cDNA clones were furthermore used as the basis for inferring the sequence of functional viruses. Since each unique clone must necessarily be the descendant of a functional ancestor, we hypothesized that it should be possible to produce functional clones by reconstructing ancestral sequences. To test this we used phylogenetic methods to infer two ancestral sequences, which were then reconstructed as cDNA clones. Viruses rescued from the reconstructed cDNAs were tested in cell culture and pigs. Both reconstructed ancestral genomes proved functional, and displayed distinct phenotypes in vitro and in vivo. We suggest that reconstruction of ancestral viruses is a useful tool for experimental and computational investigations of virulence and viral evolution. Importantly, ancestral reconstruction can be done even on the basis of a set of sequences that all correspond to non-functional variants. PMID

  10. Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus Population by the Use of Ancestral Reconstruction

    PubMed Central

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Dräger, Carolin; Orton, Richard J; Blome, Sandra; Höper, Dirk; Beer, Martin; Rasmussen, Thomas Bruun

    2015-01-01

    RNA viruses have the highest known mutation rates. Consequently it is likely that a high proportion of individual RNA virus genomes, isolated from an infected host, will contain lethal mutations and be non-functional. This is problematic if the aim is to clone and investigate high-fitness, functional cDNAs and may also pose problems for sequence-based analysis of viral evolution. To address these challenges we have performed a study of the evolution of classical swine fever virus (CSFV) using deep sequencing and analysis of 84 full-length cDNA clones, each representing individual genomes from a moderately virulent isolate. In addition to here being used as a model for RNA viruses generally, CSFV has high socioeconomic importance and remains a threat to animal welfare and pig production. We find that the majority of the investigated genomes are non-functional and only 12% produced infectious RNA transcripts. Full length sequencing of cDNA clones and deep sequencing of the parental population identified substitutions important for the observed phenotypes. The investigated cDNA clones were furthermore used as the basis for inferring the sequence of functional viruses. Since each unique clone must necessarily be the descendant of a functional ancestor, we hypothesized that it should be possible to produce functional clones by reconstructing ancestral sequences. To test this we used phylogenetic methods to infer two ancestral sequences, which were then reconstructed as cDNA clones. Viruses rescued from the reconstructed cDNAs were tested in cell culture and pigs. Both reconstructed ancestral genomes proved functional, and displayed distinct phenotypes in vitro and in vivo. We suggest that reconstruction of ancestral viruses is a useful tool for experimental and computational investigations of virulence and viral evolution. Importantly, ancestral reconstruction can be done even on the basis of a set of sequences that all correspond to non-functional variants. PMID

  11. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    PubMed Central

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  12. Cloning and Functional Characterization of Two BTB Genes in the Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Wu, Ke; Hoy, Marjorie A.

    2015-01-01

    Proteins containing the BTB (Bric-à-brac, tramtrack, and Broad Complex) domain typically share low sequence similarities and are involved in a wide range of cellular functions. We previously identified two putative and closely related BTB genes, BTB1 and BTB2, in the genome of the predatory mite Metaseiulus occidentalis. In the current study, full-length BTB1 and BTB2 cDNAs were cloned and sequenced. BTB1 and BTB2 encode proteins of 380 and 401 amino acids, respectively. BTB1 and BTB2 proteins each contain an N-terminal BTB domain and no other identifiable domains. Thus, they belong to a large category of BTB-domain proteins that are widely distributed in eukaryotes, yet with largely unknown function(s). BTB1 and BTB2 gene knockdowns in M. occidentalis females using RNAi reduced their fecundity by approximately 40% and 73%, respectively, whereas knockdown had no impact on their survival or the development of their offspring. These findings suggest these two proteins may be involved in processes related to egg production in this predatory mite, expanding the list of functions attributed to these diverse proteins. PMID:26640898

  13. Possible Function of the ribT Gene of Bacillus subtilis: Theoretical Prediction, Cloning, and Expression.

    PubMed

    Yakimov, A P; Seregina, T A; Kholodnyak, A A; Kreneva, R A; Mironov, A S; Perumov, D A; Timkovskii, A L

    2014-07-01

    The complete decipherment of the functions and interactions of the elements of the riboflavin biosynthesis operon (rib operon) of Bacillus subtilis are necessary for the development of superproducers of this important vitamin. The function of its terminal ribT gene has not been established to date. In this work, a search for homologs of the hypothetical amino acid sequence of the gene product through databases, as well as an analysis of the homolgs, was performed; the distribution of secondary structure elements was theoretically predicted; and the tertiary structure of the RibT protein was proposed. The ribT gene nucleotide sequence was amplified and cloned into the standard high-copy expression vector pET15b and then expressed after induction with IPTG in E. coli BL21 (DE3) strain cells containing the inducible phage T7 RNA polymerase gene. The ribT gene expression was confirmed by SDS-PAGE. The protein product of the expression was purified by affinity chromatography. Therefore, the real possibility of RibT protein production in quantities sufficient for further investigation of its structure and functional activity was demonstrated. PMID:25349719

  14. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    PubMed Central

    Scheel, Troels K. H.; Kapoor, Amit; Nishiuchi, Eiko; Brock, Kenny V.; Yu, Yingpu; Andrus, Linda; Gu, Meigang; Renshaw, Randall W.; Dubovi, Edward J.; McDonough, Sean P.; Van de Walle, Gerlinde R.; Lipkin, W. Ian; Divers, Thomas J.; Tennant, Bud C.; Rice, Charles M.

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3′-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3′-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3′-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host. PMID:25646476

  15. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish.

    PubMed

    Sussman, Caroline R; Zhao, Jinhua; Plata, Consuelo; Lu, Jing; Daly, Christopher; Angle, Nathan; DiPiero, Jennifer; Drummond, Iain A; Liang, Jennifer O; Boron, Walter F; Romero, Michael F; Chang, Min-Hwang

    2009-10-01

    Mutations in the electrogenic Na+/nHCO3- cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pH(i)), or intracellular Na+ activity (aNa(i)), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3- transport as well as similar drug sensitivity, including inhibition by 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3-. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology. PMID:19625604

  16. Cloning and functional characterization of the rabbit C-C chemokine receptor 2

    PubMed Central

    Lu, Deshun; Yuan, Xiu-juan; Evans, Robert J; Pappas, Amy T; Wang, He; Su, Eric W; Hamdouchi, Chafiq; Venkataraman, Chandrasekar

    2005-01-01

    Background CC-family chemokine receptor 2 (CCR2) is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model. Results Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled 125I-mouse JE (murine MCP-1) with a calculated Kd of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of 125I-mouse JE (IC50 = 2.3 nM) to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis. Conclusion In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1. PMID:16001983

  17. Cloning, Functional Characterization, and Catalytic Mechanism of a Bergaptol O-Methyltransferase from Peucedanum praeruptorum Dunn

    PubMed Central

    Zhao, Yucheng; Wang, Nana; Zeng, Zhixiong; Xu, Sheng; Huang, Chuanlong; Wang, Wei; Liu, Tingting; Luo, Jun; Kong, Lingyi

    2016-01-01

    Coumarins are main active components of Peucedanum praeruptorum Dunn. Among them, methoxylated coumarin compound, such as bergapten, xanthotoxin, and isopimpinellin, has high officinal value and plays an important role in medicinal field. However, major issues associated with the biosynthesis mechanism of coumarins remain unsolved and no corresponding enzyme has been cloned from P. praeruptorum. In this study, a local BLASTN program was conducted to find the candidate genes from P. praeruptorum transcriptome database using the nucleotide sequence of Ammi majus bergaptol O-methyltransferase (AmBMT, GenBank accession No: AY443006) as a template. As a result, a 1335 bp full-length of cDNA sequence which contains an open reading frame of 1080 bp encoding a BMT polypeptide of 359 amino acids was obtained. The recombinant protein was functionally expressed in Escherichia coli and displayed an observed activity to bergaptol. In vitro experiments show that the protein has narrow substrate specificity for bergaptol. Expression profile indicated that the cloned gene had a higher expression level in roots and can be induced by methyl jasmonate (MeJA). Subcellular localization analysis showed that the BMT protein was located in cytoplasm in planta. Homology modeling and docking based site-directed mutagenesis have been employed to investigate the amino acid residues in BMT required for substrate binding and catalysis. Conservative amino acid substitutions at residue H264 affected BMT catalysis, whereas substitutions at residues F171, M175, D226, and L312 affected substrate binding. The systemic study summarized here will enlarge our knowledge on OMTs and provide useful information in investigating the coumarins biosynthesis mechanism in P. praeruptorum. PMID:27252733

  18. Cloning, Functional Characterization, and Catalytic Mechanism of a Bergaptol O-Methyltransferase from Peucedanum praeruptorum Dunn.

    PubMed

    Zhao, Yucheng; Wang, Nana; Zeng, Zhixiong; Xu, Sheng; Huang, Chuanlong; Wang, Wei; Liu, Tingting; Luo, Jun; Kong, Lingyi

    2016-01-01

    Coumarins are main active components of Peucedanum praeruptorum Dunn. Among them, methoxylated coumarin compound, such as bergapten, xanthotoxin, and isopimpinellin, has high officinal value and plays an important role in medicinal field. However, major issues associated with the biosynthesis mechanism of coumarins remain unsolved and no corresponding enzyme has been cloned from P. praeruptorum. In this study, a local BLASTN program was conducted to find the candidate genes from P. praeruptorum transcriptome database using the nucleotide sequence of Ammi majus bergaptol O-methyltransferase (AmBMT, GenBank accession No: AY443006) as a template. As a result, a 1335 bp full-length of cDNA sequence which contains an open reading frame of 1080 bp encoding a BMT polypeptide of 359 amino acids was obtained. The recombinant protein was functionally expressed in Escherichia coli and displayed an observed activity to bergaptol. In vitro experiments show that the protein has narrow substrate specificity for bergaptol. Expression profile indicated that the cloned gene had a higher expression level in roots and can be induced by methyl jasmonate (MeJA). Subcellular localization analysis showed that the BMT protein was located in cytoplasm in planta. Homology modeling and docking based site-directed mutagenesis have been employed to investigate the amino acid residues in BMT required for substrate binding and catalysis. Conservative amino acid substitutions at residue H264 affected BMT catalysis, whereas substitutions at residues F171, M175, D226, and L312 affected substrate binding. The systemic study summarized here will enlarge our knowledge on OMTs and provide useful information in investigating the coumarins biosynthesis mechanism in P. praeruptorum. PMID:27252733

  19. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    PubMed Central

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  20. Cloning and functional expression of the equine luteinizing hormone/chorionic gonadotrophin receptor.

    PubMed

    Saint-Dizier, Marie; Foulon-Gauze, Florence; Lecompte, François; Combarnous, Yves; Chopineau, Maryse

    2004-12-01

    Pituitary equine luteinizing hormone (eLH) and fetal chorionic gonadotrophin (eCG) have identical polypeptidic chains, but different linked carbohydrates. In equine tissues, eCG and eLH bind only to the LH/CG receptor (eLH/CG-R) and have no FSH activity. However, radio-receptor assays on equine luteal or testicular tissues have shown that eCG binds to the eLH/CG-R with only 2-4% of the binding activity of eLH. In order to study the structure-function relationship of eLH and eCG in a homologous system, we undertook the cloning and functional expression of the eLH/CG-R. Based on sequence homologies among mammalian sequences for the LH/CG-R, overlapping partial fragments of LH/CG-R cDNAs were obtained from mare luteal RNA using reverse transcription-PCR and 5'-rapid amplification of cDNA ends. Ligations of the partial cDNA fragments encoded a part of the signal peptide followed by a putative 672 amino acid eLH/CG-R mature protein. The mature eLH/CG-R displayed 88.2-92.8% overall sequence homology with the other mammalian LH/CG-Rs and contained one unique seventh N-glycosylation site in its extracellular domain. COS-7 cells were transiently transfected with a cDNA construct encoding an engineered complete signal peptide and the mature eLH/CG-R. Membrane preparations from transfected COS-7 cells bound 125I-eLH with high affinity (Kd 3.8 x 10(-10) M). On a molar basis, eCG competed with 125I-eLH on membrane preparations with only 12.4% of the eLH binding activity. In transfected COS-7, both eLH and eCG increased the extracellular cAMP concentration in a dose-dependent manner, whereas eFSH did not. Furthermore, on a molar basis, eCG stimulated cAMP production with only 13.9% of the eLH stimulating activity. We conclude that the cloned cDNA encodes a The differences functional eLH/CG-R. between eLH and eCG activities towards this receptor will be useful in studies of the influence of carbohydrates on gonadotrophin receptor binding and activation. PMID:15590981

  1. Cloning, Characterization, Regulation, and Function of Dormancy-Associated MADS-Box Genes from Leafy Spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...

  2. Molecular cloning and functional characterization of spexin in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Shuisheng; Liu, Qiongyu; Xiao, Ling; Chen, Huapu; Li, Guangli; Zhang, Yong; Lin, Haoran

    2016-01-01

    Spexin is a newly discovered neuropeptide in vertebrates. Comprehensive comparative studies are required to unveil its biological functions. In order to ascertain the neuroendocrine function of spexin in orange-spotted grouper, its full-length cDNA and genomic DNA sequences were cloned and analyzed. Sequence analyses showed that the spexin gene structure is composed of six exons and five introns, and the amino acids of mature peptide (spexin-14) in grouper are identical to that of other fish. Tissue expression analysis found that grouper spexin is highly expressed in the brain, liver and ovary. Real time-PCR analysis demonstrated that the hypothalamic expression of spexin declined gradually during the ovarian development, and was up-regulated by food deprivation. Intraperitoneal administration of spexin-14 peptides to grouper significantly elevated the mRNA levels of proopiomelanocortin (pomc) and suppressed the orexin expression in the hypothalamus, but could not change the hypothalamic expression of gonadotropin releasing hormone 1 (gnrh1). Both in vivo and in vitro administration of spexin could not significantly influence the expression of follicle-stimulating hormone β (fshβ) and luteinizing hormone β (lhβ) in the pituitary with the exception of an inhibition of gh expression. Our data suggested that the spexin has a significant role in the regulation of energy metabolism and food intake in orange-spotted grouper. PMID:26944307

  3. Molecular cloning and functional characterization of a putative sulfite oxidase (SO) ortholog from Nicotiana benthamiana.

    PubMed

    Xia, Zongliang; Su, Xinhong; Wu, Jianyu; Wu, Ke; Zhang, Hua

    2012-03-01

    Sulfite oxidase (SO) catalyzes the oxidation of sulfite to sulfate and thus has important roles in diverse metabolic processes. However, systematic molecular and functional investigations on the putative SO from tobacco (Nicotiana benthamiana) have hitherto not been reported. In this work, a full-length cDNA encoding putative sulfite oxidase from N. benthamiana (NbSO) was isolated. The deduced NbSO protein shares high homology and typical structural features with other species SOs. Phylogenetic analysis indicates that NbSO cDNA clone encodes a tobacco SO isoform. Southern blot analysis suggests that NbSO is a single-copy gene in the N. benthamiana genome. The NbSO transcript levels were higher in aerial tissues and were up-regulated in N. benthamiana during sulfite stress. Reducing the SO expression levels through virus-induced gene silencing caused a substantial accumulation in sulfite content and less sulfate accumulation in N. benthamiana leaves when exposed to sulfite stress, and thus resulted in decreased tolerance to sulfite stress. Taken together, this study improves our understanding on the molecular and functional properties of plant SO and provides genetic evidence on the involvement of SO in sulfite detoxification in a sulfite-oxidizing manner in N. benthamiana plants. PMID:21667106

  4. [Cloning, expression and functional identification of a type III polyketide synthase gene from Huperzia serrata].

    PubMed

    Ye, Jin-cui; Zhang, Ping; Sun, Jie-yin; Guo, Chao-tan; Chen, Guo-shen; Abe, Ikuro; Noguchi, Hiroshi

    2011-10-01

    A cDNA encoding novel type III polyketide synthase (PKS) was cloned and sequenced from young leaves of Chinese club moss Huperzia serrata (Thunb.) Trev. by RT-PCR using degenerated primers based on the conserved sequences of known CHSs, and named as H. serrata PKS2. The terminal sequences of cDNA were obtained by the 3'- and 5'-RACE method. The full-length cDNA of H. serrata PKS2 contained a 1212 bp open reading frame encoding a 46.4 kDa protein with 404 amino acids. The deduced amino acid sequence of H. serrata PKS2 showed 50%-66% identities to those of other chalcone synthase super family enzymes of plant origin. The recombinant H. serrata PKS2 was functionally expressed in Escherichia coli with an additional hexahistidine tag at the N-terminus and showed unusually versatile catalytic potency to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, the enzyme accepted bulky starter substrates N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 1, 3-dihydroxy-N-methylacridone. Interestingly, H. serrata PKS2 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae). PMID:22242464

  5. Cloning, prokaryotic expression and functional analysis of squalene synthase (SQS) in Magnolia officinalis.

    PubMed

    Zha, Liangping; Liu, Shuang; Su, Ping; Yuan, Yuan; Huang, Luqi

    2016-04-01

    Magnolia officinalis Rehder et Wilson is a traditional Chinese herbal medicine that is used to treat various diseases such as neurosis, anxiety, and stroke. The main secondary metabolites in magnolia bark are phenolic compounds and terpenoids. Squalene synthase plays a significant role in catalyzing two farnesyl diphosphate molecules to form squalene, the first precursor of triterpenoid, phytosterol, and cholesterol biosynthesis. In this study, a full-length cDNA of squalene synthase was cloned from M. officinalis and designated MoSQS (GenBank accession no. KT223496). The gene contains a 1240-bp open reading frame and it encodes a protein with 409 amino acids. Bioinformatic and phylogenetic analysis clearly suggested that MoSQS shared high similarity with squalene synthases among other plants. Prokaryotic expression showed that a transmembrane domain-deleted (385-409 aa) MoSQS mutant (MoSQSΔTM) could be expressed in its soluble form in Escherichia coli Transetta (DE3). GC-MS analysis showed that squalene was detected in an in vitro reaction mixture. These results indicated that MoSQSΔTM was functional, thereby establishing an important foundation for the study of triterpenoid biosynthesis in M. officinalis. PMID:26696600

  6. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5)

    PubMed Central

    Popp, Michael; Thielmann, Ina; Nieswandt, Bernhard; Stegner, David

    2015-01-01

    Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice. PMID:26172113

  7. Functional analysis of bovine Nramp1 and production of transgenic cloned embryos in vitro.

    PubMed

    Cheng, Xiang; Yu, Xiaoli; Liu, Yajun; Deng, Jie; Ma, Xiaoling; Wang, Huayan

    2015-02-01

    Natural resistance-associated macrophage protein 1 (Nramp1) plays an important role in restraining the growth of intracellular pathogens within macrophages. In this study, Nramp1 cDNA was cloned from Qinchuan cattle and its anti-bacterial activity was demonstrated as being able to significantly inhibit the growth of Salmonella abortusovis and Brucella abortus in macrophages. Calf fibroblasts stably transfected with pSP-NRAMP1-HA vector were used to reconstruct bovine embryos by somatic cell nuclear transfer (SCNT). Reconstructed embryos were maturated in vitro and the blastocyst formation rate (14.0%) was similar to that of control embryos (14.5%). Transgenic blastocysts were transplanted into 43 recipient cattle, of which 14 recipients became pregnant as evidenced by non-return estrus and by rectal palpation. One fetus was aborted after 6½ months of pregnancy and transgene integration was confirmed by semi-quantitative polymerase chain reaction. Together, this study showed that bovine Nramp1 retains biological function against the growth of intracellular bacteria and can be used to reconstruct embryos and produce Nramp1 transgenic cattle, which may benefit the animal and enhance their ability to prevent attack by intracellular pathogens. PMID:23683995

  8. Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene.

    PubMed

    Naka, H; Hirono, I; Aoki, T

    2005-02-01

    A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. PMID:15705153

  9. Cloning and functional expression of dendrotoxin K from black mamba, a K+ channel blocker.

    PubMed

    Smith, L A; Lafaye, P J; LaPenotiere, H F; Spain, T; Dolly, J O

    1993-06-01

    Mamba dendrotoxins, 7K M(r) polypeptides with three disulfide bonds, selectively inhibit certain fast-activating, voltage-sensitive neuronal K+ channels and have been instrumental in their identification, localization, and purification. However, derivatives with more refined specificity are essential to define the structural and functional properties of the multiple subtypes known to reside in the nervous system. Hence, utilizing a constructed cDNA library from the venom glands of the black mamba (Dendroaspis polylepis), the gene encoding dendrotoxin K was isolated, amplified, and expressed as a maltose-binding fusion protein in the periplasmic space of Escherichia coli. After cleavage of the chaperone from the affinity-purified product, a recombinant protein was isolated and shown to be identical to native dendrotoxin K in its N-terminal sequence, chromatographic behavior, convulsive-inducing activity, and binding to voltage-activated K+ channels in bovine synaptic membranes. This successful expression of refolded active toxin, in adequate yield, makes possible for the first time the preparation of mutants with specificity tailored for each K+ channel subtype, based both on the recently derived three-dimensional structure of alpha-dendrotoxin and the identified binding site on cloned K+ channels. PMID:8504088

  10. Molecular cloning and functional characterization of duck mitochondrial antiviral-signaling protein (MAVS).

    PubMed

    Li, Huilin; Zhai, Yajun; Fan, Yufang; Chen, Huanchun; Zhang, Anding; Jin, Hui; Luo, Rui

    2016-03-01

    Mitochondrial antiviral-signaling protein (MAVS), also called IPS-1/VISA/Cardif, is an important molecule involved in host defense and triggers a signal for producing type I IFN. Currently the function of MAVS in ducks (duMAVS) remains largely unclear while significant progress has been made in mammals. In this study, the full-length duMAVS cDNA was cloned from duck embryo fibroblasts (DEFs) for the first time. Tissue specificity analysis showed duMAVS was universally expressed in all detected tissues. DEFs transfected with duMAVS were able to induce interferon-β (IFN-β) expression through activating interferon regulatory factor 1 (IRF1) and nuclear factor kappa B (NF-κB). Both the CARD-like domain and transmembrane domain were required for duMAVS signaling via deletion mutant analysis. In addition, poly(I:C)- or Sendai virus (SeV)-induced IFN-β expression in DEFs were significantly decreased by knock-down of duMAVS with siRNA. Altogether, these results indicate that MAVS is a critical immunoregulator in duck innate immune system. PMID:26586642

  11. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene.

    PubMed

    Montpetit, Jonatan; Vivancos, Julien; Mitani-Ueno, Namiki; Yamaji, Naoki; Rémus-Borel, Wilfried; Belzile, François; Ma, Jian Feng; Bélanger, Richard R

    2012-05-01

    Silicon (Si) is known to be beneficial to plants, namely in alleviating biotic and abiotic stresses. The magnitude of such positive effects is associated with a plant's natural ability to absorb Si. Many grasses can accumulate as much as 10% on a dry weight basis while most dicots, including Arabidopsis, will accumulate less than 0.1%. In this report, we describe the cloning and functional characterization of TaLsi1, a wheat Si transporter gene. In addition, we developed a heterologous system for the study of Si uptake in plants by introducing TaLsi1 and OsLsi1, its ortholog in rice, into Arabidopsis, a species with a very low innate Si uptake capacity. When expressed constitutively under the control of the CaMV 35S promoter, both TaLsi1 and OsLsi1 were expressed in cells of roots and shoots. Such constitutive expression of TaLsi1 or OsLsi1 resulted in a fourfold to fivefold increase in Si accumulation in transformed plants compared to WT. However, this Si absorption caused deleterious symptoms. When the wheat transporter was expressed under the control of a root-specific promoter (a boron transporter gene (AtNIP5;1) promoter), a similar increase in Si absorption was noted but the plants did not exhibit symptoms and grew normally. These results demonstrate that TaLsi1 is indeed a functional Si transporter as its expression in Arabidopsis leads to increased Si uptake, but that this expression must be confined to root cells for healthy plant development. The availability of this heterologous expression system will facilitate further studies into the mechanisms and benefits of Si uptake. PMID:22351076

  12. Sodium-dependent methotrexate carrier-1 is expressed in rat kidney: cloning and functional characterization.

    PubMed

    Kneuer, Carsten; Honscha, Kerstin U; Honscha, Walther

    2004-03-01

    Previous Northern blot studies suggested strong expression of a homolog to the sodium-dependent hepatocellular methotrexate transporter in the kidneys. Here, we report on the cloning of the cDNA for the renal methotrexate carrier isoform-1 (RK-MTX-1) and its functional characterization. Sequencing revealed 97% homology to the rat liver methotrexate carrier with an identical open reading frame. Differences were located in the 5'-untranslated region and resulted in the absence of putative regulatory elements (Barbie box, Ah/ARNT receptor) identified in the cDNA for the hepatocellular carrier. For functional characterization, MTX-1 cDNA was stably expressed in Madin-Darby canine kidney (MDCK) cells. A sodium-dependent transport of methotrexate with a K(m) of 41 microM and a V(max) of 337 pmol.mg protein(-1).min(-1) was observed. This uptake was blocked by the reduced folates dihydro- and tetrahydrofolate as well as by methotrexate itself. Folate was inhibiting only weakly, whereas 5-methyltetrahydrofolate was a strong inhibitor. Further inhibitors of the methotrexate transport included the bile acids cholate and taurocholate and xenobiotics like bumetanide and BSP. PAH, ouabain, bumetanide, cholate, taurocholate, and acetyl salicylic acid were tested as potential substrates. However, none of these substances was transported by MTX-1. Furthermore, expression of RK-MTX-1 in MDCK cells enhanced methotrexate toxicity in these cells fivefold. Analysis of a fusion protein of RK-MTX-1 and the influenza virus hemagglutinin epitope by immunoblotting revealed a major band at 72 kDa within the cell membrane but not in the soluble fraction of transfected MDCK. Indirect immunofluorescence staining revealed an exclusive localization of the carrier in the plasma membrane, and by confocal laser-scanning microscopy we were able to demonstrate that the protein is expressed in the serosal region of MDCK tubules grown in a morphogenic collagen gel model. PMID:14612385

  13. Glucoamylase of Caulobacter crescentus CB15: cloning and expression in Escherichia coli and functional identification

    PubMed Central

    2014-01-01

    The biochemical properties of the maltodextrin-hydrolyzing enzymes of cold-tolerant proteobacterium Caulobacter crescentus CB15 remain to be elucidated, although whose maltodextrin transport systems were well investigated. We cloned the putative glucoamylase of C. crescentus CB15 (CauloGA) gene. The CauloGA gene product that was expressed in E. coli was prone to forming inclusion bodies; however, most of the gene product was expressed in a soluble and active form when it was expressed as a fusion protein with Staphylococcus Protein A. The fusion protein was purified using an IgG Sepharose column and was identified as the active GA. The optimum temperature and pH for the activity of this GA toward maltotriose as a substrate were approximately 40°C and 5.0, respectively, and a differential scanning fluorimetry (DSF) analysis revealed that the melting temperature (Tm) of CauloGA was 42.9°C. The kinetic analyses with maltotriose and other maltodextrins as the substrates indicated that CauloGA has higher kcat and smaller Km values at 30°C with both substrates compared with other GAs at lower substrate concentration. However, the enzyme activities toward the substrates decreased as the substrate concentrations increased at concentrations higher than approximately 10-fold the Km. The function-based identification of thermolabile Caulobacter GA contributes to the understanding of the maltodextrin-degradation system of C. crescentus as well as the bacterial GA’s function-structure relationship. PMID:24468405

  14. Human phosphoribosylformylglycineamide amidotransferase (FGARAT): regional mapping, complete coding sequence, isolation of a functional genomic clone, and DNA sequence analysis.

    PubMed

    Patterson, D; Bleskan, J; Gardiner, K; Bowersox, J

    1999-11-01

    Purines play essential roles in many cellular functions, including DNA replication, transcription, intra- and extra-cellular signaling, energy metabolism, and as coenzymes for many biochemical reactions. The de-novo synthesis of purines requires 10 enzymatic steps for the production of inosine monophosphate (IMP). Defects in purine metabolism are associated with human diseases. Further, many anticancer agents function as inhibitors of the de-novo biosynthetic pathway. Genes or cDNAs for most of the enzymes comprising this pathway have been isolated from humans or other mammals. One notable exception is the phosphoribosylformylglycineamide amidotransferase (FGARAT) gene, which encodes the fourth step of this pathway. This gene has been cloned from numerous microorganisms and from Drosophila melanogaster and C. elegans. We report here the identification of a human cDNA containing the coding region of the FGARAT mRNA and the isolation of a P1 clone that contains an intact human FGARAT gene. The P1 clone corrects the purine auxotrophy and protein deficiency of Chinese hamster ovary (CHO) cell mutants (AdeB) deficient in both the activity and the protein for FGARAT. The P1 clone was used to regionally map the FGARAT gene to chromosome region 17p13, a location consistent with our prior assignment of this gene to chromosome 17. A comparison of the DNA sequence of the human FGARAT and FGARAT DNA sequence from 17 other organisms is reported. The isolation of this gene means that DNA clones for all the 10 steps of IMP synthesis have been isolated from humans or other mammals. PMID:10548741

  15. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge

    PubMed Central

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag+ treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge. PMID:27605932

  16. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge.

    PubMed

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag(+) treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge. PMID:27605932

  17. Comparative study of two thioredoxins from common cutworm (Spodoptera litura): cloning, expression, and functional characterization.

    PubMed

    Kang, Tinghao; Wan, Hu; Zhang, Yashu; Shakeel, Muhammad; Lu, Yanhui; You, Hong; Lee, Kwang Sik; Jin, Byung Rae; Li, Jianhong

    2015-04-01

    Thioredoxins (Trxs) are a ubiquitous family of antioxidant enzymes that are involved in protecting organisms against various oxidative stresses. Here, we cloned and characterized two thioredoxins, named SlTrx1 and SlTrx2, from the common cutworm Spodoptera litura. SlTrx1 and SlTrx2, respectively, consist of 988 and 606 bp full-length cDNA with 318 and 447 bp open reading frames encoding 106 and 149 amino acid residues. Furthermore, the N-terminal region of SlTrx2 contains a predicted mitochondrial localization signal (33 amino acids). A phylogenetic relationship analysis revealed that SlTrx1 is in the cytosolic thioredoxin Trx1 cluster, whereas SlTrx2 is in the mitochondrial thioredoxin Trx2 cluster. Recombinant SlTrx1 (14 kDa) and SlTrx2 (16 kDa), expressed in baculovirus-infected insect Sf9 cells, demonstrated insulin disulfide reductase activity at the same optimum temperature and pH value of 35 °C and 7.0, respectively, in vitro. During S. litura development, we found that SlTrx1 and SlTrx2 had similar transcript expression patterns and were constitutively expressed in the epidermis, fat body, and midgut, with the highest expression occurring in the sixth-instar larval stage in the epidermis and midgut. In addition, both SlTrx1 and SlTrx2 mRNA were up-regulated in S. litura after injection with H2O2, cumene hydroperoxide, indoxacarb, and metaflumizone. These results suggest that SlTrx1 and SlTrx2 function as potent antioxidant enzymes, and provide a molecular basis for the roles SlTrx1 and SlTrx2 during development and the oxidative stress response of S. litura. PMID:25542738

  18. Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function.

    PubMed

    Grammer, T C; Liu, K J; Mariani, F V; Harland, R M

    2000-12-15

    We have conducted an expression cloning screen of approximately 50, 000 cDNAs from a tadpole stage Xenopus laevis cDNA library to functionally identify genes affecting a wide range of cellular and developmental processes. Fifty-seven cDNAs were isolated for their ability to alter gross tadpole morphology or the expression patterns of tissue-specific markers. Thirty-seven of the cDNAs have not been previously described for Xenopus, and 15 of these show little or no similarity to sequences in the NCBI database. The screen and the identified genes are presented in this paper to demonstrate the power, ease, speed, and flexibility of expression cloning in the X. laevis embryo. Future screens such as this one can be done on a larger scale and will complement the sequence-based screens and genome-sequencing projects which are producing a large body of novel genes without ascribed functions. PMID:11112324

  19. CLONING AND CHARACTERIZATION OF THE 'CL' REPRESSOR OF 'PSEUDOMONAS AERUGINOSA' BACTERIOPHAGE D3: A FUNCTIONAL ANALOG OF PHAGE LAMBDA 'C'I PROTEIN

    EPA Science Inventory

    The authors cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction ...

  20. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning

    SciTech Connect

    Sberro, Hila; Leavitt, Azita; Kiro, Ruth; Koh, Eugene; Peleg, Yoav; Qimron, Udi; Sorek, Rotem

    2013-04-01

    Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using over 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an 'anti-defense' protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.

  1. Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin.

    PubMed

    Klarquist, Jared; Eby, Jonathan M; Henning, Steven W; Li, Mingli; Wainwright, Derek A; Westerhof, Wiete; Luiten, Rosalie M; Nishimura, Michael I; Le Poole, I Caroline

    2016-05-01

    We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited dilution cloning, amplified cells were subjected to reverse transcription and 5' RACE to identify the variable TCRα and TCRβ subunit sequences. The full-length sequence was cloned into a retroviral vector separating both subunits by a P2A slippage sequence and introduced into Jurkat cells and primary T cells. Cytokine secreted by transduced cells in response to cognate peptide and gp100-expressing targets signifies that we have successfully cloned a gp100-reactive T-cell receptor from actively depigmenting skin. PMID:26824221

  2. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning. PMID:16180113

  3. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  4. Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.

    PubMed

    Zhao, C Z; Li, Y H; Dong, H T; Geng, M M; Liu, W H; Li, F; Ni, Z F; Wang, X J; Xie, C J; Sun, Q X

    2016-01-01

    Powdery mildew (Pm) is one of the most harmful diseases in wheat. Three Pm-resistance genes, Pm3, Pm21, and Pm8, have been cloned but most Pm3/Pm8 alleles have lost their resistance to Pm in hexaploid wheat. In this study, a new Pm3 homolog gene (TmPm3) was isolated from Triticum monococcum L. using a homology-based cloning strategy, being the first report of a functional Pm3 homolog gene from a diploid wheat species. The transient expression of TmPm3 in leaf epidermal cells showed that over-expressed TmPm3 could significantly inhibit the penetration of Blumeria graminis f. sp tritici conidia spores and the formation of haustoria. Sequence analysis of Pm3 alleles shed new light on the evolution of Pm3 genes, providing a better understanding of the molecular basis of disease resistance. This study also suggested that homology-based cloning of resistance genes is a feasible method for the isolation of functional resistance genes from wheat germplasm. PMID:27173250

  5. Specific Schistosoma mansoni rat T cell clones. I. Generation and functional analysis in vitro and in vivo.

    PubMed

    Pestel, J; Dissous, C; Dessaint, J P; Louis, J; Engers, H; Capron, A

    1985-06-01

    In an attempt to determine the role of schistosome-specific T cells in the immune mechanisms developed during schistosomiasis, Schistosoma mansoni-specific T cells and clones were generated in vitro and some of their functions analyzed in vitro and in vivo in the fischer rat model. The data presented here can be summarized as follows: a) Lymph node cells (LNC) from rats primed with the excretory/secretory antigens-incubation products (IPSm) of adult worms proliferate in vitro only in response to the homologous schistosome antigens and not to unrelated antigens (Ag) such as ovalbumin (OVA) or Dipetalonema viteae and Fasciola hepatica parasite extracts. b) After in vitro restimulation of the primed LNC population with IPSm in the presence of antigen-presenting cells (APC) and maintenance in IL 2-containing medium, the frequency of IPSm-specific T cells is increased and the T cells can be restimulated only in the presence of APC possessing the same major histocompatibility complex (MHC) antigens. c) Following appropriate limiting dilution assays (LDA) (1 cell/well), 10 IPSm-specific T cell clones were obtained, and two of four maintained in culture were tested for their helper activity because they expressed only the W3/13+ W3/25+ surface phenotypes. d) The two highly proliferating IPSm-specific T cell clones (G5 and E23) exhibit an IPSm-dependent helper activity, as shown by the increase in IgG production by IPSm-primed B cells. e) IPSm-T cell clone (G5) as well as IPSm-T cell lines when injected in S. mansoni-infested rats can exert an in vivo helper activity, which is characterized by an accelerated production of IgG antibodies specific for the previously identified 30 to 40 kilodaltons (kd) schistosomula surface antigens (Ag). As recent studies have demonstrated that rat monoclonal antibodies recognize some incubation products of adult S. mansoni as well as one of the 30 to 40 kd schistosomula surface antigens, and taking into account the fact that the T cell

  6. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows

    PubMed Central

    Lu, Dan; Liu, Shen; Ding, Fangrong; Wang, Haiping; Li, Jing; Li, Ling; Dai, Yunping; Li, Ning

    2016-01-01

    Human lysozyme is an important natural non-specific immune protein that is highly expressed in breast milk and participates in the immune response of infants against bacterial and viral infections. Considering the medicinal value and market demand for human lysozyme, an animal model for large-scale production of recombinant human lysozyme (rhLZ) is needed. In this study, we generated transgenic cloned cows with the marker-free vector pBAC-hLF-hLZ, which was shown to efficiently express rhLZ in cow milk. Seven transgenic cloned cows, identified by polymerase chain reaction, Southern blot, and western blot analyses, produced rhLZ in milk at concentrations of up to 3149.19 ± 24.80 mg/L. The purified rhLZ had a similar molecular weight and enzymatic activity as wild-type human lysozyme possessed the same C-terminal and N-terminal amino acid sequences. The preliminary results from the milk yield and milk compositions from a naturally lactating transgenic cloned cow 0906 were also tested. These results provide a solid foundation for the large-scale production of rhLZ in the future. PMID:26961596

  7. Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes.

    PubMed

    Yamauchi, M; Yamauchi, N; Meuth, M

    1990-07-01

    Successive rounds of chromosome-mediated gene transfer were used to complement a hamster cytidine auxotroph deficient in CTP synthetase activity and eventually to clone human genomic and cDNA fragments coding for the structural gene. Our approach was to isolate human Alu+ fragments from a tertiary transfectant and to utilize these fragments to screen a panel of primary transfectants. In this manner two DNA fragments, both mapping within the structural gene, were identified and used to clone a partial length cDNA. The remaining portion of the open reading frame was obtained through the RACE polymerase chain reaction technique. The open reading frame encodes 591 amino acids having a striking degree of similarity to the Escherichia coli structural gene (48% identical amino acids with 76% overall similarity including conservative substitutions) with the glutamine amide transfer domain being particularly conserved. As regulatory mutations of CTP synthetase confer both multi-drug resistance to agents widely used in cancer chemotherapy and a mutator phenotype, the cloning of the structural gene will be important in assessing the relevance of such phenotypes to the development of cellular drug resistance. PMID:2113467

  8. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows.

    PubMed

    Lu, Dan; Liu, Shen; Ding, Fangrong; Wang, Haiping; Li, Jing; Li, Ling; Dai, Yunping; Li, Ning

    2016-01-01

    Human lysozyme is an important natural non-specific immune protein that is highly expressed in breast milk and participates in the immune response of infants against bacterial and viral infections. Considering the medicinal value and market demand for human lysozyme, an animal model for large-scale production of recombinant human lysozyme (rhLZ) is needed. In this study, we generated transgenic cloned cows with the marker-free vector pBAC-hLF-hLZ, which was shown to efficiently express rhLZ in cow milk. Seven transgenic cloned cows, identified by polymerase chain reaction, Southern blot, and western blot analyses, produced rhLZ in milk at concentrations of up to 3149.19 ± 24.80 mg/L. The purified rhLZ had a similar molecular weight and enzymatic activity as wild-type human lysozyme possessed the same C-terminal and N-terminal amino acid sequences. The preliminary results from the milk yield and milk compositions from a naturally lactating transgenic cloned cow 0906 were also tested. These results provide a solid foundation for the large-scale production of rhLZ in the future. PMID:26961596

  9. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli

    SciTech Connect

    Kusano, Tomonobu Akita Prefectural College of Agriculture ); Ji, Guangyong; Silver, S. ); Inoue, Chihiro )

    1990-05-01

    Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of {sup 203}Hg{sup 2+}. (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disrupted cells. The Thiobacillus merC transport function was compared with transport via the merT-merP system of plasmid pDU1358. Both systems, cloned and expressed in E. coli, governed enhanced uptake of {sup 203}Hg{sup 2+} in a temperature- and concentration-dependent fashion. Uptake via MerT-MerP was greater and conferred greater hypersensitivity to Hg{sup 2+} than did uptake with MerC. Mercury uptake was inhibited by N-ethylmaleimide but not by EDTA. Ag{sup +} salts inhibited mercury uptake by the MerT-MerP system but did not inhibit uptake via MerC. Radioactive mercury accumulated by the MerT-MerP and by the MerC systems was exchangeable with nonradioactive Hg{sup 2+}.

  10. Cloning and functional characterization of endo-β-1,4-glucanase gene from metagenomic library of vermicompost.

    PubMed

    Yasir, Muhammad; Khan, Haji; Azam, Syed Sikander; Telke, Amar; Kim, Seon Won; Chung, Young Ryun

    2013-06-01

    In the vermicomposting of paper mill sludge, the activity of earthworms is very dependent on dietetic polysaccharides including cellulose as energy sources. Most of these polymers are degraded by the host microbiota and considered potentially important source for cellulolytic enzymes. In the present study, a metagenomic library was constructed from vermicompost (VC) prepared with paper mill sludge and dairy sludge (fresh sludge, FS) and functionally screened for cellulolytic activities. Eighteen cellulase expressing clones were isolated from about 89,000 fosmid clones libraries. A short fragment library was constructed from the most active positive clone (cMGL504) and one open reading frame (ORF) of 1,092 bp encoding an endo-β-1,4-glucanase was indentified which showed 88% similarity with Cellvibrio mixtus cellulase A gene. The endo-β-1,4-glucanase cmgl504 gene was overexpressed in Escherichia coli. The purified recombinant cmgl504 cellulase displayed activities at a broad range of temperature (25-55°C) and pH (5.5-8.5). The enzyme degraded carboxymethyl cellulose (CMC) with 15.4 U, while having low activity against avicel. No detectable activity was found for xylan and laminarin. The enzyme activity was stimulated by potassium chloride. The deduced protein and three-dimensional structure of metagenome-derived cellulase cmgl504 possessed all features, including general architecture, signature motifs, and N-terminal signal peptide, followed by the catalytic domain of cellulase belonging to glycosyl hydrolase family 5 (GHF5). The cellulases cloned in this work may play important roles in the degradation of celluloses in vermicomposting process and could be exploited for industrial application in future. PMID:23812813

  11. Cloning and functional characterization of Δ6 fatty acid desaturase (FADS2) in Eurasian perch (Perca fluviatilis).

    PubMed

    Geay, F; Tinti, E; Mellery, J; Michaux, C; Larondelle, Y; Perpète, E; Kestemont, P

    2016-01-01

    The Eurasian perch (Perca fluviatilis) is a freshwater carnivorous species of high interest to diversify inland aquaculture. However, little is known about its ability to bioconvert polyunsaturated fatty acids (PUFAs) from plant oils into long chain polyunsaturated fatty acids (LC-PUFAs). In this study, special attention has been given to the fatty acid desaturase 2 (FADS2) which is commonly described to be a rate-limiting enzyme of the LC-PUFA biosynthesis. This work reports on the cloning, tissue expression and functional characterization of the Eurasian perch fads2, but also on the cloning of two alternative splicing transcripts named fads2-AS1 and fads2-AS2. The fads2 cDNA cloned is composed of an open reading frame (ORF) of 1338 nucleotides (nt) and encodes a protein of 445 amino acids. This deduced amino acid sequence displays the typical structure of microsomal FADS2 including two transmembrane domains and an N-terminal cytochrome b5 domain with the "HPGG" motif. Quantitative real-time PCR assay of fads2, fads2-AS1 and fads2-AS2 expressions revealed that the fads2 transcript was mainly expressed in the liver and intestine and exhibited a typical gene expression pattern of freshwater species while fads2-AS1 and fads2-AS2 genes were highly expressed in the brain, followed by the liver and intestine. Functional characterization of Eurasian perch FADS2 in transgenic yeast showed a fully functional Δ6 desaturation activity toward C18 PUFA substrates, without residual Δ5 and Δ8 desaturase activities. PMID:26478265

  12. Cloning and functional characterization of the bile acid-sensitive methotrexate carrier from rat liver cells.

    PubMed

    Honscha, W; Dötsch, K U; Thomsen, N; Petzinger, E

    2000-06-01

    We have cloned two complementary DNAs (cDNAs), RL-Mtx-1 and RL-Mtx-2, corresponding to the bile acid- sensitive methotrexate carrier from rat liver by direct full-length rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) using degenerated primers that were deduced from published sequences of tumor cell methotrexate transporters. When expressed in Xenopus laevis oocytes and cosM6 cells, both clones mediate methotrexate and bumetanide transport. RL-Mtx-1 consists of 2,445 bp with an open reading frame of 1,536 bp. The corresponding protein with 512 amino acids has a molecular weight of 58 kd. RL-Mtx-2 (2,654 bp) differs by an additional insert of 203 bp. This insert is located in frame at position 1,196 of the RL-Mtx-1 and contains the typical splice junction sites at the 5' and 3' end, indicating that the RL-Mtx-2 messenger RNA (mRNA) is generated by alternative splicing. The insert contains a stop codon that shortens the RL-Mtx-2 protein to 330 amino acids (38 kd). Both cDNAs contain the binding site sequence for the dioxin/nuclear translocator responsive element (Ah/Arnt-receptor) in conjunction with a barbiturate recognition sequence (Barbie box). Preliminary results show that the Barbie box acts as a negative regulatory element. The two liver cDNA clones show homologies to the published sequences of folate and the reduced folate carriers, but no homology is found to the transport systems for organic anions like the Ntcp1, oatp1, OAT-K1, and OAT1. Expression of the mRNA for the methotrexate carrier is found in liver, kidney, heart, brain, spleen, lung, and skeletal muscle, but not in the testis as revealed by Northern blot analysis. The highest abundance of the mRNA is found in the kidney. PMID:10827155

  13. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster

    SciTech Connect

    Sekelsky, J.J.; Newfeld, S.J.; Raftery, L.A.; Chartoff, E.H.; Gelbart, W.M.

    1995-03-01

    The decapentaplegic (dpp) gene of Drosophila melanogaster encodes a growth factor that belongs to the transforming growth factor-{beta} (TGF-{beta}) superfamily and that plays a central role in multiple cell-cell signaling events throughout development. Through genetic screens we are seeking to identify other functions that act upstream, downstream or in concert with dpp to mediate its signaling role. We report the genetic characterization and cloning of Mothers against dpp (Mad), a gene identified in two such screens. Mad loss-of-function mutations interact with dpp alleles to enhance embryonic dorsal-ventral patterning defects, as well as adult appendage defects, suggesting a role for Mad in mediating some aspect of dpp function. In support of this, homozygous Mad mutant animals exhibit defects in midgut morphogenesis, imaginal disk development and embryonic dorsal-ventral patterning that are very reminiscent of dpp mutant phenotypes. We cloned the Mad region and identified the Mad transcription unit through germline transformation rescue. We sequenced a Mad cDNA and identified three Mad point mutations that alter the coding information. The predicted MAD polypeptide lacks known protein motifs, but has strong sequence similarity to three polypeptides predicted from genomic sequence from the nematode Caenorhabiditis elegans. Hence, MAD is a member of a novel, highly conserved protein family. 60 refs., 8 figs., 3 tabs.

  14. Molecular cloning and functional expression of a brain-specific somatostatin receptor.

    PubMed Central

    Bruno, J F; Xu, Y; Song, J; Berelowitz, M

    1992-01-01

    The PCR and conventional library screening were used to clone the brain-specific somatostatin receptor rSSTR-4 from a rat genomic library. The deduced amino acid sequence encodes a protein of 384 amino acids and displays structural and sequence homologies with members of the G protein-receptor superfamily. The amino acid sequence of rSSTR-4 is 60% and 48% identical to that of somatostatin receptors SSTR-1 and SSTR-2, respectively, two recently cloned subtypes. Competition curve analysis of the binding properties of the receptor transiently expressed in COS-1 cells revealed a higher apparent affinity for somatostatin 14 than for somatostatin 28. In contrast, the somatostatin analogs SMS 201-995, IM 4-28, and MK-678 failed to displace specific binding in transfected cells. These characteristics resemble the pharmacological binding properties of the previously described brain-specific somatostatin-receptor subtype. Examination of the tissue distribution of mRNA for rSSTR-4 revealed expression limited to various brain regions with highest levels in the cortex and hippocampus. Thus, based on the pharmacology and tissue localization of this receptor, we conclude that rSSTR-4 represents a brain-specific somatostatin receptor. Images PMID:1360663

  15. Cloning, expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene

    PubMed Central

    Cheng, Yuqiang; Sun, Yingjie; Wang, Hengan; Shi, Shuduan; Yan, Yaxian; Li, Jing

    2015-01-01

    Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In the present study, the first TLR5 gene in duck was cloned. The open reading frame (ORF) of duck TLR5 (dTLR5) cDNA is 2580 bp and encodes a polypeptide of 859 amino acids. We also cloned partial sequences of myeloid differentiation factor 88, 2'-5'-oligoadenylate synthetase (OAS), and myxovirus resistance (Mx) genes from duck. dTLR5 mRNA was highly expressed in the bursa of Fabricius, spleen, trachea, lung, jejunum, rectum, and skin; moderately expressed in the muscular and glandular tissues, duodenum, ileum, caecum, and pancreas; and minimally expressed in the heart, liver, kidney, and muscle. DF-1 or HeLa cells transfected with DNA constructs encoding dTLR5 can activate NF-κB leading to the activation of interleukin-6 (IL-6) promoter. When we challenged ducks with a Herts33 Newcastle disease virus (NDV), mRNA transcription of the antiviral molecules Mx, Double stranded RNA activated protein kinase (PKR), and OAS was up-regulated in the liver, lung, and spleen 1 and 2 days post-inoculation. PMID:25269719

  16. Functional polymorphism of each of the two HLA-DR beta chain loci demonstrated with antigen-specific DR3- and DRw52-restricted T cell clones

    PubMed Central

    1988-01-01

    HLA-DR3- and HLA-DRw52-associated functional polymorphism was investigated with selected tetanus toxoid (TT)-specific T cell clones. We have shown earlier that HLA-DR antigens are encoded by two distinct loci, DR beta I and DR beta III. The alloantigenic determinant(s) defined by the serological HLA-DR3 specificity map to the former, while the supratypic HLA-DRw52 determinants map to DR beta III. Furthermore, we have recently recognized by DNA sequencing three alleles of HLA- DRw52 at locus DR beta III, referred to as 52 a, b, and c. Our objective was to correlate the pattern of T cell restriction with the gene products of individual DR beta chain loci and with the three newly described alleles of locus DR beta III. Among the selected T cell clones, 5 reacted exclusively when TT was presented by HLA-DR3+ APCs (TT-DR3-APC). In contrast, two T cell clones were stimulated by TT- DRw52-APC. More specifically, these two T cell clones (Clones 10 and 16) were stimulated by different subsets of TT-DRw52-APC. Clone 16 responded to some DR3 and TT-DRw6-APC, while clone 10 was stimulated by other TT-DR3 and TT-DRw6, and all TT-DR5-APC. This same pattern of DRw52 restriction was found in panel, as well as in family studies. Because this suggested a correlation with the pattern of DRw52 polymorphism observed earlier by DNA sequencing and oligonucleotide hybridization, the APC used in these experiments were typed for the 52 a, b, and c alleles of locus DR beta III by allele-specific oligonucleotide probes. This distribution overlapped exactly with the stimulation pattern defined by the T cell clones. Clone 16 responded to TT-52a-APC, clone 10 to TT-52b-APC, and both clones to a TT-52c-APC. The response of the T cell clones was inhibited differentially by mAbs to DR. Raising TT concentration, or increasing HLA-class II expression with INF-gamma both affected the magnitude of response of the TT- specific clones but did not modify their specificities. These results demonstrate that

  17. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors.

    PubMed

    Hussy, N; Lukas, W; Jones, K A

    1994-12-01

    1. A comparative study of the whole-cell and single-channel properties of cloned and native mouse 5-hydroxytryptamine ionotropic receptors (5-HT3) was undertaken using mammalian cell lines expressing the cloned 5-HT3 receptor subunit A (5-HT3R-A), superior cervical ganglia (SCG) neurones and N1E-115 cells. 2. No pharmacological difference was found in the sensitivity to the agonists 5-HT and 2-methyl-5-HT, or to the antagonists d-tubocurare and 3-tropanyl-3,5-dichlorobenzoate (MDL-72222). 3. Current-voltage (I-V) relationships of whole-cell currents showed inward rectification in the three preparations. Rectification was stronger both in cells expressing the 5-HT3R-A subunit and in N1E-115 cells when compared with SCG neurones. 4. No clear openings could be resolved in 5-HT-activated currents in patches excised from cells expressing the 5-HT3R-A subunit or N1E-115 cells. Current fluctuation analysis of whole-cell and excised-patch records revealed a slope conductance of 0.4-0.6 pS in both preparations. Current-voltage relationships of these channels showed strong rectification that fully accounted for the whole-cell voltage dependence. 5. In contrast, single channels of about 10 pS were activated by 5-HT in patches excised from SCG neurones. The weak voltage dependence of their conductance did not account completely for the rectification of whole-cell currents. A lower unitary conductance (3.4 pS) was inferred from whole-cell noise analysis. 6. We conclude that the receptor expressed from the cloned cDNA is indistinguishable from the 5-HT3 receptor of N1E-115 cells, suggesting an identical structure for these two receptors. The higher conductance and different voltage dependence of the 5-HT3 receptor in SCG neurones might indicate the participation of an additional subunit in the structure of native ganglionic 5-HT3 receptors. Homo-oligomeric 5-HT3R-A channels may also be present as suggested by the lower conductance estimated by whole-cell noise analysis. PMID

  18. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    SciTech Connect

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a K{sub m} value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a K{sub m} value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter.

  19. Molecular cloning, tissue distribution, and functional analysis of porcine Akirin2.

    PubMed

    Chen, Xiaoling; Huang, Zhiqing; Jia, Gang; Wu, Xiuqun; Wu, Caimei

    2012-04-01

    Akirin2 is a recently discovered gene that is involved in innate immune response. In this study, the porcine Akirin2 gene was cloned. The full-length coding sequence (CDS) of porcine Akirin2 consists of 612 bp and encodes 203 amino acids with a molecular mass of 22493 kD. The homology tree analysis showed that the pig Akirin2 has closer genetic relationships and distance with the known mammalian Akirin2. Real time quantitative PCR analysis showed that the porcine Akirin2 transcript was most abundant in the lung, followed by the skeletal muscle, heart, liver, fat, thymus, lymph node, small intestine, kidney, and spleen. Overexpression of porcine Akirin2 increased expression of IL-6 in porcine jejunal epithelial cell line IPEC-J2 cells. Our data suggest that porcine Akirin2 could play an important role in intestinal immune regulation. PMID:22537061

  20. Functionally Cloned pdrM from Streptococcus pneumoniae Encodes a Na+ Coupled Multidrug Efflux Pump

    PubMed Central

    Hashimoto, Kohei; Ogawa, Wakano; Nishioka, Toshihiro; Tsuchiya, Tomofusa; Kuroda, Teruo

    2013-01-01

    Multidrug efflux pumps play an important role as a self-defense system in bacteria. Bacterial multidrug efflux pumps are classified into five families based on structure and coupling energy: resistance−nodulation−cell division (RND), small multidrug resistance (SMR), major facilitator (MF), ATP binding cassette (ABC), and multidrug and toxic compounds extrusion (MATE). We cloned a gene encoding a MATE-type multidrug efflux pump from Streptococcus pneumoniae R6, and designated it pdrM. PdrM showed sequence similarity with NorM from Vibrio parahaemolyticus, YdhE from Escherichia coli, and other bacterial MATE-type multidrug efflux pumps. Heterologous expression of PdrM let to elevated resistance to several antibacterial agents, norfloxacin, acriflavine, and 4′,6-diamidino-2-phenylindole (DAPI) in E. coli KAM32 cells. PdrM effluxes acriflavine and DAPI in a Na+- or Li+-dependent manner. Moreover, Na+ efflux via PdrM was observed when acriflavine was added to Na+-loaded cells expressing pdrM. Therefore, we conclude that PdrM is a Na+/drug antiporter in S. pneumoniae. In addition to pdrM, we found another two genes, spr1756 and spr1877,that met the criteria of MATE-type by searching the S. pneumoniae genome database. However, cloned spr1756 and spr1877 did not elevate the MIC of any of the investigated drugs. mRNA expression of spr1756, spr1877, and pdrM was detected in S. pneumoniae R6 under laboratory growth conditions. Therefore, spr1756 and spr1877 are supposed to play physiological roles in this growth condition, but they may be unrelated to drug resistance. PMID:23555691

  1. Molecular cloning and functional characterization of a rainbow trout liver Oatp.

    PubMed

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772bp containing a 2115bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9μM and 13.4μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. PMID:25218291

  2. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    PubMed Central

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-01-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrains fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologs OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. PMID:25218291

  3. A Novel Hyaluronidase from Brown Spider (Loxosceles intermedia) Venom (Dietrich's Hyaluronidase): From Cloning to Functional Characterization

    PubMed Central

    Ferrer, Valéria Pereira; de Mari, Thiago Lopes; Gremski, Luiza Helena; Trevisan Silva, Dilza; da Silveira, Rafael Bertoni; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Nader, Helena Bonciani; Veiga, Silvio Sanches

    2013-01-01

    Loxoscelism is the designation given to clinical symptoms evoked by Loxosceles spider's bites. Clinical manifestations include skin necrosis with gravitational spreading and systemic disturbs. The venom contains several enzymatic toxins. Herein, we describe the cloning, expression, refolding and biological evaluation of a novel brown spider protein characterized as a hyaluronidase. Employing a venom gland cDNA library, we cloned a hyaluronidase (1200 bp cDNA) that encodes for a signal peptide and a mature protein. Amino acid alignment revealed a structural relationship with members of hyaluronidase family, such as scorpion and snake species. Recombinant hyaluronidase was expressed as N-terminal His-tag fusion protein (∼45 kDa) in inclusion bodies and activity was achieved using refolding. Immunoblot analysis showed that antibodies that recognize the recombinant protein cross-reacted with hyaluronidase from whole venom as well as an anti-venom serum reacted with recombinant protein. Recombinant hyaluronidase was able to degrade purified hyaluronic acid (HA) and chondroitin sulfate (CS), while dermatan sulfate (DS) and heparan sulfate (HS) were not affected. Zymograph experiments resulted in ∼45 kDa lytic zones in hyaluronic acid (HA) and chondroitin sulfate (CS) substrates. Through in vivo experiments of dermonecrosis using rabbit skin, the recombinant hyaluronidase was shown to increase the dermonecrotic effect produced by recombinant dermonecrotic toxin from L. intermedia venom (LiRecDT1). These data support the hypothesis that hyaluronidase is a “spreading factor”. Recombinant hyaluronidase provides a useful tool for biotechnological ends. We propose the name Dietrich's Hyaluronidase for this enzyme, in honor of Professor Carl Peter von Dietrich, who dedicated his life to studying proteoglycans and glycosaminoglycans. PMID:23658852

  4. [Cloning and functional analysis of the stable plasmid pBMB175 in Bacillus thuringiensis subsp. tenebrionis strains YBT-1765].

    PubMed

    Han, Dong-Mei; Huang, Jun-Yan; Yu, Zi-Niu; Sun, Ming

    2005-12-01

    A 15.2 kb plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis strains YBT-1765 was cloned and the restriction map was constructed. The mini-replicating region of pBMB175 was located in a 1151 bp fragment by functional analysis. The sequence of a 4152 bp fragment which contained the mini-replicating region was analyzed and results showed that the fragment had three potential open reading frames (ORF1, ORF2 and ORF3). Sequence comparison and homology search revealed that ORF1 (767AA) has 20% approximately 30% similarity to UvrD-helicase, RecD and RecB family proteins; no homology was found between ORF2 (149AA) and other known proteins; ORF3 shared 34% identification to a potential protein (ORF7) in pGI3. Deletion and sequence analysis presumed that the protein encoded by ORF2 maybe a new replication protein. Above all, pBMB175 likely belongs to a new plasmid family with a new replicon. The recombinant plasmid harboring the mini-replicating region is very stable, even after growth for more than 40 generations without selection, so it might be used as a cloning and expression vector. PMID:16496686

  5. Why Clone?

    MedlinePlus

    ... How might cloning be used in medicine? Cloning animal models of disease Much of what researchers learn about human disease comes from studying animal models such as mice. Often, animal models are ...

  6. Cloning and functional characterization of the Lymantria dispar initiator caspase dronc.

    PubMed

    Kitaguchi, Koji; Hamajima, Rina; Yamada, Hayato; Kobayashi, Michihiro; Ikeda, Motoko

    2013-06-28

    Ld652Y cells from the gypsy moth, Lymantria dispar, are extremely sensitive to various apoptotic stimuli, whereas BM-N cells from the silkworm, Bombyx mori, are relatively resistant to apoptotic stimuli. We previously cloned and characterized a B. mori homologue (bm-dronc) of Drosophila melanogaster dronc. In the present study, we cloned and characterized an L. dispar homologue of dronc (ld-dronc) comparatively with Bm-Dronc. The open reading frame of ld-dronc consisted of 1329bp that was predicted to encode a 443 amino-acid polypeptide with a molecular mass of 50,706Da and 54-57% amino acid sequence identity with Dronc homologues from other lepidopteran insects identified to date. Ld-Dronc had a long prodomain, large p20 domain, and small p10 domain, and a catalytic site composed of (308)QTCRG(312), which was distinct from the sites QACRG in Bm-Dronc and QMCRG in Dronc homologues of several other lepidopteran insects. Transiently expressed Ld-Dronc underwent proteolytic processing in the lepidopteran cell lines L. dispar Ld652Y, Spodoptera frugiperda Sf9, and B. mori BM-N, and dipteran D. melanogaster S2, but only triggered apoptosis in the lepidopteran cell lines. Endogenous Ld-Dronc underwent processing in Ld652Y cells upon infection with vAcΔp35, but not in mock-infected Ld652Y cells, supporting the involvement of Ld-Dronc in apoptosis induction. In vAcΔp35-infected apoptotic cells, Ld-Dronc underwent proteolytic processing more rapidly and extensively than Bm-Dronc. Similar results were obtained for Ld-Dronc and Bm-Dronc expressed transiently in S2, Ld652Y, Sf9, and BM-N cells. Taken together, these findings suggest that the intrinsic properties of Dronc proteinsare responsible, at least in part, for the differing sensitivity of Ld652Y and BM-N to apoptosis induction upon NPV infection. PMID:23743202

  7. Cloning and functional validation of early inducible Magnaporthe oryzae responsive CYP76M7 promoter from rice

    PubMed Central

    Vijayan, Joshitha; Devanna, B. N.; Singh, Nagendra K.; Sharma, Tilak R.

    2015-01-01

    Cloning and functional characterization of plant pathogen inducible promoters is of great significance for their use in the effective management of plant diseases. The rice gene CYP76M7 was up regulated at 24, 48, and 72 hours post inoculation (hpi) with two isolates of Magnaporthe oryzae Mo-ei-11 and Mo-ni-25. In this study, the promoter of CYP76M7 gene was cloned from rice cultivar HR-12, characterized and functionally validated. The Transcription Start Site of CYP76M7 was mapped at 45 bases upstream of the initiation codon. To functionally validate the promoter, 5′ deletion analysis of the promoter sequences was performed and the deletion fragments fused with the β-glucuronidase (GUS) reporter gene were used for generating stable transgenic Arabidopsis plants as well as for transient expression in rice. The spatial and temporal expression pattern of GUS in transgenic Arabidopsis plants and also in transiently expressed rice leaves revealed that the promoter of CYP76M7 gene was induced by M. oryzae. The induction of CYP76M7 promoter was observed at 24 hpi with M. oryzae. We report that, sequences spanning -222 bp to -520 bp, with the cluster of three W-boxes, two ASF1 motifs and a single GT-1 element may contribute to the M. oryzae inducible nature of CYP76M7 promoter. The promoter characterized in this study would be an ideal candidate for the overexpression of defense genes in rice for developing durable blast resistance rice lines. PMID:26052337

  8. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.

    PubMed

    Matsuda, L A; Lolait, S J; Brownstein, M J; Young, A C; Bonner, T I

    1990-08-01

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. PMID:2165569

  9. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    PubMed Central

    Jiang, Hongbo; Wei, Zhaojun; Nachman, Ronald J.; Park, Yoonseong

    2013-01-01

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested its ligand specificities in a heterologous reporter system. HzDHr was expressed in Chinese Hamster Ovary (CHO) cells, which were co-transfected with the aequorin reporter, and was used to measure the ligand activities. A total of 68 chemicals, including natural DH analogs and structurally similar peptide mimetics, were tested for agonistic and antagonistic activities. Several peptide mimetics with a 2-amino-7-bromofluorene-succinoyl (2Abf-Suc) N-terminal modification showed strong agonistic activities; these mimetics included 2Abf-Suc-F[dA]PRLamide, 2Abf-Suc-F[dR]PRLamide, 2Abf-Suc-FKPRLamide and 2Abf-Suc-FGPRLamide. Antagonistic activity was found in the ecdysis triggering hormone in Drosophila melanogaster (FFLKITKNVPRLamide). Interestingly, HzDHr does not discriminate between DH (WFGPRLamide C-terminal motif) and another closely related endogenous peptide, pyrokinin 1 (FXPRXamide; a C-terminal motif that is separate from WFGPRLamide). We provide large-scale in vitro data that serve as a reference for the development of agonists and antagonists to disrupt the DH signaling pathway. PMID:24257143

  10. Cloning and functional analysis of 5'-upstream region of the Pokemon gene.

    PubMed

    Yang, Yutao; Zhou, Xiaowei; Zhu, Xudong; Zhang, Chuanfu; Yang, Zhixin; Xu, Long; Huang, Peitang

    2008-04-01

    Pokemon, the POK erythroid myeloid ontogenic factor, not only regulates the expression of many genes, but also plays an important role in cell tumorigenesis. To investigate the molecular mechanism regulating expression of the Pokemon gene in humans, its 5'-upstream region was cloned and analyzed. Transient analysis revealed that the Pokemon promoter is constitutive. Deletion analysis and a DNA decoy assay indicated that the NEG-U and NEG-D elements were involved in negative regulation of the Pokemon promoter, whereas the POS-D element was mainly responsible for its strong activity. Electrophoretic mobility shift assays suggested that the NEG-U, NEG-D and POS-D elements were specifically bound by the nuclear extract from A549 cells in vitro. Mutation analysis demonstrated that cooperation of the NEG-U and NEG-D elements led to negative regulation of the Pokemon promoter. Moreover, the NEG-U and NEG-D elements needed to be an appropriate distance apart in the Pokemon promoter in order to cooperate. Taken together, our results elucidate the mechanism underlying the regulation of Pokemon gene transcription, and also define a novel regulatory sequence that may be used to decrease expression of the Pokemon gene in cancer gene therapy. PMID:18355317

  11. Cloning and functional analysis of promoters of three GnRH genes in a cichlid

    SciTech Connect

    Kitahashi, Takashi; Sato, Hideki; Sakuma, Yasuo; Parhar, Ishwar S. . E-mail: ishwar@nms.ac.jp

    2005-10-21

    Mechanisms regulating gonadotropin-releasing hormone (GnRH) types, a key molecule for reproductive physiology, remain unclear. In the present study, we cloned the promoters of GnRH1, GnRH2, and GnRH3 genes in the tilapia, Oreochromis niloticus; and found putative binding sites for glucocorticoid receptors, Sp1, C/EBP, GATA, and Oct-1, but not for androgen receptors in all three GnRH promoters using computer analysis. The presence of binding sites for progesterone receptors in GnRH1, estrogen receptors in GnRH1 and GnRH2, and thyroid hormone receptors in GnRH1 and GnRH3 suggests direct action of steroid hormones on GnRH types. Our observation of SOX and LINE-like sequences exclusively in GnRH1, COUP in GnRH2, and retinoid X receptors in GnRH3 suggests their role in sexual differentiation, midbrain segmentation, and visual cue integration, respectively. Thus, the characteristic binding sites for nuclear receptors and transcription factors support the notion that each GnRH type is regulated differently and has distinct physiological roles.

  12. Cloning and functional identification of the AcLFY gene in Allium cepa.

    PubMed

    Yang, Cuicui; Ye, Yangyang; Song, Ce; Chen, Dian; Jiang, Baiwen; Wang, Yong

    2016-05-13

    Onion (Allium cepa L.) is one of the important vegetable crops in the world, usually with a two-year life cycle. The bulbs form in the first year after sowing, then bolting and flowering are induced by low temperature in the following year. Previous studies have shown that LEAFY gene is an inflorescence tissue specific gene, and that it is also the ultimate collection channel of all flowering pathway. In this study, using homologous gene cloning and reverse transcription-PCR (RT-PCR), we isolated an inflorescence meristem specific LEAFY cDNA, AcLFY (JX275962), from onion. AcLFY contains a 1119 bp open reading frame, which encodes a putative protein of 372 amino acids, with ∼70% homology to the daffodils LEAFY and >50% homology to LEAFY proteins from other higher plants. Fluorescence quantitative results showed that AcLFY gene has the highest expression level in inflorescence meristem during early bolting, and is still expressed in leaves after the formation of flower organs. Overexpression of AcLFY gene in Arabidopsis thaliana induced early bolting and flowering, whereas knockdown of the endogenous LEAFY gene by RNAi caused a significant delay in bolting. In addition, transgenic plants also exhibited significant morphological changes in rosette leaves, branches, and plant height. PMID:27074580

  13. Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas.

    PubMed

    Yang, Yumei; Luo, Zhu; Zhang, Mengru; Liu, Chang; Gong, Ming; Zou, Zhurong

    2016-04-01

    H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi. PMID:26643082

  14. Molecular cloning and functional analysis of duck ubiquitin-specific protease 18 (USP18) gene.

    PubMed

    Qian, Wei; Wei, Xiaoqin; Zhou, Hongbo; Jin, Meilin

    2016-09-01

    In mammals, ubiquitin-specific protease 18 (USP18) is an interferon (IFN)-inducible gene and is a negative regulator of Toll-like receptor-mediated nuclear factor kappa B (NF-κB) activation. The role of USP18 in ducks (duUSP18) remains poorly understood. In the present study, we cloned and characterized the full-length coding sequence of duUSP18 from duck embryo fibroblasts (DEFs). In healthy ducks, duUSP18 transcripts were broadly expressed in different tissues, with higher expression levels in the spleen, lung and kidney. Quantitative real-time PCR (qRT-PCR) analysis revealed that duUSP18 could be induced by treatment with Poly(I:C) or LPS. Overexpression of duUSP18 inhibited NF-κB and IFN-β expression. Furthermore, deletion mutant analysis revealed that the duUSP18 region between aa 75 and 304 was essential for inhibiting NF-κB. In addition, overexpression of duUSP18 also suppressed the secretion of NF-κB-dependent proinflammatory cytokines. Taken together, these results suggest that duUSP18 regulates duck innate immune responses. PMID:27133094

  15. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  16. Molecular cloning and function characterization of a new macrophage-activating protein from Tremella fuciformis.

    PubMed

    Hung, Chih-Liang; Chang, An-Ju; Kuo, Xhao-Kai; Sheu, Fuu

    2014-02-19

    Silver ear mushroom ( Tremella fuciformis ) is an edible fungus with health benefits. In this study, we purified a new T. fuciformis protein (TFP) and demonstrated its ability to activate primary murine macrophages. The isolation procedure involved ammonium sulfate fractionation and ion exchange chromatography. TFP naturally formed a 24 kDa homodimeric protein and did not contain glycan residues. The TFP gene was cloned using the rapid amplification of cDNA ends method, and the cDNA sequence of TFP was composed of 408 nucleotides with a 336 nucleotide open reading frame encoding a 112 amino acid protein. TFP was capable of stimulating TNF-α, IL-1β, IL-1ra, and IL-12 production in addition to CD86/MHC class II expression, mRNA expression of M1-type chemokines, and nuclear NF-κB accumulation in murine peritoneal macrophage cells. Furthermore, TFP failed to stimulate TLR4-neutralized and TLR4-knockout macrophages, suggesting that TLR4 is a required receptor for TFP signaling on macrophages. Taken together, these results indicate that TFP may be an important bioactive compound from T. fuciformis that induces M1-polarized activation through a TLR4-dependent NF-κB signaling pathway. PMID:24400969

  17. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii.

    PubMed

    Ogasawara, Yasushi; Katayama, Kinya; Minami, Atsushi; Otsuka, Miyuki; Eguchi, Tadashi; Kakinuma, Katsumi

    2004-01-01

    Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well. PMID:15112997

  18. Cloning of the Thermomonospora fusca Endoglucanase E2 gene in Streptomyces lividans: Affinity purification and functional domains of the cloned gene product

    SciTech Connect

    Ghangas, G.S.; Wilson, D.B. )

    1988-10-01

    Thermomonospora fusca YX grown in the presence of cellulose produces a number of {beta}-1-4-endoglucanases, some of which bind to microcrystalline cellulose. By using a multicopy plasmid, pIJ702, a gene coding for one of these enzymes (E2) was cloned into Streptomyces lividans and then mobilized into both Escherichia coli and Streptomyces albus. The gene was localized to a 1.6-kilobase PvuII-ClaI segment of the originally cloned 3.0-kilobase SstI fragment of Thermomonospora DNA. The culture supernatants of Streptomyces transformants contain a major endoglucanase that cross-reacts with antibody against Thermomonospora cellulase E2 and has the same molecular weight (43,000) as T. fusca E2. This protein binds quickly and tightly to Avicel. It also binds to filter paper but at a slower rate than to Avicel. Several large proteolytic degradation products of this enzyme generated in vivo lose the ability to bind to Avicel and have higher activity on carboxymethyl cellulose than the native enzyme. Other smaller products bind to Avicel but lack activity. A weak cellobiose-binding site not observed in the native enzyme was present in one of the degradation products. In E. coli, the cloned gene produced a cellulase that also binds tightly to Avicel but appeared to be slightly larger than T. fusca E2. The activity of intact E2 from all organisms can be inactivated by Hg{sup 2+} ions. Dithiothreitol protected against Hg{sup 2+} inactivation and reactivated both unbound and Avicel-bound Hg{sub 2+}-inhibited E2, but at different rates.

  19. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum.

    PubMed

    Rather, Irshad Ahmad; Awasthi, Praveen; Mahajan, Vidushi; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G

    2015-03-01

    Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum. PMID:25550044

  20. The newt (Cynops pyrrhogaster) RPE65 promoter: molecular cloning, characterization and functional analysis.

    PubMed

    Casco-Robles, Martin Miguel; Miura, Tomoya; Chiba, Chikafumi

    2015-06-01

    The adult newt has the ability to regenerate the neural retina following injury, a process achieved primarily by the retinal pigment epithelium (RPE). To deliver exogenous genes to the RPE for genetic manipulation of regenerative events, we isolated the newt RPE65 promoter region by genome walking. First, we cloned the 2.8 kb RPE65 promoter from the newt, Cynops pyrrhogaster. Sequence analysis revealed several conserved regulatory elements described previously in mouse and human RPE65 promoters. Second, having previously established an I-SceI-mediated transgenic protocol for the newt, we used it here to examine the -657 bp proximal promoter of RPE65. The promoter assay used with F0 transgenic newts confirmed transgene expression of mCherry fluorescent protein in the RPE. Using bioinformatic tools and the TRANSFAC database, we identified a 340 bp CpG island located between -635 and -296 bp in the promoter; this region contains response elements for the microphthalmia-associated transcription factor known as MITF (CACGTG, CATGTG), and E-boxes (CANNTG). Sex-determining region box 9 (or SOX9) response element previously reported in the regulation of RPE genes (including RPE65) was also identified in the newt RPE65 promoter. Third, we identified DNA motif boxes in the newt RPE65 promoter that are conserved among other vertebrates. The newt RPE65 promoter is an invaluable tool for site-specific delivery of exogenous genes or genetic manipulation systems for the study of retinal regeneration in this animal. PMID:25490979

  1. Molecular cloning, expression and functional analysis of ISG15 in orange-spotted grouper, Epinephelus coioides.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Cai, Jia; Wei, Shina; Ouyang, Zhengliang; Qin, Qiwei

    2013-05-01

    Interferon-stimulated gene 15 (ISG15) is an ubiquitin homolog that is significantly induced by type I interferons or viral infections. Groupers, Epinephelus spp. being maricultured in China and Southeast Asian countries, always suffer from virus infection, including iridovirus and nodavirus. To date, the roles of grouper genes, especially interferon related genes in virus infection remained largely unknown. Here, the ISG15 homolog (EcISG15) was cloned from grouper Epinephelus coioides and its immune response to Singapore grouper iridovirus (SGIV) and grouper nervous necrosis virus (GNNV) was investigated. The full-length EcISG15 cDNA was composed of 948 bp and encoded a polypeptide of 155 amino acids with 37-68% identity with the known ISG15 homologs from other fish species. Amino acid alignment analysis indicated that EcISG15 contained two ubiquitin-like (UBL) domains and an Ub-conjugation domain (LRGG). Expressional analysis showed that EcISG15 was dramatically induced by GNNV infection, poly I:C or poly dA-dT treatment, but no obvious changes were observed during SGIV infection. Immunofluorescence assay showed that EcISG15 localized mainly in the cytoplasm of grouper cells in response to poly I:C stimulation or GNNV infection, but not in mock or SGIV infected cells. Western blot analysis indicated that the ISGylation was absent in SGIV-infected cells, but significantly enhanced in GNNV-infected or poly I:C transfected cells, suggesting that EcISG15 might play different roles in SGIV and GNNV infection. Furthermore, overexpression of EcISG15 in vitro inhibited the transcription of GNNV genes significantly. Taken together, the results indicated that fish ISG15 might exert important roles against RNA virus infection. PMID:23403156

  2. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene.

    PubMed

    Hirata, M; Kakizuka, A; Aizawa, M; Ushikubi, F; Narumiya, S

    1994-11-01

    Prostanoid receptors belong to the family of G protein-coupled receptors with seven transmembrane domains. By taking advantage of nucleotide sequence homology among the prostanoid receptors, we have isolated and identified a cDNA fragment and its gene encoding a mouse prostaglandin (PG) D receptor by reverse transcription polymerase chain reaction and gene cloning. This gene codes for a polypeptide of 357 amino acids, with a calculated molecular weight of 40,012. The deduced amino acid sequence has a high degree of similarity with the mouse PGI receptor and the EP2 subtype of the PGE receptor, which together form a subgroup of the prostanoid receptors. Chinese hamster ovary cells stably expressing the gene showed a single class of binding sites for [#H]PGD2 with a Kd of 40 nM. This binding was displaced by unlabeled ligands in the following order: PGD2 > BW 245C (a PGD agonist) > BW A868C (a PGD antagonist) > STA2 (a thromboxane A2 agonist). PGE2, PGF2 alpha, and iloprost showed little displacement activity at concentrations up to 10 microM. PGD2 and BW 245C also increased cAMP levels in Chinese hamster ovary cells expressing the receptor, in a concentration-dependent manner. BW A868C showed a partial agonist activity in the cAMP assay. Northern blotting analysis with mouse poly(A)+ RNA identified a major mRNA species of 3.5 kb that was most abundantly expressed in the ileum, followed by lung, stomach, and uterus. PMID:7972033

  3. Glyoxysomal malate dehydrogenase in pumpkin: cloning of a cDNA and functional analysis of its presequence.

    PubMed

    Kato, A; Takeda-Yoshikawa, Y; Hayashi, M; Kondo, M; Hara-Nishimura, I; Nishimura, M

    1998-02-01

    Glyoxysomal malate dehydrogenase (gMDH) is an enzyme of the glyoxylate cycle that participates in degradation of storage oil. We have cloned a cDNA for gMDH from etiolated pumpkin cotyledons that encodes a polypeptide consisting of 356 amino acid residues. The nucleotide and N-terminal amino acid sequences revealed that gMDH is synthesized as a precursor with an N-terminal extrapeptide. The N-terminal presequence of 36 amino acid residues contains two regions homologous to those of other microbody proteins, which are also synthesized as large precursors. To investigate the functions of the N-terminal presequence of gMDH, we generated transgenic Arabidopsis that expressed a chimeric protein consisting of beta-glucuronidase and the N-terminal region of gMDH. Immunological and immunocytochemical studies revealed that the chimeric protein was imported into microbodies such as glyoxysomes and leaf peroxisomes and was then subsequently processed. Site-directed mutagenesis studies showed that the conserved amino acids in the N-terminal presequence, Arg-10 and His-17, function as recognition sites for the targeting to plant microbodies, and Cys-36 in the presequence is responsible for its processing. These results correspond to those from the analyses of glyoxysomal citrate synthase (gCS), which was also synthesized as a large precursor, suggesting that common mechanisms that can recognize the targeting or the processing of gMDH and gCS function in higher plant cells. PMID:9559562

  4. Cloning and functional characterization of two abiotic stress-responsive Jerusalem artichoke (Helianthus tuberosus) fructan 1-exohydrolases (1-FEHs).

    PubMed

    Xu, Huanhuan; Liang, Mingxiang; Xu, Li; Li, Hui; Zhang, Xi; Kang, Jian; Zhao, Qingxin; Zhao, Haiyan

    2015-01-01

    Two fructan hydrolases were previously reported to exist in Jerusalem artichoke (Helianthus tuberosus) and one native fructan-β-fructosidase (1-FEH) was purified to homogeneity by SDS-PAGE, but no corresponding cDNA was cloned. Here, we cloned two full-length 1-FEH cDNA sequences from Jerusalem artichoke, named Ht1-FEH I and Ht1-FEH II, which showed high levels of identity with chicory 1-FEH I and 1-FEH II. Functional characterization of the corresponding recombinant proteins in Pichia pastoris X-33 demonstrated that both Ht1-FEHs had high levels of hydrolase activity towards β(2,1)-linked fructans, but low or no activity towards β(2,6)-linked levan and sucrose. Like other plant FEHs, the activities of the recombinant Ht1-FEHs were greatly inhibited by sucrose. Real-time quantitative PCR analysis showed that Ht1-FEH I transcripts accumulated to high levels in the developing leaves and stems of artichoke, whereas the expression levels of Ht1-FEH II increased in tubers during tuber sprouting, which implies that the two Ht1-FEHs play different roles. The levels of both Ht1-FEH I and II transcript were significantly increased in the stems of NaCl-treated plants. NaCl treatment also induced transcription of both Ht1-FEHs in the tubers, while PEG treatments slightly inhibited the expression of Ht1-FEH II in tubers. Analysis of sugar-metabolizing enzyme activities and carbohydrate concentration via HPLC showed that the enzyme activities of 1-FEHs were increased but the fructose content was decreased under NaCl and PEG treatments. Given that FEH hydrolyzes fructan to yield Fru, we discuss possible explanations for the inconsistency between 1-FEH activity and fructan dynamics in artichokes subjected to abiotic stress. PMID:25522837

  5. Rapid cloning, expression, and functional characterization of paired αβ and γδ T-cell receptor chains from single-cell analysis

    PubMed Central

    Guo, Xi-zhi J; Dash, Pradyot; Calverley, Matthew; Tomchuck, Suzanne; Dallas, Mari H; Thomas, Paul G

    2016-01-01

    Transgenic expression of antigen-specific T-cell receptor (TCR) genes is a promising approach for immunotherapy against infectious diseases and cancers. A key to the efficient application of this approach is the rapid and specific isolation and cloning of TCRs. Current methods are often labor-intensive, nonspecific, and/or relatively slow. Here, we describe an efficient system for antigen-specific αβTCR cloning and CDR3 substitution. We demonstrate the capability of cloning influenza-specific TCRs within 10 days using single-cell polymerase chain reaction (PCR) and Gibson Assembly techniques. This process can be accelerated to 5 days by generating receptor libraries, requiring only the exchange of the antigen-specific CDR3 region into an existing backbone. We describe the construction of this library for human γδ TCRs and report the cloning and expression of a TRGV9/TRDV2 receptor that is activated by zoledronic acid. The functional activity of these αβ and γδ TCRs can be characterized in a novel reporter cell line (Nur77-GFP Jurkat 76 TCRα–β–) for screening of TCR specificity and avidity. In summary, we provide a rapid method for the cloning, expression, and functional characterization of human and mouse TCRs that can assist in the development of TCR-mediated therapeutics. PMID:26858965

  6. Rapid cloning, expression, and functional characterization of paired αβ and γδ T-cell receptor chains from single-cell analysis.

    PubMed

    Guo, Xi-Zhi J; Dash, Pradyot; Calverley, Matthew; Tomchuck, Suzanne; Dallas, Mari H; Thomas, Paul G

    2016-01-01

    Transgenic expression of antigen-specific T-cell receptor (TCR) genes is a promising approach for immunotherapy against infectious diseases and cancers. A key to the efficient application of this approach is the rapid and specific isolation and cloning of TCRs. Current methods are often labor-intensive, nonspecific, and/or relatively slow. Here, we describe an efficient system for antigen-specific αβTCR cloning and CDR3 substitution. We demonstrate the capability of cloning influenza-specific TCRs within 10 days using single-cell polymerase chain reaction (PCR) and Gibson Assembly techniques. This process can be accelerated to 5 days by generating receptor libraries, requiring only the exchange of the antigen-specific CDR3 region into an existing backbone. We describe the construction of this library for human γδ TCRs and report the cloning and expression of a TRGV9/TRDV2 receptor that is activated by zoledronic acid. The functional activity of these αβ and γδ TCRs can be characterized in a novel reporter cell line (Nur77-GFP Jurkat 76 TCRα(-)β(-)) for screening of TCR specificity and avidity. In summary, we provide a rapid method for the cloning, expression, and functional characterization of human and mouse TCRs that can assist in the development of TCR-mediated therapeutics. PMID:26858965

  7. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus

    PubMed Central

    2012-01-01

    Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics. PMID:22906146

  8. Molecular Cloning and Functional Characterization of the Avian Macrophage Migration Inhibitory Factor (MIF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble factor produced by sensitized T lymphocytes and inhibits the random migration of macrophages. Recent studies have revealed a more prominent role for MIF as a multi-functional cytokine mediating both innate and adaptive immune r...

  9. SABATH Methyltransferases from White Spruce (Picea glauca [Moench] Voss): Gene Cloning, Functional Characterization and Structural Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Known members of the plant SABATH family of methyltransferases have important biological functions by methylating hormones, signaling molecules and other metabolites. While all previously characterized SABATH genes were isolated from angiosperms, in this article, we report on the isolation and funct...

  10. Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum).

    PubMed

    Qiao, Zhi-Xin; Huang, Bo; Liu, Jin-Yuan

    2008-02-01

    Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this paper, a new ethylene response factor gene GhERF1 was isolated from cotton. The deduced amino acid sequence of GhERF1 contained an AP2/ERF domain, which shared high similarity with other reported AP2/ERF domains and was most closely related to the B3 subgroup of the ERF subfamily. The particle bombardment assay showed that GhERF1 functioned as an in vivo transcription activator in tobacco cells and was localized in the nuclei of onion epidermis cells. In addition, semi-quantitative RT-PCR revealed that GhERF1 accumulated highly and rapidly when plants were treated with exogenous ethylene, abscisic acid (ABA), high salinity, cold and drought. These results suggested that GhERF1 might be functionally important in acclimation of cotton to stress. PMID:18078841

  11. Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris.

    PubMed

    Chen, Ji-Jr; Chen, Gan-Hong; Hsu, Hui-Ching; Li, Shin-Shing; Chen, Ching-San

    2004-04-21

    It was shown previously that a bacterially expressed mungbean defensin VrCRP exhibited both antifungal and insecticidal activities. To isolate this protein in a large quantity for its characterization, the defensin cDNA was expressed in Pichia pastoris and the recombinant defensin (rVrD1) was purified. The recombinant VrD1 was shown to inhibit the growth of fungi such as Fusarium oxysporum, Pyricularia oryza, Rhizoctonia solani, and Trichophyton rubrum and development of bruchid larva. The protein also inhibits in vitro protein synthesis. These biological activities are similar to that of the bacterially expressed defensin. Functional expression of VrD1 in Pichia pastoris provides a highly feasible system to study the structure-function relationship of VrD1 using the mutagenesis approach. PMID:15080630

  12. From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements.

    PubMed

    Joyner, Alexandra L

    2016-01-01

    The invention of new mouse molecular genetics techniques, initiated in the 1980s, has repeatedly expanded our ability to tackle exciting developmental biology problems. The brain is the most complex organ, and as such the more sophisticated the molecular genetics technique, the more impact they have on uncovering new insights into how our brain functions. I provide a general time line for the introduction of new techniques over the past 30 years and give examples of new discoveries in the neural development field that emanated from them. I include a look to what the future holds and argue that we are at the dawn of a very exciting age for young scientists interested in studying how the nervous system is constructed and functions with such precision. PMID:26970637

  13. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  14. Academic Cloning.

    ERIC Educational Resources Information Center

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally negative practice.…

  15. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    PubMed

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  16. Peroxisomal Monodehydroascorbate Reductase. Genomic Clone Characterization and Functional Analysis under Environmental Stress Conditions1

    PubMed Central

    Leterrier, Marina; Corpas, Francisco J.; Barroso, Juan B.; Sandalio, Luisa M.; del Río, Luis A.

    2005-01-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5′ untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns

  17. A novel, rapid and efficient method of cloning functional antigen-specific T-cell receptors from single human and mouse T-cells.

    PubMed

    Hamana, Hiroshi; Shitaoka, Kiyomi; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Muraguchi, Atsushi

    2016-06-10

    T-cell receptor (TCR) gene therapy is a promising approach for the treatment of infectious diseases and cancers. However, the paired cloning and functional assays of antigen-specific TCRα and TCRβ is time-consuming and laborious. In this study, we developed a novel, rapid and efficient antigen-specific TCR-cloning system by combining three technologies: multiplex one-step RT-PCR, transcriptionally active PCR (TAP) and luciferase reporter assays. Multiplex one-step RT-PCR with leader primers designed from leader peptide sequences of TCRs enabled us to amplify cDNAs of TCRα and β pairs from single T-cells with remarkably high efficiency. The combination of TAP fragments and HEK293T-based NFAT-luciferase reporter cells allowed for a rapid functional assay without the need to construct expression vectors. Using this system, we cloned human TCRs specific for Epstein-Barr virus BRLF-1-derived peptide as well as mouse TCRs specific for melanoma-associated antigen tyrosinase-related protein 2 (TRP-2) within four days. These results suggest that our system provides rapid and efficient cloning of functional antigen-specific human and mouse TCRs and contributes to TCR-based immunotherapy for cancers and infectious diseases. PMID:27155153

  18. Molecular Cloning, Functional Characterization, and Evolutionary Analysis of Vitamin D Receptors Isolated from Basal Vertebrates

    PubMed Central

    Kollitz, Erin M.; Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G. Kerr; Reif, David M.; Kullman, Seth W.

    2015-01-01

    The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been

  19. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates.

    PubMed

    Kollitz, Erin M; Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G Kerr; Reif, David M; Kullman, Seth W

    2015-01-01

    The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been

  20. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor.

    PubMed Central

    Riccardi, D; Park, J; Lee, W S; Gamba, G; Brown, E M; Hebert, S C

    1995-01-01

    The maintenance of a stable extracellular concentration of ionized calcium depends on the integrated function of a number of specialized cells (e.g., parathyroid and certain kidney epithelial cells). We recently identified another G protein-coupled receptor (BoPCaRI) from bovine parathyroid that responds to changes in extracellular Ca2+ within the millimolar range and provides a key mechanism for regulating the secretion of parathyroid hormone. Using an homology-based strategy, we now report the isolation of a cDNA encoding an extracellular Ca2+/polyvalent cation-sensing receptor (RaKCaR) from rat kidney. The predicted RaKCaR protein shares 92% identity with BoPCaR1 receptor and features a seven membrane-spanning domain, characteristic of the G protein-coupled receptors, which is preceded by a large hydrophilic extracellular NH2 terminus believed to be involved in cation binding. RaKCaR cRNA-injected Xenopus oocytes responded to extracellular Ca2+, Mg2+, Gd3+, and neomycin with characteristic activation of inositol phospholipid-dependent, intracellular Ca(2+)-induced Cl- currents. In rat kidney, Northern analysis revealed RaKCaR transcripts of 4 and 7 kb, and in situ hybridization showed localization primarily in outer medulla and cortical medullary rays. Our results provide important insights into the molecular structure of an extracellular Ca2+/polyvalent cation-sensing receptor in rat kidney and provide another basis on which to understand the role of extracellular divalent cations in regulating kidney function in mineral metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7816802

  1. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules

    PubMed Central

    Girard, Jean-Philippe; Baekkevold, Espen S.; Feliu, Jacques; Brandtzaeg, Per; Amalric, François

    1999-01-01

    High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV. PMID:10535998

  2. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    PubMed

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a

  3. Cloning, Characterization, and Functional Expression of the Klebsiella oxytoca Xylodextrin Utilization Operon (xynTB) in Escherichia coli†

    PubMed Central

    Qian, Yilei; Yomano, L. P.; Preston, J. F.; Aldrich, H. C.; Ingram, L. O.

    2003-01-01

    Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na+/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of

  4. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum.

    PubMed

    Gao, Shuai; Yu, Hai-Na; Xu, Rui-Xue; Cheng, Ai-Xia; Lou, Hong-Xiang

    2015-03-01

    Plant phenylpropanoids represent a large group of secondary metabolites which have played an important role in terrestrial plant life, beginning with the evolution of land plants from primitive green algae. 4-Coumarate: coenzyme A ligase (4CL) is a provider of activated thioester substrates within the phenylpropanoid synthesis pathway. Although 4CLs have been extensively characterized in angiosperm, gymnosperm and moss species, little is known of their functions in liverworts. Here, a 4CL homolog (designated as Pa4CL1) was isolated from the liverwort species Plagiochasma appendiculatum. The full-length cDNA sequence of Pa4CL1 contains 1644bp and is predicted to encode a protein with 547amino acids. The gene products were 40-50% identical with 4CL sequences reported in public databases. The recombinant protein was heterologously expressed in Escherichia coli and exhibited a high level of 4CL activity, catalyzing formation of hydroxycinnamate-CoA thioesters by a two-step reaction mechanism from corresponding hydroxycinnamic acids. Kinetic analysis indicated that the most favorable substrate for Pa4CL1 is p-coumaric acid. The transcription of Pa4CL1 was induced when P. appendiculatum thallus was treated with either salicylic acid or methyl jasmonate. PMID:25593011

  5. Molecular Cloning and Functional Characterization of a Novel Isoflavone 3'-O-methyltransferase from Pueraria lobata.

    PubMed

    Li, Jia; Li, Changfu; Gou, Junbo; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate 3'-, 4'- and 7-O-methylated isoflavones and many of these methylated compounds exhibit various pharmacological activities. Either the 4'- or 7-O-methylation activity has been investigated at molecular levels in several legume species. However, the gene encoding the isoflavone 3'-O-methyltransferase (OMT) has not yet been isolated from any plant species. In this study, we reported the first cDNA encoding the isoflavone 3'-OMT from P. lobata (designated PlOMT4). Heterologous expressions in yeast and Escherichia coli cells showed that the gene product exhibits an enzyme activity to methylate the 3'-hydroxy group of the isoflavone substrate. The transcript abundance of PlOMT4 matches well with its enzymatic product in different organs of P. lobata and in the plant roots in response to methyl jasmonate elicitation. Integration of the biochemical with metabolic and transcript data supported the proposed function of PlOMT4. The identification of PlOMT4 would not only help to understand the isoflavonoid metabolism in P. lobata but also potentially provide an enzyme catalyst for methylating existing drug candidates to improve their hydrophobicity. PMID:27458460

  6. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein.

    PubMed

    Huang, Q Q; Yao, S Y; Ritzel, M W; Paterson, A R; Cass, C E; Young, J D

    1994-07-01

    Expression screening in Xenopus oocytes was used to isolate a cDNA from rat jejunal epithelium encoding a Na(+)-dependent nucleoside transport protein (named cNT1). The cDNA sequence of cNT1 predicts a protein of 648 amino acids (relative molecular mass 71,000) with 14 potential transmembrane domains. Data base searches indicate significant sequence similarity to the NUPC proton/nucleoside symporter of Escherichia coli. There is no sequence similarity between cNT1 and proteins of mammalian origin. Functionally, cNT1 exhibited the transport characteristics of the nucleoside transport system cit (selective for pyrimidine nucleosides and adenosine) and accepted both 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC) as permeants (Km = 0.49 and 0.51 mM, respectively). The demonstration of transport of AZT by cNT1 expressed in Xenopus oocytes provides the first direct evidence that AZT enters cells by transporter-mediated processes, as well as by passive diffusion. Consistent with the tissue distribution of system cit transport activity, transcripts for cNT1 were detected in kidney as well as jejunum. cNT1 therefore belongs to a potential new gene family and may be involved in the intestinal absorption and renal handling of pyrimidine nucleoside analogs used to treat acquired immunodeficiency syndrome (AIDS). PMID:8027026

  7. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana.

    PubMed

    Zhang, Yan; Wang, Xingfen; Yang, Shuo; Chi, Jina; Zhang, Guiyin; Ma, Zhiying

    2011-11-01

    Verticillium wilt causes enormous loss to yield or quality in many crops. In an effort to help controlling this disease through genetic engineering, we first cloned and characterized a Verticillium wilt resistance gene (GbVe) from cotton (Gossypium barbadense) and analyzed its function in Arabidopsis thaliana. Its nucleotide sequence is 3,819 bp long, with an open reading frame of 3,387 bp, and encoding an 1,128-aa protein precursor. Sequence analysis shows that GbVe produces a leucine-rich repeat receptor-like protein. It shares identities of 55.9% and 57.4% with tomato Ve1 and Ve2, respectively. Quantitative real-time PCR indicated that the Ve gene expression pattern was different between the resistant and susceptible cultivars. In the resistant Pima90-53, GbVe was quickly induced and reached to a peak at 2 h after inoculation, two-fold higher than that of control. We localized the GbVe-GFP fusion protein to the cytomembrane in onion epidermal cells. By inserting GbVe into Arabidopsis via Agrobacterium-mediated transformation, T(3) transgenic lines were obtained. Compared with the wild-type control, GbVe-overexpressing plants had greater levels of resistance to V. dahliae. This suggests that GbVe is a useful gene for improving the plant resistance against fungal diseases. PMID:21739145

  8. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  9. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin.

    PubMed

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  10. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3

    PubMed Central

    Garba, Lawal; Mohamad Ali, Mohd Shukuri; Oslan, Siti Nurbaya; Rahman, Raja Noor Zaliha Raja Abd

    2016-01-01

    Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli. PMID:27494717

  11. A Δ-9 Fatty Acid Desaturase Gene in the Microalga Myrmecia incisa Reisigl: Cloning and Functional Analysis

    PubMed Central

    Xue, Wen-Bin; Liu, Fan; Sun, Zheng; Zhou, Zhi-Gang

    2016-01-01

    The green alga Myrmecia incisa is one of the richest natural sources of arachidonic acid (ArA). To better understand the regulation of ArA biosynthesis in M. incisa, a novel gene putatively encoding the Δ9 fatty acid desaturase (FAD) was cloned and characterized for the first time. Rapid-amplification of cDNA ends (RACE) was employed to yield a full length cDNA designated as MiΔ9FAD, which is 2442 bp long in sequence. Comparing cDNA open reading frame (ORF) sequence to genomic sequence indicated that there are 8 introns interrupting the coding region. The deduced MiΔ9FAD protein is composed of 432 amino acids. It is soluble and localized in the chloroplast, as evidenced by the absence of transmembrane domains as well as the presence of a 61-amino acid chloroplast transit peptide. Multiple sequence alignment of amino acids revealed two conserved histidine-rich motifs, typical for Δ9 acyl-acyl carrier protein (ACP) desaturases. To determine the function of MiΔ9FAD, the gene was heterologously expressed in a Saccharomyces cerevisiae mutant strain with impaired desaturase activity. Results of GC-MS analysis indicated that MiΔ9FAD was able to restore the synthesis of monounsaturated fatty acids, generating palmitoleic acid and oleic acid through the addition of a double bond in the Δ9 position of palmitic acid and stearic acid, respectively. PMID:27438826

  12. A Δ-9 Fatty Acid Desaturase Gene in the Microalga Myrmecia incisa Reisigl: Cloning and Functional Analysis.

    PubMed

    Xue, Wen-Bin; Liu, Fan; Sun, Zheng; Zhou, Zhi-Gang

    2016-01-01

    The green alga Myrmecia incisa is one of the richest natural sources of arachidonic acid (ArA). To better understand the regulation of ArA biosynthesis in M. incisa, a novel gene putatively encoding the Δ9 fatty acid desaturase (FAD) was cloned and characterized for the first time. Rapid-amplification of cDNA ends (RACE) was employed to yield a full length cDNA designated as MiΔ9FAD, which is 2442 bp long in sequence. Comparing cDNA open reading frame (ORF) sequence to genomic sequence indicated that there are 8 introns interrupting the coding region. The deduced MiΔ9FAD protein is composed of 432 amino acids. It is soluble and localized in the chloroplast, as evidenced by the absence of transmembrane domains as well as the presence of a 61-amino acid chloroplast transit peptide. Multiple sequence alignment of amino acids revealed two conserved histidine-rich motifs, typical for Δ9 acyl-acyl carrier protein (ACP) desaturases. To determine the function of MiΔ9FAD, the gene was heterologously expressed in a Saccharomyces cerevisiae mutant strain with impaired desaturase activity. Results of GC-MS analysis indicated that MiΔ9FAD was able to restore the synthesis of monounsaturated fatty acids, generating palmitoleic acid and oleic acid through the addition of a double bond in the Δ9 position of palmitic acid and stearic acid, respectively. PMID:27438826

  13. Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay.

    PubMed Central

    Margison, G P; Cooper, D P; Brennand, J

    1985-01-01

    Alkylating agents react with various nitrogen and oxygen atoms in DNA and many of the products are substrates for repair processes. Oxygen atom derivatives such as O6-methylguanine (O6-meG) O4-methylthymine and methylphosphotriesters (MP) have been shown to undergo repair by methyl group removal. The proteins involved in the latter reaction can be considered to be methyltransferases (MT) because their action results in the transfer of the methyl group to a cysteine residue within a polypeptide. A rapid and sensitive assay for MT activity has been developed and used to screen extracts of bacteria harbouring an E. coli genomic DNA library carried in a plasmid vector. We report here the cloning of an E. coli gene coding for O6-meG and MP MT repair functions. These two activities reside on a 37Kd protein that can undergo a host-dependent cleavage to produce an 18Kd protein which contains only O6-meG MT and a 13Kd protein which contains only MP MT. Images PMID:3889845

  14. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  15. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter.

    PubMed Central

    Xu, J C; Lytle, C; Zhu, T T; Payne, J A; Benz, E; Forbush, B

    1994-01-01

    By mediating the coupled movement of Na, K, and Cl ions across the plasma membrane of most animal cells, the bumetanide-sensitive Na-K-Cl cotransporter (NKCC) plays a vital role in the regulation of ionic balance and cell volume. The transporter is a central element in the process of vectorial salt transport in secretory and absorptive epithelia. A cDNA encoding a Na-K-Cl cotransport protein was isolated from a shark rectal gland library by screening with monoclonal antibodies to the native shark cotransporter. The 1191-residue protein predicted from the cDNA sequence has 12 putative transmembrane domains flanked by large cytoplasmic N and C termini. Regulatory phosphoacceptor residues in isolated peptides are identified as Thr-189 and Thr-1114 in the predicted sequence. Northern blot analysis identified a 7.4-kb mRNA in rectal gland and most other shark tissues; a 5.2-kb mRNA was restricted to shark kidney. Homology with an uncharacterized gene from Caenorhabditis elegans and with the thiazide-sensitive Na-Cl cotransporter of flounder urinary bladder was found over most of the coding region; shorter stretches of homology were found with a C. elegans cDNA and with an uncharacterized gene of cyanobacterium. Human HEK-293 cells have been stably transfected with the shark cDNA and shown to express Na-K-Cl cotransport activity with the bumetanide sensitivity of the shark protein. The expressed transporter is functionally quiescent in the host cells and can be activated by depleting the cells of chloride. Images PMID:8134373

  16. Generation of intercellular heterogeneity of growth and function in cloned rat thyroid cells (FRTL-5).

    PubMed

    Huber, G; Derwahl, M; Kaempf, J; Peter, H J; Gerber, H; Studer, H

    1990-03-01

    The most characteristic hallmarks of human nodular goiters are nodular growth and heterogeneity of structure and function between different areas of the same goiter. In search of the earliest detectable stage of thyroid heterogeneity we have observed doubling times, TSH dependency, and thyroglobulin production in colonies formed from individual FRTL-5 cells growing as monolayers in slide flasks. Single cells and the colonies derived thereof were followed on photographs taken daily until confluence. We observed that each cell had its individual stable multiplication rate throughout the observation period. This was true for all TSH doses tested (0.625-10 mU/ml). A wide range of doubling times (20 h to almost infinite) in the individual cells was observed. The mean growth velocity of subcloned cell lines was highly reproducible in consecutive passages, although a minority of cells escaped this rule. Cells with either high or low thyroglobulin content occurred in clusters, indicating again that specific traits tend to remain stable in the offspring. We conclude that a highly individual growth program, unrelated to mutation, appears to be switched on at the very moment a cell is generated and that this program is passed on to the majority of the offspring, with a minority of cells acquiring qualities differing from those of their sister cell. Therefore, goiter heterogeneity may be the in vivo amplification of a natural phenomenon occurring in all growing cells. Monoclonal adenomas in vivo and nontransformed immortal cell lines in vitro may represent the far end of the large spectrum of individual growth potency among normal thyrocytes. PMID:2307123

  17. Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function.

    PubMed Central

    Lehmann, Y; Meile, L; Teuber, M

    1996-01-01

    The food-borne pathogen Clostridium perfringens, which is an obligate anaerobe, showed growth under conditions of oxidative stress. In protein extracts we looked for superoxide dismutase (SOD) activities which might scavenge highly toxic superoxide radicals evolving under such stress conditions. Using the classical assay to detect SOD activity on gels after electrophoresis of C. perfringens proteins, we obtained a pattern of three major bands indicating SOD activity. The protein representing the brightest band was purified by three chromatographic steps. On the basis of 20 amino acids determined from the N terminus of the protein, we designed a degenerate oligonucleotide probe to isolate the corresponding gene. We finally sequenced an open reading frame of 195 amino acids (molecular mass, 21,159 Da) with a strong homology to the Desulfovibrio vulgaris rubrerythrin; therefore, we assumed to have cloned a rubrerythrin gene from C. perfringens, and we named it rbr. The C-terminal region of the newly detected rubrerythrin from C. perfringens contains a characteristic non-heme, non-sulfur iron-binding site -Cys-X-X-Cys-(X)12-Cys-X-X-Cys- similar to that found in rubrerythrin from D. vulgaris. In addition, three -Glu-X-X-His- sequences could represent diiron binding domains. We observed SOD activity in extracts of Escherichia coli strains containing the recombinant rbr gene from C. perfringens. A biological function of rubrerythrin as SOD was confirmed with the functional complementation by the rbr gene of an E. coli mutant strain lacking SOD activity. We therefore suppose that rubrerythrin plays a role as a scavenger of oxygen radicals. PMID:8955396

  18. Cloning, Functional Characterization and Nutritional Regulation of Δ6 Fatty Acyl Desaturase in the Herbivorous Euryhaline Teleost Scatophagus Argus

    PubMed Central

    Lin, Siyuan; Wang, Shuqi; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou

    2014-01-01

    Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating Δ6 desaturation activity. Quantitative real-time PCR showed that highest Δ6 fad mRNA expression was detected in liver followed by brain, with lower expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach and spleen. The expression of Δ6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S. argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts. PMID:24594899

  19. Cloning, Identification and Functional Characterization of Bovine Free Fatty Acid Receptor-1 (FFAR1/GPR40) in Neutrophils

    PubMed Central

    Manosalva, Carolina; Mena, Jaqueline; Velasquez, Zahady; Colenso, Charlotte K.; Brauchi, Sebastian; Burgos, Rafael A.; Hidalgo, Maria A.

    2015-01-01

    Long chain fatty acids (LCFAs), which are ligands for the G-protein coupled receptor FFAR1 (GPR40), are increased in cow plasma after parturition, a period in which they are highly susceptible to infectious diseases. This study identified and analyzed the functional role of the FFAR1 receptor in bovine neutrophils, the first line of host defense against infectious agents. We cloned the putative FFAR1 receptor from bovine neutrophils and analyzed the sequence to construct a homology model. Our results revealed that the sequence of bovine FFAR1 shares 84% identity with human FFAR1 and 31% with human FFAR3/GPR41. Therefore, we constructed a homology model of bovine FFAR1 using human as the template. Expression of the bovine FFAR1 receptor in Chinese hamster ovary (CHO)-K1 cells increased the levels of intracellular calcium induced by the LCFAs, oleic acid (OA) and linoleic acid (LA); no increase in calcium mobilization was observed in the presence of the short chain fatty acid propionic acid. Additionally, the synthetic agonist GW9508 increased intracellular calcium in CHO-K1/bFFAR1 cells. OA and LA increased intracellular calcium in bovine neutrophils. Furthermore, GW1100 (antagonist of FFAR1) and U73122 (phospholipase C (PLC) inhibitor) reduced FFAR1 ligand-induced intracellular calcium in CHO-K1/bFFAR1 cells and neutrophils. Additionally, inhibition of FFAR1, PLC and PKC reduced the FFAR1 ligand-induced release of matrix metalloproteinase (MMP)-9 granules and reactive oxygen species (ROS) production. Thus, we identified the bovine FFAR1 receptor and demonstrate a functional role for this receptor in neutrophils activated with oleic or linoleic acid. PMID:25790461

  20. The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function

    PubMed Central

    Clemmensen, C; Smajilovic, S; Wellendorph, P; Bräuner-Osborne, H

    2014-01-01

    GPRC6A (GPCR, class C, group 6, subtype A) is a class C GPCR that has been cloned from human, mouse and rat. Several groups have shown that the receptor is activated by a range of basic and small aliphatic L-α-amino acids of which L-arginine, L-lysine and L-ornithine are the most potent compounds with EC50 values in the mid-micromolar range. In addition, several groups have shown that the receptor is either directly activated or positively modulated by divalent cations such as Ca2+ albeit in concentrations above 5 mM, which is above the physiological concentration in most tissues. More recently, the peptide osteocalcin and the steroid testosterone have also been suggested to be endogenous GPRC6A agonists. The receptor is widely expressed in all three species which, along with the omnipresence of the amino acids and divalent cation ligands, suggest that the receptor could be involved in a broad range of physiological functions. So far, this has mainly been addressed by analyses of genetically modified mice where the GPRC6A receptor has been ablated. Although there has been some discrepancies among results reported from different groups, there is increasing evidence that the receptor is involved in regulation of inflammation, metabolism and endocrine functions. GPRC6A could thus be an interesting target for new drugs in these therapeutic areas. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24032653

  1. Molecular Cloning and Functional Characterization of Xenopus tropicalis Frog Transient Receptor Potential Vanilloid 1 Reveal Its Functional Evolution for Heat, Acid, and Capsaicin Sensitivities in Terrestrial Vertebrates*

    PubMed Central

    Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2012-01-01

    The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca2+]i). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ∼60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca2+]i increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. PMID:22130664

  2. Probabilistic cloning of equidistant states

    SciTech Connect

    Jimenez, O.; Roa, Luis; Delgado, A.

    2010-08-15

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.

  3. Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis.

    PubMed

    Byeon, Yeong; Lee, Hye-Jung; Lee, Hyoung Yool; Back, Kyoungwhan

    2016-01-01

    The N-acetylserotonin O-methyltransferase (ASMT) gene encodes the enzyme that catalyzes the conversion of N-acetylserotonin to melatonin as the last step in melatonin biosynthesis. The first plant ASMT gene to be cloned was from rice. An orthologous gene encoding a protein with ASMT activity and only 39.7% amino acid sequence identity to the rice ASMT protein was recently isolated from apple (Malus zumi). The low homology of the apple ASMT sequence prompted us to screen the Arabidopsis genome for a homologous ASMT gene. The At4g35160 gene exhibited the highest sequence identity (31%) to the rice ASMT gene, followed by the At1g76790 gene with 29% sequence identity. We purified recombinant proteins expressed from the two Arabidopsis genes. The At4g35160 recombinant protein exhibited ASMT enzyme activity, but the At1g76790 recombinant protein did not; thus, we designated At4g35160 as an Arabidopsis thaliana ASMT (AtASMT) gene. The AtASMT protein catalyzed the conversion of N-acetylserotonin to melatonin and serotonin to 5-methoxytryptamine with Vmax values of 0.11 and 0.29 pkat/mg protein, respectively. However, AtASMT exhibited no caffeic acid O-methyltransferase activity, suggesting that its function was highly specific to melatonin synthesis. AtASMT transcripts were induced by cadmium treatment in Arabidopsis followed by increased melatonin synthesis. Similar to other ASMT proteins, AtASMT was localized in the cytoplasm and its ectopic overexpression in rice resulted in increased ASMT enzyme activity and melatonin production, indicating the involvement of AtASMT in melatonin synthesis. PMID:26484897

  4. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain.

    PubMed

    Inoue, Katsuhisa; Zhuang, Lina; Maddox, Dennis M; Smith, Sylvia B; Ganapathy, Vadivel

    2002-10-18

    Citrate plays a pivotal role not only in the generation of metabolic energy but also in the synthesis of fatty acids, isoprenoids, and cholesterol in mammalian cells. Plasma levels of citrate are the highest ( approximately 135 microm) among the intermediates of the tricarboxylic acid cycle. Here we report on the cloning and functional characterization of a plasma membrane transporter (NaCT for Na+ -coupled citrate transporter) from rat brain that mediates uphill cellular uptake of citrate coupled to an electrochemical Na+ gradient. NaCT consists of 572 amino acids and exhibits structural similarity to the members of the Na+-dicarboxylate cotransporter/Na+ -sulfate cotransporter (NaDC/NaSi) gene family including the recently identified Drosophila Indy. In rat, the expression of NaCT is restricted to liver, testis, and brain. When expressed heterologously in mammalian cells, rat NaCT mediates the transport of citrate with high affinity (Michaelis-Menten constant, approximately 20 microm) and with a Na+:citrate stoichiometry of 4:1. The transporter does interact with other dicarboxylates and tricarboxylates but with considerably lower affinity. In mouse brain, the expression of NaCT mRNA is evident in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. NaCT represents the first transporter to be identified in mammalian cells that shows preference for citrate over dicarboxylates. This transporter is likely to play an important role in the cellular utilization of citrate in blood for the synthesis of fatty acids and cholesterol (liver) and for the generation of energy (liver and brain). NaCT thus constitutes a potential therapeutic target for the control of body weight, cholesterol levels, and energy homeostasis. PMID:12177002

  5. Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Zhang, Shuang; Shi, Lili; L, Kai; Li, Haoyang; Wang, Sheng; He, Jianguo; Li, Chaozheng

    2016-07-01

    Wnt signaling is known to control multiple of cellular processes such as cell differentiation, communication, apoptosis and proliferation, and is also reported to play a role during microbial infection. β-catenin is a key regulator of the Wnt signaling cascade. In the present study, we cloned and identified a β-catenin homologue from Litopenaeus vannamei termed Lvβ-catenin. The full-length of Lvβ-catenin transcript was 2797 bp in length within a 2451 bp open reading frame (ORF) that encoded a protein of 816 amino acids. Lvβ-catenin protein was comprised of several characteristic domains such as an N-terminal region of GSK-β consensus phosphorylation site and Coed coil section, a central region of 12 continuous Armadillo/β-Catenin-like repeat (ARM) domains and a C-terminal region. Real-time PCR showed Lvβ-catenin expression was responsive to Vibrio parahaemolyticus and white spot syndrome virus (WSSV) infection. Dual-reporter analysis showed that over-expression of Lvβ-catenin could induce activation of the promoter activities of several antimicrobial peptides (AMPs) such as shrimp PEN4, suggesting that Lvβ-catenin could play a role in regulating the production of AMPs. Knockdown of Lvβ-catenin enhanced the sensitivity of shrimps to V. parahaemolyticus and WSSV challenge, suggesting Lvβ-catenin could play a positive role against bacterial and viral pathogens. In summary, the results presented in this study provided some insights into the function of Wnt/β-catenin of shrimp in regulating AMPs and the host defense against invading pathogens. PMID:27036405

  6. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake.

    PubMed Central

    Huang, N C; Liu, K H; Lo, H J; Tsay, Y F

    1999-01-01

    The Arabidopsis CHL1 (AtNRT1) gene encodes an inducible component of low-affinity nitrate uptake, which necessitates a "two-component" model to account for the constitutive low-affinity uptake observed in physiological studies. Here, we report the cloning and characterization of a CHL1 homolog, AtNRT1:2 (originally named NTL1), with data to indicate that this gene encodes a constitutive component of low-affinity nitrate uptake. Transgenic plants expressing antisense AtNRT1:2 exhibited reduced nitrate-induced membrane depolarization and nitrate uptake activities in assays with 10 mM nitrate. Furthermore, transgenic plants expressing antisense AtNRT1:2 in the chl1-5 background exhibited an enhanced resistance to chlorate (7 mM as opposed to 2 mM for the chl1-5 mutant). Kinetic analysis of AtNRT1:2-injected Xenopus oocytes yielded a K(m) for nitrate of approximately 5.9 mM. In contrast to CHL1, AtNRT1:2 was constitutively expressed before and after nitrate exposure (it was repressed transiently only when the level of CHL1 mRNA started to increase significantly), and its mRNA was found primarily in root hairs and the epidermis in both young (root tips) and mature regions of roots. We conclude that low-affinity systems of nitrate uptake, like high-affinity systems, are composed of inducible and constitutive components and that with their distinct functions, they are part of an elaborate nitrate uptake network in Arabidopsis. PMID:10449574

  7. Molecular cloning and functional analysis of the FSH receptor gene promoter from the volcano mouse (Neotomodon alstoni alstoni).

    PubMed

    Pérez-Solis, Marco Allán; Macías, Héctor; Acosta-MontesdeOca, Adriana; Pasapera, Ana María; Fierro, Reyna; Ulloa-Aguirre, Alfredo; Gutiérrez-Sagal, Rubén

    2010-02-01

    To gain further insights on the genetic divergence and the species-specific characteristics of the follicle-stimulating hormone receptor (FSHR), we cloned 946 bp of the 5'-flanking region of the FSHR gene from the volcano mouse (Neotomodon alstoni alstoni), and compared its features with those from other mammalian species. The sequence of neotomodon FSHR (nFSHR) gene from the translation initiation site to -946 is 74, 71, 64, and 59% homologous to rat, mouse (129/J), human, and sheep, respectively. The nFSHR 5'-flanking region exhibits new interesting putative cis-regulatory elements including those for the SRY transcription factor, which had not been previously related to the FSHR gene. The transcriptional regulation properties of nFSHR gene were studied in mouse Sertoli (MSC-1) and non-Sertoli (H441) cell lines, and compared with those obtained with similar 129/J constructs. All constructs tested were more active in H441 than in MSC-1 cells. The low transcription levels detected in MSC-1 cells probably reflect the recruitment of Sertoli cells-specific nuclear factors that repress transcription of the FSHR gene. In H441 cells, 129/J constructs were more active than their neotomodon counterparts, indicating important species-specific differences in their transcription pattern. Functional analysis of a series of progressive 5'-deletion mutants identified regions involved in positive and negative transcriptional regulation as well as the strongest minimal promoter spanning 260 bp upstream the translation initiation site. The identification of inhibitory nuclear transcription factors, which are apparently expressed in MSC-1 cells, may contribute to a better understanding of the transcriptional regulation of the FSHR gene. PMID:19862645

  8. The spliceosomal snRNP core complex of Trypanosoma brucei: Cloning and functional analysis reveals seven Sm protein constituents

    PubMed Central

    Palfi, Zsofia; Lücke, Stephan; Lahm, Hans-Werner; Lane, William S.; Kruft, Volker; Bragado-Nilsson, Elisabeth; Séraphin, Bertrand; Bindereif, Albrecht

    2000-01-01

    Each of the trypanosome small nuclear ribonucleoproteins (snRNPs) U2, U4/U6, and U5, as well as the spliced leader (SL) RNP, contains a core of common proteins, which we have previously identified. This core is unusual because it is not recognized by anti-Sm Abs and it associates with an Sm-related sequence in the trypanosome small nuclear RNAs (snRNAs). Using peptide sequences derived from affinity-purified U2 snRNP proteins, we have cloned cDNAs for five common proteins of 8.5, 10, 12.5, 14, and 15 kDa of Trypanosoma brucei and identified them as Sm proteins SmF (8.5 kDa), -E (10 kDa), -D1 (12.5 kDa), -G (14 kDa), and -D2 (15 kDa), respectively. Furthermore, we found the trypanosome SmB (T. brucei) and SmD3 (Trypanosoma cruzi) homologues through database searches, thus completing a set of seven canonical Sm proteins. Sequence comparisons of the trypanosome proteins revealed several deviations in highly conserved positions from the Sm consensus motif. We have identified a network of specific heterodimeric and -trimeric Sm protein interactions in vitro. These results are summarized in a model of the trypanosome Sm core, which argues for a strong conservation of the Sm particle structure. The conservation extends also to the functional level, because at least one trypanosome Sm protein, SmG, was able to specifically complement a corresponding mutation in yeast. PMID:10900267

  9. Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1.

    PubMed

    Hesseler, Martin; Bogdanović, Xenia; Hidalgo, Aurelio; Berenguer, Jose; Palm, Gottfried J; Hinrichs, Winfried; Bornscheuer, Uwe T

    2011-08-01

    A haloalkane dehalogenase (DppA) from Plesiocystis pacifica SIR-1 was identified by sequence comparison in the NCBI database, cloned, functionally expressed in Escherichia coli, purified, and biochemically characterized. The three-dimensional (3D) structure was determined by X-ray crystallography and has been refined at 1.95 Å resolution to an R-factor of 21.93%. The enzyme is composed of an α/β-hydrolase fold and a cap domain and the overall fold is similar to other known haloalkane dehalogenases. Active site residues were identified as Asp123, His278, and Asp249 and Trp124 and Trp163 as halide-stabilizing residues. DppA, like DhlA from Xanthobacter autotrophicus GJ10, is a member of the haloalkane dehalogenase subfamily HLD-I. As a consequence, these enzymes have in common the relative position of their catalytic residues within the structure and also show some similarities in the substrate specificity. The enzyme shows high preference for 1-bromobutane and does not accept chlorinated alkanes, halo acids, or halo alcohols. It is a monomeric protein with a molecular mass of 32.6 kDa and exhibits maximum activity between 33 and 37°C with a pH optimum between pH 8 and 9. The K(m) and k(cat) values for 1-bromobutane were 24.0 mM and 8.08 s(-1). Furthermore, from the 3D-structure of DppA, it was found that the enzyme possesses a large and open active site pocket. Docking experiments were performed to explain the experimentally determined substrate preferences. PMID:21603934

  10. Molecular cloning and functional expression of a water-soluble chlorophyll-binding protein from Japanese wild radish.

    PubMed

    Takahashi, Shigekazu; Ono, Mayuko; Uchida, Akira; Nakayama, Katsumi; Satoh, Hiroyuki

    2013-03-01

    Hydrophilic chlorophyll (Chl)-binding proteins have been isolated from various Brassicaceae plants and are categorized into Class II water-soluble Chl-binding proteins (WSCPs). Although the molecular properties of class II WSCPs including Brassica-type (e.g., cauliflower WSCP, Brussels sprouts WSCP and BnD22, a drought- and salinity-stress-induced 22 kDa protein of rapeseed), a Lepidium-type, and an Arabidopsis-type WSCPs have been well characterized, those of Raphanus-type WSCPs are poorly understood. To gain insight into the molecular diversity of Class II WSCPs, we cloned a novel cDNA encoding a Raphanus sativus var. raphanistroides (Japanese wild radish called 'Hamadaikon') WSCP (RshWSCP). Sequence analysis revealed that the open reading frame of the RshWSCP gene consisted of 666 bp encoding 222 aa residues, including 23 residues of a deduced signal peptide. Functional recombinant RshWSCP was expressed in Escherichia coli as a hexa-histidine fusion protein (RshWSCP-His). Although the RshWSCP-His was expressed as a soluble protein in E. coli, the apo-protein was highly unstable and tended to aggregate during a series of purification steps. When the soluble fraction of RshWSCP-His-expressing E. coli was mixed immediately with homogenate of spinach leaves containing thylakoid, RshWSCP-His was able to remove Chl molecules from the thylakoid and formed a stable Chl-WSCP complex with high hydrophilicity. UV-visible absorption spectra of the reconstituted RshWSCP-His revealed that RshWSCP-His is one of the Class IIA WSCP with the highest Chl a/b ratio analyzed thus far. A semi-quantitative reverse transcription-polymerase chain reaction analysis revealed that RshWSCP was transcribed in buds and flowers but not in roots, stems and various leaves. PMID:23266282

  11. Biosynthetic Functional Gene Analysis of Bis-Indole Metabolites from 25D7, a Clone Derived from a Deep-Sea Sediment Metagenomic Library.

    PubMed

    Yan, Xia; Tang, Xi-Xiang; Qin, Dan; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2016-06-01

    This work investigated the metabolites and their biosynthetic functional hydroxylase genes of the deep-sea sediment metagenomic clone 25D7. 5-Bromoindole was added to the 25D7 clone derived Escherichia coli fermentation broth. The new-generated metabolites and their biosynthetic byproducts were located through LC-MS, in which the isotope peaks of brominated products emerged. Two new brominated bis-indole metabolites, 5-bromometagenediindole B (1), and 5-bromometagenediindole C (2) were separated under the guidance of LC-MS. Their structures were elucidated on the basis of 1D and 2D NMR spectra (COSY, HSQC, and HMBC). The biosynthetic functional genes of the two new compounds were revealed through LC-MS and transposon mutagenesis analysis. 5-Bromometagenediindole B (1) also demonstrated moderately cytotoxic activity against MCF7, B16, CNE2, Bel7402, and HT1080 tumor cell lines in vitro. PMID:27258289

  12. Biosynthetic Functional Gene Analysis of Bis-Indole Metabolites from 25D7, a Clone Derived from a Deep-Sea Sediment Metagenomic Library

    PubMed Central

    Yan, Xia; Tang, Xi-Xiang; Qin, Dan; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2016-01-01

    This work investigated the metabolites and their biosynthetic functional hydroxylase genes of the deep-sea sediment metagenomic clone 25D7. 5-Bromoindole was added to the 25D7 clone derived Escherichia coli fermentation broth. The new-generated metabolites and their biosynthetic byproducts were located through LC-MS, in which the isotope peaks of brominated products emerged. Two new brominated bis-indole metabolites, 5-bromometagenediindole B (1), and 5-bromometagenediindole C (2) were separated under the guidance of LC-MS. Their structures were elucidated on the basis of 1D and 2D NMR spectra (COSY, HSQC, and HMBC). The biosynthetic functional genes of the two new compounds were revealed through LC-MS and transposon mutagenesis analysis. 5-Bromometagenediindole B (1) also demonstrated moderately cytotoxic activity against MCF7, B16, CNE2, Bel7402, and HT1080 tumor cell lines in vitro. PMID:27258289

  13. Three members in JAK/STAT signal pathway from the sea cucumber Apostichopus japonicus: Molecular cloning, characterization and function analysis.

    PubMed

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Han, Qingxi; Jin, Chunhua

    2015-10-01

    The JAK/STAT signal transduction pathway plays a critical role in host defense against bacterial infections. In the present study, we firstly cloned the full-length cDNAs of three molecules in JAK/STAT cascade, STAT5, FOXP and SOCS2, from sea cucumber Apostichopus japonicus (denoted as AjSTAT5, AjFOXP, AjSOCS2, respectively) and investigated their immune functions towards Vibrio splendidus infection and LPS exposure. The AjSTAT5 cDNA was composed of 2643 bp consisting of 787 amino acid residues which included protein interaction domain, STAT-α domain, DNA binding domain and SH2 domain. The putative AjFOXP contained a ZnF_C2H2 domain, the leucine zipper-like domain and FH domain, all of which were thought to be the representative characteristics of FOXP subfamily. The deduced amino acids sequence of AjSOCS2 included an SH2 domain and SOCS box domain similar to vertebrate SOCS counterparts. Phylogenetic trees further supported that all these three identified proteins belonged to novel members of JAK/STAT signal pathway in sea cucumber. Tissue specific expression analysis showed that three genes were ubiquitously expressed in all examined tissues. AjSTAT5 and AjFOXP were both dominantly expressed in intestine, tentacle and respiratory tree, and weak in muscle. In contrary, the peak expression of AjSOCS2 was observed in muscle and lowest in respiratory tree. The V. splendidus challenge and LPS exposure could both significantly up-regulate the mRNA expression of three genes, in which AjSOCS2 showed opposite expression trends to those of AjSTAT5 and AjFOXP. Silencing the AjSTAT5 by siRNA depressed the AjFOXP expression, but induced the expression level of AjSOCS2, revealing that AjSTAT5 might directly modulate AjFOXP, and AjSOCS2 function primarily by acting as a potent inhibitor involve in JAK/STAT pathway. The present study would expand our understanding on JAK/STAT signaling transduction pathway in modulating the innate immune responses of sea cucumber. PMID:26206609

  14. Molecular cloning and functional analysis of an ethylene receptor gene from sugarcane (Saccharum spp.) by hormone and environmental stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene receptor (ethylene response sensor, ERS) is the primary component involving in the ethylene biosynthesis and ethylene signal transduction pathway. In the present study, a GZ-ERS gene encoding ERS was cloned from a sugarcane cv. YL17 (Saccharum spp.) using RT-PCR and ligation-mediated PCR wi...

  15. Map based cloning of cereal abiotic stress tolerance genes at the Australian Centre for Plant Functional Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Map-based cloning is one of the approaches we are using to isolate cereal genes conferring tolerance to abiotic stresses. Targets include barley 4HL and wheat 7BL boron tolerance genes, a 1HL barley gene that influences shoot sodium accumulation, a 2HL barley frost tolerance gene, and a rye 7RS alum...

  16. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    SciTech Connect

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.

  17. Theoretical Study of the Reactions of Methane and Ethane with Electronically Excited N2(A(3)Σu(+)).

    PubMed

    Sharipov, Alexander S; Loukhovitski, Boris I; Starik, Alexander M

    2016-06-30

    Comprehensive quantum chemical analysis with the usage of density functional theory and post-Hartree-Fock approaches were carried out to study the processes in the N2(A(3)Σu(+)) + CH4 and N2(A(3)Σu(+)) + C2H6 systems. The energetically favorable reaction pathways have been revealed on the basis of the examination of potential energy surfaces. It has been shown that the reactions N2(A(3)Σu(+)) + CH4 and N2(A(3)Σu(+)) + C2H6 occur with very small or even zero activation barriers and, primarily, lead to the formation of N2H + CH3 and N2H + C2H5 products, respectively. Further, the interaction of these species can give rise the ground state N2(X(1)Σg(+)) and CH4 (or C2H6) products, i.e., quenching of N2(A(3)Σu(+)) by CH4 and C2H6 molecules is the complex two-step process. The possibility of dissociative quenching in the course of the interaction of N2(A(3)Σu(+)) with CH4 and C2H6 molecules has been analyzed on the basis of RRKM theory. It has been revealed that, for the reaction of N2(A(3)Σu(+)) with CH4, the dissociative quenching channel could occur with rather high probability, whereas in the N2(A(3)Σu(+)) + C2H6 reacting system, an analogous process was little probable. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. The estimations showed that the rate constant of the N2(A(3)Σu(+)) + C2H6 reaction path is considerably greater than that for the N2(A(3)Σu(+)) + CH4 one. PMID:27266481

  18. T cell immunity. Functional heterogeneity of human memory CD4⁺ T cell clones primed by pathogens or vaccines.

    PubMed

    Becattini, Simone; Latorre, Daniela; Mele, Federico; Foglierini, Mathilde; De Gregorio, Corinne; Cassotta, Antonino; Fernandez, Blanca; Kelderman, Sander; Schumacher, Ton N; Corti, Davide; Lanzavecchia, Antonio; Sallusto, Federica

    2015-01-23

    Distinct types of CD4(+) T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (T(H)1), T(H)2, and T(H)17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naïve T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming. PMID:25477212

  19. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation

    PubMed Central

    Lu, Yuanping; Wu, Guangmei; Lian, Lingdan; Guo, Lixian; Wang, Wei; Yang, Zhiyun; Miao, Juan; Chen, Bingzhi; Xie, Baogui

    2015-01-01

    Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V. volvacea. PMID

  20. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation.

    PubMed

    Lu, Yuanping; Wu, Guangmei; Lian, Lingdan; Guo, Lixian; Wang, Wei; Yang, Zhiyun; Miao, Juan; Chen, Bingzhi; Xie, Baogui

    2015-01-01

    Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V. volvacea. PMID

  1. Cloning genes for non-syndromal hearing impairment.

    PubMed

    Smith, R J; Van Camp, G

    1999-10-01

    Over 45 genes that cause autosomal non-syndromic hearing impairment (NSHI) have been localized and many more are predicted to exist. To clone these genes, a number of different strategies can be used. This paper focuses on four general approaches: functional cloning, positional cloning, position-dependent candidate gene cloning, and position-independent candidate gene cloning. PMID:10890140

  2. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity

    PubMed Central

    Böhnke, Stefanie; Perner, Mirjam

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples. PMID:25203835

  3. cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds.

    PubMed

    Song, Xiaomin; Wang, Jing; Wu, Fang; Li, Xu; Teng, Maikun; Gong, Weimin

    2005-01-01

    SPE10 is an antifungal protein isolated from the seeds of Pachyrrhizus erosus. cDNA encoding a 47 amino acid peptide was cloned by RT-PCR and the gene sequence proved SPE10 to be a new member of plant defensin family. The synthetic cDNA with codons preferred in yeast was cloned into the pPIC9 plasmid directly in-frame with the secretion signal alpha-mating factor, and highly expressed in methylotrophic Pichia pastoris. Activity assays showed the recombinant SPE10 inhibited specifically the growth of several pathogenic fungi as native SPE10. Circular dichroism and fluorescence spectroscopy analysis indicated that the native and recombinant protein should have same folding, though there are eight cystein residues in the sequence. Several evidence suggested SPE10 should be the first dimeric plant defensin reported so far. PMID:15821865

  4. Cloning and functional characterization of β-1, 3-glucanase gene from Podophyllum hexandrum - a high altitude Himalayan plant.

    PubMed

    Dogra, Vivek; Sreenivasulu, Yelam

    2015-01-01

    Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination. Analysis of cloned nucleotide sequence revealed Ph-glucanase with an open reading frame of 852bp encoding a protein of 283 amino acids with a molecular mass of 31kDa and pI of 4.39. In-silico structure prediction of Ph-glucanase showed homology with that of Hevea brasiliensis (3em5B). Structural stability and enhanced catalytic efficiency in harsh climatic conditions possibly due to the presence of glycosyl hydrolase motif (LGIVISESGWPSAG) and a connecting loop towards inner side and well exposed carbohydrate metabolism domain-COG5309, can readily hydrolyse cell wall sugar moieties. Seeds from the transgenic Arabidopsis plants over-expressing Ph-glucanase showed better germination performance against a wide range of temperatures and abscisic acid (ABA) stress. This can be attributed to the accumulation of Ph-glucanase at both transcript and protein levels during the seed germination in transgenic Arabidopsis. Results confirm that the cloned novel seed specific glucanase from a cold desert plant Podophyllum could be used for the manipulation of different plant species seeds against various harsh conditions. PMID:25303872

  5. [Advances in Molecular Cloning].

    PubMed

    Ashwini, M; Murugan, S B; Balamurugan, S; Sathishkumar, R

    2016-01-01

    "Molecular cloning" meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems. PMID:27028806

  6. Cloning and functional analysis of human acyl coenzyme A: Cholesterol acyltransferase1 gene P1 promoter.

    PubMed

    Ge, Jing; Cheng, Bei; Qi, Benling; Peng, Wen; Wen, Hui; Bai, Lijuan; Liu, Yun; Zhai, Wei

    2016-07-01

    Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1) catalyzes the conversion of free cholesterol (FC) to cholesterol ester. The human ACAT1 gene P1 promoter has been cloned. However, the activity and specificity of the ACAT1 gene P1 promoter in diverse cell types remains unclear. The P1 promoter fragment was digested with KpnI/XhoI from a P1 promoter cloning vector, and was subcloned into the multiple cloning site of the Firefly luciferase vector pGL3‑Enhancer to obtain the construct P1E‑1. According to the analysis of biological information, the P1E‑1 plasmid was used to generate deletions of the ACAT1 gene P1 promoter with varying 5' ends and an identical 3' end at +65 by polymerase chain reaction (PCR). All the 5'‑deletion constructs of the P1 promoter were identified by PCR, restriction enzyme digestion mapping and DNA sequencing. The transcriptional activity of each construct was detected after transient transfection into THP‑1, HepG2, HEK293 and Hela cells using DEAE‑dextran and Lipofectamine 2000 liposome transfection reagent. Results showed that the transcriptional activity of the ACAT1 gene P1 promoter and deletions of P1 promoter in THP‑1 and HepG2 cells was higher than that in HEK293 and HeLa cells. Moreover, the transcriptional activity of P1E‑9 was higher compared with those of other deletions in THP‑1, HepG2, HEK293 and HeLa cells. These findings indicate that the transcriptional activity of the P1 promoter and the effects of deletions vary with different cell lines. Thus, the P1 promoter may drive ACAT1 gene expression with cell‑type specificity. In addition, the core sequence of ACAT1 gene P1 promoter was suggested to be between -125 and +65 bp. PMID:27220725

  7. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    PubMed

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-08-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula. PMID:3498590

  8. Biochemical and functional association between CD8 and H-2 at the surface of a T cell clone.

    PubMed

    Auphan, N; Boyer, C; Andre, P; Bongrand, P; Schmitt-Verhulst, A M

    1991-08-01

    In an attempt to define structures interacting with CD8 molecules during activation of CD8+ cells, immunoprecipitates of CD8 and Tcr-CD3 molecules from lysates of a surface-labeled CTL clone were analyzed. No proteins other than the known Tcr alpha/beta and associated CD3 components were detected in either anti-Tcr or anti-CD3 immunoprecipitates, whether or not the CTL clone had been activated. However, anti-CD8 antibodies co-precipitated class I MHC heavy chain and associated beta 2-microglobulin in all conditions. The latter co-precipitation was shown to result from "cis-type" interactions between CD8 and class I MHC proteins on the same cell and to involve a degree of selectivity, as class I MHC molecules were absent from immunoprecipitates of highly expressed cell surface molecules such as LFA-1. A further analysis of cell surface molecular distribution during antigen-dependent CTL-target cell interaction by double fluorescence-microscopy in non-activating conditions indicated that an increased density of CTL class I molecules was found in the CTL-target cell contact zone of most conjugates with redistributed CD8 molecules. A possible role for "cis-type" class I MHC-CD8 interactions in the dynamics of CTL-target cell contacts is proposed. PMID:1678858

  9. Molecular cloning of functional genes for high growth-temperature and salt tolerance of the basidiomycete Fomitopsis pinicola isolated in a mangrove forest in Micronesia.

    PubMed

    Miyazaki, Yasumasa; Hiraide, Masakazu; Shibuya, Hajime

    2007-01-01

    Several functional genes encoding putative proteins, heat shock protein 70, sphingosine phosphate lyase, and Na+/H+ antiporter, were cloned from the basidiomycete Fomitopsis pinicola, a wood-rotting fungus isolated in the tropical mangrove forest of Pohnpei Island of the Federated States of Micronesia. The deduced amino acid sequences of the obtained genes involved in heat shock resistance, lipid synthesis, and salt tolerance showed diverse similarities to other homologous proteins. Molecular phylogenetic trees of these proteins suggested that encoded proteins of the cloned genes of F. pinicola differed remarkably from other homologs in various organisms, even fungal proteins. Putative candidates for other genes related to several cellular metabolisms were also amplified, implying the possible existence of those genes in F. pinicola. This is the first report of possibly functional genes derived from a basidiomycetous mushroom growing in tropical islands such as Micronesia. The genes found in this study might play important roles in the cellular survival of the basidiomycete F. pinicola under severe environmental conditions. PMID:17213639

  10. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway.

    PubMed Central

    Franklin, F C; Bagdasarian, M; Bagdasarian, M M; Timmis, K N

    1981-01-01

    The genetic organization of the Pseudomonas putida plasmid pWWO-161, which encodes enzymes for the degradation of toluene and related aromatic hydrocarbons, has been investigated by transposition mutagenesis and gene cloning. Catabolic genes were localized to two clusters, one for upper pathway (hydrocarbon leads to carboxylic acid) enzymes and the other for lower pathway (carboxylic acid leads to tricarboxylic acid cycle) enzymes, that are separated by a 14-kilobase DNA segment. The physical organization of the catabolic genes thus reflects their functional organization into two regulatory blocks. The pWWO-161 DNA fragments Sst I fragment C and fragment D were cloned in a broad host range vector to produce plasmid pKT530. This hybrid encodes toluate oxygenase and all meta cleavage pathway enzymes, and it enables P. putida mt-2 and Escherichia coli K-12 cells to grow on m-toluate as sole carbon source. The pKT530 plasmid also carries xylS (a gene whose product has been postulated to regulate expression of the lower pathway genes) and the control sequences of the pathway that interact with this product, because catechol 2,3-oxygenase synthesis is specifically induced by m-toluate in both P. putida and E. coli. Evidence is presented that suggests the promoter operator of the meta pathway gene functions less effectively with the RNA polymerase or xylS product of E. coli than with the enzyme or product of P. putida. PMID:6950388

  11. Preliminary functional characterization, cloning and primary sequence of Fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa.

    PubMed

    Cabral, Hamilton; Leopoldino, Andréia M; Tajara, Eloiza H; Greene, Lewis J; Faça, Vitor M; Mateus, Rogério P; Ceron, Carlos R; de Souza Judice, Wagner A; Julianod, Luiz; Bonilla-Rodriguez, Gustavo O

    2006-01-01

    The present work reports the characterization of Fastuosain, a novel cysteine protease of 25kDa, purified from the unripe fruits of Bromelia fastuosa, a wild South American Bromeliaceae. Proteolytic activity, measured using casein and synthetic substrates, was dependent on the presence of thiol reagents, having maximum activity at pH 7.0. The present work reports cDNA cloning of Fastuosain; cDNA was amplified by PCR using specific primers. The product was 1096pb long. Mature fastuosain has 217 residues, and with the proregion has a total length of 324 residues. Its primary sequence showed high homology with ananain(74%), stem bromelain (66%) and papain (44%). PMID:16454675

  12. The GDI1 genes from Kluyveromyces lactis and Pichia pastoris: cloning and functional expression in Saccharomyces cerevisiae.

    PubMed

    Brummer, M H; Richard, P; Sundqvist, L; Väänänen, R; Keränen, S

    2001-07-01

    The nucleotide sequences of 2.8 kb and 2.9 kb fragments containing the Kluyveromyces lactis and Pichia pastoris GDI1 genes, respectively, were determined. K. lactis GDI1 was found during sequencing of a genomic library clone, whereas the P. pastoris GDI1 was obtained from a genomic library by complementing a Saccharomyces cerevisiae sec19-1 mutant strain. The sequenced DNA fragments contain open reading frames of 1338 bp (K.lactis) and 1344 bp (P. pastoris), coding for polypeptides of 445 and 447 residues, respectively. Both sequences fully complement the S. cerevisiae sec19-1 mutation. They have high degrees of homology with known GDP dissociation inhibitors from yeast species and other eukaryotes. PMID:11447595

  13. A new potassium channel toxin from the sea anemone Heteractis magnifica: isolation, cDNA cloning, and functional expression.

    PubMed

    Gendeh, G S; Young, L C; de Medeiros, C L; Jeyaseelan, K; Harvey, A L; Chung, M C

    1997-09-23

    A new potassium channel toxin, HmK, has been isolated from the sea anemone Heteractis magnifica. It inhibits the binding of [125I]-alpha-dendrotoxin (a ligand for voltage-gated K channels) to rat brain synaptosomal membranes with a Ki of about 1 nM, blocks K+ currents through Kv 1.2 channels expressed in a mammalian cell line, and facilitates acetylcholine release at the avian neuromuscular junction. HmK comprises of 35 amino acids (Mr 4055) with the sequence R1TCKDLIPVS10ECTDIRCRTS20MKYRLNLCRK30TCGSC35. A full assignment of the disulfide linkages was made by using partial reduction with tri(2-carboxyethyl)phosphine (TCEP) at acid pH and rapid alkylation with iodoacetamide. The disulfide bridges were identified as Cys3-Cys35, Cys12-Cys28, and Cys17-Cys32. A cDNA clone encoding HmK was isolated using RT-PCR from the total RNA obtained from sea anemone tentacles, while the 5'- and 3'-flanking regions of the cDNA were amplified by RACE. The full-length cDNA was 563 bp long and contained a sequence encoding a signal peptide of 39 amino acids. The coding region for matured HmK toxin was cloned and expressed as a glutathione S-transferase (GST) fusion product in the cytoplasm of Escherichia coli. After affinity purification and cleavage, the recombinant toxin was shown to be identical to native HmK in its N-terminal sequence, chromatographic behavior, and binding to dendrotoxin binding sites on rat brain membranes. PMID:9298966

  14. Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP.

    PubMed Central

    Haffner, C; Jarchau, T; Reinhard, M; Hoppe, J; Lohmann, S M; Walter, U

    1995-01-01

    The vasodilator-stimulated phosphoprotein (VASP), a substrate for cAMP- and cGMP-dependent protein kinases in vitro and in intact cells, is associated with actin filaments, focal adhesions and dynamic membrane regions. VASP, cloned here from human HL-60 and canine MDCK cells, is organized into three distinct domains. A central proline-rich domain contains a GPPPPP motif as a single copy and as a 3-fold tandem repeat, as well as three conserved phosphorylation sites for cyclic nucleotide-dependent protein kinases. A C-terminal domain contains a repetitive mixed-charge cluster which is predicted to form an alpha-helix. The hydrodynamic properties of purified human VASP together with the calculated molecular mass of cloned VASP suggest that the native protein is a homotetramer with an elongated structure. VASP over-expressed in transiently transfected BHK21 cells was predominantly detected at stress fibres, at focal adhesions and in F-actin-containing cell surface protrusions, whereas truncated VASP lacking the C-terminal domain was no longer concentrated at focal adhesions. These data indicate that the C-terminal domain is required for anchoring VASP at focal adhesion sites, whereas the central domain is suggested to mediate VASP interaction with profilin. Our results provide evidence for the structural basis by which VASP, both a target of the cAMP and cGMP signal transduction pathways and a component of the actin-based cytoskeleton, including the cytoskeleton-membrane interface, may be able to exchange signals between these networks. Images PMID:7828592

  15. Geranylgeranyl diphosphate synthases from Scoparia dulcis and Croton sublyratus. cDNA cloning, functional expression, and conversion to a farnesyl diphosphate synthase.

    PubMed

    Kojima, N; Sitthithaworn, W; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Sankaw, U

    2000-07-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene producing plants, Scoparia dulcis and Croton sublyratus, were isolated using the homology-based polymerase chain reaction method. Both cloned genes showed high amino acid sequence homology (60-70%) to other plant GGPPSs and contained highly conserved aspartate-rich motifs. The obtained clones were functionally expressed in Escherichia coli and showed sufficient GGPPS activity to catalyze the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate to form geranylgeranyl diphosphate. To investigate the factor determining the product chain length of plant GGPPSs, S. dulcis GGPPS mutants in which either the small amino acids at the fourth and fifth positions before the first aspartate-rich motif (FARM) were replaced with aromatic amino acids or in which two additional amino acids in FARM were deleted were constructed. Both mutants behaved like FPPS-like enzymes and almost exclusively produced FPP when dimethylallyl diphosphate was used as a primer substrate, and failed to accept FPP as a primer substrate. These results indicate that both small amino acids at the fourth and fifth positions before FARM and the amino acid insertion in FARM play essential roles in product length determination in plant GGPPSs. PMID:10923851

  16. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile.

    PubMed

    Cheng, Shuiyuan; Wang, Xiaohui; Xu, Feng; Chen, Qiangwen; Tao, Tingting; Lei, Jing; Zhang, Weiwei; Liao, Yongling; Chang, Jie; Li, Xingxiang

    2016-01-01

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant. PMID:27005600

  17. Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus.

    PubMed

    Niu, B-L; Shen, W-F; Liu, Y; Weng, H-B; He, L-H; Mu, J-J; Wu, Z-L; Jiang, P; Tao, Y-Z; Meng, Z-Q

    2008-06-01

    Laccase, a member of a group of proteins collectively known as multicopper oxidases, is hypothesized to play an important role in insect cuticle sclerotization by oxidizing catechols in the cuticle to their corresponding quinones, which then catalyze protein cross-linking reactions. Laccase 2 has been proved as the gene required for beetle cuticle tanning through RNA interference (RNAi) experiments on red flour beetle Tribolium castaneum. The pine sawyer beetle, Monochamus alternatus (Coleoptero: Cerambycidae) is the insect serving as a major vector of the pinewood nematode, Bursaphelenchus xylophilus, which is the causative agent for pine wilt disease. The cDNA of MaLac2 was cloned from the insect in this study. The conceptual amino-acid sequence deduced was much conserved with other known insect laccases, particularly with the enzyme of Tribolium castaneum. Injection in hemolymph of pine sawyer larva of dsRNA targeting the laccase 2 mRNA leads to important alterations of the tanning, hardening and sclerotization of the pupal and adult cuticles. Defaults appear in a dose-dependent manner and high loads of dsRNA are lethal. The decrease of the endogenous laccase 2 mRNA affects the procuticle which is thinner and without the characteristic piling up of successive layers. The observations reinforce the role of laccase 2 as an essential phenoloxidase for making cuticle. PMID:18477244

  18. Programmed cell death 4 in bacterially-challenged Apostichopus japonicus: Molecular cloning, expression analysis and functional characterization.

    PubMed

    Lv, Zhimeng; Li, Chenghua; Shao, Yina; Zhang, Weiwei; Wang, Zhenhui; Wang, Haihong

    2016-07-01

    Programmed cell death 4 (PDCD4) plays a crucial role in modulating cellular signals, mainly via TOLL cascades during the immune response. In the present study, a novel PDCD4 homologue gene (denoted as AjPDCD4) was cloned from the sea cucumber Apostichopus japonicus using RACE. The full-length AjPDCD4 cDNA comprised a 366bp 5'-UTR, a 418bp 3'-UTR, and a 1353bp open reading frame encoding a 450 amino acid residue protein with two typical MA3 domains. Phylogenetic analysis revealed that AjPDCD4 belonged to the invertebrate PDCD4 family. Spatial expression analysis indicated that AjPDCD4 mRNA transcripts are expressed at a high level in the tentacles and at a low level in muscle compared with coelomocytes. Vibrio splendidus challenge and LPS exposure could both significantly down-regulate AjPDCD4 mRNA expression. More importantly, we found that ultraviolet (UV)-induced ROS production and DNA damage were greatly repressed in AjPDCD4-knockdown coelomocytes. Meanwhile, the expression levels of the NF-kappa B homologue, p105, were synchronously up-regulated in the same conditions. All of these results indicated that AjPDCD4 is involved in modulating DNA damage and ROS production in sea cucumber, perhaps by affecting the TLR pathway. PMID:27262523

  19. Cloning of TPS gene from eelgrass species Zostera marina and its functional identification by genetic transformation in rice.

    PubMed

    Zhao, Feng; Li, Qiuying; Weng, Manli; Wang, Xiuliang; Guo, Baotai; Wang, Li; Wang, Wei; Duan, Delin; Wang, Bin

    2013-12-01

    The full-length cDNA sequence (2613 bp) of the trehalose-6-phosphate synthase (TPS) gene of eelgrass Zostera marina (ZmTPS) was identified and cloned. Z. marina is a kind of seed-plant growing in sea water during its whole life history. The open reading frame (ORF) region of ZmTPS gene encodes a protein of 870 amino acid residues and a stop codon. The corresponding genomic DNA sequence is 3770 bp in length, which contains 3 exons and 2 introns. The ZmTPS gene was transformed into rice variety ZH11 via Agrobacterium-mediated transformation method. After antibiotic screening, molecular characterization, salt-tolerance and trehalose content determinations, two transgenic lines resistant to 150 mM NaCL solutions were screened. Our study results indicated that the ZmTPS gene was integrated into the genomic DNA of the two transgenic rice lines and could be expressed well. Moreover, the detection of the transformed ZmTPS gene in the progenies of the two transgenic lines was performed from T1 to T4 generations; and results suggested that the transformed ZmTPS gene can be transmitted from parent to the progeny in transgenic rice. PMID:24035935

  20. Molecular Cloning, Expression Analysis, and Preliminarily Functional Characterization of the Gene Encoding Protein Disulfide Isomerase from Jatropha curcas.

    PubMed

    Wang, Haibo; Zou, Zhurong; Gong, Ming

    2015-05-01

    Reactive oxygen species (ROS) in plants, arising from various environmental stresses, impair the thiol-contained proteins that are susceptible to irregular oxidative formation of disulfide bonds, which might be alleviated by a relatively specific modifier called protein disulfide isomerase (PDI). From our previous data of the transcriptome and digital gene expression of cold-hardened Jatropha curcas, a PDI gene was proposed to be cold-relevant. In this study, its full-length cDNA (JcPDI) was cloned, with the size of 1649 bp containing the entire open reading frame (ORF) of 1515 bp. This ORF encodes a polypeptide of 504 amino acids with theoretical molecular weight of 56.6 kDa and pI value of 4.85. One N-terminal signal peptide (-MASKGSIWSCMFLFSLI VAISAGEG-) and the C-terminal anchoring sequence motif (-KDEL-) specific to the endoplasmic reticulum, as well as two thioredoxin domains (-CGHC-), are also found by predictions. Through semi-quantitative RT-PCR, the expression of JcPDI was characterized to be tissue-differential strongly in leaves and roots, but weakly in stems, and of cold-induced alternations. Furthermore, JcPDI overexpression in yeast could notably enhance the cold resistance of host cells. Conclusively, these results explicitly suggested a considerable association of JcPDI to cold response and a putative application potential for its correlated genetic engineering. PMID:25825250

  1. Cloning, characterization and functional analysis of two type 1 diacylglycerol acyltransferases (DGAT1s) from Tetraena mongolica.

    PubMed

    Li, Minchun; Zhao, Mingming; Wu, Hanying; Wu, Wang; Xu, Yinong

    2013-06-01

    Two cDNAs encoding putative type 1 acyl-CoA: diacylglycerol acyltransferases (DGAT1, EC 2.3.1.20), were cloned from Tetraena mongolica, an extreme xerophyte with high oil content in the stems. The 1 488-bp and 1 485-bp of the open reading frame (ORF) of the two cDNAs, designated as TmDGAT1a and TmDGAT1b, were both predicted to encode proteins of 495 and 494 amino acids, respectively. Southern blot analysis revealed that TmDGAT1a and TmDGAT1b both had low copy numbers in the T. mongolica genome. In addition to ubiquitous expression with different intensity in different tissues, including stems, leaves and roots, TmDGAT1a and TmDGAT1b, were found to be strongly induced by high salinity, drought and osmotic stress, resulting in a remarkable increase of triacylglycerol (TAG) accumulation in T. mongolica plantlets. TmDGAT1a and TmDGAT1b activities were confirmed in the yeast H1246 quadruple mutant (DGA1, LRO1, ARE1, ARE2) by restoring DGAT activity of the mutant host to produce TAG. Overexpression of TmDGAT1a and TmDGAT1b in soybean hairy roots as well as in T. mongolica calli both resulted in an increase in oil content (ranging from 37% to 108%), accompanied by altered fatty acid profiles. PMID:23480422

  2. Cloning, sequence analysis, and expression of the genes encoding lytic functions of Bacteriophage phi g1e.

    PubMed

    Oki, M; Kakikawa, M; Yamada, K; Taketo, A; Kodaira, K I

    1996-10-17

    The lysis genes of a Lactobacillus phage phi g1e were cloned, sequenced, and expressed in Escherichia coli. Nucleotide sequencing of a 3813-bp phi g1e DNA revealed five successive open reading frames (ORF), Rorf50, Rorf118, hol, and lys and Rorf175, in the same DNA strand. By comparative analysis of the DNA sequence, the putative hol product (holin) has an estimated molecular weight is 14.2 kDa, and contains two potential transmembrane helices and highly charged N- and C-termini, resembling predicted holins (which are thought to be a cytoplasmic membrane-disrupting protein) encoded by other phages such as mv1 from Lactobacillus bulgaricus, phi adh from Lactobacillus gasseri, as well as monocins from Listeria. On the other hand, the putative phi g1e lys product (lysin) of 48.4 kDa shows significant similarity with presumed muramidase, known as a cell wall peptidoglycandegrading enzyme, encoded by the Lactobacillus phage mv1 and phi adh, the Lactococcus lactis phage phi LC3, and the Streptococcus pneumoniae phages Cp-1, Cp-7 and Cp-9. When expressed in E. coli, the phi g1e lysin and/or holin decreased the cell turbidity significantly, suggesting that the phi g1e hol-lys system is involved in cytolytic process. PMID:8918256

  3. Molecular Cloning and Functional Characterization of Mannose Receptor in Zebra Fish (Danio rerio) during Infection with Aeromonas sobria.

    PubMed

    Zheng, Feifei; Asim, Muhammad; Lan, Jiangfeng; Zhao, Lijuan; Wei, Shun; Chen, Nan; Liu, Xiaoling; Zhou, Yang; Lin, Li

    2015-01-01

    Mannose receptor (MR) is a member of pattern-recognition receptors (PRRs), which plays a significant role in immunity responses. Much work on MR has been done in mammals and birds while little in fish. In this report, a MR gene (designated as zfMR) was cloned from zebra fish (Danio rerio), which is an attractive model for the studies of animal diseases. The full-length cDNA of zfMR contains 6248 bp encoding a putative protein of 1428 amino acids. The predicted amino acid sequences showed that zfMR contained a cysteine-rich domain, a single fibronectin type II (FN II) domain, eight C-type lectin-like domains (CTLDs), a transmembrane domain and a short C-terminal cytoplasmic domain, sharing highly conserved structures with MRs from the other species. The MR mRNA could be detected in all examined tissues with highest level in kidney. The temporal expression patterns of MR, IL-1β and TNF-α mRNAs were analyzed in the liver, spleen, kidney and intestine post of infection with Aeromonas sobria. By immunohistochemistry assay, slight enhancement of MR protein was also observed in the spleen and intestine of the infected zebra fish. The established zebra fish-A. sobria infection model will be valuable for elucidating the role of MR in fish immune responses to infection. PMID:25988382

  4. Molecular cloning, sequence analysis, prokaryotic expression, and function prediction of foot-specific peroxidase in Hydra magnipapillata Chinese strain.

    PubMed

    Pan, H C; Yang, H Q; Zhao, F X; Qian, X C

    2014-01-01

    The cDNA sequence of foot-specific peroxidase PPOD1 from the Chinese strain of Hydra magnipapillata was cloned by reverse transcription-polymerase chain reaction. The cDNA sequence contained a coding region with an 873-bp open reading frame, a 31-bp 5'-untranslated region, and a 36-bp 3'-untranslated region. The structure prediction results showed that PPOD1 contains 10.34% of α-helix, 38.62% of extended strand, 12.41% of β-turn, and 38.62% of random coil. The structural core was α-helix at the N terminus. The GenBank protein blast server showed that PPOD1 contains 2 fascin-like domains. In addition, high-level PPOD1 activity was only present in the ectodermal epithelial cells located on the edge of the adhesive face of the basal disc, and that these cells extended lamellipodia and filopodia when the basal disc was tightly attached to a glass slide. The fascin-like domains of Hydra PPOD1 might contribute to the bundling of the actin filament of these cells, and hence, the formation of filopodia. In conclusion, these cells might play an important role in strengthening the adsorbability of the basal disc to substrates. PMID:25177942

  5. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii. PMID:20600039

  6. Cloning and Structure-Function Analyses of Quinolone- and Acridone-producing Novel Type III Polyketide Synthases from Citrus microcarpa*

    PubMed Central

    Mori, Takahiro; Shimokawa, Yoshihiko; Matsui, Takashi; Kinjo, Keishi; Kato, Ryohei; Noguchi, Hiroshi; Sugio, Shigetoshi; Morita, Hiroyuki; Abe, Ikuro

    2013-01-01

    Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases. PMID:23963450

  7. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    PubMed

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. PMID:24256196

  8. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal

    PubMed Central

    Rana, Satiander; Lattoo, Surrinder K.; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S.; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  9. Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans.

    PubMed

    Ni, Xuemei; Tian, Zhendong; Liu, Jun; Song, Botao; Xie, Conghua

    2010-04-15

    Really interesting new gene (RING) finger proteins function as ubiquitin ligase and play key roles in biotic and abiotic stresses. A new RING-H2 finger protein gene, StRFP1, was cloned from Phytophthora infestans-inoculated leaves of potato (Solanum tuberosum) clone 386209.10, which is free of R1-R11 genes. The deduced amino acid sequence was characterized by an N-terminal transmembrane domain, a GLD region and a RING-H2 finger signature. StRFP1 is homologous to the tobacco NtACRE132 protein and belongs to the ATL family. The DNA gel blot analysis and mapping revealed that StRFP1, an intron-free gene, had one to two copies in the potato genome and was located on chromosome 3. RT-PCR assays showed that StRFP1 was constitutively expressed in potato plants and significantly induced in detached potato leaves by P. infestans and plant defense-related signal molecules, abscisic acid, salicylic acid and methyl jasmonate. Transient expression studies revealed that StRFP1 fused with GFP localized to the plasma membrane or out of that in onion epidermal cells. The function of StRFP1 in potato resistance against late blight was further investigated by constructing overexpression and RNA interference (RNAi) vectors, which were introduced into potato cv. E-potato 3, respectively. By challenging the detached leaves with mixture races of P. infestans, all of the StRFP1-overexpressing plants displayed slower disease development than non-transformed controls in terms of the lesion growth rate (LGR). In contrast, StRFP1-silencing plants through RNAi were more susceptible to pathogen infection. The present results demonstrate that StRFP1 contributes to broad-spectrum resistance against P. infestans in potato. PMID:20042252

  10. Molecular cloning, characterization and functional assessment of the myosin light polypeptide chain 2 (mylz2) promoter of farmed carp, Labeo rohita.

    PubMed

    Mohanta, Ramya; Jayasankar, Pallipuram; Das Mahapatra, Kanta; Saha, Jatindra Nath; Barman, Hirak Kumar

    2014-08-01

    We cloned the 5'-flanking region (1.2 kb) of a muscle-specific gene, encoding myosin light chain 2 polypeptide (mylz2) of a farmed carp, Labeo rohita (rohu). Sequence analysis using TRANSFAC-database search identified the consensus cis acting regulatory elements of TATA-box and E (CANNTG)-box, including the monocyte enhancer factor 2 motif, implying that it is likely to be a functional promoter. The proximal promoter (~620 bp) was highly homologous with that of Danio rerio (zebrafish) as compared to Channa striatus (snakehead murrel) counterparts and showed less identity with Sparus auratus (gilthead sea bream), Xenopus laevis (African clawed frog) and Rattus norvegicus (Norway rat). Direct muscular (skeletal) injection of the construct containing the mylz2 promoter (0.6 kb) fused to a green fluorescent protein (GFP) reporter gene showed efficient expression in L. rohita, validating its functional activity. Further, the functional activity was confirmed by the observation that this promoter drove GFP expression in the skeletal muscle of transgenic rohu. The promoter may have potential applications for value-addition in ornamental fishes and studying gene regulatory functions. PMID:24740361

  11. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    SciTech Connect

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa . E-mail: ninio@chups.jussieu.fr

    2006-08-04

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation.

  12. The Cloning and Functional Characterization of Peach CONSTANS and FLOWERING LOCUS T Homologous Genes PpCO and PpFT

    PubMed Central

    Nguyen, Thi Hung; Liang, Huike; Wang, Rui; Liu, Xiayan; Li, Tianhong; Qi, Yafei; Yu, Fei

    2015-01-01

    Flowering is an essential stage of plant growth and development. The successful transition to flowering not only ensures the completion of plant life cycles, it also serves as the basis for the production of economically important seeds and fruits. CONSTANS (CO) and FLOWERING LOCUS T (FT) are two genes playing critical roles in flowering time control in Arabidopsis. Through homology-based cloning and rapid-amplifications of cDNA ends (RACE), we obtained full-lengths cDNA sequences of Prunus persica CO (PpCO) and Prunus persica FT (PpFT) from peach (Prunus persica (L.) Batsch) and investigated their functions in flowering time regulation. PpCO and PpFT showed high homologies to Arabidopsis CO and FT at DNA, mRNA and protein levels. We showed that PpCO and PpFT were nucleus-localized and both showed transcriptional activation activities in yeast cells, consistent with their potential roles as transcription activators. Moreover, we established that the over-expression of PpCO could restore the late flowering phenotype of the Arabidopsis co-2 mutant, and the late flowering defect of the Arabidopsis ft-1 mutant can be rescued by the over-expression of PpFT, suggesting functional conservations of CO and FT genes in peach and Arabidopsis. Our results suggest that PpCO and PpFT are homologous genes of CO and FT in peach and they may function in regulating plant flowering time. PMID:25905637

  13. Cloning and tissue-specific functional characterization of the promoter of the rat diazepam binding inhibitor, a peptide with multiple biological actions.

    PubMed Central

    Kolmer, M; Alho, H; Costa, E; Pani, L

    1993-01-01

    Diazepam binding inhibitor (DBI) is a 10-kDa polypeptide that regulates mitochondrial steroidogenesis, glucose-induced insulin secretion, metabolism of acyl-CoA esters, and the action of gamma-aminobutyrate on GABAA receptors. To investigate the regulation of DBI gene expression, three positive clones were isolated from a rat genomic library. One of them contained a DBI genomic DNA fragment encompassing 4 kb of the 5' untranslated region, the first two exons, and part of the second intron of the DBI gene. Two other overlapping clones contained a processed DBI pseudogene. Several transcription initiation sites were detected by RNase protection and primer extension assays. Different tissues exhibited clear differences in the efficiencies of transcription startpoint usage. Transient expression experiments using DNA fragments of different length from the 5' untranslated region of the DBI gene showed that basal promoter activity required 146 bp of the proximal DBI sequence, whereas full activation was achieved with 423 bp of the 5' untranslated region. DNase I protection experiments with liver nuclear proteins demonstrated three protected regions at nt -387 to -333, -295 to -271, and -176 to -139 relative to the ATG initiation codon; in other tissues the pattern of protection was different. In gel shift assays the most proximal region (-176 to -139) was found to bind several general transcription factors as well as cell type-restricted nuclear proteins which may be related to specific regulatory patterns in different tissues. Thus, the DBI gene possesses some features of a housekeeping gene but also includes a variable regulation which appears to change with the function that it subserves in different cell types. Images Fig. 2 Fig. 4 Fig. 5 PMID:7690962

  14. A Novel Ubiquitin-Specific Protease, UBP43, Cloned from Leukemia Fusion Protein AML1-ETO-Expressing Mice, Functions in Hematopoietic Cell Differentiation

    PubMed Central

    Liu, Li-Qin; Ilaria, Robert; Kingsley, Paul D.; Iwama, Atsushi; van Etten, Richard A.; Palis, James; Zhang, Dong-Er

    1999-01-01

    Using PCR-coupled subtractive screening-representational difference analysis, we have cloned a novel gene from AML1-ETO knockin mice. This gene is highly expressed in the yolk sac and fetal liver of the knockin mice. Nucleotide sequence analysis indicates that its cDNA contains an 1,107-bp open reading frame encoding a 368-amino-acid polypeptide. Further protein sequence and protein translation analysis shows that it belongs to a family of ubiquitin-specific proteases (UBP), and its molecular mass is 43 kDa. Therefore, we have named this gene UBP43. Like other ubiquitin proteases, the UBP43 protein has deubiquitinating enzyme activity. Protein ubiquitination has been implicated in many important cellular events. In wild-type adult mice, UBP43 is highly expressed in the thymus and in peritoneal macrophages. Among nine different murine hematopoietic cell lines analyzed, UBP43 expression is detectable only in cell lines related to the monocytic lineage. Furthermore, its expression is regulated during cytokine-induced monocytic cell differentiation. We have investigated its function in the hematopoietic myeloid cell line M1. UBP43 was introduced into M1 cells by retroviral gene transfer, and several high-expressing UBP43 clones were obtained for further study. Morphologic and cell surface marker examination of UBP43/M1 cells reveals that overexpression of UBP43 blocks cytokine-induced terminal differentiation of monocytic cells. These data suggest that UBP43 plays an important role in hematopoiesis by modulating either the ubiquitin-dependent proteolytic pathway or the ubiquitination state of another regulatory factor(s) during myeloid cell differentiation. PMID:10082570

  15. A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation.

    PubMed

    Liu, L Q; Ilaria, R; Kingsley, P D; Iwama, A; van Etten, R A; Palis, J; Zhang, D E

    1999-04-01

    Using PCR-coupled subtractive screening-representational difference analysis, we have cloned a novel gene from AML1-ETO knockin mice. This gene is highly expressed in the yolk sac and fetal liver of the knockin mice. Nucleotide sequence analysis indicates that its cDNA contains an 1,107-bp open reading frame encoding a 368-amino-acid polypeptide. Further protein sequence and protein translation analysis shows that it belongs to a family of ubiquitin-specific proteases (UBP), and its molecular mass is 43 kDa. Therefore, we have named this gene UBP43. Like other ubiquitin proteases, the UBP43 protein has deubiquitinating enzyme activity. Protein ubiquitination has been implicated in many important cellular events. In wild-type adult mice, UBP43 is highly expressed in the thymus and in peritoneal macrophages. Among nine different murine hematopoietic cell lines analyzed, UBP43 expression is detectable only in cell lines related to the monocytic lineage. Furthermore, its expression is regulated during cytokine-induced monocytic cell differentiation. We have investigated its function in the hematopoietic myeloid cell line M1. UBP43 was introduced into M1 cells by retroviral gene transfer, and several high-expressing UBP43 clones were obtained for further study. Morphologic and cell surface marker examination of UBP43/M1 cells reveals that overexpression of UBP43 blocks cytokine-induced terminal differentiation of monocytic cells. These data suggest that UBP43 plays an important role in hematopoiesis by modulating either the ubiquitin-dependent proteolytic pathway or the ubiquitination state of another regulatory factor(s) during myeloid cell differentiation. PMID:10082570

  16. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  17. Molecular cloning and functional analysis of a H(+)-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China.

    PubMed

    Wang, Junling; Li, Tao; Wu, Xiaogang; Zhao, Zhiwei

    2014-01-01

    Phosphate transporters (PTs), as entry points for phosphorus (P) in organisms, are involved in a number of P nutrition processes such as phosphate uptake, transport, and transfer. In the study, a PT gene 1632 bp long (named BePT) was cloned, identified, and functionally characterized from Boletus edulis. BePT was expected to encode a polypeptide with 543 amino acid residues. The BePT polypeptide belonged to the major facilitator superfamily and showed a high degree of sequence identity to the Pht1 family. A topology model revealed that BePT exhibited 12 transmembrane helices, divided into two halves, and connected by a large hydrophilic loop in the middle. A yeast mutant complementation analysis suggested that BePT was a functional PT which mediated orthophosphate uptake of yeast at micromolar concentrations. Green fluorescent protein-BePT fusion proteins expressed were extensively restricted to the plasma membrane in BePT transformed yeast, and its activity was dependent on electrochemical membrane potential. In vitro, quantitative PCR confirmed that the expression of BePT was significantly upregulated at lower phosphorus availability, which may enhance phosphate uptake and transport under phosphate starvation. Our results suggest that BePT plays a key role in phosphate acquisition in the ectomycorrhizal fungus B. edulis. PMID:24863474

  18. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  19. Stable yeast transformants that secrete functional. cap alpha. -amylase encoded by cloned mouse pancreatic cDNA

    SciTech Connect

    Filho, S.A.; Galembeck, E.V.; Faria, J.B.; Frascino, A.C.S.

    1986-04-01

    Mouse pancreatic ..cap alpha..-amylase complementary DNA was inserted into a yeast shuttle vector after the Saccharomyces cerevisiae MF..cap alpha..1 promoter and secretion signals coding sequences. When transformed with the recombinant plasmid, S. cerevisiae cells were able to synthesize and secrete functional ..cap alpha..-amylase, efficiently hydrolyzing starch present in the culture medium. Stable amylolytic cells were obtained from different yeast strains. This work represents a significant step towards producing yeast that can convert starchy materials directly to ethanol.

  20. Mismatch Repair in Schizosaccharomyces Pombe Requires the Mutl Homologous Gene Pms1: Molecular Cloning and Functional Analysis

    PubMed Central

    Schar, P.; Baur, M.; Schneider, C.; Kohli, J.

    1997-01-01

    Homologues of the bacterial mutS and mutL genes involved in DNA mismatch repair have been found in organisms from bacteria to humans. Here, we describe the structure and function of a newly identified Schizosaccharomyces pombe gene that encodes a predicted amino acid sequence of 794 residues with a high degree of homology to MutL related proteins. On the basis of its closer relationship to the eukaryotic ``PMS'' genes than to the ``MLH'' genes, we have designated the S. pombe homologue pms1. Disruption of the pms1 gene causes a significant increase of spontaneous mutagenesis as documented by reversion rate measurements. Tetrad analyses of crosses homozygous for the pms1 mutation reveal a reduction of spore viability from >92% to 80% associated with a low proportion (~50%) of meioses producing four viable spores and a significant, allele-dependent increase of the level of post-meiotic segregation of genetic marker allele pairs. The mutant phenotypes are consistent with a general function of pms1 in correction of mismatched base pairs arising as a consequence of DNA polymerase errors during DNA synthesis, or of hybrid DNA formation between homologous but not perfectly complementary DNA strands during meiotic recombination. PMID:9258673

  1. Cloning of the Cryptochrome-Encoding PeCRY1 Gene from Populus euphratica and Functional Analysis in Arabidopsis

    PubMed Central

    Mao, Ke; Jiang, Libo; Bo, Wenhao; Xu, Fang; Wu, Rongling

    2014-01-01

    Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica), and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR) domain as well as a C-terminal DQXVP-acidic-STAES (DAS) domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar. PMID:25503486

  2. Molecular cloning and functional analysis of nucleotide-binding oligomerization domain-containing protein 1 in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Jang, Ju Hye; Kim, Hyun; Kim, Yu Jin; Cho, Ju Hyun

    2016-04-01

    NOD1 has important roles in innate immunity as sensor of microbial components derived from bacterial peptidoglycan. In this study, we identified genes encoding components of the NOD1 signaling pathway, including NOD1 (OmNOD1) and RIP2 (OmRIP2) from rainbow trout, Oncorhynchus mykiss, and investigated whether OmNOD1 has immunomodulating activity in a rainbow trout hepatoma cell line RTH-149 treated with NOD1-specific ligand (iE-DAP). The deduced amino acid sequence of OmNOD1 contained conserved CARD, NOD and LRR domains. Loss-of-function and gain-of-function experiments indicated that OmNOD1 is involved in the expression of pro-inflammatory cytokines. Silencing of OmNOD1 in RTH-149 cells treated with iE-DAP decreased the expression of IL-1β, IL-6, IL-8 and TNF-α. Conversely, overexpression of OmNOD1 resulted in up-regulation of IL-1β, IL-6, IL-8 and TNF-α expression. In addition, RIP2 inhibitor (gefitinib) significantly decreased the expression of these pro-inflammatory cytokines induced by iE-DAP in RTH-149 cells. These findings highlight the important role of NOD1 signaling pathway in fish in eliciting innate immune response. PMID:26876355

  3. Molecular Cloning and Functional Characterization of Two Brachypodium distachyon UBC13 Genes Whose Products Promote K63-Linked Polyubiquitination

    PubMed Central

    Guo, Huiping; Wen, Rui; Liu, Zhi; Datla, Raju; Xiao, Wei

    2016-01-01

    Living organisms are constantly subject to DNA damage from environmental sources. Due to the sessile nature of plants, UV irradiation is a major genotoxic agent and imposes a significant threat on plant survival, genome stability and crop yield. In addition, other environmental chemicals can also influence the stability of the plant genome. Eukaryotic organisms have evolved a mechanism to cope with replication-blocking lesions and stabilize the genome. This mechanism is known as error-free DNA damage tolerance, and is mediated by K63-linked PCNA polyubiquitination. Genes related to K63-linked polyubiquitination have been isolated recently from model plants like Arabidopsis and rice, but we are unaware of such reports on the crop model Brachypodium distachyon. Here, we report the identification and functional characterization of two B. distachyon UBC13 genes. Both Ubc13s form heterodimers with Uevs from other species, which are capable of catalyzing K63 polyubiquitination in vitro. Both genes can functionally rescue the yeast ubc13 null mutant from killing by DNA-damaging agents. These results suggest that Ubc13-Uev-promoted K63-linked polyubiquitination is highly conserved in eukaryotes including B. distachyon. Consistent with recent findings that K63-linked polyubiquitination is involved in several developmental and stress-responsive pathways, the expression of BdUbc13s appears to be constitutive and is regulated by abnormal temperatures. PMID:26779244

  4. Cloning, expression analysis, and functional characterization of two secretory phospholipases A2 in durum wheat (Triticum durum Desf.).

    PubMed

    Mazzucotelli, Elisabetta; Trono, Daniela

    2015-12-01

    We previously isolated four cDNAs in durum wheat, TdsPLA2I, TdsPLA2II, TdsPLA2III and TdsPLA2IV, that encode proteins with homology to plant secretory phospholipases A2 (sPLA2s) (Verlotta et al., Int. J. Mol. Sci., 14, 2013, 5146-5169). In this study, we have further characterized TdsPLA2II and TdsPLA2III sequences that, on the basis of our previous findings, might encode sPLA2 isoforms with different features. Functional analysis revealed that, similarly to other known sPLA2s, TdsPLA2II and TdsPLA2III have an optimum at pH 9.0, require Ca(2+), are heat stable, and are inhibited by the disulfide-bond-reducing agent dithiothreitol. However, differences emerged between these TdsPLA2 isoforms. Transcript analysis revealed that the TdsPLA2III gene is highly up-regulated under different environmental stresses; conversely, the TdsPLA2II gene is expressed at constant levels under almost all of the stress conditions examined. Moreover, TdsPLA2II is saturated at micromolar substrate and Ca(2+) concentrations, whereas TdsPLA2III requires millimolar concentrations to reach maximal activity. This suggests that TdsPLA2II normally functions under optimal conditions in vivo, whereas TdsPLA2III is only partially activated, depending on the specific phospholipid and Ca(2+) levels. Altogether these data lead to the hypothesis that in vivo TdsPLA2II and TdsPLA2III are differently regulated at both molecular and biochemical level and that TdsPLA2III plays a major role in durum wheat response to adverse environmental conditions. PMID:26706080

  5. Molecular Cloning and Functional Analysis of UV RESISTANCE LOCUS 8 (PeUVR8) from Populus euphratica

    PubMed Central

    Mao, Ke; Wang, Lina; Li, Yuan-Yuan; Wu, Rongling

    2015-01-01

    Ultraviolet-B (UV-B; 280–315 nm) light, which is an integral part of the solar radiation reaching the surface of the Earth, induces a broad range of physiological responses in plants. The UV RESISTANCE LOCUS 8 (UVR8) protein is the first and only light photoreceptor characterized to date that is specific for UV-B light and it regulates various aspects of plant growth and development in response to UV-B light. Despite its involvement in the control of important plant traits, most studies on UV-B photoreceptors have focused on Arabidopsis and no data on UVR8 function are available for forest trees. In this study, we isolated a homologue of the UV receptor UVR8 of Arabidopsis, PeUVR8, from Populus euphratica (Euphrates poplar) and analyzed its structure and function in detail. The deduced PeUVR8 amino acid sequence contained nine well-conserved regulator of chromosome condensation 1 (RCC1) repeats and the region 27 amino acids from the C terminus (C27) that interact with COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC1). Secondary and tertiary structure analysis showed that PeUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis thaliana. Using heterologous expression in Arabidopsis, we showed that PeUVR8 overexpression rescued the uvr8 mutant phenotype. In addition, PeUVR8 overexpression in wild-type background seedlings grown under UV-B light inhibited hypocotyl elongation and enhanced anthocyanin accumulation. Furthermore, we examined the interaction between PeUVR8 and AtCOP1 using a bimolecular fluorescence complementation (BiFC) assay. Our data provide evidence that PeUVR8 plays important roles in the control of photomorphogenesis in planta. PMID:26171608

  6. Molecular cloning and functional characterization of two forms of Pax8 in the rainbow trout, Oncorhynchus mykiss

    PubMed Central

    Katagiri, Nobuto; Uemae, Youji; Sakamoto, Joe; Hidaka, Yoshie; Susa, Takao; Kato, Yukio; Kimura, Shioko; Suzuki, Masakazu

    2014-01-01

    We have identified two distinct Pax8 (a and b) mRNAs from the thyroid gland of the rainbow trout (Oncorhynchus mykiss), which seemed to be generated by alternative splicing. Both Pax8a and Pax8b proteins were predicted to possess the paired domain, octapeptide, and partial homeodomain, while Pax8b lacked the carboxy-terminal portion due to an insertion in the coding region of the mRNA. RT-PCR analysis showed each of Pax8a and Pax8b mRNAs to be abundantly expressed in the thyroid and kidney. In situ hybridization histochemistry further detected the expression of Pax8 mRNA in the epithelial cells of the thyroid follicles of the adult trout and in the thyroid primordial cells of the embryo. The functional properties of Pax8a and Pax8b were investigated by dual luciferase assay. The transcriptional regulation by the rat thyroid peroxidase (TPO) promoter was found to be increased by Pax8a, but not by Pax8b. Pax8a further showed synergistic transcriptional activity with rat Nkx2-1 for the human TPO upstream region including the enhancer and promoter. On the other hand, Pax8b decreased the synergistic activity of Pax8a and Nkx2-1. Electrophoretic mobility shift assay additionally indicated that not only Pax8a but also Pax8b can bind to the TPO promoter and enhancer, implying that the inhibitory effect of Pax8b might result from the lack of the functional carboxy-terminal portion. Collectively, the results suggest that for the trout thyroid gland, Pax8a may directly increase TPO gene expression in cooperation with Nkx2-1 while Pax8b may work as a non-activating competitor for the TPO transcription. PMID:24380675

  7. Molecular Cloning and Functional Analysis of UV RESISTANCE LOCUS 8 (PeUVR8) from Populus euphratica.

    PubMed

    Mao, Ke; Wang, Lina; Li, Yuan-Yuan; Wu, Rongling

    2015-01-01

    Ultraviolet-B (UV-B; 280-315 nm) light, which is an integral part of the solar radiation reaching the surface of the Earth, induces a broad range of physiological responses in plants. The UV RESISTANCE LOCUS 8 (UVR8) protein is the first and only light photoreceptor characterized to date that is specific for UV-B light and it regulates various aspects of plant growth and development in response to UV-B light. Despite its involvement in the control of important plant traits, most studies on UV-B photoreceptors have focused on Arabidopsis and no data on UVR8 function are available for forest trees. In this study, we isolated a homologue of the UV receptor UVR8 of Arabidopsis, PeUVR8, from Populus euphratica (Euphrates poplar) and analyzed its structure and function in detail. The deduced PeUVR8 amino acid sequence contained nine well-conserved regulator of chromosome condensation 1 (RCC1) repeats and the region 27 amino acids from the C terminus (C27) that interact with COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC1). Secondary and tertiary structure analysis showed that PeUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis thaliana. Using heterologous expression in Arabidopsis, we showed that PeUVR8 overexpression rescued the uvr8 mutant phenotype. In addition, PeUVR8 overexpression in wild-type background seedlings grown under UV-B light inhibited hypocotyl elongation and enhanced anthocyanin accumulation. Furthermore, we examined the interaction between PeUVR8 and AtCOP1 using a bimolecular fluorescence complementation (BiFC) assay. Our data provide evidence that PeUVR8 plays important roles in the control of photomorphogenesis in planta. PMID:26171608

  8. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  9. Molecular Cloning and Functional Characterization of a Novel Isoflavone 3′-O-methyltransferase from Pueraria lobata

    PubMed Central

    Li, Jia; Li, Changfu; Gou, Junbo; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate 3′-, 4′- and 7-O-methylated isoflavones and many of these methylated compounds exhibit various pharmacological activities. Either the 4′- or 7-O-methylation activity has been investigated at molecular levels in several legume species. However, the gene encoding the isoflavone 3′-O-methyltransferase (OMT) has not yet been isolated from any plant species. In this study, we reported the first cDNA encoding the isoflavone 3′-OMT from P. lobata (designated PlOMT4). Heterologous expressions in yeast and Escherichia coli cells showed that the gene product exhibits an enzyme activity to methylate the 3′-hydroxy group of the isoflavone substrate. The transcript abundance of PlOMT4 matches well with its enzymatic product in different organs of P. lobata and in the plant roots in response to methyl jasmonate elicitation. Integration of the biochemical with metabolic and transcript data supported the proposed function of PlOMT4. The identification of PlOMT4 would not only help to understand the isoflavonoid metabolism in P. lobata but also potentially provide an enzyme catalyst for methylating existing drug candidates to improve their hydrophobicity. PMID:27458460

  10. Molecular cloning and characterization of a novel bi-functional α-amylase/subtilisin inhibitor from Hevea brasiliensis.

    PubMed

    Bunyatang, Orawan; Chirapongsatonkul, Nion; Bangrak, Phuwadol; Henry, Robert; Churngchow, Nunta

    2016-04-01

    A novel cDNA encoding a bi-functional α-amylase/subtilisin inhibitor (HbASI) was isolated from rubber (Hevea brasiliensis) leaves cultivar RRIM600. The HbASI had strong homology with the soybean trypsin inhibitor (Kunitz) family of protease inhibitors. Its putative amino acid sequence was similar to that of the α-amylase/subtilisin inhibitor from Ricinus communis (72% identity). Genomic sequencing indicated that the HbASI gene contained no introns. The messenger RNA of HbASI was detected in leaf, hypocotyl and root. The recombinant HbASI expressed extracellularly in Pichia pastoris exhibited inhibitory activity against α-amylase from Aspergillus oryzae, trypsin and subtilisin A. The HbASI gene was induced in the rubber leaves infected with a rubber tree pathogen, Phytophthora palmivora. It was also enhanced by salicylic acid (SA) treatment and mechanical wounding. In addition, the biological activity of the HbASI protein involving in the plant defence responses was also investigated. The HbASI at a concentration of 0.16 mg mL(-1) could inhibit the mycelium growth of P. palmivora. These data suggested that the HbASI protein might play a crucial role in defence against pathogen of rubber trees. PMID:26854410

  11. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon.

    PubMed

    Nagatomo, Yoshihisa; Usui, Shiori; Ito, Takamitsu; Kato, Akira; Shimosaka, Makoto; Taguchi, Goro

    2014-11-01

    C-Glycosides are characterized by their C-C bonds in which the anomeric carbon of the sugar moieties is directly bound to the carbon atom of aglycon. C-Glycosides are remarkably stable, as their C-C bonds are resistant to glycosidase or acid hydrolysis. A variety of plant species are known to accumulate C-glycosylflavonoids; however, the genes encoding for enzymes that catalyze C-glycosylation of flavonoids have been identified only from Oryza sativa (rice) and Zea mays (maize), and have not been identified from dicot plants. In this study, we identified the C-glucosyltransferase gene from the dicot plant Fagopyrum esculentum M. (buckwheat). We purified two isozymes from buckwheat seedlings that catalyze C-glucosylation of 2-hydroxyflavanones, which are expressed specifically in the cotyledon during seed germination. Following purification we isolated the cDNA corresponding to each isozyme [FeCGTa (UGT708C1) and FeCGTb (UGT708C2)]. When expressed in Escherichia coli, both proteins demonstrated C-glucosylation activity towards 2-hydroxyflavanones, dihydrochalcone, trihydroxyacetophenones and other related compounds with chemical structures similar to 2',4',6'-trihydroxyacetophenone. Molecular phylogenetic analysis of plant glycosyltransferases shows that flavonoid C-glycosyltransferases form a different clade with other functionally analyzed plant glycosyltransferases. PMID:25142187

  12. Zebrafish Hoxa and Evx-2 genes: cloning, developmental expression and implications for the functional evolution of posterior Hox genes.

    PubMed

    Sordino, P; Duboule, D; Kondo, T

    1996-10-01

    Vertebrate Hox genes are required for the establishment of regional identities along body axes. This gene family is strongly conserved among vertebrates, even in bony fish which display less complex ranges of axial morphologies. We have analysed the structural organization and expression of Abd-B related zebrafish HoxA cluster genes (Hoxa-9, Hoxa-10, Hoxa-11 and Hoxa-13) as well as of Evx-2, a gene closely linked to the HoxD complex. We show that the genomic organization of Hoxa genes in fish resembles that of tetrapods albeit intergenic distances are shorter. During development of the fish trunk, Hoxa genes are coordinately expressed, whereas in pectoral fins, they display transcript domains similar to those observed in developing tetrapod limbs. Likewise, the Evx-2 gene seems to respond to both Hox- and Evx-types of regulation. During fin development, this latter gene is expressed as the neighbouring Hox genes, in contrast to its expression in the central nervous system which does not comply with colinearity and extends up to anterior parts of the brain. These results are discussed in the context of the functional evolution of Hoxa versus Hoxd genes and their different roles in building up paired appendages. PMID:8951794

  13. Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli.

    PubMed

    Long, Feng; Rouquette-Loughlin, Corinne; Shafer, William M; Yu, Edward W

    2008-09-01

    Active efflux of antimicrobial agents is one of the most important adapted strategies that bacteria use to defend against antimicrobial factors that are present in their environment. The NorM protein of Neisseria gonorrhoeae and the YdhE protein of Escherichia coli have been proposed to be multidrug efflux pumps that belong to the multidrug and toxic compound extrusion (MATE) family. In order to determine their antimicrobial export capabilities, we cloned, expressed, and purified these two efflux proteins and characterized their functions both in vivo and in vitro. E. coli strains expressing norM or ydhE showed elevated (twofold or greater) resistance to several antimicrobial agents, including fluoroquinolones, ethidium bromide, rhodamine 6G, acriflavine, crystal violet, berberine, doxorubicin, novobiocin, enoxacin, and tetraphenylphosphonium chloride. When they were expressed in E. coli, both transporters reduced the levels of ethidium bromide and norfloxacin accumulation through a mechanism requiring the proton motive force, and direct measurements of efflux confirmed that NorM behaves as an Na(+)-dependent transporter. The capacities of NorM and YdhE to recognize structurally divergent compounds were confirmed by steady-state fluorescence polarization assays, and the results revealed that these transporters bind to antimicrobials with dissociation constants in the micromolar region. PMID:18591276

  14. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae)

    PubMed Central

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-01-01

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes. PMID:27404087

  15. Gene cloning and functional analysis of a second delta 6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus.

    PubMed

    Sakuradani, Eiji; Shimizu, Sakayu

    2003-04-01

    We demonstrated that Mortierella alpina 1S-4 has two delta 6-desaturases, which are involved in the desaturation of linoleic acid to gamma-linolenic acid. For one of the two delta 6-desaturases, designated as delta 6I, gene cloning and its heterologous expression in a fungus, Aspergillus oryzae, has previously been reported. In addition, we indicated in this paper that there is an isozyme of the two delta 6-desaturases, designated as delta 6II, in M. alpina 1S-4. The predicted amino acid sequences of the Mortierella delta 6-desaturases were similar to those of ones from other organisms, i.e. borage and Caenorhabditis elegans, and had a cytochrome b5-like domain at the N-terminus, being different from the yeast delta 9-desaturase, which has the corresponding domain at the C-terminus. The full-length delta 6II cDNA was expressed in A. oryzae, resulting in the accumulation of gamma-linolenic acid (which was not detected in the control Aspergillus) up to 37% of the total fatty acids. The analysis of real-time quantitative PCR (RTQ-PCR) showed that the quantity of delta 6I RNA was 2.4-, 9-, and 17-fold higher than that of delta 6II RNA on 2, 3, and 4 days in M. alpina 1S-4, respectively. M. alpina 1S-4 is the first fungus to be confirmed to have two functional delta 6-desaturase genes. PMID:12784608

  16. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae).

    PubMed

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-01-01

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes. PMID:27404087

  17. Cloning and functional characterization of a GNA-like lectin from Chinese Narcissus (Narcissus tazetta var. Chinensis Roem).

    PubMed

    Gao, Zhi M; Zheng, Bo; Wang, Wen Y; Li, Qiang; Yuan, Qi P

    2011-06-01

    A full-length cDNA encoding Narcissus tazetta lectin (NTL) was isolated from Chinese narcissus (N. tazetta var. Chinensis Roem). The open reading frame (ORF) was 519 bp long and encoded 172 amino acids with a theoretical isoelectric point of 5.27 and a calculated molecular mass of 18.6 kDa. Conserved domain analysis indicated that it possessed three D-(+)-mannose-binding sites, presumed to be similar to those of Galanthus nivalis agglutinin (GNA)-like lectins. A recombinant (glutathione S-transferase) GST-NTL fusion protein of around 40 kDa was successfully synthesized in vitro. Lysates of cells expressing this recombinant protein exhibited significant hemagglutinating activity [418 hemagglutinating units (HU)], as did the purified protein (265 HU). Sugar specificity assays suggested that mannose is the only sugar that significantly inhibits this hemagglutinating activity, confirming that NTL is a member of the GNA-like lectin family. NTL is highly transcribed in flowers, leaves and roots, but less so in scales. However, similar levels of the NTL protein were observed in all four of these organs by western blotting. A fluorescent NTL-GFP (green fluorescent protein) fusion protein was found to be primarily localized in the vacuole of transformed onion epidermal cells, indicating that NTL may be a vacuolar storage protein. This is the first study in which the function of NTL has been examined and provides a considerable body of data concerning its physiological role in Chinese narcissus. The results obtained may be useful in the molecular engineering of plants with enhanced tolerance of biotic and abiotic stresses. Moreover, they may be relevant to medical applications of lectins. PMID:21261630

  18. Group III human metabotropic glutamate receptors 4, 7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells.

    PubMed

    Wu, S; Wright, R A; Rockey, P K; Burgett, S G; Arnold, J S; Rosteck, P R; Johnson, B G; Schoepp, D D; Belagaje, R M

    1998-01-01

    Cloning and expression in a stable mammalian cell line co-transfected with a glutamate transporter (RGT cells) were used as tools for studying the functions and pharmacological properties of group III metabotropic glutamate receptors (mGluRs). Complementary DNAs (cDNAs) encoding the human mGluR4, human mGluR7, and human mGluR8 were isolated from human cerebellum, fetal brain or retinal cDNA libraries. The human mGluR4, mGluR7 and mGluR8 receptors were 912, 915 and 908 amino acid residues long and share 67-70% amino acid similarity with each other and 42-45% similarity with the members of mGluR subgroups I and II. The human mGluR4 and mGluR7 had amino acid identity of 96% and 99.5% with rat mGluR4 and 7, respectively, whereas the human mGluR8 has 98.8% amino acid identity with the mouse mGluR8. The nucleotide and amino acid sequences in the coding region of human mGluR4 and mGluR7 were found to be identical to the previously published sequences by Flor et al. and Makoff et al. Following stable expression in RGT cells, highly significant inhibitions of forskolin stimulation of cAMP production by group III agonists were found for each receptor. The relative potencies of the group III agonist L-AP4 varied greatly between the group III clones, being mGluR8>mGluR4 > mGluR7. The reported group II mGluR agonist L-CCG-I was a highly potent mGluR8 agonist (EC50=0.35 microM), with significant agonist activities at both mGluR4 (EC50=3.7 microM) and mGluR7 (EC50=47 microM). The antagonist potency of the purported group III mGluR antagonist MPPG also varied among the receptors being human mGluR8 > mGluR4 = mGluR7. The expression and second messenger coupling of human group III mGluRs expressed in the RGT cell line are useful to clearly define the subtype selectivities of mGluR ligands. PMID:9473604

  19. Multipartite asymmetric quantum cloning

    SciTech Connect

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-10-15

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M{sub A} clones with fidelity F{sup A} and another set of M{sub B} clones with fidelity F{sup B}, the trade-off between these fidelities is analyzed, and particular cases of optimal N{yields}M{sub A}+M{sub B} cloning machines are exhibited. We also present an optimal 1{yields}1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.

  20. Molecular Cloning, Functional Characterization and Nutritional Regulation of the Putative Elongase Elovl5 in the Orange-Spotted Grouper (Epinephelus coioides)

    PubMed Central

    Li, Songlin; Yuan, Yuhui; Wang, Tianjiao; Xu, Wei; Li, Mingzhu; Mai, Kangsen; Ai, Qinghui

    2016-01-01

    The enzymes involved in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) are widely studied in fish species, as fish are the main source of n-3 LC-PUFAs for human beings. In the present study, a putative gene for elovl5, which encodes a key enzyme involved in LC-PUFA synthesis, was cloned and functionally characterized, and its transcription in response to dietary n-3 LC-PUFA exposure was investigated. Moreover, cell transfection and luciferase assays were used to explore the mechanism underlying the regulation of elovl5. The full-length cDNA of elovl5 was 1242 bp (excluding the polyA tail), including an 885 bp coding region encoding a 295 amino acid protein that possesses all of the characteristic features of elovl proteins. Functional characterization of heterologously expressed grouper Elovl5 indicated that it effectively elongates both C18 (18:2n-6, 18:3n-3, 18:3n-6 and 18:4n-3) and C20 (20:4n-6 and C20:5n-3) PUFAs, but not the C22 substrates. The expression of elovl5 was significantly affected by dietary n-3 LC-PUFA exposure: a high n-3 LC-PUFA level repressed the expression of elovl5 by slightly down-regulating the expression of sterol regulatory element-binding protein (SREBP)-1 and liver X receptor (LXR) α, which are major regulators of hepatic lipid metabolism. Promoter studies showed that grouper elovl5 reporter activity was induced by over-expression of LXRα but not SREBP-1. This finding suggests that elovl5 is a direct target of LXRα, which is involved in the biosynthesis of PUFAs via transcriptional regulation of elovl5. These findings may contribute to a further understanding of the mechanism underlying the regulation of LC-PUFA biosynthesis in marine fish species. PMID:26950699

  1. Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli.

    PubMed

    Jha, J K; Maiti, M K; Bhattacharjee, A; Basu, A; Sen, P C; Sen, S K

    2006-01-01

    A cDNA of fatty acyl-acyl carrier protein (ACP) thioesterase (Fat) from developing seed of Madhuca butyracea has been cloned. The deduced amino acid sequence of the cDNA corresponding to the mature polypeptide showed 30-40% and 60-75% identity to the reported FatA and FatB class of plant thioesterases, respectively. This gene, MbFatB, is present as a single copy in M. butyracea genome and the MbFatB protein was detected clearly in seed tissues of this plant but not in that of Indian mustard (Brassica juncea). Heterologous expression of the MbFatB gene driven by different promoters in E. coli wild type and fatty acid beta-oxidation mutant (fadD88) strains resulted production of the recombinant protein with various fusion tags either as biologically inactive (insoluble) or functionally active forms. Expression of functionally active recombinant MbFatB in E. coli affected bacterial growth and cell morphology as well as changed the fatty acid profiles of the membrane lipid and the culture supernatant. Alteration of the fatty acid composition was directed predominantly towards palmitate and to a lesser extent myristate and oleate due to acyl chain termination activity of plant thioesterase in bacteria. Thus, this new MbFatB gene isolated from a non-traditional oil-seed tree can be used in future for transgenic development of oil-seed Brassica, a widely cultivated crop that expresses predominantly oleoyl-ACP thioesterase (FatA) in its seed tissue and has high amount of unwanted erucic acid in edible oil in order to alter the fatty acid profile in a desirable way. PMID:17092734

  2. CDNA cloning of p112, the largest regulatory subunit of the human 26s proteasome, and functional analysis of its yeast homologue, sen3p.

    PubMed Central

    Yokota, K; Kagawa, S; Shimizu, Y; Akioka, H; Tsurumi, C; Noda, C; Fujimuro, M; Yokosawa, H; Fujiwara, T; Takahashi, E; Ohba, M; Yamasaki, M; DeMartino, G N; Slaughter, C A; Toh-e, A; Tanaka, K

    1996-01-01

    The 26S proteasome is a large multisubunit protease complex, the largest regulatory subunit of which is a component named p112. Molecular cloning of cDNA encoding human p112 revealed a polypeptide predicted to have 953 amino acid residues and a molecular mass of 105,865. The human p112 gene was mapped to the q37.1-q37.2 region of chromosome 2. Computer analysis showed that p112 has strong similarity to the Saccharomyces cerevisiae Sen3p, which has been listed in a gene bank as a factor affecting tRNA splicing endonuclease. The SEN3 also was identified in a synthetic lethal screen with the nin1-1 mutant, a temperature-sensitive mutant of NIN1. NIN1 encodes p31, another regulatory subunit of the 26S proteasome, which is necessary for activation of Cdc28p kinase. Disruption of the SEN3 did not affect cell viability, but led to temperature-sensitive growth. The human p112 cDNA suppressed the growth defect at high temperature in a SEN3 disruptant, indicating that p112 is a functional homologue of the yeast Sen3p. Maintenance of SEN3 disruptant cells at the restrictive temperature resulted in a variety of cellular dysfunctions, including defects in proteolysis mediated by the ubiquitin pathway, in the N-end rule system, in the stress response upon cadmium exposure, and in nuclear protein transportation. The functional abnormality induced by SEN3 disruption differs considerably from various phenotypes shown by the nin1-1 mutation, suggesting that these two regulatory subunits of the 26S proteasome play distinct roles in the various processes mediated by the 26S proteasome. Images PMID:8816993

  3. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica).

    PubMed

    Deng, Xiao-juan; Zhang, Hai-qing; Wang, Yue; He, Feng; Liu, Jin-ling; Xiao, Xiao; Shu, Zhi-feng; Li, Wei; Wang, Guo-huai; Wang, Guo-liang

    2014-01-01

    Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7. PMID:24932524

  4. Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis

    PubMed Central

    Pazouki, Leila; Memari, Hamid R.; Kännaste, Astrid; Bichele, Rudolf; Niinemets, Ülo

    2015-01-01

    Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5) residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS) that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS). The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3), functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP), while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP) and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP). Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes. PMID:25784918

  5. CLONING, EXPRESSION, AND FUNCTIONAL ANALYSIS OF THREE ODORANT-BINDING PROTEINS OF THE ORIENTAL FRUIT MOTH, Grapholita molesta (BUSCK) (LEPIDOPTERA: TORTRICIDAE).

    PubMed

    Li, Guang-Wei; Zhang, Yan; Li, Yi-Ping; Wu, Jun-Xiang; Xu, Xiang-Li

    2016-02-01

    Odorant-binding proteins (OBPs) act in insect olfactory processes. OBPs are expressed in the olfactory organs and serve in binding and transport of hydrophobic odorants through the sensillum lymph to olfactory receptor neurons within the antennal sensilla. In this study, three OBP genes were cloned from the antennal transcriptome database of Grapholita molesta via reverse-transcription PCR. Recombinant GmolOBPs (rGmolOBPs) were expressed in a prokaryotic expression system and enriched via Ni ion affinity chromatography. The binding properties of the three rGmolOBPs to four sex pheromones and 30 host-plant volatiles were investigated in fluorescence ligand-binding assays. The results demonstrated that rGmolOBP8, rGmolOBP11, and rGmolOBP15 exhibited high binding affinities with the major sex pheromone components (E)-8-dodecenyl acetate, (Z)-8-dodecenyl alcohol, and dodecanol. The volatiles emitted from peach and pear, decanal, butyl hexanoate, and α-ocimene, also showed binding affinities to rGmolOBP8 and rGmolOBP11. Hexanal, heptanal, and α-pinene showed strong binding affinities to rGmolOBP15. Results of the electrophysiological recording experiments and previous behavior bioassays indicated that adult insects had strong electroantennogram and behavioral responses toward butyl hexanoate, hexanal, and heptanal. We infer that the GmolOBP8 and GmolOBP11 have dual functions in perception and recognition of host-plant volatiles and sex pheromones, while GmolOBP15 was mainly involved in plant volatile odorants' perception. PMID:26609640

  6. PURIFICATION, MOLECULAR CLONING AND FUNCTIONAL CHARACTERIZATION OF HL15-1-1 (HETEROMETRUS LAOTICUS TOXIN): THE FIRST MEMBER OF A NEW κ-KTX SUBFAMILY

    PubMed Central

    Vandendriessche, Thomas; Kopljar, Ivan; Wulff, Heike; Diego-Garcia, Elia; Abdel-Mottaleb, Yousra; Vermassen, Elke; Clynen, Elke; Schoofs, Liliane; Snyders, Dirk; Tytgat, Jan

    2013-01-01

    Given their medical importance, most attention has been paid towards the venom composition of scorpions of the Buthidae family. Nevertheless, research has shown that the venom of scorpions of other families is also a remarkable source of unique peptidyl toxins. The κ-KTX family of voltage-gated potassium channel (VGPC) scorpion toxins is hereof an example. From the telson of the scorpion Heterometrus laoticus (Scorpionidae), a peptide, Hl15-1-1, with unique primary sequence was purified through HPLC and sequenced by Edman degradation. Based on the amino acid sequence, the peptide could be cloned and the cDNA sequence revealed. Hl15-1-1 was chemically synthesized and functionally characterized on VGPCs of the Shaker-related, Shaw-related and Shal-related subfamilies. Furthermore, the toxin was also tested on small- and intermediate conductance Ca2+-activated K+ channels. From the channels studied, Kv1.1 and Kv1.6 were found to be the most sensitive (Kv1.1 EC50 = 9.9 ± 1.6 μM). The toxin did not alter the activation of the channels. Competition experiments with TEA showed that the toxin is a pore blocker. Mutational studies showed that the residues E353 and Y379 in the pore of Kv1.1 act as major interaction points for binding of the toxin. Given the amino acid sequence, the predicted secondary structure and the biological activity on VGPCs, Hl15-1-1 should be included in the κ-KTX family. Based on a phylogenetic study we rearranged this family of VGPC toxins into five subfamilies and suggest that HI15-1-1 is the first member of the new KTX5 subfamily. PMID:22305749

  7. [Cloning and function identification of gene 'admA' and up-stream regulatory sequence related to antagonistic activity of Enterobacter cloacae B8].

    PubMed

    Zhu, Jun-Li; Li, De-Bao; Yu, Xu-Ping

    2012-04-01

    To reveal the antagonistic mechanism of B8 strain to Xanthomonas oryzae pv. oryzae, transposon tagging method and chromosome walking were deployed to clone antagonistic related fragments around Tn5 insertion site in the mutant strain B8B. The function of up-stream regulatory sequence of gene 'admA' involved in the antagonistic activity was further identified by gene knocking out technique. An antagonistic related left fragment of Tn5 insertion site, 2 608 bp in length, was obtained by tagging with Kan resistance gene of Tn5. A 2 354 bp right fragment of Tn5 insertion site was amplified with 2 rounds of chromosome walking. The length of the B contig around the Tn5 insertion site was 4 611 bp, containing 7 open reading frames (ORFs). Bioinformatic analysis revealed that these ORFs corresponded to the partial coding regions of glyceraldehyde-3-phosphate dehydrogenase, two LysR family transcriptional regulators, hypothetical protein VSWAT3-20465 of Vibrionales and admA, admB, and partial sequence of admC gene of Pantoea agglomerans biosynthetic gene cluster, respectively. Tn5 was inserted in the up-stream of 200 bp or 894 bp of the sequence corresponding to anrP ORF or admA gene on B8B, respectively. The B-1 and B-2 mutants that lost antagonistic activity were selected by homeologuous recombination technology in association with knocking out plasmid pMB-BG. These results suggested that the transcription and expression of anrP gene might be disrupted as a result of the knocking out of up-stream regulatory sequence by Tn5 in B8B strain, further causing biosythesis regulation of the antagonistic related gene cluster. Thus, the antagonistic related genes in B8 strain is a gene family similar as andrimid biosynthetic gene cluster, and the upstream regulatory region appears to be critical for the antibiotics biosynthesis. PMID:22522167

  8. Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain.

    PubMed Central

    Kiss, A; Farah, K; Kim, J; Garriock, R J; Drysdale, T A; Hammond, J R

    2000-01-01

    Mammalian cells express at least two subtypes of equilibrative nucleoside transporters, i.e. ENT1 and ENT2, which can be distinguished functionally by their sensitivity and resistance respectively to inhibition by nitrobenzylthioinosine. The ENT1 transporters exhibit distinctive species differences in their sensitivities to inhibition by dipyridamole, dilazep and draflazine (human>mouse>rat). A comparison of the ENT1 structures in the three species would facilitate the identification of the regions involved in the actions of these cardioprotective agents. We now report the molecular cloning and functional expression of the murine (m)ENT1 and mENT2 transporters. mENT1 and mENT2 encode proteins containing 458 and 456 residues respectively, with a predicted 11-transmembrane-domain topology. mENT1 has 88% and 78% amino acid identity with rat ENT1 and human ENT1 respectively; mENT2 is more highly conserved, with 94% and 88% identity with rat ENT2 and human ENT2 respectively. We have also isolated two additional distinct cDNAs that encode proteins similar to mENT1; these probably represent distinct mENT1 isoforms or alternative splicing products. One cDNA encodes a protein with two additional amino acids (designated mENT1b) that adds a potential protein kinase CK2 phosphorylation site in the central intracellular loop of the transporter, and is similar, in this regard, to the human and rat ENT1 orthologues. The other cDNA has a 5'-untranslated region sequence that is distinct from that of full-length mENT1. Microinjection of mENT1, mENT1b or mENT2 cRNA into Xenopus oocytes resulted in enhanced uptake of [(3)H]uridine by the oocytes relative to that seen in water-injected controls. mENT1-mediated, but not mENT2-mediated, [(3)H]uridine uptake was inhibited by nitrobenzylthioinosine and dilazep. Dipyridamole inhibited both mENT1 and mENT2, but was significantly more effective against mENT1. Adenosine inhibited both systems with a similar potency, as did a range of other

  9. Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding Δ12- and Δ15-fatty acid desaturases in Hansenula polymorpha.

    PubMed

    Sangwallek, Juthaporn; Kaneko, Yoshinobu; Tsukamoto, Tomoya; Marui, Makoto; Sugiyama, Minetaka; Ono, Hisayo; Bamba, Takeshi; Fukusaki, Eiichiro; Harashima, Satoshi

    2014-01-01

    Two fatty acid desaturase genes have been cloned: HpFAD2 and HpFAD3 encode Hansenula polymorpha Δ12-fatty acid desaturase (HpFad2) and Δ15-fatty acid desaturase (HpFad3), which are responsible for the production of linoleic acid (LA, C18:2, Δ9, Δ12) and α-linolenic acid (ALA, αC18:3, Δ9, Δ12, Δ15), respectively. The open reading frame of the HpFAD2 and HpFAD3 genes is 1215bp and 1239bp, encoding 405 and 413 amino acids, respectively. The putative amino acid sequences of HpFad2 and HpFad3 share more than 60% similarity and three conserved histidine-box motifs with other known yeast Fad homologs. Hpfad2Δ disruptant cannot produce C18:2 and αC18:3, while the deletion of HpFAD3 only causes the absence of αC18:3. Heterologous expression of either the HpFAD2 or the HpFAD3 gene in Saccharomyces cerevisiae resulted in the presence of C18:2 and αC18:3 when the C18:2 precursor was added. Taken together, these observations indicate that HpFAD2 and HpFAD3 indeed encode Δ12- and Δ15-fatty acid desaturases that function as the only ones responsible for desaturation of oleic acid (C18:1) and linoleic acid (C18:2), respectively, in H. polymorpha. Because a Fatty Acid Regulated (FAR) region and a Low Oxygen Response Element (LORE), which are responsible for regulation of a Δ9-fatty acid desaturase gene (ScOLE1) in S. cerevisiae, are present in the upstream regions of both genes, we investigated whether the transcriptional levels of HpFAD2 and HpFAD3 are affected by supplementation with nutrient unsaturated fatty acids or by low oxygen conditions. Whereas both genes were up-regulated under low oxygen conditions, only HpFAD3 transcription was repressed by an excess of C18:1, C18:2 and C18:3, while the HpFAD2 transcript level did not significantly change. These observations indicate that HpFAD2 expression is not controlled at the transcriptional level by fatty acids even though it contains a FAR-like region. This study indicates that HpFAD2 may be regulated by post

  10. Apolipoprotein A-I in Labeo rohita: Cloning and functional characterisation reveal its broad spectrum antimicrobial property, and indicate significant role during ectoparasitic infection.

    PubMed

    Mohapatra, Amruta; Karan, Sweta; Kar, Banya; Garg, L C; Dixit, A; Sahoo, P K

    2016-08-01

    Apolipoprotein A-I (ApoA-I) is the most abundant and multifunctional high-density lipoprotein (HDL) having a major role in lipid transport and potent antimicrobial activity against a wide range of microbes. In this study, a complete CDS of 771 bp of Labeo rohita (rohu) ApoA-I (LrApoA-I) encoding a protein of 256 amino acids was amplified, cloned and sequenced. Tissue specific transcription analysis of LrApoA-I revealed its expression in a wide range of tissues, with a very high level of expression in liver and spleen. Ontogenic study of LrApoA-I expression showed presence of transcripts in milt and 3 h post-fertilization onwards in the larvae. The expression kinetics of LrApoA-I was studied upon infection with three different types of pathogens to elucidate its functional significance. Its expression was found to be up-regulated in the anterior kidney of L. rohita post-infection with Aeromonas hydrophila. Similarly following poly I:C (poly inosinic:cytidylic) stimulation, the transcript levels increased in both the anterior kidney and liver tissues. Significant up-regulation of LrApoA-I expression was observed in skin, mucous, liver and anterior kidney of the fish challenged with the ectoparasite Argulus siamensis. Immunomodulatory effect of recombinant LrApoA-I (rApoA-I) produced in Escherichia coli was demonstrated against A. hydrophila challenge in vivo. L. rohita administered with rApoA-I at a dose of 100 μg exhibited significantly higher protection (∼55%) upon challenge with A. hydrophila 12 h post-administration of the protein, in comparison to that observed in control group, along with higher level of expression of immune-related genes. The heightened expression of ApoA-I observed post-infection reflected its involvement in immune responses against a wide range of infections including bacterial, viral as well as parasitic pathogens. Our results also suggest the possibility of using rApoA-I as an immunostimulant, particularly rendering protection