Science.gov

Sample records for 2b4 promotes nk

  1. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity

    PubMed Central

    Duev-Cohen, Alexandra; Bar-On, Yotam; Glasner, Ariella; Berhani, Orit; Ophir, Yael; Levi-Schaffer, Francesca; Mandelboim, Michal; Mandelboim, Ofer

    2016-01-01

    Natural Killer (NK) cells are critical in the defense against viruses in general and against influenza in particular. We previously demonstrated that the activating NK cell receptor NKp46 is involved in the killing of influenza-virus infected cells through its interaction with viral hemagglutinin (HA). Furthermore, the recognition by NKp46 and consequent elimination of influenza infected cells were determined to be sialic-acid dependent. Here, we show that the human co-activating receptors 2B4 and NTB-A directly recognize the viral HA protein and co-stimulate killing by NK cells. We demonstrate that the 2B4/NTB-A-HA interactions require the sialylation of these receptors, and we identified the binding sites mediating these interactions. We also show that the virus counters these interactions through its neuraminidase (NA) protein. These results emphasize the critical role played by NK cells in eliminating influenza, a significant cause of worldwide morbidity and mortality. PMID:26919106

  2. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity.

    PubMed

    Duev-Cohen, Alexandra; Bar-On, Yotam; Glasner, Ariella; Berhani, Orit; Ophir, Yael; Levi-Schaffer, Francesca; Mandelboim, Michal; Mandelboim, Ofer

    2016-03-15

    Natural Killer (NK) cells are critical in the defense against viruses in general and against influenza in particular. We previously demonstrated that the activating NK cell receptor NKp46 is involved in the killing of influenza-virus infected cells through its interaction with viral hemagglutinin (HA). Furthermore, the recognition by NKp46 and consequent elimination of influenza infected cells were determined to be sialic-acid dependent. Here, we show that the human co-activating receptors 2B4 and NTB-A directly recognize the viral HA protein and co-stimulate killing by NK cells. We demonstrate that the 2B4/NTB-A-HA interactions require the sialylation of these receptors, and we identified the binding sites mediating these interactions. We also show that the virus counters these interactions through its neuraminidase (NA) protein. These results emphasize the critical role played by NK cells in eliminating influenza, a significant cause of worldwide morbidity and mortality. PMID:26919106

  3. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide.

    PubMed

    Madera, Sharline; Rapp, Moritz; Firth, Matthew A; Beilke, Joshua N; Lanier, Lewis L; Sun, Joseph C

    2016-02-01

    Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar(-/-)) or STAT1 (which signals downstream of IFNAR) are defective in expansion and memory cell formation after mouse cytomegalovirus (MCMV) infection. Despite comparable proliferation, Ifnar(-/-) NK cells showed diminished protection against MCMV infection and exhibited more apoptosis compared with wild-type NK cells. Furthermore, we show that Ifnar(-/-) NK cells express increased levels of NK group 2 member D (NKG2D) ligands during viral infection and are susceptible to NK cell-mediated fratricide in a perforin- and NKG2D-dependent manner. Adoptive transfer of Ifnar(-/-) NK cells into NK cell-deficient mice reverses the defect in survival and expansion. Our study reveals a novel type I IFN-dependent mechanism by which NK cells evade mechanisms of cell death after viral infection. PMID:26755706

  4. Modulation of natural killer cell functions by interactions between 2B4 and CD48 in cis and in trans

    PubMed Central

    Claus, Maren; Wingert, Sabine

    2016-01-01

    SLAM-related receptors (SRRs) are important modulators of immune cell function. While most SRRs are homophilic, 2B4 (CD244) interacts with CD48, a GPI-anchored protein expressed on many haematopoietic cells. Here we show that natural killer (NK) cell-expressed 2B4 not only binds in trans to CD48 on neighbouring cells but also interacts in cis with CD48 on the same cell. 2B4 uses the same binding site to interact with CD48 in cis and in trans and structural flexibility of 2B4 is necessary for the cis interaction. Furthermore, the cis interaction is sufficient to induce basal phosphorylation of 2B4. However, cis interaction reduces the ability of 2B4 to bind CD48 in trans. As a consequence, stimulation-dependent phosphorylation of 2B4 upon binding to CD48 positive target cells is reduced. Interfering with the cis interaction therefore enhanced the lysis of CD48-expressing tumour cells. These data show that the density of 2B4 and CD48 on both the NK cell and the potential target cell modulates NK cell activity. PMID:27249817

  5. Myxoma Virus Infection Promotes NK Lysis of Malignant Gliomas In Vitro and In Vivo

    PubMed Central

    Ogbomo, Henry; Zemp, Franz J.; Lun, Xueqing; Zhang, Jiqing; Stack, Danuta; Rahman, Masmudur M.; Mcfadden, Grant; Mody, Christopher H.; Forsyth, Peter A.

    2013-01-01

    Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas. PMID:23762498

  6. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy.

    PubMed

    Ostrowski, S R; Ullum, H; Pedersen, B K; Gerstoft, J; Katzenstein, T L

    2005-09-01

    Human immunodeficiency virus (HIV)-1 infection influences natural killer (NK) cell expression of inhibitory NK receptors and activating natural cytotoxicity receptors. It is unknown whether expression of the co-stimulatory NK cell receptor 2B4 (CD244) on NK cells and CD3+ CD8+ cells are affected by highly active antiretroviral therapy (HAART), low-level viraemia, proviral-DNA or immune activation in HIV-1 infected patients. A total of 101 HAART-treated HIV-1 infected patients with < or = 200 HIV-RNA copies/ml were followed prospectively for 24 months. HIV-RNA was investigated 3-monthly and 2B4 expression on CD3- CD16+ NK cells and CD3+ CD8+ cells, proviral-DNA and plasma soluble tumour necrosis factor receptor (sTNFr)-II were investigated 6-monthly. For comparison, 2B4 expression was investigated in 20 healthy individuals. The concentration of 2B4+ NK cells was initially reduced in HIV-1 infected patients (P < 0.001) but increased to a normal level during the 24 months' follow-up. The concentration of CD3+ CD8+ 2B4+ cells in HIV-1 infected patients was normal and did not change during follow-up. The relative fluorescence intensity (RFI) of 2B4 increased on both NK cells and CD3+ CD8+ cells during follow-up (both P < 0.001). Higher levels of proviral-DNA carrying cells and plasma sTNFrII were associated with reductions in the concentration of 2B4+ NK cells (all P < 0.05). HIV-RNA had no effect on 2B4 expression on NK cells or CD3+ CD8+ cells. These findings demonstrate that the concentration of 2B4+ NK cells normalizes during long-term HAART in HIV-1 infected patients. The finding that proviral-DNA and sTNFrII were associated negatively with the concentration of 2B4+ NK cells suggests that immune activation in HIV-1 infected patients receiving HAART influences the target cell recognition by NK cells. PMID:16045743

  7. Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition

    PubMed Central

    Kwon, Hyung-Joon; Choi, Go-Eun; Ryu, Sangryeol; Kwon, Soon Jae; Kim, Sun Chang; Booth, Claire; Nichols, Kim E.; Kim, Hun Sik

    2016-01-01

    NF-κB is a key transcription factor that dictates the outcome of diverse immune responses. How NF-κB is regulated by multiple activating receptors that are engaged during natural killer (NK)-target cell contact remains undefined. Here we show that sole engagement of NKG2D, 2B4 or DNAM-1 is insufficient for NF-κB activation. Rather, cooperation between these receptors is required at the level of Vav1 for synergistic NF-κB activation. Vav1-dependent synergistic signalling requires a separate PI3K-Akt signal, primarily mediated by NKG2D or DNAM-1, for optimal p65 phosphorylation and NF-κB activation. Vav1 controls downstream p65 phosphorylation and NF-κB activation. Synergistic signalling is defective in X-linked lymphoproliferative disease (XLP1) NK cells entailing 2B4 dysfunction and required for p65 phosphorylation by PI3K-Akt signal, suggesting stepwise signalling checkpoint for NF-κB activation. Thus, our study provides a framework explaining how signals from different activating receptors are coordinated to determine specificity and magnitude of NF-κB activation and NK cell responses. PMID:27221592

  8. Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition.

    PubMed

    Kwon, Hyung-Joon; Choi, Go-Eun; Ryu, Sangryeol; Kwon, Soon Jae; Kim, Sun Chang; Booth, Claire; Nichols, Kim E; Kim, Hun Sik

    2016-01-01

    NF-κB is a key transcription factor that dictates the outcome of diverse immune responses. How NF-κB is regulated by multiple activating receptors that are engaged during natural killer (NK)-target cell contact remains undefined. Here we show that sole engagement of NKG2D, 2B4 or DNAM-1 is insufficient for NF-κB activation. Rather, cooperation between these receptors is required at the level of Vav1 for synergistic NF-κB activation. Vav1-dependent synergistic signalling requires a separate PI3K-Akt signal, primarily mediated by NKG2D or DNAM-1, for optimal p65 phosphorylation and NF-κB activation. Vav1 controls downstream p65 phosphorylation and NF-κB activation. Synergistic signalling is defective in X-linked lymphoproliferative disease (XLP1) NK cells entailing 2B4 dysfunction and required for p65 phosphorylation by PI3K-Akt signal, suggesting stepwise signalling checkpoint for NF-κB activation. Thus, our study provides a framework explaining how signals from different activating receptors are coordinated to determine specificity and magnitude of NF-κB activation and NK cell responses. PMID:27221592

  9. TLR7/8 agonists promote NK-DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma.

    PubMed

    Zhou, Zhixia; Yu, Xin; Zhang, Jian; Tian, Zhigang; Zhang, Cai

    2015-12-28

    Hepatocellular carcinoma (HCC) is a common cancer worldwide and the third leading cause of cancer death. Immunotherapy is considered a promising treatment with the aim to boost or arouse HCC-specific immune responses. TLR7 and TLR8 agonists are effective immunomodulators and have been applied topically for the treatment of certain skin tumors and viral infections. Here, we explored the role of TLR7 and TLR8 agonists on the activation of dendritic cells (DCs) and natural killer (NK) cells. We demonstrated that these agonists could directly activate NK cells, promoting the maturation of immature DCs. Meanwhile, DCs also assisted in the function of NK cells, resulting in enhanced anti-tumor immune responses to HCC. Importantly, the combination therapy with NK cells stimulated with DCs and TLR7/8 agonist Gardiquimod (GDQ) significantly suppresses the growth of human HepG2 liver carcinoma xenografts. This study provides a new immunotherapeutic approach for human HCC based on DC-NK cross-talk and also suggests that TLR7 and/or TLR8 agonists, particularly GDQ, may serve as potent innate and adaptive immune response immunomodulators in tumor therapy. PMID:26433159

  10. Mesenchymal stem cells derived from low risk acute lymphoblastic leukemia patients promote NK cell antitumor activity.

    PubMed

    Entrena, Ana; Varas, Alberto; Vázquez, Miriam; Melen, Gustavo J; Fernández-Sevilla, Lidia M; García-Castro, Javier; Ramírez, Manuel; Zapata, Agustín G; Vicente, Ángeles

    2015-07-28

    Mesenchymal stem cells (MSCs) are key components of the bone marrow microenvironment which contribute to the maintenance of the hematopoietic stem cell niche and exert immunoregulatory functions in innate and adaptive immunity. We analyze the immunobiology of MSCs derived from acute lymphoblastic leukemia (ALL) patients and their impact on NK cell function. In contrast to the inhibitory effects on the immune response exerted by MSCs from healthy donors (Healthy-MSCs), we demonstrate that MSCs derived from low/intermediate risk ALL patients at diagnosis (ALL-MSCs) promote an efficient NK cell response including cytokine production, phenotypic activation and most importantly, cytotoxicity. Longitudinal studies indicate that these immunostimulatory effects of ALL-MSCs are progressively attenuated. Healthy-MSCs adopt ALL-MSC-like immunomodulatory features when exposed to leukemia cells, acquiring the ability to stimulate NK cell antitumor function. The mechanisms underlying to these functional changes of ALL-MSCs include reduced production of soluble inhibitory factors, differential expression of costimulatory and coinhibitory molecules, increased expression of specific TLRs and Notch pathway activation. Collectively our findings indicate that, in response to leukemia cells, ALL-MSCs could mediate a host beneficial immunomodulatory effect by stimulating the antitumor innate immune response. PMID:25917077

  11. Structure of Natural Killer Receptor 2B4 Bound to CD48 Reveals Basis for Heterophilic Recognition in Signaling Lymphocyte Activation Molecule Family

    SciTech Connect

    Velikovsky,C.; Deng, L.; Chlewicki, L.; Fernandez, M.; Kumar, V.; Mariuzza, R.

    2007-01-01

    Natural killer (NK) cells eliminate virally infected and tumor cells. Among the receptors regulating NK cell function is 2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM) family that binds CD48. 2B4 is the only heterophilic receptor of the SLAM family, whose other members, e.g., NK-T-B-antigen (NTB-A), are self-ligands. We determined the structure of the complex between the N-terminal domains of mouse 2B4 and CD48, as well as the structures of unbound 2B4 and CD48. The complex displayed an association mode related to, yet distinct from, that of the NTB-A dimer. Binding was accompanied by the rigidification of flexible 2B4 regions containing most of the polymorphic residues across different species and receptor isoforms. We propose a model for 2B4-CD48 interactions that permits the intermixing of SLAM receptors with major histocompatibility complex-specific receptors in the NK cell immune synapse. This analysis revealed the basis for heterophilic recognition within the SLAM family.

  12. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity.

    PubMed

    Mamessier, Emilie; Sylvain, Aude; Thibult, Marie-Laure; Houvenaeghel, Gilles; Jacquemier, Jocelyne; Castellano, Rémy; Gonçalves, Anthony; André, Pascale; Romagné, François; Thibault, Gilles; Viens, Patrice; Birnbaum, Daniel; Bertucci, François; Moretta, Alessandro; Olive, Daniel

    2011-09-01

    NK cells are a major component of the antitumor immune response and are involved in controlling tumor progression and metastases in animal models. Here, we show that dysfunction of these cells accompanies human breast tumor progression. We characterized human peripheral blood NK (p-NK) cells and malignant mammary tumor-infiltrating NK (Ti-NK) cells from patients with noninvasive and invasive breast cancers. NK cells isolated from the peripheral blood of healthy donors and normal breast tissue were used as controls. With disease progression, we found that expression of activating NK cell receptors (such as NKp30, NKG2D, DNAM-1, and CD16) decreased while expression of inhibitory receptors (such as NKG2A) increased and that this correlated with decreased NK cell function, most notably cytotoxicity. Importantly, Ti-NK cells had more pronounced impairment of their cytotoxic potential than p-NK cells. We also identified several stroma-derived factors, including TGF-β1, involved in tumor-induced reduction of normal NK cell function. Our data therefore show that breast tumor progression involves NK cell dysfunction and that breast tumors model their environment to evade NK cell antitumor immunity. This highlights the importance of developing future therapies able to restore NK cell cytotoxicity to limit/prevent tumor escape from antitumor immunity. PMID:21841316

  13. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis.

    PubMed

    Yu, Jia-Jun; Sun, Hui-Ting; Zhang, Zhong-Fang; Shi, Ru-Xia; Liu, Li-Bing; Shang, Wen-Qing; Wei, Chun-Yan; Chang, Kai-Kai; Shao, Jun; Wang, Ming-Yan; Li, Ming-Qing

    2016-08-01

    Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rβ). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16(+)NK cells, NKG2D in CD56(dim)CD16(-)NK cells, and NKP44 in CD56(bright)CD16(-)NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS. PMID:27190213

  14. Membrane IL1α Inhibits the Development of Hepatocellular Carcinoma via Promoting T- and NK-cell Activation.

    PubMed

    Lin, Dandan; Lei, Lei; Liu, Yonghao; Zhang, Yinsheng; Hu, Bo; Bao, Guangming; Song, Yuan; Jin, Ziqi; Liu, Chunliang; Mei, Yu; Sandikin, Dedy; Wu, Yan; Zhao, Lixiang; Yu, Xiao; Liu, Haiyan

    2016-06-01

    Hepatocellular carcinoma is a worldwide health problem with limited treatment options and poor prognosis. Inflammation associated with liver injury and hepatocyte regeneration can lead to fibrosis, cirrhosis, and eventually, hepatocellular carcinoma. IL1α is one of the most important inflammatory cytokines involved in inflammation and tumor development. IL1α presents as multiple forms in vivo, including precursor, propiece, membrane, and secreted forms, and their functions have been thought to be different. The role of membrane IL1α in hepatocellular carcinoma tumorigenesis is still not clear. Here, we examined the functions of membrane IL1α in murine hepatocellular carcinoma models. We found that membrane IL1α potently inhibited hepatocellular carcinoma tumor growth. Further studies showed that membrane IL1α promoted T- and natural killer (NK)-cell activation in vivo IFNγ production by CD8(+) T and NK cells was also increased as a result of membrane IL1α expression. Moreover, the cytotoxicity of the CTL and NK cells was also enhanced by membrane IL1α expression. Furthermore, in vitro studies demonstrated that membrane IL1α could directly activate T cells and NK cells in a cell contact-dependent manner. Conversely, depletion of both CD8(+) T and NK cells suppressed the antitumor activity of membrane IL1α. Our studies demonstrated that membrane IL1α could promote antitumor immune responses through activation of T and NK cells. Thus, our findings provide new insights of IL1α functions during hepatocellular carcinoma development. Cancer Res; 76(11); 3179-88. ©2016 AACR. PMID:27206848

  15. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells

    SciTech Connect

    Mathew, P.A.; Garni-Wagner, B.A.; Land, K.; Takashima, A.; Stoneman, E.; Bennett, M.; Kumar, V. )

    1993-11-15

    The authors have recently described a signal transducing molecule, 2B4, expressed on all NK and T cells that mediate non-MHC-restricted killing. The gene encoding this molecule was cloned and its nucleotide sequence determined. The encoded protein of 398 amino acids has a leader peptide of 18 amino acids and a transmembrane region of 24 amino acids. The predicted protein has eight N-linked glycosylation sites, suggesting that it is highly glycosylated. Comparison of 2B4 with sequences in the databanks indicates that 2B4 is a member of the Ig supergene family, and it shows homology to murine and rat CD48 and human LFA-3. Northern blot analysis has shown at least three transcripts for 2B4 in adherent lymphokine-activated killer cells of several mouse strains and TCR-[gamma]/[delta] dendritic epidermal T cell lines but not in allospecific T cell clones. These three mRNA are the products of differential splicing of heterogeneous nuclear RNA. Southern blot analysis of genomic DNA from several mouse strains revealed that 2B4 belongs to a family of closely related genes. The 2B4 gene has been mapped to mouse chromosome 1 by analysis of 2B4 expression in recombinant inbred mouse strains. 48 refs., 6 figs., 2 tabs.

  16. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation

    PubMed Central

    He, Hao; Geng, Tingting; Chen, Piyun; Wang, Meixiang; Hu, Jingxia; Kang, Li; Song, Wengang; Tang, Hua

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood–brain barrier, conventional CD11b+CD27+ NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation. PMID:27270556

  17. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation.

    PubMed

    He, Hao; Geng, Tingting; Chen, Piyun; Wang, Meixiang; Hu, Jingxia; Kang, Li; Song, Wengang; Tang, Hua

    2016-01-01

    Sepsis could affect the central nervous system and thus induces neuroinflammation, which subsequently leads to brain damage or dysfunction. However, the mechanisms of generation of neuroinflammation during sepsis remain poorly understood. By administration of lipopolysaccharides (LPS) in mice to mimic sepsis, we found that shortly after opening the blood-brain barrier, conventional CD11b(+)CD27(+) NK subset migrated into the brain followed by subsequent neutrophil infiltration. Interestingly, depletion of NK cells prior to LPS treatment severely impaired neutrophil recruitment in the inflamed brain. By in vivo recruitment assay, we found that brain-infiltrated NK cells displayed chemotactic activity to neutrophils, which depended on the higher expression of chemokines such as CXCL2. Moreover, microglia were also responsible for neutrophil recruitment, and their chemotactic activity was significantly impaired by ablation of NK cells. Furthermore, depletion of NK cells could significantly ameliorate depression-like behavior in LPS-treated mice. These data indicated a NK cell-regulated neutrophil recruitment in the blamed brain, which also could be seen on another sepsis model, cecal ligation and puncture. So, our findings revealed an important scenario in the generation of sepsis-induced neuroinflammation. PMID:27270556

  18. Upregulation of UGT2B4 Expression by 3'-Phosphoadenosine-5'-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation.

    PubMed

    Barrett, Kathleen G; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A; Kocarek, Thomas A; Runge-Morris, Melissa

    2015-07-01

    During cholestasis, the bile acid-conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3'-phosphoadenosine-5'-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5'-flanking region, which included a response element for the bile acid-sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5'-flanking region indicated the presence of distal regulatory elements between nucleotides -10090 and -10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3'-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid-conjugating activity. PMID:25948711

  19. NKG2D is a Key Receptor for Recognition of Bladder Cancer Cells by IL-2-Activated NK Cells and BCG Promotes NK Cell Activation

    PubMed Central

    García-Cuesta, Eva María; López-Cobo, Sheila; Álvarez-Maestro, Mario; Esteso, Gloria; Romera-Cárdenas, Gema; Rey, Mercedes; Cassady-Cain, Robin L.; Linares, Ana; Valés-Gómez, Alejandro; Reyburn, Hugh Thomson; Martínez-Piñeiro, Luis; Valés-Gómez, Mar

    2015-01-01

    Intravesical instillation of bacillus Calmette–Guérin (BCG) is used to treat superficial bladder cancer, either papillary tumors (after transurethral resection) or high-grade flat carcinomas (carcinoma in situ), reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, natural killer (NK), and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient. PMID:26106390

  20. Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma

    PubMed Central

    Liu, Yixiong; Fan, Linni; Wang, Yingmei; Li, Peifeng; Zhu, Jin; Wang, Lu; Zhang, Weichen; Zhang, Yuehua; Huang, Gaosheng

    2014-01-01

    Objective: To explore the relationship between the number of tumor-associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T-cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T-cell lymphoma and detect the numbers of TAMs and the ki-67 label index of the tumor cells in all 31 cases. In addition, 12 cases of inflammatory cases were collected as controls, for which the immunostaining of CD68 and CD163 were done as well. Then staining results were analyzed with Pearson correlation and t test. Results: The number of TAMs was positively correlated with tumor proliferative activity (P = 0.024) in nasopharyngeal NK/T-cell lymphoma. The expression of CD68 and CD163 was closely related (P = 0.009), and the positive rate of CD68 was generally higher than CD163, however there is no statistical significance. Conclusion: The increase in numbers of TAMs in nasopharyngeal NK/T-cell lymphoma is related to higher proliferative index, indicating the TAMs play an important role in tumor proliferation. Meanwhile both CD68 and CD163 might be the markers for TAMs but CD163 would be the better one. PMID:25337185

  1. Development of Murine Hepatic NK Cells during Ontogeny: Comparison with Spleen NK Cells

    PubMed Central

    Wu, Xian; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2012-01-01

    The phenotype of developing liver NK cells (CD3−NK1.1+) was investigated during mouse ontogeny comparing with spleen NK cells. The highest percentage of hepatic CD27−CD11b− NK cells occurred at the fetal stage. After birth, the percentage of CD27−CD11b−NK cells in both the liver and spleen gradually decreased to their lowest level at 6 weeks. More CD27+CD11b−NK cells were detected in the liver than that in spleen from week 1 to 6. Expression of NKG2A on liver NK cells was decreased but still much higher than that of spleen NK cells after 1 week. The NKG2D expression on liver NK cells increased to its highest level and was significantly higher than on spleen NK cells till 4 weeks. During mouse ontogeny, weaker expression of NKp46 and CD2 and stronger expression of CD69, CD11c, 2B4, and CD73 were observed on liver NK cells. Furthermore, neonatal liver NK cells express higher IFN-γ and perforin than adult .These results suggest that the maturation process of NK cells is unique in the livers, and liver microenvironments might play critical roles to keep NK cells in an immature status. PMID:22203859

  2. Id3 Controls Cell Death of 2B4+ Virus-Specific CD8+ T Cells in Chronic Viral Infection.

    PubMed

    Menner, Alexandra J; Rauch, Katharina S; Aichele, Peter; Pircher, Hanspeter; Schachtrup, Christian; Schachtrup, Kristina

    2015-09-01

    Sustained Ag persistence in chronic infection results in a deregulated CD8(+) T cell response that is characterized by T cell exhaustion and cell death of Ag-specific CD8(+) T cells. Yet, the underlying transcriptional mechanisms regulating CD8(+) T cell exhaustion and cell death are poorly defined. Using the experimental mouse model of lymphocytic choriomeningitis virus infection, we demonstrate that the transcriptional regulator Id3 controls cell death of virus-specific CD8(+) T cells in chronic infection. By comparing acute and chronic infection, we showed that Id3 (-) virus-specific CD8(+) T cells were less abundant, whereas the absolute numbers of Id3 (+) virus-specific CD8(+) T cells were equal in chronic and acute infection. Phenotypically, Id3 (-) and Id3 (+) cells most prominently differed with regard to expression of the surface receptor 2B4; although Id3 (-) cells were 2B4(+), almost all Id3 (+) cells lacked expression of 2B4. Lineage-tracing experiments showed that cells initially expressing Id3 differentiated into Id3 (-)2B4(+) cells; in turn, these cells were terminally differentiated and highly susceptible to cell death under conditions of persisting Ag. Enforced Id3 expression specifically increased the persistence of 2B4(+) virus-specific CD8(+) T cells by decreasing susceptibility to Fas/Fas ligand-mediated cell death. Thus, our findings reveal that the transcriptional regulator Id3 promotes the survival of virus-specific CD8(+) T cells in chronic infection and suggest that targeting Id3 might be beneficial for preventing cell death of CD8(+) T cells in chronic infection or for promoting cell death of uncontrolled, hyperactive CD8(+) T cells to prevent immunopathology. PMID:26232435

  3. Upregulation of UGT2B4 Expression by 3′-Phosphoadenosine-5′-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation

    PubMed Central

    Barrett, Kathleen G.; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A.; Kocarek, Thomas A.

    2015-01-01

    During cholestasis, the bile acid–conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3′-phosphoadenosine-5′-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5′-flanking region, which included a response element for the bile acid–sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5′-flanking region indicated the presence of distal regulatory elements between nucleotides −10090 and −10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3′-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid–conjugating activity. PMID:25948711

  4. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner.

    PubMed

    Loyon, Romain; Picard, Emilie; Mauvais, Olivier; Queiroz, Lise; Mougey, Virginie; Pallandre, Jean-René; Galaine, Jeanne; Mercier-Letondal, Patricia; Kellerman, Guillaume; Chaput, Nathalie; Wijdenes, John; Adotévi, Olivier; Ferrand, Christophe; Romero, Pedro; Godet, Yann; Borg, Christophe

    2016-07-01

    NK cells are critical for innate immunity-mediated protection. The main roles of NK cells rely on their cytotoxic functions or depend on the tuning of Th1 adaptive immunity by IFN-γ. However, the precise influence of inflammatory cytokines on NK cell and CD4 T lymphocyte interactions was never investigated. In this study, we provide evidence that IL-21, a cytokine produced during chronic inflammation or infectious diseases, promotes the differentiation of a specific subset of NK cells coexpressing CD86 and HLA-DR and lacking NKp44. More importantly, IL-21-propagated HLA-DR(+) NK cells produce macrophage migration inhibitory factor and provide costimulatory signaling during naive CD4(+) T cell priming inducing the differentiation of uncommitted central memory T cells. Central memory T cells expanded in the presence of HLA-DR(+) NK cells are CXCR3(+)CCR6(-)CCR4(-)CXCR5(-) and produce IL-2, as well as low levels of TNF-α. Costimulation of CD4(+) T cells by HLA-DR(+) NK cells prevents the acquisition of effector memory phenotype induced by IL-2. Moreover, we identified this population of NK HLA-DR(+) macrophage migration inhibitory factor(+) cells in inflammatory human appendix. Collectively, these results demonstrate a novel function for IL-21 in tuning NK and CD4(+) T cell interactions promoting a specific expansion of central memory lymphocytes. PMID:27233967

  5. Insights into the Role of Substrates on the Interaction between Cytochrome b5 and Cytochrome P450 2B4 by NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Le Clair, Stéphanie V.; Huang, Rui; Ahuja, Shivani; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2015-02-01

    Mammalian cytochrome b5 (cyt b5) is a membrane-bound protein capable of donating an electron to cytochrome P450 (P450) in the P450 catalytic cycle. The interaction between cyt b5 and P450 has been reported to be affected by the substrates of P450; however, the mechanism of substrate modulation on the cyt b5-P450 complex formation is still unknown. In this study, the complexes between full-length rabbit cyt b5 and full-length substrate-free/substrate-bound cytochrome P450 2B4 (CYP2B4) are investigated using NMR techniques. Our findings reveal that the population of complexes is ionic strength dependent, implying the importance of electrostatic interactions in the complex formation process. The observation that the cyt b5-substrate-bound CYP2B4 complex shows a weaker dependence on ionic strength than the cyt b5-substrate-free CYP2B4 complex suggests the presence of a larger fraction of steoreospecific complexes when CYP2B4 is substrate-bound. These results suggest that a CYP2B4 substrate likely promotes specific interactions between cyt b5 and CYP2B4. Residues D65, V66, T70, D71 and A72 are found to be involved in specific interactions between the two proteins due to their weak response to ionic strength change. These findings provide insights into the mechanism underlying substrate modulation on the cyt b5-P450 complexation process.

  6. Synergy between IL-15 and Id2 promotes the expansion of human NK progenitor cells, which can be counteracted by the E protein HEB required to drive T cell development.

    PubMed

    Schotte, Remko; Dontje, Wendy; Nagasawa, Maho; Yasuda, Yuko; Bakker, Arjen Q; Spits, Hergen; Blom, Bianca

    2010-06-15

    The cytokine IL-15 and the inhibitor of DNA binding (Id)2, which negatively regulates the activity of basic helix-loop-helix transcription factors, have been shown to play key roles in NK cell development. Consistent with this, exogenous IL-15 added to human thymic progenitor cells stimulated their development into NK cells at the expense of T cells both in fetal thymic organ culture and in coculture with stromal cells expressing the Notch ligand Delta-like 1. Overexpression of Id2 in thymic progenitor cells stimulated NK cell development and blocked T cell development. This, in part, is attributed to inhibition of the transcriptional activity of the E protein HEB, which we show in this study is the only E protein that enhanced T cell development. Notably, Id2 increased a pool of lineage CD1a-CD5+ progenitor cells that in synergy with IL-15 furthered expansion and differentiation into NK cells. Taken together, our findings point to a dualistic function of Id2 in controlling T/NK cell lineage decisions; T cell development is impaired by Id2, most likely by sequestering HEB, whereas NK cell development is promoted by increasing a pool of CD1a-CD5+ NK cell progenitors, which together with IL-15 differentiate into mature NK cells. PMID:20483740

  7. Synthesis and TL characterization of Li2B4O7 doped with copper and manganese

    NASA Astrophysics Data System (ADS)

    Guarneros-Aguilar, C.; Cruz-Zaragoza, E.; Marcazzó, J.; Palomino-Merino, R.; Espinosa, J. E.

    2013-07-01

    Copper (Cu) and manganese (Mn) doped tissue equivalent Li2B4O7 were prepared by solid state sintering. The glow curves shows a high temperature peak at 222 °C for Li2B4O7:Cu and for Li2B4O7:Mn at 218 °C. Linear dose response is observed up to 140 Gy. With a thermal treatment at 125 °C, the first peak of the phosphors doped with copper (95 °C) and manganese (90 °C) disappears and the main TL peaks remain isolated. The dose rate dependence was studied by exposing the samples at doses of 25 Gy and 250 Gy. At low dose it was observed that the Li2B4O7:Cu TL response has non-dependence on dose rate, and at higher dose was observed that there is a dependence of the TL response with the different dose rate until of 30%. For the case of Li2B4O7:Mn, the TL response has non-dependence on dose rate at low dose or high dose.

  8. Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function.

    PubMed

    Moustaki, Ardiana; Argyropoulos, Kimon V; Baxevanis, Constantin N; Papamichail, Michael; Perez, Sonia A

    2011-12-01

    We have previously reported a synergistic effect between hydrocortisone (HC) and IL-15 on promoting natural killer (NK) cell expansion and function. In the present study, we extend our findings to methylprednisolone (MeP) and dexamethasone (Dex), thus ascribing to glucocorticoids (GCs) a general feature as positive regulators of IL-15-mediated effects on NK cells. We demonstrate that each GC when combined with IL-15 in cultures of peripheral blood (PB)-derived CD56(+) cells induces increased expansion of CD56(+)CD3(-) cells displaying high cytolytic activity, IFN-γ production potential and activating receptor expression, including NKp30, NKp44, NKp46, 2B4, NKG2D and DNAM-1. Furthermore, GCs protected NK cells from IL-15-induced cell death. The combination of IL-15 with GCs favored the expansion of a relatively more immature CD16(low/neg) NK cell population, with high expression of NKG2A and CD94, and significantly lower expression of KIR (CD158a and CD158b) and CD57, compared to IL-15 alone. IL-15-expanded NK cells, in the presence or absence of GCs, did not express CD62L, CXCR1 or CCR7. However, the presence of GCs significantly increased the density of CXCR3 and induced strong CXCR4 expression on the surface of NK cells. Our data indicate that IL-15/GC-expanded NK cells, apart from their increased proliferation rate, retain their functional integrity and exhibit a migratory potential rendering them useful for adoptive transfer in NK cell-based cancer immunotherapy. PMID:21706285

  9. The distal upstream promoter in Ly49 genes, Pro1, is active in mature NK cells and T cells, does not require TATA boxes, and displays enhancer activity1

    PubMed Central

    Gays, Frances; Taha, Sally; Brooks, Colin G.

    2016-01-01

    Missing self recognition of MHC class I molecules is mediated in murine species through the stochastic expression of CD94/NKG2 and Ly49 receptors on NK cells. Previous studies have suggested that the stochastic expression of Ly49 receptors is achieved through the use of an alternate upstream promoter, designated Pro1, that is active only in immature NK cells, and operates via the mutually exclusive binding of transcription initiation complexes to closely opposed forward and reverse TATA boxes, forward transcription being transiently required to activate the downstream promoters, Pro2/Pro3, that are subsequently responsible for transcription in mature NK cells. Here we report that Pro1 transcripts are not restricted to immature NK cells but are also found in mature NK cells and T cells, and that Pro1-fragments display strong promoter activity in mature NK cell and T cell lines as well as in immature NK cells. However, the strength of promoter activity in vitro does not correlate well with Ly49 expression in vivo and forward promoter activity is generally weak or undetectable, suggesting that components outside of Pro1 are required for efficient forward transcription. Indeed, conserved sequences immediately upstream and downstream of the core Pro1 region were found to inhibit or enhance promoter activity. Most surprisingly, promoter activity does not require either the forward or reverse TATA boxes, but is instead dependent on residues in the largely invariant central region of Pro1. Importantly, Pro1 displays strong enhancer activity suggesting that this may be its principal function in vivo. PMID:25926675

  10. Activation by SLAM Family Receptors Contributes to NK Cell Mediated “Missing-Self” Recognition

    PubMed Central

    Alari-Pahissa, Elisenda; Grandclément, Camille; Jeevan-Raj, Beena; Leclercq, Georges; Veillette, André; Held, Werner

    2016-01-01

    Natural Killer (NK) cells attack normal hematopoietic cells that do not express inhibitory MHC class I (MHC-I) molecules, but the ligands that activate NK cells remain incompletely defined. Here we show that the expression of the Signaling Lymphocyte Activation Molecule (SLAM) family members CD48 and Ly9 (CD229) by MHC-I-deficient tumor cells significantly contributes to NK cell activation. When NK cells develop in the presence of T cells or B cells that lack inhibitory MHC-I but express activating CD48 and Ly9 ligands, the NK cells’ ability to respond to MHC-I-deficient tumor cells is severely compromised. In this situation, NK cells express normal levels of the corresponding activation receptors 2B4 (CD244) and Ly9 but these receptors are non-functional. This provides a partial explanation for the tolerance of NK cells to MHC-I-deficient cells in vivo. Activating signaling via 2B4 is restored when MHC-I-deficient T cells are removed, indicating that interactions with MHC-I-deficient T cells dominantly, but not permanently, impair the function of the 2B4 NK cell activation receptor. These data identify an important role of SLAM family receptors for NK cell mediated “missing-self” reactivity and suggest that NK cell tolerance in MHC-I mosaic mice is in part explained by an acquired dysfunction of SLAM family receptors. PMID:27054584

  11. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  12. Thermal neutron response of the Li 2B 4O 7:Cu TL dosimeter

    NASA Astrophysics Data System (ADS)

    Gauld, I. C.; Harvey, J. W.; Kennett, T. J.; Prestwich, W. V.

    1986-10-01

    A measurement of the thermal neutron response of the Li 2B 4O 7:Cu TLD has been conducted. The results obtained using the Panasonic UD-806 dosimeter and UD-854A holder yield a free-in-air response of 3.3±0.1 R 60Co equivalent per mSv of thermal neutrons. A thermal neutron response of over 7 R 60Co equivalent per mSv was observed when the dosimeter was irradiated on water phantoms. The high sensitivity may result in a substantial overestimate of the gamma dose equivalent if the TLD is used in a mixed neutron and gamma environment of unknown ratio. Measurements of the Li 2B 4O 7:Cu glow curve, TL saturation curve and the thermal neutron response dependence of the dosimeter filtration thickness are also presented.

  13. Raman Scattering Study of Superionic Conductor Lithium Tetraborate Li2B4O7

    NASA Astrophysics Data System (ADS)

    Dekola, Tatiana; Yagi, Toshirou; Taniguchi, Hiroki; Takesada, Masaki; Sekine, Ichiro

    2006-01-01

    Raman scattering spectra of the superionic-conductive lithium tetraborate Li2B4O7 are observed in the frequency range between 0-1600 cm-1 as a function of temperature from 4.2 K to room temperature. The frequencies of four Raman active A1(TO) modes of 262, 353, 378, and 423 cm-1 at 4.2 K are newly assigned to be related closely with the motion of the Li-ions in superionic conduction.

  14. Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films.

    PubMed

    Hagen, Katharine D; Gillan, James M; Im, Sang-Choul; Landefeld, Sally; Mead, Griffin; Hiley, Megan; Waskell, Lucy A; Hill, Michael G; Udit, Andrew K

    2013-12-01

    Electrochemical methods continue to present an attractive means for achieving in vitro biocatalysis with cytochromes P450; however understanding fully the nature of electrode-bound P450 remains elusive. Herein we report thermodynamic parameters using electrochemical analysis of full-length mammalian microsomal cytochrome P450 2B4 (CYP 2B4) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of CYP 2B4-DDAB films on silica slides reveal an absorption maximum at 418nm, characteristic of low-spin, six-coordinate, water-ligated Fe(III) heme in P450. The Fe(III/II) and Fe(II/I) redox couples (E1/2) of substrate-free CYP 2B4 measured by cyclic voltammetry are -0.23V and -1.02V (vs. SCE, or 14mV and -776mV vs. NHE) at 21°C. The standard heterogeneous rate constant for electron transfer from the electrode to the heme for the Fe(III/II) couple was estimated at 170s(-1). Experiments indicate that the system is capable of catalytic reduction of dioxygen, however substrate oxidation was not observed. From the variation of E1/2 with temperature (18-40°C), we have measured entropy and enthalpy changes that accompany heme reduction, -151Jmol(-1)K(-1) and -46kJmol(-1), respectfully. The corresponding entropy and enthalpy values are less for the six-coordinate low-spin, imidazole-ligated enzyme (-59Jmol(-1)K(-1) and -18kJmol(-1)), consistent with limited conformational changes upon reduction. These thermodynamic parameters are comparable to those measured for bacterial P450 from Bacillus megaterium (CYP BM3), confirming our prior reports that the surfactant environment exerts a strong influence on the redox properties of the heme. PMID:24013063

  15. Pockel's electro-optic coefficients of lithium tetraborate Li2B4O7

    NASA Astrophysics Data System (ADS)

    Méndez, A.; García-Cabañes, A.; Diéguez, E.; Cabrera, J. M.

    1999-08-01

    Pockel's electro-optic coefficients r31 and r33 of Li2B4O7 have been measured with an improved interferometric (Mach-Zehnder) method. The effective rc coefficient has also been measured by a polarimetric setup which, within the experimental error, has given the same value as that of the interferometric method. Attempts to measure the r42 coefficient with either the interferometric or the polarimetric method have given a value below the detection limit of our setups. All coefficients are given in terms of the published values of the piezoelectric coefficient d13.

  16. Atomic force microscopy revelation of molecular complexes in the multiprotein cytochrome P450 2B4-containing system.

    PubMed

    Kuznetsov, Vadim Yu; Ivanov, Yuri D; Archakov, Alexander I

    2004-08-01

    The application of atomic force microscopy (AFM) to the identification and visualization of individual molecules and their complexes in a reconstituted monooxygenase P450 2B4 system without the phospholipid was demonstrated. The method employed in this study distinguishes the monomeric proteins from their binary complexes and, also, the binary from the ternary complexes. The AFM images of the full-length P450 2B4 system's constituent components - cytochrome P450 2B4 (2B4), NADPH-cytochrome P450 reductase and cytochrome b5 (b5), were obtained on highly-oriented pyrolitic graphite. The typical heights of the d-2B4, d-flavoprotein (Fp) and d-b5 molecules were measured and found to be 2.2 +/- 0.2, 2.3 +/- 0.2 and 1.8 +/- 0.1 nm, respectively. The measured heights of the binary d-Fp/d-2B4 and d-2B4/d-b5 complexes were estimated to be 3.4 +/- 0.2 and 2.8 +/- 0.2 nm, respectively. No formation of d-Fp/d-b5 complexes was registered. The ternary d-Fp/d-2B4/d-b5 complexes were visualized and their heights were found to be roughly equal to 4.3 +/- 0.3 nm and 6.2 +/- 0.3 nm. PMID:15274134

  17. A new phosphor Li2B4O7: Cu for TLD.

    PubMed

    Takenaga, M; Yamamoto, O; Yamashita, T

    1983-04-01

    The phosphor Li2B4O7: Cu (0.03% by weight) has an effective atomic number of 7.3, which is very similar to that of tissue (7.4). This suggests that the phosphor should have excellent properties for thermoluminescent dosimetry. The phosphor prepared by a sintering method shows two glow peaks composed of a dosimetric peak at 205 degrees C and a shoulder at 120 degrees C, and a broad emission band peaking at 368 nm. The material based on the stoichiometric compound of Li2O . 2B2O3 has a good moisture resistant property. The dosimetric characteristics are as follows: (1) The sensitivity of gamma rays is about 20 times higher than that of Li2B4O2: Mn prepared by the conventional melting method. (2) The dosimetry peak of 205 degrees C fades less than 9% in intensity at 25 degrees C after 60 days in dark. (3) The TL output is linear with exposure to about 10(5) R, becoming sublinear above it. (4) The sensitivity loss caused by humidity is about 10-25% after 2-6 months of storage in air of 90% relative humidity at 25 degrees C. (5) The energy dependence of TL output for photons is flat within the limit of 10% from 40 keV to 7 MeV. (6) The light induced fading is 10% after 3 h room lighting at 1000 lux. PMID:6841096

  18. An infrared spectroscopic study of Li2B4O7

    NASA Astrophysics Data System (ADS)

    Zhigadlo, N. D.; Zhang, M.; Salje, E. K. H.

    2001-07-01

    The temperature evolution of the infrared powder spectra of lithium tetraborate Li2B4O7 has been measured in the infrared region 50-1600 cm-1 and over a temperature range between 20 K and 680 K. In contrast to the sharp B-O bands, the Li-related bands in the region between 300 cm-1 and 510 cm-1 are rather broad even at 20 K. With increasing temperature these bands show a stronger thermal response than in the higher-frequency region: the bands at 350 cm-1 and 424 cm-1 shift significantly in frequency and become very broad above 500 K. The 508 cm-1 band appears to split into two individual bands near 500 K. The broadening of the Li-related bands is probably due to the thermally induced Li disorder. The temperature dependence of the B-O bending and stretching vibrations does not show clear evidence of structural phase transitions in Li2B4O7 occurring in the temperature range between 20 K and 680 K.

  19. Thermoluminescence characteristics of Li2B4O7 single crystal dosimeters doped with Mn

    NASA Astrophysics Data System (ADS)

    Ekdal, E.; Karalı, T.; Kelemen, A.; Ignatovych, M.; Holovey, V.; Harmansah, C.

    2014-03-01

    In this study, thermoluminescence (TL) characterization of newly developed Li2B4O7:Mn single crystal phosphor is reported. It is a very attractive material in personal dosimetry because of its near tissue equivalency (Zeff=7.25). The crystal was grown by the Czochralski method from high purity compounds. Glow curve, dose response, and fading and reproducibility properties of this material were investigated. Its TL glow curve showed two well separated peaks at about 105 and 220 °C with a heating rate of 2 °C s-1. The main peak at 220 °C has a linear dose response of up to 60 Gy. The thermal fading ratio of the material is about 8% for the main peak in 10 days. The results showed that there is no significant variation of TL responses for 15 sequential measurements. Apart from the dosimetric properties above, the TL kinetic parameters of the main peak at 220 °C of Li2B4O7:Mn single crystal phosphor were also calculated using the various heating rates method. Activation energy and frequency factor were found as 1.21 eV and 3.75×1011 s-1, respectively.

  20. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors

    PubMed Central

    Cerdeira, Ana Sofia; Rajakumar, Augustine; Royle, Caroline M.; Lo, Agnes; Husain, Zaheed; Thadhani, Ravi I.; Sukhatme, Vikas P.; Karumanchi, S. Ananth; Kopcow, Hernan D.

    2013-01-01

    Natural killer (NK) cells that populate the decidua are important regulators of normal placentation. In contrast to peripheral blood NK (pNK) cells, decidual NK cells (dNK) lack cytotoxicity, secrete pro-angiogenic factors and regulate trophoblast invasion. Here we show that exposure to a combination of hypoxia, transforming growth factor beta 1, and a demethylating agent, results in NK cells that express Killer cell Immunoglobulin like Receptors, the dNK cell markers CD9 and CD49a, and dNK pattern of chemokine receptors. These cells secrete vascular endothelial growth factor, a potent pro-angiogenic molecule, display reduced cytotoxicity and promote invasion of human trophoblast cell lines. These findings have potential therapeutic applications for placental disorders associated with altered NK cell biology. PMID:23487420

  1. Electric Modulus Spectroscopy of Lithium Tetraborate (Li2B4O7) Single Crystal

    NASA Astrophysics Data System (ADS)

    Kim, Jin

    2001-10-01

    The lithium tetraborate (Li2B4O7; LBO) crystals were successfully grown by Czochralski technique. The frequency and temperature dependences of dielectric constant and ac conductivity were investigated in the frequency from 100 Hz to 10 MHz along c-axis. The dielectric anomaly with broad peak about 300°C was observed in the temperature from 200°C to 500°C. The ac conductivity is frequency independent at high temperature and low frequencies, and shows a frequency dispersion at low temperature. The relaxation in ionically conducting LBO crystal analysed in terms of modulus formalism. The electric modulus which describes the dielectric relaxation behavior is fitted to the Kohlrausch Williams Watts (KWW) exponential function. The activation energy with 0.34 eV was estimated by Arrhenius plot of relaxation frequency, which is related to ionic hopping conduction. The temperature dependence of the electric relaxation of modulus was studied and the results were discussed.

  2. High-temperature properties of lithium tetraborate Li2B4O7

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Boysen, H.; Niewa, R.; Banys, J.; Kinka, M.; Burak, Ya; Adamiv, V.; Izumi, F.; Chumak, I.; Fuess, H.

    2012-05-01

    High-temperature coherent neutron powder diffraction experiments were carried out on Li2B4O7 with boron isotope ratio 11B : 10B as high as 99.6 : 0.4%. Neither traces of phase transformations nor discontinuous changes of physical properties were observed. Anomalies in the thermal expansion of lithium tetraborate were considered in terms of first-order Grüneisen approximation. Extended bond length analysis revealed significant modifications of the boron-oxygen framework which is supplemented by dynamic lithium disorder. Impedance spectroscopy studies revealed a complicated conduction mechanism in single crystalline lithium tetraborate. The lithium diffusion pathway for bulk conductivity along the polar axis was established using both maximum entropy and anharmonic refinement techniques.

  3. Growth of silver doped Li2B4O7 single crystals for dosimetric application

    NASA Astrophysics Data System (ADS)

    Patra, G. D.; Singh, S. G.; Singh, A. K.; Desai, D. G.; Tiwari, B.; Sen, S.; Gadkari, S. C.

    2013-02-01

    High quality lithium tetraborate; Li2B4O7 (LTB) single crystals with varying concentrations of Ag have been grown using the Czochralski technique. Optimized growth parameters enabled us to grow crystals that were transparent, colorless, crack-free, and core-free. The grown LTB:Ag crystals were characterized using UV-VIS-NIR transmission, photoluminescence (PL) and thermoluminescence (TL) measurements. The transmission of about 85 % in the range from 200 nm to 1100 nm revealed a good optical quality of the grown crystals. The TL glow peak of LTB:Ag single crystals at 160°C with an emission at 270 nm is found useful for the dosimetric applications. The dose response is found to be linear in the range from 100 mGy to 50 Gy.

  4. Structural and electronic properties of Li(2)b(4)O(7).

    PubMed

    Islam, Mazharul M; Maslyuk, Volodymyr V; Bredow, Thomas; Minot, Christian

    2005-07-21

    The reliability of various quantum-chemical approaches for the calculation of bulk properties of lithium tetraborate Li(2)B(4)O(7) was examined. Lattice parameters and the electronic structure obtained with density-functional theory (DFT), with DFT-Hartree-Fock (HF) hybrid methods, and with the semiempirical method MSINDO were compared to available experimental data. We also compared the results at DFT level using different wave functions, either based on linear combinations of atom-centered orbitals (LCAO), or on plane waves, as implemented in the crystalline orbital programs CRYSTAL and VASP. The basis set dependence of calculated properties was investigated for the LCAO method. In the plane wave approach ultrasoft pseudopotentials (US PP), and projector-augmented wave (PAW) potentials were used to represent the core electrons. For all methods under consideration, the calculated Li(2)B(4)O(7) structure parameters are close to each other and agree within a few percent with measured values. A more pronounced method dependence was found for the band structure, the band gap and the cohesive energy. Closest agreement between theoretical and experimental results for the band gap was obtained with the DFT-HF hybrid methods while pure DFT methods underestimate and HF based methods overestimate the measured value. It was found that the calculated band gap strongly depends on the atomic basis set in the LCAO approach. The description of the core electrons considerably affects the cohesive energy obtained with the plane wave approach. Atomic charges based on a Mulliken analysis were compared to effective charges obtained from Raman spectroscopy. Electron density maps are used to analyze the character of B-O and Li-O interactions. PMID:16852703

  5. Elasticity and equation of state of Li2B4O7

    NASA Astrophysics Data System (ADS)

    Trots, Dmytro M.; Kurnosov, Alexander; Vasylechko, Leonid; Berkowski, Marek; Boffa Ballaran, Tiziana; Frost, Daniel J.

    2011-07-01

    A single crystal X-ray diffraction study on lithium tetraborate Li2B4O7 (diomignite, space group I41 cd) has been performed under pressure up to 8.3 GPa. No phase transitions were found in the pressure range investigated, and hence the pressure evolution of the unit-cell volume of the I41 cd structure has been described using a third-order Birch-Murnaghan equation of state (BM-EoS) with the following parameters: V 0 = 923.21(6) Å3, K 0 = 45.6(6) GPa, and K' = 7.3(3). A linearized BM-EoS was fitted to the axial compressibilities resulting in the following parameters a 0 = 9.4747(3) Å, K 0a = 73.3(9) GPa, K' a = 5.1(3) and c 0 = 10.2838(4) Å, K 0c = 24.6(3) GPa, K' c = 7.5(2) for the a and c axes, respectively. The elastic anisotropy of Li2B4O7 is very large with the zero-pressure compressibility ratio β 0c /β 0a = 3.0(1). The large elastic anisotropy is consistent with the crystal structure: A three-dimensional arrangement of relatively rigid tetraborate groups [B4O7]2- forms channels occupied by lithium along the polar c-axis, and hence compression along the c axis requires the shrinkage of the lithium channels, whereas compression in the a direction depends mainly on the contraction of the most rigid [B4O7]2- units. Finally, the isothermal bulk modulus obtained in this work is in general agreement with that derived from ultrasonic (Adachi et al. in Proceedings-IEEE Ultrasonic Symposium, 228-232, 1985; Shorrocks et al. in Proceedings-IEEE Ultrasonic Symposium, 337-340, 1981) and Brillouin scattering measurements (Takagi et al. in Ferroelectrics, 137:337-342, 1992).

  6. Characterization of the Microsomal Cytochrome P450 2B4 O2-Activation Intermediates by Cryoreduction/EPR.†

    PubMed Central

    Davydov, Roman; Razeghifard, Reza; Im, Sang-Choul; Waskell, Lucy; Hoffman, Brian M.

    2009-01-01

    The oxy-ferrous complex of cytochrome P450 2B4 (2B4) has been prepared at − 40°C with and without bound substrate (butylated hydroxytoluene, BHT), and radiolytically oneelectron cryoreduced at 77K. EPR shows that in both cases the observed product of cryoreduction is the hydroperoxo-ferriheme species, indicating that the microsomal P450 contains an efficient distal-pocket proton-delivery network. In the absence of substrate, two distinct hydroperoxo-ferriheme signals are observed, reflecting the presence of two major conformational substates in the oxy-ferrous precursor. Only one species is observed when BHT, is bound, indicating a more ordered active site. BHT binding also changes the g-tensor components of the hydroperoxo-ferric 2B4 intermediate, indicating that the substrate modulates the properties of this intermediate. Step-annealing the cryoreduced ternary 2B4 complex at 175K and above causes the loss of hydroperoxo-ferric 2B4 and the parallel appearance of high-spin ferri-2B4; LC-MS/MS analysis shows that in this process BHT is quantitatively converted to two products, hydroxymethyl BHT (1) and 3-hydroxy-t-butyl BHT (2). This implies that the hydroperoxo-ferric 2B4 prepared by cryoreduction is catalytically active, and that the high-spin state observed after annealing contains an enzymebound product of BHT monooxygenation. The ratio of products generated during cryoreduction/annealing, 1/2 ~ 6.2/1, is significantly different from the ratio, 2.5/1, at ambient temperature, and product coupling is significantly greater. This suggests that substrate is held more rigidly relative to the oxidizing species at low temperature, and/or that dissociation of FeOOH is inhibited. As in experiments under ambient conditions, product formation is not observed in the inactive F429H 2B4 mutant. PMID:18700729

  7. Growth of 3-Inch-Diameter Li2B4O7 Single Crystal Using the Resistance Heating Furnace

    NASA Astrophysics Data System (ADS)

    Sugawara, Tamotsu; Komatsu, Ryuichi; Sugihara, Tadashi

    1994-09-01

    The mode and origin of cracking of lithium tetraborate ( Li2B4O7) single crystals during growth using a resistance heating furnace have been studied. The relationship between the formation mechanism of anomalous growth ridges and the occurrence of cracking was examined. It is concluded that a high temperature gradient near the interface and small temperature fluctuations in the melt are needed for growing a crack-free 3-inch-diameter Li2B4O7 single crystal.

  8. Excited state absorption in chromium doped Li2B4O7 glass

    NASA Astrophysics Data System (ADS)

    Koepke, Cz; Wisniewski, K.; Grinberg, M.; Majchrowski, A.; Han, T. P. J.

    2001-03-01

    Excited state absorption (ESA) measurements of the Cr:Li2B4O7 glass (Cr:LBO-glass) along with preliminary interpretation are presented. The presence of chromium in its tri- (d3) and hexa- (d0) valence states is observed. Both Cr3+ and Cr6+ ions appear to contribute in the de-excitation processes and can be attributed in the ESA spectra under excitation wavelengths at 308 nm, 488 nm, 515 nm and 610 nm. The ESA spectra detected with UV excitation have been interpreted in terms of transitions in the framework of the Cr5+O- centre, which forms after charge-transfer-type absorption in the [CrO4]2- group. Assumption of the double-electron state of the 3d22p4 electronic configuration together with crystal-field-split states of the 3d12p5 configuration allowed us to reproduce the obtained ESA spectra. The ESA spectra of the Cr3+ ions have different characteristics and are related to transitions to the conduction band.

  9. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection.

    PubMed

    Clark, Sarah E; Filak, Holly C; Guthrie, Brandon S; Schmidt, Rebecca L; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M; Raulet, David H; Lenz, Laurel L

    2016-06-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  10. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  11. Growth and EPR and optical properties of Li 2B 4O 7 single crystals doped with Co 2+ ions

    NASA Astrophysics Data System (ADS)

    Piwowarska, D.; Kaczmarek, S. M.; Berkowski, M.; Stefaniuk, I.

    2006-05-01

    Li 2B 4O 7 single crystals doped with Co ions were grown by the Czochralski method. The electron paramagnetic resonance (EPR) and optical absorption spectra of Li 2B 4O 7 (LBO) single crystals doped with Co 2+ ions were measured. The EPR spectra could be described by the spin-Hamiltonian with an effective spin of S={1}/{2} in octahedral symmetry. The values of g and A tensors and direction cosines characterizing Co 2+ centers in the LBO crystal were determined for the first time also. The EPR data reveals at least two types of Co 2+ centers. Optical absorption was measured in the range of 200 to 3200 nm for "as-grown" and γ-irradiated samples of Co:Li 2B 4O 7 crystals confirming octahedral coordination of Co 2+ ions and cation vacancies arising in the "as-grown" crystal.

  12. NK Cell-extrinsic IL-18 Signaling Is Required for Efficient NK Cell Activation to Vaccinia Virus

    PubMed Central

    Brandstadter, Joshua D.; Huang, Xiaopei; Yang, Yiping

    2014-01-01

    Summary NK cells are important for the control of vaccinia virus (VV) in vivo. Recent studies have shown that multiple pathways are required for effective activation of NK cells. These include both TLR-dependent and -independent pathways, as well as the NKG2D activating receptor that recognizes host stress-induced NKG2D ligands. However, it remains largely unknown what controls the upregulation of NKG2D ligands in response to VV infection. In this study, we first showed that IL-18 is critical for NK cell activation and viral clearance. We then demonstrated that IL-18 signaling on both NK cells and DCs is required for efficient NK cell activation upon VV infection in vitro. We further showed in vivo that efficient NK cell activation to VV is dependent on DCs and IL-18 signaling in non-NK cells, suggesting an essential role for NK cell-extrinsic IL-18 signaling in NK cell activation. Mechanistically, IL-18 signaling in DCs promotes expression of Rae-1, an NKG2D ligand. Collectively, our data reveal a previously unrecognized role for NK cell-extrinsic IL-18 signaling in NK cell activation through upregulation of NKG2D ligands. These observations may provide insights into the design of effective NK cell-based therapies for viral infections and cancer. PMID:24846540

  13. Human hemokinin-1 promotes migration of melanoma cells and increases MMP-2 and MT1-MMP expression by activating tumor cell NK1 receptors.

    PubMed

    Zhang, Yixin; Li, Xiaofang; Li, Jingyi; Hu, Hui; Miao, Xiaokang; Song, Xiaoyun; Yang, Wenle; Zeng, Qian; Mou, Lingyun; Wang, Rui

    2016-09-01

    Receptors and their regulatory peptides are aberrantly expressed in tumors, suggesting a potential tumor therapy target. Human hemokinin-1 (hHK-1) is a tachykinin peptide ligand of the neurokinin-1 (NK1) receptor which is overexpressed in melanoma and other tumor tissues. Here, we investigated the role of hHK-1 and the NK1 receptor in melanoma cell migration. NK1 receptor expression was associated with melanoma metastatic potential. Treatment with hHK-1 significantly enhanced A375 and B16F10 melanoma cell migration and an NK1 receptor antagonist L732138 blocked this effect. MMP-2 and MT1-MMP expression were up-regulated in hHK-1-treated melanoma cells and cell signaling data suggested that hHK-1 induced phosphorylation of ERK1/2, JNK and p38 by way of PKC or PKA. Kinase activation led to increased MMP-2 and MT1-MMP expression and melanoma cell migration induced by hHK-1. Thus, hHK-1 and the NK1 receptor are critical to melanoma cell migration and each may be a promising chemotherapeutic target. PMID:27458061

  14. Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy.

    PubMed

    Chu, Yaya; Flower, Allyson; Cairo, Mitchell S

    2016-01-01

    NK cells are bone marrow-derived cytotoxic lymphocytes that play a major role in the rejection of tumors and cells infected by viruses. The regulation of NK activation vs inhibition is regulated by the expression of a variety of NK receptors (NKRs) and specific NKRs' ligands expressed on their targets. However, factors limiting NK therapy include small numbers of active NK cells in unexpanded peripheral blood and lack of specific tumor targeting. Chimeric antigen receptors (CAR) usually include a single-chain Fv variable fragment from a monoclonal antibody, a transmembrane hinge region, and a signaling domain such as CD28, CD3-zeta, 4-1BB (CD137), or 2B4 (CD244) endodimers. Redirecting NK cells with a CAR will circumvent the limitations of the lack of NK targeting specificity. This chapter focuses on the methods to expand human NK cells from peripheral blood by co-culturing with feeder cells and to modify the expanded NK cells efficiently with the in vitro transcribed CAR mRNA by electroporation and to test the functionality of the CAR-modified expanded NK cells for use in adoptive cellular immunotherapy. PMID:27177669

  15. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter.

    PubMed

    Reed, James R; dela Cruz, Albert Leo N; Lomnicki, Slawo M; Backes, Wayne L

    2015-05-15

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230 °C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50 °C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR·P450 complex. PMID:25817938

  16. Fine-tuning of CD8(+) T-cell effector functions by targeting the 2B4-CD48 interaction.

    PubMed

    Lissina, Anna; Ambrozak, David R; Boswell, Kristin L; Yang, Wenjing; Boritz, Eli; Wakabayashi, Yoshiyuki; Iglesias, Maria C; Hashimoto, Masao; Takiguchi, Masafumi; Haddad, Elias; Douek, Daniel C; Zhu, Jun; Koup, Richard A; Yamamoto, Takuya; Appay, Victor

    2016-07-01

    Polyfunctionality and cytotoxic activity dictate CD8(+) T-cell efficacy in the eradication of infected and malignant cells. The induction of these effector functions depends on the specific interaction between the T-cell receptor (TCR) and its cognate peptide-MHC class I complex, in addition to signals provided by co-stimulatory or co-inhibitory receptors, which can further regulate these functions. Among these receptors, the role of 2B4 is contested, as it has been described as either co-stimulatory or co-inhibitory in modulating T-cell functions. We therefore combined functional, transcriptional and epigenetic approaches to further characterize the impact of disrupting the interaction of 2B4 with its ligand CD48, on the activity of human effector CD8(+) T-cell clones. In this setting, we show that the 2B4-CD48 axis is involved in the fine-tuning of CD8(+) T-cell effector function upon antigenic stimulation. Blocking this interaction resulted in reduced CD8(+) T-cell clone-mediated cytolytic activity, together with a subtle drop in the expression of genes involved in effector function regulation. Our results also imply a variable contribution of the 2B4-CD48 interaction to the modulation of CD8(+) T-cell functional properties, potentially linked to intrinsic levels of T-bet expression and TCR avidity. The present study thus provides further insights into the role of the 2B4-CD48 interaction in the fine regulation of CD8(+) T-cell effector function upon antigenic stimulation. PMID:26860368

  17. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter

    PubMed Central

    Reed, James R.; dela Cruz, Albert Leo N.; Lomnicki, Slawo M.; Backes, Wayne L.

    2015-01-01

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR•P450 complex. PMID:25817938

  18. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.

    PubMed

    Mace, Emily M; Gunesch, Justin T; Dixon, Amera; Orange, Jordan S

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34(+) precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  19. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  20. Formaldehyde exposure impairs the function and differentiation of NK cells.

    PubMed

    Kim, Eun-Mi; Lee, Hwa-Youn; Lee, Eun-Hee; Lee, Ki-Mo; Park, Min; Ji, Kon-Young; Jang, Ji-Hun; Jeong, Yun-Hwa; Lee, Kwang-Ho; Yoon, Il-Joo; Kim, Su-Man; Jeong, Moon-Jin; Kim, Kwang Dong; Kang, Hyung-Sik

    2013-11-25

    We investigated the cytotoxic effects of formaldehyde (FA) on lymphocytes. FA-exposed mice showed a profound reduction not only in the number of natural killer (NK) cells but also in the expression of NK cell-specific receptors, but these mice did not exhibit decreases in the numbers of T or B lymphocytes. FA exposure also induced decreases in NK cytolytic activity and in the expression of NK cell-associated genes, such as IFN-γ, perforin and CD122. To determine the effect of FA on tumorigenicity, C57BL/6 mice were subcutaneously injected with B16F10 melanoma cells after FA exposure. The mass of the B16F10 tumor and the concentration of extravascular polymorphonuclear leukocytes were greater than those in unexposed tumor-bearing control mice. The number and cytolytic activity of NK cells were also reduced in B16F10 tumor-bearing mice exposed to FA. To determine how FA reduces the NK cell number, NK precursor (pNK) cells were treated with FA, and the differentiation status of the NK cells was analyzed. NK cell differentiation was impaired by FA treatment in a concentration-dependent manner. These findings indicate that FA exposure may promote tumor progression by impairing NK cell function and differentiation. PMID:24060340

  1. Loss of STAT3 in murine NK cells enhances NK cell-dependent tumor surveillance.

    PubMed

    Gotthardt, Dagmar; Putz, Eva M; Straka, Elisabeth; Kudweis, Petra; Biaggio, Mario; Poli, Valeria; Strobl, Birgit; Müller, Mathias; Sexl, Veronika

    2014-10-01

    The members of the signal transducer and activator of transcription (STAT) family of transcription factors modulate the development and function of natural killer (NK) cells. NK cell-mediated tumor surveillance is particularly important in the body's defense against hematological malignancies such as leukemia. STAT3 inhibitors are currently being developed, although their potential effects on NK cells are not clear. We have investigated the function of STAT3 in NK cells with Stat3(Δ/Δ)Ncr1-iCreTg mice, whose NK cells lack STAT3. In the absence of STAT3, NK cells develop normally and in normal numbers, but display alterations in the kinetics of interferon-γ (IFN-γ) production. We report that STAT3 directly binds the IFN-γ promoter. In various in vivo models of hematological diseases, loss of STAT3 in NK cells enhances tumor surveillance. The reduced tumor burden is paralleled by increased expression of the activating receptor DNAM-1 and the lytic enzymes perforin and granzyme B. Our findings imply that STAT3 inhibitors will stimulate the cytolytic activity of NK cells against leukemia, thereby providing an additional therapeutic benefit. PMID:25185262

  2. Natural Killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment

    PubMed Central

    Parodi, Monica; Pedrazzi, Marco; Cantoni, Claudia; Averna, Monica; Patrone, Mauro; Cavaletto, Maria; Spertino, Stefano; Pende, Daniela; Balsamo, Mirna; Pietra, Gabriella; Sivori, Simona; Carlomagno, Simona; Mingari, Maria Cristina; Moretta, Lorenzo; Sparatore, Bianca; Vitale, Massimo

    2015-01-01

    In this study we characterize a new mechanism by which Natural Killer (NK) cells may amplify their recruitment to tumors. We show that NK cells, upon interaction with melanoma cells, can release a chemotactic form of High Mobility Group Box-1 (HMGB1) protein capable of attracting additional activated NK cells. We first demonstrate that the engagement of different activating NK cell receptors, including those mainly involved in tumor cell recognition can induce the active release of HMGB1. Then we show that during NK-mediated tumor cell killing two HMGB1 forms are released, each displaying a specific electrophoretic mobility possibly corresponding to a different redox status. By the comparison of normal and perforin-defective NK cells (which are unable to kill target cells) we demonstrate that, in NK/melanoma cell co-cultures, NK cells specifically release an HMGB1 form that acts as chemoattractant, while dying tumor cells passively release a non-chemotactic HMGB1. Finally, we show that Receptor for Advanced Glycation End products is expressed by NK cells and mediates HMGB1-induced NK cell chemotaxis. Proteomic analysis of NK cells exposed to recombinant HMGB1 revealed that this molecule, besides inducing immediate chemotaxis, also promotes changes in the expression of proteins involved in the regulation of the cytoskeletal network. Importantly, these modifications could be associated with an increased motility of NK cells. Thus, our findings allow the definition of a previously unidentified mechanism used by NK cells to amplify their response to tumors, and provide additional clues for the emerging role of HMGB1 in immunomodulation and tumor immunity. PMID:26587323

  3. Low-temperature crystal structure, specific heat, and dielectric properties of lithium tetraborate Li2B4O7

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Schwarz, B.; Lorenz, T.; Adamiv, V. T.; Burak, Ya. V.; Banys, J.; Grigalaitis, R.; Vasylechko, L.; Ehrenberg, H.; Fuess, H.

    2010-11-01

    Coherent neutron powder diffraction experiments were carried out together with specific heat, dilatometry, and dielectric spectroscopy studies on Li2B4O7 enriched with B11 isotope to 99.3% at low temperatures. Neither traces of phase transformations nor discontinuous changes in physical properties were observed. Negative thermal expansion, anomalous thermal behavior of selected interatomic distances/angles, isotropic displacement parameters on specific sites as well as dielectric constant were discussed in terms of dynamic lithium disorder.

  4. Acousto-optic interaction in alpha-BaB(2)O(4)and Li(2)B(4)O(7) crystals.

    PubMed

    Martynyuk-Lototska, Irina; Mys, Oksana; Dudok, Taras; Adamiv, Volodymyr; Smirnov, Yevgen; Vlokh, Rostyslav

    2008-07-01

    Experimental studies and analysis of acousto-optic diffraction in alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are given. Ultrasonic wave velocity, elastic compliance and stiffness coefficients, and piezo-optic and photoelastic coefficients of alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals are determined. The acousto-optic figure of merit has been estimated for different possible geometries of acousto-optic interaction. It is shown that the acousto-optic figures of merit for alpha-BaB(2)O(4) crystals reach the value M(2)=(270 +/- 70) x 10(-15) s(3)/kg for the case of interaction with the slowest ultrasonic wave. The directions of propagation and polarization of those acoustic waves are obtained on the basis of construction of acoustic slowness surfaces. The acousto-optic diffraction is experimentally studied for alpha-BaB(2)O(4) and Li(2)B(4)O(7) crystals. PMID:18594591

  5. Valency states of Yb, Eu, Dy and Ti ions in Li 2B 4O 7 glasses

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Sławomir M.; Tsuboi, Taiju; Boulon, Georges

    2003-06-01

    Absorption and emission spectra of Eu and Dy, Yb and Ti ions in Li 2B 4O 7 glasses grown in oxygen and hydrogen gas atmospheres were measured for valency states and lattice-sites analysis. For the Li 2B 4O 7 glass doped with Eu 2+, Eu 3+ and Dy 3+ ions which were grown in oxidizing and reducing atmospheres, absorption and emission bands due to these ions were investigated before and after γ-irradiation. For the Yb 3+-doped Li 2B 4O 7 glass, a weak, broad band was observed near the sharp 976.3 nm absorption band. The origin of this band is discussed in comparison with other glasses. Moreover, irradiation experiments using γ-rays were also performed in order to investigate the possibility of valency change of Yb ions. It was found that Ti 4+ ions, which are produced under oxidizing atmosphere, change to Ti 3+ ions after γ-irradiation with a dose of 10 5 Gy. An additional absorption band observed at about ˜500 nm is due to the Ti 3+ ions accompanied by charge-compensating vacancy and does not give any emission.

  6. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone.

    PubMed

    Mostafa, Heba H; Vogel, Peter; Srinivasan, Ashok; Russell, Charles J

    2016-09-01

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential. PMID:27589232

  7. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    PubMed Central

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.; Bryceson, Yenan T.

    2015-01-01

    SUMMARY The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets. PMID:25786176

  8. CAM and NK Cells

    PubMed Central

    2004-01-01

    It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK) cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM) since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms. PMID:15257322

  9. Mode of Occurrence and Cause of Cracking of Li2B4O7 Single Crystals during Growth by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Komatsu, Ryuichi; Uda, Satoshi; Hikita, Kazuyasu

    1993-09-01

    The mode of occurrence and the origin of cracking of lithium tetraborate (Li2B4O7) single crystals during growth have been investigated. The melt temperature dependence and the origin of crystal cracking have been explained in terms of activation enthalpy change for viscous flow in Li2B4O7 melt associated with temperature distribution in the melt.

  10. UGT2B4 previously implicated in the risk of breast cancer is associated with menarche timing in Ukrainian females.

    PubMed

    Yermachenko, Anna; Dvornyk, Volodymyr

    2016-09-15

    Age at menarche (AAM) is a multifactorial trait that is regulated by dozens environmental and genetic factors. Recent meta-analysis of GWAS showed significant association of 106 loci with AAM. These polymorphisms need replicating in different ethnic populations in order to confirm their association with menarche timing. This study was aimed to replicate 53 polymorphisms that were previously associated with AAM. DNA samples were collected from 416 Ukrainian young females for further genotyping. After data quality control 47 polymorphisms remained for the association analysis using the linear regression model. SNP rs13111134 located in UGT2B4 showed the most significant association with AAM (0.431years per allele A, padj=0.044 after the Bonferroni correction). Polymorphisms rs7589318 in POMC, rs11724758 in FABP2, rs7753051 in IGF2R, rs2288696 in FGFR1 and rs12444979 in GPRC5B may also contribute to menarche timing. However, none of these associations remained significant after the Bonferroni correction for multiple testing. The obtained results provide evidence that UGT2B4, which was previously associated with predisposition to breast cancer, may play a role in the onset of menarche. PMID:27282283

  11. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields

    NASA Astrophysics Data System (ADS)

    Fartaria, M. J.; Reis, C.; Pereira, J.; Pereira, M. F.; Cardoso, J. V.; Santos, L. M.; Oliveira, C.; Holovey, V.; Pascoal, A.; Alves, J. G.

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23–40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined

  12. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields.

    PubMed

    Fartaria, M J; Reis, C; Pereira, J; Pereira, M F; Cardoso, J V; Santos, L M; Oliveira, C; Holovey, V; Pascoal, A; Alves, J G

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23-40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined standard

  13. Efficient all polymer solar cells employing donor polymer based on benzo[1,2-b:4,5-b']dithiophene unit

    NASA Astrophysics Data System (ADS)

    Ding, Guanqun; Yuan, Jianyu; Huang, Xiaodong; Liu, Zeke; Shi, Guozheng; Shi, Shaohua; Ding, Jiexiong; Wang, Hai-Qiao; Ma, Wanli

    2015-11-01

    We reported all polymer solar cells (all-PSCs) employing BDT-based donor-acceptor (D-A) polymers composed of benzo[1,2-b:4,5-b']dithiophene (BDT) and thiadiazolo[3,4-c]pyridine (PyTZ) (PBPT-8 and PBPT-12) as donor and NDI-based n-type polymer Poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) (N2200) as acceptor. The influence of thermal annealing on the performance of all-PSCs was systematically investigated and discussed. It was found that the pre-annealing of the active blend films could significantly improve the all-PSCs performance. Both PBPT-8/PBPT-12:N2200 systems can deliver promising PCEs (4.12% and 4.25%) at the optimal annealing temperature of 160 oC due to the promoted film quality and charge transport properties. Morphology investigation and carrier mobility measurements have been carried out to analyze the effect of thermal annealing. This study suggests that BDT-based polymer:N2200 systems can be promising candidates for all-PSCs, with thermal annealing as an effective approach to promote the device performance.

  14. Low-loss optical planar waveguides in Li2B4O7 crystal formed by He+ implantation

    NASA Astrophysics Data System (ADS)

    Boudrioua, A.; Bakhouya, Ch.; Loulergue, J. C.; Moretti, P.; Polgár, K.

    2001-06-01

    Formation of planar waveguide in lithium tetraborate (Li2B4O7) crystal by 2 MeV helium (He+) implantation is reported. Investigation of the induced defects is performed by using a modified m-lines setup. Results indicate that the optical properties of the guiding core are not affected by the implantation process. Moreover the produced defects are shown to be isotropic and localized at the optical barrier position without any extension towards the surface. Optical losses measured by using a new approach are found to be less than 2 dB cm-1. Finally the influence of postannealing procedure applied to the sample showed a stability of the optical properties of the guide with 10% improvement of optical losses.

  15. Growth of Cu-doped Li2B4O7 single crystals by vertical Bridgman method and their characterization

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Kuwano, Y.; Asai, T.; Senguttuvan, N.; Hayashi, T.; Kobayashi, M.; Oku, T.; Sakai, K.; Adachi, T.; Shimizu, H. M.; Suzuki, J.

    2003-09-01

    Lithium tetra borate (Li2B4O7, LBO) single crystals with Cu as dopant have been grown by the vertical Bridgman method. A special crucible arrangement with three separate crucibles welded together was used for the crystal growth. Cu2O was added at different concentrations varying in the range 0.0025-0.1 wt%. The grown crystals were cut and polished for observation under optical and scanning electron microscopes. Optical micrograph showed presence of voids, which propagate along the growth direction. Scanning electron microscope coupled with energy dispersive X-ray analyzer showed segregation of Cu in these voids, which might be due to constitutional supercooling. Optical transmittance measured across 5 mm thick samples indicated that the absorption around 240 nm increased with the increase in Cu concentration. Excitation-emission measurement was carried out to estimate peak emission and excitation wavelengths. The dependence of Cu concentration in LBO on the emission intensity has also been evaluated.

  16. Several features of emission spectra of Pr+3 ions incorporated into Li2B4O7 glass matrices

    NASA Astrophysics Data System (ADS)

    Majchrowski, A.; Kityk, I. V.; Mandowska, E.; Mandowski, A.; Ebothé, Jean; Lukasiewicz, T.

    2006-09-01

    Influence of lithium tetraborate (Li2B4O7, TBL) glass matrix on the luminescent properties of the Pr+3 ions emission was investigated. It was demonstrated that the decrease of matrix long-range ordering leads to substantial widening of corresponding peaks in the emission spectra in comparison with crystalline Ca4GdO(BO3)3 matrices. During the decrease of temperature from 292 down to 82K a distinct low-energy spectral shift of the principal red luminescent band from 607to610nm is observed, which is a consequence of a coexistence of several structural borate fragments. Simulations of incorporation the Pr3+ ions into the TBL glasslike matrix were carried out using the Langevin molecular dynamics simulations and quantum chemical simulations. Possibility of partial substitution of boron ions by Pr3+ ions is demonstrated. The contribution of the electron-phonon subsystems to the spectral broadening of the corresponding emission red lines was evaluated. It was shown that the main contribution to the emission bands gives harmonic electron-phonon interactions contrary to the generally adopted model assuming prevailing role of anharmonic electron-phonon interactions.

  17. Transcriptional Control of NK Cells.

    PubMed

    Sun, Joseph C

    2016-01-01

    Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte. PMID:26177585

  18. Electron and hole traps in Ag-doped lithium tetraborate (Li2B4O7) crystals

    NASA Astrophysics Data System (ADS)

    Brant, A. T.; Kananan, B. E.; Murari, M. K.; McClory, J. W.; Petrosky, J. C.; Adamiv, V. T.; Burak, Ya. V.; Dowben, P. A.; Halliburton, L. E.

    2011-11-01

    Electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and thermoluminescence (TL) are used to characterize the primary electron and hole trapping centers in a lithium tetraborate (Li2B4O7) crystal doped with Ag. Three defects, two holelike and one electronlike, are observed after exposure at room temperature to 60 kV x-rays. The as-grown crystal contains both interstitial Ag+ ions and Ag+ ions substituting for Li+ ions. During the irradiation, substitutional Ag+ ions (4d10) trap holes and two distinct Ag2+ centers (4d9) are formed. These Ag2+ EPR spectra consist of doublets (i.e., the individual 107Ag and 109Ag hyperfine lines are not resolved). One of these hole centers is an isolated unperturbed Ag2+ ion and the other is a Ag2+ ion with a nearby perturbing defect. EPR and ENDOR angular-dependence data provide the g matrix and the 107Ag and 109Ag hyperfine matrices for the more intense isolated hole center. In contrast, the electronlike EPR spectrum produced during the irradiation exhibits large nearly isotropic hyperfine interactions with 107Ag and 109Ag nuclei and a neighboring I = 3/2 nucleus (either 7Li or 11B). This spectrum is assigned to a trapped electron shared between an interstitial Ag ion and the substitutional I = 3/2 ion. Upon warming, the radiation-induced trapped electrons and holes seen with EPR recombine between 100 and 200 °C, in agreement with a single strong TL peak observed near 160 °C.

  19. NK cell biology: An update and future directions

    PubMed Central

    Campbell, Kerry S.; Hasegawa, Jun

    2013-01-01

    Natural killer (NK) cells constitute a minor subset of normal lymphocytes that initiate innate immune responses toward tumor and virus-infected cells. They can mediate spontaneous cytotoxicity toward these abnormal cells and rapidly secrete numerous cytokines and chemokines to promote subsequent adaptive immune responses. Significant progress has been made in the past two decades to improve our understanding of NK cell biology. Here we review recent discoveries, including a better comprehension of the “education” of NK cells to achieve functional competence during their maturation and the discovery of “memory” responses by NK cells suggesting that they may also contribute to adaptive immunity. The improved understanding of NK cell biology has forged greater awareness that these cells play integral early roles in immune responses. In addition, several promising clinical therapies have been used to exploit NK cell functions in treating cancer patients. As our molecular understanding improves, these and future immunotherapies should continue to provide promising strategies to exploit the unique functions of NK cells to treat cancer, infections, and other pathological conditions. PMID:23906377

  20. Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells.

    PubMed

    Terme, Magali; Ullrich, Evelyn; Aymeric, Laetitia; Meinhardt, Kathrin; Coudert, Jérôme D; Desbois, Mélanie; Ghiringhelli, François; Viaud, Sophie; Ryffel, Bernard; Yagita, Hideo; Chen, Lieping; Mécheri, Salaheddine; Kaplanski, Gilles; Prévost-Blondel, Armelle; Kato, Masashi; Schultze, Joachim L; Tartour, Eric; Kroemer, Guido; Degli-Esposti, Mariapia; Chaput, Nathalie; Zitvogel, Laurence

    2012-06-01

    During cancer development, a number of regulatory cell subsets and immunosuppressive cytokines subvert adaptive immune responses. Although it has been shown that tumor-derived interleukin (IL)-18 participates in the PD-1-dependent tumor progression in NK cell-controlled cancers, the mechanistic cues underlying this immunosuppression remain unknown. Here, we show that IL-18 converts a subset of Kit(-) (CD11b(-)) into Kit(+) natural killer (NK) cells, which accumulate in all lymphoid organs of tumor bearers and mediate immunoablative functions. Kit(+) NK cells overexpressed B7-H1/PD-L1, a ligand for PD-1. The adoptive transfer of Kit(+) NK cells promoted tumor growth in two pulmonary metastases tumor models and significantly reduced the dendritic and NK cell pools residing in lymphoid organs in a B7-H1-dependent manner. Neutralization of IL-18 by RNA interference in tumors or systemically by IL-18-binding protein dramatically reduced the accumulation of Kit(+)CD11b(-) NK cells in tumor bearers. Together, our findings show that IL-18 produced by tumor cells elicits Kit(+)CD11b(-) NK cells endowed with B7-H1-dependent immunoablative functions in mice. PMID:22427351

  1. Functional Interactions between Cytochromes P450 1A2 and 2B4 Require Both Enzymes to Reside in the Same Phospholipid Vesicle

    PubMed Central

    Reed, James R.; Eyer, Marilyn; Backes, Wayne L.

    2010-01-01

    Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450·P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR·CYP1A2, 2) CPR·CYP2B4, 3) a mixture of CPR·CYP1A2 vesicles with CPR·CYP2B4 vesicles, and 4) CPR·CYP1A2·CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane. PMID:20071338

  2. A structural snapshot of CYP2B4 in complex with paroxetine provides insights into ligand binding and clusters of conformational states.

    PubMed

    Shah, Manish B; Kufareva, Irina; Pascual, Jaime; Zhang, Qinghai; Stout, C David; Halpert, James R

    2013-07-01

    An X-ray crystal structure of CYP2B4 in complex with the drug paroxetine [(3S,4R)-3-[(2H-1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine] was solved at 2.14 Å resolution. The structure revealed a conformation intermediate to that of the recently solved complex with amlodipine and that of the more compact complex with 4-(4-chlorophenyl)imidazole in terms of the placement of the F-G cassette. Moreover, comparison of the new structure with 15 previously solved structures of CYP2B4 revealed some new insights into the determinants of active-site size and shape. The 2B4-paroxetine structure is nearly superimposable on a previously solved closed structure in a ligand-free state. Despite the overall conformational similarity among multiple closed structures, the active-site cavity volume of the paroxetine complex is enlarged. Further analysis of the accessible space and binding pocket near the heme reveals a new subchamber that resulted from the movement of secondary structural elements and rearrangements of active-site side chains. Overall, the results from the comparison of all 16 structures of CYP2B4 demonstrate a cluster of protein conformations that were observed in the presence or absence of various ligands. PMID:23633618

  3. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers.

    PubMed

    Pombo, Carolina; Wherry, E John; Gostick, Emma; Price, David A; Betts, Michael R

    2015-11-01

    During chronic human immunodeficiency virus (HIV) infection, virus-specific CD8(+) T cells become functionally exhausted. Unlike most chronically infected individuals, elite controllers of HIV retain CD8(+) T-cell polyfunctionality and cytolytic capacity. It remains unclear whether elite controllers manifest T-cell exhaustion similar to subjects with chronic progression of HIV infection. Here we assessed coexpression of PD-1, Lag-3, CD160, and 2B4 as a measure of T-cell exhaustion in a cohort of elite controllers and in chronic progressors. We found that elite controllers have a high proportion of potentially exhausted (PD1(+)CD160(+)2B4(+)) HIV-specific CD8(+) T cells that is comparable to the proportion in chronic progressors. However, elite controllers also harbor a population of HIV-specific CD160(+)2B4(+) CD8(+) T cells that correlates with cytolytic capacity, as measured by perforin expression, a population not commonly present in chronic progressors. We therefore propose that coexpression of CD160 and 2B4 delineates a population of cytolytic CD8(+) T cells important for the control of HIV. PMID:25883386

  4. Transcription factor KLF2 regulates homeostatic NK cell proliferation and survival.

    PubMed

    Rabacal, Whitney; Pabbisetty, Sudheer K; Hoek, Kristen L; Cendron, Delphine; Guo, Yin; Maseda, Damian; Sebzda, Eric

    2016-05-10

    Natural killer (NK) cells are innate lymphocytes that recognize and lyse virally infected or transformed cells. This latter property is being pursued in clinics to treat leukemia with the hope that further breakthroughs in NK cell biology can extend treatments to other cancers. At issue is the ability to expand transferred NK cells and prolong their functionality within the context of a tumor. In terms of NK cell expansion and survival, we now report that Kruppel-like factor 2 (KLF2) is a key transcription factor that underpins both of these events. Excision of Klf2 using gene-targeted mouse models promotes spontaneous proliferation of immature NK cells in peripheral tissues, a phenotype that is replicated under ex vivo conditions. Moreover, KLF2 imprints a homeostatic migration pattern on mature NK cells that allows these cells to access IL-15-rich microenvironments. KLF2 accomplishes this feat within the mature NK cell lineage via regulation of a subset of homing receptors that respond to homeostatic ligands while leaving constitutively expressed receptors that recognize inflammatory cytokines unperturbed. Under steady-state conditions, KLF2-deficient NK cells alter their expression of homeostatic homing receptors and subsequently undergo apoptosis due to IL-15 starvation. This novel mechanism has implications regarding NK cell contraction following the termination of immune responses including the possibility that retention of an IL-15 transpresenting support system is key to extending NK cell activity in a tumor environment. PMID:27114551

  5. Histone Deacetylase Inhibitors Enhance CD4 T Cell Susceptibility to NK Cell Killing but Reduce NK Cell Function

    PubMed Central

    Pace, Matthew; Williams, James; Kurioka, Ayako; Gerry, Andrew B.; Jakobsen, Bent; Klenerman, Paul; Nwokolo, Nneka; Fox, Julie

    2016-01-01

    In the search for a cure for HIV-1 infection, histone deacetylase inhibitors (HDACi) are being investigated as activators of latently infected CD4 T cells to promote their targeting by cytotoxic T-lymphocytes (CTL). However, HDACi may also inhibit CTL function, suggesting different immunotherapy approaches may need to be explored. Here, we study the impact of different HDACi on both Natural Killer (NK) and CTL targeting of HIV-1 infected cells. We found HDACi down-regulated HLA class I expression independently of HIV-1 Nef which, without significantly compromising CTL function, led to enhanced targeting by NK cells. HDACi-treated HIV-1-infected CD4 T cells were also more effectively cleared than untreated controls during NK co-culture. However, HDACi impaired NK function, reducing degranulation and killing capacity. Depending on the HDACi and dose, this impairment could counteract the benefit gained by treating infected target cells. These data suggest that following HDACi-induced HLA class I down-regulation NK cells kill HIV-1-infected cells, although HDACi-mediated NK cell inhibition may negate this effect. Our data emphasize the importance of studying the effects of potential interventions on both targets and effectors. PMID:27529554

  6. Kinetics of the transient optical absorption in Li2B4O7 and LiB3O5 lithium borate crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, I. N.; Kiseleva, M. S.

    2012-04-01

    This paper reports on a study of the kinetics of electron tunneling transport between electron and hole centers in Li2B4O7 and LiB3O5 lithium borate crystals under the conditions where the mobility of one of the partners in the recombination process is thermally stimulated. A mathematical model has been proposed to describe all specific features in the relaxation kinetics of the induced optical density observed in Li2B4O7 (LTB) and LiB3O5 (LBO) nonlinear optical crystals within a broad time interval of 10-8-1 s after a radiation pulse. The results of calculations have been compared with experimental data on transient optical absorption (TOA) of LTB and LBO crystals in the visible and ultraviolet spectral regions. The nature of the radiation defects responsible for TOA and the dependence of the TOA decay kinetics on temperature, excitation power, and other experimental conditions have been discussed.

  7. A Single Site mutation (F429H) Converts the Enzyme CYP 2B4 into a Heme Oxygenase: A QM/MM Study

    PubMed Central

    Usharani, Dandamudi; Zazza, Costantino; Lai, Wenzhen; Chourasia, Mukesh

    2012-01-01

    The intriguing deactivation of the cytochrome P450 (CYP) 2B4 enzyme induced by a mutation of a single residue, Phe429 to His, is explored by means of quantum mechanical/molecular mechanical (QM/MM) calculations of the O-OH bond activation of the (Fe3+OOH)− intermediate. It is found that the F429H mutant of CYP 2B4 undergoes homolytic, instead of heterolytic, O-OH bond cleavage. Thus, the mutant acquires the following characteristics of a heme oxygenase (HO) enzyme: (a) The donation by His429 of an additional NH---S H-bond to the cysteine ligand combined with the presence of the substrate retard the heterolytic cleavage and give rise to homolytic O-OH cleavage, and (b) the Thr302/water cluster orients the nascent OH• close to the meso position of the porphyrin, and ensures an efficient meso hydroxylation. PMID:22356576

  8. Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry.

    PubMed

    Shah, Manish B; Jang, Hyun-Hee; Wilderman, P Ross; Lee, David; Li, Sheng; Zhang, Qinghai; Stout, C David; Halpert, James R

    2016-09-01

    Multiple crystal structures of CYP2B4 have demonstrated the binding of the detergent 5-cyclohexyl-1-pentyl-β-D-maltoside (CYMAL-5) in a peripheral pocket located adjacent to the active site. To explore the consequences of detergent binding, X-ray crystal structures of the peripheral pocket mutant CYP2B4 F202W were solved in the presence of hexaethylene glycol monooctyl ether (C8E6) and CYMAL-5. The structure in the presence of CYMAL-5 illustrated a closed conformation indistinguishable from the previously solved wild-type. In contrast, the F202W structure in the presence of C8E6 revealed a detergent molecule that coordinated the heme-iron and extended to the protein surface through the substrate access channel 2f. Despite the overall structural similarity of these detergent complexes, remarkable differences were observed in the A, A', and H helices, the F-G cassette, the C-D and β4 loop region. Hydrogen-deuterium exchange mass spectrometry (DXMS) was employed to probe these differences and to test the effect of detergents in solution. The presence of either detergent increased the H/D exchange rate across the plastic regions, and the results obtained by DXMS in solution were consistent in general with the relevant structural snapshots. The study provides insight into effect of detergent binding and the interpretation of associated conformational dynamics of CYP2B4. PMID:27280734

  9. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function

    PubMed Central

    Ni, Fang; Guo, Chuang; Sun, Rui; Fu, Binqing; Yang, Yue; Wu, Lele; Ren, Sitong; Tian, Zhigang; Wei, Haiming

    2015-01-01

    Natural killer (NK) cells are critical effectors in the immune response against malignancy and infection, and microRNAs (miRNAs) play important roles in NK cell biology. Here we examined miRNA profiles of human NK cells from different cell compartments (peripheral blood, cord blood, and uterine deciduas) and of NKT and T cells from peripheral blood, and we identified a novel miRNA, miR-362-5p, that is highly expressed in human peripheral blood NK (pNK) cells. We also demonstrated that CYLD, a negative regulator of NF-κB signaling, was a target of miR-362-5p in NK cells. Furthermore, we showed that the over-expression of miR-362-5p enhanced the expression of IFN-γ, perforin, granzyme-B, and CD107a in human primary NK cells, and we found that silencing CYLD with a small interfering RNA (siRNA) mirrored the effect of miR-362-5p over-expression. In contrast, the inhibition of miR-362-5p had the opposite effect in NK cells, which was abrogated by CYLD siRNA, suggesting that miR-362-5p promotes NK-cell function, at least in part, by the down-regulation of CYLD. These results provide a resource for studying the roles of miRNAs in human NK cell biology and contribute to a better understanding of the physiologic significance of miRNAs in the regulation of NK cell function. PMID:25909817

  10. Repression of GSK3 restores NK cell cytotoxicity in AML patients

    PubMed Central

    Parameswaran, Reshmi; Ramakrishnan, Parameswaran; Moreton, Stephen A.; Xia, Zhiqiang; Hou, Yongchun; Lee, Dean A.; Gupta, Kalpana; deLima, Marcos; Beck, Rose C.; Wald, David N.

    2016-01-01

    Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy. PMID:27040177

  11. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    PubMed Central

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  12. The Notch ligands Jagged2, Delta1, and Delta4 induce differentiation and expansion of functional human NK cells from CD34+ cord blood hematopoietic progenitor cells.

    PubMed

    Beck, Rose C; Padival, Mallika; Yeh, David; Ralston, Justine; Cooke, Kenneth R; Lowe, John B

    2009-09-01

    Notch receptor signaling is required for T cell development, but its role in natural killer (NK) cell development is poorly understood. We compared the ability of the 5 mammalian Notch ligands (Jagged1, Jagged2, Delta1, Delta3, or Delta4) to induce NK cell development from human hematopoietic progenitor cells (HPCs). CD34(+) HPCs were cultured with OP9 stromal cell lines transduced with 1 of the Notch ligands or with OP9 stromal cells alone, in the presence of IL-7, Flt3L, and IL-15. Differentiation and expansion of CD56(+)CD3(-) cells were greatly accelerated in the presence of Jagged2, Delta-1, or Delta-4, versus culture in the absence of ligand or in the presence of Jagged1 or Delta3. At 4 weeks, cultures containing Jagged2, Delta1, or Delta4 contained 80% to 90% NK cells, with the remaining cells being CD33(+) myelogenous cells. Notch-induced NK (N-NK) cells resembled CD56(bright) NK cells in that they were CD16(-), CD94(-), CD117(+), and killer immunoglobulin-like receptors (KIR(-)). They also expressed NKp30, NKp44, NKp46, 2B4, and DNAM-1, with partial expression of NKG2D. The N-NK cells displayed cytotoxic activity against the K562 and RPMI-8226 cell lines, at levels similar to activated peripheral blood (PB) NK cells, although killing of Daudi cells was not present. N-NK cells were also capable of interferon (IFN)-gamma secretion. Thus, Notch ligands have differential ability to induce and expand immature, but functional, NK cells from CD34(+) HPCs. The use of Notch ligands to generate functional NK cells in vitro may be significant for cellular therapy purposes. PMID:19660715

  13. Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus?

    PubMed

    Della Chiesa, Mariella; Falco, Michela; Podestà, Marina; Locatelli, Franco; Moretta, Lorenzo; Frassoni, Francesco; Moretta, Alessandro

    2012-01-12

    Natural killer (NK) cells play a crucial role in early immunity after hematopoietic stem cell transplantation because they are the first lymphocyte subset recovering after the allograft. In this study, we analyzed the development of NK cells after intrabone umbilical cord blood (CB) transplantation in 18 adult patients with hematologic malignancies. Our data indicate that, also in this transplantation setting, NK cells are the first lymphoid population detectable in peripheral blood. However, different patterns of NK-cell development could be identified. Indeed, in a group of patients, a relevant fraction of NK cells expressed a mature phenotype characterized by the KIR(+)NKG2A(-) signature 3-6 months after transplantation. In other patients, most NK cells maintained an immature phenotype even after 12 months. A possible role for cytomegalovirus in the promotion of NK-cell development was suggested by the observation that a more rapid NK-cell maturation together with expansion of NKG2C(+) NK cells was confined to patients experiencing cytomegalovirus reactivation. In a fraction of these patients, an aberrant and hyporesponsive CD56(-)CD16(+)p75/AIRM1(-) NK-cell subset (mostly KIR(+)NKG2A(-)) reminiscent of that described in patients with viremic HIV was detected. Our data support the concept that cytomegalovirus infection may drive NK-cell development after umbilical CB transplantation. PMID:22096237

  14. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid

    PubMed Central

    Shi, Xiumin; Li, Min; Cui, Meizi; Niu, Chao; Xu, Jianting; Zhou, Lei; Li, Wei; Gao, Yushun; Kong, Weisheng; Cui, Jiuwei; Hu, Jifan; Jin, Haofan

    2016-01-01

    Natural killer (NK) cells play an essential role in the fight against tumor development. The therapeutic use of autologous NK cells has been exploited to treat human malignancies, yet only limited antitumor activity is observed in cancer patients. In this study, we sought to augment the antitumor activity of NK cells using epigenetic approaches. Four small molecules that have been known to promote epigenetic reprogramming were tested for their ability to enhance the activity of NK cells. Using a tumor cell lysis assay, we found that the DNA demethylating agent 5-azacytidine and vitamin C did not significantly affect the tumor killing ability of NK cells. The thyroid hormone triiodothyronine (T3) slightly increased the activity of NK cells. The histone deacetylase inhibitor valproic acid (VPA), however, inhibited NK cell lytic activity against leukemic cells in a dose-dependent manner. Pretreatment using VPA reduced IFNγ secretion, impaired CD107a degranulation, and induced apoptosis by activating the PD-1/PD-L1 pathway. VPA downregulated the expression of the activating receptor NKG2D (natural-killer group 2, member D) by inducing histone K9 hypermethylation and DNA methylation in the gene promoter. Histone deacetylase inhibitors have been developed as anticancer agents for use as monotherapies or in combination with other anticancer therapies. Our data suggest that the activity of histone deacetylase inhibitors on NK cell activity should be considered in drug development. PMID:27152238

  15. Adenovirus E3/19K Promotes Evasion of NK Cell Recognition by Intracellular Sequestration of the NKG2D Ligands Major Histocompatibility Complex Class I Chain-Related Proteins A and B▿

    PubMed Central

    McSharry, Brian P.; Burgert, Hans-Gerhard; Owen, Douglas P.; Stanton, Richard J.; Prod'homme, Virginie; Sester, Martina; Koebernick, Katja; Groh, Veronika; Spies, Thomas; Cox, Steven; Little, Ann-Margaret; Wang, Eddie C. Y.; Tomasec, Peter; Wilkinson, Gavin W. G.

    2008-01-01

    The adenovirus (Ad) early transcription unit 3 (E3) encodes multiple immunosubversive functions that are presumed to facilitate the establishment and persistence of infection. Indeed, the capacity of E3/19K to inhibit transport of HLA class I (HLA-I) to the cell surface, thereby preventing peptide presentation to CD8+ T cells, has long been recognized as a paradigm for viral immune evasion. However, HLA-I downregulation has the potential to render Ad-infected cells vulnerable to natural killer (NK) cell recognition. Furthermore, expression of the immediate-early Ad gene E1A is associated with efficient induction of ligands for the key NK cell-activating receptor NKG2D. Here we show that while infection with wild-type Ad enhances synthesis of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B (MICA and MICB), their expression on the cell surface is actively suppressed. Both MICA and MICB are retained within the endoplasmic reticulum as immature endoglycosidase H-sensitive forms. By analyzing a range of cell lines and viruses carrying mutated versions of the E3 gene region, E3/19K was identified as the gene responsible for this activity. The structural requirements within E3/19K necessary to sequester MICA/B and HLA-I are similar. In functional assays, deletion of E3/19K rendered Ad-infected cells more sensitive to NK cell recognition. We report the first NK evasion function in the Adenoviridae and describe a novel function for E3/19K. Thus, E3/19K has a dual function: inhibition of T-cell recognition and NK cell activation. PMID:18287244

  16. Inactivation of purified rat liver cytochrome P-450 2B1 and rabbit liver cytochrome P-450 2B4 by N-methylcarbazole.

    PubMed

    Kuemmerle, S C; Shen, T; Hollenberg, P F

    1994-01-01

    Metabolism of N-methylcarbazole by purified rat liver cytochrome P-450 2B1 or rabbit liver P-450 2B4 resulted in the inactivation of these enzymes in a time-dependent, pseudo-first order manner as assayed spectrally by the decrease in the reduced CO spectrum at 450 nm. The inactivation was saturable with respect to the concentration of N-methylcarbazole, and a Ki = 5.2 microM and kINACT = 0.14 min-1 were determined for the inactivation of P-450 2B1. For P-450 2B4 inactivation, the Ki was 23 microM and the kINACT = 0.21 min-1. There was no increase in the reduced CO spectrum at 420 nm accompanying the inactivation, and the slight loss of the P-450 heme prosthetic group, as determined by the spectrum at 418 nm, was not sufficient to account for the loss of the reduced CO spectrum at 450 nm. The metabolism of N-methylcarbazole by P-450 did not result in the formation of a metabolic intermediate complex, which could also be responsible for the loss of cytochrome P-450 activity. Loss of catalytic activity for further substrate metabolism was also observed after preincubation of enzyme with N-methylcarbazole and the loss of catalytic activity correlated with the loss of the reduced CO spectrum. Accompanying the loss of spectrally detectable P-450 2B1 and P-450 2B4 catalytic activity, there was an increase in the NADPH oxidation rate. This increased rate persisted on subsequent addition of NADPH. PMID:8070309

  17. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations.

    PubMed

    Mancini, Giordano; Zazza, Costantino

    2015-01-01

    The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization. PMID:26415031

  18. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations

    PubMed Central

    Mancini, Giordano; Zazza, Costantino

    2015-01-01

    The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization. PMID:26415031

  19. Novel functional conjugative hyperbranched polymers with aggregation-induced emission: synthesis through one-pot "A2+B4" polymerization and application as explosive chemsensors and PLEDs.

    PubMed

    Wu, Wenbo; Ye, Shanghui; Yu, Gui; Liu, Yunqi; Qin, Jingui; Li, Zhen

    2012-01-01

    With the aim to develop new tetraphenylethylene (TPE)-based conjugated hyperbranched polymer, TPE units, one famous aggregation-induced emission (AIE) active group, are utilized to construct hyperbranched polymers with three other aromatic blocks, through an "A2+B4" approach by using one-pot Suzuki polycondensation reaction. These three hyperbranched polymers exhibit interesting AIEE behavior and act as explosive chemsensors with high sensitivity both in the nanoparticles and solid states. This is the first report of the AIE activity of the TPE-based conjugated hyperbranched polymers. Their corresponding PLED devices also demonstrate good performance. PMID:22134953

  20. Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction, Electron Paramagnetic Resonance, and Electron-Nuclear Double Resonance Spectroscopy.

    PubMed

    Davydov, Roman; Im, Sangchoul; Shanmugam, Muralidharan; Gunderson, William A; Pearl, Naw May; Hoffman, Brian M; Waskell, Lucy

    2016-02-16

    Crystallographic studies have shown that the F429H mutation of cytochrome P450 2B4 introduces an H-bond between His429 and the proximal thiolate ligand, Cys436, without altering the protein fold but sharply decreases the enzymatic activity and stabilizes the oxyferrous P450 2B4 complex. To characterize the influence of this hydrogen bond on the states of the catalytic cycle, we have used radiolytic cryoreduction combined with electron paramagnetic resonance (EPR) and (electron-nuclear double resonance (ENDOR) spectroscopy to study and compare their characteristics for wild-type (WT) P450 2B4 and the F429H mutant. (i) The addition of an H-bond to the axial Cys436 thiolate significantly changes the EPR signals of both low-spin and high-spin heme-iron(III) and the hyperfine couplings of the heme-pyrrole (14)N but has relatively little effect on the (1)H ENDOR spectra of the water ligand in the six-coordinate low-spin ferriheme state. These changes indicate that the H-bond introduced between His and the proximal cysteine decreases the extent of S → Fe electron donation and weakens the Fe(III)-S bond. (ii) The added H-bond changes the primary product of cryoreduction of the Fe(II) enzyme, which is trapped in the conformation of the parent Fe(II) state. In the wild-type enzyme, the added electron localizes on the porphyrin, generating an S = (3)/2 state with the anion radical exchange-coupled to the Fe(II). In the mutant, it localizes on the iron, generating an S = (1)/2 Fe(I) state. (iii) The additional H-bond has little effect on g values and (1)H-(14)N hyperfine couplings of the cryogenerated, ferric hydroperoxo intermediate but noticeably slows its decay during cryoannealing. (iv) In both the WT and the mutant enzyme, this decay shows a significant solvent kinetic isotope effect, indicating that the decay reflects a proton-assisted conversion to Compound I (Cpd I). (v) We confirm that Cpd I formed during the annealing of the cryogenerated hydroperoxy intermediate

  1. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing.

    PubMed

    Kearney, Conor J; Ramsbottom, Kelly M; Voskoboinik, Ilia; Darcy, Phillip K; Oliaro, Jane

    2016-08-01

    Acute myeloid leukemia (AML) is associated with poor natural killer (NK) cell function through aberrant expression of NK-cell-activating receptors and their ligands on tumor cells. These alterations are thought to promote formation of inhibitory NK-target cell synapses, in which killer cell degranulation is attenuated. Allogeneic stem cell transplantation can be effective in treating AML, through restoration of NK cell lytic activity. Similarly, agents that augment NK-cell-activating signals within the immunological synapse may provide some therapeutic benefit. However, the receptor-ligand interactions that critically dictate NK cell function in AML remain undefined. Here, we demonstrate that CD112/CD155 expression is required for DNAM-1-dependent killing of AML cells. Indeed, the low, or absent, expression of CD112/CD155 on multiple AML cell lines resulted in failure to stimulate optimal NK cell function. Importantly, isolated clones with low CD112/155 expression were resistant to NK cell killing while those expressing abundant levels of CD112/155 were highly susceptible. Attenuated NK cell killing in the absence of CD112/CD155 originated from decreased NK-target cell conjugation. Furthermore, we reveal by time-lapse microscopy, a significant increase in NK cell 'failed killing' in the absence of DNAM-1 ligands. Consequently, NK cells preferentially lysed ligand-expressing cells within heterogeneous populations, driving clonal selection of CD112/CD155-negative blasts upon NK cell attack. Taken together, we identify reduced CD155 expression as a major NK cell escape mechanism in AML and an opportunity for targeted immunotherapy. PMID:27622064

  2. Signalling through NK1.1 triggers NK cells to die but induces NK T cells to produce interleukin-4.

    PubMed Central

    Asea, A; Stein-Streilein, J

    1998-01-01

    In vivo inoculation of specific antibody is an accepted protocol for elimination of specific cell populations. Except for anti-CD3 and anti-CD4, it is not known if the depleted cells are eliminated by signalling through the target molecule or through a more non-specific mechanism. C57BL/6 mice were inoculated with anti-natural killer (NK1.1) monoclonal antibody (mAb). Thereafter spleen cells were harvested, stained for both surface and intracellular markers, and analysed by flow cytometry. As early as 2 hr post inoculation, NK cells were signalled to become apoptotic while signalling through the NK1.1 molecule activated NK1.1+ T-cell receptor (TCR)+ (NK T) cells to increase in number, and produce interleukin-4 (IL-4). Anti NK1.1 mAb was less efficient at signalling apoptosis in NK cells when NK T-cell deficient [beta 2-microglobulin beta 2m-deficient] mice were used compared with wild type mice. Efficient apoptotic signalling was restored when beta 2m-deficient mice were reconstituted with NK T cells. NK-specific antibody best signals the apoptotic process in susceptible NK cells when resistant NK T cells are present, activated, and secrete IL-4. Images Figure 4 PMID:9616382

  3. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection.

    PubMed

    Goodier, Martin R; Rodriguez-Galan, Ana; Lusa, Chiara; Nielsen, Carolyn M; Darboe, Alansana; Moldoveanu, Ana L; White, Matthew J; Behrens, Ron; Riley, Eleanor M

    2016-07-01

    Human NK cells are activated by cytokines, immune complexes, and signals transduced via activating ligands on other host cells. After vaccination, or during secondary infection, adaptive immune responses can enhance both cytokine-driven and Ab-dependent NK cell responses. However, induction of NK cells for enhanced function after in vitro exposure to innate inflammatory cytokines has also been reported and may synergize with adaptive signals to potentiate NK cell activity during infection or vaccination. To test this hypothesis, we examined the effect of seasonal influenza vaccination on NK cell function and phenotype in 52 previously unvaccinated individuals. Enhanced, IL-2-dependent, NK cell IFN-γ responses to Influenza A/California/7/2009 virus were detected up to 4 wk postvaccination and higher in human CMV (HCMV)-seronegative (HCMV(-)) individuals than in HCMV-seropositive (HCMV(+)) individuals. By comparison, robust NK cell degranulation responses were observed both before and after vaccination, due to high titers of naturally occurring anti-influenza Abs in human plasma, and did not differ between HCMV(+) and HCMV(-) subjects. In addition to these IL-2-dependent and Ab-dependent responses, NK cell responses to innate cytokines were also enhanced after influenza vaccination; this was associated with proliferation of CD57(-) NK cells and was most evident in HCMV(+) subjects. Similar enhancement of cytokine responsiveness was observed when NK cells were cocultured in vitro with Influenza A/California/7/2009 virus, and this was at least partially dependent upon IFN-αβR2. In summary, our data indicate that attenuated or live viral vaccines promote cytokine-induced memory-like NK cells and that this process is influenced by HCMV infection. PMID:27233958

  4. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection

    PubMed Central

    Goodier, Martin R.; Rodriguez-Galan, Ana; Lusa, Chiara; Nielsen, Carolyn M.; Darboe, Alansana; Moldoveanu, Ana L.; White, Matthew J.; Behrens, Ron

    2016-01-01

    Human NK cells are activated by cytokines, immune complexes, and signals transduced via activating ligands on other host cells. After vaccination, or during secondary infection, adaptive immune responses can enhance both cytokine-driven and Ab-dependent NK cell responses. However, induction of NK cells for enhanced function after in vitro exposure to innate inflammatory cytokines has also been reported and may synergize with adaptive signals to potentiate NK cell activity during infection or vaccination. To test this hypothesis, we examined the effect of seasonal influenza vaccination on NK cell function and phenotype in 52 previously unvaccinated individuals. Enhanced, IL-2–dependent, NK cell IFN-γ responses to Influenza A/California/7/2009 virus were detected up to 4 wk postvaccination and higher in human CMV (HCMV)-seronegative (HCMV−) individuals than in HCMV-seropositive (HCMV+) individuals. By comparison, robust NK cell degranulation responses were observed both before and after vaccination, due to high titers of naturally occurring anti-influenza Abs in human plasma, and did not differ between HCMV+ and HCMV− subjects. In addition to these IL-2–dependent and Ab-dependent responses, NK cell responses to innate cytokines were also enhanced after influenza vaccination; this was associated with proliferation of CD57− NK cells and was most evident in HCMV+ subjects. Similar enhancement of cytokine responsiveness was observed when NK cells were cocultured in vitro with Influenza A/California/7/2009 virus, and this was at least partially dependent upon IFN-αβR2. In summary, our data indicate that attenuated or live viral vaccines promote cytokine-induced memory-like NK cells and that this process is influenced by HCMV infection. PMID:27233958

  5. NK Cells Help Induce Anti-Hepatitis B Virus CD8+ T Cell Immunity in Mice.

    PubMed

    Zheng, Meijuan; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2016-05-15

    Although recent clinical studies demonstrate that NK cell function is impaired in hepatitis B virus (HBV)-persistent patients, whether or how NK cells play a role in anti-HBV adaptive immunity remains to be explored. Using a mouse model mimicking acute HBV infection by hydrodynamic injection of an HBV plasmid, we observed that although serum hepatitis B surface Ag and hepatitis B envelope Ag were eliminated within 3 to 4 wk, HBV might persist for >8 wk in CD8(-/-) mice and that adoptive transfer of anti-HBV CD8(+) T cells restored the ability to clear HBV in HBV-carrier Rag1(-/-) mice. These results indicate that CD8(+) T cells are critical in HBV elimination. Furthermore, NK cells increased IFN-γ production after HBV plasmid injection, and NK cell depletion led to significantly increased HBV persistence along with reduced frequency of hepatitis B core Ag-specific CD8(+) T cells. Adoptive transfer of IFN-γ-sufficient NK cells restored donor CD8(+) T cell function, indicating that NK cells positively regulated CD8(+) T cells via secreting IFN-γ. We also observed that NK cell depletion correlated with decreased effector memory CD8(+) T cell frequencies. Importantly, adoptive transfer experiments showed that NK cells were involved in anti-HBV CD8(+) T cell recall responses. Moreover, DX5(+)CD49a(-) conventional, but not DX5(-)CD49a(+) liver-resident, NK cells were involved in improving CD8(+) T cell responses against HBV. Overall, the current study reveals that NK cells, especially DX5(+)CD49a(-) conventional NK cells, promote the antiviral activity of CD8(+) T cell responses via secreting IFN-γ in a mouse model mimicking acute HBV infection. PMID:27183639

  6. Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus.

    PubMed

    Costa-Garcia, Marcel; Vera, Andrea; Moraru, Manuela; Vilches, Carlos; López-Botet, Miguel; Muntasell, Aura

    2015-03-15

    Human CMV (HCMV) infection promotes a variable and persistent expansion of functionally mature NKG2C(bright) NK cells. We analyzed NKG2C(bright) NK cell responses triggered by Abs from HCMV(+) sera against HCMV-infected MRC5 fibroblasts. Specific Abs promoted the degranulation (i.e., CD107a expression) and the production of cytokines (TNF-α and IFN-γ) by a significant fraction of NK cells, exceeding the low natural cytotoxicity against HCMV-infected targets. NK cell-mediated Ab-dependent cell-mediated cytotoxicity was limited by viral Ag availability and HLA class I expression on infected cells early postinfection and increased at late stages, overcoming viral immunoevasion strategies. Moreover, the presence of specific IgG triggered the activation of NK cells against Ab-opsonized cell-free HCMV virions. As compared with NKG2A(+) NK cells, a significant proportion of NKG2C(bright) NK cells was FcεR γ-chain defective and highly responsive to Ab-driven activation, being particularly efficient in the production of antiviral cytokines, mainly TNF-α. Remarkably, the expansion of NKG2C(bright) NK cells in HCMV(+) subjects was related to the overall magnitude of TNF-α and IFN-γ cytokine secretion upon Ab-dependent and -independent activation. We show the power and sensitivity of the anti-HCMV response resulting from the cooperation between specific Abs and the NKG2C(bright) NK-cell subset. Furthermore, we disclose the proinflammatory potential of NKG2C(bright) NK cells, a variable that could influence the individual responses to other pathogens and tumors. PMID:25667418

  7. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions

    PubMed Central

    2009-01-01

    Background Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection. Methods NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays. Results We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients. Conclusion Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression. PMID:19531227

  8. miR-150 regulates the development of NK and iNKT cells

    PubMed Central

    Bezman, Natalie A.; Chakraborty, Tirtha; Bender, Timothy

    2011-01-01

    Natural killer (NK) and invariant NK T (iNKT) cells are critical in host defense against pathogens and for the initiation of adaptive immune responses. miRNAs play important roles in NK and iNKT cell development, maturation, and function, but the roles of specific miRNAs are unclear. We show that modulation of miR-150 expression levels has a differential effect on NK and iNKT cell development. Mice with a targeted deletion of miR-150 have an impaired, cell lineage–intrinsic defect in their ability to generate mature NK cells. Conversely, a gain-of-function miR-150 transgene promotes the development of NK cells, which display a more mature phenotype and are more responsive to activation. In contrast, overexpression of miR-150 results in a substantial reduction of iNKT cells in the thymus and in the peripheral lymphoid organs. The transcription factor c-Myb has been shown to be a direct target of miR-150. Our finding of increased NK cell and decreased iNKT cell frequencies in Myb heterozygous bone marrow chimeras suggests that miR-150 differentially controls the development of NK and iNKT cell lineages by targeting c-Myb. PMID:22124110

  9. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development.

    PubMed

    Eckelhart, Eva; Warsch, Wolfgang; Zebedin, Eva; Simma, Olivia; Stoiber, Dagmar; Kolbe, Thomas; Rülicke, Thomas; Mueller, Mathias; Casanova, Emilio; Sexl, Veronika

    2011-02-01

    We generated a transgenic mouse line that expresses the Cre recombinase under the control of the Ncr1 (p46) promoter. Cre-mediated recombination was tightly restricted to natural killer (NK) cells, as revealed by crossing Ncr1-iCreTg mice to the eGFP-LSLTg reporter strain. Ncr1-iCreTg mice were further used to study NK cell-specific functions of Stat5 (signal transducers and activators of transcription 5) by generating Stat5(f/f) Ncr1-iCreTg animals. Stat5(f/f) Ncr1-iCreTg mice were largely devoid of NK cells in peripheral lymphoid organs. In the bone marrow, NK-cell maturation was abrogated at the NK cell-precursor stage. Moreover, we found that in vitro deletion of Stat5 in interleukin 2-expanded NK cells was incompatible with NK-cell viability. In vivo assays confirmed the complete abrogation of NK cell-mediated tumor control against B16F10-melanoma cells. In contrast, T cell-mediated tumor surveillance against MC38-adenocarcinoma cells was undisturbed. In summary, the results of our study show that STAT5 has a cell-intrinsic role in NK-cell development and that Ncr1-iCreTg mice are a powerful novel tool with which to study NK-cell development, biology, and function. PMID:21127177

  10. Multidirectional interactions are bridging human NK cells with plasmacytoid and monocyte-derived dendritic cells during innate immune responses.

    PubMed

    Della Chiesa, Mariella; Romagnani, Chiara; Thiel, Andreas; Moretta, Lorenzo; Moretta, Alessandro

    2006-12-01

    During innate immune responses, natural killer (NK) cells may interact with both plasmacytoid dendritic cells (pDCs) and monocyte-derived dendritic cells (MDDCs). We show that freshly isolated NK cells promote the release by pDCs of IFN-alpha, in a CpG-dependent manner, whereas they induce IL-6 production in a CpG-independent manner. In turn pDC-derived IFN-alpha up-regulates NK-mediated killing, whereas IL-6 could promote B-cell differentiation. We also show that exposure to exogenous IL-12 or coculture with maturing MDDCs up-regulates the NK-cell-dependent IFN-alpha production by pDCs. On the other hand, NK cells cocultured with pDCs acquire the ability to kill immature MDDCs, thus favoring their editing process. Finally, we show that activated NK cells are unable to lyse pDCs because these cells display an intrinsic resistance to lysis. The exposure of pDCs to IL-3 increased their susceptibility to NK-cell cytotoxicity resulting from a de novo expression of ligands for activating NK-cell receptors, such as the DNAM-1 ligand nectin-2. Thus, different cell-to-cell interactions and various cytokines appear to control a multidirectional network between NK cells, MDDCs, and pDCs that is likely to play an important role during the early phase of innate immune responses to viral infections and to tumors. PMID:16873676

  11. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  12. Determination of trapping parameters from thermally stimulated luminescence glow curves of Mn-doped Li2B4O7 phosphor

    NASA Astrophysics Data System (ADS)

    Manam, J.; Sharma, S. K.

    The determination of trapping parameters such as order of kinetics, activation energy and frequency factor is one of the most important studies in the field of thermally stimulated luminescence (TSL). A polycrystalline sample of Mn-doped Li2B4O7 was prepared by melting method. The formation of the doped compound was checked by Fourier transform infrared study. The TSL study of the Mn-doped lithium tetraborate sample shows two glow peaks at 190 °C and 310 °C, of which the intensity of the 310 °C glow peak is the maximum. In this paper, the trapping parameters associated with the prominent glow peak of Mn-doped lithium tetraborate were reported using the isothermal luminescence decay and glow curve shape (Chen's) methods. Our results show a very good agreement between the trapping parameters calculated by the two methods.

  13. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  14. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  15. Excited state characteristics of the Li2B4O7 and KLiB4O7 glasses activated by Cr3+ ions

    NASA Astrophysics Data System (ADS)

    Mikulski, J.; Koepke, Cz.; Wiśniewski, K.; Padlyak, B. V.; Adamiv, V. T.; Burak, Ya. V.

    2014-12-01

    The excited state characteristics by means of the excited state absorption (ESA), optical gain and bleaching spectra have been measured for prototype glasses with Li2B4O7 (LBO) and KLiB4O7 (KLBO) compositions activated by Cr3+ ions. The work addressed to search for novel attractive media for broadband lasers and amplifiers, is a completion of detailed spectroscopic evaluation described in earlier papers. One of the examined materials (KLBO), in accordance with optimistic comments given in previous work, reveals a very broad gain spectrum in the near IR, which itself is interesting in view of very few reports on glasses showing optical gain for Cr3+ ions in the low-field local environment. The ESA/gain/bleaching spectra, registered with equipment of improved sensitivity, have been reproduced by calculations, and detailed single configuration coordinate diagram, based on experimental data, has been created for interpretation.

  16. Interleukin-21 enhances NK cell activation in response to antibody-coated targets.

    PubMed

    Roda, Julie M; Parihar, Robin; Lehman, Amy; Mani, Aruna; Tridandapani, Susheela; Carson, William E

    2006-07-01

    NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs. PMID:16785506

  17. Cutting edge: stage-specific requirement of IL-18 for antiviral NK cell expansion.

    PubMed

    Madera, Sharline; Sun, Joseph C

    2015-02-15

    Although NK cells are considered part of the innate immune system, recent studies have demonstrated the ability of Ag-experienced NK cells to become long-lived and contribute to potent recall responses similar to T and B cells. The precise signals that promote the generation of a long-lived NK cell response are largely undefined. In this article, we demonstrate that NK cells require IL-18 signaling to generate a robust primary response during mouse CMV (MCMV) infection but do not require this signal for memory cell maintenance or recall responses. IL-12 signaling and STAT4 in activated NK cells increased the expression of the adaptor protein MyD88, which mediates signaling downstream of the IL-18 and IL-1 receptors. During MCMV infection, NK cells required MyD88, but not IL-1R, for optimal expansion. Thus, an IL-18-MyD88 signaling axis facilitates the prolific expansion of NK cells in response to primary viral infection, but not recall responses. PMID:25589075

  18. Stage-specific requirement of IL-18 for antiviral NK cell expansion

    PubMed Central

    Madera, Sharline; Sun, Joseph C.

    2014-01-01

    Although natural killer (NK) cells are considered part of the innate immune system, recent studies have demonstrated the ability of antigen-experienced NK cells to become long-lived and contribute to potent recall responses similar to T and B cells. The precise signals that promote the generation of a long-lived NK cell response are largely undefined. Here, we demonstrate that NK cells require interleukin (IL)-18 signaling to generate a robust primary response during mouse cytomegalovirus (MCMV) infection, but do not require this signal for memory cell maintenance or recall responses. IL-12 signaling and STAT4 in activated NK cells increased the expression of the adaptor protein MyD88, which mediates signaling downstream of the IL-18 and IL-1 receptors. During MCMV infection, NK cells required MyD88 but not IL-1 receptor for optimal expansion. Thus, an IL-18-MyD88 signaling axis facilitates the prolific expansion of NK cells in response to primary viral infection, but not recall responses. PMID:25589075

  19. Dynamics of the NK-cell subset redistribution induced by cytomegalovirus infection in preterm infants.

    PubMed

    Noyola, Daniel E; Alarcón, Ana; Noguera-Julian, Antoni; Muntasell, Aura; Muñoz-Almagro, Carmen; García, Jordi; Mur, Antonio; Fortuny, Claudia; López-Botet, Miguel

    2015-03-01

    Human cytomegalovirus (HCMV) infection promotes an expansion of NK-cells expressing the CD94/NKG2C receptor. We prospectively monitored the effects of HCMV on the NK-cell receptor (NKG2C, NKG2A, KIR, LILRB1) distribution in preterm infants. As compared to non-infected moderately preterm newborns (n=19, gestational age: 32-37 weeks), very preterm infants (n=5, gestational age: <32 weeks) suffering symptomatic postnatal HCMV infection displayed increased numbers of NKG2C+, KIR+ NK-cells, encompassed by a reduction of NKG2A+ NK-cells. A similar profile was observed in HCMV-negative newborns (n=4) with asymptomatic infection, during follow-up at ~4 and 10 months of age. Of note, viremia remained detectable in three symptomatic cases at ~10 months despite the persistent expansion of NKG2C+ NK-cells. Our study provides original insights on the dynamics of the imprint exerted by primary HCMV infection on the NK-cell compartment, revealing that the expansion of NKG2C+ NK-cells may be insufficient to control viral replication in very preterm infants. PMID:25636568

  20. DNAM-1 controls NK cell activation via an ITT-like motif

    PubMed Central

    Zhang, Zhanguang; Wu, Ning; Lu, Yan; Davidson, Dominique; Colonna, Marco

    2015-01-01

    DNAM-1 (CD226) is an activating receptor expressed on natural killer (NK) cells, CD8+ T cells, and other immune cells. Upon recognition of its ligands, CD155 and CD112, DNAM-1 promotes NK cell–mediated elimination of transformed and virus-infected cells. It also has a key role in expansion and maintenance of virus-specific memory NK cells. Herein, the mechanism by which DNAM-1 controls NK cell–mediated cytotoxicity and cytokine production was elucidated. Cytotoxicity and cytokine production triggered by DNAM-1 were mediated via a conserved tyrosine- and asparagine-based motif in the cytoplasmic domain of DNAM-1. Upon phosphorylation by Src kinases, this motif enabled binding of DNAM-1 to adaptor Grb2, leading to activation of enzymes Vav-1, phosphatidylinositol 3′ kinase, and phospholipase C-γ1. It also promoted activation of kinases Erk and Akt, and calcium fluxes. Although, as reported, DNAM-1 promoted adhesion, this function was signal-independent and insufficient to promote cytotoxicity. DNAM-1 signaling was also required to enhance cytotoxicity, by increasing actin polymerization and granule polarization. We propose that DNAM-1 promotes NK cell activation via an immunoreceptor tyrosine tail (ITT)–like motif coupling DNAM-1 to Grb2 and other downstream effectors. PMID:26552706

  1. Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner

    PubMed Central

    Van den Bergh, Johan; Willemen, Yannick; Goossens, Herman; Van Tendeloo, Viggo F.; Smits, Evelien L.; Berneman, Zwi N.; Lion, Eva

    2015-01-01

    The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as “IL-15 DCs”, with the capacity to stimulate NK cells. In a head-to-head comparison with “IL-4 DCs” used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on “gold-standard” IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies. PMID:25951230

  2. Investigation of Cu-doped Li2B4O7 single crystals by electron paramagnetic resonance and time-resolved optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Corradi, G.; Nagirnyi, V.; Kotlov, A.; Watterich, A.; Kirm, M.; Polgár, K.; Hofstaetter, A.; Meyer, M.

    2008-01-01

    A low-temperature study of the thermoluminescent dosimeter material, lithium tetraborate (Li2B4O7) doped by Cu, has been carried out by the methods of electron paramagnetic resonance (EPR) and time-resolved polarization spectroscopy using 4-20 eV synchrotron radiation and 1 µs Xe flash lamp pulses in the region 3-6 eV. The observed EPR spectra of an unpaired hole with strong d-character and characteristic hyperfine splittings can be ascribed to Cu2+ substituted at a Li lattice site and displaced due to relaxation. The results on the Cu+-related luminescence strongly support the conclusion about a low-symmetry position of copper impurity ions in the lithium tetraborate lattice. The temperature dependence of the decay kinetics of the Cu+-related 3.35 eV emission indicates a triplet nature for the relaxed excited state of the Cu+ centres. An off-centre position of the Cu+ ion in the relaxed excited state is suggested.

  3. Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen vacancies and lithium vacancies

    NASA Astrophysics Data System (ADS)

    Swinney, M. W.; McClory, J. W.; Petrosky, J. C.; Yang, Shan; Brant, A. T.; Adamiv, V. T.; Burak, Ya. V.; Dowben, P. A.; Halliburton, L. E.

    2010-06-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify and characterize electrons trapped by oxygen vacancies and holes trapped by lithium vacancies in lithium tetraborate (Li2B4O7) crystals. Our study includes a crystal with the natural abundances of B10 and B11 and a crystal highly enriched with B10. The as-grown crystals contain isolated oxygen vacancies, lithium vacancies, and copper impurities, all in nonparamagnetic charge states. During an irradiation at 77 K with 60 kV x-rays, doubly ionized oxygen vacancies trap electrons while singly ionized lithium vacancies and monovalent copper impurities trap holes. The vacancies return to their preirradiation charge states when the temperature of the sample is increased to approximately 90 K. Hyperfine interactions with B10 and B11 nuclei, observed between 13 and 40 K in the radiation-induced EPR and ENDOR spectra, provide models for the two vacancy-related defects. The electron trapped by an oxygen vacancy is localized primarily on only one of the two neighboring boron ions while the hole stabilized by a lithium vacancy is localized on a neighboring oxygen ion with nearly equal interactions with the two boron ions adjacent to the oxygen ion.

  4. New benzo[1,2-b:4,5-b']dithiophene-based small molecules containing alkoxyphenyl side chains for high efficiency solution-processed organic solar cells.

    PubMed

    Du, Zhengkun; Chen, Weichao; Wen, Shuguang; Qiao, Shanlin; Liu, Qian; Ouyang, Dan; Wang, Ning; Bao, Xichang; Yang, Renqiang

    2014-12-01

    A new acceptor-donor-acceptor (A-D-A) small molecule, namely, BDT-PO-DPP, based on the alkoxyphenyl (PO)-substituted benzo[1,2-b:4,5-b']dithiophene (BDT) derivative and the diketopyrrolopyrrole (DPP) unit was synthesized as an electron donor for solution-processed small-molecule organic solar cells (SMOSCs). BDT-PO-DPP exhibited good thermal stability, with a 5 % weight-lost temperature at 401 °C under a nitrogen atmosphere. BDT-PO-DPP exhibited a lower HOMO energy level of -5.25 eV and a weaker aggregation ability than alkoxy-substituted BDT-O-DPP. A bulk heterojunction SMOSC device based on BDT-PO-DPP and [6,6]-phenyl-C61 -butyric acid methyl ester was prepared, and it showed a power conversion efficiency up to 5.63% with a high open-circuit voltage of 0.83 V, a short circuit current density of 11.23 mA cm(-2) , and a fill factor of 60.37% by using 1,2-dichlorobenzene as the co-solvent after thermal annealing at 110 °C. The results indicate that the alkoxyphenyl-substituted BDT derivative is a promising electron-donor building block for constructing highly efficient solution-processed SMOSCs. PMID:25346491

  5. Effect of Fluorine Substitution on Photovoltaic Properties of Alkoxyphenyl Substituted Benzo[1,2-b:4,5-b']dithiophene-Based Small Molecules.

    PubMed

    Qiu, Beibei; Yuan, Jun; Xiao, Xuxian; He, Dingjun; Qiu, Lixia; Zou, Yingping; Zhang, Zhi-guo; Li, Yongfang

    2015-11-18

    Two new small molecules, C3T-BDTP and C3T-BDTP-F with alkoxyphenyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDT) and meta-fluorinated-alkoxyphenyl-substituted BDT as the central donor blocks, respectively, have been synthesized and used as donor materials in organic solar cells (OSCs). With the addition of 0.4% v/v 1,8-diiodooctane (DIO), the blend of C3T-BDTP-F/PC71BM showed a higher hole mobility of 8.67 × 10(-4) cm(2) V(-1) s(-1) compared to that of the blend of C3T-BDTP/PC71BM. Two types of interlayers, zirconium acetylacetonate (ZrAcac) and perylene diimide (PDI) derivatives (PDINO and PDIN), were used to further optimize the performance of OSCs. With a device structure of ITO/PEDOT:PSS/donor:PC71BM/PDIN/Al, the OSCs based on C3T-BDTP delivered a satisfying power conversion efficiency (PCE) of 5.27% with an open circuit voltage (V(oc)) of 0.91 V, whereas the devices based on C3T-BDTP-F showed an enhanced PCE of 5.42% with a higher V(oc) of 0.97 V. PMID:26517574

  6. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b']dithiophene-based small molecule organic solar cells.

    PubMed

    Du, Zhengkun; Chen, Weichao; Qiu, Meng; Chen, Yanhua; Wang, Ning; Wang, Ting; Sun, Mingliang; Yu, Donghong; Yang, Renqiang

    2015-07-14

    A new two-dimensional (2D) conjugated small molecule, namely DCA3TBDTP, with an alkoxyphenyl substituted benzo[1,2-b:4,5-b']dithiophene (BDT) unit as the central core, octyl cyanoacetate as the end-capped groups and terthiophene as the π-linked bridge, was designed and synthesized for solution-processed organic solar cells (OSCs) as an electron donor material, in which an alkoxyphenyl group was introduced as a weak electron-donating side chain of the BDT moiety. The DCA3TBDTP molecule exhibited good solubility, a deep highest occupied molecular orbital (HOMO) level (-5.25 eV), an appropriate optical band-gap (1.82 eV) and a high decomposition temperature (362 °C). By applying the simple solution spin-coating fabrication process, the bulk heterojunction (BHJ) OSCs based on DCA3TBDTP and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) exhibited a good power conversion efficiency (PCE) of 4.51% with a high open-circuit voltage (Voc) of 0.90 V when thermal annealing at only 70 °C. PMID:26077329

  7. Tethering of ICAM on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization

    PubMed Central

    Gross, Catharina C.; Brzostowski, Joseph A.; Liu, Dongfang; Long, Eric O.

    2013-01-01

    αLβ2 integrin (LFA-1) has an important role in the formation of T cell and NK cell cytotoxic immunological synapses and in target cell killing. Binding of LFA-1 to ICAM on target cells promotes not only adhesion, but also polarization of cytolytic granules in NK cells. Here we tested whether LFA-1-dependent NK cell responses are regulated by the distribution and mobility of ICAM at the surface of target cells. We show that depolymerization of F-actin in NK-sensitive target cells abrogated LFA-1-dependent conjugate formation and granule polarization in primary NK cells. Degranulation, which is not controlled by LFA-1, was not impaired. Fluorescence recovery after photobleaching experiments and particle tracking by total internal reflection fluorescence microscopy revealed that ICAM-1 and ICAM-2 were distributed in largely immobile clusters. ICAM clusters were maintained and became highly mobile after actin depolymerization. Moreover, reducing ICAM-2 mobility on an NK-resistant target cell through expression of ezrin, an adapter molecule that tethers proteins to the actin cytoskeleton, enhanced LFA-1-dependent adhesion and granule polarization. Finally, while NK cells kept moving over freely diffusible ICAM-1 on a lipid bilayer, they bound and spread over solid-phase ICAM-1. We conclude that tethering, rather than clustering of ICAM promotes proper signaling by LFA-1 in NK cells. Our findings suggest that the lateral diffusion of integrin ligands on cells may be an important determinant of susceptibility to lysis by cytotoxic lymphocytes. PMID:20675589

  8. Structural and functional characterization of a cytochrome P450 2B4 F429H mutant with an axial thiolate-histidine hydrogen bond.

    PubMed

    Yang, Yuting; Zhang, Haoming; Usharani, Dandamudi; Bu, Weishu; Im, Sangchoul; Tarasev, Michael; Rwere, Freeborn; Pearl, Naw May; Meagher, Jennifer; Sun, Cuthbert; Stuckey, Jeanne; Shaik, Sason; Waskell, Lucy

    2014-08-12

    The structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold. Single-crystal electronic absorption and resonance Raman spectroscopy demonstrated that the mutant was reduced by a small dose of X-ray photons. The structure revealed that the δN atom of His429 forms an H-bond with the axial Cys436 thiolate whereas the εN atom forms an H-bond with the solvent and the side chain of Gln357. The amide of Gly438 forms the only other H-bond to the tetrahedral thiolate. Theoretical quantification of the histidine-thiolate interaction demonstrates a significant electron withdrawing effect on the heme iron. Comparisons of structures of class I-IV P450s demonstrate that either a phenylalanine or tryptophan is often found at the location corresponding to Phe429. Depending on the structure of the distal pocket heme, the residue at this location may or may not regulate the thermodynamic properties of the P450. Regardless, this residue appears to protect the thiolate from solvent, oxidation, protonations, and other deleterious reactions. PMID:25029089

  9. Crystal growth and luminescence properties of Li 2B 4O 7 single crystals doped with Ce, In, Ni, Cu and Ti ions

    NASA Astrophysics Data System (ADS)

    Senguttuvan, N.; Ishii, M.; Shimoyama, M.; Kobayashi, M.; Tsutsui, N.; Nikl, M.; Dusek, M.; Shimizu, H. M.; Oku, T.; Adachi, T.; Sakai, K.; Suzuki, J.

    2002-06-01

    Li 2B 4O 7 (LBO) is considered to be one of the useful materials for neutron detection because it contains Li and B, which possess large neutron capture cross-section isotopes. In the present study, we report crystal growth of LBO doped with Ce, In, Ni, Cu and Ti and some studies on their luminescent properties. Crystals were grown by the Bridgman method using Pt crucibles from the mixture of LBO with 0.5 wt% of In 2O 3, NiO, CuO and TiO 2. CeO 2 was added at 0.1, 1.0 and 2.0 wt% and the crystals were grown in one experiment. Though the crystals doped with Ce were not transparent except some small areas, the compound showed strong emission at 375 nm for two excitation peaks at 270 and 320 nm. The dopant Ce has not entered well into LBO and the transparent area of the crystal did not show any emission. The crystals grown with In 2O 3 and TiO 2 also had lot of segregation with little transparency. The crystals grown with NiO and CuO were found to be highly transparent and clear except some area. The transmittance measured at clear area showed short wavelength cut-off at about 220 nm for the case of NiO doping and at about 200 nm for the case of CuO doping (the cut-off for pure LBO is 167 nm). There were absorption peaks at 440, 500 and 560 nm for Ni-doped LBO and at 240, 255 and 310 nm for Cu doping. Among these two crystals, Cu-doped LBO showed intense emission at 360 nm for the excitation at 245 nm.

  10. Structural and Functional Characterization of a Cytochrome P450 2B4 F429H Mutant with an Axial Thiolate–Histidine Hydrogen Bond

    PubMed Central

    2015-01-01

    The structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold. Single-crystal electronic absorption and resonance Raman spectroscopy demonstrated that the mutant was reduced by a small dose of X-ray photons. The structure revealed that the δN atom of His429 forms an H-bond with the axial Cys436 thiolate whereas the εN atom forms an H-bond with the solvent and the side chain of Gln357. The amide of Gly438 forms the only other H-bond to the tetrahedral thiolate. Theoretical quantification of the histidine–thiolate interaction demonstrates a significant electron withdrawing effect on the heme iron. Comparisons of structures of class I–IV P450s demonstrate that either a phenylalanine or tryptophan is often found at the location corresponding to Phe429. Depending on the structure of the distal pocket heme, the residue at this location may or may not regulate the thermodynamic properties of the P450. Regardless, this residue appears to protect the thiolate from solvent, oxidation, protonations, and other deleterious reactions. PMID:25029089

  11. Generation and preclinical characterization of an NKp80-Fc fusion protein for redirected cytolysis of natural killer (NK) cells against leukemia.

    PubMed

    Deng, Gang; Zheng, Xiaodong; Zhou, Jing; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-09-11

    The capacity of natural killer (NK) cells to mediate Fc receptor-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), largely contributes to their clinical application. Given that activation-induced C-type lectin (AICL), an identified ligand for the NK-activating receptor NKp80, is frequently highly expressed on leukemia cells, the lack of therapeutic AICL-specific antibodies limits clinical application. Here we explore a strategy to reinforce NK anti-leukemia reactivity by combining targeting AICL-expressing leukemia cells with the induction of NK cell ADCC using NKp80-Fc fusion proteins. The NKp80-Fc fusion protein we generated bound specifically to leukemia cells in an AICL-specific manner. Cell binding assays between NK and leukemia cells showed that NKp80-Fc significantly increased NK target cell conjugation. In functional analyses, treatment with NKp80-Fc clearly induced the ADCC effect of NK cells. NKp80-Fc not only promoted NK-mediated leukemia cell apoptosis in the early stage of cell conjugation but also enhanced NK cell degranulation and cytotoxicity activity in the late stage. The bifunctional NKp80-Fc could redirect NK cells toward leukemia cells and triggered NK cell killing in vitro. Moreover, NKp80-Fc enhanced the lysis of NK cells against tumors in leukemia xenograft non-obese diabetic/severe combined immunodeficiency mice. Taken together, our results demonstrate that NKp80-Fc potently amplifies NK cell anti-leukemia effects in vitro and in vivo through induction of the NK cell ADCC effect. This method could potentially be useful for molecular targeted therapy, and the fusion proteins may be a promising drug for immunotherapy of leukemia. PMID:26198633

  12. NK Cell-Dependent Growth Inhibition of Lewis Lung Cancer by Yu-Ping-Feng, an Ancient Chinese Herbal Formula

    PubMed Central

    Luo, Yingbin; Wu, Jianchun; Zhu, Xiaowen; Gong, Chenyuan; Yao, Chao; Ni, Zhongya; Wang, Lixin; Ni, Lulu; Li, Yan; Zhu, Shiguo

    2016-01-01

    Little is known about Yu-Ping-Feng (YPF), a typical Chinese herbal decoction, for its antitumor efficacy in non-small-cell lung cancer (NSCLC). Here, we found that YPF significantly inhibited the growth of Lewis lung cancer, prolonged the survival of tumor-bearing mice, promoted NK cell tumor infiltration, increased the population of NK cells in spleen, and enhanced NK cell-mediated killing activity. The growth suppression of tumors by YPF was significantly reversed by the depletion of NK cells. Furthermore, we found that YPF significantly downregulated the expression of TGF-β, indoleamine 2,3-dioxygenase, and IL-10 in tumor microenvironment. These results demonstrated that YPF has a NK cell-dependent inhibitory effect on Lewis lung cancer. PMID:27034590

  13. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway.

    PubMed

    Viel, Sébastien; Marçais, Antoine; Guimaraes, Fernando Souza-Fonseca; Loftus, Roisin; Rabilloud, Jessica; Grau, Morgan; Degouve, Sophie; Djebali, Sophia; Sanlaville, Amélien; Charrier, Emily; Bienvenu, Jacques; Marie, Julien C; Caux, Christophe; Marvel, Jacqueline; Town, Liam; Huntington, Nicholas D; Bartholin, Laurent; Finlay, David; Smyth, Mark J; Walzer, Thierry

    2016-02-16

    Transforming growth factor-β (TGF-β) is a major immunosuppressive cytokine that maintains immune homeostasis and prevents autoimmunity through its antiproliferative and anti-inflammatory properties in various immune cell types. We provide genetic, pharmacologic, and biochemical evidence that a critical target of TGF-β signaling in mouse and human natural killer (NK) cells is the serine and threonine kinase mTOR (mammalian target of rapamycin). Treatment of mouse or human NK cells with TGF-β in vitro blocked interleukin-15 (IL-15)-induced activation of mTOR. TGF-β and the mTOR inhibitor rapamycin both reduced the metabolic activity and proliferation of NK cells and reduced the abundances of various NK cell receptors and the cytotoxic activity of NK cells. In vivo, constitutive TGF-β signaling or depletion of mTOR arrested NK cell development, whereas deletion of the TGF-β receptor subunit TGF-βRII enhanced mTOR activity and the cytotoxic activity of the NK cells in response to IL-15. Suppression of TGF-β signaling in NK cells did not affect either NK cell development or homeostasis; however, it enhanced the ability of NK cells to limit metastases in two different tumor models in mice. Together, these results suggest that the kinase mTOR is a crucial signaling integrator of pro- and anti-inflammatory cytokines in NK cells. Moreover, we propose that boosting the metabolic activity of antitumor lymphocytes could be an effective strategy to promote immune-mediated tumor suppression. PMID:26884601

  14. Expression of NK cells activation receptors after occupational exposure to toxics: a preliminary study.

    PubMed

    De Celis, Ruth; Feria-Velasco, Alfredo; Bravo-Cuellar, Alejandro; Hicks-Gómez, Juan José; García-Iglesias, Trinidad; Preciado-Martínez, Verónica; Muñoz-Islas, Laura; González-Unzaga, Marco

    2008-06-30

    The expression of NK cells activation receptors was assessed by comparative study of two groups of women workers at a chemical reagents factory, located in Zapopan, Jalisco, Mexico. Twenty of them were exposed to environmental toxics identified and quantified by gas chromatography, and 20 women unexposed to toxic substances. The expression of the surface markers CD56+ and CD3+, and of the activation receptors and co-receptors on NK cells was quantified by flow cytometry. To assess the cellular damage produced by chronic exposure to the toxics, the thiobarbituric acid reacting substances (TBARS) generated and the total plasma antioxidizing capacity (TPAC) were quantified in both groups. The exposed women had been exposed at least to 12 volatile toxic compounds, benzene, benz(a)pyrene, ethylbenzene, dimethylbenz(a)anthracene, xylene, toluene, styrene, chloroform, formaldehyde, iodine, chlorine and fluorine. Significant difference between the two groups was in the proportion of CD3 lymphocytes, 72.7+/-10.3% in the unexposed women versus 66.8+/-7.9% in the exposed group (p<0.05). The density of expression of NKG2D and NKp30 receptors was significantly higher in the unexposed women compared to the exposed group: NKG2D were 31.3+/-6.3 and NKp30 were 9.5+/-5.2 in the unexposed women and 5.14+/-2.9 (p<0.01) and 4.6+/-1.9 (p<0.05), respectively in the exposed women. No statistically significant differences were found in the expression of NKp80, NKp46 and 2B4 receptors. The concentration of TBARS was lower in women from the unexposed group than the corresponding data from women of the exposed group. However, no significant difference was observed in TPAC between the two groups studied. The results of this preliminary study suggest that from the five activation receptors and co-receptors of NK cells evaluated (NKp30, NKp46, NKp80, NKG2D and 2B4), only NKp30 and NKG2D receptor expression was diminished in women exposed to toxics when compared with data from unexposed women

  15. OCD metrology by floating n/k

    NASA Astrophysics Data System (ADS)

    Yu, Shinn-Sheng; Huang, Jacky; Ke, Chih-Ming; Gau, Tsai-Sheng; Lin, Burn J.; Yen, Anthony; Lane, Lawrence; Vuong, Vi; Chen, Yan

    2007-03-01

    In this paper, one of the major contributions to the OCD metrology error, resulting from within-wafer variation of the refractive index/extinction coefficient (n/k) of the substrate, is identified and quantified. To meet the required metrology accuracy for the 65-nm node and beyond, it is suggested that n/k should be floating when performing the regression for OCD modeling. A feasible way of performing such regression is proposed and verified. As shown in the presented example, the measured CDU (3σ) with n/k fixed and n/k floating is 1.94 nm and 1.42 nm, respectively. That is, the metrology error of CDU committed by assuming n/k fixed is more than 35% of the total CDU.

  16. Ternary rare earth metal boride carbides containing two-dimensional boron carbon network: The crystal and electronic structure of R2B4C (R=Tb, Dy, Ho, Er)

    NASA Astrophysics Data System (ADS)

    Babizhetskyy, Volodymyr; Zheng, Chong; Mattausch, Hansjürgen; Simon, Arndt

    2007-12-01

    The ternary rare earth boride carbides R2B4C (R=Tb, Dy, Ho, Er) have been synthesized by reacting the elements at temperatures between 1800 and 2000K. The crystal structure of Dy2B4C has been determined from single-crystal X-ray diffraction data. It crystallizes in a new structure type in the orthorhombic space group Immm (a=3.2772(6) Å, b=6.567(2) Å, c=7.542(1) Å, Z=2, R1=0.035 (wR2=0.10) for 224 reflections with Io>2σ(Io)). Boron atoms form infinite chains of fused B6 rings in [100] joined with carbon atoms into planar, two-dimensional networks which alternate with planar sheets of rare earth metal atoms. The electronic structure of Dy2B4C was also analyzed using the tight-binding extended Hückel method.

  17. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection. PMID:27329138

  18. Protective effect of polysaccharides on simulated microgravity-induced functional inhibition of human NK cells.

    PubMed

    Huyan, Ting; Li, Qi; Yang, Hui; Jin, Ming-Liang; Zhang, Ming-Jie; Ye, Lin-Jie; Li, Ji; Huang, Qing-Sheng; Yin, Da-Chuan

    2014-01-30

    Polysaccharides are believed to be strong immunostimulants that can promote the proliferation and activity of T cells, B cells, macrophages and natural killer (NK) cells. This study aimed to investigate the effects of five polysaccharides (Grifola frondosa polysaccharide (GFP), lentinan (LNT), G. lucidum polysaccharide (GLP), Lycium barbarum polysaccharide (LBP) and yeast glucan (YG)) on primary human NK cells under normal or simulated microgravity (SMG) conditions. Our results demonstrated that polysaccharides markedly promoted the cytotoxicity of NK cells by enhancing IFN-γ and perforin secretion and increasing the expression of the activating receptor NKp30 under normal conditions. Meanwhile polysaccharides can enhance NK cell function under SMG conditions by restoring the expression of the activating receptor NKG2D and reducing the early apoptosis and late apoptosis/necrosis. Moreover, the antibody neutralization test showed that CR3 may be the critical receptor involved in polysaccharides induced NK cells activation. These findings indicated that polysaccharides may be used as immune regulators to promote the health of the public and astronauts during space missions. PMID:24299844

  19. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    PubMed Central

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC. PMID:26154566

  20. Activating KIRs and NKG2C in Viral Infections: Toward NK Cell Memory?

    PubMed Central

    Della Chiesa, Mariella; Sivori, Simona; Carlomagno, Simona; Moretta, Lorenzo; Moretta, Alessandro

    2015-01-01

    Natural killer (NK) cells are important players in the immune defense against viral infections. The contribution of activating killer immunoglobulin-like receptors (KIRs) and CD94/NKG2C in regulating anti-viral responses has recently emerged. Thus, in the hematopoietic stem cell transplantation setting, the presence of donor activating KIRs (aKIRs) may protect against viral infections, while in HIV-infected individuals, KIR3DS1, in combination with HLA-Bw4-I80, results in reduction of viral progression. Since, studies have been performed mainly at the genetic or transcriptional level, the effective size, the function, and the “licensing” status of NK cells expressing aKIRs, as well as the nature of their viral ligands, require further investigation. Certain viral infections, mainly due to Human cytomegalovirus (HCMV), can deeply influence the NK cell development and function by inducing a marked expansion of mature NKG2C+ NK cells expressing self-activating KIRs. This suggests that NKG2C and/or aKIRs are involved in the selective proliferation of this subset. The persistent, HCMV-induced, imprinting suggests that NK cells may display unexpected adaptive immune traits. The role of aKIRs and NKG2C in regulating NK cell responses and promoting a memory-like response to certain viruses is discussed. PMID:26617607

  1. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  2. Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines.

    PubMed

    Nagao, F; Suzui, M; Takeda, K; Yagita, H; Okumura, K

    2000-10-01

    The change of plasma catecholamine concentration correlates with the change of natural killer (NK) activity and NK cell number in peripheral blood mononuclear cells (PBMC) during and after moderate exercise. We studied the causal relation between exercise-induced catecholamine and expression of adhesion molecules on NK cells during and after exercise. The expression of CD44 and CD18 on CD3(-)CD56(+) NK cells was significantly reduced during exercise (P < 0.01). When PBMC were stimulated with 10(-8)M norepinephrine in vitro, the expression of these adhesion molecules on CD3(-)CD56(+) NK cells was downmodulated within 30 min. The binding capacity of NK cells to a CD44 ligand, hyaluronate, was reduced by the stimulation with norepinephrine (P < 0.01). The intravenous injection of norepinephrine in mice decreased the expression of CD44 and CD18 on CD3(-)NK1.1(+) cells (P < 0.01) and increased the number of CD3(-)NK1.1(+) cells in PBMC (P < 0.01). These findings suggest that exercise-induced catecholamines modulate the expression of adhesion molecules on NK cells, resulting in the mobilization of NK cells into the circulation. PMID:11003990

  3. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression.

    PubMed

    Male, Victoria; Nisoli, Ilaria; Kostrzewski, Tomasz; Allan, David S J; Carlyle, James R; Lord, Graham M; Wack, Andreas; Brady, Hugh J M

    2014-04-01

    The transcription factor E4bp4 (Nfil3) is essential for natural killer (NK) cell production. Here, we show that E4bp4 is required at the NK lineage commitment point when NK progenitors develop from common lymphoid progenitors (CLPs) and that E4bp4 must be expressed at the CLP stage for differentiation toward the NK lineage to occur. To elucidate the mechanism by which E4bp4 promotes NK development, we identified a central core of transcription factors that can rescue NK production from E4bp4(-/-) progenitors, suggesting that they act downstream of E4bp4. Among these were Eomes and Id2, which are expressed later in development than E4bp4. E4bp4 binds directly to the regulatory regions of both Eomes and Id2, promoting their transcription. We propose that E4bp4 is required for commitment to the NK lineage and promotes NK development by directly regulating the expression of the downstream transcription factors Eomes and Id2. PMID:24663216

  4. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma

    PubMed Central

    Sun, Cheng; Sun, Haoyu; Zhang, Cai; Tian, Zhigang

    2015-01-01

    Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer mortality and a common poor-prognosis malignancy due to postoperative recurrence and metastasis. There is a significant correlation between chronic hepatitis B virus (HBV) infection and hepatocarcinogenesis. As the first line of host defense against viral infections and tumors, natural killer (NK) cells express a large number of immune recognition receptors (NK receptors (NKRs)) to recognize ligands on hepatocytes, liver sinusoidal endothelial cells, stellate cells and Kupffer cells, which maintain the balance between immune response and immune tolerance of NK cells. Unfortunately, the percentage and absolute number of liver NK cells decrease significantly during the development and progression of HCC. The abnormal expression of NK cell receptors and dysfunction of liver NK cells contribute to the progression of chronic HBV infection and HCC and are significantly associated with poor prognosis for liver cancer. In this review, we focus on the role of NK cell receptors in anti-tumor immune responses in HCC, particularly HBV-related HCC. We discuss specifically how tumor cells evade attack from NK cells and how emerging understanding of NKRs may aid the development of novel treatments for HCC. Novel mono- and combination therapeutic strategies that target the NK cell receptor–ligand system may potentially lead to successful and effective immunotherapy in HCC. PMID:25308752

  5. A Modified NK Cell Degranulation Assay Applicable for Routine Evaluation of NK Cell Function

    PubMed Central

    Shabrish, Snehal; Gupta, Maya; Madkaikar, Manisha

    2016-01-01

    Natural killer (NK) cells play important role in innate immunity against tumors and viral infections. Studies show that lysosome-associated membrane protein-1 (LAMP-1, CD107a) is a marker for degranulation of NK and cytotoxic T cells and its expression is a sensitive marker for the cytotoxic activity determination. The conventional methods of determination of CD107a on NK cells involve use of peripheral blood mononuclear cells (PBMC) or pure NK cells and K562 cells as stimulants. Thus, it requires large volume of blood sample which is usually difficult to obtain in pediatric patients and patients with cytopenia and also requires specialized laboratory for maintaining cell line. We have designed a flow cytometric assay to determine CD107a on NK cells using whole blood, eliminating the need for isolation of PBMC or isolate NK cells. This assay uses phorbol-12-myristate-13-acetate (PMA) and calcium ionophore (Ca2+-ionophore) instead of K562 cells for stimulation and thus does not require specialized cell culture laboratory. CD107a expression on NK cells using modified NK cell degranulation assay compared to the conventional assay was significantly elevated (p < 0.0001). It was also validated by testing patients diagnosed with familial hemophagocytic lymphohistiocytosis (FHL) with defect in exocytosis. This assay is rapid, cost effective, and reproducible and requires significantly less volume of blood which is important for clinical evaluation of NK cells. PMID:27413758

  6. Ionomycin Treatment Renders NK Cells Hyporesponsive.

    PubMed

    Romera-Cárdenas, Gema; Thomas, L Michael; Lopez-Cobo, Sheila; García-Cuesta, Eva M; Long, Eric O; Reyburn, Hugh T

    2016-01-01

    Natural killer cells are cytotoxic lymphocytes important in immune responses to cancer and multiple pathogens. However, chronic activation of NK cells can induce a hyporesponsive state. The molecular basis of the mechanisms underlying the generation and maintenance of this hyporesponsive condition are unknown, thus an easy and reproducible mechanism able to induce hyporesponsiveness on human NK cells would be very useful to gain understanding of this process. Human NK cells treated with ionomycin lose their ability to degranulate and secrete IFN-γ in response to a variety of stimuli, but IL-2 stimulation can compensate these defects. Apart from reductions in the expression of CD11a/CD18, no great changes were observed in the activating and inhibitory receptors expressed by these NK cells, however their transcriptional signature is different to that described for other hyporesponsive lymphocytes. PMID:27007115

  7. Ionomycin Treatment Renders NK Cells Hyporesponsive

    PubMed Central

    Romera-Cárdenas, Gema; Thomas, L. Michael; Lopez-Cobo, Sheila; García-Cuesta, Eva M.; Long, Eric O.; Reyburn, Hugh T.

    2016-01-01

    Natural killer cells are cytotoxic lymphocytes important in immune responses to cancer and multiple pathogens. However, chronic activation of NK cells can induce a hyporesponsive state. The molecular basis of the mechanisms underlying the generation and maintenance of this hyporesponsive condition are unknown, thus an easy and reproducible mechanism able to induce hyporesponsiveness on human NK cells would be very useful to gain understanding of this process. Human NK cells treated with ionomycin lose their ability to degranulate and secrete IFN-γ in response to a variety of stimuli, but IL-2 stimulation can compensate these defects. Apart from reductions in the expression of CD11a/CD18, no great changes were observed in the activating and inhibitory receptors expressed by these NK cells, however their transcriptional signature is different to that described for other hyporesponsive lymphocytes. PMID:27007115

  8. Identification of both NK1 and NK2 receptors in guinea-pig airways.

    PubMed Central

    McKee, K. T.; Millar, L.; Rodger, I. W.; Metters, K. M.

    1993-01-01

    1. NK1 and NK2 receptors have been characterized in guinea-pig lung membrane preparations by use of [125I-Tyr8]-substance P and [125I]-neurokinin A binding assays in conjunction with tachykinin-receptor selective agonists ([Sar9Met(O2)11]substance P for NK1 and [beta Ala8]neurokinin A (4-10) for NK2) and antagonists (CP-99,994 for NK1 and SR48968 for NK2). 2. The presence of high affinity, G-protein-coupled NK1 receptors in guinea-pig lung parenchymal membranes has been confirmed. The rank order of affinity for competing tachykinins was as predicted for an NK1 receptor: substance P = [Sar9Met(O2)11]substance P > substance P-methyl ester = physalaemin > neurokinin A = neurokinin B >> [beta Ala8]neurokinin A (4-10). The novel NK1 antagonist CP-99,994 has a Ki of 0.4 nM at this NK1 site. 3. In order to characterize [125I]-neurokinin A binding to guinea-pig lung, the number of [125I]-neurokinin A specific binding sites was increased 3-4 fold by purification of the parenchymal membranes over discontinuous sucrose gradients. The rank order of affinity determined for NK1- and NK2-receptor agonists and antagonists in competition for these sites showed that the majority (80%) of [125I]-neurokinin A specific binding was also to the NK1 receptor. 4. Under conditions where the guinea-pig lung parenchymal NK1 receptor was fully occupied by a saturating concentration of either [Sar9Met(O2)11]substance P (1 microM) or CP-99,994 (2.7 microM), residual [125I]-neurokinin A specific binding was inhibited in a concentration-dependent manner by both [beta Ala8]neurokinin A and SR48968. This result shows that the NK2 receptor is also present in these preparations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7694756

  9. NK cells: tuned by peptide?

    PubMed

    Das, Jayajit; Khakoo, Salim I

    2015-09-01

    Natural killer cells express multiple receptors for major histocompatibility complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIRs) and the C-type lectin-like CD94:NKG2 receptors. The KIR locus is extremely polymorphic, paralleling the diversity of its classical MHC class I ligands. Similarly, the conservation of the NKG2 family of receptors parallels the conservation of MHC-E, the ligand for CD94:NKG2A/C/E. Binding of both CD94:NKG2 heterodimers and KIR to their respective MHC class I ligand is peptide dependent, and despite the evolution of these receptors, they have retained the property of peptide selectivity. Such peptide selectivity affects these two systems in different ways. HLA-E binding non-inhibitory peptides augment inhibition at CD94:NKG2A, while HLA-C binding non-inhibitory peptides antagonize inhibition at KIR2DL2/3, implying that KIRs are specialized to respond positively to changes in peptide repertoire. Thus, while specific KIRs, such as KIR2DL3, are associated with beneficial outcomes from viral infections, viral peptides augment inhibition at CD94:NKGA. Conversely, NKG2A-positive NK cells sense MHC class I downregulation more efficiently than KIRs. Thus, these two receptor:ligand systems appear to have complementary functions in recognizing changes in MHC class I. PMID:26284480

  10. NK cell-based immunotherapy for malignant diseases

    PubMed Central

    Cheng, Min; Chen, Yongyan; Xiao, Weihua; Sun, Rui; Tian, Zhigang

    2013-01-01

    Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced. PMID:23604045

  11. Murine peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived NK cells.

    PubMed

    Pinhas, Nissim; Sternberg-Simon, Michal; Chiossone, Laura; Shahaf, Gitit; Walzer, Thierry; Vivier, Eric; Mehr, Ramit

    2016-05-01

    Murine NK cells can be divided by the expression of two cell surface markers, CD27 and Mac-1 (a.k.a. CD11b), into four separate subsets. These subsets suggest a linear development model: CD27(-) Mac-1(-) → CD27(+) Mac-1(-) → CD27(+) Mac-1(+) → CD27(-) Mac-1(+) . Here, we used a combination of BrdU labeling experiments and mathematical modeling to gain insights regarding NK-cell development in mouse bone marrow (BM), spleen and liver. The modeling results that best fit the experimental data show that the majority of NK cells already express CD27 upon entering the NK-cell developmental pathway. Additionally, only a small fraction of NK cells exit the BM to other sites, suggesting that peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived mature NK cells. PMID:26919267

  12. Development of the adaptive NK cell response to human cytomegalovirus in the context of aging.

    PubMed

    López-Botet, Miguel; Muntasell, Aura; Martínez-Rodríguez, José E; López-Montañés, María; Costa-García, Marcel; Pupuleku, Aldi

    2016-09-01

    Human cytomegalovirus (HCMV) establishes a highly prevalent life-long latent infection. Though generally subclinical, HCMV infection may have severe consequences during fetal development and in immunocompromised individuals. Based on epidemiological studies HCMV(+) serology has been associated with the development of atherosclerosis, immune senescence and an increase mortality rate in elderly people. Such long-term detrimental effects of the viral infection presumably result from an inefficient immune control of the pathogen, depending on the quality and evolution of the individual host-pathogen relationship. Together with antigen-specific T lymphocytes, NK cells play an important role in anti-viral immune defense. HCMV promotes in some individuals the differentiation and persistent steady state expansion of an NK cell subset bearing the CD94/NKG2C activating receptor. The relationship between this adaptive NK cell response to HCMV and aging is overviewed. PMID:27349430

  13. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation

    PubMed Central

    Brennan, Todd V.; Lin, Liwen; Brandstadter, Joshua D.; Rendell, Victoria R.; Dredge, Keith; Huang, Xiaopei; Yang, Yiping

    2015-01-01

    Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell–based antitumor therapies. PMID:26649979

  14. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity.

    PubMed

    Xu, Haifeng C; Grusdat, Melanie; Pandyra, Aleksandra A; Polz, Robin; Huang, Jun; Sharma, Piyush; Deenen, René; Köhrer, Karl; Rahbar, Ramtin; Diefenbach, Andreas; Gibbert, Kathrin; Löhning, Max; Höcker, Lena; Waibler, Zoe; Häussinger, Dieter; Mak, Tak W; Ohashi, Pamela S; Lang, Karl S; Lang, Philipp A

    2014-06-19

    Despite development of new antiviral drugs, viral infections are still a major health problem. The most potent antiviral defense mechanism is the innate production of type I interferon (IFN-I), which not only limits virus replication but also promotes antiviral T cell immunity through mechanisms, which remain insufficiently studied. Using the murine lymphocytic choriomeningitis virus model system, we show here that IFN-I signaling on T cells prevented their rapid elimination in vivo. Microarray analyses uncovered that IFN-I triggered the expression of selected inhibitory NK-cell-receptor ligands. Consequently, T cell immunity of IFN-I receptor (IFNAR)-deficient T cells could be restored by NK cell depletion or in NK-cell-deficient hosts (Nfil3(-/-)). The elimination of Ifnar1(-/-) T cells was dependent on NK-cell-mediated perforin expression. In summary, we identified IFN-I as a key player regulating the protection of T cells against regulatory NK cell function. PMID:24909887

  15. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation.

    PubMed

    Brennan, Todd V; Lin, Liwen; Brandstadter, Joshua D; Rendell, Victoria R; Dredge, Keith; Huang, Xiaopei; Yang, Yiping

    2016-01-01

    Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies. PMID:26649979

  16. A paradoxical protective role for the proinflammatory peptide substance P receptor (NK1R) in acute hyperoxic lung injury

    PubMed Central

    Dib, Marwan; Zsengeller, Zsuzsanna; Mitsialis, Alex; Lu, Bao; Craig, Stewart; Gerard, Norma P.

    2009-01-01

    The neuropeptide substance P manifests its biological functions through ligation of a G protein-coupled receptor, the NK1R. Mice with targeted deletion of this receptor reveal a preponderance of proinflammatory properties resulting from ligand activation, demonstrating a neurogenic component to multiple forms of inflammation and injury. We hypothesized that NK1R deficiency would afford a similar protection from inflammation associated with hyperoxia. Counter to our expectations, however, NK1R−/− animals suffered significantly worse lung injury compared with wild-type mice following exposure to 90% oxygen. Median survival was shortened to 84 h for NK1R−/− mice from 120 h for wild-type animals. Infiltration of inflammatory cells into the lungs was significantly increased; NK1R−/− animals also exhibited increased pulmonary edema, hemorrhage, and bronchoalveolar lavage fluid protein levels. TdT-mediated dUTP nick end labeling (TUNEL) staining was significantly elevated in NK1R−/− animals following hyperoxia. Furthermore, induction of metallothionein and Na+-K+-ATPase was accelerated in NK1R−/− compared with wild-type mice, consistent with increased oxidative injury and edema. In cultured mouse lung epithelial cells in 95% O2, however, addition of substance P promoted cell death, suggesting the neurogenic component of hyperoxic lung injury is mediated by additional mechanisms in vivo. Release of bioactive constituents including substance P from sensory neurons results from activation of the vanilloid receptor, TRPV1. In mice with targeted deletion of the TRPV1 gene, acute hyperoxic injury is attenuated relative to NK1R−/− animals. Our findings thus reveal a major neurogenic mechanism in acute hyperoxic lung injury and demonstrate concerted actions of sensory neurotransmitters revealing significant protection for NK1R-mediated functions. PMID:19633070

  17. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  18. Molecular cloning and characterization of chicken NK lysin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NK lysin is an anti microbial and anti tumor protein expressed by NK cells and T lymphocytes. In a previous report, we identified a set of overlapping expressed sequence tags constituting a contiguous sequence (contig 171) homologous to mammalian NK lysins. In the current report, a cDNA encoding N...

  19. Bovine NK-lysin: Copy number variation and functional diversification

    PubMed Central

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M.; Malig, Maika; Lawhon, Sara D.; Skow, Loren C.; Lee, Mi Ok; Eichler, Evan E.; Andersson, Leif; Womack, James E.

    2015-01-01

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30–35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  20. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role during innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we ex...

  1. Bovine NK-lysin: Copy number variation and functional diversification.

    PubMed

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M; Malig, Maika; Lawhon, Sara D; Skow, Loren C; Lee, Mi Ok; Eichler, Evan E; Andersson, Leif; Womack, James E

    2015-12-29

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  2. Differential requirement for Nfil3 during NK cell development.

    PubMed

    Seillet, Cyril; Huntington, Nicholas D; Gangatirkar, Pradnya; Axelsson, Elin; Minnich, Martina; Brady, Hugh J M; Busslinger, Meinrad; Smyth, Mark J; Belz, Gabrielle T; Carotta, Sebastian

    2014-03-15

    NK cells can be grouped into distinct subsets that are localized to different organs and exhibit a different capacity to secrete cytokines and mediate cytotoxicity. Despite these hallmarks that reflect tissue-specific specialization in NK cells, little is known about the factors that control the development of these distinct subsets. The basic leucine zipper transcription factor Nfil3 (E4bp4) is essential for bone marrow-derived NK cell development, but it is not clear whether Nfil3 is equally important for all NK cell subsets or how it induces NK lineage commitment. In this article, we show that Nfil3 is required for the formation of Eomes-expressing NK cells, including conventional medullary and thymic NK cells, whereas TRAIL(+) Eomes(-) NK cells develop independently of Nfil3. Loss of Nfil3 during the development of bone marrow-derived NK cells resulted in reduced expression of Eomes and, conversely, restoration of Eomes expression in Nfil3(-/-) progenitors rescued NK cell development and maturation. Collectively, these findings demonstrate that Nfil3 drives the formation of mature NK cells by inducing Eomes expression and reveal the differential requirements of NK cell subsets for Nfil3. PMID:24532575

  3. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection.

    PubMed

    Müller, Anna A; Dolowschiak, Tamas; Sellin, Mikael E; Felmy, Boas; Verbree, Carolin; Gadient, Sandra; Westermann, Alexander J; Vogel, Jörg; LeibundGut-Landmann, Salome; Hardt, Wolf-Dietrich

    2016-06-01

    Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and -injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. PMID:27341123

  4. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection

    PubMed Central

    Müller, Anna A.; Dolowschiak, Tamas; Sellin, Mikael E.; Felmy, Boas; Verbree, Carolin; Gadient, Sandra; Westermann, Alexander J.; Vogel, Jörg; LeibundGut-Landmann, Salome; Hardt, Wolf-Dietrich

    2016-01-01

    Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. PMID:27341123

  5. PTEN Is a Negative Regulator of NK Cell Cytolytic Function

    PubMed Central

    Briercheck, Edward L.; Trotta, Rossana; Chen, Li; Hartlage, Alex S.; Cole, Jordan P.; Cole, Tyler D.; Mao, Charlene; Banerjee, Pinaki P.; Hsu, Hsiang-Ting; Mace, Emily M.; Ciarlariello, David; Mundy-Bosse, Bethany L.; Garcia-Cao, Isabel; Scoville, Steven D.; Yu, Lianbo; Pilarski, Robert; Carson, William E.; Leone, Gustavo; Pandolfi, Pier Paolo; Yu, Jianhua; Orange, Jordan S.; Caligiuri, Michael A.

    2015-01-01

    Human NK cells are characterized by their ability to initiate an immediate and direct cytolytic response to virally infected or malignantly transformed cells. Within human peripheral blood, the more mature CD56dim NK cell efficiently kills malignant targets at rest, whereas the less mature CD56bright NK cells cannot. In this study, we show that resting CD56bright NK cells express significantly more phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein when compared with CD56dim NK cells. Consistent with this, forced overexpression of PTEN in NK cells resulted in decreased cytolytic activity, and loss of PTEN in CD56bright NK cells resulted in elevated cytolytic activity. Comparable studies in mice showed PTEN overexpression did not alter NK cell development or NK cell–activating and inhibitory receptor expression yet, as in humans, did decrease expression of downstream NK activation targets MAPK and AKT during early cytolysis of tumor target cells. Confocal microscopy revealed that PTEN overexpression disrupts the NK cell’s ability to organize immunological synapse components including decreases in actin accumulation, polarization of the microtubule organizing center, and the convergence of cytolytic granules. In summary, our data suggest that PTEN normally works to limit the NK cell’s PI3K/AKT and MAPK pathway activation and the consequent mobilization of cytolytic mediators toward the target cell and suggest that PTEN is among the active regulatory components prior to human NK cells transitioning from the noncytolytic CD56bright NK cell to the cytolytic CD56dim NK cells. PMID:25595786

  6. Natural killer (NK) and mitogen (OKT3) augmented NK activity in insulin-dependent diabetes (IDDM)

    SciTech Connect

    Lewis, E.; Schwartz, S.

    1986-03-01

    The authors examined NK and OKT3 augmented NK activity in 14 IDDM patients and 15 age matched controls (28 +/- 6 vs 28.5 +/- 6 yrs respectively) to evaluate this aspect of antigen nonspecific immunity. NK and augmented NK function were examined at various target to effector cell ratios (E/T) using the K562 cell line (as target) in a 4 hr /sup 51/Cr release assay. Islet cell antibodies (ICA) were determined by standard methods. All of the diabetics (mean duration of disease 16 yrs) and controls were ICA (-). Their observations indicate that there is no significant difference between diabetic and control subjects in NK activity. The ability of OKT3 to augment NK activity (by a T-cell mediated process) is also not significantly different between the two groups. An abnormal immune response to beta cells has a central role in the pathogenesis of IDDM. The nature of this autoimmune defect is unclear. The authors' present observations indicate that antigen nonspecific immune function may be normal in patients with IDDM. They propose that IDDM is a disease only of abnormal antigen specific immunoregulation.

  7. Growth and ultraviolet application of Li2B4O7 crystals: Generation of the fourth and fifth harmonics of Nd:Y3Al5O12 lasers

    NASA Astrophysics Data System (ADS)

    Komatsu, R.; Sugawara, T.; Sassa, K.; Sarukura, N.; Liu, Z.; Izumida, S.; Segawa, Y.; Uda, S.; Fukuda, T.; Yamanouchi, K.

    1997-06-01

    A 2 in. diam single crystal of lithium tetraborate (Li2B4O7) was successfully grown by the Czochralski method. The crystal was free from macrodefects and had a dislocation density as low as 100/cm2. It had an excellent homogeneity of the refractive index and a wide transparency down to 170 nm. The optical damage threshold was 40 GW/cm2. Second-harmonic generation and sum frequency generation were investigated in association with the generation of the fourth and fifth harmonics of a Q-switched Nd:YAG laser. The conversion efficiency of the second-harmonic generation from the green (532 nm) light was 20%.

  8. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells.

    PubMed

    Zhang, B; Yamamura, T; Kondo, T; Fujiwara, M; Tabira, T

    1997-11-17

    In this report, we establish a regulatory role of natural killer (NK) cells in experimental autoimmune encephalomyelitis (EAE), a prototype T helper cell type 1 (Th1)-mediated disease. Active sensitization of C57BL/6 (B6) mice with the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide induces a mild form of monophasic EAE. When mice were deprived of NK cells by antibody treatment before immunization, they developed a more serious form of EAE associated with relapse. Aggravation of EAE by NK cell deletion was also seen in beta 2-microglobulin-/- (beta 2m-/-) mice, indicating that NK cells can play a regulatory role in a manner independent of CD8+ T cells or NK1.1+ T cells (NK-T cells). The disease enhancement was associated with augmentation of T cell proliferation and production of Th1 cytokines in response to MOG35-55. EAE passively induced by the MOG35-55-specific T cell line was also enhanced by NK cell deletion in B6, beta 2m-/-, and recombination activation gene 2 (RAG-2)-/- mice, indicating that the regulation by NK cells can be independent of T, B, or NK-T cells. We further showed that NK cells inhibit T cell proliferation triggered by antigen or cytokine stimulation. Taken together, we conclude that NK cells are an important regulator for EAE in both induction and effector phases. PMID:9362528

  9. NK cells and exercise: implications for cancer immunotherapy and survivorship.

    PubMed

    Bigley, Austin B; Simpson, Richard J

    2015-06-01

    Natural Killer (NK) cells are cytotoxic effectors of the innate immune system that are able to recognize and eradicate tumor cells without prior antigenic exposure. Tumor infiltration by NK-cells is associated with prolonged survival in cancer patients and high NK-cell cytotoxicity has been linked to decreased cancer risk. Allogeneic adoptive transfer of NK-cells from healthy donors to cancer patients has shown promise as a means of controlling or reversing the spread of multiple human malignancies including multiple myeloma and acute myeloid leukemia. However, multiple issues remain that undermine the efficacy of long-term cancer treatment using adoptive transfer of NK-cells including loss of activating receptors and cytotoxic potential in transferred NK-cells. Moreover, chronic exercise has been linked to improved NK-cell cytotoxicity, prognosis, and survival in cancer patients, and cytomegalovirus (CMV) reactivation is associated with enhanced NK-cell function after hematopoietic stem cell transplantation and decreased relapse risk in AML patients. In this work, we explore the potential of exercise- and CMV-driven alterations in NK-cell phenotype and function to increase the efficacy of NK-cells for cancer immunotherapy and prolong survival in cancer patients. We conclude that acute exercise and CMV are both capable of enhancing NK-cell cytotoxicity through distinct mechanisms; however, these effects are not additive as CMV infection is associated with an impaired acute exercise response. Thus, we suggest that either acute exercise or in vitro expansion of NKG2C+/NKG2A- NK-cells (as seen in those with CMV) could serve as a simple strategy for enhancing the anti-tumor cytotoxicity of NK-cells for immunotherapy, and that exercise training could be used to improve survivorship in cancer patients being treated with either HSCT or NK-cell infusions. PMID:26175401

  10. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway.

    PubMed

    Wang, Dongdong; Saga, Yasushi; Sato, Naoto; Nakamura, Toshikazu; Takikawa, Osamu; Mizukami, Hiroaki; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-06-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  11. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  12. The Epstein-Barr Virus (EBV) in T Cell and NK Cell Lymphomas: Time for a Reassessment

    PubMed Central

    Gru, A. A.; Haverkos, B. H.; Freud, A. G.; Hastings, J.; Nowacki, N. B.; Barrionuevo, C.; Vigil, C. E.; Rochford, R.; Natkunam, Y.; Baiocchi, R. A.

    2015-01-01

    While Epstein-Barr virus (EBV) was initially discovered and characterized as an oncogenic virus in B cell neoplasms, it also plays a complex and multifaceted role in T/NK cell lymphomas. In B cell lymphomas, EBV-encoded proteins have been shown to directly promote immortalization and proliferation through stimulation of the NF-κB pathway and increased expression of anti-apoptotic genes. In the context of mature T/NK lymphomas (MTNKL), with the possible exception on extranodal NK/T cell lymphoma (ENKTL), the virus likely plays a more diverse and nuanced role. EBV has been shown to shape the tumor microenvironment by promoting Th2-skewed T cell responses and by increasing the expression of the immune checkpoint ligand PD-L1. The type of cell infected, the amount of plasma EBV DNA, and the degree of viral lytic replication have all been proposed to have prognostic value in T/NK cell lymphomas. Latency patterns of EBV infection have been defined using EBV-infected B cell models and have not been definitively established in T/NK cell lymphomas. Identifying the expression profile of EBV lytic proteins could allow for individualized therapy with the use of antiviral medications. More work needs to be done to determine whether EBV-associated MTNKL have distinct biological and clinical features, which can be leveraged for risk stratification, disease monitoring, and therapeutic purposes. PMID:26449716

  13. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies.

    PubMed

    Romanski, Annette; Uherek, Christoph; Bug, Gesine; Seifried, Erhard; Klingemann, Hans; Wels, Winfried S; Ottmann, Oliver G; Tonn, Torsten

    2016-07-01

    Many B-cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK-92 cells, a continuously growing NK cell line, showing that anti-CD19-CAR (αCD19-CAR) engineered NK-92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK-92 cells. The 'first generation' CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc-tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK-92 and transduced αCD19-CAR NK-92 cells towards CD19 negative targets was found. However, αCD19-CAR NK-92 cells specifically and efficiently lysed CD19 expressing B-precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK-92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK-92 should be considered a treatment option for patients with lymphoid malignancies. PMID:27008316

  14. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  15. Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7 Augments Rituximab-Induced ADCC against Lymphoma and Targets NK Cell Migration toward the Lymph Node-Associated Chemokine CCL19.

    PubMed

    Carlsten, Mattias; Levy, Emily; Karambelkar, Amrita; Li, Linhong; Reger, Robert; Berg, Maria; Peshwa, Madhusudan V; Childs, Richard W

    2016-01-01

    For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies. PMID:27047492

  16. Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7 Augments Rituximab-Induced ADCC against Lymphoma and Targets NK Cell Migration toward the Lymph Node-Associated Chemokine CCL19

    PubMed Central

    Carlsten, Mattias; Levy, Emily; Karambelkar, Amrita; Li, Linhong; Reger, Robert; Berg, Maria; Peshwa, Madhusudan V.; Childs, Richard W.

    2016-01-01

    For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies. PMID:27047492

  17. The enhanced effect of lupeol on the destruction of gastric cancer cells by NK cells.

    PubMed

    Wu, Xiao-Ting; Liu, Jun-Quan; Lu, Xiao-Ting; Chen, Fu-Xing; Zhou, Zhong-Hai; Wang, Tao; Zhu, Sheng-Ping; Fei, Su-Juan

    2013-06-01

    Lupeol, a triterpene, was reported to possess beneficial effects as a therapeutic and preventive agent for a range of disorders. Many studies have confirmed that lupeol possesses strong activities such as antioxidative, antiinflammatory, antiarthritic, antimutagenic, and antimalarial, both in vitro and in vivo, and at its effective therapeutic doses exhibit no toxicity to normal cells and tissues. Lupeol was observed to inhibit the proliferation of gastric tumour cells in a dose-dependent manner, as assessed by MTT assay, and induce the proliferation of NK cells, as assessed by flow cytometry and Western blotting. The killing effect of NK cells on gastric tumour cells was assessed by LDH. Our experiment demonstrated that lupeol at appropriate concentrations could promote the proliferation of NK cells, inhibit the proliferation of gastric cancer cell lines BGC823, N87 and HGC27, and increase the killing effect of NK cells on gastric cancer cells. We speculated that lupeol might increase the expression of PFP, IFN-γ, and CD107a via the activation of PI3K/Akt and Wnt/β-catenin signalling pathways. Lupeol could serve as a potential agent against gastric cancer; however, further in-depth in vivo studies are still required. PMID:23639256

  18. The Human NK Cell Response to Yellow Fever Virus 17D Is Primarily Governed by NK Cell Differentiation Independently of NK Cell Education.

    PubMed

    Marquardt, Nicole; Ivarsson, Martin A; Blom, Kim; Gonzalez, Veronica D; Braun, Monika; Falconer, Karolin; Gustafsson, Rasmus; Fogdell-Hahn, Anna; Sandberg, Johan K; Michaëlsson, Jakob

    2015-10-01

    NK cells play an important role in the defense against viral infections. However, little is known about the regulation of NK cell responses during the first days of acute viral infections in humans. In this study, we used the live attenuated yellow fever virus (YFV) vaccine 17D as a human in vivo model to study the temporal dynamics and regulation of NK cell responses in an acute viral infection. YFV induced a robust NK cell response in vivo, with an early activation and peak in NK cell function at day 6, followed by a delayed peak in Ki67 expression, which was indicative of proliferation, at day 10. The in vivo NK cell response correlated positively with plasma type I/III IFN levels at day 6, as well as with the viral load. YFV induced an increased functional responsiveness to IL-12 and IL-18, as well as to K562 cells, indicating that the NK cells were primed in vivo. The NK cell responses were associated primarily with the stage of differentiation, because the magnitude of induced Ki67 and CD69 expression was distinctly higher in CD57(-) NK cells. In contrast, NK cells expressing self- and nonself-HLA class I-binding inhibitory killer cell Ig-like receptors contributed, to a similar degree, to the response. Taken together, our results indicate that NK cells are primed by type I/III IFN in vivo early after YFV infection and that their response is governed primarily by the differentiation stage, independently of killer cell Ig-like receptor/HLA class I-mediated inhibition or education. PMID:26283480

  19. NK Cell Phenotypic Modulation in Lung Cancer Environment

    PubMed Central

    Hao, Jun-Wei; Li, Yang; Liu, Bin; Yu, Yan; Shi, Fu-Dong; Zhou, Qing-Hua

    2014-01-01

    Background Nature killer (NK) cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment. Materials and methods Our study analyzed the change about NK cells surface markers (NK cells receptors) through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse. Results We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently. Conclusions The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy. PMID:25299645

  20. Models to study NK cell biology and possible clinical application

    PubMed Central

    Zamora, Anthony E.; Grossenbacher, Steven K.; Aguilar, Ethan G.; Murphy, William J.

    2016-01-01

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes resulting from the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models and the roles of NK cells in health and disease, to potential clinical applications. PMID:26237009

  1. Models to Study NK Cell Biology and Possible Clinical Application.

    PubMed

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-01-01

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. PMID:26237009

  2. Activating Receptors for Self-MHC Class I Enhance Effector Functions and Memory Differentiation of NK Cells during Mouse Cytomegalovirus Infection.

    PubMed

    Nabekura, Tsukasa; Lanier, Lewis L

    2016-07-19

    Natural killer (NK) cells are important in host defense against pathogens, and they can subsequently differentiate into memory NK cells. The Ly49 and KIR gene families in rodents and humans encode both inhibitory and activating receptors for MHC class I. The physiological role of activating KIR or Ly49 receptors that recognize self-MHC class I during immune response to viral infections is unknown. Here, we address how the activating Ly49D receptor impacts the NK cell response to mouse cytomegalovirus (MCMV) infection by comparing the activation and differentiation of Ly49D-bearing NK cells in mice lacking or expressing H-2D(d), the cognate MHC class I ligand of Ly49D. After MCMV infection, Ly49D augmented IFN-γ production by MCMV-specific Ly49H(+) NK cells and preferentially promoted the generation of memory Ly49H(+) NK cells. Thus, activating receptors for self-MHC class I modulate the differentiation of MCMV-specific NK cells and are beneficial for host defense against MCMV infection. PMID:27438766

  3. Altered NK Cell Development and Enhanced NK Cell-Mediated Resistance to MCMV in NKG2D-Deficient Mice

    PubMed Central

    Zafirova, Biljana; Mandarić, Sanja; Antulov, Ronald; Krmpotić, Astrid; Jonsson, Helena; Yokoyama, Wayne M.; Jonjić, Stipan; Polić, Bojan

    2009-01-01

    Summary NKG2D is a potent activating receptor on NK cells which acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is still not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D causes faster division of NK cells, perturbation in size of some NK cell subpopulations and their augmented sensitivity to apoptosis. As expected, NKG2D−/− NK cells are less responsive to tumor targets expressing NKG2D ligands. NKG2D−/− mice, however, show an enhanced NK cell-mediated resistance to MCMV infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for yet unknown regulatory function of NKG2D in NK cell physiology. PMID:19631564

  4. Natural killer cell (NK) subsets and NK-like T-cell populations in acute myeloid leukemias and myelodysplastic syndromes.

    PubMed

    Aggarwal, N; Swerdlow, S H; TenEyck, S P; Boyiadzis, M; Felgar, R E

    2016-07-01

    The impact of the immune microenvironment on the behavior and therapeutic strategies for hematopoietic and lymphoid neoplasms is being increasingly recognized. Many functional studies of natural killer (NK) cell cytotoxic responses in myelodysplasia (MDS) and acute myeloid leukemia (AML) exist, but with limited data on these lymphocyte proportions and related T-cell subsets. The proportions of these cells and their prognostic implications were therefore investigated in 89 AML, 51 MDS, and 20 control marrows by flow cytometry. The median proportion of NK cells (relative to the total lymphocytes) was lower in AML versus controls (P = 0.01). Among AML, a lower proportion of NK cells predicted better survival, whereas a higher NK cell proportion was associated with the poor prognostic AML category (P = 0.002). NK cell proportions were similar in MDS, MDS subgroups, and control marrows. The relative proportion of the mature NK cell subset (CD56(dim) CD16/57(bright) ) was lower in AML and MDS versus controls (P = 0.006, P = 0.0002, respectively). The proportion of mature NK cells was not a prognostic indicator although fewer were seen in poor prognosis AML. In contrast, a lower proportion of mature NK cells correlated with worse survival in MDS (P = 0.027). A higher proportion of NK-like T-cells (of total lymphoid cells) was found in MDS compared to controls (P = 0.01). A lower proportion of NK-like T-cells predicted better survival in AML but not in MDS. Thus, the proportions of NK, NK-cell subsets, and NK-like T-cells vary in myeloid neoplasms, may potentially impact immunomodulatory therapies, and may impact outcome. © 2016 International Clinical Cytometry Society. PMID:26648320

  5. NK/T cell lymphoma associated with peripheral eosinophilia.

    PubMed

    Yap, E; Wan Jamaluddin, W F; Tumian, N R; Mashuri, F; Mohammed, F; Tan, G C; Masir, N; Abdul Wahid, F S

    2014-12-01

    NK/T cell lymphoma, nasal type is an aggressive and uncommon malignancy. Disease that occurs outside of the aerodigestive tract exhibits an even more aggressive clinical behaviour and does not respond as well to conventional therapy compared to its nasal counterpart. We report such a case of NK/T cell lymphoma, nasal type, that presented as an anterior chest wall mass, arising from the left pectoralis muscle. An interesting feature we wish to highlight is the associated eosinophilia that corresponded to disease activity, exhibiting fluctuations with surgical resection and chemotherapy. To the best of our knowledge this is the third reported case of NK/T cell lymphoma that is associated with peripheral eosinophilia. Our case highlights the role of certain NK cell subsets that play a major role in eosinophilic activation in NK/T lymphomas and calls for more research into further classification of this disease by virtue of its NK cell subsets. PMID:25500520

  6. Exercise-Dependent Regulation of NK Cells in Cancer Protection.

    PubMed

    Idorn, Manja; Hojman, Pernille

    2016-07-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors. PMID:27262760

  7. Synthesis of Amphiphilic Ru(II) Heteroleptic Complexes Based on Benzo[1,2-b:4,5-b']dithiophene: Relevance of the Half-Sandwich Complex Intermediate and Solvent Compatibility.

    PubMed

    Urbani, Maxence; Medel, María; Kumar, Sangeeta Amit; Ince, Mine; Bhaskarwar, Ashok N; González-Rodríguez, David; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Torres, Tomás

    2015-11-01

    The detailed synthesis and characterization of four ruthenium(II) complexes [RuLL'(NCS)2 ] is reported, in which L represents a 2,2'-bipyridine ligand functionalized at the 4,4' positions with benzo[1,2-b:4,5-b']dithiophene derivatives (BDT) and L' is 2,2'-bipyridine-4,4'-dicarboxylic acid unit (dcbpy) (NCS=isothiocyanate). The reaction conditions were adapted and optimized for the preparation of these amphiphilic complexes with a strong lipophilic character. The photovoltaic performances of these complexes were tested in TiO2 dye-sensitized solar cell (DSSC) achieving efficiencies in the range of 3-4.5 % under simulated one sun illumination (AM1.5G). PMID:26359935

  8. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions. PMID:21842364

  9. Inhibition of human natural killer (NK) cytotoxicity by Candida albicans

    SciTech Connect

    Zunino, S.; Hudig, D.

    1986-03-01

    Experiments were initiated to determine whether human NK cells are cytotoxic to C. albicans with similar activity observed for mouse NK cells against the yeast Paracoccidiodes brasiliensis. In 48 hour assays using limiting dilutions of C. albicans, strain 3153A, mononuclear leukocytes with NK activity had only marginal effects on yeast outgrowth, whereas granulocytes killed most of the yeast. However, these yeast were able to block NK activity in 4 hr /sup 51/Cr release assays with K562 cells, at yeast to K562 ratios of 10:1 and 100:1. Yeast pretreated with the serum of the majority of donors blocked the NK activity more than untreated yeast. Two of the 7 donors did not enhance NK inhibition after pretreatment of the yeast with their serum. Serum antibody to C. albicans and complement consumption by the yeast correlated with the relative efficiency of NK inhibition for most donors. This report suggests that there may be in vivo interactions between NK cells of the immune system and opportunistic fungal pathogens, which may compromise NK cell function.

  10. Interleukin-1β Upregulates Functional Expression of Neurokinin-1 Receptor (NK-1R) via NF-κB in Astrocytes

    PubMed Central

    GUO, CHANG-JIANG; DOUGLAS, STEVEN D.; GAO, ZHIYONG; WOLF, BRYAN A.; GRINSPAN, JUDITH; LAI, JIAN-PING; RIEDEL, ERIC; HO, WEN-ZHE

    2014-01-01

    Cytokines and neuropeptides are modulators of neuroimmunoregulation in the central nervous system (CNS). The interaction of these modulators may have important implications in CNS diseases. We investigated whether interleukin-1β (IL-1β) modulates the expression of neurokinin-1 receptor (NK-1R), the primary receptor for substance P (SP), a potent neuropeptide in the CNS. IL-1β upregulated NK-1R expression in human astroglioma cells (U87 MG) and primary rat astrocytes at both mRNA and protein levels. IL-1β treatment of U87 MG cells and primary rat astrocytes led to an increase in cytosolic Ca2+ in response to SP stimulation, indicating that IL-1β-induced NK-1R is functional. CP-96,345, a specific non-peptide NK-1R antagonist, inhibited SP-induced rise of [Ca2+]i in the astroglioma cells. Investigation of the mechanism responsible for IL-1β action revealed that IL-1β has the ability of activating nuclear factor-κb (NF-κB). Caffeic acid phenethyl ester (CAPE), a specific inhibitor of NF-κB activation, not only abrogated IL-1β-induced NF-κB promoter activation, but also blocked IL-1β-mediated induction of NK-1R gene expression. These findings provide additional evidence that there is a biological interaction between IL-1β and the neuropeptide SP in the CNS, which may have important implications in the inflammatory diseases in the CNS. PMID:15390113

  11. Increased sMICA and TGFβ1 levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells

    PubMed Central

    Klöß, Stephan; Chambron, Nicole; Gardlowski, Tanja; Arseniev, Lubomir; Koch, Joachim; Esser, Ruth; Glienke, Wolfgang; Seitz, Oliver; Köhl, Ulrike

    2015-01-01

    Disseminated head-and-neck squamous cell carcinoma (HNSCC) escapes immune surveillance and thus frequently manifests as fatal disease. Here, we report on the distribution of distinct immune cell subpopulations, natural killer (NK) cell cytotoxicity and tumor immune escape mechanisms (TIEMs) in 55 HNSCC patients, either at initial diagnosis or present with tumor relapse. Compared to healthy controls, the regulatory NK cells and the ratio of pro/anti-inflammatory cytokines were decreased in HNSCC patients, while soluble major histocompatibility complex Class I chain-related peptide A (sMICA) and transforming growth factor β1 (TGFβ1) plasma levels were markedly elevated. Increased sMICA and TGFβ1 concentrations correlated with tumor progression and staging characteristics in 7 follow-up HNSCC patients, with significantly elevated levels of both soluble factors from the time of initial diagnosis to that of relapse. Patient plasma containing elevated sMICA and TGFβ1 markedly impaired NKG2D-dependent cytotoxicity against HNSCC cells upon incubation with patient-derived and IL-2 activated NK cells vs. those derived from healthy donors. Decreased antitumor recognition was accompanied by reduced NKG2D expression on the NK cell surface and an enhanced caspase-3 activity. In-vitro blocking and neutralization experiments demonstrated a synergistic negative impact of sMICA and TGFβ1 on NK cell functionality. Although we previously showed the feasibility and safety of transfer of allogeneic donor NK cells in a prior clinical study encompassing various leukemia and tumor patients, our present results suggest the need for caution regarding the sole use of adoptive NK cell transfer. The presence of soluble NKG2D ligands in the plasma of HNSCC patients and the decreased NK cell cytotoxicity due to several factors, especially TGFβ1, indicates timely depletion of these immunosuppressing molecules may promote NK cell-based immunotherapy. PMID:26451327

  12. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells

    PubMed Central

    Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell–cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  13. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  14. NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?

    PubMed Central

    Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina

    2016-01-01

    Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158

  15. The anti-lung cancer activity of SEP is mediated by the activation and cytotoxicity of NK cells via TLR2/4 in vivo.

    PubMed

    Ke, Mengyun; Wang, Hui; Zhang, Min; Tian, Yuwei; Wang, Yizhou; Li, Bing; Yu, Jie; Dou, Jie; Xi, Tao; Zhou, Changlin

    2014-05-01

    Strongylocentrotus nudus egg polysaccharide (SEP) has been reported to display antitumor activity. However, the effects of SEP and its underlying mechanism in the treatment of lung cancer remain unclear, particularly with an immunodeficient mouse model of human non-small cell lung cancer (NSCLC). In the present study, we investigated the anti-lung cancer effects of SEP and its underlying mechanism of action in both Lewis lung cancer (LLC)-bearing C57/BL6J mice and human NSCLC H460-bearing nude mice. Although SEP showed no inhibitory effects on tumor cells in vitro, it markedly stimulated the percentage of CD3-NK1.1(+) cells and natural killer (NK) cell cytotoxicity in the spleens of nude mice and C57/BL6J mice. In LLC-bearing mice, SEP not only inhibited tumor growth but also promoted NK-mediated cytotoxicity, the NK1.1(+) cell population, and IL-2 and IFN-γ secretion. SEP significantly suppressed H460 growth in nude mice, which was abrogated by the selective depletion of NK cells via the intraperitoneal injection of anti-asialo GM-1 antibodies. Furthermore, anti-TLR2/4 antibodies blocked both SEP and NK cell binding and SEP-induced perforin secretion. SEP-induced proliferation and IFN-γ secretion by NK cells in wild type mice were partially impaired in TLR2 or TLR4 knockout mice. These results suggest that SEP-promoted NK cytotoxicity, which was partially mediated via TLR2 and TLR4, was the main contributing factor to lung cancer inhibition in vivo and that SEP may be a potential immunotherapy candidate for the treatment of lung cancer. PMID:24630931

  16. Potential of autologous NK cell therapy to eradicate leukemia

    PubMed Central

    Abdel-Azim, Hisham; Heisterkamp, Nora

    2015-01-01

    B-precursor acute lymphoblastic leukemia (BP-ALL) patients are immunocompromised. We recently reported that functional natural killer (NK) cells can be grown from patient bone marrow and blood samples at diagnosis. Surprisingly, such NK cells exhibit cytotoxicity against autologous BP-ALL cells. Here, we outline unanswered questions, challenges and possible applications associated with these findings. PMID:25949882

  17. Increased NK Cell Maturation in Patients with Acute Myeloid Leukemia

    PubMed Central

    Chretien, Anne-Sophie; Granjeaud, Samuel; Gondois-Rey, Françoise; Harbi, Samia; Orlanducci, Florence; Blaise, Didier; Vey, Norbert; Arnoulet, Christine; Fauriat, Cyril; Olive, Daniel

    2015-01-01

    Understanding immune alterations in cancer patients is a major challenge and requires precise phenotypic study of immune subsets. Improvement of knowledge regarding the biology of natural killer (NK) cells and technical advances leads to the generation of high dimensional dataset. High dimensional flow cytometry requires tools adapted to complex dataset analyses. This study presents an example of NK cell maturation analysis in Healthy Volunteers (HV) and patients with Acute Myeloid Leukemia (AML) with an automated procedure using the FLOCK algorithm. This procedure enabled to automatically identify NK cell subsets according to maturation profiles, with 2D mapping of a four-dimensional dataset. Differences were highlighted in AML patients compared to HV, with an overall increase of NK maturation. Among patients, a strong heterogeneity in NK cell maturation defined three distinct profiles. Overall, automatic gating with FLOCK algorithm is a recent procedure, which enables fast and reliable identification of cell populations from high-dimensional cytometry data. Such tools are necessary for immune subset characterization and standardization of data analyses. This tool is adapted to new immune cell subsets discovery, and may lead to a better knowledge of NK cell defects in cancer patients. Overall, 2D mapping of NK maturation profiles enabled fast and reliable identification of NK cell subsets. PMID:26594214

  18. NK cell development in bone marrow and liver: site matters.

    PubMed

    Gotthardt, D; Prchal-Murphy, M; Seillet, C; Glasner, A; Mandelboim, O; Carotta, S; Sexl, V; Putz, E M

    2014-12-01

    The NKp46 protein is found on resting and activated natural killer (NK) cells and is involved in the recognition of malignant and infected cells. The expression of NKp46 is believed to precede that of DX5 in early NK cell development. We show that this is not the case in the bone marrow (BM). Here, NKp46 is predominantly expressed after DX5, whereas the liver harbors a subpopulation that expresses NKp46 but not DX5. NK cell precursors in the liver show much lower levels of Eomesodermin than NK cell precursors in the BM, although they express higher levels of granzymes and unlike the NK cell precursors in the BM are fully able to degranulate and produce interferon gamma (IFN-γ). The development of NK cells thus differs between the two organs. This needs to be considered when using NKp46 and DX5 as NK cell markers and when performing NK cell-specific gene deletion in Ncr1 transgenic mice. PMID:25319498

  19. NK Cell Subset Redistribution during the Course of Viral Infections

    PubMed Central

    Lugli, Enrico; Marcenaro, Emanuela; Mavilio, Domenico

    2014-01-01

    Natural killer (NK) cells are important effectors of innate immunity that play a critical role in the control of human viral infections. Indeed, given their capability to directly recognize virally infected cells without the need of specific antigen presentation, NK cells are on the first line of defense against these invading pathogens. By establishing cellular networks with a variety of cell types such as dendritic cells, NK cells can also amplify anti-viral adaptive immune responses. In turn, viruses evolved and developed several mechanisms to evade NK cell-mediated immune activity. It has been reported that certain viral diseases, including human immunodeficiency virus-1 as well as human cytomegalovirus infections, are associated with a pathologic redistribution of NK cell subsets in the peripheral blood. In particular, it has been observed the expansion of unconventional CD56neg NK cells, whose effector functions are significantly impaired as compared to that of conventional CD56pos NK cells. In this review, we address the impact of these two chronic viral infections on the functional and phenotypic perturbations of human NK cell compartment. PMID:25177322

  20. Fully functional NK cells after unrelated cord blood transplantation.

    PubMed

    Beziat, V; Nguyen, S; Lapusan, S; Hervier, B; Dhedin, N; Bories, D; Uzunov, M; Boudifa, A; Trebeden-Negre, H; Norol, F; Marjanovic, Z; Marie, J-P; Vernant, J-P; Debre, P; Rio, B; Vieillard, V

    2009-04-01

    Promising results of umbilical cord blood transplantation (UCBT) from unrelated donors have been reported in patients with hematologic disorders. These transplants, having potential to trigger beneficial donor-versus-recipient natural killer (NK) cell-mediated alloreaction, we have conducted the first extensive analysis of the phenotypic and functional properties of NK cells after UCBT. NK cells from 25 patients with high-risk hematologic malignancies were compared with cells derived from both healthy adult and CB cells. We found that following UCBT, NK cells display not only some phenotypic features associated with maturity but also unique characteristics that make them fully functional against leukemic blasts. We propose that this full functionality of alloreactive donor-derived NK may drive graft-versus-leukemia reactions after UCBT. PMID:19151772

  1. Functional Analysis of Human NK cells by Flow Cytometry

    PubMed Central

    Bryceson, Yenan T.; Fauriat, Cyril; Nunes, João M.; Wood, Stephanie M.; Björkström, Niklas K.; Long, Eric O.; Ljunggren, Hans-Gustaf

    2016-01-01

    Natural killer (NK) cells are a subset of lymphocytes that contribute to innate immunity through cytokine secretion and target cell lysis. NK cell function is regulated by a multiplicity of activating and inhibitory receptors. The advance in instrumentation for multi-color flow cytometry and the generation of specific mAbs for different epitopes related to phenotypic and functional parameters have facilitated our understanding of NK cell responses. Here, we provide protocols for flow cytometric evaluation of degranulation and cytokine production by human NK cells from peripheral blood at the single cell level. In addition to offering insight into the regulation of human NK cell responses, these techniques are applicable to the assessment of various clinical conditions, including the diagnosis of immunodeficiency syndromes. PMID:20033652

  2. Judd-Ofelt analysis and radiative properties of the Sm3+ centres in Li2B4O7, CaB4O7, and LiCaBO3 glasses

    NASA Astrophysics Data System (ADS)

    Kindrat, I. I.; Padlyak, B. V.; Lisiecki, R.

    2015-11-01

    The spectroscopic and luminescence properties of a series Sm-doped Li2B4O7, CaB4O7, and LiCaBO3 borate glasses are investigated using optical absorption, photoluminescence, and decay kinetics techniques as well as Judd-Ofelt (J-O) analysis. Borate glasses of high chemical purity and optical quality, doped with Sm2O3 in amounts of 0.5 and 1.0 mol.% were obtained from the corresponding polycrystalline compounds in the air atmosphere using standard glass synthesis technology. The J-O intensity parameters have been calculated using the spectral intensities of the Sm3+ absorption bands. Radiative properties such as transition probabilities, branching ratios, stimulated emission cross-sections, and radiative lifetimes are estimated for 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, and 11/2) emission transitions of the Sm3+ ions. The luminescence kinetics of the Sm3+ centres are characterised by slightly non exponential decay with lifetime values, which depend on the basic glass composition and Sm impurity concentration. The measured lifetimes were compared with those calculated and quantum efficiencies have been estimated. The obtained high quantum efficiencies of emission transitions (∼70%) and high quantum yields of luminescence (∼14%) of the Sm3+ centres show that the investigated borate glasses belong to perspective luminescent and laser materials.

  3. NK-cell and T-cell functions in patients with breast cancer: effects of surgery and adjuvant chemo- and radiotherapy.

    PubMed

    Mozaffari, F; Lindemalm, C; Choudhury, A; Granstam-Björneklett, H; Helander, I; Lekander, M; Mikaelsson, E; Nilsson, B; Ojutkangas, M-L; Osterborg, A; Bergkvist, L; Mellstedt, H

    2007-07-01

    Breast cancer is globally the most common malignancy in women. Her2-targeted monoclonal antibodies are established treatment modalities, and vaccines are in late-stage clinical testing in patients with breast cancer and known to promote tumour-killing through mechanisms like antibody-dependent cellular cytotoxicity. It is therefore increasingly important to study immunological consequences of conventional treatment strategies. In this study, functional tests and four-colour flow cytometry were used to detect natural killer (NK)-cell functions and receptors as well as T-cell signal transduction molecules and intracellular cytokines in preoperative breast cancer patients, and patients who had received adjuvant radiotherapy or adjuvant combined chemo-radiotherapy as well as in age-matched healthy controls. The absolute number of NK cells, the density of NK receptors as well as in vitro quantitation of functional NK cytotoxicity were significantly higher in preoperative patients than the post-treatments group and controls. A similar pattern was seen with regard to T-cell signalling molecules, and preoperative patients produced significantly higher amounts of cytokines in NK and T cells compared to other groups. The results indicate that functions of NK and T cells are well preserved before surgery but decrease following adjuvant therapy, which may speak in favour of early rather than late use of immunotherapeutic agents such as trastuzumab that may depend on intact immune effector functions. PMID:17551492

  4. IL-2 induces STAT4 activation in primary NK cells and NK cell lines, but not in T cells.

    PubMed

    Wang, K S; Ritz, J; Frank, D A

    1999-01-01

    IL-2 exerts potent but distinct functional effects on two critical cell populations of the immune system, T cells and NK cells. Whereas IL-2 leads to proliferation in both cell types, it enhances cytotoxicity primarily in NK cells. In both T cells and NK cells, IL-2 induces the activation of STAT1, STAT3, and STAT5. Given this similarity in intracellular signaling, the mechanism underlying the distinct response to IL-2 in T cells and NK cells is not clear. In this study, we show that in primary NK cells and NK cell lines, in addition to the activation of STAT1 and STAT5, IL-2 induces tyrosine phosphorylation of STAT4, a STAT previously reported to be activated only in response to IL-12 and IFN-alpha. This activation of STAT4 in response to IL-2 is not due to the autocrine production of IL-12 or IFN-alpha. STAT4 activated in response to IL-2 is able to bind to a STAT-binding DNA sequence, suggesting that in NK cells IL-2 is capable of activating target genes through phosphorylation of STAT4. IL-2 induces the activation of Jak2 uniquely in NK cells, which may underlie the ability of IL-2 to activate STAT4 only in these cells. Although the activation of STAT4 in response to IL-2 occurs in primary resting and activated NK cells, it does not occur in primary resting T cells or mitogen-activated T cells. The unique activation of the STAT4-signaling pathway in NK cells may underlie the distinct functional effect of IL-2 on this cell population. PMID:9886399

  5. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin

    PubMed Central

    González, Carlos; Langdon, Grant M.; Bruix, Marta; Gálvez, Antonio; Valdivia, Eva; Maqueda, Mercedes; Rico, Manuel

    2000-01-01

    The solution structure of bacteriocin AS-48, a 70-residue cyclic polypeptide from Enterococcus faecalis, consists of a globular arrangement of five α-helices enclosing a compact hydrophobic core. The head-to-tail union lies in the middle of helix 5, a fact that is shown to have a pronounced effect on the stability of the three-dimensional structure. Positive charges in the side chains of residues in helix 4 and in the turn linking helix 4 to helix 5 form a cluster that most probably determine its antibacterial activity by promoting pore formation in cell membranes. A similar five-helix structural motif has been found in the antimicrobial NK-lysin, an effector polypeptide of T and natural killer (NK) cells. Bacteriocin AS-48 lacks the three disulfide bridges characteristic of the saposin fold present in NK-lysin, and has no sequence homology with it. Nevertheless, the similar molecular architecture and high positive charge strongly suggest a common mechanism of antibacterial action. PMID:11005847

  6. Regulation of Adaptive NK Cells and CD8 T Cells by HLA-C Correlates with Allogeneic Hematopoietic Cell Transplantation and with Cytomegalovirus Reactivation.

    PubMed

    Horowitz, Amir; Guethlein, Lisbeth A; Nemat-Gorgani, Neda; Norman, Paul J; Cooley, Sarah; Miller, Jeffrey S; Parham, Peter

    2015-11-01

    Mass cytometry was used to investigate the effect of CMV reactivation on lymphocyte reconstitution in hematopoietic cell transplant patients. For eight transplant recipients (four CMV negative and four CMV positive), we studied PBMCs obtained 6 mo after unrelated donor hematopoietic cell transplantation (HCT). Forty cell-surface markers, distinguishing all major leukocyte populations in PBMC, were analyzed with mass cytometry. This group included 34 NK cell markers. Compared with healthy controls, transplant recipients had higher HLA-C expression on CD56(-)CD16(+) NK cells, B cells, CD33(bright) myeloid cells, and CD4CD8 T cells. The increase in HLA-C expression was greater for CMV-positive HCT recipients than for CMV negative recipients. Present in CMV-positive HCT recipients, but not in CMV-negative HCT recipients or controls, is a population of killer cell Ig-like receptor (KIR)-expressing CD8 T cells not previously described. These CD8 T cells coexpress CD56, CD57, and NKG2C. The HCT recipients also have a population of CD57(+)NKG2A(+) NK cells that preferentially express KIR2DL1. An inverse correlation was observed between the frequencies of CD57(+)NKG2C(+) NK cells and CD57(+)NKG2A(+) NK cells. Although CD57(+)NKG2A(+) NK cells are less abundant in CMV-positive recipients, their phenotype is of a more activated cell than the CD57(+)NKG2A(+) NK cells of controls and CMV-negative HCT recipients. These data demonstrate that HCT and CMV reactivation are associated with an increased expression of HLA-C. This could influence NK cell education during lymphocyte reconstitution. The increased inhibitory KIR expression by proliferating CMV-specific CD8 T cells suggests regulatory interactions between HLA-C and KIR might promote Graft-versus-Leukemia effects following transplantation. PMID:26416275

  7. Exploring NK fitness landscapes using imitative learning

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2015-10-01

    The idea that a group of cooperating agents can solve problems more efficiently than when those agents work independently is hardly controversial, despite our obliviousness of the conditions that make cooperation a successful problem solving strategy. Here we investigate the performance of a group of agents in locating the global maxima of NK fitness landscapes with varying degrees of ruggedness. Cooperation is taken into account through imitative learning and the broadcasting of messages informing on the fitness of each agent. We find a trade-off between the group size and the frequency of imitation: for rugged landscapes, too much imitation or too large a group yield a performance poorer than that of independent agents. By decreasing the diversity of the group, imitative learning may lead to duplication of work and hence to a decrease of its effective size. However, when the parameters are set to optimal values the cooperative group substantially outperforms the independent agents.

  8. NK cells, autoantibodies, and immunologic infertility: a complex interplay.

    PubMed

    De Carolis, Caterina; Perricone, Carlo; Perricone, Roberto

    2010-12-01

    Infertility and recurrent spontaneous abortion (RSA) are heterogeneous conditions that have been frequently explained with an immunological pathomechanism. A deeper insight into apparently unexplained infertility and RSA shows increasing evidences supporting both alloimmune and autoimmune mechanisms, in which natural killer (NK) cells and autoantibodies seem to play a relevant role. Successful pregnancy is considered as Th1-Th2 cooperation phenomenon, with a predominantly Th2-type lymphocytes response, together with the emerging role of interleukin (IL)-12, IL-15, and IL-18 and of other unidentified soluble factors dependent on NK cells. Uterine NK cells comprise the largest population at implantation site, and their activity, characteristics, and abundance suggest that they participate at the "decidualization" process that, vice versa, induces NK activation and recruitment in each menstrual cycle. However, NK cell alteration may be associated with impaired pregnancy, and the modulation in the number of circulating NK cells is most likely to be a primary event rather than an active inflammation/drug administration consequence during an inflammatory/autoimmune process, thus playing an important role in the pathogenesis of immunological infertility. Relationships within immunological infertility, recurrent spontaneous abortion, autoantibodies, and NK cells will be reviewed herein. PMID:19908167

  9. NK Cell Subtypes as Regulators of Autoimmune Liver Disease

    PubMed Central

    2016-01-01

    As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease. PMID:27462349

  10. Hepatitis B virus antigens impair NK cell function.

    PubMed

    Yang, Yinli; Han, Qiuju; Zhang, Cai; Xiao, Min; Zhang, Jian

    2016-09-01

    An inadequate immune response of the host is thought to be a critical factor causing chronic hepatitis B virus (CHB) infection. Natural killer (NK) cells, as one of the key players in the eradication and control of viral infections, were functionally impaired in CHB patients, which might contribute to viral persistence. Here, we reported that HBV antigens HBsAg and HBeAg directly inhibited NK cell function. HBsAg and/or HBeAg blocked NK cell activation, cytokine production and cytotoxic granule release in human NK cell-line NK-92 cells, which might be related to the downregulation of activating receptors and upregulation of inhibitory receptor. Furthermore, the underlying mechanisms likely involved the suppression of STAT1, NF-κB and p38 MAPK pathways. These findings implicated that HBV antigen-mediated inhibition of NK cells might be an efficient strategy for HBV evasion, targeting the early antiviral responses mediated by NK cells and resulting in the establishment of chronic virus infection. Therefore, this study revealed the relationship between viral antigens and human immune function, especially a potential important interaction between HBV and innate immune responses. PMID:27341035

  11. NK Cell Subtypes as Regulators of Autoimmune Liver Disease.

    PubMed

    Jiao, Guohui; Wang, Bangmao

    2016-01-01

    As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal "self" cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a "two-edged weapon" and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease. PMID:27462349

  12. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches

    PubMed Central

    Carotta, Sebastian

    2016-01-01

    The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. Although the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer (NK) cells are the body’s first line of defense against infected or transformed cells, as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell-based anticancer therapies, which has lead to a steady increase of NK cell-based clinical and preclinical trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed. PMID:27148271

  13. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  14. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells.

    PubMed

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T C; Imren, Suzan; Lam, Vivian; Poon, Grace F T; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William; Krystal, Gerald

    2016-05-26

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light-inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation-dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell-depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  15. Variation of the Side Chain Branch Position Leads to Vastly Improved Molecular Weight and OPV Performance in 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene/2,1,3-benzothiadiazole Copolymers

    DOE PAGESBeta

    Coffin, Robert C.; MacNeill, Christopher M.; Peterson, Eric D.; Ward, Jeremy W.; Owen, Jack W.; McLellan, Claire A.; Smith, Gregory M.; Noftle, Ronald E.; Jurchescu, Oana D.; Carroll, David L.

    2011-01-01

    Tmore » hrough manipulation of the solubilizing side chains, we were able to dramatically improve the molecular weight ( M w ) of 4,8-dialkoxybenzo[1,2- b :4,5- b ′ ]dithiophene (BDT)/2,1,3-benzothiadiazole (BT) copolymers. When dodecyl side chains ( P1 ) are employed at the 4- and 8-positions of the BDT unit, we obtain a chloroform-soluble copolymer fraction with M w of 6.3 kg/mol. Surprisingly, by moving to the commonly employed 2-ethylhexyl branch ( P2 ), M w decreases to 3.4 kg/mol.his is despite numerous reports that this side chain increases solubility and M w . By moving the ethyl branch in one position relative to the polymer backbone (1-ethylhexyl, P3 ), M w is dramatically increased to 68.8 kg/mol. As a result of this M w increase, the shape of the absorption profile is dramatically altered, with λ max = 637 nm compared with 598 nm for P1 and 579 nm for P2 .he hole mobility as determined by thin film transistor (TFT) measurements is improved from ~ 1 × 10 − 6  cm 2 /Vs for P1 and P2 to 7 × 10 − 4  cm 2 /Vs for P3 , while solar cell power conversion efficiency in increased to 2.91 % for P3 relative to 0.31 % and 0.19 % for P1 and P2 , respectively.« less

  16. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV–vis–NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology–Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission–Department of Atomic Research–Consortium for Scientific Research (Grant No. CSR–KN/CSR–63/2014–2015/503), and the Kalpakkam and Indore, India.

  17. Natural Killer Cells for Immunotherapy – Advantages of the NK-92 Cell Line over Blood NK Cells

    PubMed Central

    Klingemann, Hans; Boissel, Laurent; Toneguzzo, Frances

    2016-01-01

    Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells from a patient’s blood since they represent only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent graft-versus-host reactions. Cytotoxic cell lines have been established from patients with clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is also the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects. PMID:27014270

  18. Human NK Cell Diversity in Viral Infection: Ramifications of Ramification

    PubMed Central

    Strauss-Albee, Dara M.; Blish, Catherine A.

    2016-01-01

    Natural killer (NK) cells are a unique lymphocyte lineage with remarkable agility in the rapid destruction of virus-infected cells. They are also the most poorly understood class of lymphocyte. A spectrum of activating and inhibitory receptors at the NK cell surface leads to an unusual and difficult-to-study mechanism of cellular recognition, as well as a very high capacity for diversity at the single-cell level. Here, we review the evidence for the role of NK cells in the earliest stage of human viral infection, and in its prevention. We argue that single-cell diversity is a logical evolutionary adaptation for their position in the immune response and contributes to their ability to kill virus-infected cells. Finally, we look to the future, where emerging single-cell technologies will enable a new generation of rigorous and clinically relevant studies on NK cells accounting for all of their unique and diverse characteristics. PMID:26973646

  19. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity. PMID:27226093

  20. Recognition and Regulation of T Cells by NK Cells.

    PubMed

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating "altered self" and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  1. Recognition and Regulation of T Cells by NK Cells

    PubMed Central

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating “altered self” and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  2. The role of vagal pathway and NK1 and NK2 receptors in cardiovascular and respiratory effects of neurokinin A.

    PubMed

    Kaczyńska, Katarzyna; Jampolska, Monika; Szereda-Przestaszewska, Małgorzata

    2016-09-01

    Neurokinin A (NKA) is a peptide neurotransmitter that participates in the regulation of breathing and the cardiovascular system. The purpose of the current study was to determine the cardiorespiratory pattern exerted by the systemic injection of NKA, to look at the contribution of neurokinin NK1 and NK2 receptors, and to establish the engagement of the vagal pathway in mediation of these responses. The effects of intravenous injections of NKA (50 μg/kg) were studied in anaesthetized, spontaneously breathing rats in the following experimental schemes: in neurally intact rats; and vagotomized at either midcervical or supranodosal level. Intravenous injections of NKA in the intact rats evoked sudden and short-lived increase in the respiratory rate concomitant with drop in tidal volume, followed by a prolonged depression, coupled with continuous augmentation of the tidal volume. Respiratory alterations were accompanied by transient tachycardia and prolonged hypotension. Midcervical vagotomy eliminated respiratory rate response and augmentation of tidal volume. Section of supranodosal vagi abrogated all respiratory reactions. NK2 receptor blockade abolished respiratory changes without affecting cardiovascular effects, whereas NK1 receptor blockade significantly reduced hypotension and increase in heart rate with no impact on the respiratory system. These results indicate that NKA induced changes in the breathing resulting from an excitation of the NK2 receptors on the vagal endings. A fall in blood pressure triggered by NKA occurs outside of the vagus nerve and is probably mediated via its direct action on vascular smooth muscles supplied with NK1 receptors. PMID:27199181

  3. A Case of Aggressive NK/T-cell Lymphoma/Leukemia with Cutaneous Involvement in Adolescence

    PubMed Central

    Kim, Soo Ho; Ko, Woo Tae; Ha, Gyoung Yim; Kim, Jung Ran

    2008-01-01

    NK/T-cell lymphoma (NKTCL) is characterized by the expression of the NK-cell antigen CD56. Non-nasal NK/T-cell lymphomas are subdivided into primary cutaneous and 4 subtypes of secondary cutaneous lymphomas; nasal type, aggressive, blastic (blastoid), and other specific NK-like cell lymphoma. Aggressive NK/T-cell lymphoma/leukemia is a rare leukemic variant of nasal type NKTCL. We herein report a rare case of aggressive NK/T-cell lymphoma/leukemia with cutaneous involvement in adolescence. PMID:27303165

  4. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    PubMed Central

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2016-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013–2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen receptors (CAR). Differences in donor selection, manufacturing and quality control of NK cells for cancer immunotherapies are described and basic recommendations are outlined for harmonization in future NK cell studies. PMID:27141397

  5. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib

    PubMed Central

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-01-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8+ T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses. PMID:26405606

  6. Novel immune modulators used in hematology: impact on NK cells.

    PubMed

    Krieg, Stephanie; Ullrich, Evelyn

    2012-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs(®)) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  7. Novel immune modulators used in hematology: impact on NK cells

    PubMed Central

    Krieg, Stephanie; Ullrich, Evelyn

    2013-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs®) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  8. Human NK cell lytic granules and regulation of their exocytosis

    PubMed Central

    Krzewski, Konrad; Coligan, John E.

    2012-01-01

    Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis. PMID:23162553

  9. Functional Assessment of NK and LAK Cells Following Space Flight

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Space flight associated stress alters some aspects of the human immune response. In this study, we determined the effects of 10 days aboard the Space Shuttle on the cytotoxic activity of NK and LAK cells. PBMCs were collected from 10-ml blood specimens from 5 astronauts 10 days before launch, immediately after landing, and again at 3 days after landing and stored at -80 C. All PBMCs were thawed simultaneously, and the cytotoxic activities of NK and LAK cells were measured by a 4 hour Cr-51 release assay. K562 cells were used to assess NK cell cytotoxicity. Following 4 days of IL-2 activation, the LAK cell cytotoxic activity was determined using K562 cells and Daudi cells as the target cells. NK cell cytotoxicity decreased at landing (p<.05) in 3/5 astronauts, and recovered to preflight levels by 3 days following landing; NK cell cytotoxicity was increased (p=0.1) in the remaining 2 astronauts at landing. In 4/5 astronauts, LAK cytotoxic activity was decreased at landing against K562 cells (p = 0.13) and Daudi cells (p = 0.08). Phenotyping of PBMC's and LAK cells showed alterations in some surface markers and adhesion molecules (CD11b, CD11c, CD11a, CD16, L-selectin, and CD3).

  10. Inflammasome-Dependent Induction of Adaptive NK Cell Memory.

    PubMed

    van den Boorn, Jasper G; Jakobs, Christopher; Hagen, Christian; Renn, Marcel; Luiten, Rosalie M; Melief, Cornelis J M; Tüting, Thomas; Garbi, Natalio; Hartmann, Gunther; Hornung, Veit

    2016-06-21

    Monobenzone is a pro-hapten that is exclusively metabolized by melanocytes, thereby haptenizing melanocyte-specific antigens, which results in cytotoxic autoimmunity specifically against pigmented cells. Studying monobenzone in a setting of contact hypersensitivity (CHS), we observed that monobenzone induced a long-lasting, melanocyte-specific immune response that was dependent on NK cells, yet fully intact in the absence of T- and B cells. Consistent with the concept of "memory NK cells," monobenzone-induced NK cells resided in the liver and transfer of these cells conferred melanocyte-specific immunity to naive animals. Monobenzone-exposed skin displayed macrophage infiltration and cutaneous lymph nodes showed an inflammasome-dependent influx of macrophages with a tissue-resident phenotype, coinciding with local NK cell activation. Indeed, macrophage depletion or the absence of the NLRP3 inflammasome, the adaptor protein ASC or interleukin-18 (IL-18) abolished monobenzone CHS, thereby establishing a non-redundant role for the NLRP3 inflammasome as a critical proinflammatory checkpoint in the induction of hapten-dependent memory NK cells. PMID:27287410

  11. The transcription factor c-Myc enhances KIR gene transcription through direct binding to an upstream distal promoter element

    PubMed Central

    Cichocki, Frank; Hanson, Rebecca J.; Lenvik, Todd; Pitt, Michelle; McCullar, Valarie; Li, Hongchuan; Anderson, Stephen K.

    2009-01-01

    The killer cell immunoglobulin-like receptor (KIR) repertoire of natural killer (NK) cells determines their ability to detect infected or transformed target cells. Although epigenetic mechanisms play a role in KIR gene expression, work in the mouse suggests that other regulatory elements may be involved at specific stages of NK-cell development. Here we report the effects of the transcription factor c-Myc on KIR expression. c-Myc directly binds to, and promotes transcription from, a distal element identified upstream of most KIR genes. Binding of endogenous c-Myc to the distal promoter element is significantly enhanced upon interleukin-15 (IL-15) stimulation in peripheral blood NK cells and correlates with an increase in KIR transcription. In addition, the overexpression of c-Myc during NK-cell development promotes transcription from the distal promoter element and contributes to the overall transcription of multiple KIR genes. Our data demonstrate the significance of the 5′ promoter element upstream of the conventional KIR promoter region and support a model whereby IL-15 stimulates c-Myc binding at the distal KIR promoter during NK-cell development to promote KIR transcription. This finding provides a direct link between NK-cell activation signals and KIR expression required for acquisition of effector function during NK-cell education. PMID:18987359

  12. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy.

    PubMed

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-10-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%-50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325

  13. Agonist antibodies to TNFR molecules that costimulate T and NK cells.

    PubMed

    Melero, Ignacio; Hirschhorn-Cymerman, Daniel; Morales-Kastresana, Aizea; Sanmamed, Miguel F; Wolchok, Jedd D

    2013-03-01

    Therapy for cancer can be achieved by artificially stimulating antitumor T and natural killer (NK) lymphocytes with agonist monoclonal antibodies (mAb). T and NK cells express several members of the TNF receptor (TNFR) family specialized in delivering a costimulatory signal on their surface. Engagement of these receptors is typically associated with proliferation, elevated effector functions, resistance to apoptosis, and differentiation into memory cells. These receptors lack any intrinsic enzymatic activity and their signal transduction relies on associations with TNFR-associated factor (TRAF) adaptor proteins. Stimulation of CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNFR (GITR; CD357) promotes impressive tumor-rejecting immunity in a variety of murine tumor models. The mechanisms of action depend on a complex interplay of CTL, T-helper cells, regulatory T cells, dendritic cells, and vascular endothelium in tumors. Agonist mAbs specific for CD137 have shown signs of objective clinical activity in patients with metastatic melanoma, whereas anti-OX40 and anti-GITR mAbs have entered clinical trials. Preclinical evidence suggests that engaging TNFR members would be particularly active with conventional cancer therapies and additional immunotherapeutic approaches. Indeed, T-cell responses elicited to tumor antigens by means of immunogenic tumor cell death are amplified by these immunostimulatory agonist mAbs. Furthermore, anti-CD137 mAbs have been shown to enhance NK-mediated cytotoxicity elicited by rituximab and trastuzumab. Combinations with other immunomodulatory mAb that block T-cell checkpoint blockade receptors such as CTLA-4 and PD-1 are also promising. PMID:23460535

  14. Extranodal NK/T Cell Lymphoma Causing Cardiorespiratory Failure

    PubMed Central

    2016-01-01

    Extranodal NK/T cell lymphoma is an uncommon malignancy usually involving the sinonasal area. We report an unusual case of extranodal NK/T cell lymphoma diagnosed in a 62-year-old Caucasian male who died of progressive cardiorespiratory failure but had no clinically detectable upper respiratory system lesions. The initial diagnosis was made cytologically on a sample of pericardial fluid that contained neoplastic lymphoid cells. These cells were positive for CD2, cytoplasmic CD3, and Epstein-Barr virus and negative for CD56. The diagnosis was confirmed at the autopsy, which disclosed lymphoma infiltrates in the myocardium, lungs, stomach, and pancreas. The death was caused by heart and lung failure due to uncontrollable arrhythmia and respiratory insufficiency due to the lymphoma infiltrates. To the best of our knowledge, this is the first case of extranodal NK/T cell lymphoma presenting with cardiopulmonary failure. PMID:27493813

  15. [Nasal NK/T lymphoma. A case report].

    PubMed

    Ladeb, Saloua; Gaulard, Philippe; Ben Othmen, Tarek; Abd Alsamad, Issam; Delfau-Larue, Marie Hélène; Abdelkefi, Abderrahmen; Torjmen, Lamia; Ben Abdeladhim, Abdeladhim

    2003-04-01

    We report a case of nasal NK/T lymphoma occurring in a 42 year old man, after a 2 year history of nasal obstruction initially related to chronic sinusitis. A first superficial biopsy was not contributive. Twenty months later, a second nasal biopsy led to the diagnosis of nasal NK/T cell lymphoma in view of the presence of a pleomorphic lymphoid infiltrate associated with necrosis and angiocentric features. Extensive immunohistochemical studies performed on paraffin and frozen sections together with genotypic analysis supported the NK cell origin of the neoplastic cells. In addition, EBV infection was established by in situ hybridization which showed EBERs transcripts in the nuclei of virtually all neoplastic cells. The tumour rapidly progressed and the patient died six months after diagnosis. PMID:12843969

  16. Extranodal NK/T Cell Lymphoma Causing Cardiorespiratory Failure.

    PubMed

    Li, Yiting; Damjanov, Ivan

    2016-01-01

    Extranodal NK/T cell lymphoma is an uncommon malignancy usually involving the sinonasal area. We report an unusual case of extranodal NK/T cell lymphoma diagnosed in a 62-year-old Caucasian male who died of progressive cardiorespiratory failure but had no clinically detectable upper respiratory system lesions. The initial diagnosis was made cytologically on a sample of pericardial fluid that contained neoplastic lymphoid cells. These cells were positive for CD2, cytoplasmic CD3, and Epstein-Barr virus and negative for CD56. The diagnosis was confirmed at the autopsy, which disclosed lymphoma infiltrates in the myocardium, lungs, stomach, and pancreas. The death was caused by heart and lung failure due to uncontrollable arrhythmia and respiratory insufficiency due to the lymphoma infiltrates. To the best of our knowledge, this is the first case of extranodal NK/T cell lymphoma presenting with cardiopulmonary failure. PMID:27493813

  17. NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment

    PubMed Central

    Almeida, Catarina R.; Caires, Hugo R.; Vasconcelos, Daniela P.; Barbosa, Mário A.

    2016-01-01

    Summary Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here, we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats. Supernatants from MSC-NK cell co-cultures can induce MSC recruitment but not to the same extent as when NK cells are present. Antibody arrays and ELISA assays confirmed that NK cells secrete RANTES (CCL5) and revealed that human NK cells secrete NAP-2 (CXCL7), a chemokine that can induce MSC migration. Inhibition with specific antagonists of CXCR2, a receptor that recognizes NAP-2, abolished NK cell-mediated MSC recruitment. This capacity of NK cells to produce chemokines that stimulate MSC recruitment points toward a role for this immune cell population in regulating tissue repair/regeneration. PMID:27052313

  18. Opportunities and limitations of NK cells as adoptive therapy for malignant disease

    PubMed Central

    Davies, James O. J.; Stringaris, Kate; Barrett, John A.; Rezvani, Katayoun

    2014-01-01

    While NK cells can be readily generated for adoptive therapy with current techniques, their optimal application to treat malignant diseases requires an appreciation of the dynamic balance between signals that either synergise with, or antagonise each other. Individuals display wide differences in NK function which determine their therapeutic efficacy. The ability of NK cells to kill target cells or produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. The selection of NK cells with a predominant activating profile is critical for delivering successful antitumor activity. This can be achieved through selection of KIR mismatched NK donors and by using blocking molecules against inhibitory pathways. Optimum NK cytotoxicity may require licensing or priming with tumor cells. Recent discoveries in the molecular and cellular biology of NK cells inform in the design of new strategies, including adjuvant therapies, to maximise the cytotoxic potential of NK cells for adoptive transfer to treat human malignancies. PMID:24856895

  19. Extranodal NK/T-cell lymphoma, nasal type

    PubMed Central

    Parikh, Sachin R.; Krause, John R.

    2011-01-01

    We report a case of extranodal NK/T-cell lymphoma, nasal type, which is rare in the United States and Europe. It is more prevalent in Asians and Native Americans of Mexico, Central America, and South America. A 30-year-old Southeast Asian man with facial swelling, fever, and unintentional weight loss was found to have leukopenia and thrombocytopenia. He underwent endoscopic sinus surgery, which confirmed extranodal NK/T-cell lymphoma, nasal type, and a blood and bone marrow examination, which was negative for involvement but yielded the diagnosis of alpha-E thalassemia. The patient received chemotherapy, radiotherapy, and a stem cell transplant with 100% engraftment. PMID:21738302

  20. Lung tumor microenvironment induces specific gene expression signature in intratumoral NK cells.

    PubMed

    Gillard-Bocquet, Mélanie; Caer, Charles; Cagnard, Nicolas; Crozet, Lucile; Perez, Mikael; Fridman, Wolf Herman; Sautès-Fridman, Catherine; Cremer, Isabelle

    2013-01-01

    Natural killer (NK) cells are able to recognize and kill tumor cells, however whether they contribute to tumor immunosurveillance is still debated. Our previous studies demonstrated the presence of NK cells in human lung tumors. Their comparison with NK cells from non-tumoral lung tissues and with blood NK cells from the same individuals revealed a decreased expression of some NK receptors and impaired ex vivo cytotoxic functions occurring specifically in NK cells isolated from the tumor microenvironment. The aim of the present study was to characterize the transcriptional profile of such intratumoral NK cells, by comparative microarray analysis of sorted NK cells isolated from non-tumoral (Non-Tum-NK) and tumoral (Tum-NK) lung tissues of 12 Non-Small Cell Lung Cancer patients. Our results reveal a specific gene expression signature of Tum-NK cells particularly in activation processes and cytotoxicity, confirming that tumor environment induces modifications in NK cells biology. Indeed, intratumoral NK cells display higher expression levels of NKp44, NKG2A, Granzymes A and K, and Fas mRNA. A particular pattern of receptors involved in chemotaxis was also observed, with an overexpression of CXCR5 and CXCR6, and a lower expression of CX3CR1 and S1PR1 genes in Tum-NK as compared to Non-Tum-NK cells. The precise identification of the molecular pathways modulated in the tumor environment will help to decipher the role of NK cells in tumor immunosurveillance and will open future investigations to manipulate their antitumoral functions. PMID:23382731

  1. NK cells activated by Interleukin-4 in cooperation with Interleukin-15 exhibit distinctive characteristics.

    PubMed

    Kiniwa, Tsuyoshi; Enomoto, Yutaka; Terazawa, Natsumi; Omi, Ai; Miyata, Naoko; Ishiwata, Kenji; Miyajima, Atsushi

    2016-09-01

    Natural killer (NK) cells are known to be activated by Th1-type cytokines, such as IL-2, -12, or -18, and they secrete a large amount of IFN-γ that accelerates Th1-type responses. However, the roles of NK cells in Th2-type responses have remained unclear. Because IL-4 acts as an initiator of Th2-type responses, we examined the characteristics of NK cells in mice overexpressing IL-4. In this study, we report that IL-4 overexpression induces distinctive characteristics of NK cells (B220(high)/CD11b(low)/IL-18Rα(low)), which are different from mature conventional NK (cNK) cells (B220(low)/CD11b(high)/IL-18Rα(high)). IL-4 overexpression induces proliferation of tissue-resident macrophages, which contributes to NK cell proliferation via production of IL-15. These IL-4-induced NK cells (IL4-NK cells) produce higher levels of IFN-γ, IL-10, and GM-CSF, and exhibit high cytotoxicity compared with cNK cells. Furthermore, incubation of cNK cells with IL-15 and IL-4 alters their phenotype to that similar to IL4-NK cells. Finally, parasitic infection, which typically causes strong Th2-type responses, induces the development of NK cells with characteristics similar to IL4-NK cells. These IL4-NK-like cells do not develop in IL-4Rα KO mice by parasitic infection. Collectively, these results suggest a novel role of IL-4 in immune responses through the induction of the unique NK cells. PMID:27551096

  2. Establishing the reference intervals of NK cell functions in healthy adults.

    PubMed

    Hou, Hongyan; Mao, Lie; Wang, Juan; Liu, Weiyong; Lu, Yanfang; Yu, Jing; Zhou, Yu; Mao, Liyan; Wang, Feng; Sun, Ziyong

    2016-08-01

    Natural killer (NK) cells play a key role in host defense against microbial pathogens. Establishing the reference intervals (RIs) of NK cell functions would be valuable in assessing the immune status of hosts. We evaluated the NK cell activity in healthy adults. We further established and validated the RIs of representative NK cell functions. Flow cytometry was used to evaluate the cytokine production and CD107a degranulation of NK cells. Levels of soluble IFN-γ in the culture supernatants were evaluated by ELISA. Our results demonstrated that the intracellular IFN-γ production of NK cells was positively correlated with CD107a expression and soluble IFN-γ levels. There were no significant differences in NK cell functions between different age and gender groups. The mean values and RIs of representative NK cell functions are as following: IFN-γ(+) NK cells (%): 28.09 (11.3-51.95); CD107a(+) NK cells (%): 17.90 (9.852-27.56); soluble IFN-γ (pg/ml): 330.4 (41.38-717.8). In addition, the intracellular IFN-γ production and degranulation activity of NK cells in patients with colorectal cancer were significantly lower than that in healthy adults. Our study has established the RIs of NK cell functions in healthy adults, which might be used for monitoring the immune status of the hosts. PMID:27236137

  3. The characteristics of NK cells in Schistosoma japonicum-infected mouse spleens.

    PubMed

    Li, Lu; Cha, Hefei; Yu, Xiuxue; Xie, Hongyan; Wu, Changyou; Dong, Nuo; Huang, Jun

    2015-12-01

    Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious disease. Recently, some new characteristics of NK cells were discovered. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-6 weeks and lymphocytes were isolated from the spleen to detect some of the NK cell characteristics by multiparametric flow cytometry. The results revealed that the S. japonicum infection induced a large amount of NK cells, although the percentage of NK cells was not increased significantly. At the same time, the results showed that infected mouse splenic NK cells expressed increased levels of CD25 and CD69 and produced more IL-2, IL-4, and IL-17 and less IFN-γ after stimulation with PMA and ionomycin. This meant that NK cells played a role in S. japonicum infection. Moreover, decreased NKG2A/C/E (CD94) expression levels were detected on the surface of NK cells from infected mouse spleens, which might serve as a NK cell activation mechanism. Additionally, high levels of IL-10, but not PD-1, were expressed on the infected mouse NK cells, which implied that functional exhaustion might exist in the splenic NK cells from S. japonicum-infected mice. Collectively, our results suggest that NK cells play important roles in the course of S. japonicum infection. PMID:26319521

  4. Functional NK cell repertoires are maintained through IL-2Rα and FasL

    PubMed Central

    Felices, Martin; Lenvik, Todd R.; Ankarlo, Dave E.M.; Foley, Bree; Curtsinger, Julie; Luo, Xianghua; Blazar, Bruce R.; Anderson, Stephen K.; Miller, Jeffrey S.

    2014-01-01

    Acquisition of a functional natural killer (NK) cell repertoire, known as education or licensing, is a complex process mediated through inhibitory receptors that recognize self. We found that NK cells containing self-killer immunoglobulin-like receptors (KIR) for cognate HLA-ligand in vivo were less susceptible to apoptosis. In vitro IL-15 withdrawal showed that uneducated NK cells upregulated Bim and Fas. Conversely, educated NK cells upregulated FasL under these conditions. Induction of cell death and Bim expression on uneducated cells correlated with increased IL-2Rα expression. Overexpression and knockdown studies showed that higher IL-2Rα limits NK cell survival in a novel manner that is independent from the role of IL-2 in activation induced cell death (AICD). To study the role of FasL in induction of IL-2Rαhi NK cell death, a co-culture assay with FasL blocking antibodies was used. IL-15 withdrawal led to FasL dependent killing of IL-2Rαhi NK cells by more educated IL-2Rαlo NK cells. Finally, CMV reactivation induces a potent long-lasting population of licensed NK cells with enhanced survival. These findings show education dependent NK cell survival advantages and killing of uneducated NK result in the maintenance of a functional repertoire, which may be manipulated to exploit NK cells for cancer immunotherapy. PMID:24634493

  5. Reduction of the CD16−CD56bright NK Cell Subset Precedes NK Cell Dysfunction in Prostate Cancer

    PubMed Central

    Koo, Kyo Chul; Shim, Doo Hee; Yang, Chang Mo; Lee, Saet-Byul; Kim, Shi Mun; Shin, Tae Young; Kim, Kwang Hyun; Yoon, Ho Geun; Rha, Koon Ho; Lee, Jae Myun; Hong, Sung Joon

    2013-01-01

    Background Natural cytotoxicity, mediated by natural killer (NK) cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA) was analyzed in prostate cancer (PCa) patients with particular focus on NK cell subset distribution. Methods Prospective data of NKA and NK cell subset distribution patterns were measured from 51 patients initially diagnosed with PCa and 54 healthy controls. NKA was represented by IFN-γ levels after stimulation of the peripheral blood with Promoca®. To determine the distribution of NK cell subsets, PBMCs were stained with fluorochrome-conjugated monoclonal antibodies. Then, CD16+CD56dim and CD16−CD56bright cells gated on CD56+CD3− cells were analyzed using a flow-cytometer. Results NKA and the proportion of CD56bright cells were significantly lower in PCa patients compared to controls (430.9 pg/ml vs. 975.2 pg/ml and 2.3% vs. 3.8%, respectively; p<0.001). Both tended to gradually decrease according to cancer stage progression (p for trend = 0.001). A significantly higher CD56dim-to-CD56bright cell ratio was observed in PCa patients (41.8 vs. 30.3; p<0.001) along with a gradual increase according to cancer stage progression (p for trend = 0.001), implying a significant reduction of CD56bright cells in relation to the alteration of CD56dim cells. The sensitivity and the specificity of NKA regarding PCa detection were 72% and 74%, respectively (best cut-off value at 530.9 pg/ml, AUC = 0.786). Conclusions Reduction of CD56bright cells may precede NK cell dysfunction, leading to impaired cytotoxicity against PCa cells. These observations may explain one of the mechanisms behind NK cell dysfunction observed in PCa microenvironment and lend support to the development of future cancer immunotherapeutic strategies. PMID:24223759

  6. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    PubMed Central

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  7. Generation of recombinant canine interleukin-15 and evaluation of its effects on the proliferation and function of canine NK cells.

    PubMed

    Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Sang-Ki

    2015-05-15

    Interleukin-15 (IL-15) is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is also a promising cytokine for treating cancer. Despite the growing importance of the clinical use of IL-15 for immunotherapy, no attempts have been made to generate a recombinant canine IL-15 (rcIL-15) and to examine its effects on the antitumor activities of immune effector cells in dogs. Here, we generated an rcIL-15 protein consisting of Asn-49-Ser-162 with a C-terminal His tag and examined its functions ex vivo in terms of the proliferation and antitumor effects on canine non-B, non-T, large granular natural killer (NK) cells. Non-B, non-T, large granular NK cells rapidly expanded in response to stimulation with rcIL-15 in the presence of IL-2, and a majority of the cells that selectively expanded over 21 days exhibited a CD3(-)CD5(-)CD4(-)CD8(+/-)CD21(-) phenotype. Purified rcIL-15 significantly enhanced the expansion rate of canine NK cells derived from peripheral blood mononuclear cells compared to human IL-15, or culture in the absence of IL-15 for 21 days (p<0.05). Purified rcIL-15 was superior at enhancing the effector function of NK cells compared to human IL-15. The cytotoxic activity against canine thyroid adenocarcinoma (CTAC) cells, interferon-γ production, and the mRNA expression levels of perforin and granzyme B of expanded NK cells cultured with rcIL-15 were significantly elevated compared to those cultured with human IL-15 or without IL-15 (p<0.05). Intravenous administration of rcIL-15 significantly increased the numbers of lymphocytes in the peripheral blood of dogs on days 6, 8, and 11 after injection compared to numbers before administration (p<0.05). The results of this study suggest that the rcIL-15 protein, consisting of Asn-49-Ser-162, enhanced the proliferation and antitumor effects of canine NK cells and promoted the generation of lymphocytes in dogs. PMID:25890849

  8. Biological and Pharmacological Aspects of the NK1-Receptor

    PubMed Central

    Garcia-Recio, Susana; Gascón, Pedro

    2015-01-01

    The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis. PMID:26421291

  9. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate.

    PubMed

    Van de Walle, Inge; Dolens, Anne-Catherine; Durinck, Kaat; De Mulder, Katrien; Van Loocke, Wouter; Damle, Sagar; Waegemans, Els; De Medts, Jelle; Velghe, Imke; De Smedt, Magda; Vandekerckhove, Bart; Kerre, Tessa; Plum, Jean; Leclercq, Georges; Rothenberg, Ellen V; Van Vlierberghe, Pieter; Speleman, Frank; Taghon, Tom

    2016-01-01

    The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. PMID:27048872

  10. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate

    PubMed Central

    Van de Walle, Inge; Dolens, Anne-Catherine; Durinck, Kaat; De Mulder, Katrien; Van Loocke, Wouter; Damle, Sagar; Waegemans, Els; De Medts, Jelle; Velghe, Imke; De Smedt, Magda; Vandekerckhove, Bart; Kerre, Tessa; Plum, Jean; Leclercq, Georges; Rothenberg, Ellen V.; Van Vlierberghe, Pieter; Speleman, Frank; Taghon, Tom

    2016-01-01

    The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. PMID:27048872